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articles: one co-authored with Éric Schost [15], another co-authored with Mark Giesbrecht
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Abstract

Consider the problem of computing at least one point in each connected component of
a smooth real algebraic set. This is a basic and important operation in real and semi-
algebraic geometry: it gives an upper bound on the number of connected components of
the algebraic set, it can be used to decide if the algebraic set has real solutions, and it is
also used as a subroutine in many higher level algorithms.

We consider an algorithm for this problem by Safey El Din and Schost: Polar varieties
and computation of one point in each connected component of a smooth real algebraic set,
(ISSAC’03). This algorithm uses random changes of variables that are proven to generically
ensure certain desirable geometric properties. The cost of the algorithm was given in an
algebraic complexity model, and the analysis of the bit complexity and the error probability
were left for future work.

We also consider another algorithm that solves a special case of the problem. Namely,
when the algebraic set is a compact hypersurface.

We determine the bit complexity and error probability of these algorithms. Our main
contribution is a quantitative analysis of several genericity statements, such as Thom’s weak
transversality theorem and Noether normalization properties for polar varieties. Further-
more, in doing this work, we have developed techniques that can be used in the analysis of
further randomized algorithms in real algebraic geometry, which rely on related genericity
properties.
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Chapter 1

Introduction

1.1 Randomization and generic coordinate systems

In this thesis, we focus on randomized algorithms in real algebraic geometry, where the
input is a sequence of polynomials F = (f1, . . . , fp) in C[X1, . . . , Xn] defining a complex
algebraic set V = V (F ) ⊂ Cn. We focus on algorithms which require the input to satisfy
certain geometric properties, and which ensure these properties by applying a randomly
chosen change of coordinates A ∈ Cn×n to the input: given f in C[X1, . . . , Xn], fA denotes
the polynomial f(AX), and V A = V (FA) denotes the variety

V
(
fA1 , . . . , f

A
p

)
.

The success of these algorithms depend on the change of coordinates being lucky, in the
sense of there existing a non-empty Zariski open subset O ⊂ Cn×n with the property that,
when the change of coordinates A is in O, the desirable geometric properties are guar-
anteed for V A. We have developed techniques for analyzing the error probability of such
algorithms, which allow us to quantify our random choices for the change of coordinates
A. These techniques work as follows. We bound the degree of the hypersurface defining
the complement of the open set O :

V (Γ) = Cn×n − O, Γ ∈ C[A],

where A = (Aj,k)1≤j,k≤n are n2 indeterminants. We quantify our choice of A by choosing
a subset of rational numbers S ⊂ Q and constructing a matrix A = (aj,k)1≤j,k≤n by taking
aj,k ∈ S; hence, by the DeMillo-Lipton-Schwartz–Zippel lemma,

P[Γ(A) = 0] ≤ deg Γ

|S|
.
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1.2 Main problem: computing one point in each con-

nected component of a real algebraic set

1.2.1 Three cases we consider

We consider the problem of computing at least one point in each connected component of
a real algebraic set S. This is a basic but important operation in real and semi-algebraic
geometry. It is used in many higher level algorithms. It is also useful on its own, since it
allows one to decide if S is empty or not, and it allows one to determine an upper bound
on the number of connected components of S.

We consider three separate cases:

1. S is given as S = V ∩Rn, where V = V (f) ⊂ Cn is a smooth and compact, complex
hypersurface defined by a squarefree polynomial f ∈ Z[X1, . . . , Xn].

2. S is given as S = V ∩Rn, where V = V (f) ⊂ Cn is a smooth, complex hypersurface
defined by a squarefree polynomial f ∈ Z[X1, . . . , Xn].

3. S is given as S = V ∩ Rn, where V = V (F ) ⊂ Cn is a smooth, complex algebraic
set defined by a sequence of polynomials F = (f1, . . . , fp) in Z[X1, . . . , Xn] defining
a radical ideal.

1.2.2 Overview of the algorithms for the three cases

Here we give a breif overview of the algorithms for each of the three cases. In Section 3.3,
we discuss the algorithms in greater detail.

Case 1. It is sufficient to compute the critical points of the projection on a line, which
has dimension zero in generic enough coordinates. Indeed, assuming that V (f) ∩ Rn is
compact, any projection on a line has a critical point on each connected component of
V (f) ∩ Rn [4, 5].

Case 2. After dropping the compactness assumption, it is no longer guaranteed for the
critical points of the projection on a line to contain one point in each connected component
of V (f) ∩ Rn. Now, in this non-compact senario, we use the algorithm by Safey El Din
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and Schost: Polar varieties and computation of one point in each connected component
of a smooth real algebraic set, ISSAC’03. In this paper, it is shown that by computing
suitable zero-dimensional sections of higher dimensional critical loci called polar varieties
(first introduced in the 1930’s in order to define characteristic classes [30, 40], and which
we will discuss in great detail in Chapter 3), one obtains one point on each connected
component.

Case 3. Here we develop an extension of the algorithm used for case 2. The extension in-
volves a different approach for modeling polar varieties in terms of Lagrangian systems, with
new Lagrange variables. Solution sets are first computed with these additional Largange
variables. Then, one point on each connected component is obtained by computing the
projection on the X-space.

1.2.3 Background

For this section we only consider case 3 because it is the most general. Recall that we then
have S given as S = V ∩ Rn, where V = V (F ) ⊂ Cn is a smooth, complex algebraic set
defined by a sequence of polynomials F = (f1, . . . , fp) in Z[X1, . . . , Xn] defining a radical
ideal. And suppose that the polynomials F = (f1, . . . , fp) each have total degree at most
d, and coefficients of bit-size h.

The algorithm given in [8, Section 13.1] will compute one point in each connected
component of V (F )∩Rn using pn+1dO(n) operations in Q (that is, without making additional
assumption on F ). Furthermore, the output of the algorithm is represented by polynomials
of degree dO(n) and with coefficients of bit-size hdO(n). The main idea used in this algorithm
originates with [21], where sample points are found through the computation of critical
points of well-chosen functions on V (F ). The number of connected components of V (F )
admits the lower bound dΩ(n), so up to polynomial factors this result is optimal. However,
due to the generality of the algorithm, the constant hidden in the exponent O(n) in its
runtime is large, because the algorithm relies on infinitesimal deformations1 that affect the
runtime non-trivially; this makes the algorithm impractical.

In each of the 3 cases, we assume that the V is a smooth complex algebraic set. And we
place ourselves in the continuation of the line of work initiated by [4], where cases with V
smooth and V ∩Rn compact are dealt with. Here it is also pointed out how polar varieties

1Infinitesimal deformations are used as an alternative method for perturbing the input and establishing
genericity properties, for randomized algorithms in real algebraic geometry.
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(see Chapter 3) can play a role in effective real geometry. This paper was extended in
several directions. Firstly, to V being a smooth complete intersection and with V ∩ Rn

compact [5]. Then, without the compactness assumption [34, 6]. Finaly, the smoothness
assumption was then partly dropped in [2, 3].

For cases 2 and 3, as stated above, we use the algorithm from [34]. If the setting is
changed so that V has finitely many singularities, then this algorithm will still work up
to some minor modifications. However, if V has infinitely many singularities then the
algorithm will most likely not work any longer, although we don’t know for sure.

1.3 Main results

To state our main results, we need to define the height of a rational number, and of a
polynomial with rational coefficients. We provide this now, as well as the data structures
we rely on.

1.3.1 Bit size and data structures

The height of a non-zero a = u/v ∈ Q is the maximum of ln(|u|) and ln(v), where u ∈ Z and
v ∈ N are coprime. For a polynomial f with rational coefficients, if v ∈ N is the minimal
common denominator of all non-zero coefficients of f , then the height ht(f) of f is defined
as the maximum of the logarithms of v and of the absolute values of the coefficients of vf .
Note that when f has integer coefficients, this is simply the maximum of the logarithms
of the absolute values of these coefficients.

The output of the algorithms is a finite set in Qn. To represent it, we rely on a
widely used data structure based on univariate polynomials [27, 28, 16, 19, 1, 17, 18, 31].
Consider a zero-dimensional algebraic set S ⊂ Cn defined over Q. A zero-dimensional
parametrization Q = ((q, v1, . . . , vn), λ) of S consists in polynomials (q, v1, . . . , vn), such
that q ∈ Q[T ] is monic and squarefree, all vi’s are in Q[T ] and satisfy deg(vi) < deg(q),
and in a Q-linear form λ in variables X1, . . . , Xn, such that

• λ(v1, . . . , vn) = Tq′ mod q;

• we have the equality S =
{(

v1(τ)
q′(τ)

, . . . , vn(τ)
q′(τ)

)
| q(τ) = 0

}
.
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The constraint on λ says that the roots of q are the values taken by λ on S. The
parametrization of the coordinates by rational functions having q′ as a denominator goes
back to [27, 28]: as pointed out in [1], it allows one to control precisely the size of the
coefficients of v1, . . . , vn.

1.3.2 The compact hypersurface case

Theorem 1.3.1. Suppose that f ∈ Z[X1, . . . , Xn] is squarefree, satisfies deg(f) ≤ d and
ht(f) ≤ b, and that V (f) ⊂ Cn is smooth and compact. Also suppose that 0 < ε < 1.

There exists a randomized algorithm that takes f and ε as input and produces a zero-
dimensional parameterization that includes at least one point in each connected component
of V (f) ∩ Rn, with probability at least 1 − ε. Otherwise, the algorithm either returns a
proper subset of the points, or FAIL. In any case, the algorithm uses

O∼(d3n+1(log 1/ε)(b+ log 1/ε))

bit operations. The polynomials in the output have degree at most dn, and height

O∼(dn+1(b+ log 1/ε)).

Here we assume that f is given as a dense polynomial. Following references such as [19, 17,
18, 4, 34], it would be possible to refine the runtime estimate by assuming that f is given
by a straight-line program, which is a sequence of operations +,−,× that takes as input
X1, . . . , Xn and evaluates f . Any polynomial of degree d in n variables can be computed
by a straight-line program that does O(dn) operations: evaluate all monomials of degree
up to d in n variables, multiply them by their respective coefficients and sum the results.
However, some inputs may be given by shorter straight-line program, and the algorithm
would actually be able to benefit from this.

1.3.3 The hypersurface case, without compactness

As it turns out, even after dropping the compactness assumption, by using the algorithm
by Safey El Din and Schost in [34], we can achieve the same soft oh complexity as we did
for case 1.

Theorem 1.3.2. Suppose that f ∈ Z[X1 . . . , Xn] is squarefree, satisfies deg(f) ≤ d and
ht(f) ≤ b, and that V (f) ⊂ Cn is smooth. Also suppose that 0 < ε < 1.

5



There exists a randomized algorithm that takes f and ε as input and produces n zero-
dimensional parameterizations, the union of whose zeros includes at least one point in each
connected component of V (f)∩Rn, with probability at least 1− ε. Otherwise, the algorithm
either returns a proper subset of the points, or FAIL. In any case, the algorithm uses

O∼(d3n+1(log 1/ε)(b+ log 1/ε))

bit operations. The polynomials in the output have degree at most dn, and height

O∼(dn+1(b+ log 1/ε)).

Here we again assume that f is given as a dense polynomial. And, as was true for case 1,
we could again refine the runtime estimate by assuming that f is given by a straight-line
program.

1.3.4 The general case

Now we generalize from the hypersurface case, where V = V (f) is defined by the vanish-
ing of a single polynomial f ∈ C[X1, . . . , Xn], to varieties defined by finite sequences of
polynomials:

V = V (F ) = V (f1, . . . , fp) ⊂ Cn,

where F = (f1, . . . , fp) ∈ C[X1, . . . , Xn]p is a sequence of polynomials defining a radical
ideal.

Remark 1.3.3. Even though case 2 is covered by case 3, the techniques are different enough
that we decided to document both separately in this thesis.

Theorem 1.3.4. Let F = (f1, . . . , fp) ∈ Z[X1 . . . , Xn]p be a sequence of polynomials with
deg(fi) ≤ d and ht(fi) ≤ b. Suppose that the ideal 〈f1, . . . , fp〉 is radical and that V =
V (F ) ⊂ Cn is smooth with dimV = n− p. Also suppose that 0 < ε < 1.

There exists a randomized algorithm that takes F and ε as input and produces n zero-
dimensional parameterizations, the union of whose zeros includes at least one point in each
connected component of V (F )∩Rn, with probability at least 1−ε. Otherwise, the algorithm
either returns a proper subset of the points, or FAIL. In any case, the algorithm uses

O∼(d3n+2p+1(log 1/ε)(b+ log 1/ε))

bit operations. The polynomials in the output have degree at most dn+p, and height

O∼(dn+p+1(b+ log 1/ε)).

