
Explorations in machine learning for
interacting many-body systems

by

Jonathon Matthew Schulz-Beach

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Physics

Waterloo, Ontario, Canada, 2020

© Jonathon Matthew Schulz-Beach 2020

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

Supervisor: Roger G. Melko
Professor, Department of Physics, University of Waterloo
Associate Faculty, Perimeter Institute for Theoretical Physics

Internal Member: Anton Burkov
Professor, Department of Physics, University of Waterloo

Internal Member: Rob Myers
Director, Perimeter Institute for Theoretical Physics
Adjunct Professor, Department of Physics, University of Waterloo

Internal-External Member: Pierre-Nicholas Roy
Professor, Department of Chemistry, University of Waterloo

External Examiner: Federico Becca
Professor, University of Trieste, Department of Physics

ii

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Statement of Contributions

Chapter 2 consists of work previously published as [1] in collaboration with Anna
Golubeva and Roger G. Melko. Chapter 2 also consists of a blog post [2] published by the
author.

Chapter 3 consists of work previously published in [3] with co-authors Stavros Efthymiou
and Roger G. Melko.

Chapter 5 consists of work previously published in [4] with co-authors Tarun Grover,
Timothy H. Hsieh and Roger G. Melko.

Chapter 4 consists of work previously published in [5] with co-authors Isaac De Vlugt,
Anna Golubeva, Patrick Huembeli, Bohdan Kulchytskyy, Xiuzhe Luo, Roger G Melko,
Ejaaz Merali, Giacomo Torlai. Chapter 4 also consists of original material from collabora-
tions with Michael Albergo, Florian Hopfmeuller and Ejaaz Merali.

iv

Abstract

Most interacting many-body systems in physics are not analytically solvable. Instead,
numerical methods are needed for the study of these complex and high-dimensional prob-
lems. At present, there are many interesting problems in strongly correlated systems that
remain unsolved with current methods. At the heart of this problem is finding an efficient
representation that incorporates symmetries, correlations and general features.

In the context of computer science, machine learning techniques have had astonishing
success at reducing the dimensionality of data. The leading method is through the use
of artificial neural networks. These networks have been enormously successful at sifting
through vast amounts of data to find patterns and regularities. In a sense, neural networks
are themselves a statistical system whose properties are adjusted to mimic the features
of the data. By finding an effective low-dimensional representation of the data, machine
learning has greatly subdued the curse of dimensionality found in many real-world prob-
lems.

In this Thesis, we apply several machine learning techniques to the study of interacting
many-body systems in classical and quantum statistical physics. We explore supervised
classification of phases of matter with an emphasis on physical interpretation of the net-
work. In doing so, we design a custom network architecture that possesses rotational
symmetry as an inductive bias. We further investigate connections between the renormal-
ization group and deep learning through applying a super-resolving neural network to the
classical Ising model. Towards experimental efforts, we also repurpose generative machine
learning to quantum state tomography for the calibration and testing of quantum devices.
We conclude with a latent variable model inspired by near-term quantum algorithms. This
maps to a variational Monte Carlo ansatz that produces samples efficiently for interacting
quantum systems.

v

Acknowledgements

There are many people without whom this Thesis would not be possible. First and
foremost, I am thankful to my advisor Roger Melko. Roger provides a deep commitment to
each student, treating them as capable researchers from the start, providing opportunities
for growth, and above all respecting their questions and concerns. His patience, timely
feedback, and guidance made this process much more enjoyable.

I was fortunate to have carried out my doctoral studies along with fellow students
Lauren, Bohdan, Ponte, Giacomo, and Anna. I would not have learned nearly as much
without the constant discussions and collaborations. A special thanks goes to Lauren for
all the times she explained simple solutions to all my questions.

I am grateful to have collaborated with so many great physicists: Tim Hsieh, Juan
Carrasquilla, Tarun Grover, Sebastian Wetzel, Estelle Inack, Emilie Huffman. It was also
a pleasure to work with many enthusiastic and talented students: Ejaaz, Isaac, Florian,
Mohamed, Michael, Stavros, Dan S., Dan K., Brian, Patrick, and Nam. Lastly, I thank
my committee members, Anton Burkov, Rob Myers, and Pierre-Nicholas Roy for always
providing helpful feedback and consistently asking important questions.

I would also like to thank the Natural Sciences and Engineering Research Council of
Canada (NSERC) for continued support. Additionally, I thank the University of Waterloo,
the Perimeter Institute for Theoretical Physics, and the Vector Institute for Artificial
Intelligence for accommodating me throughout my studies.

Finally, I am profoundly thankful to my parents for providing me with unwavering
support throughout my studies. Without them, I would not have been fortunate enough
to pursue a PhD in physics. Above all, I am deeply grateful to my wife, Rachael. I cannot
imagine going through this without her constant love and support.

vi

Dedication

To my wife, Rachael.

vii

Table of Contents

List of Figures xi

List of Tables xviii

1 Introduction 1

1.1 Stochastic sampling methods . 5

1.1.1 Monte Carlo for statistical physics 5

1.1.2 Markov chain Monte Carlo . 7

1.1.3 Metropolis-Hasting algorithm . 8

1.1.4 Gibbs sampling . 9

1.1.5 Autoregressive sampling . 12

1.1.6 Summary . 14

1.2 Machine Learning . 14

1.2.1 Supervised learning: polynomial regression 15

1.2.2 Neural networks . 18

1.2.3 Stochastic gradient descent . 21

1.2.4 Classifying phases of the Ising model 23

1.2.5 Summary . 25

viii

2 Machine Learning Topological Defects 26

2.1 Introduction . 26

2.2 The Kosterlitz-Thouless transition . 27

2.3 Classification of phases . 31

2.4 Learning by confusion . 35

2.5 Supervised learning of vortices . 37

2.6 When is it beneficial to learn vortices? . 39

2.7 Conclusion . 43

3 Super-Resolving and Renormalization Group 45

3.1 Introduction . 45

3.2 Super-resolution and RG . 47

3.2.1 Decimation of the Ising model . 47

3.2.2 Network architecture . 49

3.2.3 Extrapolation to larger lattices . 50

3.3 One-dimensional Ising model . 52

3.4 Two-dimensional Ising model . 55

3.4.1 Approximate rescaling . 56

3.4.2 Importance of sampling . 56

3.4.3 Thermodynamic observables . 58

3.4.4 Critical Exponents . 60

3.5 Discussion . 61

4 Learning quantum states from measurements 63

4.1 Introduction . 63

4.2 Restricted Boltzmann machines . 65

4.2.1 Sampling . 67

4.2.2 Training . 68

ix

4.3 Positive wavefunctions with RBMs . 72

4.4 Complex wavefunctions . 76

4.5 Summary . 79

4.6 Transformers for state reconstruction . 80

4.6.1 Fidelity for quantum states . 84

4.6.2 Results . 84

4.7 Conclusion . 86

5 Quantum-inspired variational methods 87

5.1 Introduction . 87

5.2 Quantum approximate optimization algorithm 89

5.3 Variational imaginary time ansatz . 91

5.3.1 Jordan-Wigner transformation . 93

5.3.2 Exact solution . 95

5.3.3 Optimization . 96

5.3.4 Scaling . 97

5.3.5 Entanglement entropy . 98

5.3.6 Summary . 101

5.4 Variational Monte Carlo . 102

5.4.1 Quantum to classical mapping . 103

5.4.2 Results . 105

5.5 Conclusion . 107

6 Discussion and Outlook 109

References 114

APPENDICES 138

A Quantum Ising model sampler 139

x

List of Figures

1.1 Product rule of probabilities as a graphical model for an autoregressive
Bayesian network with four nodes. 13

1.2 Noisy data for the function y = sin(x). We compare three different polyno-
mial fits of degree n = 2, 3, 10. The training data is in blue. The red points
are the test set which is not used to train the model. 17

1.3 Overfitting occurs when the test error increases while the training error
decreases. The difference between training and test error is called the gen-
eralization gap. 18

1.4 (left) Single neuron with sigmoid activation function. The inputs x1, . . . , xn
are multiplied by the weights W1, . . . ,Wn and added to b before a sigmoid
activation function is applied. The output is the class prediction ŷ. (right)
Sigmoid activation function. As x→∞, the output saturates to σ(x) = 1,
and conversely limx→−∞ σ(x) = 0. 19

1.5 A multi-layer neural network. Inputs xi are fed into a hidden layer before
outputting class predictions ŷi. 20

1.6 (left) Gradient based optimizations with a large batch size has a smoother
trajectory. (right) A smaller batch size introduces more noise into the gra-
dient trajectory. For both plots, gradient descent is compared with the
momentum method, Adagrad, and Adam optimizers. 23

1.7 (left) Magnetization M for the two-dimensional classical Ising model. Sam-
pling was performed with the Metropolis-Hasting algorithm. (b) Output
probability for binary classification of phases with a neural network. 24

xi

2.1 (a): A configuration of the spins in the XY model for a temperature below
the KT temperature. Notice that it contains one vortex-antivortex pair that
is bound together. (b): A configuration above the KT temperature contains
one bound pair but also some free vortices. 28

2.2 An example of a vortex and antivortex in the XY model on the lattice. A
vortex has winding number w = 1, while an antivortex has w = −1. . . . 29

2.3 Estimators of the XY model on a L×L lattice with periodic boundary con-
ditions computed via Monte Carlo sampling. (a) The helicity modulus for
various lattice sizes L. The estimated critical point T̃KT is determined by
the Nelson-Kosterlitz universal jump where the helicity modulus, Υ, inter-
sects the line 2T

π
. The inset shows how T̃KT scales with (logL)−2 towards the

thermodynamic TKT shown by the black dashed line. (b) The non-zero mag-
netization present in the finite-size XY model. The magnetization vanishes
as L−

1
8 in the thermodynamic limit with the scaling shown in the inset. . 30

2.4 Probability of each phase for a CNN trained on raw spin configurations. The
green lines are the probability to be in the quasi-long range order phase.
Analogous to Fig. 1.7 from Chapter 1, Section 1.2.4. 33

2.5 Finite-size scaling of the predicted TKT for FFNN and CNN trained on either
(a) raw spin configurations, or (b) the vorticity. In either case the FFNN
performs worse than the CNN according to the test classification accuracy
(insets). The critical temperature is determined by the point where the
sigmoid output, as a function of temperature, crosses 0.5. Each data point
and variance is obtained by training 10 networks with stochastic gradient
descent until the validation loss function fails to improve after 50 epochs
(early stopping). 34

2.6 The learning by confusion scheme for a CNN applied to: (a) raw spin con-
figurations, (b) vorticity configurations. The test accuracy is expected to
form a ∨∨ shape with the peak at T ∗ = TKT. In (c), the peak in specific
heat (Cv) is compared to the peak of the test accuracy for a system of size
L = 64. The dashed vertical line s1hows the thermodynamic TKT. 36

xii

2.7 Network architecture for supervised learning of vortices. On the input spins
we apply 128 convolution filters of size 2×2 to capture interactions between
spins. After applying ReLu activation functions, the next layer is 64 filters
of size 1 × 1, again with ReLu activations. The network outputs three
binary channels with a softmax activation function to ensure only one label
is associated to each square in the lattice. Each channel represents ones of
the possible values of the winding number. 38

2.8 Training and cross-validation loss function for system sizes from 8× 8 up to
32 × 32. Training is stopped once the loss on the cross-validation set fails
to decrease after ten epochs. 39

2.9 Visual representation of how the custom network architecture can compute
the vorticity. We denote the convolution operation with ⊗, and ignore biases
for the purpose of the diagram. Applying the four 2×2 filters, Ki, partitions
the data into four L × L arrays where each element is an angle difference
in one lattice direction, ∆θij. The angle differences are then converted into
the range ∆θij ∈ [−π, π) by applying the sawtooth function from Eq. (2.5).
A single 1× 1 convolution filter with weights w = [1, 1, 1, 1] and zero biases
then sums the four shifted angle differences into the vorticity. 41

2.10 The loss function from Eq. (2.4) evaluated on the test set for three variations
of the custom architecture for various lattice sizes L. For small L < 16, the
fixed network with hard-coded weights performs poorly compared to the
others. For large L > 32, the fixed network performs best, possibly due
to a reduced number of trainable parameters. The inset shows a magnified
region for 32 ≤ L ≤ 72. 42

2.11 Histogram of the values of the vortex layer from Fig. 2.9 which (ideally)
computes the vorticity for: (a) the network initialized to compute vorticity,
and (b) the randomly initialized network. In (a), we see for small L, the vor-
ticity is not quantized, indicating that the network did not learn to compute
the local vorticity; however, for large L, the histogram looks as expected for
vortex detection. Conversely, the distribution in (b) appears unrelated to
vortices for any L. 43

xiii

3.1 Schematic of the super-resolution procedure. Starting with a configuration
σ generated via Monte Carlo (MR) at size L, we apply the majority rule
(MR) decimation to a downsampled (DS) configuration. The map SR
consists of two steps; upsampling (Fθ) and rescaling (f−1). We assume that
the map SR = f−1 ◦ Fθ is learnable and applies to any input size. 48

3.2 (a) Upsampling by replacing each up (down) spin with a block of four up
(down) spins. (b) The weights W convolve local regions together and add
a bias bi. Applying a sigmoid function element-wise gives the probabilities
of each site being up as p. Green sites correspond to the PBC padding. (c)
Sampling p gives discrete Ising spins on the super-resolved 2L× 2L lattice. 50

3.3 Critical configurations obtained using the weight extrapolation idea pre-
sented in Section 3.2.3. We show the original Monte Carlo configuration in
(a) and the results after (b) one, (c) three and (d) five consecutive super-
resolutions. 51

3.4 (a) Magnetization and (b) energy of the 1D Ising model. The dashed line
corresponds to observables computed with the down-sampled (DS) configu-
rations used as the network’s input. 52

3.5 (a) Absolute magnetization and (b) energy per spin for the 1D Ising model.
We denote Monte Carlo results at low (N = 32) and high (N = 64) reso-
lution with MC. The super-resolution (SR) results were obtained by using
the N = 32 MC data as input to an Z16

2 → Z32
2 network, and extrapolating

new N = 64 configurations. SR temperatures are adjusted according to the
inverse of Eq. (3.5). This shrinks the temperature range as the inverse RG
transformation flows towards T = 0. Inset plots correspond to the error
between SR predictions and MC results. 54

3.6 Two-point function of the 1D Ising model with j = N0.8/5. Solid lines corre-
spond to Eq. (3.6) and marked points to the super-resolution prediction. We
use MC data for N = 32, while all other sizes are obtained from consecutive
super-resolutions. 54

3.7 (a) Magnetization (with susceptibility) and (b) energy (with specific heat) of
the 2D Ising model. MC denotes Monte Carlo results while SR is obtained
by super-resolving the 8 × 8 downsampled (DS) configurations using the
Z8×8

2 → Z16×16
2 network. Below: Probability distributions of magnetization

and energy at T = 2.2010 ' Tc for (c, e) and T = 2.9313 > Tc for (d, f).
The observables are binned into 15 bins to obtain these histograms. Colours
follow the convention of the plots (a, b). 55

xiv

3.8 The method to find the T → T̃ rescaling by approximately collapsing the
MS and DS distributions of the same system size. 57

3.9 Histograms of the different 2× 2 block sums at three different temperatures
(a) T = 1.4706 (low), (b) T = 2.2010 (critical) and (c) T = 2.9313 (high).
The first column corresponds to MC configurations, while the second and
third to rounded and uniformly sampled network output respectively. . . . 58

3.10 (a) Absolute magnetization with the susceptibility and (b) energy with spe-
cific heat for the 2D Ising model. MC denotes Monte Carlo results while SR
is obtained by super-resolving the 16× 16 MC configurations using the ex-
trapolation of the Z8×8

2 → Z16×16
2 network. SR temperatures were rescaled

using the numerical transformation, which shrinks temperature range to-
wards criticality. (c), (d) Probability distributions of magnetization at
T = 2.2010 ' Tc for and T = 2.9313 > Tc, and (e), (f) the probability
distributions for energy. 59

3.11 The relative error in the energy εrel = |EMC − ESR|/EMC as a function of
number of SR steps. At T = Tc, the algorithm is the most inaccurate, with
around 6% error after one step. 60

3.12 Scaling of the two-point function and susceptibility (inset) at criticality.
The smallest size is calculated with Monte Carlo and the rest with repeated
super-resolutions. Errors are typically around 10−3 and too small to show
in this figure. 61

4.1 Restricted Boltzmann machine (RBM) with visible units x1, x2 . . . , x6, and
hidden units h1, h2, . . . , h5. 66

4.2 The fidelity (left) and the KL divergence (right) during training for the
reconstruction of the ground state of the one-dimensional TFIM for N = 10
spins at the critical point h/J = 1. 73

4.3 Reconstruction of the magnetic observables for the TFIM chain with N = 10
spins. We show the average longitudinal magnetization 〈σ〉z (left) and trans-
verse magnetization 〈σ〉x (right) per site obtained by sampling from a trained
RBM. The dashed line denotes the results from exact diagonalization. . . 75

4.4 The second Rényi entropy for the TFIM chain with N = 10 spins. The
number of sites in the entangled bipartition A is indicated by the horizontal
axis. Markers indicate values obtained through the “Swap” operator applied
to the samples from a trained RBM. The dashed line denotes the result from
exact diagonalization. 77

xv

4.5 Unitary rotations for two qubits. (left) Measurements on the reference ba-
sis. (right) Measurement in the rotated basis. The unitary rotation (the
Hadamard gate on qubit σ0) is applied after state preparation and before
the projective measurement. 78

4.6 Training a complex RBM on random two-qubit data. We show the fidelity
(left), and KL divergence (right), as a function of the training epochs. . . 80

4.7 (a) A single attention mechanics. (b) Multi-head attention (c) the full trans-
former block. 81

4.8 (a) Self-attention matrix for a five element vector x. (b) Self-attention ma-
trix with certain correlations masked out to allow the autoregressive prop-
erty. 83

4.9 (a) The fidelity f , for L = 32 spins for various embedding dimension sizes
d. (b) Fidelity improvement per epoch during training for various system
sizes L. 85

4.10 Monitoring the infidelity 1− f , for the RBM and self-attention based trans-
former for the ground state of the TFI model with L = 16 spins. 85

5.1 QAOA for P = 1, 2, 8. Note that the P = 1 solution might not be able to
exactly reach the target state, but it can be close. Each P systematically
improves performance (if optimization is possible). 90

5.2 Circuit representation of the trial state |ψP (α,β)〉 for P = 1. Each box
denotes imaginary time evolution with the enclosed Hamiltonian. 91

5.3 (a) Energy landscape for P = 1 and L = 10 spins. (b) Fidelity landscape.
For visualization purposes, the colour represents the logarithm of the energy
difference between the exact energy and the variational energy. 96

5.4 (a) Relative error in energy, εrel between the exact ground state energy,
Eexact, and the energy of the optimized trial wavefunction EP (α,β). (b)
Number of pulses P needed to obtain a desired accuracy in the fidelity, f ,
for a given system size, L. The white region in (b) was not computed in the
present study. 97

5.5 (a) Relative error in energy, εrel = |(EP (α,β)− Eexact)/Eexact| between the
VITAp ansatz for various system sizes L. (b) 1 − f , the infidelity of the
ground state and the optimized state |ψP (α,β)〉. (c) Total imaginary time
τ = 1

2

∑P
p=1(αp + βp) for the optimized ansatz. 97

xvi

5.6 Collapse of the infidelity log(1− f) = G(τ
(logL)ν

) with ν = 2.3. The fit is a

power law log(1− f) = 175 x1.85 with x = τ
(logL)ν

. 98

5.7 Optimal parameters (α,β) found using the Jordan-Wigner method for L =
64 spins for (a) the critical point h = 1 with P = 1, ..., 5, (b) Optimal
parameters for P = 2 for various h, (c) scaling of optimal parameters with
L at h = 1. All plots are generic for any P and system size L. 99

5.8 Entanglement entropy as a function of subsystem size LA for intermediate
p states in a depth P = 5 ansatz for L = 64 spins. 100

5.9 (a) Entanglement entropy of half partition grows exponentially with imagi-
nary time τ , in the optimal P = 5 ansatz for the critical state. (b) Mutual
information between two spins at positions A and B respectively as a func-
tion of their distance ∆x, for intermediate steps p in the P = 5 protocol
with L = 64. 102

5.10 Schematic of the two-dimensional classical Ising lattice dual to the ansatz
in Eq. (5.36) for depth P = 2 and L = 6 spins. 104

5.11 Relative error in energy, εrel for VMC using our ansatz on the TFIM: (a)
1d model with L = 64 spins. Solid lines denotes the results from the free
fermion approach, (b) 2d model on a 10 × 10 square lattice. Energies are
compared with those from zero-temperature stochastic series expansion. . 106

5.12 Relative error in energy, εrel for VMC using our ansatz on the TFIM with a
longitudinal field from Eq. 5.47. 107

xvii

List of Tables

1.1 Comparison of variational methods and stochastic methods. 3

2.1 Network architecture for binary classification of phases. 32

3.1 Critical exponents of the 2D Ising universality class. We give the mean
and standard error of 60 independent repetitions of training and critical
exponent calculation from 16 × 16 to 128 × 128. The error is calculated in
respect to exact values in the thermodynamic limit. 62

xviii

1

Introduction

Physics largely assumes that the behaviour of matter and energy can be described by simple
mathematical laws. Remarkably, these laws depend on the energy scale in question. At
low energies, classical Newtonian mechanics is undisputedly successful. At higher energies,
classical intuition gives way to quantum mechanical rules. For even higher energies, the
standard model of particle physics becomes necessary to explain the interactions between
ultra-small electrons, photons and other elementary fields.

The idea that all large-scale behaviours can be predicted from the most fundamental
laws has a long history in science. Indeed, the reductionist viewpoint has been a driv-
ing force for particle physics, as we build increasingly large particle accelerators to probe
increasingly high energies. And yet, there are many interesting phenomena presently unex-
plained by fundamental laws. These include high-temperature superconductivity, quantum
spin liquids, amorphous solids, and many-body localization [6, 7, 8]. As Anderson pointed
out in a famous essay, “The ability to reduce everything to simple fundamental laws does
not imply the ability to start from those laws and reconstruct the universe” [9]. This stands
in stark contrast to Newton’s clockwork universe.

Even in classical physics, a gas composed of at least N > 1023 molecules poses a
formidable challenge. There are 6N Newtonian equations of motion for the movement
all particles. Solving these are beyond the capabilities of any computer. Rather than
admit defeat, physicists recognize important properties of the system that the constituents
themselves do not possess: namely, the macroscopic properties of temperature and pressure.
In one sense, pressure and temperature are not fundamental since they can be derived from
the kinetic theory of gases. Yet, it is hard to deny their usefulness in thermodynamics,
let alone everyday experiences. This is one example where macroscopic properties can be

1

derived from a microscopic system, and yet simultaneous take on a meaning of their own.

Interacting many-body systems pose an even more serious difficulty. With only 75
interacting binary degrees of freedom, we already face the same complexity as 1023 non-
interacting particles. In the quantum setting, the non-relativist Schrödinger equation pro-
vides a framework to predict almost all properties of matter. However, the amount of
computer memory required to store an entire many-body wavefunction scales exponen-
tially in the number of qubits. This “catastrophe of dimension”1 the simulation of even
265 particles, for which the amount of memory required is 2265 (approximately the number
of elementary particles in the entire universe).

The curse of dimensionality is not only a problem for physicists. High-dimensional
data is encountered in many areas, including human language, portfolio optimization, and
natural images. In a standard high-definition image, there are 1920 × 1080 pixels, each
with three-colour channels (RGB) that take on a range 0, . . . , 255. So the number of
possible images (or microstates) is approximately 10107 . This number is already much
greater than the estimated number of particles in the universe. Of course, most of these
images are unrecognizable to humans, and many are duplicates (up to infinitesimal white
noise). Only a small subset are so-called natural images that represent real photographs.
What properties of an image make them “real”? How can we design a model to describe
what a photograph of a dog is?

Designing an algorithm by hand for the 10107 microscopic pixels in an image is anal-
ogous to the interacting many-body problem in physics. The sheer scale and complexity
prohibit any brute-force or lookup-table approach. Instead, we must rely on finding effec-
tive macroscopic properties in order to make progress.

There are broadly two approaches to solve high-dimensional problems. The first is
stochastic sampling methods such as Monte Carlo, where given the microscopic system, we
generate statistical measures using random sampling. Stochastic methods typically require
knowledge about the microscopic model but are asymptotically exact. The second method
is variational approximations. This encompasses finding a parameterized representation of
the system. Such variational models can be considered compressions since they reduce the
number of parameters from an exponential number to a manageable amount. Examples in
physics include matrix product states [11], variational Slater-Jastrow wavefunctions [12],
or neural networks [13]. In a sense, the variational approach gives a framework in which
to discover to best model of underlying data. In Table 1.1, we compare common strengths
and weaknesses of stochastic and variational approaches.

1More commonly called the curse of dimensionality, this phrase is from Laughlin and Pines’ famous
essay on emergence [10].

2

Variational Methods

• biased

• parametric model

• typically fast

• maximizing an explicit objective

• can be trapped in local minima

• easy to verify convergence

Stochastic sampling

• asymptotically exact (unbiased)

• non-parametric model

• typically slow

• needs microscopic knowledge

• can be trapped in local minima

• difficult to prove convergence

Table 1.1: Comparison of variational methods and stochastic methods.

Variational methods need to have sufficient representational power to approximate the
true system. Many variational approximations are motivated by physical intuition2, includ-
ing mean-field theory and the Bethe ansatz [14, 15]. However, a relatively recent approach
is to use incredibly high-dimensional systems, such as artificial neural networks, to mimic
and reproduce the properties of a different system (i.e. natural images) [16]. Rather than
enforcing our assumptions about the system a priori, we leverage emergence to our advan-
tage. Laughlin and Pines called the science of the next century that of “complex adaptive
matter”, but instead we are in the era of large-scale complex adaptive algorithms : algo-
rithms that learn from data.

The last decade has seen the rapid insurgence of machine learning tools adopted into
everyday life. From search engines using state-of-the-art language models, to recommender
systems on social-media, there is almost no technology that has not been influenced by the
ground breaking improvement of machine learning models.

At the heart of machine learning is discovering patterns and structure in data. This is
something very familiar to physicists. For instance, in the 16th century, Johannes Kepler
discovered the laws of planetary motion from astronomical data collected by Tycho Brahe.
Even Planck’s solution to black-body radiation was motivated by fitting a theoretical model
to the available data.

The proliferation of data in modern society coupled with increased computational power
from using graphics processing units (GPUs) and dedicated hardware [17, 18] has created
the widespread success of machine learning. In particular, artificial neural network models
which were based on the biological neurons in the brain have repeatedly achieved state-
of-the-art results on various benchmarks including computer vision, language translation,
speech recognition, and games such as chess or Go.

2This is called inductive bias.

3

Machine learning has tamed the complexity of many real-world problems. We are
overdue to integrate these methods back into physics where interacting systems still pose
a serious challenge.

Outline

In this Thesis we explore various questions about using adaptive learning algorithms for
the study of physical many-body systems. For the remainder of this Chapter, we provide
the necessary background for understanding both stochastic Monte Carlo approaches, and
the basics of machine learning with neural networks.

In Chapter 2, we use neural networks to classify phases separated by a Kosterlitz-
Thouless transition in the two-dimensional classical XY model. We begin with standard
supervised learning to distinguish the phases. Next, we pose the problem of identifying
vortices directly with supervised learning. We proceed by using a semi-supervised “learning
by confusion” method to identify the critical point. Lastly, we consider incorporating
rotational symmetry into a network so that it makes learning internal representations of
topological defects more natural.

In Chapter 3, we propose a supervised neural network to extrapolate finite-size systems
to larger sizes. This is inspired by image super-resolution where high-definition images are
upscaled to appear at 4k resolutions3. This idea of upscaling a small system to a large
system draws many parallels with renormalization group (RG) procedures. Essentially, we
train the network to invert RG decimation on the one- and two-dimensional Ising models.

In Chapter 4, we use a generative model called a restricted Boltzmann machine to
approximate a quantum state from projective measurements of the state. We show how
experimental or simulation data can be used to train the network to represent the state to
high accuracy. As a proof of concept, we also demonstrate quantum state tomography with
the modern transformer neural network. We highlight the improved performance granted
by autoregressive sampling as compared to Monte Carlo sampling.

In Chapter 5, we design quantum-inspired variation ansatz to solve the quantum Ising
model. The variational imaginary time ansatz is a latent variable model where the latent
space is auxiliary degrees of freedom from the quantum-to-classical mapping. This can also
be interpreted as a hybrid variational-worldline Monte Carlo method. We solve the one-
and two-dimensional Ising models, as well as the one-dimensional non-integrable model

3This process occurs on any 4k television, but more advanced algorithms such as those using machine
learning, can create a much more realistic and sharper image.

4

with a longitudinal field. Using both exact mappings to fermions and numerical Monte
Carlo, we verify that the ansatz has a remarkable parameter efficiency.

In Chapter 6, we summarize the main findings in the Thesis and subsequent research
developments. We conclude with an outlook for the interdisciplinary efforts of machine
learning and many-body physics.

1.1 Stochastic sampling methods

Monte Carlo methods are perhaps one the most important numerical techniques of the last
century. The key idea behind Monte Carlo tools is to use random sampling to approximate
a solution to a problem that is infeasible otherwise. This profound, yet simple, idea has
made Monte Carlo applicable to nearly every technical field; from financial engineering
[19, 20], computational biology [21], particle physics [22], and even string theory [23].

In condensed matter and statistical physics, Monte Carlo offers a powerful tool for
studying interacting systems. For classical systems, Monte Carlo is used for studying ther-
mal properties of materials and phase transitions [24, 25, 26]. In the quantum realm,
quantum Monte Carlo (QMC) is the leading method for systems in more than two spa-
tial dimensions. QMC relies on mapping a d-dimensional quantum system to a (d + 1)-
dimensional classical system through an imaginary time path integral [27, 28]. Several
variations of QMC exist for different types of systems: for highly-efficient stochastic series
expansion for spin system [29], determinantal methods [30], and variational Monte Carlo
(VMC) [31, 32]. All these methods depend on common ideas presented in this Section.
These techniques all employ Markov chains and local updates. We conclude this Section
with autoregressive sampling, a non-Markov chains method useful in machine learning
models.

1.1.1 Monte Carlo for statistical physics

For many high-dimensional problems, Monte Carlo provides a way to approximate a solu-
tion up to a sampling error. These methods depend on drawing samples from a probability
distribution, which could be useful on their own, or used to approximate a sum or integral.

In statistical mechanics, we are concerned with sampling microstates of a system fol-
lowing a Boltzmann distribution. For such a distribution, the probability of a state s with

5

energy E(s) at temperature T = 1/β is

p(s) =
e−βE(s)

Z
(1.1)

where Z is a normalization constant called the partition function,

Z =
∑
{s}

e−βE(s) (1.2)

and {s} denotes all possible microstates.

We are interested in computing expectation values of observables in the canonical en-
semble. Such examples include the magnetization, energy density, or specific heat. For an
observable O, the expectation value or thermal average is given by

〈O〉 =
1

Z

∑
{s}
O(s) e−βE(s) =

∑
{s}
O(s) p(s) . (1.3)

For a many-body system, the sum is generally intractable because of an exponential number
of possible configurations of a system.

The idea of Monte Carlo is to approximate the sum by randomly sampling the states
that give the greatest contributions. Instead of weighting randomly chosen configurations
with p(s), we weight them evenly but choose them with probability p(s). So for N states se-
lected randomly according to p(si), the expectation value is approximated by the empirical
average

〈O〉 =
∑
{s}
O(s) p(s) ≈ 1

N

N∑
i=1

O(si) . (1.4)

This sample mean is an estimator to the true expectation value. By the Central Limit
Theorem, as the sample size tends to infinity (N → ∞), the estimator converges to the
expected value, with the caveat that the variance must remain finite. Moreover, if the
samples are independent, the approximation is unbiased.

The error in the estimator over a sample of N independent and identically drawn (i.i.d.)

samples is O
(

1√
N

)
. Consequently, the accuracy of Monte Carlo methods is limited. For

a ten-fold increase in accuracy, we require a hundred-fold increase in the sample size.
However, the statistical error is independent of the dimensionality of the integral, making
Monte Carlo suitable for high-dimensional problems.

6

So far we have relied on sampling from p(s), but this might be a hard problem itself.
In the next Section, we introduce Markov chain Monte Carlo where we bypass the need
to sample directly from p(s) at the expense of having correlated samples. This technique
is crucial to all data sets produced in this Thesis, as well as for machine learning with
undirected graphical models.

1.1.2 Markov chain Monte Carlo

One method to generate samples from p is through use of Markov chain Monte Carlo
(MCMC). A Markov chain is a sequence of states where each state only depends on the
previous one. For a state x, we propose an update to a new state x′ with transition
probability T (x→ x′). The total probability of a state π(x′) is the sum of the probabilities
from all other states to transition into x′

π(x′) =
∑
x

T (x→ x′)π(x) . (1.5)

This is necessary for the chain to model a stationary distribution.

The goal is that by designing an appropriate transition T , the chain probability π(x)
converges to the desired distribution p(x). For this, we need to satisfy two conditions. The
first is ergodicity : the conditions that any state x′ can be reached from any other state x
with a finite number of steps. This does not imply that T (x → x′) 6= 0, only that there
must only exist a possible sequence x→ x1 → . . .→ x′ with finite probability.

The second condition is called balance. The equation for balance is simply a solution to
the stationarity condition in Eq. 1.5. This expresses that the total probability of reaching
a state equals the total probability of leaving the state, i.e.∑

x′ 6=x
T (x′ → xi)π(x′i) =

∑
x6=x′

T (x→ x′)π(x) . (1.6)

The simplest way to satisfy balance is by requiring local or detailed balance

T (x→ x′) π(x) = T (x′ → x) π(x′) . (1.7)

A Markov chain that satisfies detailed balance is called reversible.

Starting from a random state, x0, Markov chains repeatedly apply stochastic updates
according to T to produce a sequence of states x1, . . . , xN . The balance and ergodicity

7

alone are not enough to guarantee the initial few states are representative of the stationary
distribution. This is particularly true if the initial x0 happens to be in a region of very
small probability. A way to avoid this is by discarding the first n states in the chain.
This is called burning-in or equilibrating the chain. This incurs an additional cost that
can be prohibitive in some cases. One mitigation is to start the initial x0 in a region of
high-probability, although this may be difficult4.

The second issue is that any two successive samples are correlated. In certain systems,
the number of Markov steps required to produce roughly independent samples scales as a
polynomial function of system size. This is critical slowing down, and makes MCMC very
computationally expensive. For instance, at the critical point in the two-dimensional Ising
model the autocorrelation time scales as τ ∼ L2.2 [33] with local updates.

The final problem in MCMC is the possible breakdown of ergodicity, that is, sampling
many disconnected regions of high probability. While the ergodicity condition ensures
any state can in principle reach any other, it may take an exponential number of Markov
steps to do so. If an update is not sufficiently global, it can easily result in the chain
being trapped near a local high probability zone. A simple example is the low-temperature
two-dimensional Ising model where at T < Tc, the phase space consists of two disjoint
regions, all spins up and all spins down. In this case, a local update is not sufficient to
escape a high-probability region of phase space. We call this ergodicity breaking, or the
mode-mixing problem in MCMC. The use of multiple Markov chains, global updates or
parallel tempering can help mitigate this issue [34, 35].