6



Here we assume that F is given as a sequence of dense polynomials. Again, following
references such as [19, 17, 18, 4, 34], it would be possible to refine the runtime estimate
by assuming that F is given by a straight-line program. Indeed, given F = (f1, . . . , fp)
in C[X1, . . . , Xn], we can build a straight-line program that evaluates each fi in O(dn)
operations, by computing all monomials of degree up to d, multiplying them by the corre-
sponding coefficients in fi, and adding results. The number of operations here is thus

O(ndn) = O∼(dn).

1.3.5 Summary of contributions

As we dicussed in Section 1.1, the algorithms rely on certain geometric properties that
hold generically, and which we ensure by applying a carefully chosen change of coordinates
A ∈ Cn×n to our input variety V ⊂ Cn. The algorithms also rely on some additional, lucky,
parameter choices, which we discuss in full detail in Section 3.2. Our main contributions
are to analyze precisely what conditions on our parameter choices guarantee success, for
each of the 3 cases of the main problem that we consider. This is done by revisiting the
key ingredients in the proofs given in [4] and [34], and giving quantitative versions of these
results, bounding the degrees of the hypersurfaces we have to avoid. And in doing this
work, we have developed techniques that can be used in the analysis of further randomized
algorithms in real algebraic geometry, which rely on related types of genericity properties.
See the conclusions in Chapter 9 for a specific example.

1.4 Thesis outline

Chapter 2 provides the basic definitions and notation used throughout. Chapter 3 gives the
main algorithms along with their genericity properties. Here we give genericity statements,
which we prove in subsequent chapters. These statements are the key tools that we use to
prove the main results that were given in Section 1.3. We also define polar varieties and
discuss their central role in the algorithms. In Chapter 4, we define weak transversality and
prove a quantitative version of Thom’s weak transversality, specialised to the particular
case of transversality to a point. In Chapter 5, we apply this new quantitative transversality
result in proving several of our genericity statements. In Chapter 6, we prove some other
genericity statements. We prove the remaining genericity statements in Chapter 7; these
consist in Noether normalization properties for polar varieties. In Chapter 8, we provide
an analysis of the bit complexity and error probability of our algorithms. And we give
conclusions in Chapter 9.
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Chapter 2

Preliminaries

Let Q,R and C be the fields of rational, real and complex numbers, and Z the ring of
integers. Let X = (X1, . . . , Xn) be a sequence of variables, and for l ∈ {1, . . . , n} let X≤l
be the subsequence of variables (X1, . . . , Xl).

2.1 Algebraic sets

Consider a sequence of polynomials F = (f1, . . . , fp) in C[X1, . . . , Xn]. An algebraic set :

V = V
(
F ) = V (f1, . . . , fp)

= {(a1, . . . , an) ∈ Cn | f1(a1, . . . , an) = . . . = fp(a1, . . . , an) = 0} ⊂ Cn

is the set of common zeros of F . Given an algebraic set X ⊂ Cn, the set of polynomials in
C[X1, . . . , Xn] that vanish at all points of X is called the ideal of X, and which we denote
by

I(X) = {f ∈ C[X1, . . . , Xn] | (a1, . . . , an) ∈ X ⇒ f(a1, . . . , an) = 0} .

2.1.1 Irreducibility

An algebraic set V ⊂ Cn is irreducible when V = V1 ∪ V2 implies V = V1 or V = V2, for
any V1, V2 ⊂ V . An algebraic set V ⊂ Cn can be uniquely decomposed into a finite union
of irreducible algebraic sets:

V = V1 ∪ V2 ∪ . . . Vr,
where Vj, 1 ≤ j ≤ r, are called the irreducible components of V .

8



2.1.2 Dimension

The dimension of an algebraic set V ⊂ Cn, denoted dimV, can be defined in the following
ways:

1. The number of generic hyperplanes needed to intersect with V to obtain a finite set.

2. The Krull dimension of C[X1, . . . , Xn]/I(V ), which is the supremum of the lengths
of all chains of prime ideals

The codimension of V is n−dimV . An algebraic set is equidimensional if each irreducible
component has the same dimension. If each component has dimension d then we say the
algebraic set is d-equidimensional.

We especially care about zero dimensional algebraic sets; these sets are finite and their
degree is equal to their cardinality.

2.1.3 Degree

The degree of an irreducible algebraic set is the number of intersection points between itself
and dim(V ) generic hyperplanes. And the degree of an arbitrary algebraic set is defined
as the sum of the degrees of its irreducible components.

Example 2.1.1. An algebraic set of dimension zero is a finite set, with degree equal to its
cardinality (as mentioned above).

Example 2.1.2. An algebraic set of dimension 1 is a curve, with degree equal to the
number of intersection points with a generic hyperplane.

We will often apply Bézout’s bound [22, Theorem 1], which tells us the following.
Considering a sequence of polynomials F = (f1, . . . , fp) ∈ K[X1, . . . , Xn]p, with K a field,
if each polynomial in the sequence has degree at most D, then the algebraic set V (F ) has
degree at most Dp.

2.1.4 Noether position

For i ∈ {1, . . . , n− p+ 1}, let πi denote the projection

Cn → Ci

(x1, . . . , xn) 7→ (x1, . . . , xi).

9



A d-equidimensional algebraic set Y ⊂ Cn is in Noether position for the projection πd when
the extension

C[X1, . . . , Xd]→ C[X1, . . . , Xn]/I(Y )

is integral; here, I(Y ) ⊂ C[X1, . . . , Xn] is the defining ideal of Y . It is then a consequence
that, for any x ∈ Cd, the fiber Y ∩ π−1

d (x) has dimension zero and is thus finite and not
empty.

2.1.5 The Zariski topology

Algebraic sets are the closed sets of the Zariski Topology on Cn. Let V ⊂ Cn be an algebraic
set. The Zariski Topology is the set of all sub-varieties of V . Indeed,

1. V (C[X1, . . . , Xn]) = V ({0}) and V (∅) = V ({1}) = Cn;

2. V (S) ∪ V (T ) = V (R) when R = {fg | f ∈ A, g ∈ B};

3.
⋂
α∈A V (Sα) = V (

⋃
α∈A Sα).

Parts (1) and (3) are easily seen to be true. To prove part (2), first suppose that x ∈
V (S) ∪ V (T ), and, without loss of generality, assume that x ∈ V (S). Then for f ∈ S and
g ∈ T, f(x) = 0, which implies that (fg)(x) = 0, and thus x ∈ V (R). Now assume that
x 6∈ V (S) ∪ V (T ) and choose f ∈ S and g ∈ T such that f(x) 6= 0 and g(x) 6= 0. Then
fg ∈ R but (fg)(x) 6= 0, and therefore x 6∈ V (R).

Example 2.1.3. Consider the following particular instance of 2 from above:

{(a, b), (c, d)} = V (x− a, y − b) ∪ V (x− c, y − d)

= V ((x− a)(x− c), (x− a)(y − d), (x− c)(y − b), (y − b)(y − d)).

This subsection on the Zariski Topology is inspired from lecture notes written by
Stephen New, in the class PMATH 764: Introduction to Algebraic Geometry.

2.2 The Zariski-tangent space and regular / singular

points and values

Assume that V ⊂ Cn is a d-equidimensional algebraic set. Let gradx(f) be the evaluation
of the gradient vector of f ∈ C[X1, . . . , Xn] at x ∈ Cn. The Zariski-tangent space to V at
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x ∈ V is the vector space TxV defined by the equations

gradx(g) · v = 0,

for all polynomials g that vanish on V (i.e. for all polynomials g ∈ I(V )).

The point x ∈ V is a regular point if dim(TxV ) = d. Otherwise x is a singular point.
We let reg(V ) and sing(V ) respectively denote the regular and singular points of V . The
image of a regular point is a regular value and the image of a singular point is a singular
value. When sing(V ) is empty then we say that V is smooth.

The following is a direct consequence of [14, Corollary 16.20]

Proposition 2.2.1. If V ⊂ Cn is a d-equidimensional algebraic set with ideal I(V ) gen-
erated by polynomials

G = (g1, . . . , gp) ∈ C[X1, . . . , Xn]p,

then at any point x of reg(V ), jacx(G) has full rank n− dim(V ) and the kernel of jacx(G)
is equal to TxV.

2.3 Changes of variables

For a matrix A in Cn×n and a polynomial g in C[X1, . . . , Xn], we write

gA := g(AX) ∈ C[X1, . . . , Xn],

where X is the column vector with entries X1, . . . , Xn. And for a sequence of polynomials
G = (g1, . . . , gp) ∈ C[X1, . . . , Xn]p, we write

GA =
(
gA1 , . . . , g

A
p

)
= (g1(Ax), . . . , gp(Ax)) ∈ C[X1, . . . , Xn]p.

For a variety Y ⊂ Cn and a matrix A ∈ GL(n), we define Y A as the image of Y by the
map φA : x 7→ A−1x. Notice that

V (GA) = φA(V (G)) = V (G)A.

We will also have to consider matrices with generic entries. For this, we introduce n2

new indeterminates (Aj,k)1≤j,k≤n. Then, A will denote the matrix with entries (Aj,k)1≤j,k≤n,
C(A) will denote the rational function field C((Aj,k)1≤j,k≤n) and C[A] the polynomial ring
C[(Aj,k)1≤j,k≤n]. For g as above, we will then define the polynomial gA := g(AX), which
we may consider in either C(A)[X1, . . . , Xn] or C[A, X1, . . . , Xn].
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Chapter 3

Algorithms

To describe the algorithms, we need to define polar varieties.

3.1 Critical points and polar varieties

Let V = V (F ) be an equidimensional algebraic set, with F = (f1, . . . , fp) a sequence of
polynomials in C[X1, . . . , Xn]. Suppose that the ideal 〈f1, . . . , fp〉 is radical and that V is
smooth with dimV = n− p.

Polar varieties are higher dimensional critical loci that were introduced in the 1930’s
in order to define characteristic classes [30, 40]. They play a central role in each algorithm
we consider (in each of the cases 1, 2, and 3). Recall that, for i ∈ {1, . . . , n − p + 1}, we
denote by πi the projection

Cn → Ci

(x1, . . . , xn) 7→ (x1, . . . , xi).

A critical point is a singular point on the projection πi. In other words, the point x ∈ V is
a critical point if the dimension of πi(TxV ) is less than i. The i-th polar variety

W (πi, V ) := {x ∈ V | dim πi(TxV ) < i}

is the set of critical points of πi on V .
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3.1.1 Determinantal modeling of polar varieties

Let jac(F, i) denote the truncated Jacobian matrix of F = (f1, . . . , fp) with respect to
X = (X1, . . . , Xn) : 

∂f1
∂Xi+1

. . . ∂f1
∂Xn

...
...

∂fp
∂Xi+1

. . . ∂fp
∂Xn

 .
And let

Minors(F, p) = (Mi,1, . . . ,Mi,Si
)

be the minors of size p of jac(F, i). Notice that

Si =

(
p

p

)(
n− i
p

)
=

(
n− i
p

)
.

For each i in {1, . . . , n− p+ 1} and F as above, we will let I(i, F ) denote the sequence of
polynomials (

F,Minors(F, p)
)

=
(
f1, . . . , fp,Mi,1, . . . ,Mi,Si

)
.

Proposition 3.1.1. Consider F = (f1, . . . , fp) in C[X1, . . . , Xn]. If the ideal defined by F
is radical and V = V (F ) is smooth with dimV = d, then the polar variety

W (πi, V ) = {x ∈ V | dimπi(TxV ) < i}

is defined by F and Minors(F, p).

To prove Proposition 3.1.1, we will use the following two lemmas.

Lemma 3.1.2. Let Ã =

[
A
B

]
∈ Rm×n be a matrix. Then,

rank(Ã) = rank(A) + rank(B| ker(A)),

where B| ker(A) is the restriction of the linear map defined by B to the kernel of A.

Proof. By the rank nullity theorem, we have that

dim ker(A) = rank(B| ker(A)) + dim ker(B| ker(A))

= rank(B| ker(A)) + dim(ker(B ∩ ker(A))

= rank(B| ker(A)) + dim(ker(Ã))
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Therefore,
m− rank(A) = rank(B| ker(A)) +m− rank(Ã)

so that
rank(Ã) = rank(A) + rank(B| ker(A)).

Lemma 3.1.3. Consider F = (f1, . . . , fp) in C[X1, . . . , Xn] and x ∈ V (f1, . . . , fp). Let J
denote the Jacobian matrix jacx(F ) and let T denote the kernal of J. Assume the dimension
of T is equal to d so that the rank of J is equal to n− d. Then, for i ∈ {1, . . . , n− p+ 1},
the dimension of πi(T ) is less than i if and only if the rank of jac(F, i) is less than n− d.

Proof. Let J̃ denote the matrix  0p×i jac(F, i)

Ii 0i×n−i

 .
Now we can calculate the rank of J̃ in two different ways. We have

rank(J̃) = i+ rank(jac(F, i)).

And, by Lemma 3.1.2,

rank(J̃) = rank(J) + dim(πi(ker(J)))

= rank(J) + dim(πiT )

= n− d+ dim πi(T ).

Equating both we have

i+ rank(jac(F, i)) = n− d+ dim πi(T ),

which implies that
rank(jac(F, i)) + (i− dim πi(T )) = n− d.

Therefore, the rank of jac(F, i) is less than n − d if and only if the dimension of πi(T ) is
less than i.
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Now Proposition 3.1.1 follows from Lemma 3.1.3 and therefore the polar varietyW (πi, V )
is defined by the vanishing of F and Minors(F, p). Furthermore, this means that when
V = V (F ) = V (f) is a hypersurface, then the polar variety W (πi, V (f)) is defined by

V

(
f,

∂f

∂Xi+1

, . . . ,
∂f

∂Xn

)
.

Consider the following example.

Example 3.1.4. ([36, Example 3.1]) Let f = X2
1 + X2

2 + X2
3 − 1 ∈ C[X1, X2, X3] and

consider the hypersurface

V = V (X2
1 +X2

2 +X2
3 − 1) ⊂ C3.

The critical points of the projection π2 : (x1, x2, x3) 7→ (x1, x2) on V (f) are defined by

X2
1 +X2

2 +X2
3 − 1 = X3 = 0

and thus the second polar variety W (π2, V (f)) is V (f, ∂f/∂X3) .

Now, the critical points of the projection π1 : (x1, x2, x3) 7→ (x1) on V (f) are defined by

X2
1 +X2

2 +X2
3 − 1 = X2 = X3 = 0.

and thus the first polar variety W (π1, V (f)) is V (f, ∂f/∂X2, ∂f/∂X3) .

Note the dimensions of the polar varieties: i− 1.
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Figure 3.1: The polar varieties W (0, 1, V (f)) and W (0, 2, V (f)), where

f = X2
1 +X2

2 +X2
3 − 1 ∈ C[X1, X2, X3]

[36, Example 3.1].

Proposition 3.1.5. Let F = (F1, . . . , fp) ∈ C[X1, . . . , Xn]p be a sequence of polynomials
defining a radical ideal and a smooth variety. The degree of W (πi, V ) is at most (nd)n.

Proof. The conclusion follows from [23, Proposition 2.3].

3.1.2 Lagrangian modeling of polar varieties

When the algebraic set V = V (F ) = V (f1, . . . , fp) is defined by a sequence of polynomials
with n− i ∼ 2p, the length of the sequence of minors Minors(F, p) is

Si =

(
n− i
p

)
∼ 2n−i+1.

The number of equations therefore grows exponentially and the determinantal modeling
becomes impractical algorithmically. To avoid this problem, we use an alternative modeling
of the polar varieties which involves introducing Lagrange variables.

Definition 1. Let L = (L1, . . . , Lp) be new indeterminants. Then Lagrange(F, i, (L1, . . . , Lp))
denotes the entries of the vector

[L1 · · ·Lp] · jac(F, i),

where the Jacobian is in the variables (Xi+1, . . . , Xn).
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Let W (πi, V ) denote the variety

V (F,Lagrange(F, i, (L1, . . . , Lp))) ⊂ Cn+p

in indeterminants X = (X1, . . . , Xn) and L = (L1, . . . , Lp). We want to enforce that
l = (0, . . . , 0) is not included in any solutions; we add a linear form

∑p
i=1 ui · Li − 1, for a

randomly chosen point u = (u1, . . . , up) ⊂ Cp. We let Wu(πi, V ) denote the variety

V

(
F,Lagrange(F, i, (L1, . . . , Lp)),

p∑
i=1

ui · Li − 1

)
⊂ Cn+p,

again in indeterminants X = (X1, . . . , Xn) and L = (L1, . . . , Lp). We further let I (i, F )
denote the polynomials

(F,Lagrange(F, i, (L1, . . . , Lp))) ∈ C[X,L]p+n−i,

and for u = (u1, . . . , up) ∈ Cp, we let Iu(i, F ) denote the polynomials(
F,Lagrange(F, i, (L1, . . . , Lp)),

p∑
i=1

uiLi − 1

)
∈ C[X,L]p+n−i+1.

Example 3.1.6. Consider again f = X2
1 +X2

2 +X2
3 − 1 ∈ C[X1, X2, X3] and

V (X2
1 +X2

2 +X2
3 − 1) ⊂ C3.

Since jac(X2
1 +X2

2 +X2
3 − 1, 2) = 2X3, the Lagrangian modeling gives us

V (X2
1 +X2

2 +X2
3 − 1, LX3, L− 1) = V (X2

1 +X2
2 − 1, X3, L− 1),

where the equations on the right hand side are a lexicographically ordered Gröbner basis of
the ideal 〈X2

1 +X2
2 +X2

3 − 1, LX3, L− 1〉. Notice that we have only 1 Lagrange multiplier,
L, and we have u = (u) = (1), but any u 6= 0 would suffice here. We therefore have that

πX(V (X2
1 +X2

2 − 1, X3, L− 1))

describes the set where
X2

1 +X2
2 +X2

3 − 1 = X3 = 0

and therefore describes the polar variety W (π2, V (f)).
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Proposition 3.1.7. The degree of Wu(πi, V ) is at most d p+n.

Proof. Let g1, . . . , gn−i in C[X,L] denote the Lagrange polynomials :

Lagrange(F, i, (L1, . . . , Lp)) = [L1 · · ·Lp] · jac(F, i).

Since each polynomial in the sequence F = (f1, . . . , fp) has degree at most d, the degrees of
each gi are also bound by d. Thus, after adding the linear form

∑p
i=1 uiLi− 1, by Bézout’s

bound, we obtain
deg Wu(πi, V ) ≤ d p+n−i+1 ≤ d p+n.

3.2 Genericity statements

Here we state the genericity properties that each algorithm requires, and we state the key
results which are used in the proofs of Theorems 1.3.1, 1.3.2, and 1.3.4. In generic coor-
dinates, polar varieties are smooth, equidimensional, and in Noether position (or empty).
The genericity statements given in this section are quantitative versions of these facts.

Recall that an equidimensional algebraic set Y ⊂ Cn of dimension d is in Noether
position for the projection πd when the extension

C[X1, . . . , Xd]→ C[X1, . . . , Xn]/I(Y )

is integral, and here, I(Y ) ⊂ C[X1, . . . , Xn] is the defining ideal of Y . And recall that it
then follows that, for any x ∈ Cd, the fiber Y ∩ π−1

d (x) has dimension zero, so it is finite
and not empty.

3.2.1 The hypersurfase cases

Consider f ∈ Z[X1, . . . , Xn] with total degree d, and assume that f is squarefree and that
V (f) ⊂ Cn is smooth. The keys to proving Theorems 1.3.1 and 1.3.2 are the following
results.

First recall that, for i in {1, . . . , n} and f as above, we let I(i, f) denote the sequence
of n− (i− 1) polynomials (

f,
∂f

∂Xi+1

, . . . ,
∂f

∂Xn

)
.
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As pointed out in the introduction, their zero-set is the i-th polar variety W (πi, V (f)).

We say that f satisfies Hi if

1. For any x in W (πi, V (f)), the Jacobian matrix jacx(I(i, f)) has full rank n− (i− 1)
at x.

By the Jacobian Criterion [14, Corollary 16.20], this implies that W (πi, V (f)) is
either empty or (i− 1)-equidimensional, and that I(i, f) defines a radical ideal.

2. W (πi, V (f)) is either empty or in Noether position for πi−1.

Given σ = (σ1, . . . , σi−1) in Ci−1, we further say that f and σ satisfy H′i if

1. For any root x of(
X1 − σ1, . . . , Xi−1 − σi−1, f,

∂f

∂Xi+1

, . . . ,
∂f

∂Xn

)
,

the Jacobian matrix of these equations at x has full rank n.

By the Jacobian Criterion [14, Corollary 16.20], this implies that there are finitely
many solutions to these equations.

The proof of Theorem 1.3.2 requires both Hi and H′i for all i in {1, . . . , n}. However,
Theorem 1.3.1 only requires Hi (for the same i in {1, . . . , n}).

The input polynomial f may not initially satisfy Hi. However, it will after applying a
generic change of variables. The precise statements are the following.

Theorem 3.2.1. For i = 1, . . . , n, there exists a non-zero polynomial hi ∈ C[A] of degree
at most 5n2(2d)2n such that if A ∈ Cn×n does not cancel hi, then A is invertible and fA

satisfies Hi.

Theorem 3.2.2. For i = 1, . . . , n, suppose that f satisfies Hi, then there exists a non-zero
polynomial gi ∈ C[S1, . . . , Si−1] of degree at most d2n such that if σ ∈ Ci−1 does not cancel
gi, then f and σ satisfy H′i.

We prove Theorem 3.2.1 in Section 5.1.1 and 7.1. And we prove Theorem 3.2.2 in
Section 5.1.2. For the compact hypersurface case, case 1, when proving Theorem 1.3.1, only
Theorem 3.2.1 is used. For the hypersurface case, case 2, after removing the compactness
assumption, when proving Theorem 1.3.2, both Theorems 3.2.1 and 3.2.2 are used.
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3.2.2 The general case

Consider a sequence of polynomials F = (f1, . . . , fp) ∈ Z[X1, . . . , Xn]p, with degrees at
most d, defining a radical ideal 〈f1, . . . , fp〉 and a smooth variety V = V (F ) ⊂ Cn, and
with dimV = n− p.

Establishing correctness for Lagrange systems. We need to prove that for a care-
fully chosen u ∈ Cp, we have the inclusion

Iu(i, F ) ∩ C[X1, . . . , Xn] ⊂
√

I(i, F ).

For i ∈ {1, . . . , n−p+1}, let Z be an irreducible component of the polar variety W (πi, V ).

Lemma 3.2.3. There exists a non-zero vector of rational functions

l = (l1, . . . , lp) =

(
N1

D1

, . . . ,
Np

Dp

)
∈ C(Z)p,

and an open and dense subset Z
′ ⊂ Z defined by

1. D1(x) ·D2(x) · · ·Dp(x) 6= 0,

2. Nj(x) 6= 0, for some j ∈ {1, . . . , p},

and such that for x ∈ Z ′, l(x) · jacx(F, i) = 0.

Proof. Recall that for x ∈ Z, the rank of jacx(F, i) is at most p − 1, because W (πi, V ) is
defined by the vanishing of F and Minors(F, p). Now, at x ∈ Z, consider the Jacobian
matrix jacx(F, i) with entries taken modulo the ideal I(Z), and consider these entries as

elements in C(Z); let J̃ denote this matrix (note that since Z is irreducible, the function
field C(Z) is well defined). Since the p-minors of jacx(F, i) are zero over x ∈ Z, the p-

minors of J̃ are also zero at x ∈ Z. And therefore the rank of J̃ is also at most p − 1 at
x ∈ Z. Thus, some well defined l ∈ C(Z)p−{0} exists with rational entries in x. and with

l(x) · J̃ = 0. Since l is well defined, D1(x) ·D2(x) · · ·Dp(x) 6= 0 and since l 6= 0, Nj(x) 6= 0,
for some j ∈ {1, . . . , p}. Therefore l(x) · jacx(F, i) = 0 as well.

Using the same notation from the lemma above, let K denote the polynomial

K := D1 · · ·DpNj ∈ C[X1, . . . , Xn]− {0}. (3.1)
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Proposition 3.2.4. The degree of K is at most 2n2d.

Proof. The degrees of each denominator Dl and numerator Nk, 1 ≤ l, k ≤ p, are bound
by the degrees of the polynomials in the sequence Minors(F, p), which are at most nd.
Therefore the degree of K is at most

(p+ 1)nd ≤ (n+ 1)nd ≤ 2n2d.

Now, for Z
′

as in the proof of the lemma above, let lZ be the vector of rational functions
corresponding to the irreducible component Z. Consider the open set

OZ :=
{
u ∈ Cp | uT · lZ 6= 0

}
.

We know, trivially, that OZ is not empty, because lZ 6= 0. Let O denote the intersection

O :=
⋂
Z

OZ ,

which we also know to be open and non-empty because it is a finite intersection of non-
empty open sets.

Proposition 3.2.5. For u ∈ O, we have the inclusion

Iu(i, F ) ∩ C[X1, . . . , Xn] ⊂
√

I(i, F ).

In proving Proposition 3.2.5, we will need the following two lemmas.

Lemma 3.2.6. Take any u ∈ O. For all irreducible components Z of W (πi, V ), there
exists a Zariski open and dense subsets Zo ⊂ Z

′
, such that if x ∈ Zo then uT · lZ(x) 6= 0.

Proof. For x ∈ Z, let ψ denote the mapping

Z → C(Z)

x 7→ uT · lZ(x).