In the next Sections, we discuss three types of sampling algorithms: Metropolis-Hastings,
Gibbs, and autoregressive sampling. All three will be important to the data generation
used throughout this Thesis.

1.1.3 Metropolis-Hasting algorithm

In the 1950s, Metropolis, the Rosenbluth’s, and the Teller’s [36] were the first to use MCMC
in physics. They considered designing the transition probability T (x → x′) to be a small
local change in a configuration. The algorithm was further generalized by Hastings in 1970
[37] who showed that we can generally decompose the transition matrix into an acceptance
probability A(x→ x′), and a proposal probability g(x→ x′),

T (x→ x′) = g(x→ x′)A(x→ x′) . (1.8)

4Chapter 3 investigates using machine learning to find good starting points.

8

In the case of the Ising model, we take g(x → x′) to be a single spin flip s → s′.
Assuming the chain has converged so that π(x) = p(x), detailed balance for the Boltzmann
distribution reduces to

g(s→ s′)A(s→ s′)

g(s′ → s)A(s′ → s)
=
p(s′)

p(s)
=
e−βEs′

e−βEs
= e−β(Es′−Es) . (1.9)

There is still an ambiguity in this expression for A(s → s′), but recalling that T must be
0 < T < 1, we can resolve it. If ∆E < 0, then e−β∆E > 1, so we choose A(s′ → s) = eβ∆E

so that A(s′ → s) = 1. In the case ∆E < 0, we simply have A(s → s′) = e−β∆E. This is
neatly summarized as the Metropolis-Hasting acceptance ratio

A(s→ s′) = min

(
1,
p(s′)g(s′ → s)

p(s)g(s→ s′)

)
. (1.10)

Intuitively, it makes sense that a state will jump to a lower energy (higher probability)
state with probability one, yet will jump to a higher energy state only with exponentially
vanishing probability. While theoretically the exponential tail allows any state to transition
to any other state, in practice, large jumps are not likely. This results in the mode-mixing
problem. Even worse, if the state does jump, it is likely to transition back in the next step.

One problem with the Metropolis-Hastings algorithm is that the samples produced will
not be independent as required by Eq. 1.4. In fact, since Markov chain depends only on each
previous state, each successive sample is highly correlated. One typically has to compute
how many Monte Carlo steps are needed for two samples become roughly uncorrelated.
One measure is the autocorrelation function

CO(t) ∝ 〈O(i)O(i+ t)〉 − 〈O(i)〉 〈O(i+ t)〉 (1.11)

which typically goes as CO(t) ∼ exp (−t/τauto). Choosing a transition so that samples
are dissimilar typically results in lower autocorrelation times. For the Ising model, cluster
updates such as the Swendson-Wang [38] or Wolff update [39] dramatically lower the auto-
correlation time.

1.1.4 Gibbs sampling

In the Metropolis-Hastings algorithm, we only used ratios of the probabilities p(s′)/p(s)
and did not assume anything about the form of p. Another common form of sampling is
Gibbs sampling, which can we regarded as a subset of the Metropolis-Hastings with more

9

structure imposed on p. In the literature, this is also sometimes known as the heat bath
algorithm or Glauber dynamics. Gibbs sampling is also common in Bayesian inference,
and plays a crucial role in the training of restricted Boltzmann machines [40].

In Gibbs sampling, all but one random variable is fixed, so that we can sample from a
univariate conditional distribution instead of the full high-dimensional distribution. Sam-
pling from a univariate distribution is much easier since the dimension of the space is greatly
reduced. The benefit of Gibbs sampling is when the conditions p(xi|x 6=i) can be computed
exactly using Bayes’ rule. To satisfy ergodicity, each conditional must be non-zero.

Gibbs sampling is a local update algorithm. We rely on updating spin si with s′i
according to the transition probability g(si → s′i). Although it might seem unfamiliar,
Gibbs sampling is a subset of Metropolis-Hastings. Since Gibbs involves an update only
on site i, the proposal probabilities are

g(s→ s′) = p(s′i|s 6=i)p(s 6=i) (1.12)

g(s′ → s) = p(si|s 6=i)p(s 6=i) (1.13)

Notice that p(s 6=i) is the same for both transitions since only a local change on site i is
considered. The Metropolis-Hasting ratio becomes

p(s′)g(s′ → s)

p(s)g(s→ s′)
=
p(s′)

p(s)

p(si|s 6=i)p(s 6=i)
p(s′i|s 6=i)p(s 6=i)

(1.14)

=
p(s′)

p(s)

p(s)

p(s′)
(1.15)

= 1 . (1.16)

We see that the Gibbs step is always accepted. This is called a rejection-free algorithm.

Since Gibbs sampling spin si only depends on the nearest neighbours, many spins can
be updated in parallel. For instance, in a one-dimensional lattice, we marginalize out all
even (or odd) spins with

p(seven|sodd) =
∏
odd i

p(si|sodd) , (1.17)

p(sodd|seven) =
∏

even j

p(sj|seven) . (1.18)

The method of alternating between two or more independent variables is referred to as block
Gibbs sampling. In this method, sampling is very fast since there are no rejections and

10

many spins can be updated simultaneously. This is important for the restricted Boltzmann
machine in Chapter 4. However, as a local update algorithm, Gibbs sampling still suffers
from poor ergodicity, i.e., the mode-mixing problem.

Consider the example of the classical Ising model in d-dimensions which has the Hamil-
tonian

H = −J
∑
〈ij〉

sisj − h
∑
i

si (1.19)

where
∑
〈ij〉 denotes a sum over nearest neighbour spins. A sample s = (s1, s2 . . . sN) is a

configuration of N spins with energy E(s). The statistics follow the Boltzmann distribution
from Eq. 1.1. Let s 6=i = (s1, s2, . . . si−1, si+1 . . . sN) be the same configuration without the
ith spin si. It is clear that the only difference in the energy of the states will be from the
ith spin term:

E(s) = E(s 6=i) + E(si) (1.20)

= E(s 6=i)− hsi − J
∑
〈ij〉

sisj .

Using Bayes’ rule, the probability that spin si = 1, with all others fixed is

p(si|s 6=i) =
p(s)

p (s 6=i)
(1.21)

=

(
e−βE(s)∑
{s} e

−βE(s)

)(∑
{s6=i} e

−βE(s6=i)

e−βE(s6=i)

)
(1.22)

= e−βE(s)+βE(s6=i)

(∑
{s6=i} e

−βE(s6=i)∑
{s} e

−βE(s)

)
(1.23)

11

The normalization constants simplify by writing out the sums over each si spin:

p(si|s 6=i) = e−βE(si)

(∑
s1=±1 . . .

∑
sN=±1 e

−βE(s6=i)∑
si=±1

(∑
s1=±1 . . .

∑
sN=±1 e

−βE(s6=i)+βE(si)
)) (1.24)

= e−βE(si)

(∑
s1=±1 . . .

∑
sN=±1 e

−βE(s6=i)∑
si=±1 e

βE(si)
(∑

s1=±1 . . .
∑

sN=±1 e
−βE(s 6=i)

)) (1.25)

=
e−βE(si)∑
si=±1 e

βE(si)
(1.26)

=
eβh+βJ

∑
〈j〉i

sj

2 cosh
(
βh+ βJ

∑
〈j〉i sj

) (1.27)

=
1

1 + e−β(h+J
∑

〈j〉i
sj)

(1.28)

where we used the fact that the sum over si = ±1 is symmetric. Due to nearest neighbours
interactions, only a few spins (the neighbours) directly affect spin si. Sampling proceeds by
iterating through all lattice sites i = 1, . . . , N and setting si = 1 with probability p(si|s 6=i).

1.1.5 Autoregressive sampling

So far, the methods discussed rely on a Markov chain to produce samples which suffer from
correlations. While this scales well to high-dimensional problems, in some cases we can
improve sampling significantly by producing truly independent samples. In this Section,
we describe autoregressive sampling: a method of generating samples from a distribution
of many variables from knowledge of all conditional distributions. In condensed matter,
this is called perfect sampling in the context of tensor networks [41].

For a vector x = (x1, x2, . . . xN), the chain rule for probabilities states that the total
probability of x is the product of all conditional probabilities

p(x) =
N∏
i=1

p (xi|x<i) (1.29)

= p(x1) p(x2|x1) p(x3|x1, x2) . . . p(xN |x1 . . . xN−1) , (1.30)

where x<i = (x1, x2, . . . , xi−1) denotes all elements with index less than i. This is called
the autoregressive property because of origins in time-series models. However, instead of
times-series, we can enumerate sites on a lattice or other quantum numbers.

12

x1 x2 x3 x4

Figure 1.1: Product rule of probabilities as a graphical model for an autoregressive Bayesian
network with four nodes.

For instance, consider the state ψ ∝ |010〉 + |100〉 + |111〉. We first learn that the
probability of the first qubit to be in |0〉1 is p(01) = 1

3
. The probability of the next qubit

being in either |0〉2 or |1〉2 is given by the four conditionals

p(02|01) = 1 (1.31)

p(02|11) = 0 (1.32)

p(12|01) =
1

2
(1.33)

p(12|11) =
1

2
(1.34)

Likewise for the third qubit. This example makes it clear that any errors in the pre-
dictions of earlier probabilities (i.e., p(x1), p(x2|x1) . . .) propagate to the last qubits (i.e.
p(xN |xi < N)). Notice that the complexity of this representation grows exponential in
the length of the sequence N . Analogous to Monte Carlo where we cannot enumerate
all the configurations, in autoregressive models we cannot enumerate all the conditional
probabilities.

We simplify the description by recursively defining the conditions to depend on previous
conditionals

p (si|s<i) = F (p (si−1|s<i−1)) . (1.35)

This is the basis of recurrent neural networks and deep autoregressive models.

Autoregressive sampling for the one-dimensional Ising model is trivial since each con-
ditional reduces to the Gibbs result from Eq. 1.28, i.e.,

p(si|s<i) = p(si|si−1) =
1

1 + e−β(h+J
∑

〈j〉i
sj)

(1.36)

13

In essence, the nearest neighbour interactions are too simple for autoregressive models to
provide a benefit.

The simple result for the Ising model is not indicative of the ability of this method.
For instance, natural language possess much stronger dependence on proceeding words
and hence contains longer-range correlations. In language modelling, Markov models have
mostly failed, whereas autoregressive model have achieved groundbreaking results [42, 43].

1.1.6 Summary

In many ways, Monte Carlo has overwhelmingly been the greatest general purpose tool for
tackling difficult and high-dimensional problems. For condensed matter physics, these are
essential to probe the nature of entanglement in quantum states [44, 45] and many other
interacting many-body phenomena.

In this Section, we discussed the essential properties of stochastic sampling techniques
that are used throughout this Thesis. We introduced Metropolis-Hasting, a standard
technique for many areas of physics. Further, we showed that Gibbs sampling is a rejection-
free algorithm and is a special case of the Metropolis-Hastings algorithm that is used in
machine learning graphical models. We also briefly described autoregressive sampling, an
approach that is very effective in modern machine learning.

In the next Section, we introduce machine learning methods: a data-driven approach
that has profoundly changed the research landscape in computer science. These promising
methods may prove to have the widespread success that Monte Carlo experienced in the
past 50 years.

1.2 Machine Learning

In an influential blog post, Karpathy (Director of AI at Tesla) argues that machine learning
is a fundamental new paradigm for computing: it represents Software 2.0 [46]. In the old
days of Software 1.0, people would design algorithms to accomplish a specific task. The
language they used was computer code such as C, Python, Java, etc., which compiles down
to machine instructions. This method has powered many technologies such as the internet,
autopilot in airplanes, risk assessment in financial markets, simulations of planet formation
and statistical physics. On the other hand, machine learning proposes that programs be
written in a more abstract way. The language is the unfamiliar linear algebra manipulations

14

of the parameters of a neural network. Typical networks can involve millions, even billions
of parameters5 that humans are simply not capable of programming manually.

Machine learning is commonly broken down into three main areas: supervised learning,
unsupervised learning, and reinforcement learning. In supervised learning, we task the
algorithm with optimally matching a label to an input. The algorithm is repeatedly shown
instances of inputs and labels, with the hope that it can detect what makes a particular
input have a certain label. Most of the success of machine learning has been in supervised
learning.

In unsupervised learning, we are tasked with finding structures with only the input data.
Such examples include clustering algorithms that partition the data into different regions
based on a learned similarity metric. Another unsupervised task is density estimation.
From observed data, we try to learn the underlying probability density that produced that
data. The goal is to not only reproduce training samples, but also generate new ones not
in the training set.

Reinforcement learning is somewhat distinct from the other two areas because it does
not involve a training data set. Instead, we model an agent interacting with its environment
through a series of rewards to encourage good performance. The agent wants to maximize
the sum of future rewards. There is a trade-off between exploring new actions to find
better rewards, or saying with a safe, but small reward. Reinforcement learning has been
the source of breakthrough in games such as StarCraft II [49] and Go [50].

In the majority of this Thesis, we focus on supervised learning and generative mod-
elling. For that purpose, we introduce supervised learning in the following Sections, and
only generative models as needed in subsequent Chapters. Starting with polynomial re-
gression, we cover neural networks and stochastic gradient descent before concluding with
an example of classifying phases in the Ising model.

1.2.1 Supervised learning: polynomial regression

Supervised learning deals with a task of correctly labelling of input x with a label y. It is
called supervised because we provide training data consisting of pairs (x, y). A machine
learning model is a function that predicts the label given the input, f(x). When the labels
are discrete, this problem is called classification, while for continuous labels it is called
regression. But how do we choose the function f?

5For instance, recent works have used 8 and 175 billion respectively [47, 48].

15

In the case of regression, we could use a polynomial fit,

fθ(x) = θnx
n + θn−1x

n−1 + . . .+ θ0 (1.37)

as an approximation. Alternatively, we can specify a vector of inputs x = (x1, . . . xn) and
use a linear approximation

fθ(x) =
∑
i

θixi + θ0 . (1.38)

If we choose each xi = xi, we recover the polynomial fit. This is called feature engineering.
While the polynomial case is a trivial example, it will be important for neural networks.

How do we quantify the best fit? The likelihood function measures the probability
of observing y given the data points x. If the all data points are independent, then the
likelihood factorizes to the product of each individual likelihood L(y, x) =

∏
i L(yi, xi). If

we assume that the random variable yi follows the true model fθ(xi) up to Gaussian noise6

ε, then each L(yi, xi) is a normal distribution. Hence, for the total data set y and x, the
likelihood is

L(y, x) ∝
∏
i

exp

[
−(fθ(xi)− yi)2

2σ2

]
. (1.39)

To find the best fit, we simply maximize the likelihood. It is more convenient to work with
the log-likelihood instead,

logL(y, x) ∝ − 1

2σ2

∑
i

(fθ(xi)− yi)2 + const . (1.40)

Since this is monotonic, it does not change the optimization. We see that maximizing the
log-likelihood is equivalent to minimizing the squared error loss

L(θ) =
∑
i

(fθ(xi)− yi)2 . (1.41)

To find the best fit, we simply minimize the difference between the prediction and true
value. We denote the optimal values of the parameters as θ∗.

How do we optimize the parameters θ? The most straightforward method is to use
gradient descent. The parameters are updated according to the gradient of the loss function

θt+1 = θt − η∇L (1.42)

6Compactly written as yi ∼ fθ(xi) + εi where ε ∼ N (0, σ).

16

with a step size η. With a small enough step size, the optimization is guaranteed to
converge to a local minimum. For the least squares loss, we have quadratic dependence on
the parameters so the gradient is linear in θ,

∇L(θ) = 2
∑
i

(fθ(xi)− yi) . (1.43)

So far we have two hyperparameters : the degree of the polynomial fit n, and the gradient
descent step size η. A hyperparameter is not adjustable within the framework of the
optimization. However, clearly changing the degree n has a dramatic impact on the fit.

Consider a training data set with yi = sin(xi) up to some random noise. In Fig. 1.2, we
show three different fits for different degrees n. The first fit, n = 2 is clearly underfitting
since it does not seem to capture the pattern in the data. The second choice n = 3 is in
reasonably good agreement. Lastly, n = 10 manages to directly intersect every single data
point in the training set. But is this a good fit?

0 2 4 6

x

−1

0

1

2

y

test data

train data

n = 2

0 2 4 6

x

−1

0

1

2

y

test data

train data

n = 3

0 2 4 6

x

−1

0

1

2

y

test data

train data

n = 10

Figure 1.2: Noisy data for the function y = sin(x). We compare three different polynomial
fits of degree n = 2, 3, 10. The training data is in blue. The red points are the test set
which is not used to train the model.

We can consider testing the generalization of fit to new data points. This test set is
shown in the red points in Fig. 1.2. We can judge a fit based on the loss function evaluated
on the optimal parameters θ∗ on both the training and test sets. Even though for n = 10,
we perfectly fit the training data, the loss is much worse on the test set. This is called
overfitting and is very difficult to avoid in general. According to the test errors, the best
fit is for n = 3 which confirms our intuition from the plots in Fig. 1.2. Generally, we
want a model which minimizes the generalization gap: the difference between the test and
training error. Figure 1.3 shows the expected generalization gap as increasing the degree
n.

17

To reduce the chance of overfitting, we need a way of favouring simple models. One
way is to introduce a regularization term into the loss function. The goal is to encourage
the model to use small parameters. A common choice is L2 regularization which adds the
square of each parameter to the loss function with a hyperparameter λ that determines
the strength of the regularization. The effective loss function is

L̃ =
∑
i

(fθ(xi)− yi)2 + λ
∑
i

θ2
i . (1.44)

In considering polynomial regression, we have covered all essential topics for under-
standing neural networks. We first introduced feature engineering, which could be poly-
nomial or more exotic functions of the input. We discussed the importance of hyperpa-
rameters, both for representation ability and for optimization. Further, we used gradient
descent to minimize a loss function such as least squares. We found that overly complex
models can easily overfit the data, leading to poor generalization. To combat overfitting,
we used regularization of the loss function to favour simple functions. All of these concepts
are directly applicable to neural networks that we use throughout this Thesis.

1.2.2 Neural networks

Inspired by biological neurons in the brain, artificial neural networks offer a powerful
method for classification problems. A real neuron interacts via dendrites receiving electrical

0 10 20 30 40 50

Number of parameters

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

E
rr

or

generalization gap

underfit overfit

test error

train error

Figure 1.3: Overfitting occurs when the test error increases while the training error de-
creases. The difference between training and test error is called the generalization gap.

18

signals from the axons of other neurons. In a perceptron, this is represented by a function
fθ(x) = Θ(

∑
iWixi + b) where Θ is the step function and W, b the weights and biases

respectively. This is a linear classifier that predicts ŷ = 1 when
∑

iWixi + b > 0 and zero
otherwise.

The theory of perceptrons was developed in Rosenblatt [51] in the 1950s. Perceptrons
are a universal form of computation since they can represent simple logical gates such
as the NAND gate. Despite this, perceptrons are difficult to train due to an inefficient
training algorithm. The key difficulty is the lack of a differentiable activation function of
the neuron that prohibits gradient based optimization.

In modern machine learning, we typically choose a differentiable activation function.
Replacing the step-function in the perceptron with a smooth sigmoid function results in
neural networks that predicts an output probability opposed to a definite class label. This
is much more useful since we can see that a network is unsure about a certain input if
it assigns a 50% probability of either class. The sigmoid function shown in Fig. 1.4 is a
common choice. Note the derivative of the sigmoid function is ∇σ = σ(1− σ).

Σ σ

b

x1

x2

x3

xn

W
1

W2

W3

W
N

ŷ

...

−8 −6 −4 −2 0 2 4 6 8
0

0.5

1

x

O
u
tp
u
t

σ(x)

Figure 1.4: (left) Single neuron with sigmoid activation function. The inputs x1, . . . , xn are
multiplied by the weights W1, . . . ,Wn and added to b before a sigmoid activation function
is applied. The output is the class prediction ŷ. (right) Sigmoid activation function. As
x→∞, the output saturates to σ(x) = 1, and conversely limx→−∞ σ(x) = 0.

A full sigmoid neuron is depicted in Fig. 1.4. It consists of a linear function with
adjustable parameters, followed by a non-linear sigmoid activation function.

fθ(x) = σ

(∑
i

Wixi + b

)
(1.45)

19

This is a smooth version of the perceptron linear classifier. By itself, a single neuron cannot
separate complex classes, but by stacking many neurons together, it can classify non-linear
features.

A multi-layer neural network is a composition of many linear and non-linear transfor-
mations as shown in Fig. 1.5. Consider a network with L layers where the width of the `th
layer is n`. The vector of hidden units h` is

h` = σ
(
W `h`−1 + b`

)
(1.46)

where W is the n` × n`−1 weight matrix, and b` the vector of biases with size n`.

x1

x2

x3

Input Hidden Output

ŷ1

ŷ2

Figure 1.5: A multi-layer neural network. Inputs xi are fed into a hidden layer before
outputting class predictions ŷi.

Multi-layer networks have strong representational power according to the universal
approximation theorem [52, 53, 54] meaning they can approximate any function given
enough neurons. Although this is an important result, it does not quantify how many
neurons are needed for a given problem. Moreover, it fails to mention two other important
factors for practical learning: learnability and efficiency. The sigmoid neural network has
greater learnability since it allows optimization by using gradients.

There are three ways to compute gradients: exact expressions, numerically with finite-
difference, and automatic differentiation. Exact expressions offer the fastest and most
accurate gradients, however they are often infeasible for complex models. We use exact
expressions in Chapter 4 when training a restricted Boltzmann machine and in Chapter 5
for optimizing a variational model. Finite-difference schemes are common in scientific com-
puting, but can be numerically unstable and scale poorly to large dimensions. Automatic

20

differentiation (AD), in contrast, involves the accumulation of gradient from each step in
program. In essence, we use the chain rule to decompose a large gradient into many smaller
steps. Going through each step we store the exact gradient of that step and combine it
with the previous one, thus building the complete gradient.

AD typically comes at the expense of extra memory for storing values while traversing
a program. However, AD provides a gradient up to machine error with no approximations.
A good introduction to AD is the textbook by Griewank and Walther [55], or the review
by Baydin and Pearlmutter [56] that focuses on neural network applications.

To minimize the loss function, we need the gradient of the loss ∇θL. AD is essentially
using the chain rule for differentiation to break down a complex expression into smaller
parts. Consider the single activation function from Fig. 1.4 and only one data point so the
loss is L = (ŷ− y)2. The first term is ∂L

∂ŷ
. For the least square loss function from Eq. 1.41,

that is simply 2
∑

j (yj − ŷj). The second term is the gradient from the sigmoid activation

function, one can easily check that ∇σ(x) = σ(x)(1− σ(x)). Lastly, we have the term ∂A
∂Wi

where we use A =
∑

iWijxi + b for brevity. Together this yields

∂L
∂Wi

=
∂L
∂ŷ

∂ŷ

∂Wi

(1.47)

=
∂L
∂ŷ

∂ŷ

∂σ

∂σ(A)

∂A

∂A

∂Wi

(1.48)

= 2 (y − ŷ) (ŷ(1− ŷ)) (xi) (1.49)

= 2xi ŷ (1− ŷ) (y − ŷ) . (1.50)

In a multi-layer network this quickly becomes difficult to compute by hand. Fortunately,
each step in the chain rule contains only a simple derivative. The process of AD records
the computations of the network in a graph and recursively iterates through each node
while adding its derivative.

1.2.3 Stochastic gradient descent

We update the parameters via the gradient step

θt+1 = θt − η∇θL (1.51)

where η is the step size, also called the learning rate. Choosing the best learning rate can
be difficult. Too small of a learning rate leads to slow convergence, while too large a rate

21

will never converge. Some gradient-based algorithms attempt to change the learning rate
adaptively during training.

When using a large training set, it may become expensive to compute the gradient for
the entire training data. Instead, we use a stochastic approximation. In stochastic gradient
descent, we draw a sample from the training set at random, and compute the gradient for
that sample. Repeating this many times gives an average over the whole training set.

Instead of single samples, it is more common to use a batch of samples. One common
choice is a batch size of 32 samples. The smaller the batch size, the more stochastic the
trajectory becomes as shown in Fig. 1.6. The high-variance in the stochastic gradient is
both a blessing and a curse. It can help escape sharp minima, but it also may not be as
direct in finding the global minima. It is an open question as to why stochastic gradient
descent is so effective for deep learning [57].

In high-dimensional optimization landscapes, naive gradient descent sometimes oscil-
lates around “canyons” where one parameter has little effect while another parameter has
a drastic effect. One method for avoiding these traps is adding momentum to the gradient.
Instead of relying only on the current gradient, we take the weighted sum with the previous
gradient. We write this as

θt+1 = θt − η∇θLt − γ∇θLt−1 (1.52)

With too high a momentum, the optimization could skip important minima; with too little,
the gradient many oscillate indefinitely.

Adaptive methods change the learning rate during the optimization. For instance,
Adagrad [58] uses a step that is different for each parameter θi by modifying it by the
sum of all previous gradients. Another popular method is the adaptive moment estimation
(Adam) optimizer [59]. Adam keeps the average of past squared gradients, along with an
exponentially decaying average of past gradients. In this way it retains a full memory of
past squared gradients, but also emphasizes that more recent gradients are more important.
A comparison of these algorithms is shown in Fig. 1.6.

We now have all the tools for understanding neural networks. In the next Section, we
consider an example of classifying phases from an Ising model where we put together all
the steps so far: network architecture, regularization, gradient optimization through AD,
and measuring the generalization gap.

22

GD

Momentum

Adagrad

Adam

GD

Momentum

Adagrad

Adam

Figure 1.6: (left) Gradient based optimizations with a large batch size has a smoother
trajectory. (right) A smaller batch size introduces more noise into the gradient trajectory.
For both plots, gradient descent is compared with the momentum method, Adagrad, and
Adam optimizers.

1.2.4 Classifying phases of the Ising model

As an example of a classification problem for physics, consider the two-dimensional Ising
model on a square L×L lattice. This model was considered by Carrasquilla and Melko as
one of the first uses of machine learning in condensed matter physics [60]. There is a critical
point at Tc ≈ 2.269 that separates the low-temperature ferromagnetic phase from the high-
temperature paramagnetic phase. In the ferromagnet, spins favour alignment, while in the
paramagnet, they are suspect to thermal fluctuations. The phases can be distinguished
classically with an order parameter, in this case the magnetization shown in Fig. 1.7.
Standard Monte Carlo from Chapter 1.1 is used to generate snapshots of configurations
of the system. Typically, we could estimate the magnetization to distinguish the phases.
However, we will assume no knowledge about the underlying physics, instead we only rely
on the ability of a neural network to distinguish the phases.

We train a multilayer sigmoid network for binary classification of phases. The input is
an L×L vector of binary Ising spins, which feed into a 100-neuron hidden layer with sigmoid
activation functions. The final output is a single number ŷ that gives the probability of
either the paramagnetic or ferromagnetic phase. Instead of the least square loss, we use
the common cross-entropy loss function L =

∑
i yi log ŷi

7. We train the neural network
with stochastic (batch) gradient descent on a training set of 10,000 samples at 32 different

7The least squares function suffers from saturating gradients in Eq. 1.47, whereas the cross entropy loss
does not. Also, cross entropy loss for binary classification motivates the interpretation of the output as a
probability.

23

temperatures. To mitigate overfitting, we add L2 regularization to the loss function. We
further vary the system size from L = 16 to L = 32 in increments of four.

The network readily achieves small training error, but the important question is testing
error. In Fig. 1.7, the probability of the ferromagnetic phase is shown in blue. We find the
probability is near unity for low-temperatures, yet reaches 0.5 at the critical temperature.
This is the point of maximal uncertainty of the network.

Another property is that the transition becomes sharper as system size increase. This
is consistent with the thermodynamic behaviour and finite-size samples from Monte Carlo
in Fig. 1.7. Carrasquilla and Melko [60] go on to estimate Tc using the point of maximal
uncertainty using the network predictions and find consistent finite-size scaling.

2 3
0

0.5

1

Tc

T

M

L = 16

L = 24

L = 32

2 3Tc

T

O
u
tp
u
t

L = 16

L = 24

L = 32

L = 16

L = 24

L = 32

Figure 1.7: (left) Magnetization M for the two-dimensional classical Ising model. Sampling
was performed with the Metropolis-Hasting algorithm. (b) Output probability for binary
classification of phases with a neural network.

Why does the network correctly classify the phases? Having seen many training exam-
ples, the network has extracted features that distinguish the phases. A simple feature is
the magnetization, M = 1

N

∑N
i si. If the input to the final neuron is Wx + b, we need

only that Wx + b ∝ M to classify based on a threshold magnetization. This is indeed
what the authors find in [60].

Generally, neural networks can encode much more complex features such as facial
shapes, textures, or spectral filters [16]. The Ising problem serves as a toy model for
classification where we gain some understanding as to how the network does its job.

24

1.2.5 Summary

Machine learning is a powerful black box method for the study of interacting systems.
Analogous to image recognition, neural networks can perform classification of physical
configurations by learning statistical features. Despite widespread success, there are many
open questions as to why neural networks are so effective in supervised learning. By
using machine learning on well understood physical models, we can gain insight into their
effectiveness and generalization ability.

Aside from pure machine learning approaches, automatic differentiation is a general
framework that may impact scientific computing. Differentiable programming languages
will allow code to do an introspection of its own code to computer gradients with respect to
any parameters. Many commonly used numerical routines can be differentiated through,
including linear algebra operations, singular-value decompositions, fluid-dynamics calcula-
tions, and solving ordinary differential equations. The flexibility provided by differentiable
programming will aid in the development of advanced and robust new algorithms. Various
examples already include optimizing tensor networks [61], quantum circuit simulators [62],
and quantum chemistry [63].

In the remainder of this Thesis, we will frequently use the terminology and ideas from
this Section.

25

2

Machine Learning Topological
Defects

In this Chapter, we investigate whether neural networks can learn to classify phases based
on topological defects. We address this question on the two-dimensional classical XY model
which exhibits a Kosterlitz-Thouless transition. We find significant feature engineering of
the raw spin states is required to convincingly claim that features of the vortex config-
urations are responsible for learning the transition temperature. Further, we show that
a single-layer network does not correctly classify the phases of the XY model, while a
convolutional network easily performs classification by learning the global magnetization.
Finally, we design a deep network capable of learning vortices without feature engineering.
We demonstrate the detection of vortices does not necessarily result in the best classifi-
cation accuracy, especially for lattices of less than approximately 1000 spins. For larger
systems, it remains a difficult task to learn vortices.

This Chapter consists of work previously published in Physical Review B [1] and an
accompanying blog post written for the website physicsml.github.io [2].

2.1 Introduction

Motivated by the successful application of supervised learning to conventional symmetry
breaking transitions [60], it is natural to ask whether neural networks are capable of detect-
ing unconventional phase transitions driven by the emergence of topological defects. The
prototypical example for such a system is the two-dimensional XY model, which exhibits

26

a Kosterlitz-Thouless (KT) transition [64, 65, 66]. Transitions of this universality class
can be found in a variety of systems, with one of the most famous being the superfluid
transition in two-dimensional helium [67, 68, 69].

Several unsupervised learning strategies have been applied to this model, for example,
it was found that principal component analysis (PCA) performed on spin configurations
effectively measure the magnetization [70, 71, 72]. Even when trained directly on vor-
ticity, PCA is unable to resolve vortex-antivortex unbinding, which is attributed to the
linearity of this method [71]. Similarly, variational autoencoders [73], a popular tool for
unsupervised learning based on Bayesian inference, perform classification by learning a
bulk magnetization [74, 70, 72].

In contrast, efforts in supervised learning have been more successful, although none
have been applied directly to the XY model. Broecker et al. [75] showed that a convo-
lutional network trained on winding numbers correctly classified interacting boson phases
separated by a KT transition. However, this same method failed when trained on raw
configurations. A related problem was explored by Zhang et al. [76], where the authors
trained a convolutional network on Hamiltonians of one-dimensional topological band in-
sulators labelled by their global winding number. By inspecting the trained weights, the
authors deduced that the network had learned to calculate the winding number correctly.

In this Chapter, we apply several supervised machine learning strategies to identify
the KT transition in the two-dimensional XY model. We ask whether it is possible for
a neural network, trained only on raw spin states labelled by their phases, to learn a
representation that can be interpreted as the local vorticity. In Section 2.3, we compare
supervised learning algorithms involving feed-forward and convolutional neural networks
applied to both unprocessed (raw spin configurations) as well as processed input data
(vorticity). We then use both types of input data in the semi-supervised confusion scheme
from van Nieuwenburg et al. [77] in Section 2.4. In Section 2.5, we train a supervised CNN
to compute the vorticity of a sample. Lastly, in Section 2.6, we explore to which degree
feature engineering of the raw spin configurations is required, and whether the network can
learn to process the data into something resembling vortices using additional convolutional
layers.

2.2 The Kosterlitz-Thouless transition

The simplest physical model with vortices is the two-dimensional classical XY model which
consists of unit spins on a lattice and interact only with their nearest neighbours. At low

27

(a) T < TKT (b) T > TKT

Figure 2.1: (a): A configuration of the spins in the XY model for a temperature below the
KT temperature. Notice that it contains one vortex-antivortex pair that is bound together.
(b): A configuration above the KT temperature contains one bound pair but also some
free vortices.

temperatures, the spins generally align. However, because the spins take on continuous
values, spin-wave excitations become very strong and prevent true long-range order [78].
Unlike the Ising ferromagnet, in this regime, the correlations between spins decay polyno-
mially with their separation. This is called quasi-long-range order.

At the temperature TKT = 0.8935, the XY model exhibits a Kosterlitz-Thouless tran-
sition [79]. In contrast with conventional phase transitions, the KT transition displays
no discontinuity in any observable such as the magnetization or energy. In this sense,
it is considered an infinite-order transition. The transition is caused by the unbinding
of vortex-antivortex pairs above TKT. Below this temperature, it takes infinite energy to
excite a single vortex; however, thermal fluctuations can create vortex-antivortex pairs so
long as they remain bound together (Figure 2.1). Above TKT, it is entropically favourable
for vortices to separate. This balancing act between energy and entropy is responsible for
the vortex-unbinding KT transition.

The classical XY model is described by the Hamiltonian

HXY = −J
∑
〈ij〉

cos (θi − θj) , (2.1)

where 〈ij〉 indicates that the sum is taken over nearest neighbours and the angle θi ∈
[0, 2π) denotes the spin orientation on site i. The topological defects in the XY model are

28

quantified through the vorticity∮
C

∇θ · d~̀= 2πw, w = ±1,±2, ... , (2.2)

where C denotes any closed path around the vortex core and w is the winding number
of the associated spins. A vortex is defined by positive winding number, w = 1, and an
antivortex by w = −1. On a lattice, the integral may be approximated by the sum of
the angle differences over a plaquette. An example of a vortex and antivortex is shown in
Fig. 2.2.

The essential singularity of the free energy at TKT means that all derivatives are finite
at the transition. However, the specific heat is observed to be smooth at the transition,
with a non-universal peak at a T > TKT which is associated with the entropy released
when most vortex pairs unbind [80]. While the thermodynamic limit of the XY model has
strictly zero magnetization for all T > 0, a non-zero value is found for systems of finite
size (see Fig. 2.3b) [79, 81]. This in particular makes learning the topological features of
the model difficult for machine learning algorithms.