By Lemma 3.2.3, we know ψ is a rational function in x. Let us write

ψ(x) =

p∑
i=1

uiNi(x)

Di(x)
=
u1N1(x)D2(x) · · ·Dp(x) + . . .+ upNp(x)D1(x) · · ·Dp−1(x)

D1(x) · · ·Dp(x)
.
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Denote by D(x) the non-zero product D1(x) · · ·Dp(x) and put

Zo := {x ∈ Z | D(x) · ψ(x) 6= 0}
= {x ∈ Z | u1N1(x)D2(x) · · ·Dp(x) + . . .+ upNp(x)D1(x) · · ·Dp−1(x) 6= 0}.

Notice that Zo is not empty becuae u ∈ O. Hence, Zo is both open and dense in Z, because
Zo 6= ∅, Z is irreducible, and Zo ⊂ Z

′ ⊂ Z. By construction we also have that if x ∈ Zo

then D(x)ψ(x) = D(x)(uT · lZ(x)) 6= 0 so that uT · lZ(x) 6= 0.

Lemma 3.2.7. Let u ∈ O and consider the algebraic set Wu(πi, V ). For all irreducible
components Z of W (πi, V ), we have the inclusion

Zo ⊂ πX (Wu(πi, V )) .

Proof. By Lemma 3.2.6, x ∈ Zo implies that uT · lZ(x) 6= 0. Set

αx =

(
x,

(
1

uT · lZ(x)

)
lZ(x)

)
.

Then F (x) = 0, (
1

uT · lZ(x)

)
lZ(x) · jacx(F, i) =

(
1

uT · lZ(x)

)
· 0 = 0,

and

uT ·
(

1

uT · lZ(x)

)
lZ(x)− 1 = ·

(
uT · lZ(x)

uT · lZ(x)

)
− 1 = 1− 1 = 0,

so that αx ∈ Wu(πi, V ). Therefore Zo ⊂ πX (Wu(πi, V )) .

Now take P ∈ Iu(i, F ) ∩ C[X1, . . . , Xn], and Z an irreducible component of W (πi, V ).
Then, for x ∈ Zo it follows from Lemma 3.2.7 that there exists α ∈ Cp with (x,α) ∈
Wu(πi, V ). Then

P (x,α) = P (x) = 0.

Hence, P is zero on Zo, and thus P is also zero on Z by the definition of Zariski closure.
Therefore, P is zero on W (πi, V ), and thus P is in

√
I(i, F ). This finishes the proof of

Proposition 3.2.5.
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Genericity statements. For i ∈ {1, . . . , n− p+ 1}, we say that F satisfies Gi if

1. W (πi, V (F )) is either empty or (i− 1)-equidimensional.

2. For any (x, l) in W (πi, V (F )), the Jacobian matrix of I (i, F ) has full rank p+n− i
at (x, l).

By the Jacobian Criterion [14, Corollary 16.20], this implies that I (i, F ) defines a
radical ideal.

3. W (πi, V (F )) is either empty or in Noether position for πi−1.

For i ∈ {1, . . . , n− p+ 1}, assuming that F satisfies Gi, given σ = (σ1, . . . , σi−1) in Ci−1,
we further say that F and σ satisfy G′i if

1. For any (x, l) in W (πi, V (F )), the Jacobian of the system of polynomials

X1 − σ1, . . . , Xi−1 − σi−1, F,Lagrange(F, i, (L1, . . . , Lp))

has full rank p+ n− 1.

By the Jacobian Criterion [14, Corollary 16.20], this implies that there are finitely
many solutions to these equations.

2. The point σ = (σ1, . . . , σi−1) is not in πi−1(V (K) ∩W (πi, V )), where K is the poly-
nomial from 3.1.

Now, let Zi,1, . . . , Zi,ri be the irreducible components of W (πi, V (F )) so that

W (πi, V (F )) =

ri⋃
k=1

Zi,k.

We in addition say that u satisfies G
′′

i when

1. u ∈ O :=
{
u ∈ Cp | uT · lZi,1

6= 0, . . . ,uT · lZi,ri
6= 0
}
.

We prove the following.

Theorem 3.2.8. For i = 1, . . . , n− p+ 1, there exists a non-zero polynomial ∆i ∈ C[A] of
degree at most 6n2(2d)5n such that if A ∈ Cn×n does not cancel ∆i, then FA satisfies Gi.
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Theorem 3.2.9. For i = 1, . . . , n− p+ 1, suppose that F satisfies Gi, then there exists a
non-zero polynomial Ξi ∈ C[S1, . . . , Si−1] of degree at most 3n(nd)3n such that if σ ∈ Ci−1

does not cancel Ξi, then F and σ satisfy G′i.

Theorem 3.2.10. For i = 1, . . . , n − p + 1, there exists a non-zero polynomial Υi ∈
C[T1, . . . , Tp] of degree at most (nd)n such that if u ∈ Cp does not cancel Υi, then u
satisfies Gi

′′.

Theorem 3.2.8 is proven in Sections 5.2.1, 5.2.2, and 7.2. Theorem 3.2.9 is proven in Section
5.2.4 and Chapter 6. And Theorem 3.2.10 is proven next.

3.2.3 Proof of Theorem 3.2.10

Recall that after fixing i ∈ {1, . . . , n− p+ 1}, we define

O =
{
u ∈ Cp | uT · lZi,1

6= 0, . . . ,uT · lZi,ri
6= 0
}
,

where Zi,1, . . . , Zi,ri are the irreducible components of W (πi, V (F )), and hence the number
of defining equations for O is ri : the number of irreducible components. Notice that each
defining equation is linear with degree equal to 1. We want to avoid u ∈ Cp − O; this
means that u is unlucky when

uT · lZi,k
= 0,

for any 1 ≤ k ≤ ri. Since each linear form has degree 1, the polynomial Υi ∈ C[T1, . . . , Tp]
defining the complement of O :

V (Υi) := Cp − O,

has degree bounded above by ri, which in turn is bounded above by the degree ofW (πi, V (FA).
Therefore, by Proposition 3.1.5,

deg Υi ≤ degW (πi, V (F )) ≤ (nd)n.

3.2.4 Related results in the literature

Some related results appear in the literature. For instance, Lemma 5 in [25] or Proposition
4.5 in [26] are quantitative Noether position statements. However, Theorems 3.2.1 and
3.2.8 do not follow from these previous results. Indeed, those references would allow us to
quantify when W (πi, V (F ))A is in Noether position, whereas we need to understand when
W (πi, V (FA)) is. And these two sets are in general different; for instance, their dimensions
may vary.
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3.3 Main algorithms

3.3.1 The compact hypersurface case

Recall the setting for case 1: S is given as S = V ∩Rn, where V = V (f) ⊂ Cn is a smooth
and compact, complex hypersurface defined by a squarefree polynomial f ∈ Z[X1, . . . , Xn].
If A ∈ Cn×n is such that fA satisfies H1(1), then to obtain one point in each connected
component it suffices to compute the first polar variety:

W
(
π1, V (fA)

)
= V

(
fA,

∂fA

∂X2

, . . . ,
∂fA

∂Xn

)
(3.2)

which describes the critical points of the projection on a line; and will have dimension zero
[4, 5]. To solve the equations (3.2), we use the algorithm in [37], for which a complete bit
complexity analysis is available.

3.3.2 The hypersurface case, without compactness

Now recall case 2: S is given as S = V ∩Rn, where V = V (f) ⊂ Cn is a smooth, complex
hypersurface defined by a squarefree polynomial f ∈ Z[X1, . . . , Xn]. For i in {1, . . . , n},
assuming that f satisfies Hi, and assuming that f and σ = (σ1, . . . , σi−1) ∈ Qi−1 satisfy
H
′
i , it suffices to solve the systems defined by

X1 − σ1, . . . , Xi−1 − σi−1, f,
∂f

∂Xi+1

, . . . ,
∂f

∂Xn

, (3.3)

for i = 1, . . . , n. They all admit finitely many solutions, and Theorem 2 in [34] proves
that the union of their solution sets contains one point on each connected component of
V ∩ Rn. And once again, to solve the equations (3.3), we use the algorithm in [37], for
which a complete bit complexity analysis is available.

3.3.3 The general case

And finally, recall case 3: S is given as S = V ∩ Rn, where V = V (F ) ⊂ Cn is a
smooth, complex algebraic set defined by a sequence of polynomials F = (f1, . . . , fp) in
Z[X1, . . . , Xn] defining a radical ideal. For i in {1, . . . , n−p+1}, assuming that F satisfies

25



Gi, and assuming that F and σ = (σ1, . . . , σi−1) ∈ Ci−1 satisfy G′i, it suffices to solve the
systems defined by

X1 − σ1, . . . , Xi−1 − σi−1, F
A,Minors(FA, p) (3.4)

for i = 1, . . . , n−p+1. They all admit finitely many solutions, and Theorem 2 in [34] proves
that the union of their solution sets contains one point on each connected component of
V ∩Rn. However, since the number of minors can grow exponentially in n (recall that the
number of minors equals Si ∼

(
n−i
p

)
= 2n−i+1 when n− i ∼ 2p) we avoid explicitly solving

the equations in (3.4) and instead use the Lagrangian modeling of polar varieties. If in
addition we assume that u ∈ Cp satisfies G

′′

i , then we can instead solve the equations

X1 − σ1, . . . , Xi−1 − σi−1, F
A,Lagrange(FA, i, (L1, . . . , Lp)),

p∑
i=1

uiLi − 1, (3.5)

and then compute the projections of each solution set on the X-space.

Proposition 3.3.1. For i ∈ {1, . . . , n − p + 1}, assuming that F satisfies Gi, F and
σ = (σ1, . . . , σi−1) ∈ Ci−1 satisfy G

′
i, and assuming that u = (u1, . . . , up) ∈ Cp satisfies

G
′′
i , if x ∈ Cn is a solution of the system

X1 − σ1, . . . , Xi−1 − σi−1, F,Minors(F, p)

then x is also a solution of the system

X1 − σ1, . . . , Xi−1 − σi−1, F,Lagrange(F, i, (L1, . . . , Lp)),

p∑
i=1

uiLi − 1

after projecting to the X-space.

Proof. Recall notation from Section 3.2.2. Since F and σ satisfy G
′
i(2),

σ 6∈ πi−1 (V (K) ∩W (πi, V ))

(where K is the polynomial from 3.1) and therefore an irreducible component Z of W (πi, V )
exists with x in the open set Z

′ ⊂ Z (recall definitions from Lemma 3.2.3). Hence,
lZ(x) 6= (0, . . . , 0). And since u satisfies G

′′
i , we also have that u · lZ(x) 6= (0, . . . , 0). Now,

by the same argument given in the proof of Lemma 3.2.7, we have that

x ∈ πX(Wu(πi, V )).
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Therefore, by computing the solutions of the equations 3.5 and then computing the pro-
jection on the X-space, we will not miss any points on the polar varieties W (πi, V ). Fur-
thermore, in Chapter 5, we prove Proposition 5.2.9, which tells us that for any u ∈ Cp,
assuming that F satisfies Gi(1) and Gi(2), we have the inclusion√

I(i, F ) ⊂ Iu(i, F ).

And it therefore follows that,

πX (Wu(πi, V )) ⊂ V
(√

I(i, F )
)

= W (πi, V ).

This means that, if we take any point that satisfies the Lagrangian system 3.5, then its
image, by the projection mapping to the X variables, is in the polar variety.

And again, to solve the equations (3.5), we use the algorithm in [37], for which a
complete bit complexity analysis is available.
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Chapter 4

Transversality

This chapter will require the following definitions and notation.

4.1 Definitions and notation: critical points of poly-

nomials mappings

If Ψ : Y → Ct is a mapping from a smooth algebraic set Y to Ct, with t ≤ dim(Y ), a
critical point of Ψ is a point y ∈ Y such that the image of the tangent space TyY by the
differential dY Ψ has dimension less than t. When for instance Y = Cv, we have TyY = Cv

and this condition is equivalent to the Jacobian of Ψ having rank less than t at y. Critical
values are the images by Ψ of critical points; the complement of this set are the regular
values (so a regular value is not necessarily in the image of Ψ).

4.2 Weak tranversality

Let n, s, and m be positive integers, with m ≤ n, and denote by Φ : Cn × Cs → Cm

a mapping defined by polynomials in C[X,Θ], where X, resp. Θ, is a set of n, resp. s,
indeterminates. And for ϑ in Cs, consider the induced mapping

Φϑ : Cn → Cm

x 7→ Φ(x,ϑ).
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Thom’s weak transversality theorem, as given for instance in [13], tells us that if 0 is
a regular value of Φ, then for a generic ϑ ∈ Cs, 0 is a regular value of the induced
mapping Φϑ, where here transversality to a point is rephrased entirely in terms of critical
and regular values. We have developed the following quantitative version of Thom’s weak
transversality.