One method to calculate TKT from finite-size data is to exploit the Nelson-Kosterlitz
universal jump [82, 83, 79]. This is determined from where the helicity modulus, Υ,
crosses 2T

π
. The helicity modulus, also called spin wave stiffness or spin rigidity, measures

the response of a system to a twist in the boundary conditions (i.e., torsion). From the
linearized renormalization group (RG) equations, one can derive the finite-size scaling
behaviour of the critical temperature T̃KT on a L× L lattice to be

T̃KT(L) ≈ TKT +
π2

4c(logL)2
, (2.3)

vortexantivortex

Figure 2.2: An example of a vortex and antivortex in the XY model on the lattice. A
vortex has winding number w = 1, while an antivortex has w = −1.

29

(a)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

T

Υ L = 8
L = 16
L = 32
L = 64
2T
π

0 0.1 0.2

0.9

0.95

1

(logL)−2

T
K

T

TKT = 0.899 ± 0.02

(b)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

T
M

L = 8

L = 16

L = 32

L = 64

0 0.2 0.4 0.6

0

0.2

0.4

0.6

L−1/8

M
| T

K
T

M |TKT
= 0.5L− 1

8

Figure 2.3: Estimators of the XY model on a L × L lattice with periodic boundary
conditions computed via Monte Carlo sampling. (a) The helicity modulus for various
lattice sizes L. The estimated critical point T̃KT is determined by the Nelson-Kosterlitz
universal jump where the helicity modulus, Υ, intersects the line 2T

π
. The inset shows how

T̃KT scales with (logL)−2 towards the thermodynamic TKT shown by the black dashed line.
(b) The non-zero magnetization present in the finite-size XY model. The magnetization

vanishes as L−
1
8 in the thermodynamic limit with the scaling shown in the inset.

with a constant c [82]. Fig. 2.3a shows the helicity modulus Υ and the scaling of TKT

derived from Monte Carlo simulations.

We employ standard Monte Carlo simulation methods to generate spin configuration of
the XY model involving a mix of the Wolff cluster update and the local Metropolis update
[36, 39]. For the training set, we generate 1000 configurations per temperature, with 64
temperatures ranging from 0.1 to 3.0, for lattice sizes L = 8, . . . , 64 in increments of 8.
The test set is generated separately, with 100 configurations per temperature. From our
generated samples, we find TKT = 0.899±0.06, which is consistent with the literature value
of TKT = 0.893 [79, 81]. As shown in Fig. 2.3b, the magnetization evaluated at the critical
point, M |TKT

, is of significant magnitude, and scales with L−1/8 as expected [79], to within
a 4% error.

30

2.3 Classification of phases

We study the binary classification of the two phases of the XY model, labeling configura-
tions as belonging to either the low T < TKT or high T > TKT temperature phases. Our
goal is to confirm whether simple supervised learning with neural networks is capable of
correctly classifying spin configurations according to these labels. In particular, we wish
to interpret whether the network relies on the (finite-size) magnetization, or on topological
defects. Further, we inquire as to what specific network architecture is required to achieve
this goal and what features different architectures may utilize.

From the training data, we randomly select 10% for cross-validation, in order to decrease
the chance of overfitting and to identify a definitive stopping point for training using early
stopping [84].

The network is trained to minimize the loss function L(ypred, ytrue), where ytrue repre-
sents the true binary labels and ypred the predicted ones. We take the loss function to be
the standard cross entropy

L(ypred, ytrue) = −
∑
i

ytrue
i log ypred

i . (2.4)

The parameters of the network (weights and biases) are then optimized through back-
propagation to minimize the loss function on the training data [16]. Each network is
trained until the loss function evaluated on the validation set fails to decrease after 50
training epochs. Early stopping with cross-validation is commonly used to choose the
network parameters with minimal generalization error [84]. We implement the networks
with the Keras library using the TensorFlow backend [85, 86].

We employ two different standard network architectures: a one-layer feed-forward net-
work (FFNN) and a deep convolutional neural network (CNN). The FFNN consists of one
hidden layer of 1024 sigmoid activation units and one sigmoid output unit. The CNN starts
with a two-dimensional convolutional layer consisting of 8 filters of size 3× 3 with rectified
linear unit (ReLu) activation functions. The output from this layer is passed to another
identical convolution layer with 16 filters before applying 2×2 maxpooling. The network is
then reshaped and fed into a fully connected layer with 32 ReLu units and passed to a sin-
gle sigmoid output unit. Because there is a total of 1024L2 + 2049 trainable parameters in
the FFNN, it can be difficult to train as compared to the 128L2−1024L+3361 parameters
in the CNN. The network architectures are listed in Table 2.1. This is because the CNN
explicitly takes advantage of the two-dimensional structure of the input to vastly improve
performance. This architecture is one of the simplest that can attain over 99% accuracy

31

on the standard MNIST dataset. In our experience, changing the hyperparameters had
negligible effect on the accuracy.

Network FFNN CNN
Layers Dense(1024) Conv(8, (3,3))

σ ReLu
Dense(1) Conv(16, (2,2))

σ ReLu
MaxPooling
Dense(32)

ReLu
σ(Dense(1))

Parameters 1024L2 + 2049 128L2 − 1024L+ 336

Table 2.1: Network architecture for binary classification of phases.

One goal in modern machine learning is to minimize the amount of feature engineering
required. In our case, this corresponds to treating the raw spin configurations as direct
inputs to the neural networks. For the XY model, this data is formatted as angle values,
θ ∈ [0, 2π), on an L× L lattice with periodic boundary conditions.

For a given spin configuration, the output value of the final neuron in the network gives
the probability of the configuration belonging to the low- (or high-) temperature phase. In
Fig 2.4, we show the output probability of each phase for a CNN trained on L = 16, 24, 32
data. This is directly analogous to Fig. 1.7 from Chapter 1. As system size increases, the
becomes slightly sharper, although not as quickly as in the Ising case.

Due to thermal fluctuations, it is difficult to accurately classify states near the critical
point. In accordance with intuition about phase transitions, we take the point where the
probability is 0.5 to be the inferred critical temperature T̃KT. This is further established in
Ref. [60] where the authors show that this point scales with the correct correlation length
critical exponent and predicts the thermodynamic critical temperature accurately for the
Ising model. In that case, training a FFNN with a single hidden layer of 100 sigmoid units
was sufficient (100L2 + 202 total parameters) to achieve high classification accuracy and
correctly predict the critical temperature.

Similarly, we study the performance of both a FFNN and a CNN in predicting TKT

for the XY model. To get an estimate for the statistical variance, the training process is
repeated ten times with different validation sets.

32

0 2
0

0.2

0.4

0.6

0.8

1

TKT

T

O
u
tp
u
t

L = 32
L = 24
L = 16
L = 32
L = 24
L = 16

Figure 2.4: Probability of each phase for a CNN trained on raw spin configurations. The
green lines are the probability to be in the quasi-long range order phase. Analogous to
Fig. 1.7 from Chapter 1, Section 1.2.4.

As illustrated in the inset of Figure 2.5a, the FFNN has low classification accuracy
(i.e., percentage of correctly classified configurations) for L > 48. This results in the very
poorly predicted critical temperature, T̃KT, in the main plot. In contrast, the accuracy of
the CNN continually improves as L increases. However, as evident from Fig. 2.5, there is
no clear finite-size scaling trend in the predicted TKT. To interpret this, we note that for
each system size, the network is supervised on the thermodynamic value of TKT. Thus, we
speculate that each network could simply be learning to discriminate phases based on a
robust, global feature that distinguish the regions above and below TKT for any L.

Based on previous experience, a global magnetization is a feature very easily detected
in a supervised learning scheme [60, 70, 87]. Since the finite-size configurations of the XY
model themselves contain a non-zero magnetization at T > 0 (see Fig. 2.3b), it is reasonable
to hypothesize that the CNN simply learns this threshold value of the magnetization for
each system size separately. Because of the Mermin-Wagner theorem, however, it is known
that a global magnetization is not a relevant feature for TKT in the thermodynamic limit.
Thus, in this case, some amount of feature engineering is crucial to achieve our goal of
detecting a phase transition mediated by topological defects.

In the next step, we preprocess the spin configurations into the associated vorticity
and train the networks on these configurations. To calculate the vorticity, one computes
the angle differences ∆θij ∈ [−2π, 2π] between each pair of neighbouring spins i and j on
a plaquette and converts these to the range (−π, π]. This can be done by applying the

33

(a)

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22

0.9

1

1.1

1.2

(logL)−2

T̃
K

T

TFFNN = 1.08 ± 0.03

TCNN = 0.92 ± 0.03

0.1 0.15 0.2

0.6

0.8

1

(logL)−2

A
c
c
u
ra

c
y

(b)

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22

0.9

1

1.1

(logL)−2

T̃
K

T

TFFNN = 0.91 ± 0.03

TCNN = 0.86 ± 0.03

0.1 0.15 0.2
0.92

0.94

0.96

0.98

1

(logL)−2

A
c
c
u
ra

c
y

Figure 2.5: Finite-size scaling of the predicted TKT for FFNN and CNN trained on either
(a) raw spin configurations, or (b) the vorticity. In either case the FFNN performs worse
than the CNN according to the test classification accuracy (insets). The critical tempera-
ture is determined by the point where the sigmoid output, as a function of temperature,
crosses 0.5. Each data point and variance is obtained by training 10 networks with stochas-
tic gradient descent until the validation loss function fails to improve after 50 epochs (early
stopping).

sawtooth function,

saw(x) =

x+ 2π, x ≤ −π,
x, −π ≤ x ≤ π,

x− 2π, π ≤ x,

(2.5)

to each ∆θij. The sum of the rescaled angle differences gives the vorticity from Eq. (2.2).

Trained on the vortex configurations, Fig. 2.5b shows that both the FFNN and CNN
achieve high accuracy and scale with L towards the correct value of TKT. However, once
again we observe that the FFNN begins to perform poorly for L > 32, whereas the CNN
continually improves. We note that the scaling seems consistent with Eq. (2.3), particularly
for the CNN. However, from this scaling alone, we cannot determine precisely what the
CNN learns. For example, it could potentially classify the phases based on the sum of
the squared vorticity (which is approximately zero below TKT), or it might represent a
more complicated function such as the average distance between vortex-antivortex pairs.
Regardless, the scaling behaviour may serve as a useful diagnostic to determine whether a
given network is learning bulk features or topological effects.

34

2.4 Learning by confusion

We further investigate the difference between training on spin configurations and vortex
configurations by employing a confusion scheme [77, 88]. Learning by confusion offers
a semi-supervised approach to finding the critical temperature separating two phases by
training many supervised networks on data that is deliberately mislabelled. The binary
label ‘0’ is assigned to a configuration if its temperature is less than a proposed T ∗ and ‘1’
otherwise. A new network is trained on each new labeling of the data, (i.e., for each T ∗).
It is expected that the highest accuracy is achieved when the labeling is close to the true
value, and, trivially, at the end points. This results in a ∨∨ shape when plotting the test
accuracy as a function of T ∗ [77]. The peak on either endpoint can be attributed to the
network being trained and tested exclusively on one class, in which case it will always place
test data into that class. The key assumption in the confusion scheme is the existence of a
true physical labeling of the data which the network is capable of learning more accurately
than false labellings.

Since we have shown that the CNN is more successful at classification than the FFNN,
we only consider the CNN for the present confusion scheme. The results of training on raw
spin and vortex configurations are shown in Fig. 2.6. Learning on the raw spins results in a
−∨ shape rather than the expected ∨∨. As mentioned above, the finite-size XY model has
a non-zero magnetization for T < TKT and this algorithm can easily classify any division
T ∗ < TKT by a threshold magnetization. This supports our hypothesis from Section 2.3
that trained on raw spins, a CNN learns the magnetization.

When trained on vortices, the expected ∨∨ shape emerges, although it is skewed because
we choose our training data from a non-symmetric region around TKT. Despite having a
powerful deep network, it is unable to learn any arbitrary partition and performs best
near TKT. This may be attributed to the fact that for low T , the vortex configurations are
fundamentally similar; there are few vortices and they are logarithmically bound. This is
in contrast with the raw spin configurations which may possess distinguishing features like
the magnetization. Near TKT, the network can distinguish the phases with high accuracy
because of the true physical partition due to vortex unbinding. At high T ∗ the vortex
configurations look sufficiently random that the network again misclassifies for an arbitrary
partition.

We also observe significant finite-size effects in the ∨∨ and −∨ shape, both broadening
and shallowing with increasing L. The finite-size scaling behaviour of the peak does not
trend towards TKT in the vortex case, but rather always stays above it, similar to the
specific heat peak (see Fig. 2.6c). Surprisingly, in Fig. 2.6c, we see the confusion scheme

35

(a)

0.5 1 1.5 2 2.5
0.8

0.85

0.9

0.95

1

T ∗

A
cc
u
ra
cy

L = 64

L = 32

L = 16

L = 8

(b)

0.5 1 1.5 2 2.5 3
0.8

0.85

0.9

0.95

1

T ∗

L = 64

L = 32

L = 16

L = 8

(c)

0

0.1

0.2

0.3

0.5 1 1.5 2 2.5

0.94

0.96

0.98

1

C
v

T ∗

Cv

vorticity

spins

Cv

Figure 2.6: The learning by confusion scheme for a CNN applied to: (a) raw spin config-
urations, (b) vorticity configurations. The test accuracy is expected to form a ∨∨ shape
with the peak at T ∗ = TKT. In (c), the peak in specific heat (Cv) is compared to the peak
of the test accuracy for a system of size L = 64. The dashed vertical line s1hows the
thermodynamic TKT.

36

achieves higher accuracy at T ∗ ≈ 1 than TKT = 0.89, which indicates that the false T ∗ ≈ 1
phase boundary is easier for the network to learn than the temperature T̃KT predicted by
the universal jump. While this effect might disappear in the thermodynamic limit, it is
still troubling. Matters are even worse for training on raw spins since all T ∗ < TKT have
accuracy greater than 98.5% for L = 64, so it is even unclear where T̃KT is.

For finite-size systems, the test accuracy curve will never go flat. The reason is that a
single spin configuration does not unique belong to a particular temperature, but rather
it occurs probabilistically for all temperatures (although perhaps infinitesimally). This
always will result in some classification error. In particular, for isotropic or highly thermal
regions, it is impossible to accurately correctly classify states, and therefore a ∨ shape
occurs. For other regions, the curve will go flat in the thermodynamic limit. Interestingly,
the confusion scheme inadvertently tells us information about the variances in possible
temperatures of a state.

The confusion scheme for the XY model offers insight into what our CNN prefers
to learn. In the case of the raw spin configurations, we infer that it learns the finite
magnetization of the spin configurations instead of topological features. Near TKT, the
network trained on vortices achieves slightly higher accuracy (see Fig. 2.6c); therefore, in
this case, the network would benefit from learning vortices. Despite this argument, we
stress that we have no strong evidence that our CNN is even capable of finding vortices.
To address this, in the next section we propose a custom network designed for vortex
detection and test if it works in practice.

2.5 Supervised learning of vortices

Training a neural network to recognize vortices is different from binary classification. In-
stead of a single number (or word) labeling the image, we have an entire array of numbers
w, where each number corresponds to one plaquette of the lattice.

We train a supervised CNN implemented in TensorFlow to recognize vortices. The
input to the network is spin configurations on a square lattice generated by Monte Carlo
sampling and the labels are created by explicitly calculating the winding numbers for each
square of spins using Eq. (2.2). The label for classification is no longer a single number, but
rather a two-dimensional array of numbers, with values of +1 (vortex), −1 (antivortex),
and 0 otherwise.

Instead of training directly on the vorticity, it helps to split the label into three channels.
This is the equivalent of one-hot encoding vectors into binary vectors, except applied to

37

Figure 2.7: Network architecture for supervised learning of vortices. On the input spins
we apply 128 convolution filters of size 2× 2 to capture interactions between spins. After
applying ReLu activation functions, the next layer is 64 filters of size 1 × 1, again with
ReLu activations. The network outputs three binary channels with a softmax activation
function to ensure only one label is associated to each square in the lattice. Each channel
represents ones of the possible values of the winding number.

matrices. Instead of the vorticity w ∈ [0,±1], we rewrite this as three binary arrays
containing only 0’s and 1’s. To revert to the ordinary ‘one-channel’ vorticity, we simply
subtract the w = −1 channel from the w = +1 channel.

Figure 2.7 displays the full network architecture. The motivation for this structure
is that the first convolutional layer with 2 × 2 filters might learn local angle differences.
The three-channel output is activated with a softmax function which forces the network
to choose only one value for the vorticity of each plaquette.

In Fig. 2.8, the loss function during training is shown for different lattice sizes. Each
network was trained using the Adam optimizer and early stopping with a patience of ten
epochs to prevent overfitting. It turns out that this network architecture readily achieves
over 99% accuracy in identifying vortices.

Adding L2 regularization had no effect on the performance of the network; however,
ReLu units were substantially better than tanh or sigmoid functions. Likewise, a single-
layer fully-connected network did not perform well, yet convolutions layers worked perfectly.
Increasing the number of layers or neurons resulted in faster convergence.

Extending this to the quantum realm has already been done for 1D topological band
insulators by Zhang et al. [76]. In this case, the label is not an array, but rather a single
number (the global winding number), which describes the topological sector of a Hamilto-
nian. With a network similar to our Fig. 2.7, Zhang et al. achieve very high accuracy and
can even detect higher-order winding numbers not included in the training data.

We have demonstrated that a neural network can easily learn to recognize vortices
when trained on label data, yet it remains unclear if an unsupervised method could achieve

38

Figure 2.8: Training and cross-validation loss function for system sizes from 8 × 8 up to
32× 32. Training is stopped once the loss on the cross-validation set fails to decrease after
ten epochs.

similar results. So far, the results from PCA and variational autoencoders both suffer from
learning the energy or magnetization instead of vorticity [71, 89, 74]. This is perhaps not
surprising since, while in the thermodynamic limit the 2D XY model has no magnetization,
a finite-size system has a very large magnetization in the low-temperature region. Even
a lattice the size of Texas would have a significant magnetization [90]. While theorists
can take the continuum limit to avoid these finite-size effects, machine learning algorithms
don’t have this privilege and must work with only the data they are given.

2.6 When is it beneficial to learn vortices?

In the previous sections, we compared networks trained on the raw spin configurations
to those trained on vortex configurations that were constructed manually (i.e., feature-
engineered). We further demonstrated that is it possible for a custom CNN network to
learn vortices. We now explore the possibility of a network architecture designed specifically
for learning vortices as an intermediate representation, before performing classification.

It is one of the remarkable features of deep neural networks that each layer may rep-
resent a new level of abstraction [91, 92, 93]. For example, in facial image recognition,
the first convolution layer may extract edges, while the final layer encodes complex fea-

39

tures such as facial expressions [94]. We aim to design a network which may similarly be
interpreted as representing vortices in an intermediate layer.

Below, we derive the appropriate weights for a three-layer network which computes the
vorticity from input spin configurations. The entire network is visualized in Fig. 2.9.

The first layer, which acts on the input angle values, θi, is a convolution layer with four
2× 2 convolution filters given by

K1 =

[
−1 1
0 0

]
, K2 =

[
0 −1
0 1

]
,

K3 =

[
1 0
−1 0

]
, K4 =

[
0 0
1 −1

]
.

The effect of these filters is to compute the nearest neighbour angle differences, ∆θij, within
each plaquette. In the next layer, we apply is hard-coded to map the angle differences,
∆θij ∈ [−2π, 2π], into the range [−π, π). This is done by applying the sawtooth function
from Eq. (2.5) to each element in the (L,L, 4)-dimensional array. The final processing
layer computes a weighted sum of the four angle differences by applying a single 1 × 1
convolution filter. Uniform weights with zero biases would compute the vorticity exactly
up to a multiplicative constant.

While the network described above is capable of representing vortices within an internal
layer (vorticity layer in Fig. 2.9), it might fail to do so in practice. To explore this we
consider three possible variations of the initializations of the network parameters.

The first variation consists of fixing the weights (and biases) in the first three layers
such that the network computes the vorticity exactly. This is, of course, engineering the
relevant features by hand; however, it provides a useful benchmark. The second variation
is performed by initializing the weights exactly to those of the fixed network, then relaxing
the constraints as training is continued. This step shows whether the original (vortex)
minimum is stable. The third variation is simply the naive choice where the network
parameters are initialized randomly.

For all three variations, we train for binary classification by minimizing the cross-
entropy loss from Eq. (2.4). Each network is trained 10 times with different validation
sets. As per Section 2.3, we implement early stopping to terminate training once the loss
function on the validation set fails to improve after 50 epochs. We train on lattice sizes
from L = 8, . . . , 72 in increments of eight.

We can understand the three variations by looking at the loss function evaluated on the
test set as in Fig. 2.10. For small L, the loss function of the fixed network is much larger

40

Input

θ1 θ4 ...

θ2 θ3 ...

...
... . . .

⊗K1 ⊗K2 ⊗K3 ⊗K4

∆θ12 ...

... . . .

∆θ23 ...

... . . .

∆θ34 ...

... . . .

∆θ41 ...

... . . .

saw(∆θi) saw(∆θi) saw(∆θi) saw(∆θi)

⊗w1 ⊗w2 ⊗w3 ⊗w4

v ...

... . . .

Vorticity

Figure 2.9: Visual representation of how the custom network architecture can compute the
vorticity. We denote the convolution operation with ⊗, and ignore biases for the purpose
of the diagram. Applying the four 2 × 2 filters, Ki, partitions the data into four L × L
arrays where each element is an angle difference in one lattice direction, ∆θij. The angle
differences are then converted into the range ∆θij ∈ [−π, π) by applying the sawtooth
function from Eq. (2.5). A single 1 × 1 convolution filter with weights w = [1, 1, 1, 1] and
zero biases then sums the four shifted angle differences into the vorticity.

41

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24
0

0.05

0.1

0.15

0.2

(logL)−2

T
es
t
lo
ss

fixed

initialized

random

0.06 0.08
0

0.02

0.04

Figure 2.10: The loss function from Eq. (2.4) evaluated on the test set for three variations
of the custom architecture for various lattice sizes L. For small L < 16, the fixed network
with hard-coded weights performs poorly compared to the others. For large L > 32, the
fixed network performs best, possibly due to a reduced number of trainable parameters.
The inset shows a magnified region for 32 ≤ L ≤ 72.

than the others, indicating that it is not beneficial to represent the vortices for L < 16. In
this small-lattice region, learning vortices hinders classification. However, near L ∼ 32 the
fixed network outperforms the other two. Hence, we conclude that only for the large-lattice
region, L > 32, is it beneficial for a network to learn an intermediate representation of the
vorticity. This also agrees with the findings in Ref. [71] in which the topologically-invariant
winding number could be learned for systems of size L > 32.

We can check what each network learns by looking at the histogram distribution of
the outputs of the vorticity layer in Fig. 2.9. For the fixed network, we would see exactly
integral quantities corresponding to the quantized vorticity. For the vortex-initialized net-
work, Fig. 2.11 shows that for small L, it does not learn the true vorticity distribution,
but for L ≥ 32 it does. This is consistent with the hypothesis that learning vortices is
only beneficial for L > 32. The randomly initialized network does not produce a histogram
consistent with the learning of vortices for any system size studied.

Interpreting the behaviour of the neural network for large L is not straightforward. As
Fig. 2.10 shows, the model with fixed features and fewer trainable parameters performs
better for large L. This can likely be attributed to a lower-dimensional optimization
landscape. We cannot conclude whether the vortex representation is a global minimum for
the fully adjustable (randomly initialized) network variation. While it certainly performs
best in fixed computational time, the higher dimensionality of the adjustable network may

42

(a)

−1 −0.5 0 0.5 1
0

5

10
L = 64

L = 16

(b)

−1 −0.5 0 0.5 1
0

1

2 L = 64

L = 16

Figure 2.11: Histogram of the values of the vortex layer from Fig. 2.9 which (ideally)
computes the vorticity for: (a) the network initialized to compute vorticity, and (b) the
randomly initialized network. In (a), we see for small L, the vorticity is not quantized,
indicating that the network did not learn to compute the local vorticity; however, for large
L, the histogram looks as expected for vortex detection. Conversely, the distribution in
(b) appears unrelated to vortices for any L.

have another global minimum not present in the lower-dimensional case. We can claim,
however, that the vortex minimum is at least a stable local minimum since a network
initialized to it never escapes, as demonstrated by the initialized variation for large L in
Fig. 2.10.

Adding a custom regularization term could potentially alter the optimization landscape
to aid the network in detecting vortices. One method would be to enforce integral quan-
tities for an intermediate output of the network, but in our attempts, this results in the
intermediate quantity peaked sharply around zero. There is also the possibility of adding a
regularization to the initial kernels to learn only nearest neighbours interactions, but this
is overly restrictive and defeats the purpose of automated machine learning.

2.7 Conclusion

In this Chapter, we asked whether it is possible for a neural network to learn the vortex
unbinding at the KT transition in the two-dimensional classical XY model. We demon-
strated the significant effects that feature engineering and finite lattice sizes have on the
performance of supervised learning algorithms.

Treating spin configurations as raw images and training on the thermodynamic value

43

for TKT, we found that naive supervised learning with a feed-forward network failed to
converge to an accurate estimate for the KT transition temperature for moderate lattice
sizes (L ≈ 32). Conversely, a convolutional network performed consistently well with
increasing L. Since the prediction of TKT from the convolutional network was insensitive to
L, we inferred that the network extracted features related to the magnetization, which are
present in any finite-size lattice. This conclusion was further supported by the observation
that in the confusion method any false phase boundary T ∗ below TKT could easily be
learned by a network when trained on the raw spin configurations.

By preprocessing the spin configurations into vorticity, both network architectures dis-
played finite-size scaling behaviour consistent with the thermodynamic value of TKT. In
particular, the performance of the convolutional network continually improved as the sys-
tem size increased, whereas the one-layer network’s performance plateaued around L = 32.
When the confusion scheme was trained on vortices it did not predict the correct critical
temperature; instead, the test accuracy reached a maximum near T ∗ ≈ 1. This demon-
strates the need for further study of the confusion scheme for the semi-supervised learning
of phase transitions.

We further explored if such extreme feature engineering could be relaxed while retaining
acceptable accuracy. We devised a deep-layered structure of weights that could be con-
strained to extract vortices from the raw spin configurations or left free to explore other
minima in the learning process. Although is it possible to learn vortices, the network can
also perform its classification task to reasonable accuracy by finding a local optimization
minimum that is unrelated to topological features. We found that it is beneficial for the
network to discover vortices only for lattices with of over 1000 spins. Yet, even for large
system sizes, a randomly initialized network settled into a local minimum not related to
vortices.

It is likely that the optimization landscape of our designed network is sufficiently rough
so that stochastic gradient descent would take exponentially long to find a minimum where
the learned features correspond to vortices.

The difficultly that these standard supervised learning techniques have in discrimi-
nating the phases of the XY model underscores the challenge that unsupervised learning
techniques could face in learning the KT transition from unlabelled data. Our work em-
phasizes the need for further study into how much feature engineering is required before
topological features can be used reliably for the machine learning of unconventional phases
and phase transitions.

44

3

Super-Resolving and
Renormalization Group

The renormalization group (RG) is of profound important in physics. It describes an
example of low-energy physics emerging from high-energy degrees of freedom. This mirrors
what happens in deep learning, where the numerous parameters in a deep neural network
interact such that they can solve a high-level problem such as image classification. It
was recognized early that deep learning may even be a more general form of the RG [95].
This Chapter provides a concrete example of learning to invert the RG procedure in a
bold attempt to infer high-energy physics from statistical patterns. The majority of this
Chapter appeared in [3].

3.1 Introduction

A primary challenge in the field of quantum many-body physics is the efficient computa-
tional simulation of systems with a large number of particles. Such simulations are crucial
for the investigation of strongly-interacting systems, the discovery of exotic phases of mat-
ter, and the design of new quantum materials and devices. Recently, it has been proposed
to treat the many-body problem as data-driven, whereby the large dimensionality of the
data motivates the adoption of machine learning algorithms [60, 13].

In condensed matter systems, neural networks were first used as supervised classifiers
that distinguish phases and identify phase transitions, even in unconventional cases when
there is no underlying order parameter [60, 96, 70, 1]. Furthermore, unsupervised generative

45

models have been shown to successfully capture thermal distributions [97, 98, 70]. In the
quantum case, neural networks are being employed as representations for many-body wave-
functions, with broad applications such as variational ansatz [99], guiding functions [100],
or for quantum state tomography [101, 102, 5].

Early connections between statistical physics and machine learning drew parallels to
the renormalization group [103, 104] (RG), a canonical paradigm in physics that involves
iteration through a series of coarse-graining and rescaling procedures. The mathemati-
cal similarity of the RG procedure to the processing of information in multi-layer neural
networks has driven interest in examining the theoretical underpinnings of deep learning
[105, 95]. Conversely, numerous relations between the RG and machine learning have
proven useful for physics itself where neural networks have been proposed as generative
models that assist RG procedures [106], or for identifying relevant degrees of freedom
to decimate [107, 108]. Furthermore, direct applications of neural networks on physical
configurations can produce RG or inverse RG flows [108, 109, 110, 106].

Outside of physics, an area of expanding application for machine learning is image
super-resolution, where the goal is to increase the number of pixels in an image while
(subjectively) maintaining the perceivable quality [111, 112]. Remarkable progress has
been made with convolutional neural networks (CNNs), which can be used to reconstruct
high-resolution images to photo-realistic quality [112].

In this Chapter, we investigate whether super-resolution methods may be useful in
condensed matter and statistical physics by allowing one to produce lattice configurations
of larger sizes directly from those obtained for smaller systems. For concreteness, we focus
on the classical Ising model in one and two dimensions. Our method takes a configuration
of Ising spins on a lattice and subjects it to a majority rule block spin RG procedure
[113]. A CNN is then trained to invert this transformation by being exposed to both the
higher and lower resolution lattices. Since some information is necessarily lost in the RG
step, the network output is interpreted as a probabilistic image that is sampled to produce
super-resolved images.

We give numerical evidence that the trained super-resolution network performs a prob-
abilistic inverse of the RG transformation and reproduces thermodynamic quantities on
larger lattices starting only from smaller ones. In addition, we propose a way to extrap-
olate the weights of a trained CNN to apply it to sizes larger than those available in
the training data. Using this idea iteratively, we acquire configurations of increasing size
that we use to estimate the critical exponents of the 2D Ising universality class, obtaining
agreement with known theoretical results.

46

3.2 Super-resolution and RG

Super-resolution is defined as a mapping SR : ZL×L2 → ZfL×fL2 from a low-dimensional
space of L× L images to a high-dimensional space of fL× fL images where f > 1 is the
upscaling factor. We use Z2 to denote a binary variable, with ZL×L2 denoting an L × L
matrix of binary values. The objective of image super-resolution in computer vision is to
achieve a high perceived quality on the super-resolved image. This is generally a subjective
criterion. To give a more quantitative definition, quantities like peak signal-to-noise ratio
(PSNR) or structural similarity (SIM) have been used [111, 112]. However, even these
quantities might not accurately estimate the quality perceived by a human [112].

In contrast, statistical physics provides a well-defined objective for super-resolution
of physical systems since super-resolved configurations should follow a specific statistical
ensemble. Basic thermodynamic quantities like the magnetization or energy serve as an
indicator of whether a super-resolved image is consistent with this ensemble.

We proceed by reviewing the real-space decimation of the Ising model before discussing
the relevant network architecture.

3.2.1 Decimation of the Ising model

Let σ ∈ Z2L×2L
2 be an Ising configuration ofN spins that follows the Boltzmann distribution

PK(σ) =
1

Z
e−H(σ)/T =

1

Z
eK

∑
〈ij〉 σiσj , (3.1)

where K = 1/T and Z(K) =
∑
{σ} e

−H(σ)/T is the partition function. We take periodic

boundary conditions (PBC) and include only nearest-neighbour interactions throughout
this Chapter.

Consider the real-space coarse-graining of the 2D Ising model according to the majority
rule [103]. A 2L× 2L lattice is divided into 2× 2 blocks where each block is transformed
to a spin with the same state as the majority of spins in the block. If the total sign is zero,
we take the sign of the upper left spin to make the procedure deterministic, instead of the
more common probabilistic approach of taking a random sign [38].

A low-resolution configuration, s = MR(σ) ∈ ZL×L2 , is obtained upon applying the
deterministic majority rule. Such a configuration follows the marginalized distribution:

P̃K̃(s) =
∑
{σ}

k(s,σ)PK(σ), (3.2)

47

where k(s,σ) is the kernel of the transformation [114]. In this way, the distribution of low-
resolution configurations, P̃K̃(s), is directly related to the distribution of high-resolutions
PK(σ). Evidently, any super-resolution procedure must satisfy the identity relation

MR(SR(s)) = s . (3.3)

A stronger requirement, and the main challenge, is to discover a map such that SR(MR(σ))
obeys the correct Boltzmann distribution. We emphasize that SR(MR(σ)) is not neces-
sarily equal to σ, since only the distributions need to match, not each individual configura-
tion. Furthermore, in our majority rule decimation, we have not rescaled the Hamiltonian
couplings as required in the conventional definition of a complete RG step. It may be
possible to learn the rescaling with a neural network; however, in this Chapter we simply
fit the couplings as needed for a consistent rescaling by using a numerical approximation.

The overall procedure can be visualized in Fig. 3.1. Starting with a configuration of
system size L, we decimate to a smaller size L/2 denoted by MR(σL).

SR(σ)

σL SR(MR(σL))

MR(σL)

MR SR

SR

≈

Figure 3.1: Schematic of the super-resolution procedure. Starting with a configuration σ
generated via Monte Carlo (MR) at size L, we apply the majority rule (MR) decimation
to a downsampled (DS) configuration. The map SR consists of two steps; upsampling (Fθ)
and rescaling (f−1). We assume that the map SR = f−1 ◦ Fθ is learnable and applies to
any input size.

48

3.2.2 Network architecture

We now attempt to invert the majority rule procedure using a supervised learning approach.
The unknown super-resolution mapping SR is parametrized with a deep convolutional neu-
ral network (CNN). CNNs are ideal for our problem due to their utility in image processing
tasks. Moreover, the weight-sharing property of convolutions allows extrapolation to larger
sizes.

The first layer of our network is an upsampling layer that increases the resolution from
L×L to 2L× 2L by transforming each up (down) spin to a block of four up (down) spins
(Fig. 3.2a). At very low temperatures, configurations are fully polarized, so we expect
this upsampling to be highly accurate. However, non-fully-polarized blocks appear at
higher temperatures, making naive upsampling insufficient. In order to alleviate this, the
convolution layers that follow must add the required statistical fluctuations, similar to the
Monte Carlo sweep procedure in Ref. [113].

Each convolution layer takes a configuration x ∈ R2L×2L as input and applies the
transformation f(W ∗x+b), where ∗ denotes the convolution operation, W is the so-called
filter, b is a bias vector and f is a non-linear differentiable function applied element-wise
(Fig. 3.2b). This function is known as an activation function and the typical choice is
the rectified linear function ReLU(x) = max(0, x). The effect of each convolution is to
combine local features within a nf × nf region (filter size). A consequence of this is that
each convolution layer reduces the image size by eliminating the right-most and bottom
edges. To avoid truncating the image edge, we surround the original configurations with
additional spins from the periodic boundary conditions (Fig. 3.2b). This has the advantage
of respecting the boundary conditions of the underlying physical model.

In order to obtain a discrete Ising configuration, the sigmoid activation σ(x) = 1/(1 +
e−x) is used in the final layer, giving an output p ∈ [0, 1]2L×2L. This is treated as the
probability that the corresponding spin is up. A discrete configuration is then obtained by
sampling p for each lattice site (Fig. 3.2c).

The network is characterized by parameters θ, which include all the weights, W , and
biases, b, from each convolution layer. These are tuned to minimize a loss function defined
on a dataset of inputs si ∈ ZL×L2 and targets σi ∈ Z2L×2L

2 with i ∈ {1, 2, . . . , n}, where
n is the number of samples in the dataset. In contrast to typical supervised learning
applications (e.g. handwritten digit recognition), the dimensionality of the output is larger
than the input. The loss quantifies the distance between predicted output SRθ(si) and
the original high-resolution σi. Minimization is done with back-propagation which involves
calculations of gradients, and thus cannot be done using the final sampled (discrete) output.

49

(a)

(b)

(c)

↑ ↑
↓ ↑

↑ ↑ ↑ ↑
↑ ↑ ↑ ↑
↓ ↓ ↑ ↑
↓ ↓ ↑ ↑

W11 W12

W21 W22

↑ ↑ ↑ ↑ ↑
↑ ↑ ↑ ↑ ↑
↓ ↓ ↑ ↑ ↓
↓ ↓ ↑ ↑ ↓
↑ ↑ ↑ ↑ ↑

p

↑ ↑ ↑ ↓
↑ ↓ ↑ ↑
↓ ↑ ↑ ↑
↓ ↓ ↑ ↓

p

Figure 3.2: (a) Upsampling by replacing each up (down) spin with a block of four up (down)
spins. (b) The weights W convolve local regions together and add a bias bi. Applying a
sigmoid function element-wise gives the probabilities of each site being up as p. Green
sites correspond to the PBC padding. (c) Sampling p gives discrete Ising spins on the
super-resolved 2L× 2L lattice.

To be consistent with the interpretation of the continuous outputs p as probability we use
the cross-entropy loss function;

L({σi}, {pi}) = −
n∑
i=1

[σi · ln pi + (1− σi) · ln (1− pi)] , (3.4)

where i ∈ {1, 2, . . . , n} and · denotes the element-wise product between matrices. Note,
we are free to add additional terms to Eq. (3.4) to assist training. For example, as we will
see, it is sometimes beneficial to introduce a term proportional to |E(σi)− E(pi)|2.

3.2.3 Extrapolation to larger lattices

We approximate the super-resolution mapping SR as a neural network SRθ with param-
eters θ. In order to train the network SRθ, we need access to 2L × 2L configurations.
We obtain these with Monte Carlo simulations. In this sense, the method does not allow
us to access sizes larger than the ones we have already simulated. It would be useful if

50

(a) 16×16 (b) 32×32 (c) 128×128 (d) 512×512

Figure 3.3: Critical configurations obtained using the weight extrapolation idea presented
in Section 3.2.3. We show the original Monte Carlo configuration in (a) and the results
after (b) one, (c) three and (d) five consecutive super-resolutions.

super-resolution could be used to access sizes that cannot be obtained by other means. We
propose a simple method to do precisely this by exploiting the weight sharing property
of convolutions. Namely, the size of the weight matrix W (and the bias vector b) on a
convolutional layer is independent of the input and output size.

In order to apply the convolution to a larger image, we only have to “slide” (Fig. 3.2b)
the trained matrix W over a larger surface. The first upsampling layer does not contain
any weights and can be trivially applied to any size. Therefore, using the weights of the
trained ZL×L2 → Z2L×2L

2 network, we can define a new ZL′×L′

2 → Z2L′×2L′

2 network that can
be used to double any input size L′.

Accordingly, we can take the 2L×2L output of the first super-resolution as the input of
a new network Z2L×2L

2 → Z4L×4L
2 . Doing this repeatedly, we can create a chain of increasing

sizes (Z16×16
2 → Z32×32

2 → Z64×64
2 → . . .). In this chain, only the smallest configurations

are generated with MC, while the rest are result of successive super-resolutions with the
same θ parameters. Figure 3.3a shows a configuration of the 2D Ising model at criticality,
while Fig. 3.3 show the super-resolutions obtained from this configuration.

In summary, we use configurations σi ∈ Z2L×2L
2 to generate decimated configurations

MR(σi) ∈ ZL×L2 . We then train a CNN network SRθ to invert this transformation. If the
network is trained correctly, new configurations SRθ(MR(σ)), should obey the Boltzmann
distribution within reasonable error.

In the following Sections, we test this procedure by calculating observables in the 1D
and 2D Ising models.

51

3.3 One-dimensional Ising model

In this Section, we show the results of the super-resolution scheme applied to the 1D Ising
model. For this model, the Hamiltonian is self-similar under RG steps and the decimation
is exactly solvable. This serves as a useful benchmark to test the validity of our super-
resolution scheme before assessing the more interesting 2D case.

We begin with training the network with two lattice sizes, N and 2N , before attempting
extrapolation to larger sizes. We use a dataset consisting of temperatures ranging from
T = 0.01 to T = 3.5 with N = 32 spins. At each temperature, we create training and
testing sets consisting of n = 104 configurations generated via standard Monte Carlo.
Instead of the majority rule, we use real-space block-spin decimation to obtain a N = 16
chain [104]. For each temperature, we implement a different network and optimize using
the Adam method [59], with a batch size of 103. Instead of training for a specific amount
of epochs, we cease training when the validation loss stops improving using early stopping.

The first step is to check that our network can correctly invert the decimation of a given
sample. We directly evaluate the network’s performance on the objective that it was trained
on, namely the super-resolution of down-sampled (DS) configurations. DS configurations
are obtained by applying the Kadanoff block-spin decimation transformation on the large
MC samples [104]. DS configurations are then used as the network’s input for training.

0 1 2 3
T

1.00

0.75

0.50

0.25

E

N= 32 MC
N= 16 DS
N= 32 SR

0 1 2 3
T

2

1

0

Er
ro

r (
10

−
2
)

0 1 2 3
T

0.2

0.4

0.6

0.8

1.0

M

(a) (b)

0 1 2 3
T

0

5

Er
ro

r (
10

−
3
)

Figure 3.4: (a) Magnetization and (b) energy of the 1D Ising model. The dashed line
corresponds to observables computed with the down-sampled (DS) configurations used as
the network’s input.

We find that the network achieves reasonable accuracy at each temperature when eval-
uated in the test set in Fig. 3.4. This shows that the network performs an approximate
inverse of the block-spin decimation. We note that this inversion is demonstrated only at

52

the level of thermodynamic observables and not the whole statistical ensemble. Mathemat-
ically, for any observableO, the expectation values over the SR distribution and the original
Boltzmann distribution are approximately the same: 〈O〉SRθ(MR(σ))

∼= 〈O〉σ where σ are
the samples of the original (Boltzmann) distribution. In the remainder of this Section, we
will focus on generating larger sizes than present in the training set.

So far, we have not discussed the temperature of configurations or the rescaling part of
an RG step, but it will be essential to obtaining larger configurations. Conveniently, in 1D
we can exactly calculate the marginalization of Eq. (3.2). The Hamiltonian is self-similar
under the RG decimation with the rescaled couplings

K̃ = f(K) =
1

2
ln cosh 2K . (3.5)

Thus, under successive RG steps, the temperature T of a configuration flows towards
infinity.

In effect, we train the network to take configurations si at couplings K̃ (obtained by
applyingMR to σi at K) and then super-resolve to a high-resolution configuration SR(si)
at K. If we use this configuration as the new input to the network, we can generate new,
larger configurations indefinitely, following the method described in Section 3.2.3. After
one super-resolving step, the new configurations produced by the network are SR(SR(si))
at f−1(K) = f−1(f−1(K̃)). Here we see that it is important to know how to apply the
rescaling step in Eq. (3.5).

To validate our extrapolation proposal, we compare the magnetization and energy of
super-resolved configurations with Monte Carlo results. Fig. 3.5 shows the results of the
network after adjusting the temperature with Eq. (3.5). We stress that the network was
trained on Z16

2 → Z32
2 data, yet predicts N = 64 accurately by extrapolation.

As another test of the super-resolving network, we repeat extrapolation up to N = 512
spins and calculate the two-point function, GN(j) = 〈σ1σ1+j〉, for configurations from each
generated size. In 1D, the exact value for this quantity from [115] is:

GN(j;K) =
tanhjK + tanhN−jK

1 + tanhN K
. (3.6)

In Fig. 3.6 we plot the two-point function for the different sizes with j = N0.8/5. We note
that the choice j = N0.8/5 does not have a particular physical significance as it is possible
to obtain similar accuracy for different choices of j.

Generally, errors are expected to increase with each super-resolution step. However, in
the current case, the temperature flows towards zero under the inverse Eq. (3.5), so the
extrapolation scheme remains stable even after multiple super-resolutions.

53

0 1 2 3
T

1.0

0.8

0.6

0.4

E

N= 64 MC
N= 32 MC
N= 64 SR

0.0 0.5 1.0 1.5
T

1
0
1

Er
ro

r (
10

−
2
)

0 1 2 3
T

0.2

0.4

0.6

0.8

1.0

M

(a) (b)

0.0 0.5 1.0 1.5
T

2.5
0.0
2.5

Er
ro

r (
10

−
2
)

Figure 3.5: (a) Absolute magnetization and (b) energy per spin for the 1D Ising model.
We denote Monte Carlo results at low (N = 32) and high (N = 64) resolution with MC.
The super-resolution (SR) results were obtained by using the N = 32 MC data as input
to an Z16

2 → Z32
2 network, and extrapolating new N = 64 configurations. SR temperatures

are adjusted according to the inverse of Eq. (3.5). This shrinks the temperature range as
the inverse RG transformation flows towards T = 0. Inset plots correspond to the error
between SR predictions and MC results.

0 1 2 3
T

0.0

0.2

0.4

0.6

0.8

1.0

G
N
(j

)

N= 32

N= 64

N= 128

N= 256

N= 512

Figure 3.6: Two-point function of the 1D Ising model with j = N0.8/5. Solid lines
correspond to Eq. (3.6) and marked points to the super-resolution prediction. We use MC
data for N = 32, while all other sizes are obtained from consecutive super-resolutions.

54

We have demonstrated numerically with two different methods that our super-resolution
mapping can successfully capture thermodynamic quantities, as an approximate inverse RG
transformation. The network parameter extrapolation is particularly effective in 1D where
we know exactly how to rescale the temperature from Eq. (3.5).

3.4 Two-dimensional Ising model

Following the success of the 1D case, we proceed by training a 2D, Z8×8
2 → Z16×16

2 network
using Monte Carlo generated datasets. The deterministic majority rule is now used instead
of simple decimation. We again verify that the network works is able to invert the majority
rule in Fig. 3.7.

0 1 2 3 4
T

0.2

0.4

0.6

0.8

1.0

M

(a)

16×16 MC
8×8 DS
16×16 SR

2 3
T

0.0

2.5

5.0

χ

0 1 2 3 4
T

2.0

1.5

1.0

0.5

E
(b)

2 3
T

0

1

C
V

0.0 0.5 1.0
M

0

2

4
(c) T= Tc

0.0 0.5 1.0
M

0

2

(d) T>Tc

2 1
E

0

2

(e) T= Tc

2 1 0
E

0

2

(f) T>Tc

Figure 3.7: (a) Magnetization (with susceptibility) and (b) energy (with specific heat)
of the 2D Ising model. MC denotes Monte Carlo results while SR is obtained by super-
resolving the 8 × 8 downsampled (DS) configurations using the Z8×8

2 → Z16×16
2 network.

Below: Probability distributions of magnetization and energy at T = 2.2010 ' Tc for (c,
e) and T = 2.9313 > Tc for (d, f). The observables are binned into 15 bins to obtain these
histograms. Colours follow the convention of the plots (a, b).

The main challenge in 2D is that the marginalization of Eq. (3.2) cannot be done
analytically and hence we cannot simply rescale using Eq. (3.5). The 2D model is not

55

self-similar under the block-spin RG transformation, as the Hamiltonian that corresponds
to the decimated distribution contains interactions beyond nearest-neighbours [116].

To obtain a 2D analogy of Fig. 3.5, we approximate the temperature correction numer-
ically for observables. In order to numerically find the transformation f−1 : K̃ → K we
compare observables calculated on an 8× 8 MC configuration with those calculated on an
8 × 8 decimated one. We require that the corresponding curves collapse when the trans-
formation is applied to the MC data. We note that this rescaling procedure has no direct
physical interpretation since the 2D Ising Hamiltonian is not self-similar after a block spin
RG transformation, and therefore temperature alone is not sufficient to describe the cou-
pling space of the RG configuration. Thus, here we use this procedure only to demonstrate
that our results are consistent with the inverse-RG nature of super-resolution.

3.4.1 Approximate rescaling

When extrapolating the network parameters, the new larger configurations generated are
SR(SR(si)) at f−1(K). The rescaling function f−1 was trivially found in 1D from the
known analytical result. However, such a result does not exist in the 2D case. Here, we
describe a method to approximate this rescaling function numerically.

Let si ∈ Z8×8
2 denote the configurations obtained upon applying MR to the 16 × 16

Monte Carlo data σi. For the purpose of this Section we also sample 8 × 8 Monte Carlo
data denoted by τi. To find the rescaling, we compare the magnetization calculated on
τi with that from si. We find the transformation T → T̃ by requiring the corresponding
M(T) curves to collapse. An easy way to do so is shown in Fig. 3.8. Starting from a
point at temperature T̃ in the τi curve, one moves horizontally towards the si curve and
the intersection defines T . By this construction, applying the rescaling to MC data, makes
them collapse to downsampled (upon application ofMR) data of the same size. Therefore,
this rescaling is equivalent to an approximation of f−1 used to rescale SR data points in
Fig. 3.10.

We note that finding this rescaling is not related to the super-resolution procedure and
it is not used in the critical exponent calculation, where we assume that we are at the fixed
point of the MR transformation.

3.4.2 Importance of sampling

As mentioned in Section 3.2, the continuous output after the last sigmoid layer is in-
terpreted as the probability that the spin in the corresponding site is up. Therefore,

56

M

T̃ T T T̃

8×8 MC
8×8 DS

Figure 3.8: The method to find the T → T̃ rescaling by approximately collapsing the MS
and DS distributions of the same system size.

the super-resolved configuration is obtained by sampling this continuous output. The
Fθ : ZL×L2 → Z2L×2L

2 mapping consists of the convolutional network and the sampling
procedure.

This sampling procedure makes the SR mapping non-deterministic. We believe that
sampling is crucial for the method to work. Here we give some numerical evidence to
corroborate this statement.

The loss of information in the majority rule RG is associated with the different types
of blocks that give the same decimated spin. For example, consider a block with 4-up/0-
down spins and one with 3-up/1-down. Both would lead to an up spin in the decimated
configuration. In order to capture the correct thermodynamics, the inverse RG procedure
should give these different block types with the correct proportion at each temperature. To
investigate whether this happens, we observe that the type of each block can be uniquely
defined by the sum of spins contained in the block. In the Z2 = {0, 1} convention, this
sum is the number of up spins and goes from 0 to 4.

In Fig. 3.9 we give the number of appearances of each block sum in the original MC
configurations and different interpretations of the network’s output (rounding or sampling).
The height of each bar is calculated by summing the appearances of each block sum over
each configuration. At low temperatures, most configurations are fully polarized with
the value 0 (all down) and 4 (all up). In this case, we do not have information loss
during RG and there is no significant difference between rounding and sampling the output.
At temperatures near and above criticality, non-fully-polarized blocks start to appear,
increasing the appearance of intermediate sums (1 to 3). Rounding fails to capture the
non-fully polarized blocks, making the use of sampling imperative. Even sampling cannot

57

0 2 4

(a)
MC

0 2 4

Rounded

0 2 4

Sampled

0 2 4

(b)

0 2 4 0 2 4

0 2 4

(c)

0 2 4 0 2 4

Figure 3.9: Histograms of the different 2×2 block sums at three different temperatures (a)
T = 1.4706 (low), (b) T = 2.2010 (critical) and (c) T = 2.9313 (high). The first column
corresponds to MC configurations, while the second and third to rounded and uniformly
sampled network output respectively.

accurately capture the blocks with 2-up/2-down spins, indicating a possible systematic
inaccuracy in our method that could be improved in further work.

3.4.3 Thermodynamic observables

We proceed by extrapolating the parameters of the trained Z8×8
2 → Z16×16

2 network and
using it to super-resolve 16 × 16 MC configurations to 32 × 32. We present the results
for magnetization and energy in Fig 3.10a,b. As in 1D, we see that the rescaling makes
predicted SR observables match the MC results, indicating again that the network performs
an approximate inversion of the RG transformation as desired.

We note that at high temperatures, the noise is largely random and difficult to learn.
In contrast to 1D, we add a regularization term in the loss function, which compares
the energy of the super-resolved configuration to that of the original one. This does not
use any more information than already present in the training data, but results in better
convergence of the network for high temperatures.

To corroborate our findings, we calculate the probability distributions of magnetization
and energy in Fig. 3.10, for T ' Tc and T > Tc. We see that super-resolution captures not

58

0 1 2 3 4
T

0.00

0.25

0.50

0.75

1.00

M

(a)

32×32 MC
16×16 MC
32×32 SR

2 3
T

0

10

20

χ

0 1 2 3 4
T

2.0

1.5

1.0

0.5

E

(b)

2 3
T

0

1

2

C
V

0.0 0.5 1.0
M

0.0

2.5

5.0
(c) T= Tc

0.00 0.25 0.50 0.75
M

0.0

2.5

5.0
(d)

T>Tc

2.0 1.5 1.0
E

0

2

4
(e)

T= Tc

1.5 1.0 0.5
E

0.0

2.5

5.0
(f) T>Tc

Figure 3.10: (a) Absolute magnetization with the susceptibility and (b) energy with specific
heat for the 2D Ising model. MC denotes Monte Carlo results while SR is obtained by
super-resolving the 16×16 MC configurations using the extrapolation of the Z8×8

2 → Z16×16
2

network. SR temperatures were rescaled using the numerical transformation, which shrinks
temperature range towards criticality. (c), (d) Probability distributions of magnetization
at T = 2.2010 ' Tc for and T = 2.9313 > Tc, and (e), (f) the probability distributions for
energy.

59

only the average values of magnetization and energy, but their entire probability distribu-
tion.

We expect that by increasing the extrapolation to larger sizes, any error in the original
data or imperfections in the network will propagate. However, we suggest that for a single
extrapolation, the network does remarkably well. In Fig. 3.11 we show the relative error
in the energy after repeating the upsampling. We see here that the error grows with each
successive upscaling as expected. This does not hold for all thermodynamic quantities, as
the magnetization typically stays within 0.5% error at Tc for up to three super-resolutions.
We propose that even multiple extrapolations may serve as a good starting point for large-
scale simulations, e.g. possibly shortening equilibration time in a Monte Carlo procedure.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
SR steps

0.00

0.02

0.04

0.06

0.08

0.10

ε r
el

T= 0.5Tc
T= Tc
T= 1.5Tc

Figure 3.11: The relative error in the energy εrel = |EMC − ESR|/EMC as a function of
number of SR steps. At T = Tc, the algorithm is the most inaccurate, with around 6%
error after one step.

3.4.4 Critical Exponents

An interesting application of super-resolution is the calculation of critical exponents. In
principle, we can avoid rescaling if we focus on the fixed point of the RG transformation,
where the Hamiltonian is self-similar. Here we crudely approximate (as per [113]) the
fixed point with the nearest-neighbour Hamiltonian precisely at the critical temperature.
We take 105 samples of 16× 16 Monte Carlo configurations and repeatedly extrapolate to
reach sizes up to 128× 128. We stress that Monte Carlo simulation is required only on the
smallest size (in our case 16× 16) as all larger sizes are obtained by extrapolating.

We use the predicted configurations to calculate the critical exponents for the 2D Ising
universality class using the finite-size scaling hypothesis [27]. According to this, exactly

60

at criticality χ ∝ Lγ/ν , where γ and ν are the susceptibility and correlation length critical
exponents respectively. We can estimate the γ/ν ratio from the slope in a log-log (L, χ)
plot in Fig. 3.12. Similarly, the two-point function vanishes algebraically G(r) ∼ 1/rd−2+η

at criticality, allowing us to estimate the anomalous dimension η from the slope of a
log-log (r,G(r)) plot. The two-point function is calculated using two different values of
the corresponding distance r = L/4 and r = L/2, leading to the two estimates η1, η2

for the anomalous dimension. Similarly, we can compute the magnetization exponent β.
The exponents found through this method are presented in Table 3.1, where we see the
remarkable agreement with analytical results. To get an estimation of our method’s error
in the critical exponents, we repeat the training and critical exponent calculation 60 times
for sizes up to 128× 128. We show the predicted values and percentage error in Table 3.1.
The most important result is that we achieve less than 2% error from the theoretical value
of the exponents in all cases.

1.0 1.5 2.0
log r

0.5

0.4

0.3

lo
g
G

(r
)

(a)
r=L/2

r=L/4

logL

lo
g
χ

(b)

Figure 3.12: Scaling of the two-point function and susceptibility (inset) at criticality. The
smallest size is calculated with Monte Carlo and the rest with repeated super-resolutions.
Errors are typically around 10−3 and too small to show in this figure.

3.5 Discussion

We have investigated whether super-resolution techniques can be used to successfully in-
crease the size of physical configurations sampled from the 1D and 2D Ising Hamiltonian.
Inspired by recent applications of deep learning, we used a convolutional neural network
for this task. We performed supervised training with a set of Monte Carlo configura-
tions as output, and their corresponding RG-decimated counterparts as input. Therefore,

61

Exponent Super-resolution Error
β/ν 0.1234± 0.006 1.3%
γ/ν 1.7544± 0.01 0.25%
η1 0.2460± 0.01 1.6%
η2 0.2459± 0.01 1.6%

Table 3.1: Critical exponents of the 2D Ising universality class. We give the mean and
standard error of 60 independent repetitions of training and critical exponent calculation
from 16 × 16 to 128 × 128. The error is calculated in respect to exact values in the
thermodynamic limit.

the network was essentially trained to double the size of configurations by performing a
transformation approximately equivalent to an inverse RG step.

Despite the challenge in rigorously defining the inverse RG transformation due to the
loss of information during the decimation, we found that our super-resolution scheme can
accurately capture thermodynamic observables over a wide range of temperatures. We
further proposed a method to extrapolate the trained weights and biases, and used them
to access arbitrary lattice sizes larger than those used for training. We found that the
extrapolation worked well for both 1D and 2D systems, and we were able to compute
critical exponents in the 2D case which show agreement with analytical results to within
2%. To achieve this success, the method hinges on knowing the rescaling of the couplings
K̃ = f(K) at each RG step. We expect that by modifying the network architecture
to include an auxiliary parameter, one could learn this rescaling directly from the data,
possibly with more accuracy than the approximations here.

Looking forward, these techniques may be beneficial to the large-scale simulation of
complex physical systems. For example, our extrapolation may provide approximate ini-
tial configurations for further optimization procedures such as Monte Carlo updates. Dec-
imation and super-resolution could be used to propose non-local updating procedures in
models that suffer from long autocorrelation times, such as lattice quantum chromodynam-
ics. Other interesting extensions of the current work could involve systems with disordered
couplings, where more sophisticated RG techniques such as the energy based Ma-Dasgupta-
Hu method, may be necessary [117, 118].

Ultimately, ideas analogous to the weight extrapolation might allow one to generate ap-
proximate configurations for lattice sizes that are inaccessible by other means. A quantum
generalization could prove particularly useful as a way to generate approximate configura-
tions that are beyond reach of current quantum Monte Carlo or tensor network methods.

62

4

Learning quantum states from
measurements

With the current growth in quantum technology, it is increasingly important to develop
reliable techniques that model the properties of quantum systems in order to diagnose and
calibrate such devices. Due to the statistical nature of quantum mechanics, it is impossi-
ble to fully characterize a given quantum state with a single experimental measurement.
Instead, thousands of repeated measurements must be performed on copies of the state.
The ensemble statistics of these measurements can be used to gain insight into what state
was prepared.

In this Chapter, we demonstrate the use of restricted Boltzmann machines (RBM)
and some preliminary results with attention-based transformer models for this problem of
quantum state estimation for measurements. Sections 4.1 through 4.5 consist of published
work from [5]. Section 4.6 consists of unpublished notes.

4.1 Introduction

Advances in fabricating quantum technologies, as well as in reliable control of synthetic
quantum matter, are leading to a new era of quantum hardware where highly pure quan-
tum states are routinely prepared in laboratories. With the growing number of controlled
quantum degrees of freedom (such as superconducting qubits, trapped ions, and ultra-
cold atoms [119, 120, 121, 122]) reliable and scalable classical algorithms are required for

63

the analysis and verification of experimentally prepared quantum states. Efficient algo-
rithms can aid in extracting physical observables otherwise inaccessible from experimental
measurements, as well as in identifying sources of noise to provide direct feedback for
improving experimental hardware. However, traditional approaches for reconstructing un-
known quantum states from a set of measurements, such as quantum state tomography,
often suffer the exponential overhead that is typical of quantum many-body systems.

One of the fundamental aspects of quantum mechanics is that measuring a system
changes it. This is a problem for experimental efforts that want to verify that their de-
vices are preparing the correct quantum system. One solution is to perform repeated
measurements of the final prepared system and infer the most likely state to explain the
measurement outcomes. This process is known as quantum state tomography and gen-
erally requires a technique such as maximum likelihood estimation. In general this is an
NP-hard problem, so approximate schemes are used.

For a random quantum state, the number of measurements needed for quantum state
tomography is exponentially large in the number of degrees of freedom. However, physical
interesting models often exhibit local interactions and various symmetries that can reduce
the complexity of the system. For instance, in one-dimension, matrix product states (MPS)
provide an efficient and tractable ansatz to represent states with low-entanglement [123,
124, 125, 126, 127]. For other systems however, new methods are needed to find efficient
low-dimensional representations of a generic quantum many-body state.

Recently, an alternative path to quantum state reconstruction was put forward, based
on machine learning (ML) techniques [128, 129, 130]. The most common approach relies on
a generative model called a restricted Boltzmann machine (RBM) [131], a stochastic neural
network with two layers of binary units. A visible layer v describes the physical degrees
of freedom, while a hidden layer h is used to capture high-order correlations between the
visible units. Given a set of neural network parameters θ, the RBM defines a probabilistic
model described by the parametric distribution pθ(v). RBMs have been widely used in
the ML community for the pre-training of deep neural networks [132], for compressing
high-dimensional data into lower-dimensional representations [133], and more [16]. More
recently, RBMs have been adopted by the physics community in the context of repre-
senting both classical and quantum many-body states [13, 99]. They are currently being
investigated for their representational power [134, 135, 136], their relationship with tensor
networks and the renormalization group [95, 107, 109, 108, 137], and in other contexts in
quantum many-body physics [138, 139, 140].

In this Chapter, we demonstrate neural-network quantum state reconstruction of many-
body wavefunctions can be used to reconstruct observables from projective measurement

64

data. We can apply this idea to many types of data, including magnetic spin projections,
orbital occupation number, polarization of photons, or the logical state of qubits. A prop-
erly trained neural network is an approximation of the unknown quantum state underlying
the data. It can be used to calculate various physical observables of interest, including
measurements that may not be possible in the original experiment.

This Chapter is organized as follows. In Section 4.2 we introduce restricted Boltzmann
machines (RBMs) and how to train them. We proceed to use RBM to reconstruct positive-
definite wavefunctions in Section 4.3. In Section 4.4, we consider the more general case of
a complex-valued wavefunction. Finally, in Section 4.6 we explore using modern attention-
based transformer architectures for tomography.

4.2 Restricted Boltzmann machines

The RBM is a physics-inspired model that had early success in machine learning, both in
supervised and unsupervised learning [133]. They were originally introduced by Smolensky
under the name harmonium [131] and were motivated by the Hopfield network [141]. They
have also been called the inverse Ising problem in the statistical physics community [142].

RBMs are an undirected graphical model with binary nodes divided into two classes;
visible and hidden. The idea is to use the hidden units to mediate interactions between
visible units, while ultimately only caring about the distribution of visible units. Such
techniques are widely used in physics, for instance the Hubbard-Stratonovich transfor-
mation mapping the Ising model to an effective φ4-theory [143], or the Faddeev-Popov
method of ghost fields in gauge theory [144]. In machine learning, this is referred to as a
latent variable model. This similarity has deep connections to the Wilsonian and Kadanoff
renormalization group (RG) [105, 95, 107].

The RBM consists of nv visible units v, which are binary valued, i.e. vi ∈ {0, 1}. These
represent an encoding of the data we are interested it. For example, this could be Ising
spins or pixels from an image, or notes in a musical composition. The visible units are not
inter-connected, however each visible unit is connected to every one of nh hidden units h
as per Fig. 4.1. Hidden units could be binary, multinomial, or real-valued, however for our
applications we focus only on binary units. The term “restricted” refers to this limited
connectivity between the units.

65

x1 x2 x3 x4 x5 x6

h1 h2 h3 h4 h5

Figure 4.1: Restricted Boltzmann machine (RBM) with visible units x1, x2 . . . , x6, and
hidden units h1, h2, . . . , h5.

Mathematically, for a given configuration of visible v and hidden h units the energy is

Eθ(v,h) = −
nv ,nh∑
i,j

viWijhj −
nv∑
i

aivi −
nh∑
j

bjhj (4.1)

= −hTWv − aTv − bTh (4.2)

where W is the coupling matrix, also called the weight matrix, and a, b are called biases.
The parameters a, b,W are all real-valued. From here it’s clear why it is also known as the
inverse Ising problem; instead of finding the ground state for fixed θ, we are interested in
learning the best θ so that the ground state aligns with a different data set.

The joint probability for a visible-hidden configuration is given by the Boltzmann dis-
tribution

p(v,h) =
e−E(v,h)

Zθ
(4.3)

where Zθ =
∑
v

∑
h e
−E(v,h) is the partition function. Since Zθ involves a sum over expo-

nentially many terms, it is only feasible to compute for very small RBMs. Fortunately, to
train the RBM we will not need Zθ explicitly, only the ratio of probabilities.

The goal of the RBM is to model the probability distribution over visible units p(v),
so we need to trace out the hidden units:

pθ(v) =
∑
h

pθ(v,h) =
e−E(v)

Zθ
, (4.4)

66

which defines E(v), the effective, or marginalized energy:

E(v) = − log

(∑
h

e−E(v,h)

)
(4.5)

= −
N∑
j=1

ajvj −
Nh∑
i=1

log
(
1 + e

∑
jWijvj+bi

)
(4.6)

= −
N∑
j=1

ajvj −
Nh∑
i=1

ln cosh

(∑
j

Wijvj + bi

)
+ const . (4.7)

(4.8)

To gain some intuition behind the representation power of the RBM, we consider ex-

panding the ln cosh
(∑

jWijvj + bi

)
term as a Taylor series:

ln coshx =
x2

2
− x4

12
+
x6

45
+O

(
x8
)

(4.9)

with x =
∑

jWijvj + bi. We see that the effective energy implicitly includes a term
between a visible spin vi and all other visible spin, j 6= i. In this way, hidden units
allow correlations between visible units not possible otherwise. Moreover, each hidden
unit contributes interactions at arbitrary high-order. For complex weights and biases, this
term is a generalization of the Jastrow factor used commonly in variational Monte Carlo
[12, 145]. This effective pairwise all-to-all interaction provides one reason for the vast
representational power of the RBM.

4.2.1 Sampling

The bipartite structure of the RBM allows us to draw samples by using Gibbs updates as
discussed for the 1d Ising model in Section 1.1.4. The probability p(v,h) factorizes into
p(v,h) = p(h)p(v|h) and p(v,h) = p(v)p(h|v) from Bayes rule. Following the same steps
as Section 1.1.4, we have that the conditionals factorize into the product of individual

67

probabilities,

p(v|h) =
Nv∏
i=1

p (vi|h) (4.10)

p(h|v) =

Nh∏
j=1

p (hj|v) (4.11)

where each individual probability is described by the logistic sigmoid function σ(x) =
(1 + e−x)−1 as

p (vi = 1|h) = σ

(
ai +

Nh∑
j=1

Wijhj

)
(4.12)

p (hj = 1|v) = σ

(
bj +

Nv∑
i=1

Wijvi

)
. (4.13)

To sample, we first fix the visible units v (so that p(v) = 1) and update the hidden units
h according to p(h|v). Then we perform the converse by fixing the hidden units h and
sampling the visible units according to p(v|h).

This is one reason it was essential to have a bipartite connectivity in the RBM. While
Gibbs sampling can be fairly efficient, for complex-valued RBMs it fails and Metropolis or
more advanced techniques such as parallel tempering are required [13].

As discussed in Section 1.1, near a phase transition sampling can suffer from critical
slowing down. This problem is doubly bad for the RBM since sampling can be slow, and
simultaneous, the parameters could also be stuck in a local energy minima.

4.2.2 Training

The goal of generative modelling is to approximate data drawn from an unknown dis-
tribution p(x) with a machine learning model with adjustable parameters pθ(x). One
can measure the difference between the two distributions with the Kullback-Leibler (KL)
divergence, also known as the relative entropy,

KL(p‖pθ) =
∑
x

p(x) ln p(x)−
∑
x

p(x) ln pθ(x) (4.14)

68

where x is a state in the probability space. The first term is just the Shannon entropy
of the data set and the second term is the cross entropy. The KL divergence is always
non-negative and is only zero if and only if p(x) = q(x). Moreover, it is not symmetric,
KL(p‖q) 6= KL(q‖p) so it is not a true metric between distributions.

Consider the case of a finite set of N independent samples D = (x1,x2, . . .xN) drawn
from the data distribution

pdata(x) = N−1

N∑
n=1

δ(x− xn) (4.15)

The cross entropy term then simplifies to the average log-likelihood Lθ:

L = N−1
∑
xn∈D

ln pθ(xn) . (4.16)

Minimizing the KL divergence is thus equivalent to minimizing the negative log-likelihood.
This is known as maximum likelihood estimation.

We proceed to maximizing the log-likelihood via gradient ascent. The gradient of Lθ
with respect to the parameters θ is

∇θL = ∇θ

(
N−1

∑
xn∈D

ln pθ(xn)

)

= ∇θ

(
N−1

∑
xn∈D

Eθ(xn)− lnZθ

)
= N−1

∑
xn∈D

∇θEθ(xn)− Z−1
θ

∑
x

∇θpθ(xn)

= N−1
∑
xn∈D

∇θEθ(xn)−
∑
x

pθ(x)∇θEθ(x)

= 〈∇θEθ(xn)〉x∈D,h∼pθ(h|xn) − 〈∇θEθ(x)〉(v,h)∼pθ(v,h) (4.17)

The first term is called the positive phase and involves averaging only over the sample data
D and sampling h ∼ pθ(h|xn) for each data point xn ∈ D. The second term poses more
problems since it involves an intractable sum over all possible states x. The two phases
compete to adjust the weights. In the positive phase, the model gravitates towards config-
urations in the data set. It assigns higher probability (and hence lower energy) to states

69

that are more frequent in the data set. Conversely, the negative phase generates configu-
rations from the RBM which favours exploring the state space. This allows generalization
and a type of bias towards distributions pθ that are well suited to the Ising type problem.
There can refereed to as learning and unlearning phases where the RBM first matches the
training data in the positive (learning) phase, then expands to new configurations in the
unlearning (negative) phase.