Proposition 4.2.1 (Weak transversality). Let O ⊂ Cn be a Zariski open set and suppose
that 0 is a regular value of Φ on O×Cs. Then there exists a non-zero polynomial Γ ∈ C[Θ]
of degree at most dm+n such that for ϑ in Cs, if Γ(ϑ) 6= 0 then 0 is a regular value of Φϑ

on O.

This result allows us to establish the first items in properties Hi and Gi, as well as prop-
erties H′i and G

′
i.

Thom’s weak transversality generalizes Sard’s lemma, which states that the set of criti-
cal values of a smooth function Rn → Rm has measure zero. In Thom’s weak transversality,
the unlucky parameters show up as the critical values of a smooth function. For us, the
unlucky parameters are the changes of variables A ∈ Cn×n that don’t establish the proper-
ties we want, and the points σ = (σ1, . . . , σi−1) ∈ Ci−1 that don’t establish the properties
we want. One can give algebraic versions of Sard’s lemma, for semi-algebraic mappings
Rn → Rm as in [10, Chapter 9], or polynomial mappings Cn → Cm as in [29, Chapter 3],
for which the sets of critical values are contained in strict semi-algebraic, resp. algebraic
sets in the codomain.

The following simple example shows this result at work.

Example 4.2.2. Consider a squarefree polynomial f in C[X1, X2], with degree at most d,
defining a smooth curve V (f) in C2, and let the mapping Φ : C2 × C→ C2 be defined by

Φ(X1, X2,Θ) = (f(X1, X2), X1 −Θ).

One checks that the Jacobian of Φ with respect to (X1, X2,Θ) has full rank two at any point
in Φ−1(0), which is to say that 0 is a regular value of Φ and therefore the assumptions of
the proposition apply. We then deduce that a non-zero polynomial Γ ∈ C[Θ] exists, with
degree at most d4 with the property that, if ϑ in C does not cancel Γ then 0 is a regular
value of the induced mapping Φϑ. That is, for all ϑ in C except a finite number, the ideal

(f(X1, X2), X1 − ϑ)

is radical in C[X1, X2]; equivalently, f(ϑ,X2) is squarefree.
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Now, if we take a finite subset S ⊂ C, then for ϑ ∈ S chosen randomly, independently
and uniformly, it then follows by DeMillo-Lipton-Schwartz–Zippel that

P[Γ(ϑ) = 0] ≤ d4

|S|
.

We will revisit this example in Sections 5.1.2 and 5.2.4 (when proving H
′
i and G

′
i(1)).

4.3 Proof of Proposition 4.2.1 (weak transversality)

The rest of this chapter is devoted to proving the proposition. The proof of [36, Theorem
B.3] already shows the existence of Γ; it is essentially the classical proof for smooth map-
pings [13, Section 3.7], written in an algebraic context. In what follows, we revisit this
proof, establishing a bound on the degree of Γ.

As mentioned above, Thom’s weak transversality theorem is a generalization of Sard’s
Lemma, which states that the set of critical values of a smooth function has measure zero;
unlucky parameters show up as the critical values of this function. The proof begins by
characterizing the critical points of this function.

4.3.1 Characterizing the critical points

Put V
′
= Φ−1(0)∩ (O ×Cs), and let V be the Zariski closure of V

′
. If V is empty, there is

nothing to do, since all values ϑ in Cs satisfy the conclusion of the proposition. We therefore
assume that V is not empty. Take (x, ϑ) in V

′
; then by assumption, jac(x,ϑ)(Φ) has full rank

m. Since in a neighborhood of (x, ϑ), V coincides with Φ−1(0) ∩O, the Jacobian criterion
[14, Corollary 16.20] implies that there is a unique irreducible component V(x,ϑ) of V that
contains (x, ϑ), that (x, ϑ) is regular on this component, that dimV(x,ϑ) = n + s −m and
that T(x,ϑ) is the nullspace of jac(x,ϑ)(Φ).

Since every irreducible component of V intersects V
′
, this implies that V itself is equidi-

mensional of dimension n+ s−m, and thus that V
′

is contained in reg(V ). Furthermore,
it also follows that for (x,ϑ) ∈ V ′ , T(x,ϑ)V is the nullspace of jac(x,ϑ)(Φ) in Cn × Cs.

We will reuse the following fact, proved in [36]. Consider the projection

π : Cn+s → Cs

(x,ϑ) 7→ ϑ,
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and let Z be the set of critical points of π|V ′ . That is,

Z := {(x,ϑ) ∈ V ′ | dim(π(Tx,ϑV
′
)) < s}.

Consider its projection π(Z) in Cs. This is the set of critical values of π|V ′ . Also let Z
′

be the critical points of π| reg(V ) so that, by the algebraic form of Sard’s lemma (see [29,
Theorem 3.7] for irreducible V

′
and [36, Proposition B.2] for general V

′
), its Zariski closure

π(Z ′) is a strict closed subset of Cs. Then, since V
′ ⊂ reg(V ) and since Z ⊂ Z

′
, the Zariski

closure π(Z) is a strict closed subset of Cs. As we will see below, if ϑ ∈ Cs is not in π(Z),
then 0 is a regular value of Φϑ on O.

To describe the set Z of critical points of π|V ′ , let M denote the (s + m) × (s + n)
Jacobian matrix with entries in C[X,Θ] given by

M = jacX,Θ(π,Φ) =

[
jacX,Θ(π)
jacX,Θ(Φ)

]
=

[
0s×n Is
jacX,Θ(Φ)

]
.

Lemma 4.3.1. For (x,ϑ) in V
′
, (x,ϑ) is in Z if and only if the matrix M has rank less

than s+m at (x,ϑ).

Proof. Take (x,ϑ) on V
′
, and let K(x,ϑ) be the Jacobian matrix jacX,Θ(Φ) taken at

(x,ϑ). Then, the rank of M (x,ϑ) can be written as

rank(K(x,ϑ)) + rank([0s×n Is] | kerK(x,ϑ)),

where the latter is the rank of the restriction of [0s×n Is] to the nullspace of K(x,ϑ).

Since (x,ϑ) ∈ V ′ and since 0 is a regular value of Φ, K(x,ϑ) has full rank codim(V ) =
m. On the other hand, the nullspace of K(x,ϑ) is the tangent space Tx,ϑV , and

rank([0s×n Is] | kerK(x,ϑ))

is the dimension of π(Tx,ϑV ). In other words, the rank of M (x,ϑ) is equal to m +
dim(π(Tx,ϑV )); this implies the claim in the lemma.

Therefore, we can characterize the set Z of critical points of π|V as those points satisfying
Φ(x,ϑ) = 0 and where all minors of M of order s + m vanish. We can actually describe
this set using a smaller matrix, by discarding certain minors that are identically zero. Let
indeed J denote the m×n submatrix of the Jacobian of Φ consisting of the first n columns.
This is the Jacobian matrix of Φ with respect to X.
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Lemma 4.3.2. For (x,ϑ) in V
′
, (x,ϑ) is in Z if and only if J(x,ϑ) has rank less than

m.

Proof. Notice

M(x,ϑ) =

[
0s×n Is
J(x,ϑ) J ′(x,ϑ)

]
,

where J ′ consists of the remaining columns of the Jacobian matrix of Φ. Then, the rank
of the former matrix is equal to the rank of

M(x,ϑ) =

[
0s×n Is
J(x,ϑ) 0m×s

]
,

and the conclusion follows.

In particular, take ϑ in Cs − π(Z). Then for all x in Φ−1
ϑ (0) on O, (x,ϑ) is in V

′
, so it

is not in Z. The previous lemma then implies that the Jacobian matrix J of Φϑ has full
rank m at (x,ϑ). In other words, 0 is a regular value of Φϑ, as claimed.

4.3.2 Bounding the degree of the set of critical values

Our next step is to bound the degree of the critical points Z, from which we can bound the
degree of π(Z), the Zariski closure of the critical values, and prove Proposition 4.2.1. To
obtain an estimate on the degree of Z, rather than considering minors of J , we will rewrite
the condition that J(x,ϑ) has rank less than m as the existence of a non-trivial left kernel
element. For this, we once again introduce Lagrangian systems. We let L = (L1, . . . , Lm) be
new variables, thought of as Lagrange multipliers, and consider the Lagrange polynomials
L1, . . . ,Ln, with

[L1 · · ·Ln] = L · J(x,ϑ).

Denote by Z ⊂ Cn+s+m the algebraic set defined by the vanishing of L1, . . . ,Ln and Φ,
and denote by Z′ the algebraic set

Z′ := Z ∩ O × Cs × Cn − {(x,ϑ, 0, . . . , 0) ∈ Cn+s+m | (x,ϑ, 0 . . . , 0) ∈ Z},

where the bar denotes Zariski closure (we have to remove such points, since L1 = · · · =
Lm = 0 is always a trivial solution to the Lagrange equations). Finally, consider the
projection

µ : Cn+s+m → Cn+s

(x,ϑ, `) 7→ (x,ϑ).
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Lemma 4.3.3. The critical points Z are contained in µ(Z′).

Proof. Take (x,ϑ) ∈ Z. Then, there exists l 6= (0, . . . , 0) ∈ Cn and x ∈ O, with

l · J(x,ϑ) = 0.

Thus, (x,ϑ) ∈ µ(Z′) so that Z ⊂ µ(Z′).

Let Y be an irreducible component of Z′. There exists an open and dense subset Y o ⊂ Y
such that for all (x,ϑ, l) ∈ Y o, x ∈ O and l 6= 0. It then follows that µ(Y o) ⊂ Z and
µ(∪Y Y o) ⊂ Z; thence,

µ(∪Y Y o) ⊂ Z. (4.1)

Now put W := µ(Z′).

Lemma 4.3.4. The algebraic set π(Z) is equal to π(W ).

Proof. Since
∪Y Y o = Z

′
,

we get

W = µ(Z′) = µ(∪Y Y o) = µ(∪Y Y o) ⊂ Z,

where the last inclusion follows by 4.1 above. Hence, by lemma 4.3.3,

Z ⊂ µ(Z′) ⊂ µ(Z′) = W ⊂ Z.

Then
π(Z) ⊂ π(W ) ⊂ π(Z),

so that
π(Z) ⊂ π(W ) ⊂ π(Z) = π(Z).

And therefore,
π(Z) = π(W ).

Corollary 4.3.5. The degree of π(Z) is at most dm+n.
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Proof. The algebraic set Z is defined by m+n equations, all of them having degree at most
d. It follows from Bézout’s bound [22] that deg(Z) ≤ dm+n, and the same upper bound
holds for deg(Z′), since it consists of certain irreducible components of Z. Since degree will
not increase after projection or closure,

deg(W ) = deg(µ(Z′)) ≤ deg(Z
′
).

And by Lemma 4.3.4,
deg(π(Z)) = deg(π(W )) ≤ deg(W ).

It then suffices to take for Γ any non-zero polynomial of degree at most dm+n that vanishes
on π(Z); this proves Proposition 4.2.1.
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Chapter 5

Applications of weak transversality

5.1 Applications: the hypersurface case

Let f ∈ Z[X1, . . . , Xn] be squarefree with total degree d, and with V (f) ⊂ Cn smooth.

5.1.1 Application: proof of Hi(1)

In what follows, we fix i in {1, . . . , n} and we prove the following: there exists a non-zero
polynomial hi,1 ∈ C[A] of degree at most 2nd2n such that if A ∈ Cn×n does not cancel hi,1,
then A is invertible and fA satisfies Hi(1).

The following construction is already in [4]; our contribution is the degree estimate.
We let Φ : Cn × Cn×n → Cn−i+1 be the mapping defined by the polynomials(

f, grad(f) · Ai+1, . . . , grad(f) · An

)
,

where A1, . . . ,An denote the columns of A and · is the dot-product.

Lemma 5.1.1. 0 is a regular value of Φ.

Proof. Let (x,A) ∈ Cn×Cn×n be a zero of Φ. We have to show that the Jacobian matrix
of the equations defining Φ, taken with respect to X and A, has full rank n − i + 1 at
(x,A). If we set

Fj =
∂f

∂X1

Ai+j,1 + . . .+
∂f

∂Xn

Ai+j,n, 1 ≤ j ≤ n− i,
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this Jacobian matrix is equal to
∂f
∂X1

. . . ∂f
∂Xn

. . . 0 . . . 0 . . . 0 . . . 0
∂F1
∂X1

. . . ∂F1
∂Xn

. . . ∂f
∂X1

. . . ∂f
∂Xn

. . . 0 . . . 0
. . .

. . .
. . .

. . .
. . .

∂Fn−i

∂X1
. . . ∂Fn−i

∂Xn
. . . 0 . . . 0 . . . ∂f

∂X1
. . . ∂f

∂Xn

 ,

where the first columns are indexed by X1, . . . , Xn and the further ones by

A1,i+1, . . . ,An,i+1, . . . ,A1,n, . . . ,An,n.