The positive phase is straightforward to compute. For each sample xn in D, we fix the
visible units of the RBM to xn and sample the hidden units (once) using block Gibbs from
Eq. 4.10. This is generally fast since it involves only one computation per sample hence is
O(N).

The negative phase presents a considerable challenge. The standard approach is to
draw samples x ∼ pθ(x) using Markov chain Monte Carlo (MCMC). The advantage of
MCMC is that it is generally applicable to many forms of pθ. However, it also introduces
three main challenges. Firstly, equilibrating the Markov chain at each parameter can be
prohibitively slow. Moreover, without a global update, Gibbs sampling can get stuck in
local minima. This mode-mixing problem can be partial combated with more advanced
sampling techniques such as parallel tempering or fast-weights RBMs [146]. Lastly, the
most serious problem is that variance of the gradient can be unmanageable. As the differ-
ence between two expectation values, the gradient Eq. 4.17 suffers if either term has high
variance.

A solution to the variance problem was proposed by Hinton in 2002 [132]. The idea is
we can bias our MCMC towards the data distribution to reduce the variance between the
phases and quicken the equilibration time. Instead of sampling from pθ with MCMC, we
first start with the visible units fixed to a sample xn. This reduces the tendency of the
chain to drift away from the data samples, hence reducing the overall variance. We now
use block Gibbs to sample the hidden units h using p(h|xn), and then fix the hidden units
and sampled the visible units from p(x|h). At this point the visible units x might not be
samples from the data set anymore. We introduce the notation pkθ, for k repetitions of
this procedure. Repeating this procedure k-times results in a MCMC chain pkθ that still
converges to pθ in the limit k → ∞. In this notation, the data distribution (x ∈ D,h ∼
pθ(h|xn)) is called p0, and the equilibration RBM distribution is p∞ = pθ(v,h).

This method is called contrastive divergence because it can be interpreted as minimizing
the difference between two KL divergences:

CDk = KL(pdata|pθ)−KL(pkθ|pθ) . (4.18)

Since we are guaranteed that each k step is closer to the true distribution (i.e. KL(pk+1
θ |pθ) ≤

70

KL(pkθ|pθ) with equality only if at equilibrium), we know that the contrastive divergence
CDk is non-negative.

The gradient of the contrastive divergence CDk is

∇θCDk = 〈∇θEθ(xn)〉p0 − 〈∇θEθ(x)〉pk −
∑
x

∇θpθ(x) log
pkθ(x)

pθ(x)

(4.19)

The third term is problematic since it involved another exponential sum. It represents
the effect that a change in θ results in a small change in KL(pkθ|pθ). For small changes
in parameters, this term should remain small [147, 148]. This term can also be used to
construct examples where CDk fails to converge or converges to a different fixed point than
maximum likelihood [149, 150, 151]. To proceed, we must neglect this term so that the
gradient follows

∇θCDk ≈ 〈∇θEθ(xn)〉p0 − 〈∇θEθ(x)〉pk .

This also means that contrastive divergence is not technically the gradient of any loss
function [152]. In practice, k = 1 is sufficient for many problems [40], however it is biased
towards the data distribution. Some papers suggest using CDk to find an approximate
solution, then tuning the model with maximum likelihood. One could also increase k near
the end of training to reduce the bias from this approximation.

The energy gradients ∇θEθ(v) for the biases ai, bi, and the weights Wij work out to be

∇aiEθ(v) = vi (4.20)

∇bjEθ(v) = p(hj = 1|v) (4.21)

∇Wij
Eθ(v) = vi p(hj = 1|v) (4.22)

where p is given by Eq. 4.12.

The parameters are optimized with gradient descent

θt+1 = θt − η∇θCDk (4.23)

for a learning rate η. More advance optimizers such as Adam, Adagrad, or natural gradient
descent could be used instead1.

1See Chapter 1, Section 1.2.3 for more information.

71

4.3 Positive wavefunctions with RBMs

As an example of using RBM for wavefunction reconstruction, we first consider the case of
a positive-definite wavefunction. Consider a state |ψ〉 in Hilbert space written in terms of
a complete basis |x〉,

|ψ〉 =
∑
x

ψ(x) |x〉 (4.24)

where the coefficients ψ(x) are non-negative. The probability that the state collapses
to |x〉 after a measurement is related to ψ(x) via the Born rule p(x) = |ψ(x)|2. With
repeated projective measurements, an experimentalist can build a dataset D = (x1,x2, . . .).
Alternatively, samples xn could be produced with simulations with quantum Monte Carlo,
DMRG, or other techniques. In this Chapter, we generate the data for the TFIM with
Monte Carlo described in Section 3.1.

Generally this dataset can provide value information about the system being studied.
For instance, diagonal observables can be computed directly. However, off-diagonal observ-
ables or more complex quantities such as the Rényi entropy, cannot be calculated from the
diagonal measurements alone. For instance, computing the Rényi entropy would require
double the number of qubits. Instead, we use the RBM as a compressed representation
of the quantum state similar to tensor networks or matrix product states [123]. After the
RBM is trained on the dataset, it can be sampled to produce new observables.

The restriction to non-negative states makes the interpretation of the wavefunction as
an RBM clear. The assumption of positivity is well-founded for many physically interesting
systems, such as the ground states of Hamiltonians that do not encounter the sign problem
[153]. In this Chapter, we focus on the TFIM in one-dimension which has non-negative
elements in both the σx, or σz basis.

The RBM is trained to approximate the data distribution pdata(x) with a generative
model pθ(x). Using contrastive divergence (CD) [132] and gradient descent we train the
RBM to discover an optimal set of parameters θ. Upon successful training, we obtain an
approximate representation of the target quantum state,

ψθ(x) ≡
√
pθ(x) ' ψ(x) . (4.25)

The quality of the representation can be measured with the KL divergence for small
systems, or alternatively, with the fidelity f(ψ, ψθ) = |〈ψ|ψθ〉|2. For lager systems both the
KL divergence and the fidelity becomes intractable; so we resort to comparing observables
such as the energy, magnetization or entanglement entropy.

72

Consider a data set D composed of projective measurements generated by sampling
the distribution the ground state of the TFIM model. We use Monte Carlo sampling from
Appendix A, to generate configurations and their exact amplitudes. We consider NS = 105

independent spin projections in the reference basis x = σz and focus on the critical point
h/J = 1.

In Fig. 4.2, we show that during training, the RBM successfully improves the fidelity
and minimized the KL divergence for N = 10 qubits at the critical point h = 1 of the
TFIM. The critical point is the most difficult to learn (in the thermodynamic limit) since
correlations decay algebraically.

0 100 200 300 400 500

Epoch

0.6

0.7

0.8

0.9

1.0

F
id

el
it

y

0 100 200 300 400 500

Epoch

0.0

0.5

1.0

K
L

D
iv

er
ge

n
ce

Figure 4.2: The fidelity (left) and the KL divergence (right) during training for the
reconstruction of the ground state of the one-dimensional TFIM for N = 10 spins at the
critical point h/J = 1.

Reconstruction of physical observables

In this Section, we discuss how to calculate the average value of a generic physical observ-
able Ô from a trained RBM. We start with the case of observables that are diagonal in
the reference basis where the RBM was trained. We then discuss the more general cases
of off-diagonal observables and entanglement entropy.

Diagonal observables

We begin by considering an observable with only diagonal matrix elements, 〈x| Ô |x′〉 =
Oxδxx′ where for convenience we denote the computational basis σz as x unless otherwise

73

stated. The expectation value of Ô is given by

〈Ô〉 =
1∑

x |ψθ(x)|2
∑
x

Ox|ψθ(x)|2 . (4.26)

The expectation value can be approximated by a Monte Carlo estimator,

〈Ô〉 ≈ 1

NMC

NMC∑
k=1

Oxk , (4.27)

where the spin configurations xk are sampled from the RBM distribution pθ(x). This
process is particularly efficient given the bipartite structure of the network which allows
the use of block Gibbs sampling.

A simple example for the TFIM is the average longitudinal magnetization per spin,
〈σ̂z〉 =

∑
j 〈σ̂zj 〉 /N , which can be calculated directly on the spin configuration sampled

by the RBM (i.e., the state of the visible layer) as shown in Fig. 4.3. Other diagonal
observables include the spin-spin correlation function 〈σz0σzn〉, or in the case of fermions,

the occupation number ni =
〈
a†iai

〉
.

Off-diagonal observables

We turn now to the case of off-diagonal observables, where the expectation value assumes
the following form

〈Ô〉 =
1∑

x |ψθ(x)|2
∑
σσ′

ψ∗θ(x)ψθ(x
′)Oσσ′ . (4.28)

This expression can once again be approximated with a Monte Carlo estimator

〈Ô〉 ≈ 1

NMC

NMC∑
k=1

O[L]
xk

(4.29)

of the so-called local estimator of the observable:

O[L]
xk

=
∑
x′

ψθ(x
′)

ψθ(xk)
Oxkx′ . (4.30)

As long as the matrix representation Oσσ′ is sufficiently sparse in the reference basis, the
summation can be evaluated efficiently since the normalization constant for ψ cancels out.

74

As an example, we consider the specific case of the transverse magnetization for the
j-th spin, 〈σ̂xj 〉, with matrix elements

〈x|σ̂xj |x′〉 = δσ′
j ,1−σj

∏
i 6=j

δσ′
i,σj

. (4.31)

Therefore, the expectation values reduces to the Monte Carlo average of the local observable

(σxj)[L] =
ψθ(σ1, . . . , 1− σj, . . . , σN)

ψθ(σ1, . . . , σj, . . . , σN)
. (4.32)

The transverse magnetization is then computed by sampling pθ using block Gibbs
sampling.

The reconstruction of two magnetic observables for the TFIM is shown in Fig. 4.3,
where a different RBM was trained for each value of the transverse field h. In the left plot,
we show the average longitudinal magnetization per site, which can be calculated directly
from the configurations sampled by the RBM. In the right plot, we show the off-diagonal
observable of transverse magnetization. For both cases, the RBM successfully discovers an
optimal set of parameters θ that accurately approximate the ground-state wavefunction
underlying the data.

0.5 1.0 1.5 2.0

h

0.4

0.6

0.8

1.0

〈σ
z
〉

0.5 1.0 1.5 2.0

h

0.2

0.4

0.6

0.8

〈σ
x
〉

Figure 4.3: Reconstruction of the magnetic observables for the TFIM chain with N = 10
spins. We show the average longitudinal magnetization 〈σ〉z (left) and transverse magne-
tization 〈σ〉x (right) per site obtained by sampling from a trained RBM. The dashed line
denotes the results from exact diagonalization.

75

Entanglement entropy

A quantity of significant interest in quantum many-body systems is the degree of entangle-
ment between a subregion A and its complement Ā. Numerically, measurement of bipartite
entanglement entropy is commonly accessed through the computation of the second Rényi
entropy S2 = − ln Tr(ρ2

A) [154]. When one has access to a pure state wavefunction ψθ(x),
Rényi entropy can be calculated as an expectation value of the “Swap” operator,

S2 = − ln
〈

ŜwapA

〉
. (4.33)

It is essentially an off-diagonal observable that acts on an extended product space consisting
of two independent copies of the wavefunction, ψθ(x) ⊗ ψθ(x), referred to as “replicas”.
As the name suggests, the action of the Swap operator is to swap the spin configurations
in region A between the replicas,

ŜwapA|xA,xĀ〉1 ⊗ |x′A,x′Ā〉2 = |x′A,xĀ〉1 ⊗ |xA,x′Ā〉2. (4.34)

Here the subscript of the ket indicates the replica index, while the two labels inside a ket,
such as xA,xĀ, describe the spins configurations within the subregion and its complement.

Using this observable, we can estimate the second Rényi entropy of the region containing
the first half of the chain using Eq. 4.33 as shown in Fig. 4.4. As was the case with the
magnetization observables, the trained RBM gives a good approximation to the second
Rényi entropy for different subregion A sizes. Being a basis-independent observable, this
constitutes a useful test on the ability of the RBM to capture the full wavefunction from
the information contained in a single-basis dataset for TFIM.

4.4 Complex wavefunctions

For positive wavefunctions, the probability distribution underlying the outcomes of pro-
jective measurements in the reference basis contains all possible information about the
unknown quantum state. However, in the more general case of a wavefunction with a
non-trivial sign or phase structure, this is not the case. In this section, we consider
a target quantum state where the wavefunction coefficients in the reference basis can
be complex-valued, ψ(x) = |φ(x)|eiΦ(x). We continue to choose the reference basis as
x = (σz1, σ

z
2, . . .). We first need to generalize the RBM representation of the quantum state

to capture a generic complex wavefunction. To this end, we introduce an additional RBM

76

0 2 4 6 8 10

A

0.00

0.08

0.16

0.24

S
2

Figure 4.4: The second Rényi entropy for the TFIM chain with N = 10 spins. The number
of sites in the entangled bipartition A is indicated by the horizontal axis. Markers indicate
values obtained through the “Swap” operator applied to the samples from a trained RBM.
The dashed line denotes the result from exact diagonalization.

with marginalized distribution pφ(x) parameterized by a new set of network weights and
biases φ. We use this to define the quantum state as:

ψθφ(x) =
√
pθ(x) eiqφ(x)/2 (4.35)

where qφ(x) = log pφ(x) [101]. In this case, the reconstruction requires a different type of
measurement setting. It is easy to see that projective measurements in the reference basis
do not convey any information on the phases θ(x), since p(x) = |ψ(x)|2 = Φ2(x).

The general strategy to learn a phase structure is to apply a unitary transformation U
to the state |ψ〉 before the measurements, such that the resulting measurement distribution
P ′(x) = |ψ′(x)|2 of the rotated state ψ′(x) = 〈x| U |ψ〉 contains fingerprints of the phases
Φ(x) (Fig. 4.5). In general, different rotations must be independently applied to gain full
information on the phase structure. We make the assumption of a tensor product structure
of the rotations, U =

⊗N
j=1 Ûj. This is equivalent to a local change of basis from |x〉 to

{|xb〉 = |σb11 , . . . , σ
bN
N 〉}, where the vector b identifies the local basis bj for each site j. The

target wavefunction in the new basis is given by

ψ(xb) = 〈xb|ψ〉 =
∑
x

〈xb|x〉〈x|ψ〉

=
∑
x

U(xb,x)ψ(x) ,
(4.36)

77

and the resulting measurement distribution is

pb(x
b) =

∣∣∣∣∑
x

U(xb,x)ψ(x)

∣∣∣∣2 . (4.37)

2 qubits

11010 . . .

01100 . . .

U
10110 . . .

10001 . . .

Hx1

<latexit sha1_base64="pSuXmt/pVLLbwhoAFnaNSVF+sBc=">AAAB8nicbVDLSgMxFM3UV62vqks3wSK4KjNS0WXRjcsK9gHToWTSTBuaSYbkjliGfoYbF4q49Wvc+Tdm2llo64HA4Zx7ybknTAQ34LrfTmltfWNzq7xd2dnd2z+oHh51jEo1ZW2qhNK9kBgmuGRt4CBYL9GMxKFg3XBym/vdR6YNV/IBpgkLYjKSPOKUgJX8fkxgHEb4aeANqjW37s6BV4lXkBoq0BpUv/pDRdOYSaCCGON7bgJBRjRwKtis0k8NSwidkBHzLZUkZibI5pFn+MwqQxwpbZ8EPFd/b2QkNmYah3Yyj2iWvVz8z/NTiK6DjMskBSbp4qMoFRgUzu/HQ64ZBTG1hFDNbVZMx0QTCralii3BWz55lXQu6l6jfnnfqDVvijrK6ASdonPkoSvURHeohdqIIoWe0St6c8B5cd6dj8VoySl2jtEfOJ8/uraQ5g==</latexit>

x2

<latexit sha1_base64="3AZFMh5aJxMxmmQYWPpveWK+gX4=">AAAB8nicbVBNSwMxFHxbv2r9qnr0EiyCp7JbKnosevFYwbbCdinZNNuGZpMlyYpl6c/w4kERr/4ab/4bs+0etHUgMMy8R+ZNmHCmjet+O6W19Y3NrfJ2ZWd3b/+genjU1TJVhHaI5FI9hFhTzgTtGGY4fUgUxXHIaS+c3OR+75EqzaS4N9OEBjEeCRYxgo2V/H6MzTiM0NOgMajW3Lo7B1olXkFqUKA9qH71h5KkMRWGcKy177mJCTKsDCOczir9VNMEkwkeUd9SgWOqg2weeYbOrDJEkVT2CYPm6u+NDMdaT+PQTuYR9bKXi/95fmqiqyBjIkkNFWTxUZRyZCTK70dDpigxfGoJJorZrIiMscLE2JYqtgRv+eRV0m3UvWb94q5Za10XdZThBE7hHDy4hBbcQhs6QEDCM7zCm2OcF+fd+ViMlpxi5xj+wPn8Abw6kOc=</latexit>

 (xb) = hxb|U | i

<latexit sha1_base64="A6kIF3jMTkB1MFXd7uzA9MfsTTo=">AAACTnicbVFNS8MwGE7n15xfU49egkPQy2hF0Ysw9OJxgtuEtY40ezuDaVqSVBy1v9CLePNnePGgiKZdBb9eCHl4nvdJ3jzxY86Utu0nqzI1PTM7V52vLSwuLa/UV9e6KkokhQ6NeCQvfKKAMwEdzTSHi1gCCX0OPf/6JNd7NyAVi8S5HsfghWQkWMAo0YYa1MGNFdt2Q6Kv/ADfXqZf0M928BF2OREjDrhk09vsewe+w64f8aEah2abCJTwtJPhzEjmZFcW/kG9YTftovBf4JSggcpqD+qP7jCiSQhCU06U6jt2rL2USM0oh6zmJgpiQq/JCPoGChKC8tIijgxvGWaIg0iaJTQu2O+OlIQqH9l05hOr31pO/qf1Ex0ceikTcaJB0MlFQcKxjnCeLR4yCVTzsQGESmZmxfSKSEK1+YGaCcH5/eS/oLvbdPaa+2d7jdZxGUcVbaBNtI0cdIBa6BS1UQdRdI+e0St6sx6sF+vd+pi0VqzSs45+VKX6Cb3btf4=</latexit>

x1

<latexit sha1_base64="pSuXmt/pVLLbwhoAFnaNSVF+sBc=">AAAB8nicbVDLSgMxFM3UV62vqks3wSK4KjNS0WXRjcsK9gHToWTSTBuaSYbkjliGfoYbF4q49Wvc+Tdm2llo64HA4Zx7ybknTAQ34LrfTmltfWNzq7xd2dnd2z+oHh51jEo1ZW2qhNK9kBgmuGRt4CBYL9GMxKFg3XBym/vdR6YNV/IBpgkLYjKSPOKUgJX8fkxgHEb4aeANqjW37s6BV4lXkBoq0BpUv/pDRdOYSaCCGON7bgJBRjRwKtis0k8NSwidkBHzLZUkZibI5pFn+MwqQxwpbZ8EPFd/b2QkNmYah3Yyj2iWvVz8z/NTiK6DjMskBSbp4qMoFRgUzu/HQ64ZBTG1hFDNbVZMx0QTCralii3BWz55lXQu6l6jfnnfqDVvijrK6ASdonPkoSvURHeohdqIIoWe0St6c8B5cd6dj8VoySl2jtEfOJ8/uraQ5g==</latexit>

x2

<latexit sha1_base64="3AZFMh5aJxMxmmQYWPpveWK+gX4=">AAAB8nicbVBNSwMxFHxbv2r9qnr0EiyCp7JbKnosevFYwbbCdinZNNuGZpMlyYpl6c/w4kERr/4ab/4bs+0etHUgMMy8R+ZNmHCmjet+O6W19Y3NrfJ2ZWd3b/+genjU1TJVhHaI5FI9hFhTzgTtGGY4fUgUxXHIaS+c3OR+75EqzaS4N9OEBjEeCRYxgo2V/H6MzTiM0NOgMajW3Lo7B1olXkFqUKA9qH71h5KkMRWGcKy177mJCTKsDCOczir9VNMEkwkeUd9SgWOqg2weeYbOrDJEkVT2CYPm6u+NDMdaT+PQTuYR9bKXi/95fmqiqyBjIkkNFWTxUZRyZCTK70dDpigxfGoJJorZrIiMscLE2JYqtgRv+eRV0m3UvWb94q5Za10XdZThBE7hHDy4hBbcQhs6QEDCM7zCm2OcF+fd+ViMlpxi5xj+wPn8Abw6kOc=</latexit>

 (x)

<latexit sha1_base64="A1Rzm2mVI85U6ZfSI3zYkxkC4Hs=">AAAB+XicbVDLSsNAFL3xWesr6tLNYBHqpiRS0WXRjcsK9gFNKJPppB06mYSZSbGE/okbF4q49U/c+TdO2iy09cDA4Zx7uWdOkHCmtON8W2vrG5tb26Wd8u7e/sGhfXTcVnEqCW2RmMeyG2BFORO0pZnmtJtIiqOA004wvsv9zoRKxWLxqKcJ9SM8FCxkBGsj9W3bSxSrehHWoyDMnmYXfbvi1Jw50CpxC1KBAs2+/eUNYpJGVGjCsVI910m0n2GpGeF0VvZSRRNMxnhIe4YKHFHlZ/PkM3RulAEKY2me0Giu/t7IcKTUNArMZB5RLXu5+J/XS3V442dMJKmmgiwOhSlHOkZ5DWjAJCWaTw3BRDKTFZERlphoU1bZlOAuf3mVtC9rbr129VCvNG6LOkpwCmdQBReuoQH30IQWEJjAM7zCm5VZL9a79bEYXbOKnRP4A+vzB29zk4o=</latexit>

 (x)

<latexit sha1_base64="A1Rzm2mVI85U6ZfSI3zYkxkC4Hs=">AAAB+XicbVDLSsNAFL3xWesr6tLNYBHqpiRS0WXRjcsK9gFNKJPppB06mYSZSbGE/okbF4q49U/c+TdO2iy09cDA4Zx7uWdOkHCmtON8W2vrG5tb26Wd8u7e/sGhfXTcVnEqCW2RmMeyG2BFORO0pZnmtJtIiqOA004wvsv9zoRKxWLxqKcJ9SM8FCxkBGsj9W3bSxSrehHWoyDMnmYXfbvi1Jw50CpxC1KBAs2+/eUNYpJGVGjCsVI910m0n2GpGeF0VvZSRRNMxnhIe4YKHFHlZ/PkM3RulAEKY2me0Giu/t7IcKTUNArMZB5RLXu5+J/XS3V442dMJKmmgiwOhSlHOkZ5DWjAJCWaTw3BRDKTFZERlphoU1bZlOAuf3mVtC9rbr129VCvNG6LOkpwCmdQBReuoQH30IQWEJjAM7zCm5VZL9a79bEYXbOKnRP4A+vzB29zk4o=</latexit>

 (x)

<latexit sha1_base64="A1Rzm2mVI85U6ZfSI3zYkxkC4Hs=">AAAB+XicbVDLSsNAFL3xWesr6tLNYBHqpiRS0WXRjcsK9gFNKJPppB06mYSZSbGE/okbF4q49U/c+TdO2iy09cDA4Zx7uWdOkHCmtON8W2vrG5tb26Wd8u7e/sGhfXTcVnEqCW2RmMeyG2BFORO0pZnmtJtIiqOA004wvsv9zoRKxWLxqKcJ9SM8FCxkBGsj9W3bSxSrehHWoyDMnmYXfbvi1Jw50CpxC1KBAs2+/eUNYpJGVGjCsVI910m0n2GpGeF0VvZSRRNMxnhIe4YKHFHlZ/PkM3RulAEKY2me0Giu/t7IcKTUNArMZB5RLXu5+J/XS3V442dMJKmmgiwOhSlHOkZ5DWjAJCWaTw3BRDKTFZERlphoU1bZlOAuf3mVtC9rbr129VCvNG6LOkpwCmdQBReuoQH30IQWEJjAM7zCm5VZL9a79bEYXbOKnRP4A+vzB29zk4o=</latexit>

Figure 4.5: Unitary rotations for two qubits. (left) Measurements on the reference basis.
(right) Measurement in the rotated basis. The unitary rotation (the Hadamard gate on
qubit σ0) is applied after state preparation and before the projective measurement.

To clarify the procedure, let us consider the simple example of a quantum state of two
qubits:

|ψ〉 =
∑
σ0,σ1

Φσ0σ1e
iθσ0σ1 |σ0σ1〉 , (4.38)

and rotation U = Ĥ0 ⊗ Î1, where Î is the identity operator and

Ĥ =
1√
2

[
1 1
1 −1

]
(4.39)

is called the Hadamard gate. This transformation is equivalent to rotating the qubit σ0

from the reference σz0 basis to the σx0 basis. A straightforward calculation leads to the
following probability distribution of the projective measurement in the new basis |σx0 , σ1〉:

pb(σ
x
0 , σ1) =

Φ2
0σ1

+ Φ2
1σ1

4
+

1− 2σx0
2

Φ0σ1Φ1σ1 cos(∆θ) , (4.40)

where ∆θ = θ0σ1 − θ1σ1 . Therefore, the statistics collected by measuring in this basis
implicitly contains partial information on the phases. To obtain the full phases structure,
additional transformations are required, one example being the rotation from the reference
basis to the σyj local basis, realized by the elementary gate

K̂ =
1√
2

[
1 −i
1 i

]
. (4.41)

78

We now proceed to reconstruct a complex-valued wavefunction. For simplicity, we
restrict ourselves to two qubits and consider the general case of a quantum state with
random amplitudes Φσ0σ1 and random phases θσ0σ1 . In contrast with the positive case,
we now have measurements performed in different bases. Therefore, the training data
consists of an array of qubits projections (σb00 , σ

b1
1), together with the corresponding bases

(b0, b1) where the measurement was taken. We also need the various elementary unitary
rotations that need to be applied to the RBM state during the training. For this example,
we generated measurements in the following bases:

(b0, b1) = (z, z) , (x, z) , (z, x) , (y, z) , (z, y) (4.42)

Finally, before the training, we initialize the set of unitary rotations In the case of the
provided 2-qubit dataset, the unitaries are the Ĥ and K̂ gates.

Just like the positive wavefunction, for the complex case we optimize the network
parameters to minimize the contrastive divergence between the data and the RBM dis-
tribution. When measuring in multiple bases, the optimization now runs over the set of
parameters (θ,φ) and minimizes the sum of KL divergences between the data distribu-
tion P (xb) and the RBM distribution |ψθφ(xb)|2 for each basis b appearing in the training
dataset [101]. This is equivalent to minimizing the quantum relative entropy, an informa-
tion measure between states [155, 156]

S(φ|σ) = tr ρ log φ− tr ρ log σ (4.43)

which shares many properties of the KL divergence.

For example, if a given training sample is measured in the basis (x, z), we apply the
appropriate unitary rotation U = Ĥ0⊗ Î1 to the RBM state before collecting the gradient
signal.

Similar to the case of positive wavefunction, we generate the complete Hilbert space to
compute the fidelity and KL divergence for a benchmark example. In Fig. 4.6 we show the
total KL divergence and the fidelity with the true two-qubit state during training. After
successfully training a model, we can once again compute expectation values of physical
observables, as discussed in Section 4.3.

4.5 Summary

In this Section, we have shown the feasibility of using the RBM as a generative model
for both positive and complex wavefunctions. From a set of projective measurements, we

79

0 20 40 60 80 100

Epoch

0.2

0.4

0.6

0.8

1.0

F
id

el
it

y

0 20 40 60 80 100

Epoch

0.0

0.2

0.4

K
L

D
iv

er
ge

n
ce

Figure 4.6: Training a complex RBM on random two-qubit data. We show the fidelity
(left), and KL divergence (right), as a function of the training epochs.

train an RBM which can estimate observables including entanglement entropy. RBMs are
trained with contrastive divergence, which is slow because it relies on MCMC. Further,
contrastive divergence is not strictly equivalent to maximum likelihood. However, RBMs
are essentially an Ising problem and so are very familiar to physicists and serve as a useful
starting point for generative modelling.

4.6 Transformers for state reconstruction

RBMs have the benefit of being physically motivated as an Ising model, however they have
seen a rapid decline in use with machine learning practitioners. One of the most successful
models in natural language processing is the transformer architecture. Introduced in 2017
by Vaswani et al. [157], the transformer uses a self-attention mechanism to achieve state-
of-the-art results in many tasks. One of the main benefits of the transformer, as opposed
to recurrent network models or RBMs, is that it lends itself to parallelization at a massive
scale. For instance, Nvidia used the transformer architecture in Megatron-LM, an 8.3
billion parameter language model that was trained on 512 NVIDIA Tesla V100 GPUs [47].
Massive models have routinely bested language benchmarks such as the General Language
Understanding Evaluation (GLUE) tasks [158, 159],

The transformer is built on a mechanism called self-attention. Self-attention take a
vector x = (x1, x2, . . . , xN) and computes a correlation s between all components, hence is
a type of preprocessing to make the network more aware of the correlations between points.
There are multiple ways to implement this attention mechanism. In the transformer, we

80

focus on scaled dot-product self-attention. Instead of the usual Cij = 〈xixj〉 correlation
matrix, we allow Cij to be from the dot product of two different linear transformations of
x called the query Q and key K. For each site xi ∈ x, there is a corresponding query and
key vector. The mappings from x to Q,K is parameterized as a learning transformation

Qj =
∑
i

qij xj, Ki =
∑
i

kij xi . (4.44)

The dimension of the query and key vectors is not necessarily the same as x, so we denote
this as d. We can form a matrix by concatenating the Qi vectors into a d × N matrix
Q = [Q1, Q2, . . . QN] and likewise for the keys K = [K1, K2, . . . KN]. This lends itself well
to parallel operations like matrix multiplication.

Q K V

MatMul

Scale

Mask

Softmax

MatMul

Scaled dot-product attention score

Q K V

Linear Linear Linear

Scaled dot-product attention

Concatenation

Linear

Multi-head attention score

Figure 4.7: (a) A single attention mechanics. (b) Multi-head attention (c) the full trans-
former block.

SinceQ andK contain the inputs x, taking a dot product between the matrices produces
a type of correlation matrix. The scaled dot-product correlation matrix is

C = softmax

(
QTK√

d

)
(4.45)

81

where the softmax function is

softmax (xi) =
exi∑
j e

xj
. (4.46)

The QTK term acts like the correlation matrix by inducing pairwise all-to-all correlations.
This is also similar to a n-body Jastrow factor using in quantum Variational Monte Carlo
[12, 160]. In practice, the dot-product between the keys and values becomes larger as the
dimension d increases.2 This results in the saturation of the softmax function and hence
extremely small gradients. The factor 1/

√
d attempts to mitigate this issue.

Attention(Q,K, V) = CV = softmax

(
QTK√

d

)
(4.47)

to produce the score matrix, where we call V = [V1, V2, . . . , VN] the values defined with

Vj =
∑
i

vij xj , (4.48)

where in our case we take the dimension of the value vector V to be d, although generally
it is an additional hyperparameter.

A key innovation from Vaswani et al. [157], is that we can use multiple attention
mechanisms to essentially create an entire deep neural network with only attention. Multi-
head attention is the concatenation of multiple attention scores

Mulithead(Q,K, V) = concat (head1, head2 . . .)W (4.49)

where headn = Attention(Qn, Kn, Vn) and W is an additional parameterize linear trans-
formation. A diagram of single, and multihead attention is shown in Fig. 4.7. Notice
that a transformer block is built from the self-attention layer, and also involves batch
normalization, dropout, a skip connection, and a fully connected layer.

For each spin xi ∈ x, the total score is given by value vector weighted by the attention
matrix, both with learnable parameters. This gives a flexible architecture that can capture

2To see this, we can consider the example of vectors q and k composed of d elements that are independent
and normally distribution with zero mean and variance σ2. The dot product q · k also has zero mean,
however the variance is a sum over each term qiki so that the total variance is dσ2. Hence, the standard
deviation grows as

√
d.

82

(a) Attention matrix

x1 x2 x3 x4 x5

x1

x2

x3

x4

x5

(b) Masked attention matrix

x1 x2 x3 x4 x5

x1

x2

x3

x4

x5

Figure 4.8: (a) Self-attention matrix for a five element vector x. (b) Self-attention matrix
with certain correlations masked out to allow the autoregressive property.

long-range correlations between any variables at the expense of additional matrix multi-
plications (Q,K, V). The transformer network faces a computational runtime of O(dN2)
for a sequence of length N and an embedding dimension d. A more recent method has
proposed approximating the scaled dot-product with a hash table to improve scaling to
O(dN log(dN)) [161]. In contrast, recurrent neural networks are of order O(Nd3).

The RBM drew samples from pθ using MCMC since the partition function Zθ was in-
tractable. In contrast, the transformer provides an explicit normalized probability for each
sample. This is a very desirable quality for physicists and permits efficient autoregressive
sampling.

In the transformer, the autoregressive property can be enforced by “masking out” any
element in the upper triangle of the attention matrix

Attentionmasked(Q,K, V) =

{
Attention(Q,K, V) i ≤ j

0 otherwise
(4.50)

as shown in Fig. 4.8a. This ensures that each variable xi only depends on the preceding
variables xi−1, . . . , x1. This ancestral dependance is called the autoregressive property in
Chapter 1, Section 1.1.5. This permits efficient autoregressive sampling which has the
benefit of zero auto-correlation time. The caveat is that the network must be trained
sufficiently. If the network converges to a poor optima, there may be implicit correlations
present in the samples.

83

4.6.1 Fidelity for quantum states

Notice that in the σz basis, the wavefunction for the ground state TFIM, ψ(x), contains
only non-negative elements. Reconstructing the state can thus be seen as learning and
sampling from p(x). Because the TFI model provides exact probabilities for configurations,
it makes it ideal to use as a benchmark since we can calculate the fidelity, f(ψ, ψθ) =
|〈ψ|ψθ〉|2, between the neural network model and the exact solution. The fidelity provides
an upper-bound on the error on all other observables c|〈O〉 − 〈Oθ〉| ≤ 1 − f(ψ, ψθ) for a
constant c that depends on the specified observable. This provides a strict benchmark
compared to other methods which only consider observables [162].

Computing the fidelity typically required exponential resources which makes it in-
tractable for large systems. However, the fidelity can be approximated via importance
sampling as

f =
∑
x

√
p(x)pθ(x) ≈ 1

M

M∑
x̃

√
pθ(x̃)

p(x̃)
(4.51)

where x̃ is importance sampled from p(x). The exact probabilities p(x) are computed using
the method from Section. 1.1.4. The transformer produces pθ(x) for x in the training or test
set. Alternatively, we can produce samples from the transformer and compute the exact
amplitude. Both methods are equally viable for our purposes, although recall that the
Monte Carlo requires evaluation of a determinant to get the amplitude of a configuration
hence is O(N3), while the transformer is O(N2) but requires training data.

4.6.2 Results

We trained the transformer network on TFIM data for Ns = 100, 000 measurements at the
critical point h = 1. We used the Adam optimizer with an initial learning rate of 5× 10−4

and a learning rate scheduler that decreases the learning rate by half every 10 epochs.
Each network was trained 5 times, and the best one selected. We varied the number of
attention heads and found that a single head was sufficient. Next, we varied the embedding
dimension d, as shown in Fig. 4.9a. We also studied the reconstruction quality for various
system sizes in Fig. 4.9b.

Further, we compared transformer to the RBM using the fidelity for N = 16 spins in
Fig. 4.10. We find the transformer achieves better fidelity in the same number of epochs
as the RBM. This could be due to different learning rates, or that the RBM minimized the
contrastive divergences while the transformer directly minimizes the KL divergence.

84

22 23 24 25 26 27

L

0.92

0.94

0.96

0.98

1.00

fi
d

el
it

y

d=1

d=2

d=4

d=8

0 10 20 30 40 50

epoch

0.980

0.985

0.990

0.995

1.000

fi
d

el
it

y

L=4

L=8

L=16

L=32

L=64

L=128

Figure 4.9: (a) The fidelity f , for L = 32 spins for various embedding dimension sizes d.
(b) Fidelity improvement per epoch during training for various system sizes L.

0 10 20 30 40 50

epoch

10−3

10−2

1
−
f

Attention

RBM

Figure 4.10: Monitoring the infidelity 1− f , for the RBM and self-attention based trans-
former for the ground state of the TFI model with L = 16 spins.

85

4.7 Conclusion

In this Chapter, we have explored quantum state reconstruction with neural networks.
With a data set representing projective measurements of a quantum wavefunction, either
produced by experiment or numerical methods, we can extract features and approximate
the quantum state.

We mostly focused on the one-dimensional TFIM, a prototypical example of an in-
teracting quantum many-body system. Using restricted Boltzmann machine (RBM), a
classical Ising model themselves, or more recent self-attention models, we have shown the
ability of these models to represent the ground state of the TFIM.

Once properly trained, RBMs or transformers can produce a new set of measurements,
sampled from the model. These samples, generated in the reference basis, can be used to
verify the training of the model against the original data set. More importantly, they can be
used to calculate expectation values of many physical observables. In fact, any expectation
value typically estimated by conventional Monte Carlo methods can be implemented as an
estimator. Such estimators may be inaccessible in the reference basis, for example. Or,
they may be difficult or impossible to implement in the setup for which the original data
was obtained. This is particularly relevant for experiments, where it is easy to imagine
many possible observables that are inaccessible, due to fundamental or technical challenges.

The techniques described in this paper can also be extended to reconstruct mixed states,
via the purification technique described in Torlai et al. [102]. In addition, future techniques
may include hybridization between machine learning and other well-established methods
in computational quantum many-body physics, such as variational Monte Carlo and tensor
networks [130].

86

5

Quantum-inspired variational
methods

In this Chapter, we introduce a variational wavefunction for many-body ground states that
involves imaginary time evolution with two different Hamiltonians in an alternating fashion
with variable time intervals. The ansatz is inspired by the quantum approximate optimiza-
tion algorithm [163, 164]. We successfully apply the ansatz on the one- and two-dimensional
transverse-field Ising model and systematically study its scaling for the one-dimensional
model at criticality. The total imaginary time required scales logarithmically with system
size, in contrast to the linear scaling in conventional Quantum Monte Carlo. We suggest
this is due to unique dynamics permitted by alternating imaginary time evolution, includ-
ing exponential growth of bipartite entanglement. For generic models, the superior scaling
of our ansatz potentially mitigates the sign problem at the expense of having to optimize
variational parameters.

5.1 Introduction

Imaginary time plays a prominent role in multiple branches of physics, including cosmology,
statistical mechanics and quantum field theory. The seemingly simple replacement of
real time, t, with its imaginary counterpart, τ = −it, leads to fundamental connections
between quantum theory and statistical mechanics [165]. Such connections enable the
efficient simulation of many quantum systems using quantum Monte Carlo techniques
[166, 167, 168]. However, for many physically interesting models, these methods suffer

87

from the prohibitive ‘negative sign problem’ [169, 153], which requires an exponential
amount of computational resources to obtain reasonable accuracy for quantum many-body
systems. Many outstanding problems in condensed matter, such as those involving high
temperature superconductors or topologically ordered phases, require an understanding of
complex interacting models which are unsolved with present techniques.

One class of Monte Carlo methods that can avoid the sign problem are so-called vari-
ational Monte Carlo (VMC) methods [170, 171, 32, 172, 173, 12]. In VMC, one assumes
a sufficiently general trial state that depends on adjustable parameters. These parameters
are then chosen to minimize the energy with respect to the given Hamiltonian. Find-
ing an effective trial state such as Jastrow [12], matrix product states [174, 175, 176], or
neural network states [13, 177, 100, 178], can result in efficient simulation of interacting
quantum systems. The key to the success of these techniques is a well-chosen ansatz that
reflects the properties of the target phase and the existence of a viable optimization scheme
[179, 180, 181, 182].

The recent advent of quantum computers and simulators has motivated the development
of new variational approaches [183]. Such variational quantum algorithms involve applying
a sequence of unitary operators, parameterized by several variables onto an easy-to-prepare
initial state. The variables are chosen to optimize a given cost function involving the re-
sulting wavefunction. For example, in the quantum approximate optimization algorithm
(QAOA) [163, 164, 184, 185, 186, 187, 188] the cost function is a classical Hamiltonian en-
coding a combinatorial optimization problem, and the variational wavefunction is prepared
by alternating between evolving with the Hamiltonian and a transverse field. The evolution
times constitute variational parameters that are optimized to minimize the Hamiltonian
cost function. This variational approach has been generalized for preparing both strongly
correlated and highly-entangled states on near-term quantum devices [189, 190, 191].

Motivated by the success of such variational approaches, in this Chapter, we propose
a variational ansatz for ground states of quantum many-body systems which involves se-
quentially evolving with different Hamiltonians in imaginary time. In contrast to real time
evolution with local Hamiltonians, which is limited by Lieb-Robinson bounds on the growth
of correlation functions, imaginary time evolution does not have this constraint and can
exhibit remarkable efficiency in traversing Hilbert space.

As proof of concept, we demonstrate the efficiency of our ansatz in representing the
ground state of the transverse field Ising model at criticality. Whereas standard projector
methods require imaginary time scaling with system size L to reach the critical ground
state, we show numerically that our ansatz requires time scaling logarithmically with L.
Furthermore, we analyze how entanglement grows after each imaginary time operation in

88

our ansatz, and we find an exponential growth that is a unique feature of imaginary time
dynamics. We conclude by demonstrating that the ansatz continues to perform well in the
presence of integrability-breaking perturbations, and we mention generalizations of our
ansatz to other models, including those with sign problems. We envision the main purpose
of this ansatz to be an efficient trial wavefunction for quantum many-body physics on
(classical) computers, however, it is possible that one can also implement such imaginary
time evolution natively on a quantum computer [192, 193].

TO begin, we summarize the quantum approximate optimization algorithm (QAOA)
in Section 5.2. Next, in Section 5.3, we study the imaginary time version of QAOA with
an exact free-fermion mapping. In Section 5.4, we implement a hybrid variational/path
integral Monte Carlo that corresponds to the imaginary time ansatz.

5.2 Quantum approximate optimization algorithm

A promising application of quantum computers is combinatorial optimization problems.
Optimization problem will typically involve an objective over bit strings of length N . The
solution can be encoded in the ground state of a cost Hamiltonian HC , which is diagonal
in the computational basis.

The quantum adiabatic algorithm proposes a method to find the ground state of the
cost Hamiltonian HC by preparing a known state of a simple Hamiltonian, HX and evolving
adiabatically from HX to HC [194, 195, 196]. Typically, HX is a transverse magnetic field
on each qubit so the initial state is the uniform superposition over all states |+〉. The
simplest adiabatic path is H(t) = (1− t

T
)HX + t

T
HC , where t is time and T the total time.

At t = 0, the state is |+〉, and at t = T , the state is the target state |ψ〉. For finite T , there
is a chance that the system will jump to an excited state. To keep this probability less than
ε, the evolution time must be T ≥ 1

∆2
min

, where ∆min = E1 − E0 is the minimum energy

gap between the ground and first excited states along the path. Unfortunately, in certain
problems the gap can be exponentially small [197]. This means the adiabatic algorithm
could be even worse than a classical brute force solution in certain cases.

Hogg and Portnov (and subsequently Farhi et el.) realized that to implement the
time-evolution required by the adiabatic algorithm on a gate-based quantum computer,
one needs to break down each time step use the Suzuki-Trotter formula [163, 164]. The
Suzuki-Trotter formula breakdown each small-time evolution with H(t) into the product
of individual evolutions

e−iH(t)dt ≈ e−i(1−t)HXdte−iHCdt (5.1)

89

so that the entire path for P steps takes the form

|Ψα,β〉 = e−i
∫
H(t) dt |+〉 ≈ e−iβPHXe−iαPHC · · · e−iβ1HXe−iα1HC |+〉 (5.2)

where αp, βp are variational parameters what define the trotterized path. Finding the
optimal parameters by minimizing 〈Ψα,β|HC |Ψα,β〉 gives a discrete version of the adiabatic
algorithm known as QAOA. A schematic diagram is shown in Fig. 5.1.

P = 1
P = 2

|+〉

|ψ〉 |ψ〉
P = 8

|+〉

Figure 5.1: QAOA for P = 1, 2, 8. Note that the P = 1 solution might not be able
to exactly reach the target state, but it can be close. Each P systematically improves
performance (if optimization is possible).

QAOA briefly achieved state-of-the-art results on the MaxE3LIN2 problem [184] until
a classical version was found [198]. The algorithm has also been shown to re-derive impor-
tant algorithms such as Grover’s search [199]. However, optimization of many variational
parameters can be difficult since there is no direct way to compute gradients. With real
quantum hardware, one is restricted to using the parameter-shift rule which means running
similar circuits multiple times [200]. In simulators, one can use reverse-mode automatic
differentiation to remain efficient [62]. However, a general solution to the quantum gradient
problem is unknown.

Furthermore, QAOA may not be robust to noise for depth P > 3 [201, 202] on current
devices. It was also suggested that QAOA is not optimal for MaxCut on triangle-free graphs
[203, 204, 205]. Finding the border between quantum advantage and classical computation
is very important to the future of quantum computing.

In the remainder of this Chapter, we introduce an imaginary-time version of QAOA that
is efficient on classical computers and allows the calculations of gradients. We show better

90

scaling compared to quantum QAOA and explain its success in terms of entanglement
growth. We implement both an exact method and a stochastic Monte Carlo approach.

5.3 Variational imaginary time ansatz

Many Hamiltonians are naturally a linear combination of two components H = HA+gHB,
where HA,B are individually tractable to analyze. Examples include transverse field Ising,
Hubbard, and the J1–J2 model. Motivated by the QAOA procedure, we consider the
following variational imaginary time ansatz (VITA) for the ground state of H:

|ψP (α,β)〉 = N e−βPHBe−αPHA · · · e−β1HBe−α1HA |ψ0〉 (5.3)

where P is the number of pairs of variational parameters α = (α1, ..., αP),β = (β1, ...βP),
|ψ0〉 is an initial state, and N is a normalization factor. We further define the total
imaginary time τ = 1

2

∑P
p=1(αp + βp). A circuit representation is shown in Fig. 5.2.(a)

→ → → → → → → → → → → →

β1HB β1HB β1HB β1HB β1HB β1HB β1HB β1HB β1HB β1HB β1HB β1HB

α1HA

α1HA

α1HA

α1HA

α1HA

α1HA

α1HA

α1HA

α1HA

α1HA

α1HA

α1HA

Figure 5.2: Circuit representation of the trial state |ψP (α,β)〉 for P = 1. Each box
denotes imaginary time evolution with the enclosed Hamiltonian.

While VITA is applicable to any Hamiltonian, in specific cases there is explicit physical
motivation for considering such an ansatz. For example, for the fermionic Hubbard model,
the P = 1 ansatz reduces to Otsuka’s generalization of the Gutzwiller variational wavefunc-
tion [172, 170, 171, 173], which seeks to balance single occupancy per site with itinerancy.
The P ≤ 3 case has been considered in Ref. [206, 207, 208] for the two-dimensional Hub-
bard model, but a systematic analysis of how its performance scales with system size and
P was not carried out. A related variational approach for the Hubbard model has also
been considered in Ref. [209].

91

The standard projector method for attaining the ground state of H involves evaluating
e−τH |ψ0〉 for τ ≥ 1/∆ where ∆ is the spectral gap. This can be decomposed via trotter-
ization into a sequence of the VITA form, with parameters αp = βp = τ/2P for large P .
This guarantees that VITA can exactly represent the ground state in the P → ∞ limit.
However, the projector method is especially expensive for critical systems where ∆ ∼ 1/L,
and hence τ scales polynomially with L. One can consider Eq. (5.3) as a non-uniform trot-
terization with large (and variable) times steps. We will show that remarkably high fidelity
can be attained even with τ that is exponentially smaller compared to the aforementioned
estimate from the standard projector method.

The advantage from the bang-bang procedure of QAOA is that the total time needed to
evolve to the ground state may be shortened substantially. In the case of real QAOA, the
addition of the bang-bang type procedure allows for great improvement over the adiabatic
method. In particular, circuits can target states with high accuracy despite only possessing
few operators [190, 191]. These low-depth circuits are of particular interest because they
are feasible on near-term quantum devices.

We treat the problem from finding the ground state as a variation Monte Carlo (VMC)
problem. To discover the optimal parameters, (α,β) for a fixed P , we take the approach
of minimizing the energy,

Eα,β =
〈ψP (α,β)|H|ψP (α,β)〉
〈ψP (α,β)|ψP (α,β)〉 (5.4)

rather than the variance. Note that Eq. (5.4) contrasts the usual use of QAOA in combi-
natorial optimization problem where one encodes the solution into the ground state of the
problem Hamiltonian HC .

We first present some general considerations of why such an ansatz may be efficient.
It is useful to first compare with the real-time analogue, which are QAOA-type circuits
involving alternating real-time evolution between two Hamiltonians. The Lieb-Robinson
bound dictates that real-time evolution with local Hamiltonians can generate correlations
only within a light cone, and thus there are lower bounds on the time it takes to prepare
highly correlated states starting from unentangled product states. For example, in one
dimension, the total time to prepare the GHZ (“cat”) state 1√

2
(|11 . . . 1〉+ |00 . . . 0〉) scales

at least linearly with system size L [210, 190]. In contrast, by evolving with the GHZ parent
Hamiltonian HZZ = −∑L

i=1 ZiZi+1 in imaginary time (Z is the Pauli-Z matrix), the GHZ
state can be prepared with imaginary time scaling as logL.

92

We test VITA on the transverse-field Ising model (TFIM)

H = HZZ + hHX ≡ −
N∑
i=1

ZiZi+1 − h
N∑
i=1

Xi (5.5)

with periodic boundary conditions on a system with N spins We use Z,X to denote the
Pauli matrices and h for the transverse field strength. Our ansatz in this case starts
from the paramagnetic ground state of HX , |+〉 and alternates between HA = HZZ and
HB = HX .

The Ising chain can be mapped to free fermions via the Jordan-Wigner transformation
[211] which allows for the efficient evaluation of Eq. (5.3). We can thus optimize our ansatz
for very large system sizes and several pulses. This allows us to properly characterize how
efficient the VITA ansatz is without introducing sampling error.

5.3.1 Jordan-Wigner transformation

The TFIM conveniently admits a solution as free fermions by using a Jordan-Wigner
transformation [211, 212]. The problem of L Ising spins can be mapped to L/2 independent
spin-1

2
fermions by introducing the fermionic operators

aj = eiπφjS−j a†j = e−iπφjS+
j φj =

j−1∑
i=1

S+
i S
−
i (5.6)

where S±j = (Yj±iZj)/2 are the raising/lowering operators and φj introduces a non-locality
to the transformation. Note that this differs slightly from the usual convention where the
TFIM in defined with the Z and X matrices interchanged.

We confirm that these operators are indeed fermionic by checking the anti-commutation
relations, {

a†i , a
†
j

}
=
{
ai , aj

}
= 0 (5.7){

ai, a
†
j

}
= δi,j . (5.8)

To recover the original spins from the fermionic representation, one can use the inverse
transformation

S+
j = a†je

−iφj S−j = aje
iφj σxj = 2a†jaj − 1 . (5.9)

93

The Hamiltonian operators of Eq. (5.5) are then

HX =
N∑
j=1

(
2a†jaj − 1

)
(5.10)

HZZ =
N−1∑
j=1

a†jaj+1 + ajaj+1 −
(
a†Na1 + aNa1

)
G+ h.c. (5.11)

G = exp

(
iπ

N∑
j=1

a†jaj

)
= exp (iπNf) (5.12)

with Nf the total number of fermions, and h.c. denotes the Hermitian conjugate. The
gauge operator G = 1 in the case of an even number of fermions, while G = −1 for an odd
number of fermions. We will only consider the case of even N , with periodic boundary
conditions.

Next, we Fourier transform the operators with

c†k =
1√
N

N∑
n=1

eiθkna†n, θk =
(2k + 1)π

L
, k = 0, · · · , L− 1 . (5.13)

Setting θk = (2k+1)π
L

, the Hamiltonian Eq. (5.5) in momentum space becomes

HX =
L−1∑
k=0

(
2c†kck − 1

)
(5.14)

HZZ = 2

L−1/2∑
k=0

cos θk

(
c†kck + c†−kc−k

)
+ i sin θk

(
c†kc−k + c†kc−k

)
. (5.15)

Using the inverse transformation from Eq. (5.9), we can write

HX,k = 2X̃ (5.16)

HZZ,k = 2
(

cos θkỸ + sin θkZ̃
)
, (5.17)

where we use Z̃ to denote that it is not in the original position space of the problem, but
rather in momentum space acting on a ket |χk〉 = |0k0−k〉+ |1k1−k〉.

94

The VITA ansatz in Eq. (5.3) then amounts to

|ψP (α,β)〉 =

N/2⊗
k=1

p∏
i=1

e−αiHX,ke−βiHZZ,k |χk〉 , (5.18)

acting on the single-site states |χk〉.

5.3.2 Exact solution

The TFIM is an exactly solvable model via the Jordan-Wigner transformation. To diago-
nalize the combined Hamiltonian, we use a Bogoliubov transformation(

ck
c†−k

)
=

(
uk vk
−v∗k uk

)(
ηl
η†−k

)
, (5.19)

so that
H = h−

∑
k>0

Ek

(
η†kηk + η†−kη

†
−k − 1

)
+ ζ0c

†
0c0 + ζπc

†
πcπ . (5.20)

The uk, vk which satisfy this are

uk =

√
Ek + ζk

2Ek
, vk = i

√
Ek − ζk

2Ek
, (5.21)

Ek =
√
J2 + h2 + 2Jh cos k, (5.22)

ζk = −h− J cos k . (5.23)

Both HZZ and HX preserve parity, so if considering even N , the ground state corre-
sponds to zero or two fermions. The ground state of the total Hamiltonian is therefore the
Bardeen–Cooper–Schrieffer (BCS) state

|BCS〉 =

N/2∏
k=1

(
uk + vkc

†
kc
†
−k

)
|0〉 . (5.24)

Having the exact state and energy allows us to benchmark VITA by comparing the
energy and fidelity of the target and variational states.

95

5.3.3 Optimization

The optimization landscape for VITA1 and L = 10 spins is shown in Fig. 5.3. We use dif-
ferential evolution (adaptive/rand/1/bin) to find the minimum of the energy from Eq. (5.4)
[213]. In our experience, VITA1 has a convex landscape making optimization trivial. For
higher P , it is difficult to verify the convexity, but we suspect it is not convex and opti-
mization becomes difficult.

0 0.2 0.4 0.6 0.8 1

α

0

0.1

0.2

0.3

0.4

0.5

β

log(Eθ − E0)

0 0.2 0.4 0.6 0.8 1

α

0

0.1

0.2

0.3

0.4

0.5

β

log(1− f)

Figure 5.3: (a) Energy landscape for P = 1 and L = 10 spins. (b) Fidelity landscape. For
visualization purposes, the colour represents the logarithm of the energy difference between
the exact energy and the variational energy.

We first focus on approximating the critical ground state of H at h = 1. Figure 5.4a
shows the relative error in energy εrel = |(EP (α,β) − Eexact)/Eexact| where Eexact is the
exact ground state energy at the critical point, for various P . Evidently, increasing P
dramatically improves the accuracy in the energy, even for large system sizes.

Since the exact ground state for the TFIM is known, we also compare the fidelity,
f , of the optimized trial state with the target state. The error in fidelity, 1 − f ≡
1 − |〈ψexact|ψP (α,β)〉〉|2, is shown in Fig. 5.4b for various P,L. The efficiency is quite
remarkable; for example, for L = 64, P = 2 is already sufficient to approximate the critical
state to within around 10−4 in relative energy and 10−2 in fidelity. Recall that the error in
fidelity provides an upper-bound for the error in any observable1. In Fig. 5.5, we show the

1If a state |ψ〉 is within ε fidelity with |φ〉 then the difference in expectation values of an observable O
is bounded by ∣∣∣〈O〉ψ − 〈O〉φ∣∣∣ ≤ 2c

(√
ε(1− ε) + ε

)
. (5.25)

96

1 2 3 4 5 6 7
P

10−10

10−8

10−6

10−4

ε r
el

(a)

L = 1024

L = 256

L = 64

24 26 28 210

L

10−10

10−8

10−6

10−4

10−2

100

1
−
f

(b)

P
=

7

P
=

1

Figure 5.4: (a) Relative error in energy, εrel between the exact ground state energy, Eexact,
and the energy of the optimized trial wavefunction EP (α,β). (b) Number of pulses P
needed to obtain a desired accuracy in the fidelity, f , for a given system size, L. The white
region in (b) was not computed in the present study.

energy, fidelity and time τ for each P, for various system sizes L.

24 26 28 210

L

10−14

10−12

10−10

10−8

10−6

10−4

10−2

ε r
el

p = 1

p = 2

p = 3

p = 4

p = 5

p = 6

p = 7

20 22 24 26 28 210

L

10−12

10−9

10−6

10−3

100

1
−
f

p = 1

p = 2

p = 3

p = 4

p = 5

p = 6

p = 7

24 26 28 210

L

2.5

5.0

7.5

10.0

12.5

15.0

17.5
τ

p = 1

p = 2

p = 3

p = 4

p = 5

p = 6

p = 7

Figure 5.5: (a) Relative error in energy, εrel = |(EP (α,β) − Eexact)/Eexact| between the
VITAp ansatz for various system sizes L. (b) 1− f , the infidelity of the ground state and

the optimized state |ψP (α,β)〉. (c) Total imaginary time τ = 1
2

∑P
p=1(αp + βp) for the

optimized ansatz.

5.3.4 Scaling

To compare directly with the projector method, we also investigate the total imaginary
time τ ≡ 1

2

∑P
p=1(αp+βp) required to achieve a target fidelity. Motivated by the P ∝ logL

scaling for achieving a target fidelity, we propose a scaling form of 1− f = G(τ(logL)−ν)

97

for some exponent ν. In Fig. 5.6, we perform a scaling collapse for L ∈ [4, 6, . . . , 1024],
and P ∈ [1, . . . , 7] and find the optimal exponent ν = 2.3 ± 0.1. This logarithmic scaling
is an exponential speedup compared to the linear scaling of the projector method, 1− f =
F (τL−1) [214].

0 0.05 0.1 0.15

τ (logL)−ν

1

10−3

10−6

10−9

1
−
f

L = 1024

L = 512

L = 256

L = 128

L = 64

fit

Figure 5.6: Collapse of the infidelity log(1− f) = G(τ
(logL)ν

) with ν = 2.3. The fit is a

power law log(1− f) = 175 x1.85 with x = τ
(logL)ν

.

We typically find optimizing P = 1 converges rapidly, while higher-P becomes more
difficult. Optimal parameters for a fixed P vary smoothly with system size and field
strength, which makes inferring ‘nearly’ optimal parameters easy (see Fig. 5.7). This result
is highly similar to the patterns in optimal parameters found in Ref. [185] for QAOA. Notice
that for small h ∼ 0 the total time τ diverges linearly like the projector method. The total
value for each parameter, with the exception α1 as peaks just below the critical point h = 1.
This is reminiscent of the scaling of parameters in an RBM for quantum state tomography
[162].

5.3.5 Entanglement entropy

Because the TFIM is dual to a free system, all correlations, and hence the entanglement
entropy (EE), can be determined from the two-point functions by Wick’s theorem [215,
216, 217]. It is convenient to introduce Marjorana fermions a2n = i(cn−c†n), a2n−1 = cn+c†n

98

1 2 3 4 5
P

0

0.5

1

1.5

2
(a) L = 64, h = 1

β1

α1

β2

α2

β3

α3

β4
α4

β5
α5

0.5 1 1.5 2
h

0

1

2

3
(b) L = 64, P = 2

β1

α1

β2

α2

25 26 27 28 29 210

L

0.5

1.0

1.5

2.0

(c) h = 1, P = 3

β1

α1

β2

α2

β3

α3

Figure 5.7: Optimal parameters (α,β) found using the Jordan-Wigner method for L = 64
spins for (a) the critical point h = 1 with P = 1, ..., 5, (b) Optimal parameters for P = 2
for various h, (c) scaling of optimal parameters with L at h = 1. All plots are generic for
any P and system size L.

with the 2L× 2L correlation matrix 〈anam〉 = Mnm = δnm + iΓnm given by

Γij =

Π0 Π1 · · · ΠL−1

Π−1 Π0
...

...
. . .

...
Π1−L · · · · · · Π0

 , Πn =

(
0 gn
−g−n 0

)
(5.26)

with
gn = 〈ana0〉 = 〈c†nc†0〉+ 〈c†nc0〉 − 〈cnc0〉 − 〈cnc†0〉 . (5.27)

The correlation functions can be found from their Fourier transforms,

〈ckc−k〉 = ukv
∗
k (5.28)

〈c†kc†−k〉 = ukv
∗
k (5.29)

〈c†kck〉 = v2
k (5.30)

〈ckc†k〉 = u2
k (5.31)

Using these expressions to compute gn, we have

gn =
2

L

(L−1)/2∑
k=0

(
2ũkṽk sinnθk +

(
ũ2
k − ṽ2

k

)
cosnθk

)
(5.32)

99

where ũk, ṽk are real numbers that characterize the state. For the exact ground state, the
above formula simplifies to

gn =
2

L

(L−1)/2∑
k=0

h cosnθk + J cos(n+ 1)θk
Ek

. (5.33)

The entanglement entropy of a region A can be obtained by restricting the correlation
matrix Γ to a region A of size LA. The eigenvalues of the reduced ΓA, denoted with νm,
contribute equally to the entanglement entropy through

S(LA) = −
∑
ν

(
1 + νm

2

)
log2

(
1 + νm

2

)
+
∑
ν

(
1− νm

2

)
log2

(
1− νm

2

)
(5.34)

This method scales polynomially in the system size L, allowing the study of systems with
hundreds of spins. Figure 5.8 shows that the EE of our ansatz converges to the Cardy
formula [218] as P increases.

0 10 20 30 40 50 60
LA

0.0

0.5

1.0

1.5

S
(L

A
)

exact

p = 5

p = 4

p = 3

p = 2

p = 1

Figure 5.8: Entanglement entropy as a function of subsystem size LA for intermediate p
states in a depth P = 5 ansatz for L = 64 spins.

While there is no Lieb-Robinson bound limiting the rate for generating long-range cor-
relations in our ansatz, entanglement considerations provide lower bounds on the iterations
P required to prepare the critical state. Ignoring normalization, imaginary time evolution
with a local Hamiltonian can be represented by a (non-unitary) quantum circuit; each
iteration of our ansatz corresponds to three layers shown in Fig. 5.2. After P pulses, the
bipartite entanglement entropy between the left and right halves the system, hereafter ab-
breviated EE, can be attained by bisecting the circuit through P bonds. Hence, EE after

100

P iterations is at most P logD, where D is the Schmidt rank (number of singular values)
upon decomposing a single two-qubit imaginary time operator.

In order to generate the EE of the critical state, which scales as S ∝ logL, we need
the number of pulses scaling at least as P ∝ logL. We observe that Fig. 5.4b is consistent
with this scaling form. For example, for a target fidelity error of 10−10, each additional P
in the ansatz can represent a system approximately twice as large.

The entanglement dynamics in imaginary time evolution can be considerably different
from its real time counterpart. For real time evolution, EE across a bipartition can increase
only by acting with an operator supported on both sides of the partition. If the circuit
in Fig. 5.2 were unitary, any increase in EE from one layer to the next would be bounded
by a constant depending on the two-qubit unitary but not on the state being acted on
(see the “small incremental entangling theorem” [219]). In contrast, even imaginary time
operators acting on one side of the bipartition can generate entanglement across the cut.
As a very simple example involving two spins, the action of e−βZ1 on η+|11〉 + η−|00〉 can
increase EE as long as |η+| > |η−| > 0. This illustrates that the more entangled the initial
state, the more imaginary time evolution can change the entanglement. The change is not
simply bounded by a state-independent constant. This allows in principle an exponential
growth of EE, as long as the total EE after P steps lies below P logD.

Our ansatz exhibits such dynamics. We take the P = 5 ansatz and analyze the EE of
the states at intermediate steps, p, of our protocol using the technique of [215, 216, 217].
We find that the EE increases exponentially with imaginary time (Fig. 5.9a). Moreover,
for every intermediate state, we plot the mutual information (SA+SB−SAB) between two
spins A,B as a function of their separation (Fig. 5.9b). The power law decay for every step
is in stark contrast to any local real time evolution and illustrates the ability of imaginary
time evolution to generate long-range correlations. We find that under imaginary-time
evolution, entanglement starts to grow immediately following a local quench, in contrast
to real-time evolution [218, 220] where it takes a time proportional to ` before growing, `
being the distance between the location of the local quench and the entanglement cut.

5.3.6 Summary

In this Section, we showed the ideal scaling of the VITA ansatz from the TFIM by using
the mapping to free-fermions. We found that remarkably even P = 1, can get within 2%
of the exact energy regardless of system size. Moreover, the scaling of the total time τ was
favourable as it scaled with (logL)2.3. The parameters also exhibited smooth dependence

101

2 3 4 5 6
τ

2

2−2

2−5

2−8

2−11

S
(L
/2

)
(b)

p = 1

p = 5

L = 64

L = 256

L = 1024

0 10 20 30
∆x

10−4

10−3

10−2

10−1

I
(A
,B

)

(c)

exact

p = 5

p = 4

p = 3

p = 2

p = 1

Figure 5.9: (a) Entanglement entropy of half partition grows exponentially with imagi-
nary time τ , in the optimal P = 5 ansatz for the critical state. (b) Mutual information
between two spins at positions A and B respectively as a function of their distance ∆x,
for intermediate steps p in the P = 5 protocol with L = 64.

on system size L, field h although steps from a fixed P to a different P cause sudden
changes in the ideal parameters.

One reason for the success of the ansatz is that each step p contributes an exponential
amount of entanglement. This reveals why it is more powerful than the real-time QAOA
which has linear scaling, τ ∼ L.

In the next Section, we use this ansatz in the framework of VMC.

5.4 Variational Monte Carlo

While the TFIM model admits a dual representation as free fermions, for a general model
sampling methods are crucial for estimating the energy cost function. As a proof of concept,
we also use Monte Carlo sampling for stochastically optimizing VITA.

The quantum-classical correspondence maps quantum observables to dual classical ob-
servables of a classical anisotropic Ising model on an L× (2P + 1) lattice. We denote the
classical spin configurations by {s} and the spatial and imaginary time by (i, p), respec-
tively2.

2This is a slight abuse of notation since 1 ≤ p ≤ P in Eq. (5.3). However, this may be permitted since
there are only p unique time couplings Jt(p) due to the lattice symmetry.

102

The expectation value of a quantum observable O is

〈ψP (α,β)|O|ψP (α,β)〉 =
∑
{s}
Õ(s) pα,β(s) (5.35)

where Õ are dual classical observables, and pα,β(s) is the Boltzmann weight correspond-
ing to the Ising model with couplings Jx(p) = αp, Jτ (p) = 1

2
ln coth βp between nearest-

neighbours in space and imaginary time, respectively. The couplings vary with imaginary
time, p, but are uniform in space. In this way, the energy of the trial wavefunction can be
sampled efficiently with Monte Carlo.

5.4.1 Quantum to classical mapping

The foundation of path integral world-line Monte Carlo is the connection between a quan-
tum system in d-dimensions and a classical statistical one in (d + 1)-dimensions. In our
case, we wish to consider the variational quantum state given by

|ψP (α,β)〉 = N
1∏

p=P

e−βpHXe−αpHZZ |+〉 . (5.36)

In the following, we will only consider P = 1, but the higher-P formulation is nearly
identical. The expectation value of some operator O, up to a normalization, is

〈O〉 = 〈ψP (α,β)| O |ψP (α,β)〉
= 〈+|e−α1HZZe−β1HXOe−β1HXe−α1HZZ |+〉

=
∑
{s}

L∑
i=1

2P+1∑
p=1

Õ(si,p) p(si,p) . (5.37)

The probability p(si,p) is the Boltzmann factor, given by the exponential of the Hamil-
tonian

H2D = −
L∑
i=1

2P+1∑
p=1

(Jx(p)si,psi+1,p + Jt(p)si,psi,p+1) (5.38)

103

up to a normalization Z =
∑
e−H2D , where the couplings of the classical model are related

to (α,β) via

Jx(p) = αp (5.39)

Jt(p) =
1

2
ln coth βp (5.40)

Continuing this process for higher P is straightforward, and can be visualized as a
L× (2P +1) lattice in Fig. 5.10. Adding connections Jx(0) between the middles time-slices
(p = P + 1) one obtains the Suzuki-Trotter inspired neural networks in Ref. [177].

J
(1)
t

J
(1)
t

J
(1)
x

J
(1)
x

J
(1)
x

J
(1)
x

J
(1)
x

J
(1)
x

J
(1)
x

J
(1)
x

J
(1)
x

J
(1)
x

J
(2)
t

J
(2)
t

J
(2)
x

J
(2)
x

J
(2)
x

J
(2)
x

J
(2)
x

J
(2)
x

J
(2)
x

J
(2)
x

J
(2)
x

J
(2)
x

Jx = 0 Jx = 0 Jx = 0 Jx = 0 Jx = 0

Figure 5.10: Schematic of the two-dimensional classical Ising lattice dual to the ansatz in
Eq. (5.36) for depth P = 2 and L = 6 spins.

The only observables required to compute the total energy are:

〈ZiZi+1〉 =
∑
{s}

si,m si,m p(si,p) (5.41)

〈Xi〉 =
∑
{s}

exp(−2Jt(m) si,m, si,m)p(si,p) (5.42)

〈Zi〉 =
∑
{s}

si,mp (si,p) (5.43)

104

where m = P + 1 denotes the middle time-slice.

Gradients of these expressions can be evaluated via

∂θ 〈H〉 = 〈∂θH〉 − 〈H∂θEα,β〉+ 〈Eα,β〉 〈H〉 (5.44)

where Eα,β is the energy of the classical Ising model, and θ denotes (α,β). The exponential
form of Eq. (5.36) make stochastic reconfiguration (SR) [12], easy to implement. SR uses
the positive-definite covariance matrix S as a pre-conditioner for the gradient where S is
defined as

Sθ,θ′ = 〈OθOθ′〉 − 〈Oθ〉 〈Oθ′〉 , (5.45)

with Oθ = ∂θ(logψ(θ)).