Since f(x) = 0, our assumption on f implies that at least one of its partial derivatives is
non-zero at x, and the conclusion follows.

Since all equations defining Φ have degree at most d, it follows by Proposition 4.2.1 that
there exists a non-zero polynomial Γi ∈ C[A] of degree at most d2n−i+1 ≤ d2n, with the
property that, if A ∈ Cn×n does not cancel Γi, then the Jacobian matrix of

ΦA =
(
f, grad(f) ·Ai+1, . . . , grad(f) ·An

)
,

taken with respect to X, has full rank n − i + 1 at all x that cancels equations. We then
define

hi,1 := Γi det(A);

this is a non-zero polynomial of degree at most d2n + n ≤ 2nd2n.

Let us verify that hi,1 satisfies the claim in the preamble. Take A in Cn×n, such that
hi,1(A) is non-zero. Clearly, A is invertible; it remains to check that fA satisfies Hi(1).
Thus, we take x that cancels (

fA,
∂fA

∂Xi+1

, . . . ,
∂fA

∂Xn

)
and we prove that the Jacobian matrix of these equations, taken with respect to X, has
full rank n − i + 1 at x. Using the chain rule, the equations above can be rewritten as
ΦA(Ax), so their Jacobian matrix at x has the same rank as that of ΦA at Ax, that is,
n− i+ 1. Our claim is proved.

In Chapter 7, we will need the following by-product of this result: if we consider
fA ∈ C(Aj,k)[X1, . . . , Xn] as defined Section 2.3, this polynomial satisfies the rank property
Hi(1).
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5.1.2 Application: proof of H′i

Let f ∈ Z[X1, . . . , Xn] and i be as before. We now assume that f satisfies Hi(1), and we
prove the following: there exists a non-zero polynomial gi ∈ C[S1, . . . , Si−1] of degree at
most d2n such that if σ = (σ1, . . . , σi−1) ∈ Ci−1 does not cancel gi, then for any root x of(

X1 − σ1, . . . , Xi−1 − σi−1, f,
∂f

∂Xi+1

, . . . ,
∂f

∂Xn

)
,

the Jacobian matrix of these equations at x has full rank n.

Let Ψ : Cn × Ci−1 → Cn be the mapping defined by the polynomials(
X1 − S1, . . . , Xi−1 − Si−1, f,

∂f

∂Xi+1

, . . . ,
∂f

∂Xn

)
.

Lemma 5.1.2. 0 is a regular value of Ψ.

Proof. At all zeros (x,σ) of Ψ, the Jacobian matrix of Ψ has full rank n. Indeed, indexing
columns by X1, . . . , Xn, S1, . . . , Si−1, this matrix is equal to[

Ii−1 0(i−1)×(n−i+1) −Ii−1

jacx

(
f, ∂f

∂Xi+1
, . . . , ∂f

∂Xn

)
0(n−i+1)×(i−1)

]
.

Since the Jacobian of f, ∂f/∂Xi+1, . . . , ∂f/∂Xn at x is non-zero (by Hi), the entire matrix
must have full rank n. Thus, 0 is a regular value of Ψ.

Since all polynomials defining Ψ have degree at most d, it follows by Proposition 4.2.1
that there exists a non-zero polynomial gi in C[S1, . . . , Si−1] of degree at most d2n, with
the following property: if gi(σ) 6= 0 then at any root x of(

X1 − σ1, . . . , Xi−1 − σi−1, f,
∂f

∂Xi+1

, . . . ,
∂f

∂Xn

)
,

the Jacobian matrix of these equations has full rank n. Theorem 3.2.2 is proven.
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5.2 Applications: the general case

Let F = (f1, . . . , fp) ∈ Z[X1, . . . , Xn]p be a sequence of polynomials defining a radical
ideal, and where the degree of each polynomial is at most d. Also, assume that the variety
V (F ) ⊂ Cn is smooth. Recall that A denotes the matrix of indeterminates with entries
(Aj,k)1≤j,k≤n and let Ji(X,A) denote the matrix

jacx(F )
A1,1 . . . A1,n

...
...

Ai,1 . . . Ai,n

 .
Consider elements a ∈ Cin as vectors of length i of the form a = (a1, . . . ,ai) with ai ∈ Cn.
Then for such an a, Ji(X,a) is naturally defined with the indeterminates evaluated at a.
We say that a has rank i when a is a sequence of linearly independent vectors. Let Φ
define the polynomial mapping

Cn+p+i × Cin → Cp+n

(x,λ,ϑ,a) 7→ (F (x), [λ1, · · · , λc, ϑ1, · · · , ϑi] · Ji(x,a))

and Φa the induced mapping

Cn+p+i → Cp+n

(x,λ,ϑ) 7→ Φ(x,λ,ϑ,a).

Let A be defined by the rank conditions: rank(jacx(F )) = p and λ = (λ1, . . . , λp) 6= 0. In
[7, Section 3.2], it is shown that, for any (x,λ,ϑ,a) in A , the Jacobian matrix jac(x,λ,ϑ,a) Φ
has full rank p + n, which in particular holds for (x,λ,ϑ,a) in Φ−1(0) and therefore 0
is a regular value of Φ. It therefore follows by Proposition 4.2.1, there exists a non-zero
polynomial Γi ∈ C[A1,1, . . . ,Ai,n] of degree at most

d(n+p+i)+(p+n) ≤ d3n+2n = d5n,

such that if a ∈ Ci×n does not cancel Γi, then 0 is a regular value of Φa. Thus, for
(x,λ,ϑ) ∈ A ∩Φ−1

a (0), the Jacobian matrix jac(x,λ,ϑ)(Φa) has full rank p+ n.

5.2.1 Application: proof of Gi(1)

In what follows, we fix i in {1, . . . , n − p + 1}, and we prove the following: There exists
a non-zero polynomial ∆i,1 ∈ C[A] of degree at most nd5n such that if A ∈ Cn×n does
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not cancel ∆i,1, then A is invertible and the polar variety W (πi, V (FA) is either empty or
(i− 1)-equidimensional.

Consider A ∈ Cn×n such that the first i rows of A−1 do not cancel Γi, and let b denote
the first i rows of A−1. Note that b has full rank i. Let B ∈ C(A)−C denote A−1 and let
B1 = [B1,1, . . . ,B1,n], . . . ,Bn = [Bn,1, . . . ,Bn,n] denote the rows of B. Set

∆i,1 := Γi(B1, . . . ,Bi) · (detA)deg Γi .

By multiplying through by (detA)deg Γi , we cancel all denominators and thus make ∆i,1 a
polynomial.

Lemma 5.2.1. The degree of ∆i,1 is at most nd5n.

Proof. Assume that

Bi,j = Ni,j/Di,j, Ni,j,Di,j ∈ C[A]− {C}.

Then, degNi,j ≤ n−1 ≤ n, and since we have cleared all denominators Di,j by multiplying
through with (detA)deg Γi , we therefore obtain

deg ∆i,1 ≤ n deg Γi ≤ nd5n.

Now put
Y (a) := {x ∈ V (F ) | rank Ji(X,a) < p+ i} .

Lemma 5.2.2. For A ∈ Cn×n with ∆i,1(A) 6= 0,

Y A(b) = W
(
πi, V

(
FA
))
.

Proof. Let L1, . . . , Lp and T1, . . . , Ti be new indeterminants. First note that if A ∈ Cn×n

satisfies
∆i,1(A) = Γi(b1,1, . . . , bi,n) · (detA)d

5n 6= 0,

so that
Γi(b1,1, . . . , bi,n) 6= 0,

then we have that, for (x,λ,ϑ) ∈ A ∩Φ−1
b (0), the Jacobian of the polynomials

(F, [L1 · · ·Lp T1 · · ·Ti] · Ji(X, b))
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at (x,λ,ϑ) has full rank p+ n. We then have that

Y A(b) =
{
x ∈ V

(
FA
)
| rank Ji(Ax, b) < p+ i

}
.

Consider the identity jac(FA) = jac(F )AA and notice that

Ji(Ax, b) =

[
jacx(F )A

b

]
=

[
jacx(F

A)A−1[
1i 0

]
A−1

]
=

[
jacx(F

A)
jacx(πi)

]
A−1

and therefore

rank Ji(Ax, b) = rank

[
jacx(F

A)
jacx(πi)

]
.

Furthermore, since V is smooth, it follows from [14, Corollary 16.20] that for all x in
V, jacx(F ) has full rank n− dimV = n− (n− p) = p, which is a property also established
in virtue of the rank conditions on A . Therefore

Y A(b) =

{
x ∈ V (FA)

∣∣ rank jacx(F
A) = p and rank

[
jacx(

A)
jacx(πi)

]
< p+ i

}
= W

(
πi, V

(
FA
))
.

Lemma 5.2.3. Y (b) is the projection of A ∩Φ−1
b (0) on the X-space.

Proof. An element x ∈ V belongs to Y (b) if and only if rank Ji(x, b) < p+ i, which holds
if and only if there exists some non zero vector [λ,ϑ] in the right nullspace. Since b has
full rank i, we know that λ 6= 0.

Lemma 5.2.4. The set dimY (b) is either empty or has dimension i− 1.

Proof. The conclusion follows from [36, Lemma B.5, Lemma B.11].

It now follows that if A ∈ Cn×n with ∆i,1(A) 6= 0, then each irreducible component of
the polar variety has dimension i− 1. Therefore, the polar variety W (πi, V (FA)) is either
empty or (i− 1)-equidimensional; hence, Gi(1) is established.
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5.2.2 Application: proof of Gi(2)

Here we in addition prove: if A ∈ Cn×n does not cancel ∆i,1, then for any (x, l) in
W (πi, V (F )), the Jacobian matrix of I (i, F ) has full rank p+ n− i at (x, l).

Take A ∈ Cn×n so that ∆i,1(A) 6= 0, and again let b denote the first i rows of A−1.

Proposition 5.2.5. At any (x, l) ∈ W (πi, V
A), the Jacobian of the polynomials(

FA,Lagrange(FA, i, (L1, . . . , Lp))
)

has full rank p+ n− i.

Proof. Again, let L1, . . . , Lp and T1, . . . , Ti be new indeterminants. Recall from the begin-
ning of Section 5.2, that for (x,λ,ϑ) ∈ A ∩Φ−1

b (0), the Jacobian matrix of the polynomials

(F, [L1 · · · Lp T1 · · · Ti] · Ji(X, b))

has full rank p+ n. Recall that

Ji(Ax, b) =

[
jacx(F )A

b

]
=

[
jacx(F

A)A−1[
1i 0

]
A−1

]
=

[
jacx(F

A)
jacx(πi)

]
A−1

and therefore

rank Ji(Ax, b) = rank

[
jacx(F

A)
jacx(πi)

]
.

Consider the Jacobian of the polynomials

(F, [L1 · · · Lp T1 · · · Ti] · Ji(X, b))

taken with respect to the variables

X1, . . . , Xn, L1, . . . , Lp, T1, . . . , Ti,

at a point (x,λ,ϑ) that cancels equations. This Jacobian has full rank p+ n. Indeed, it is
equal to  jacx(F

A) 0p×p 0p×i
∗ ∗ ∗ ∗ ∗ ∗ Ii
∗ ∗ ∗ ∗ ∗ ∗ 0p×i

 =

 jac(x,l)(F
A) 0p×i

jac(x,l)

(
[λ,ϑ] ·

[
jacx(F

A)
jacx(πi)

]) [
Ii
0p×i

] 
=

 jac(x,l)(F
A) 0p×i

∗ ∗ ∗ Ii
jac(x,l)

(
l · jacx(F

A, i)
)

0p×i

 .
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Therefore, after rearranging blocks and after removing i columns, we can see that

jac(x,l)

(
FA, l · jacx(F

A, i)
)

=

[
jac(x,l)(F

A)

jac(x,l)

(
l · jacx(F

A, i)
) ] (5.1)

has full rank p+ n− i. Now, recall that

l · jacx(F
A, i) = Lagrange(FA, i, (L1, . . . , Lp)),

and therefore it becomes clear that, at any

(x, l) ∈ V (I (i, FA)) = W (πi, V
A),

the Jacobian of the polynomials(
FA,Lagrange(FA, i, (L1, . . . , Lp))

)
has full rank p+ n− i.

This establishes Gi(2).

5.2.3 Additional statements for Lagrangian systems

Again assume that A ∈ Cn×n has the property that ∆i,1(A) 6= 0.

Corollary 5.2.6. The ideal defined by I (i, FA) =
(
FA,Lagrange(FA, i, (L1, . . . , Lp))

)
is radical.

Proof. Given Proposition 5.2.5, the claim now follows from the Jacobian Criterion [14,
Corollary 16.20].