Each gradient update then takes the form

θ → θ − ηS−1∂θ 〈H〉 (5.46)

for a small learning rate η which we take to decay during iteration. It is possible that S is
non-invertible, so we use the Moore-Penrose pseudo-inverse.

5.4.2 Results

We use this scheme with P = 1, 2 to target the ground states for various values of the
transverse field h in both the (integrable) one-dimensional and the (non-integrable) two-
dimensional TFIM. Stochastic natural gradient descent (stochastic reconfiguration) is used
to optimize the parameters [180]. We find rapid convergence for P = 1, while higher-P
becomes more difficult, especially for with a noisy objective function.

The relative error in energy achieved is shown in Fig. 5.11, with the free fermion results
for comparison. For P = 1 the VMC achieves the same accuracy as the free fermion
method. However, for P = 2 away from the critical point, the VMC performance is limited
by sampling error3.

We also test the model on the two-dimensional TFIM for a 10×10 lattice. The reference
energy is computed using zero-temperature stochastic series expansion [221, 222, 223]. In

3Of course the statistical error in Monte Carlo can be made arbitrarily small given long enough run-time

since the sampling error goes as O(N
−1/2
MC) for NMC Monte Carlo sweeps. This guarantees that VMC will

converge to the free fermion solution in Fig. 5.11a if the globally optimal parameters can be found. The
computational time of the MC sampling is O(τcorrNMC) where the autocorrelation time τcorr ∼ (PN)γ is
a polynomial function of PN for N spins and P pulses of VITA.

105

two-dimensions, we again find the P = 1 ansatz very efficient. However, increasing P in
this case did not result is a significant improvement in energy. This is likely due noisy
gradients during optimization.

0 0.5 1 1.5 2
h

10−6

10−5

10−4

10−3

10−2

ε r
el

(a) L = 64

P = 1

P = 2

2.5 3 3.5 4
h

(b) N = 10× 10

Figure 5.11: Relative error in energy, εrel for VMC using our ansatz on the TFIM: (a) 1d
model with L = 64 spins. Solid lines denotes the results from the free fermion approach,
(b) 2d model on a 10 × 10 square lattice. Energies are compared with those from zero-
temperature stochastic series expansion.

Non-integrable longitudinal model

As an extension, we consider adding a longitudinal field −hZ
∑

i Zi to the critical Hamil-
tonian (h/J = 1) so that the model is non-integrable. The Hamiltonian is

H = −J
∑
i

ZiZi+1 − h
∑
i

Xi − hZ
∑
i

Zi . (5.47)

This model has no closed-form solution, however DMRG rapidly find the ground state for
a one-dimensional system. This provides a benchmark to compare with our ansatz.

To accommodate the extra term in the Hamiltonian, the VITA also needs an additional
parameter γp imposed by changing αpHZZ → αpHZZ + γpHZ in Eq. (5.3) so the ansatz is

|ψP (α,β, γ)〉 = N
1∏

p=P

e−βpHXe−αpHZz−γpHz|+〉 . (5.48)

106

In the classical-to-quantum mapping, the additional parameters γp becomes an on-site
field term at each lattice point. Accordingly, it remains efficient to sample with Metropolis-
Hastings or cluster algorithms. In Fig. 5.12, we see that VITA with P = 1 continues to
yield accurate energies in the enlarged phase diagram. In fact, the least accurate point is
the critical point h = 1, hZ = 0.

0 0.2 0.4 0.6 0.8 1
hZ

10−6

10−5

10−4

10−3

10−2

ε r
el

P = 1

Figure 5.12: Relative error in energy, εrel for VMC using our ansatz on the TFIM with a
longitudinal field from Eq. 5.47.

5.5 Conclusion

We have introduced a variational technique that is motivated by both projector methods
and recently developed quantum algorithms. It provides substantial shortcuts to the usual
trotterization of imaginary time evolution, at the expense of making the procedure vari-
ational. Using TFIM as a first test bed, we have demonstrated that this ansatz is viable
for sampling methods and highly efficient. In particular, the number of variational param-
eters required to represent the TFIM critical state scales as ∼ logL, in contrast to other
variational methods such as density matrix renormalization group (DMRG), which in this
critical case requires bond dimension scaling with L and thus number of parameters scaling
with L2. One reason for this efficiency is the fact that imaginary time evolution is not sub-
ject to many bounds for real time evolution; despite being generated by local Hamiltonians,
our ansatz exhibits an exponential growth of entanglement entropy and rapid generation
of long-range correlations, features unique to imaginary time evolution.

Our variational approach is potentially useful in the many situations where imaginary
time trotterization involves a prohibitively large number of steps. For example, in models

107

with a sign problem, the computational cost scales exponentially with space and imagi-
nary time O(τLd). Our ansatz provides a variational shortcut that significantly reduces τ
(from τ ∼ L to τ ∼ (logL)2.3 in the critical 1d TFIM) which could enable the study of
larger systems even with a sign problem. For few variational parameters (P = 1, 2), the
optimization may be feasible, and we leave these investigations to future work.

In the case of the two-dimensional Hubbard model, the sign problem occurs away from
half-filling. VITA in this case is a generalization of the Gutzwiller variational wavefunc-
tion. By alternating between the two non-commuting Hamiltonians, VITA is a variational
version of auxiliary-field quantum Monte Carlo with few Trotter steps.4 The trade-off is
that larger steps are needed. This will lead to stability issues. In the usual auxiliary-field
determinant Monte Carlo, stabilization is needed after a few Trotter steps. In the case of
VITA, it is needed after every (large) step.

In a sense, VITA is a hybrid variational-worldline Monte Carlo method. In the limit of
many parameters, VITA reduces to the usual discrete-time Trotter formulation of quantum
Monte Carlo. Other worldline algorithms such as the Stochastic Series Expansion [29]
can be recast into the VITA form by having time-dependant couplings. The modern
software infrastructure of deep learning, namely automatic differentiation provides a way
to adapt current quantum Monte Carlo algorithms into the VITA variational form with
little overhead.

4For a nice review of world-line Monte Carlo methods see Assaad and Evertz [28].

108

6

Discussion and Outlook

For better or worse we are now witnessing a transition from the science of the
past, so intimately linked to reductionism, to the study of complex adaptive matter,
firmly based in experiment, with its hope for providing a jumping-off point for new
discoveries, new concepts, and new wisdom.

– Laughlin and Pines, The Theory of Everything, 2000

The cycle of science has often preceded in a symbiotic relationship alternating between
experimental realizations and theoretical predictions. Wildly successful machine learning
algorithms offer a new catalyst to accelerate this cycle. By leveraging emergent properties
in complex neural networks, we are able to identify patterns and statistical features from
large data sets. In many practical problems, such those in natural language, computer
vision, and games of strategy, neural networks have provided a heuristic way to tame the
curse of dimensionality. It is the purpose of this Thesis to explore the application of neural
networks to the high-dimensional problems present in many-body physics.

Strongly interacting systems poses an exponentially hard problem for classical com-
puting. Physical insight is key to make advances in these problems. While physicists
have relied on traditional numerical or analytical methods to gain insights, with machine
learning we gain knowledge from a very different perspective. In this Thesis, we have
investigated many facets of this problem. We studied the interpretability of algorithms,
connections with renormalization, quantum-inspired variational models, and tools for ex-
perimental design.

109

Topological defects: Classification, bias, and interpretability

As a first investigation, in Chapter 2 we used standard neural networks to classify topolog-
ical phases in the classical XY model. Even though a convolutional network is capable of
using vortices as an internal representation, we found that it is not practical, nor even ben-
eficial to do so for small system sizes. From this we gained valuable insights. Firstly, neural
networks tend to follow the path of least resistance to distinguish of phases; in this case,
a local quantity like the magnetization. Secondly, when considering finite-size samples, we
need to be extremely careful; while physicists may be interested in the thermodynamic
limit, a neural network is not.

This is relevant to the theme of fairness and equality in ML research. In many data
sets, unwanted social biases enter in the form of under-respresentation such as race and
gender [224, 225, 226]. One promising idea is “learning not to learn” by Kim et al. [227]
which explicitly penalizes learning biases. We can use this XY model to prevent learning
magnetization, or energy, but since it is an infinite-order transition, there is always some
quantity that distinguishes the phases.

This Chapter also presented the need for interpretable neural networks. Further work in
this direction by Wetzel and Scherzer [228] indicated that looking at network decision func-
tions provided an explicit way to find out what a classification network is learning. Other
examples include learning invariants such as Lorentz transformations [229] and winding
numbers [230, 231, 232].

During the development of this project, we implemented rotationally invariant convo-
lution filters to incorporate the symmetry of vortices. Enforcing symmetries is typical in
physics and is becoming more common place in ML research [233, 234, 235, 236]. For
example, group equivariant convolutional filters proposed by Cohen et al. [235] generalize
convolutions to possess discrete group symmetries including translations, reflections and
rotations. This directly addresses the efficiency of neural networks.

Super-resolution and renormalization

The connections between renormalization and deep learning has been of constant interest
to both communities [105, 95, 107, 106]. To extend this, we used super-resolution to invert
the renormalization group decimation for the Ising model in Chapter 3. We first applied
super-resolution to the one-dimension Ising model. Super-resolution works very well for this
model since it is self-similar under renormalization. Further, extrapolating to much larger
systems yields consistent results as measured by the two-point function. More ambitiously,

110

we used super-resolution for the two-dimensional model where it is not self-similar. In this
case, the error in upscaling increases as the extrapolation size increases, in agreement with
intuition.

This Chapter was the first demonstration of using super-resolution on an ensemble
opposed to single-image cases. This allows us judge to performance of the super-resolving
network based on statistical averages instead compared to single-image metrics. Similar to
learning topological defects in Chapter 2, this provides novel insight into what the neural
network is learning when upscaling. The key difficultly is underestimation of the number of
blocks with an equal number of up and down spins. This results in an error that increases
as the system size increases.

Using super-resolution provides a way of choosing high-probability states for initializa-
tion in Monte Carlo, hence reducing the warm-up time as suggested by Hastings [37]. The
only expense is having to first simulate a smaller system and perform a decimation in order
to train the network. Similar coarse-graining techniques are used in lattice quantum field
theory where we expect this technique could be useful [237].

In our case, we approximated the rescaling transformation with the manual curve-
fitting procedure. However, this could also be automated by using a neural network. This
improvement would generalize this method to much more complex Hamiltonian’s with
more interacting terms. One example could be classical spin glasses, where initializing
each Monte Carlo chain near a local energy minima of a smaller system could result in
faster convergence.

Lastly, with only one system size and a decimation procedure, we were able to estimate
critical exponents. This could be a powerful technique for more difficult interacting systems
where large-scale Monte Carlo simulation is prohibitively expensive.

Calibrating quantum devices with wavefunction reconstruction

Monte Carlo provides a way to generate snapshots of microscopic configurations of classical
or quantum data. However, ultimately physics is an experimental science where we can
generate data from measurements. One recent source of interesting measurements is in
modern quantum devices. Projective spin measurements can be measured for a quantum
circuit and used as data to train a neural network model.

In Chapter 4, we used restricted Boltzmann machines and self-attention transformer
networks for performing maximum-likelihood quantum state tomography. RBMs offer the
advantage of a network architecture inspired by statistical physics. In contrast, trans-
formers provide greater accuracy at the expense of interpretability. In both cases the

111

networks were able to accurately capture the relevant physics when trained on projective
spin measurements for the quantum Ising model.

The power of generative models lies in the ability to estimate off-diagonal observables
that are inaccessible in both experiment and Monte Carlo simulation. These models could
also likely be leveraged for variation Monte Carlo since they produce explicit probabilities
for each configuration. Recently, explicit density estimation models such as transformers
and recurrent networks have found use in variational Monte Carlo [238, 41, 239, 240].

With the growing experimental realization of quantum devices, it is important to cal-
ibrate these devices accordingly. Machine learning methods have reduced the bottleneck
from maximum-likelihood tomography. This will enable more robust testing of quantum
devices that may eventually be used for machine learning. This feedback loop could create
better machine learning models which could be in turn used to the design of better quan-
tum computers. In a sense, the most appropriate machine learning for quantum devices
might be quantum machine learning [241].

Quantum-inspired variational Monte Carlo

One of the most promising applications of quantum computers is to solve combinatorial
optimization problems. A recent algorithm, the quantum approximate optimization al-
gorithm (QAOA) is a leading candidate. In this Thesis, we studied a quantum-inspired
variational ansatz. Whereas QAOA is inspired by discrete version of the quantum adiabatic
algorithm, the variational imaginary time ansatz (VITA) is a hybrid between variational
and path integral Monte Carlo techniques. One can also consider it a latent variable ma-
chine learning model where the latent space is physically motivated by the mapping of a
d-dimensional quantum system to a (d+ 1)-dimensional classical system.

For the quantum Ising model, we found logarithmic scaling of the total imaginary time
with system size. This suggests the variational model could be useful when very long
imaginary-times are needed in traditional quantum Monte Carlo. Our result is also an
exponential improvement over the real-time scaling in QAOA. Since imaginary time can
be efficiently simulated, this suggests that new algorithms for quantum devices need to be
discovered to achieve a quantum advantage over classical methods.

The power of the classical algorithm may be due to the exponential growth of entangle-
ment in each layer of the ansatz, in contrast to the quantum algorithm that is subject to
bounded entanglement growth. A natural extension of this model is to apply the VITA to
sign-problematic models such as the two-dimensional Hubbard model. The usual auxiliary-
field projector quantum Monte Carlo (PQMC) algorithm [28] used to study the Hubbard

112

model can be adapted to use variational Trotter steps. In this way, we can start a simulation
with state-of-the-art auxiliary-field Monte Carlo and fine-tune with adjustable parameters.
The parameters could be optimized with gradient-based algorithms using either automatic
differentiation or analytic derivatives (from higher-order correlation functions).

Similarly, other algorithms such as stochastic series expansion [29] or variational tensor
networks [175] could be modified within the VITA framework. Matrix product state tensor
networks could be promising since they use more efficient autoregressive sampling compared
to Monte Carlo sampling.

The improvement of classical algorithms is important for finding the division between
classical and quantum computation. Quantum-inspired methods could improve current
hybrid quantum-classical algorithms [242, 243, 244, 245] where the bottleneck is accessing
quantum resources.

Summary & Outlook

When faced with the dual obstacles of scale and complexity, many interesting problems
cannot be solved from only fundamental laws. It is precisely the interactions and higher-
organizing principles in nature that give matter its unique and interesting properties. Since
the 1860s, physicists have studied the emergence of large-scale macroscopic properties from
their microscopic constituents. Machine learning promises a radically new approach. We
are shifting from studying emergence in matter, to designing systems that use emergence
to solve otherwise impossible tasks.

113

References

[1] Matthew J. S. Beach, Anna Golubeva, and Roger G. Melko. Machine learning vortices
at the Kosterlitz-Thouless transition. Physical Review B, 97(4):045207, January 2018.

[2] Matthew J. S. Beach. Machine Learning Topological Defects in the XY Model —
〈 physics — machine learning 〉.

[3] Stavros Efthymiou, Matthew J. S. Beach, and Roger G. Melko. Super-resolving the
Ising model with convolutional neural networks. Physical Review B, 99(7):075113,
February 2019.

[4] Matthew J. S. Beach, Roger G. Melko, Tarun Grover, and Timothy H. Hsieh. Making
trotters sprint: A variational imaginary time ansatz for quantum many-body systems.
Physical Review B, 100(9):094434, September 2019.

[5] Matthew J. S. Beach, Isaac De Vlugt, Anna Golubeva, Patrick Huembeli, Bohdan
Kulchytskyy, Xiuzhe Luo, Roger Melko, Ejaaz Merali, and Giacomo Torlai. QuCum-
ber: Wavefunction reconstruction with neural networks. SciPost Physics, 7(1):009,
July 2019.

[6] W. Kohn. An essay on condensed matter physics in the twentieth century. Reviews
of Modern Physics, 71(2):S59–S77, March 1999.

[7] Elbio Dagotto. Correlated electrons in high-temperature superconductors. Reviews
of Modern Physics, 66(3):763–840, July 1994.

[8] Rahul Nandkishore and David A. Huse. Many-Body Localization and Thermal-
ization in Quantum Statistical Mechanics. Annual Review of Condensed Matter
Physics, 6(1):15–38, 2015. eprint: https://doi.org/10.1146/annurev-conmatphys-
031214-014726.

[9] P. W. Anderson. More Is Different. Science, 177(4047):393–396, August 1972.

114

[10] R. B. Laughlin and David Pines. The Theory of Everything. Proceedings of the
National Academy of Sciences of the United States of America, 97(1):28–31, January
2000.

[11] Roman Orus. A Practical Introduction to Tensor Networks: Matrix Product States
and Projected Entangled Pair States. Annals of Physics, 349:117–158, October 2014.

[12] Federico Becca and Sandro Sorella. Quantum Monte Carlo Approaches for Correlated
Systems. Cambridge University Press, Cambridge, United Kingdom ; New York, NY,
1 edition edition, November 2017.

[13] Giuseppe Carleo and Matthias Troyer. Solving the quantum many-body problem
with artificial neural networks. Science, 355(6325):602, February 2017.

[14] H. Bethe. Zur Theorie der Metalle. Zeitschrift für Physik, 71(3):205–226, March
1931.

[15] Michael Karbach and Gerhard Muller. Introduction to the Bethe ansatz I.
arXiv:cond-mat/9809162, September 1998.

[16] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436–444, May 2015.

[17] Stefano Markidis, Steven Wei Der Chien, Erwin Laure, Ivy Bo Peng, and Jeffrey S.
Vetter. NVIDIA Tensor Core Programmability, Performance & Precision. 2018 IEEE
International Parallel and Distributed Processing Symposium Workshops (IPDPSW),
pages 522–531, May 2018.

[18] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,
Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt
Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati,
William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert
Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander Kaplan,
Harshit Khaitan, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon, James
Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon
MacKean, Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi
Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick, Narayana
Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek, Emad Samadi-
ani, Chris Severn, Gregory Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg,

115

Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia Toma, Erick Tuttle,
Vijay Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon.
In-Datacenter Performance Analysis of a Tensor Processing Unit. arXiv:1704.04760
[cs], April 2017.

[19] Phelim P. Boyle. Options: A Monte Carlo approach. Journal of Financial Economics,
4(3):323–338, May 1977.

[20] Paul Glasserman. Monte Carlo Methods in Financial Engineering. New York :
Springer, 2004.

[21] Charles J. Mode. Applications of Monte Carlo Methods in Biology, Medicine and
Other Fields of Science. February 2011.

[22] Stefan Weinzierl. Introduction to Monte Carlo methods. June 2000.

[23] Washington Taylor and Yi-Nan Wang. A Monte Carlo exploration of threefold base
geometries for 4d F-theory vacua. October 2015.

[24] K. P. N. Murthy. An Introduction to Monte Carlo Simulation of Statistical physics
Problem. arXiv:cond-mat/0104167, December 2003.

[25] Jean-Charles Walter and Gerard Barkema. An introduction to Monte Carlo methods.
Physica A: Statistical Mechanics and its Applications, 418:78–87, January 2015.

[26] K. Binder and Steven M. Girvin. The Monte Carlo method in condensed matter
physics. 1992.

[27] Anders W. Sandvik. Computational Studies of Quantum Spin Systems. In AIP
Conference Proceedings, volume 1297, pages 135–338, November 2010.

[28] F.F. Assaad and H.G. Evertz. World-line and Determinantal Quantum Monte Carlo
Methods for Spins, Phonons and Electrons. In H. Fehske, R. Schneider, and A. Weiße,
editors, Computational Many-Particle Physics, Lecture Notes in Physics, pages 277–
356. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[29] Anders W. Sandvik. Stochastic series expansion method with operator-loop update.
Physical Review B, 59(22):R14157–R14160, June 1999.

[30] R. Blankenbecler, D. J. Scalapino, and R. L. Sugar. Monte Carlo calculations of
coupled boson-fermion systems. I. Physical Review D, 24(8):2278–2286, October
1981.

116

[31] W. L. McMillan. Ground State of Liquid ${\mathrm{He}}{̂4}$. Physical Review,
138(2A):A442–A451, April 1965.

[32] D. Ceperley, G. V. Chester, and M. H. Kalos. Monte Carlo simulation of a many-
fermion study. Physical Review B, 16(7):3081–3099, October 1977.

[33] M. P. Nightingale and H. W. J. Blöte. Dynamic Exponent of the Two-Dimensional
Ising Model and Monte Carlo Computation of the Subdominant Eigenvalue of the
Stochastic Matrix. Physical Review Letters, 76(24):4548–4551, June 1996.

[34] Robert Swendsen and Jian-Sheng Wang. Replica Monte Carlo Simulation of Spin-
Glasses. Physical review letters, 57:2607–2609, December 1986.

[35] Koji Hukushima and Koji Nemoto. Exchange Monte Carlo Method and Application
to Spin Glass Simulations. Journal of the Physical Society of Japan, 65(6):1604–1608,
June 1996.

[36] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H.
Teller, and Edward Teller. Equation of State Calculations by Fast Computing Ma-
chines. The Journal of Chemical Physics, 21(6):1087–1092, June 1953.

[37] W. K. Hastings. Monte Carlo Sampling Methods Using Markov Chains and Their
Applications. Biometrika, 57(1):97–109, 1970.

[38] Robert H. Swendsen. Monte Carlo calculation of renormalized coupling parameters.
I. d=2 Ising model. Physical Review B, 30(7):3866–3874, October 1984.

[39] Ulli Wolff. Collective Monte Carlo Updating for Spin Systems. Physical Review
Letters, 62(4):361–364, January 1989.

[40] Geoffrey E. Hinton. A Practical Guide to Training Restricted Boltzmann Machines.
In Grégoire Montavon, Geneviève B. Orr, and Klaus-Robert Müller, editors, Neural
Networks: Tricks of the Trade: Second Edition, Lecture Notes in Computer Science,
pages 599–619. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[41] Andrew J. Ferris and Guifre Vidal. Perfect sampling with unitary tensor networks.
Physical Review B, 85(16):165146, April 2012.

[42] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
arXiv:1810.04805 [cs], May 2019.

117

[43] Harshit Sharma. Auto-Regressive Generative Models (PixelRNN, PixelCNN++),
December 2017.

[44] Bohdan Kulchytskyy. Probing Universality with Entanglement Entropy via Quantum
Monte Carlo. PhD thesis, University of Waterloo, Waterloo, ON, August 2019.
Accepted: 2019-08-30T19:41:28Z.

[45] Lauren Hayward Sierens. Simulating Quantum Matter through Lattice Field Theories.
PhD thesis, University of Waterloo, Waterloo, ON, May 2017.

[46] Andrej Karpathy. Software 2.0 - Andrej Karpathy, June 2018.

[47] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper,
and Bryan Catanzaro. Megatron-LM: Training Multi-Billion Parameter Language
Models Using Model Parallelism. arXiv:1909.08053 [cs], March 2020.

[48] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-
fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christo-
pher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. Language Models are Few-Shot Learners. arXiv:2005.14165 [cs], May
2020.

[49] Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew
Dudzik, Junyoung Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko
Georgiev, Junhyuk Oh, Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang,
Laurent Sifre, Trevor Cai, John P. Agapiou, Max Jaderberg, Alexander S. Vezhn-
evets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David Budden, Yury Sulsky,
James Molloy, Tom L. Paine, Caglar Gulcehre, Ziyu Wang, Tobias Pfaff, Yuhuai
Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney, Oliver Smith,
Tom Schaul, Timothy Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris Apps,
and David Silver. Grandmaster level in StarCraft II using multi-agent reinforcement
learning. Nature, 575(7782):350–354, November 2019.

[50] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian
Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche, Thore

118

Graepel, and Demis Hassabis. Mastering the game of Go without human knowledge.
Nature, 550(7676):354–359, October 2017.

[51] Frank Rosenblatt. Principles of Neurodynamics: Perceptrons and the Theory of Brain
Mechanisms. Spartan Books, 1962.

[52] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural
Networks, 4(2):251–257, January 1991.

[53] Moshe Leshno, Vladimir Ya. Lin, Allan Pinkus, and Shimon Schocken. Multilayer
feedforward networks with a nonpolynomial activation function can approximate any
function. Neural Networks, 6(6):861–867, January 1993.

[54] G Cybenkot. Approximation by superpositions of a sigmoidal function. page 12.

[55] Andreas Griewank and Andrea Walther. Evaluating Derivatives: Principles and
Techniques of Algorithmic Differentiation,. Other Titles in Applied Mathematics.
Society for Industrial and Applied Mathematics, January 2008.

[56] Atilim Gunes Baydin and Barak A. Pearlmutter. Automatic Differentiation of Algo-
rithms for Machine Learning. arXiv:1404.7456 [cs, stat], April 2014.

[57] Henry W. Lin, Max Tegmark, and David Rolnick. Why does deep and cheap learning
work so well? Journal of Statistical Physics, 168(6):1223–1247, September 2017.

[58] John Duchi, Elad Hazan, and Yoram Singer. Adaptive Subgradient Methods for
Online Learning and Stochastic Optimization. The Journal of Machine Learning
Research, 12(61):2121–2159, July 2011.

[59] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
arXiv:1412.6980 [cs], December 2014.

[60] Juan Carrasquilla and Roger G. Melko. Machine learning phases of matter. Nature
Physics, 13(5):431–434, May 2017.

[61] Hai-Jun Liao, Jin-Guo Liu, Lei Wang, and Tao Xiang. Differentiable Programming
Tensor Networks. Physical Review X, 9(3):031041, September 2019.

[62] Xiu-Zhe Luo, Jin-Guo Liu, Pan Zhang, and Lei Wang. Yao.jl: Extensible, Ef-
ficient Framework for Quantum Algorithm Design. arXiv:1912.10877 [cond-mat,
physics:physics, physics:quant-ph], December 2019.

119

[63] Teresa Tamayo-Mendoza, Christoph Kreisbeck, Roland Lindh, and Alán Aspuru-
Guzik. Automatic Differentiation in Quantum Chemistry with Applications to Fully
Variational Hartree–Fock. ACS Central Science, 4(5):559–566, May 2018.

[64] V. L. Berezinskǐi. Destruction of Long-range Order in One-dimensional and Two-
dimensional Systems having a Continuous Symmetry Group I. Classical Systems.
Soviet Journal of Experimental and Theoretical Physics, 32:493, 1971.

[65] V. L. Berezinskǐi. Destruction of Long-range Order in One-dimensional and Two-
dimensional Systems Possessing a Continuous Symmetry Group. II. Quantum Sys-
tems. Soviet Journal of Experimental and Theoretical Physics, 34:610, 1972.

[66] J. M. Kosterlitz and D. J. Thouless. Ordering, metastability and phase transitions in
two-dimensional systems. Journal of Physics C: Solid State Physics, 6(7):1181–1203,
April 1973.

[67] P. Kapitza. Viscosity of Liquid Helium below the λ-Point. Nature, 141(3558):74–74,
January 1938.

[68] J. F. Allen and A. D. Misener. Flow of Liquid Helium II. Nature, 141(3558):75–75,
January 1938.

[69] D. J. Bishop and J. D. Reppy. Study of the Superfluid Transition in Two-Dimensional

${̂4}\mathrm{He}$ Films. Physical Review Letters, 40(26):1727–1730, June 1978.

[70] Sebastian J. Wetzel. Unsupervised learning of phase transitions: From principal
component analysis to variational autoencoders. Physical Review E, 96(2):022140,
August 2017.

[71] Wenjian Hu, Rajiv R. P. Singh, and Richard T. Scalettar. Discovering phases, phase
transitions, and crossovers through unsupervised machine learning: A critical exam-
ination. Physical Review E, 95(6):062122, June 2017.

[72] Lei Wang. Discovering phase transitions with unsupervised learning. Physical Review
B, 94(19):195105, November 2016.

[73] Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes.
arXiv:1312.6114 [cs, stat], May 2014.

[74] Marco Cristoforetti, Giuseppe Jurman, Andrea I. Nardelli, and Cesare Furlanello.
Towards meaningful physics from generative models. arXiv:1705.09524 [cond-mat,
physics:hep-lat], May 2017.

120

[75] Peter Broecker, Fakher F. Assaad, and Simon Trebst. Quantum phase recognition
via unsupervised machine learning. arXiv:1707.00663 [cond-mat], July 2017.

[76] Pengfei Zhang, Huitao Shen, and Hui Zhai. Machine Learning Topological Invariants
with Neural Networks. Physical Review Letters, 120(6):066401, February 2018.

[77] Evert P. L. van Nieuwenburg, Ye-Hua Liu, and Sebastian D. Huber. Learning phase
transitions by confusion. Nature Physics, 13(5):435–439, May 2017.

[78] N. D. Mermin and H. Wagner. Absence of Ferromagnetism or Antiferromagnetism
in One- or Two-Dimensional Isotropic Heisenberg Models. Physical Review Letters,
17(22):1133–1136, November 1966.

[79] S. G. Chung. Essential finite-size effect in the two-dimensional XY model. Physical
Review B, 60(16):11761–11764, October 1999.

[80] Rudolf Podgornik. Principles of condensed matter physics. P. M. Chaikin and T.
C. Lubensky, Cambridge University Press, Cambridge, England, 1995. Journal of
Statistical Physics, 83:1263–1265, June 1996.

[81] Peter Olsson. Monte Carlo analysis of the two-dimensional XY model. II. Comparison
with the Kosterlitz renormalization-group equations. Physical Review B, 52(6):4526–
4535, August 1995.

[82] David R. Nelson and J. M. Kosterlitz. Universal Jump in the Superfluid Density of
Two-Dimensional Superfluids. Physical Review Letters, 39(19):1201–1205, November
1977.

[83] Petter Minnhagen. The two-dimensional Coulomb gas, vortex unbinding, and
superfluid-superconducting films. Reviews of Modern Physics, 59(4):1001–1066, Oc-
tober 1987.

[84] Lutz Prechelt. Early Stopping — But When? In Grégoire Montavon, Geneviève B.
Orr, and Klaus-Robert Müller, editors, Neural Networks: Tricks of the Trade: Second
Edition, Lecture Notes in Computer Science, pages 53–67. Springer, Berlin, Heidel-
berg, 2012.

[85] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manju-
nath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit
Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and

121

Xiaoqiang Zheng. TensorFlow: A System for Large-Scale Machine Learning. In 12th
USENIX Symposium on Operating Systems Design and Implementation OSDI 16,
pages 265–283, 2016.

[86] Francois Chollet. Keras, 2015.

[87] Pedro Ponte and Roger G. Melko. Kernel methods for interpretable machine learning
of order parameters. Physical Review B, 96(20):205146, November 2017.

[88] Yuki Nagai, Huitao Shen, Yang Qi, Junwei Liu, and Liang Fu. Self-learning Monte
Carlo method: Continuous-time algorithm. Physical Review B, 96(16):161102, Oc-
tober 2017.

[89] Ce Wang and Hui Zhai. Machine learning of frustrated classical spin models. I.
Principal component analysis. Physical Review B, 96(14):144432, October 2017.

[90] S. T. Bramwell and P. C. W. Holdsworth. Magnetization: A characteristic of the
Kosterlitz-Thouless-Berezinskii transition. Physical Review B, 49(13):8811–8814,
April 1994.

[91] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural Net-
works, 61:85–117, January 2015.

[92] Yanming Guo, Yu Liu, Ard Oerlemans, Songyang Lao, Song Wu, and Michael S.
Lew. Deep learning for visual understanding: A review. Neurocomputing, 187:27–48,
April 2016.

[93] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet classification
with deep convolutional neural networks. Communications of the ACM, 60(6):84–90,
May 2017.

[94] Matthew D. Zeiler and Rob Fergus. Visualizing and Understanding Convolutional
Networks. In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars,
editors, Computer Vision – ECCV 2014, Lecture Notes in Computer Science, pages
818–833, Cham, 2014. Springer International Publishing.

[95] Pankaj Mehta and David J. Schwab. An exact mapping between the Variational
Renormalization Group and Deep Learning. October 2014.

[96] S. R. Manmana, S. Wessel, R. M. Noack, and A. Muramatsu. Strongly Correlated
Fermions after a Quantum Quench. Physical Review Letters, 98(21):210405, May
2007.

122

[97] Giacomo Torlai and Roger G. Melko. Learning thermodynamics with Boltzmann
machines. Physical Review B, 94(16):165134, October 2016.

[98] Zhaocheng Liu, Sean P. Rodrigues, and Wenshan Cai. Simulating the Ising Model
with a Deep Convolutional Generative Adversarial Network. arXiv:1710.04987 [cond-
mat], October 2017.

[99] Giuseppe Carleo, Yusuke Nomura, and Masatoshi Imada. Constructing exact rep-
resentations of quantum many-body systems with deep neural networks. Nature
Communications, 9(1), December 2018.

[100] E. M. Inack, G. E. Santoro, L. Dell’Anna, and S. Pilati. Projective quantum Monte
Carlo simulations guided by unrestricted neural network states. Physical Review B,
98(23):235145, December 2018.

[101] Giacomo Torlai, Guglielmo Mazzola, Juan Carrasquilla, Matthias Troyer, Roger
Melko, and Giuseppe Carleo. Neural-network quantum state tomography. Nature
Physics, 14(5):447, May 2018.

[102] Giacomo Torlai and Roger G. Melko. Latent Space Purification via Neural Density
Operators. Physical Review Letters, 120(24):240503, June 2018.

[103] John Cardy. Scaling and Renormalization in Statistical Physics. Scaling and Renor-
malization in Statistical Physics, by John Cardy, Cambridge, UK: Cambridge Uni-
versity Press, 1996, May 1996.

[104] Leo Kadanoff. Statistical Physics: Statics, Dynamics and Renormalization. World
Scientific Publishing Company, Singapore ; River Edge, N.J, May 2000.

[105] Cédric Bény. Deep learning and the renormalization group. arXiv:1301.3124 [quant-
ph], January 2013.

[106] Shuo-Hui Li and Lei Wang. Neural Network Renormalization Group. Physical Review
Letters, 121(26):260601, December 2018.

[107] Maciej Koch-Janusz and Zohar Ringel. Mutual Information, Neural Networks and
the Renormalization Group. Nature Physics, 14(6):578–582, June 2018.

[108] Patrick M. Lenggenhager, Doruk Efe Gökmen, Zohar Ringel, Sebastian D. Huber,
and Maciej Koch-Janusz. Optimal Renormalization Group Transformation from In-
formation Theory. arXiv:1809.09632 [cond-mat], October 2019.

123

[109] Satoshi Iso, Shotaro Shiba, and Sumito Yokoo. Scale-invariant feature extraction of
neural network and renormalization group flow. Physical Review E, 97(5):053304,
May 2018.

[110] Kyle Mills, Kevin Ryczko, Iryna Luchak, Adam Domurad, Chris Beeler, and Isaac
Tamblyn. Extensive deep neural networks for transferring small scale learning to
large scale systems. Chemical Science, 10(15):4129–4140, 2019.

[111] C. Dong, C. C. Loy, K. He, and X. Tang. Image Super-Resolution Using Deep Convo-
lutional Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence,
38(2):295–307, February 2016.

[112] Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew Cunningham,
Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang,
and Wenzhe Shi. Photo-Realistic Single Image Super-Resolution Using a Generative
Adversarial Network. arXiv:1609.04802 [cs, stat], May 2017.

[113] Dorit Ron, Robert H. Swendsen, and Achi Brandt. Inverse Monte Carlo Renor-
malization Group Transformations for Critical Phenomena. Physical Review Letters,
89(27):275701, December 2002.

[114] Mehran Kardar. Statistical Physics of Fields. Cambridge University Press, Cam-
bridge; New York, 1 edition edition, June 2007.

[115] Rodney J. Baxter. Exactly Solved Models in Statistical Mechanics. DOv.

[116] Robert H. Swendsen. Monte Carlo Renormalization Group. Physical Review Letters,
42(14):859–861, April 1979.

[117] Shang-keng Ma, Chandan Dasgupta, and Chin-kun Hu. Random Antiferromagnetic
Chain. Physical Review Letters, 43(19):1434–1437, November 1979.

[118] Chandan Dasgupta and Shang-keng Ma. Low-temperature properties of the random
Heisenberg antiferromagnetic chain. Physical Review B, 22(3):1305–1319, August
1980.

[119] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus
Brink, Jerry M. Chow, and Jay M. Gambetta. Hardware-efficient variational quan-
tum eigensolver for small molecules and quantum magnets. Nature, 549(7671):242–
246, September 2017.

124

[120] Nikolaj Moll, Panagiotis Barkoutsos, Lev S. Bishop, Jerry M. Chow, Andrew Cross,
Daniel J. Egger, Stefan Filipp, Andreas Fuhrer, Jay M. Gambetta, Marc Ganzhorn,
Abhinav Kandala, Antonio Mezzacapo, Peter Müller, Walter Riess, Gian Salis, John
Smolin, Ivano Tavernelli, and Kristan Temme. Quantum optimization using varia-
tional algorithms on near-term quantum devices. Quantum Science and Technology,
3(3):030503, 2018.

[121] Hannes Bernien, Sylvain Schwartz, Alexander Keesling, Harry Levine, Ahmed Om-
ran, Hannes Pichler, Soonwon Choi, Alexander S. Zibrov, Manuel Endres, Markus
Greiner, Vladan Vuletić, and Mikhail D. Lukin. Probing many-body dynamics on a
51-atom quantum simulator. Nature, 551(7682):579–584, November 2017.

[122] J. Zhang, G. Pagano, P. W. Hess, A. Kyprianidis, P. Becker, H. Kaplan, A. V.
Gorshkov, Z.-X. Gong, and C. Monroe. Observation of a many-body dynamical
phase transition with a 53-qubit quantum simulator. Nature, 551(7682):601–604,
November 2017.

[123] S. R. White, R. L. Sugar, and R. T. Scalettar. Algorithm for the simulation of
many-electron systems at low temperatures. Physical Review B, 38(16):11665–11668,
December 1988.

[124] Ming-Chiang Chung and Ingo Peschel. Density-matrix spectra of solvable fermionic
systems. Physical Review B, 64(6):064412, July 2001.

[125] Guifré Vidal. Efficient Classical Simulation of Slightly Entangled Quantum Compu-
tations. Physical Review Letters, 91(14):147902, October 2003.

[126] Marcus Cramer, Martin B. Plenio, Steven T. Flammia, Rolando Somma, David
Gross, Stephen D. Bartlett, Olivier Landon-Cardinal, David Poulin, and Yi-Kai Liu.
Efficient quantum state tomography. Nature Communications, 1(1):1–7, December
2010.

[127] B. P. Lanyon, C. Maier, M. Holzäpfel, T. Baumgratz, C. Hempel, P. Jurcevic,
I. Dhand, A. S. Buyskikh, A. J. Daley, M. Cramer, M. B. Plenio, R. Blatt, and
C. F. Roos. Efficient tomography of a quantum many-body system. Nature Physics,
13(12):1158–1162, December 2017.

[128] Giacomo Torlai and Roger G. Melko. Machine-Learning Quantum States in the NISQ
Era. Annual Review of Condensed Matter Physics, 11(1):325–344, March 2020.

125

[129] C. Kim, J. K. Rhee, W. Lee, and J. Ahn. Mixed Quantum State Dynamics Estimation
with Artificial Neural Network. In 2018 International Conference on Information and
Communication Technology Convergence (ICTC), pages 740–747, October 2018.

[130] Juan Carrasquilla, Giacomo Torlai, Roger G. Melko, and Leandro Aolita. Recon-
structing quantum states with generative models. Nature Machine Intelligence,
1(3):155, March 2019.

[131] Paul Smolensky. Information Processing in Dynamical Systems: Foundations of Har-
mony Theory. In Parallel Distributed Processing: Explorations in the Microstructure
of Cognition, Volume 1: Foundations, pages 194–281. MIT Press, February 1986.

[132] Geoffrey E. Hinton. Training Products of Experts by Minimizing Contrastive Diver-
gence. Neural Computation, 14(8):1771–1800, August 2002.

[133] G. E. Hinton and R. R. Salakhutdinov. Reducing the Dimensionality of Data with
Neural Networks. Science, 313(5786):504–507, July 2006.

[134] Xun Gao and Luming Duan. Efficient classical simulation of noisy quantum compu-
tation. arXiv:1810.03176 [quant-ph], October 2018.

[135] Kenny Choo, Giuseppe Carleo, Nicolas Regnault, and Titus Neupert. Symmetries
and many-body excited states with neural-network quantum states. Physical Review
Letters, 121(16), October 2018.

[136] Ivan Glasser, Nicola Pancotti, Moritz August, Ivan D. Rodriguez, and J. Ignacio
Cirac. Neural-Network Quantum States, String-Bond States, and Chiral Topological
States. Physical Review X, 8(1):011006, January 2018.

[137] Jing Chen, Song Cheng, Haidong Xie, Lei Wang, and Tao Xiang. Equivalence
of restricted Boltzmann machines and tensor network states. Physical Review B,
97(8):085104, February 2018.

[138] Yusuke Nomura, Andrew S. Darmawan, Youhei Yamaji, and Masatoshi Imada. Re-
stricted Boltzmann machine learning for solving strongly correlated quantum sys-
tems. Physical Review B, 96(20):205152, November 2017.

[139] Yunqin Zheng, Huan He, Nicolas Regnault, and B. Andrei Bernevig. Restricted
Boltzmann machines and matrix product states of one-dimensional translationally
invariant stabilizer codes. Physical Review B, 99(15):155129, April 2019.

126

[140] Steven Weinstein. Neural networks as ”hidden” variable models for quantum systems.
arXiv:1807.03910 [cond-mat, physics:quant-ph], July 2018.

[141] J J Hopfield. Neural networks and physical systems with emergent collective com-
putational abilities. Proceedings of the National Academy of Sciences of the United
States of America, 79(8):2554–2558, April 1982.

[142] H. Chau Nguyen, Riccardo Zecchina, and Johannes Berg. Inverse statistical problems:
From the inverse Ising problem to data science. Advances in Physics, 66(3):197–261,
July 2017. eprint: https://doi.org/10.1080/00018732.2017.1341604.

[143] R. L. Stratonovich. On a Method of Calculating Quantum Distribution Functions.
Soviet Physics Doklady, 2:416, July 1957.

[144] L. D. Faddeev and V. N. Popov. Feynman diagrams for the Yang-Mills field. Physics
Letters B, 25(1):29–30, July 1967.

[145] Francesco Ferrari, Federico Becca, and Juan Carrasquilla. Neural Gutzwiller-
projected variational wave functions. Physical Review B, 100(12):125131, September
2019.

[146] Faster Parallel Reductions on Kepler, February 2014.

[147] Yoshua Bengio and Olivier Delalleau. Justifying and generalizing contrastive diver-
gence. Neural Computation, 21(6):1601–1621, June 2009.

[148] Asja Fischer and Christian Igel. Bounding the Bias of Contrastive Divergence Learn-
ing. Neural Computation, 23(3):664–673, December 2010.

[149] Miguel A Carreira-Perpinan and Geoffrey E Hinton. On Contrastive Divergence
Learning. page 8.

[150] Yixuan Qiu, Lingsong Zhang, and Xiao Wang. Unbiased Contrastive Divergence
Algorithm for Training Energy-Based Latent Variable Models. In International Con-
ference on Learning Representations, September 2019.

[151] Ilya Sutskever and Tijmen Tieleman. On the Convergence Properties of Contrastive
Divergence. In Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, pages 789–795, March 2010.

[152] Alan L. Yuille. The Convergence of Contrastive Divergences. In NIPS, 2004.

127

[153] Matthias Troyer and Uwe-Jens Wiese. Computational Complexity and Fundamen-
tal Limitations to Fermionic Quantum Monte Carlo Simulations. Physical Review
Letters, 94(17):170201, May 2005.

[154] Matthew B. Hastings, Iván González, Ann B. Kallin, and Roger G. Melko. Measuring
Renyi Entanglement Entropy in Quantum Monte Carlo Simulations. Physical Review
Letters, 104(15):157201, April 2010.

[155] V. Vedral. The Role of Relative Entropy in Quantum Information Theory. Reviews
of Modern Physics, 74(1):197–234, March 2002.

[156] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information. Cambridge University Press, Cambridge ; New York, 10th anniversary
ed edition, 2010.

[157] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems 30, pages 5998–6008.
Curran Associates, Inc., 2017.

[158] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel
Bowman. GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Lan-
guage Understanding. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP, pages 353–355, Brussels, Bel-
gium, 2018. Association for Computational Linguistics.

[159] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma,
and Radu Soricut. ALBERT: A Lite BERT for Self-supervised Learning of Language
Representations. arXiv:1909.11942 [cs], February 2020.

[160] Juan Carrasquilla, Di Luo, Felipe Pérez, Ashley Milsted, Bryan K. Clark, Maksims
Volkovs, and Leandro Aolita. Probabilistic Simulation of Quantum Circuits with the
Transformer. arXiv:1912.11052 [cond-mat, physics:quant-ph], December 2019.

[161] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The Efficient Trans-
former. arXiv:2001.04451 [cs, stat], February 2020.

[162] Dan Sehayek, Anna Golubeva, Michael S. Albergo, Bohdan Kulchytskyy, Giacomo
Torlai, and Roger G. Melko. The learnability scaling of quantum states: Restricted
Boltzmann machines. arXiv:1908.07532 [quant-ph], August 2019.

128

[163] Tad Hogg and Dmitriy Portnov. Quantum Optimization. arXiv:quant-ph/0006090,
June 2000.

[164] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A Quantum Approximate
Optimization Algorithm Applied to a Bounded Occurrence Constraint Problem.
arXiv:1412.6062 [quant-ph], December 2014.

[165] G. C. Wick. Properties of Bethe-Salpeter Wave Functions. Physical Review,
96(4):1124–1134, November 1954.

[166] D. C. Handscomb. The Monte Carlo method in quantum statistical mechanics. Math-
ematical Proceedings of the Cambridge Philosophical Society, 58(4):594–598, October
1962.

[167] R. Blankenbecler and R. L. Sugar. Projector Monte Carlo method. Physical Review
D, 27(6):1304–1311, March 1983.

[168] Anders W. Sandvik and Juhani Kurkijärvi. Quantum Monte Carlo simulation
method for spin systems. Physical Review B, 43(7):5950–5961, March 1991.

[169] E. Y. Loh, J. E. Gubernatis, R. T. Scalettar, S. R. White, D. J. Scalapino, and R. L.
Sugar. Sign problem in the numerical simulation of many-electron systems. Physical
Review B, 41(13):9301–9307, May 1990.

[170] Martin C. Gutzwiller. Effect of Correlation on the Ferromagnetism of Transition
Metals. Physical Review Letters, 10(5):159–162, March 1963.

[171] Martin C. Gutzwiller. Correlation of Electrons in a Narrow s Band. Physical Review,
137(6A):A1726–A1735, March 1965.

[172] Hiromi Otsuka. Variational Monte Carlo Studies of the Hubbard Model in One-
and Two-Dimensions –Off-Diagonal Intersite Correlation Effects–. Journal of the
Physical Society of Japan, 61(5):1645–1656, May 1992.

[173] D. Baeriswyl. Variational Schemes for Many-Electron Systems. In Alan R. Bishop,
David K. Campbell, Pradeep Kumar, and Steven E. Trullinger, editors, Nonlinearity
in Condensed Matter, Springer Series in Solid-State Sciences, pages 183–193. Springer
Berlin Heidelberg, 1987.

[174] F. Verstraete, D. Porras, and J. I. Cirac. Density Matrix Renormalization Group
and Periodic Boundary Conditions: A Quantum Information Perspective. Physical
Review Letters, 93(22):227205, November 2004.

129

[175] A. W. Sandvik and G. Vidal. Variational Quantum Monte Carlo Simulations with
Tensor-Network States. Physical Review Letters, 99(22):220602, November 2007.

[176] G. Vidal. Classical Simulation of Infinite-Size Quantum Lattice Systems in One
Spatial Dimension. Physical Review Letters, 98(7):070201, February 2007.

[177] Nahuel Freitas, Giovanna Morigi, and Vedran Dunjko. Neural network operations and
Susuki–Trotter evolution of neural network states. International Journal of Quantum
Information, 16(08):1840008, November 2018.

[178] S. Pilati, E. M. Inack, and P. Pieri. Self-learning projective quantum Monte Carlo
simulations guided by restricted Boltzmann machines. arXiv:1907.00907 [cond-mat],
July 2019.

[179] C. J. Umrigar, K. G. Wilson, and J. W. Wilkins. Optimized trial wave functions
for quantum Monte Carlo calculations. Physical Review Letters, 60(17):1719–1722,
April 1988.

[180] S. Sorella. Green Function Monte Carlo with Stochastic Reconfiguration. Physical
Review Letters, 80(20):4558–4561, May 1998.

[181] S. Sorella. Generalized Lanczos Algorithm for Variational Quantum Monte Carlo.
Physical Review B, 64(2), June 2001.

[182] Sandro Sorella. Wave function optimization in the variational Monte Carlo method.
Physical Review B, 71(24):241103, June 2005.

[183] Tyson Jones, Suguru Endo, Sam McArdle, Xiao Yuan, and Simon C. Benjamin.
Variational quantum algorithms for discovering Hamiltonian spectra. Physical Review
A, 99(6):062304, June 2019.

[184] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A Quantum Approximate
Optimization Algorithm. arXiv:1411.4028 [quant-ph], November 2014.

[185] Leo Zhou, Sheng-Tao Wang, Soonwon Choi, Hannes Pichler, and Mikhail D. Lukin.
Quantum Approximate Optimization Algorithm: Performance, Mechanism, and Im-
plementation on Near-Term Devices. arXiv:1812.01041 [cond-mat, physics:quant-ph],
December 2018.

[186] Zhihui Wang, Stuart Hadfield, Zhang Jiang, and Eleanor G. Rieffel. Quantum ap-
proximate optimization algorithm for MaxCut: A fermionic view. Physical Review
A, 97(2):022304, February 2018.

130

[187] Stuart Hadfield, Zhihui Wang, Bryan O’Gorman, Eleanor G. Rieffel, Davide Ven-
turelli, and Rupak Biswas. From the Quantum Approximate Optimization Algorithm
to a Quantum Alternating Operator Ansatz. Algorithms, 12(2):34, February 2019.

[188] Guillaume Verdon, Juan Miguel Arrazola, Kamil Brádler, and Nathan Killo-
ran. A Quantum Approximate Optimization Algorithm for continuous problems.
arXiv:1902.00409 [quant-ph], February 2019.

[189] Dave Wecker, Matthew B. Hastings, and Matthias Troyer. Progress towards practical
quantum variational algorithms. Physical Review A, 92(4):042303, October 2015.

[190] Wen Wei Ho and Timothy H. Hsieh. Efficient variational simulation of non-trivial
quantum states. SciPost Physics, 6(3):029, March 2019.

[191] Wen Wei Ho, Cheryne Jonay, and Timothy H. Hsieh. Ultrafast variational simula-
tion of nontrivial quantum states with long-range interactions. Physical Review A,
99(5):052332, May 2019.

[192] Sam McArdle, Tyson Jones, Suguru Endo, Ying Li, Simon Benjamin, and Xiao Yuan.
Variational quantum simulation of imaginary time evolution. arXiv:1804.03023
[quant-ph], April 2018.

[193] Mario Motta, Chong Sun, Adrian Teck Keng Tan, Matthew J. O’ Rourke, Erika Ye,
Austin J. Minnich, Fernando G. S. L. Brandao, and Garnet Kin-Lic Chan. Quantum
Imaginary Time Evolution, Quantum Lanczos, and Quantum Thermal Averaging.
arXiv:1901.07653 [quant-ph], January 2019.

[194] Tadashi Kadowaki and Hidetoshi Nishimori. Quantum annealing in the transverse
Ising model. Physical Review E, 58(5):5355–5363, November 1998.

[195] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser. Quantum
Computation by Adiabatic Evolution. January 2000.

[196] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, Joshua Lapan, Andrew Lundgren,
and Daniel Preda. A Quantum Adiabatic Evolution Algorithm Applied to Random
Instances of an NP-Complete Problem. Science, 292(5516):472–475, April 2001.

[197] Boris Altshuler, Hari Krovi, and Jérémie Roland. Anderson localization makes adi-
abatic quantum optimization fail. Proceedings of the National Academy of Sciences,
107(28):12446–12450, July 2010.

131

[198] Boaz Barak, Ankur Moitra, Ryan O’Donnell, Prasad Raghavendra, Oded Regev,
David Steurer, Luca Trevisan, Aravindan Vijayaraghavan, David Witmer, and John
Wright. Beating the random assignment on constraint satisfaction problems of
bounded degree. May 2015.

[199] Zhang Jiang, Eleanor G. Rieffel, and Zhihui Wang. Near-optimal quantum cir-
cuit for Grover’s unstructured search using a transverse field. Physical Review A,
95(6):062317, June 2017.

[200] Maria Schuld, Ville Bergholm, Christian Gogolin, Josh Izaac, and Nathan Killo-
ran. Evaluating analytic gradients on quantum hardware. Physical Review A,
99(3):032331, March 2019.

[201] D. Zhu, S. Johri, N. M. Linke, K. A. Landsman, N. H. Nguyen, C. H. Alderete,
A. Y. Matsuura, T. H. Hsieh, and C. Monroe. Generation of Thermofield Double
States and Critical Ground States with a Quantum Computer. arXiv:1906.02699
[cond-mat, physics:hep-th, physics:quant-ph], February 2020.

[202] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami
Barends, Sergio Boixo, Michael Broughton, Bob B. Buckley, David A. Buell,
Brian Burkett, Nicholas Bushnell, Yu Chen, Zijun Chen, Ben Chiaro, Roberto
Collins, William Courtney, Sean Demura, Andrew Dunsworth, Edward Farhi, Austin
Fowler, Brooks Foxen, Craig Gidney, Marissa Giustina, Rob Graff, Steve Habegger,
Matthew P. Harrigan, Alan Ho, Sabrina Hong, Trent Huang, L. B. Ioffe, Sergei V.
Isakov, Evan Jeffrey, Zhang Jiang, Cody Jones, Dvir Kafri, Kostyantyn Kechedzhi,
Julian Kelly, Seon Kim, Paul V. Klimov, Alexander N. Korotkov, Fedor Kostritsa,
David Landhuis, Pavel Laptev, Mike Lindmark, Martin Leib, Erik Lucero, Orion
Martin, John M. Martinis, Jarrod R. McClean, Matt McEwen, Anthony Megrant,
Xiao Mi, Masoud Mohseni, Wojciech Mruczkiewicz, Josh Mutus, Ofer Naaman,
Matthew Neeley, Charles Neill, Florian Neukart, Hartmut Neven, Murphy Yuezhen
Niu, Thomas E. O’Brien, Bryan O’Gorman, Eric Ostby, Andre Petukhov, Harald
Putterman, Chris Quintana, Pedram Roushan, Nicholas C. Rubin, Daniel Sank,
Kevin J. Satzinger, Andrea Skolik, Vadim Smelyanskiy, Doug Strain, Michael Streif,
Kevin J. Sung, Marco Szalay, Amit Vainsencher, Theodore White, Z. Jamie Yao, Ping
Yeh, Adam Zalcman, and Leo Zhou. Quantum Approximate Optimization of Non-
Planar Graph Problems on a Planar Superconducting Processor. arXiv:2004.04197
[quant-ph], April 2020.

[203] M. B. Hastings. Classical and Quantum Bounded Depth Approximation Algorithms.
arXiv:1905.07047 [quant-ph], August 2019.

132

[204] V. Akshay, H. Philathong, M. E. S. Morales, and J. Biamonte. Reachability Deficits
in Quantum Approximate Optimization. Physical Review Letters, 124(9):090504,
March 2020.

[205] Sergey Bravyi, Alexander Kliesch, Robert Koenig, and Eugene Tang. Obstacles
to State Preparation and Variational Optimization from Symmetry Protection.
arXiv:1910.08980 [cond-mat, physics:quant-ph], October 2019.

[206] Takashi Yanagisawa, Soh Koike, and Kunihiko Yamaji. Off-Diagonal Wave Function
Monte Carlo Studies of Hubbard Model I. Journal of the Physical Society of Japan,
67(11):3867–3874, November 1998.

[207] Takashi Yanagisawa. Crossover from Weakly to Strongly Correlated Regions in the
Two-dimensional Hubbard Model — Off-diagonal Wave Function Monte Carlo Stud-
ies of Hubbard Model II —. Journal of the Physical Society of Japan, 85(11):114707,
October 2016.

[208] Takashi Yanagisawa. Antiferromagnetism, Superconductivity and Phase Diagram
in the Two-Dimensional Hubbard Model —Off-Diagonal Wave Function Monte
Carlo Studies of Hubbard Model III—. Journal of the Physical Society of Japan,
88(5):054702, April 2019.

[209] Mohammad-Sadegh Vaezi and Abolhassan Vaezi. A unified theory of variational and
quantum Monte Carlo methods and beyond. arXiv:1810.00864 [cond-mat.str-el],
October 2018.

[210] S. Bravyi, M. B. Hastings, and F. Verstraete. Lieb-Robinson Bounds and the Gen-
eration of Correlations and Topological Quantum Order. Physical Review Letters,
97(5):050401, July 2006.

[211] Elliott Lieb, Theodore Schultz, and Daniel Mattis. Two soluble models of an anti-
ferromagnetic chain. Annals of Physics, 16(3):407–466, December 1961.

[212] Subir Sachdev. Quantum Phase Transitions. Cambridge university press, second
edition, 2011.

[213] Ieong Wong, Wenjia Liu, Chih-Ming Ho, and Xianting Ding. Continuous Adap-
tive Population Reduction (CAPR) for Differential Evolution Optimization. SLAS
TECHNOLOGY: Translating Life Sciences Innovation, 22(3):289–305, June 2017.

133

[214] Lu Liu, Anders W. Sandvik, and Wenan Guo. Typicality at quantum-critical points.
Chinese Physics B, 27(8):087501, August 2018.

[215] Ingo Peschel. Calculation of reduced density matrices from correlation functions.
Journal of Physics A: Mathematical and General, 36(14):L205–L208, April 2003.

[216] G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev. Entanglement in quantum critical
phenomena. Physical Review Letters, 90(22), June 2003.

[217] J. I. Latorre, E. Rico, and G. Vidal. Ground State Entanglement in Quantum Spin
Chains. Quantum Info. Comput., 4(1):48–92, January 2004.

[218] Pasquale Calabrese and John Cardy. Evolution of entanglement entropy in one-
dimensional systems. Journal of Statistical Mechanics: Theory and Experiment,
2005(04):P04010, April 2005.

[219] Michaël Mariën, Koenraad M. R. Audenaert, Karel Van Acoleyen, and Frank Ver-
straete. Entanglement Rates and the Stability of the Area Law for the Entanglement
Entropy. arXiv:1411.0680 [math-ph], November 2014.

[220] Pasquale Calabrese and John Cardy. Entanglement and correlation functions fol-
lowing a local quench: A conformal field theory approach. Journal of Statistical
Mechanics: Theory and Experiment, 2007(10):P10004–P10004, October 2007.

[221] Anders W. Sandvik. Ground State Projection of Quantum Spin Systems in the
Valence-Bond Basis. Physical Review Letters, 95(20):207203, November 2005.

[222] Anders W. Sandvik. Stochastic series expansion method for quantum Ising models
with arbitrary interactions. Physical Review E, 68(5):056701, November 2003.

[223] Roger G. Melko. Stochastic Series Expansion Quantum Monte Carlo. In Adolfo
Avella and Ferdinando Mancini, editors, Strongly Correlated Systems, volume 176,
pages 185–206. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[224] Tatiana Tommasi, Novi Patricia, and Tinne Tuytelaars. A Deeper Look at Dataset
Bias. page 19.

[225] Joy Buolamwini and Timnit Gebru. Gender Shades: Intersectional Accuracy Dispar-
ities in Commercial Gender Classification. In Conference on Fairness, Accountability
and Transparency, pages 77–91, January 2018.

134

[226] Moritz Hardt, Eric Price, Eric Price, and Nati Srebro. Equality of Opportunity in
Supervised Learning. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and
R. Garnett, editors, Advances in Neural Information Processing Systems 29, pages
3315–3323. Curran Associates, Inc., 2016.

[227] Byungju Kim, Hyunwoo Kim, Kyungsu Kim, Sungjin Kim, and Junmo Kim.
Learning Not to Learn: Training Deep Neural Networks with Biased Data.
arXiv:1812.10352 [cs], April 2019.

[228] Sebastian J. Wetzel and Manuel Scherzer. Machine learning of explicit order pa-
rameters: From the Ising model to SU(2) lattice gauge theory. Physical Review B,
96(18):184410, November 2017.

[229] Sebastian J. Wetzel, Roger G. Melko, Joseph Scott, Maysum Panju, and Vijay
Ganesh. Discovering Symmetry Invariants and Conserved Quantities by Interpret-
ing Siamese Neural Networks. arXiv:2003.04299 [cond-mat, physics:physics], March
2020.

[230] Anna Dawid, Patrick Huembeli, Micha l Tomza, Maciej Lewenstein, and Alexan-
dre Dauphin. Phase Detection with Neural Networks: Interpreting the Black Box.
arXiv:2004.04711 [cond-mat, physics:quant-ph], April 2020.

[231] Yi Zhang, Paul Ginsparg, and Eun-Ah Kim. Interpreting machine learning of topo-
logical quantum phase transitions. Physical Review Research, 2(2):023283, June 2020.

[232] Joaquin F. Rodriguez-Nieva and Mathias S. Scheurer. Identifying topological order
through unsupervised machine learning. Nature Physics, 15(8):790–795, August 2019.

[233] Haribabu Kandi, Ayushi Jain, Swetha Velluva Chathoth, Deepak Mishra, and Gorthi
R. K. Sai Subrahmanyam. Incorporating rotational invariance in convolutional neu-
ral network architecture. Pattern Analysis and Applications, 22(3):935–948, August
2019.

[234] Taco S. Cohen, Maurice Weiler, Berkay Kicanaoglu, and Max Welling. Gauge Equiv-
ariant Convolutional Networks and the Icosahedral CNN. arXiv:1902.04615 [cs, stat],
May 2019.

[235] Taco S. Cohen and Max Welling. Group Equivariant Convolutional Networks.
arXiv:1602.07576 [cs, stat], June 2016.

135

[236] Zhiyuan Zhang, Binh-Son Hua, David W. Rosen, and Sai-Kit Yeung. Rotation
Invariant Convolutions for 3D Point Clouds Deep Learning. arXiv:1908.06297 [cs],
August 2019.

[237] Bálint Joó, Chulwoo Jung, Norman H. Christ, William Detmold, Robert G. Edwards,
Martin Savage, and Phiala Shanahan. Status and Future Perspectives for Lattice
Gauge Theory Calculations to the Exascale and Beyond. The European Physical
Journal A, 55(11):199, November 2019.

[238] Frank Noé, Simon Olsson, Jonas Köhler, and Hao Wu. Boltzmann generators:
Sampling equilibrium states of many-body systems with deep learning. Science,
365(6457), September 2019.

[239] M. S. Albergo, G. Kanwar, and P. E. Shanahan. Flow-based generative models for
Markov chain Monte Carlo in lattice field theory. Physical Review D, 100(3):034515,
August 2019.

[240] Mohamed Hibat-Allah, Martin Ganahl, Lauren E. Hayward, Roger G. Melko, and
Juan Carrasquilla. Recurrent Neural Network Wavefunctions. arXiv:2002.02973
[cond-mat, physics:physics, physics:quant-ph], February 2020.

[241] Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione. An introduction to quan-
tum machine learning. Contemporary Physics, 56(2):172–185, April 2015.

[242] Ville Bergholm, Josh Izaac, Maria Schuld, Christian Gogolin, M. Sohaib Alam,
Shahnawaz Ahmed, Juan Miguel Arrazola, Carsten Blank, Alain Delgado, Soran
Jahangiri, Keri McKiernan, Johannes Jakob Meyer, Zeyue Niu, Antal Száva, and
Nathan Killoran. PennyLane: Automatic differentiation of hybrid quantum-classical
computations. arXiv:1811.04968 [physics, physics:quant-ph], February 2020.

[243] Andrea Mari, Thomas R. Bromley, Josh Izaac, Maria Schuld, and Nathan Killoran.
Transfer learning in hybrid classical-quantum neural networks. arXiv:1912.08278
[quant-ph, stat], December 2019.

[244] Guillaume Verdon, Jacob Marks, Sasha Nanda, Stefan Leichenauer, and Jack Hidary.
Quantum Hamiltonian-Based Models and the Variational Quantum Thermalizer Al-
gorithm. arXiv:1910.02071 [quant-ph], October 2019.

[245] Michael Broughton, Guillaume Verdon, Trevor McCourt, Antonio J. Martinez,
Jae Hyeon Yoo, Sergei V. Isakov, Philip Massey, Murphy Yuezhen Niu, Ramin
Halavati, Evan Peters, Martin Leib, Andrea Skolik, Michael Streif, David Von Dollen,

136

Jarrod R. McClean, Sergio Boixo, Dave Bacon, Alan K. Ho, Hartmut Neven, and Ma-
soud Mohseni. TensorFlow Quantum: A Software Framework for Quantum Machine
Learning. arXiv:2003.02989 [cond-mat, physics:quant-ph], March 2020.

137

APPENDICES

138

Appendix A

Quantum Ising model sampler

The one-dimensional transverse-field Ising model (TFIM) is prototypical example of an
exactly solvable interacting quantum system [211]. It is described by nearest neighbour
interactions between spin projections along the z axis and a magnetic field h along the
x-axis projection:

Ĥ = −J
∑
i

σ̂zi σ̂
z
i+1 − h

∑
i

σ̂xi , (A.1)

where σ̂
x/z
i are spin-1/2 Pauli operators acting on site i, and we assume periodic boundary

conditions.

This model has Z2 symmetry apparent by replacing σ̂ai → −σ̂ai for a = {x, y, z}. The
transverse hatσxi term introduces quantum fluctuations. The system undergoes a quantum
phase transition at critical field strength hc. Below hc, the ground-state is degenerate
with two solutions: all σ̂zi spins are aligned either up or down. The local order-parameter
M = 〈σ̂zi 〉 is non-zero in this region. Conversely, for h > hc, the system obeys the Z2

symmetry so that M = 0. This paramagnetic (PM) phases is called disordered.

The TFI model in one-dimension admits a dual representation as non-interacting spin-
less fermions [211]. The most general form of a non-interacting fermion Hamiltonian is:

H = 2
∑
i,j

c†iAi,jcj +
1

2
c†iBi,jc

†
j + h.c. (A.2)

139

For the specific case of the Ising model, it works out to be

Ai,i = −1, (A.3)

Ai+1,i = Ai,i+1 = − 1

2h
, (A.4)

Bi,i+1 = −Bi+1,i = − 1

2h
(A.5)

As a free system, all correlation functions can be determined from Wick’s theorem by
using only the correlation,

〈
c†c
〉
, and anomalous correlation functions,

〈
c†c†
〉

[165, 215]. A
corollary is the ground state is completely characterized by the covariance matrix

Fi,j = 〈c†ic†j〉+ 〈c†icj〉 − 〈cicj〉 − 〈cic†j〉 . (A.6)

The wavefunction is then |ψ〉 = exp
(∑

i,j Fi,jc
†
ic
†
j

)
|SD〉 where |SD〉 is the anti-symmetrized

Slater determinant state [12].

For the exact ground state, the covariance matrix simplifies to

Fi,j =
2

L

(L−1)/2∑
k=0

uk
vk

sin(|i− j|θk) (A.7)

where θk = (2k + 1)π/L and uk, vk are

uk =

√
Ek + ζk

2Ek
, vk = i

√
Ek − ζk

2Ek
, (A.8)

Ek =
√
J2 + h2 + 2Jh cos θk, (A.9)

ζk = −h− J cos k . (A.10)

This makes it possible to samples configurations of spins effectively using the Metropolis-
Hastings algorithm [12]. A spin configuration x̃ is proposed from x by flipping one or more
spins randomly. The proposed x̃ is accepted if a random number r, drawn from the range

[0, 1] is less than the min
(

1,
detFx̃,x̃

detFx,x

)
where Fx,x is the covariance matrix restricted to the

rows and columns of x which are non-zero. The fast update trick can be used to reduce
the updates cost from O(N3) time to O(N) [12]. The probability of a sample is given by
the Born rule: p(x) = |〈x|ψ〉|2 = det (Fx,x) /Z2 where Z = det(I + F) is the partition
function. Notice that in the σz basis, the wavefunction ψ(x) contains only non-negative
elements.

140

	List of Figures
	List of Tables
	Introduction
	Stochastic sampling methods
	Monte Carlo for statistical physics
	Markov chain Monte Carlo
	Metropolis-Hasting algorithm
	Gibbs sampling
	Autoregressive sampling
	Summary

	Machine Learning
	Supervised learning: polynomial regression
	Neural networks
	Stochastic gradient descent
	Classifying phases of the Ising model
	Summary

	Machine Learning Topological Defects
	Introduction
	The Kosterlitz-Thouless transition
	Classification of phases
	Learning by confusion
	Supervised learning of vortices
	When is it beneficial to learn vortices?
	Conclusion

	Super-Resolving and Renormalization Group
	Introduction
	Super-resolution and RG
	Decimation of the Ising model
	Network architecture
	Extrapolation to larger lattices

	One-dimensional Ising model
	Two-dimensional Ising model
	Approximate rescaling
	Importance of sampling
	Thermodynamic observables
	Critical Exponents

	Discussion

	Learning quantum states from measurements
	Introduction
	Restricted Boltzmann machines
	Sampling
	Training

	Positive wavefunctions with RBMs
	Complex wavefunctions
	Summary
	Transformers for state reconstruction
	Fidelity for quantum states
	Results

	Conclusion

	Quantum-inspired variational methods
	Introduction
	Quantum approximate optimization algorithm
	Variational imaginary time ansatz
	Jordan-Wigner transformation
	Exact solution
	Optimization
	Scaling
	Entanglement entropy
	Summary

	Variational Monte Carlo
	Quantum to classical mapping
	Results

	Conclusion

	Discussion and Outlook
	References
	APPENDICES
	Quantum Ising model sampler