Proposition 5.2.7. Let u = (u1, . . . , up) ∈ Cp be any complex point. Then, for any

(x, l) ∈ Wu

(
πi, V (FA)

)
⊂ Cn+p,

the Jacobian matrix of the polynomials(
FA,Lagrange(FA, i, (L1, . . . , Lp)),

p∑
i=1

uiLi − 1

)

has full rank p+ n− i+ 1 at (x, l).
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Proof. Note that (x, l) ∈ Wu(πi, V (FA)) implies that (x, l) ∈ W (πi, V (FA)); thus, by
Proposition 5.2.5, the Jacobian of the polynomials

I (i, FA) = (FA,Lagrange(FA, i, (L1, . . . , Lp)))

has full rank p+ n− i at (x, l). The conclusion therefore holds if [0 | u] is not in the row
space of the Jacobian of the polynomials(

FA,Lagrange(FA, i, (L1, . . . , Lp)),

p∑
i=1

uiLi − 1

)
,

for any (x, l) that cancels equations. This matrix is equal to

∂fA1
∂X1

(x) . . .
∂fA1
∂Xn

(x) 01×p 01×p
. . . . . . . . .

∂fAp
∂X1

(x) . . .
∂fAp
∂Xn

(x) 01×p 01×p
. . . jacx(F

A, i)T 0n−i+1×p
01×p u1 . . . up l1 . . . lp

 ;

consider the upper left block

[
A 0p×p
B C

]
:=


∂fA1
∂X1

(x) . . .
∂fA1
∂Xn

(x) 01×p
. . . . . .

∂fAp
∂X1

(x) . . .
∂fAp
∂Xn

(x) 01×p
. . . jacx(F

A, i)T

 ,
and suppose for contradiction that [0 | u] is in the row-space. Then

[0 | u] = λ[A |0] + µ[B | C]

and
u = µ · C = µ · jacx(F

A, i)T

so that
uT = jacx(F

A, i) · µT .
Now we have a contradiction because, (x, l) is such that

l · jacx(F
A, i) = 0

⇒ l · jacx(F
A, i)µT = 0

⇒ l · uT = 0,

when by assumption l · uT = 1.
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Corollary 5.2.8. Let u = (u1, . . . , up) ∈ Cp be any complex point. Then, for any

(x, l) ∈ Wu(πi, V (FA)) ⊂ Cn+p

the ideal defined by Iu(i, FA) :(
FA,Lagrange(FA, i, (L1, . . . , Lp)),

p∑
i=1

uiLi − 1

)

is radical.

Proof. Given Proposition 5.2.7, the conclusion now follows from the Jacobian Criterion [14,
Corollary 16.20].

Proposition 5.2.9. Let u = (u1, . . . , up) ∈ Cp be any complex point. Then, for any

(x, l) ∈ Wu(πi, V (FA)) ⊂ Cn+p

we have the inclusion √
I(i, FA) ⊂ Iu(i, FA).

Proof. First note that I(i, FA) ⊂
√

Iu(i, FA). Indeed, let f ∈ I(i, FA) and

α = (x, l) ∈ V (Iu(i, FA)) = Wu(πi, V
A).

Then
∑p

i=1 uili = 1, so that l 6= (0, . . . , 0) is in the left null space and therefore the rank of
jacx(F, i) is less than p. Therefore all minors are zero at x and f(α) = f(x, l) = f(x) = 0,
so that f ∈

√
Iu(i, FA) and I(i, FA) ⊂

√
Iu(i, FA).

Now, since by Corollary 5.2.8,
√

Iu(i, FA) = Iu(i, FA), we have the inclusion√
I(i, FA) ⊂

√
Iu(i, FA) = Iu(i, FA).
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5.2.4 Application: proof of G
′

i(1)

Again let F = (f1, . . . , fp) ∈ Z[X1, . . . , Xn]p define a radical ideal and a smooth variety,
and let i ∈ {1, . . . , n − p + 1}. We now assume that F satisfies Gi, and we prove the
following: there exists a non-zero polynomial

Ξi,1 ∈ C[S1, . . . , Si−1]

of degree at most d3n such that if σ = (σ1, . . . , σi−1) ∈ Ci−1 does not cancel Ξi,1, then for
any (x, l) ∈ W (πi, V (F )), the Jacobian of the system of polynomials

(X1 − σ1, . . . , Xi−1 − σi−1, F,Lagrange(F, i, (L1, . . . , Lp)))

has full rank p+ n− 1.

Let Ψ : Cn+p × Ci−1 → Cn be the mapping defined by the polynomials

(X1 − S1, . . . , Xi−1 − Si−1, F,Lagrange(F, i, (L1, . . . , Lp))) .

Lemma 5.2.10. 0 is a regular value of Ψ.

Proof. At all zeros (x, l,σ) of Ψ, the Jacobian matrix of Ψ has full rank n+p−1. Indeed,
indexing columns by

X1, . . . , Xn, L1, . . . , Lp, S1, . . . , Si−1,

this matrix is equal to [
Ii−1 0(i−1)×(n+p−i+1) −Ii−1

jac(x,l) (F, l · jacx(F, i)) 0(p+n−i)×(i−1)

]
.

Recall that by Gi(2), the Jacobian matrix jac(x,l) (F, l · jacx(F, i)) has full rank p + n − i
at any zero (x, l). Hence, the entire matrix must have full rank p + n − 1. Thus, 0 is a
regular value of Ψ.

Since all polynomials defining Ψ have degree at most d, it follows by Proposition 4.2.1
that there exists a non-zero polynomial Ξi,1 in C[S1, . . . , Si−1] of degree at most d(n+p)+(n) ≤
d3n, with the property that, if Ξi,1(σ) 6= 0 then at any root (x, l) of

(X1 − σ1, . . . , Xi−1 − σi−1, F,Lagrange(F, i, (L1, . . . , Lp))) ,

the Jacobian matrix of these equations has full rank n+ p− 1.
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Chapter 6

Proof of G
′
i

Let F = (f1, . . . , fp) ∈ Z[X1, . . . , Xn]p define a radical ideal and a smooth variety, and let
i ∈ {1, . . . , n− p+ 1}.

6.1 Proof of G
′
i(2)

We assume that F satisfies Gi, and we prove the following: there exists a non-zero poly-
nomial

Ξi,2 ∈ C[S1, . . . , Si−1]

of degree at most 2n(nd)n+1 such that if σ = (σ1, . . . , σi−1) ∈ Ci−1 does not cancel Ξi,2,
then

σ = (σ1, . . . , σi−1) 6∈ πi−1(V (K) ∩W (πi, V )),

where K is the polynomial from 3.1.

By Propositions 3.2.4 and 3.1.5, respectively, the degree of K is at most 2n2d and the
degree of W (πi, V ) is at most (nd)n. Therefore, by Bézout’s bound,

deg V (K) ∩W (πi, V )) ≤ 2n2d(nd)n = 2n(nd)n+1.

Since degree will not increase after projection or closure,

deg πi−1(V (K) ∩W (πi, V ))) ≤ deg πi−1(V (K) ∩W (πi, V )))

≤ deg V (K) ∩W (πi, V ).
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Now take Ξi,2 ∈ C[S1, . . . , Si−1] as any non-zero polynomial of degree at most 2n(nd)n+1

that vanishes on
πi−1(V (K) ∩W (πi, V ))).

Then, since
πi−1(V (K) ∩W (πi, V ))) ⊂ πi−1(V (K) ∩W (πi, V ))),

we have that if Ξi,2(σ1, . . . , σi−1) 6= 0 then

(σ1, . . . , σi−1) 6∈ πi−1(V (K) ∩W (πi, V )),

and G
′
i(2) is satisfied.

6.2 Proof of G
′
i

Take Ξi,1 from Section 5.2.4 and Ξi,2 from Section 6.1 and put

Ξi := Ξi,1Ξi,2 ∈ C[S1, . . . , Si−1].

The degree of Ξi is at most

deg Ξi,1 + deg Ξi,2 ≤ d3n + 2n(nd)n+1

≤ (nd)3n + 2n(nd)3n

≤ 3n(nd)3n.

And if we choose σ = (σ1, . . . , σi−1) ∈ Ci−1 with Ξi(σ) 6= 0 then Ξi,1(σ) 6= 0 and Ξi,2(σ) 6=
0, so that, by Sections 5.2.4 and 6.1, respectively, F and σ satisfy both G

′
i(1) and G

′
i(2).

Theorem 3.2.9 is now proven.

47



Chapter 7

Noether position

7.1 The hypersurface case: proof of Hi(2)

Consider a squarefree polynomial f ∈ C[X1, . . . , Xn] and fix i ∈ {1, . . . , n}. We prove that
there exists a non-zero polynomial hi in n2 variables and of degree at most 5n2(2d)2n such
that if A does not cancel hi, then A is invertible and satisfies both conditions in Hi.

Consider again the matrix of indeterminates A = (Aj,k)1≤j,k≤n and the field C(A), and
define

fA ∈ C(A)[X1, . . . , Xn]

as f(AX). In Section 5.1.1, we saw that fA satisfies Hi(1), so that I(i, fA) defines a radical
ideal, and W (πi, V (fA)) is equidimensional of dimension i− 1. We now point out that fA

also satisfies Hi(2).

Lemma 7.1.1. The extension

C(A)[X1, . . . , Xi−1]→ C(A)[X1, . . . , Xn]/I(i, fA)

is integral.

Proof. Let (P`)1≤`≤L be the prime components of the radical ideal I(i, fA). By [34, Propo-
sition 1], for all `,

C(A)[X1, . . . , Xi−1]→ C(A)[X1, . . . , Xn]/P`
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is integral. Therefore polynomials q`,j ∈ C(A)[X1, . . . , Xi−1, Xj] exist, all monic in Xj,
with q`,j(Xj) ∈ P` for each j in {i, . . . , n}. Thence,

Qj :=
∏

1≤`≤L

q`,j

is monic in Xj and satisfies Qj ∈ I(i, fA), for each j ∈ {i, . . . , n}. This proves our claim.

If P is any polynomial in C(A)[X1, . . . , Xn], we will let D ∈ C[A] be the minimal com-
mon denominator of all its coefficients, and we will write P := DP , so that P is in
C[A, X1, . . . , Xn].

Lemma 7.1.2. For j = i, . . . , n, there exists a polynomial Pj in C(A)[X1, . . . , Xi−1, Xj],
monic in Xj, with Pj in I(i, fA), and such that deg(Pj) ≤ (2d)n.

Proof. We let LA denote the extension of I(i, fA) given by

LA := I(i, fA) · C(A, X1, . . . , Xi−1)[Xi, . . . , Xn].

Then,
C(A, X1, . . . , Xi−1)→ C(A, X1, . . . , Xi−1)[Xi, . . . , Xn]/LA (7.1)

is an algebraic extension. On the other hand, the previous lemma states that

C(A)[X1, . . . , Xi−1]→ C(A)[X1, . . . , Xn]/I(i, fA) (7.2)

is integral; from this, Proposition 3.3.1 in [20] implies that it is actually a free module. Any
basis of the latter is also a basis of (7.1); as a consequence, for j in i, . . . , n, the characteristic
polynomials of Xj in (7.1) or (7.2) are the same. Let Pj be the minimal polynomial of
Xj in (7.1). The previous discussion implies that the characteristic polynomial χj of Xj

in (7.1), and thus also Pj, are in C(A)[X1, . . . , Xi−1, Xj] and monic in Xj.

By definition, χj is in I(i, fA) and since there exists an integer k such that χj divides P k
j

in C(A)[X1, . . . , Xi−1][Xj], P
k
j is in I(i, fA). Since the latter ideal is radical, we conclude

that Pj is in I(i, fA). This implies that Pj is in I(i, fA) as well.

Now, consider the sequence of polynomials(
fA,

∂fA

∂Xi+1

, . . . ,
∂fA

∂Xn

)
∈ C[A, X1, . . . , Xn]n−i+1,
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let W be their zero-set, and let deg(W) be its degree, in the sense of [22]. Proposition 1
in [33] implies that Pj has degree at most deg(W). Since all polynomials defining W, seen
in C[A, X1, . . . , Xn], have degree at most 2d, the Bézout inequality of [22] gives

deg(Pj) ≤ (2d)n−i+1 ≤ (2d)n.

Our next step is to give degree bounds on the coefficients appearing in the membership
equality Pj ∈ I(i, fA). This is done using Rabinovicz’s trick. Let T be a new variable;
applying the Nullstellensatz in C(A)[X1, . . . , Xn, T ], and clearing denominators, we obtain
the existence of αj in C[A]− {0} and Cj,`, Bj in C[A][X1, . . . , Xn][T ], such that

αj =
n−i+1∑
`=1

Cj,`G` +Bj(1− PjT ), G` ∈
{
fA,

∂fA

∂Xi+1

, . . . ,
∂fA

∂Xn

}
. (7.3)

Let us then define
hi := hi,1αi · · ·αnDi · · ·Dn,

where hi,1 was defined in Section 5.1.1 and for all j, αj is as above and Dj is the leading
coefficient of Pj with respect to Xj. Thus, hi is a non-zero polynomial in C[A]; we will
estimate its degree below.

Lemma 7.1.3. Suppose that A ∈ Cn×n does not cancel hi. Then fA satisfies Hi.

Proof. By assumption, hi,1(A) is non-zero, so that A is invertible and fA satisfies Hi(1).
In particular, the ideal I(i, fA) is radical, and its zero-set W (πi, V (fA)) is either empty or
(i− 1)-equidimensional. If it is empty, we are done.

Otherwise, for j = i, . . . , n, evaluate all indeterminates in A at the corresponding entries
of A in (7.3). This gives us an equality in C[X1, . . . , Xn, T ] of the form

aj =
n−i+1∑
`=1

cj,`g` + bj(1− pjT ), g` ∈
{
fA,

∂fA

∂Xi+1

, . . . ,
∂fA

∂Xn

}
,

for aj in C, polynomials cj,` and bj in C[X1, . . . , Xn, T ] and pj in C[X1, . . . , Xi−1, Xj]. Since
neither αj nor Dj vanish at A, aj is non-zero and the leading coefficient of pj in Xj is a
non-zero constant.

The conclusion is now routine. Replace T by 1/pj in the previous equality; after clearing
denominators, this gives a membership equality of the form pkj ∈ I(i, fA), for some integer
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k ≥ 1 (we cannot have k = 0, since we assumed that W (πi, V (fA)) is not empty). Since
I(i, fA) is radical, pj is in I(i, fA). Repeating this for all j proves that

C[X1, . . . , Xi−1]→ C[X1, . . . , Xn]/I(i, fA)

is integral.

To estimate the degree of hi, what remains is to give an upper bound on the degree of
αi, . . . , αn. This will come as an application of the effective Nullstellensatz given in [11],
for which we first need to determine degree bounds, separately in X, T and A, of the
polynomials in the membership relationship:

degX,T

{
fA,

∂fA

∂Xi+1

, . . . ,
∂fA

∂Xn

}
≤ d;

degA

{
fA,

∂fA

∂Xi+1

, . . . ,
∂fA

∂Xn

}
≤ d;

degX,T (1− TPj) ≤ (2d)n + 1;

degA(1− TPj) ≤ (2d)n.

For each j ∈ {i, . . . , n}, a direct application of [11, Theorem 0.5], gives

deg(αj) ≤ (n+ 1)dn((2d)n + 1);

we will use the slightly less precise bound

deg(αj) ≤ 2n(2d)2n.

We saw in Section 5.1.1 that hi,1 has degree at most 2nd2n, and all Dj’s have degree at
most (2d)n. This gives the upper bound

deg(hi) ≤ 2nd2n + 2n2(2d)2n + n(2d)n ≤ 5n2(2d)2n.

This completes the proof of Theorem 3.2.1.

7.2 The general case: proof of Gi(3)

Now let F = (f1, . . . , fp) ∈ C[X1, . . . , Xn]p define a radical ideal and a smooth variety, and
fix i ∈ {1, . . . , n− p+ 1}. We prove that there exists a non-zero polynomial ∆i in C[A] of
degree at most 6n2(2d)5n such that if A does not cancel ∆i, then FA satisfies Gi.
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Recall that we let X = (X1, . . . , Xn) be a sequence of variables, and for l ∈ {1, . . . , n}
we let X≤l be the subsequence of variables (X1, . . . , Xl). Consider again the n× n matrix
of indeterminates

A = (Aj,k)1≤j,k≤n

and the field C(A), and define FA = (fA
1 , . . . , f

A
p ) as

(f1(AX), . . . , fp(AX)) ∈ C(A)[X]p.

7.2.1 Degree bounds for the integral dependence relationship

Lemma 7.2.1. The extension

C(A)[X≤i−1]→ C(A)[X]/
√

I(πi, FA)

is integral.

Proof. Let (P`)1≤`≤L be the prime components of
√
I(πi, FA). By [34, Proposition 1], for

all `,
C(A)[X≤i−1]→ C(A)[X]/P`

is integral. Therefore polynomials q`,j ∈ C(A)[X≤i−1, Xj] exist, all monic in Xj, with
q`,j(Xj) ∈ P` for each j in {i, . . . , n− p+ 1}. Thence,

Qj :=
∏

1≤`≤L

q`,j

is monic in Xj and satisfies Qj ∈
√
I(πi, FA), for each j ∈ {i, . . . , n− p+ 1}. This proves

our claim.

Now let u ∈ Cp be any complex number.

Corollary 7.2.2. The extension

C(A)[X≤i−1]→ C(A)[X]/(Iu(i, FA) ∩ C(A)[X])

is integral.
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Proof. By Lemma 7.2.1, polynomials Pj ∈ C(A)[X≤i−1, Xj] exist, all monic in Xj, with

Pj(Xj) ∈
√
I(πi, FA) for each j in {i, . . . , n− p+ 1}. By Proposition 5.2.9,√

I(πi, FA) ⊂ Iu(i, FA),

and therefore Pj(Xj) ∈ Iu(i, FA) for each j in {i, . . . , n− p+ 1} and

C(A)[X≤i−1]→ C(A)[X]/(Iu(i, FA) ∩ C(A)[X])

is integral.

If P is any polynomial in C(A)[X], we will let D ∈ C[A] be the minimal common denomi-
nator of all its coefficients, and we will write P := DP , so that P is in C[A,X].

Lemma 7.2.3. For each j ∈ {i, . . . , n− p+ 1}, there exists Pj in C(A)[X≤i−1, Xj], monic
in Xj, with Pj in Iu(i, FA), and such that deg(Pj) ≤ (2d)2n.

Proof. We let LA denote the extension of Iu(i, FA) ∩ C(A)[X] given by

LA = (Iu(i, FA) ∩ C(A)[X]) · C(A,X≤i−1)[Xi, . . . , Xn].

Then,
C(A,X≤i−1)→ C(A,X≤i−1)[Xi, . . . , Xn]/LA (7.4)

is an algebraic extension. Let Pj ∈ C(A)(X≤i−1)[Xj] be the minimal polynomial of Xj in
(7.4), and note that Pj is monic in Xj. By Corollary 7.2.2, Qj ∈ C(A)[X≤i−1, Xj], exists,
monic in Xj, with

Qj(Xj) ∈ Iu(i, FA) ∩ C(A)[X].

Hence, Qj is also in the extension LA, and thus Pj divides Qj in C(A)(X≤i−1)[Xj]. We can
therefore write

Qj = PjRj, Pj, Rj ∈ C(A)(X≤i−1)[Xj]− C(A)(X≤i−1).

It then follows by Gauss’s lemma that

Qj = pjrj, pj, rj ∈ C(A)[X≤i−1][Xj]− C(A),

and such that µj ∈ C(A)(X≤i−1) exists with

Pj = µjpj, Rj = µ−1
j rj.
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Since Qj is monic in Xj, pj and rj must also be monic in Xj, and µj must be the coefficient
of the highest degree term of Pj in Xj. Since Pj is monic in Xj, µj = 1 and hence

Pj = 1 · pj = pj ∈ C(A)[X≤i−1][Xj].

Now, consider the polynomials Iu(i, FA) :(
FA,Lagrange(FA, i, (L1, . . . , Lp)),

p∑
i=1

uiLi − 1

)

in C[A,X,L], let W be their zero-set, and let deg(W) be its degree, in the sense of [22].
Proposition 1 in [33] implies that Pj has degree at most deg(W). Since all polynomials
defining W, seen in C[A,X,L], have degree at most 2d, the Bézout inequality of [22] gives

deg(Pj) ≤ (2d)p+n−i+1 ≤ (2d)2n.

7.2.2 Applying the effective Nullstellensatz

Now we apply the Nullstellensatz for Pj with the ideal membership for Iu(i, FA). Let T be
a new variable; applying the Nullstellensatz in C(A)[X,L][T ], and clearing denominators,
we obtain the existence of αj in C[A]− {0} and Cj,`, Bj in C[A][X,L][T ], such that

αj =

p+n−i+1∑
`=1

Cj,`G` +Bj(1− PjT ),

G` ∈

{
FA,Lagrange(FA, i, (L1, . . . , Lp)),

p∑
i=1

uiLi − 1

}
.

Let us then define
∆i := ∆i,1αi · · ·αnDi · · ·Dn.

Lemma 7.2.4. Suppose that A ∈ Cn×n does not cancel ∆i. Then FA satisfies Gi(1) and
Gi(2), and the extension

C[X≤i−1]→ C[X]/(Iu(i, FA) ∩ C[X])

is integral.
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Proof. By assumption, ∆i,1(A) is non-zero so that A is invertible, the ideal defined by
Iu(i, FA) is radical (this follows from Corollary 5.2.8, with u ∈ Cp any complex point)
and W (πi, V (FA) is either empty or (i−1)-equidimensional. By Proposition 5.2.7 and the
Jacobian Criterion [14, Corollary 16.20], we have that Wu(πi, V

A) is also either empty or
(i−1)-equidimensional. Now, if it is empty, we are done. Otherwise, for j = i, . . . , n−p+1,
evaluate all indeterminates in A at the corresponding entries ofA. This gives us an equality
in C[X,L, T ] of the form

aj =

p+n−i+1∑
`=1

cj,`g` + bj(1− pjT ), g` ∈

{
FA,Lagrange(FA, i, (L1, . . . , Lp)),

p∑
i=1

uiLi − 1

}
,

for aj in C, polynomials cj,` and bj in C[X,L, T ] and pj in C[X≤i−1, Xj]. Since neither αj
nor Dj vanish at A, aj is non-zero and the leading coefficient of pj in Xj is a non-zero
constant.

The conclusion is now routine. Replace T by 1/pj in the previous equality; after clearing
denominators, this gives a membership equality of the form

pj
k ∈ Iu(i, FA) ∩ C[X],

for some integer k ≥ 1 (we cannot have k = 0, since we assumed that W (πi, V (FA) is not
empty, which implies that Wu(πi, V

A) is not empty). Since Iu(i, FA) is radical, pj is in
Iu(i, FA). Repeating this for all j proves that

C[X≤i−1]→ C[X]/(Iu(i, FA) ∩ C[X])

is integral.

To estimate the degree of ∆i, what remains is to give an upper bound on the degrees of
αi, . . . , αn. This will come as an application of the effective Nullstellensatz given in [11],
for which we first need to determine degree bounds, separately in X,L, T and A, of the
polynomials in the membership relationship. We have

degX,L,T

{
FA,Lagrange(FA, i, (L1, . . . , Lp)),

p∑
i=1

uiLi − 1

}
≤ d, degX,L,T (1− TPj) ≤ (2d)2n + 1,

and we have

degA

{
FA,Lagrange(FA, i, (L1, . . . , Lp)),

p∑
i=1

uiLi − 1

}
≤ d, and degA(1− TPj) ≤ (2d)2n.
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For each j ∈ {i, . . . , n− p+ 1}, a direct application of [11, Theorem 0.5], gives

deg(αj) ≤ (2n+ 2)d2n+1((2d)2n + 1);

we will use the slightly less precise bound

deg(αj) ≤ 4n(2d)4n.

Since ∆i,1 has degree at most nd5n and all Dj’s have degree at most (2d)2n, this gives the
upper bound

deg(∆i) ≤ nd5n + 4n2(2d)4n + n(2d)2n ≤ 6n2(2d)5n.

7.2.3 Proof of Gi(3)

Now assume that u ∈ Cp satisfies G
′′
i . It remains to show that if A ∈ Cn×n does not cancel

∆i then
C[X≤i−1]→ C[X]/I(i, FA)

is integral. By Lemma 7.2.4, the extension

C[X≤i−1]→ C[X]/(Iu(i, FA) ∩ C[X])

is integral, and thus polynomials

Qj ∈ C[X≤i−1, T ]

exists, monic in T , for each j ∈ {i, . . . , n− p+ 1}, with

Qj(X1, . . . , Xi−1, Xj) ∈ Iu(i, FA) ∩ C[X].

Since we are assuming that u ∈ Cp satisfies G
′′
i , by Proposition 3.2.5, Qj ∈

√
I(i, FA).

Hence, there exists some k ∈ N − {0} with Qk
j ∈ I(i, FA), where Qk

j is monic in Xj, and
therefore

C[X≤i−1]→ C[X]/I(i, FA)

is integral.

This completes the proof of Theorem 3.2.8.
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Chapter 8

Analysis of algorithms

In what follows, we now use the genericity statements proven in previous sections; they
help us analyze the bit complexity and error probability of our algorithms by allowing us
to quantify the various random parameter choices.

In each algorithm, we use [37, Algorithm 2] to solve a square system. This subroutine is
randomized; in order to guarantee a higher probability of success, we repeat the calculation
k times, for a well-chosen parameter k. That latter reference establishes that by repeating
the calculation k times, and keeping the output of highest degree among those k results,
we succeed with probability at least 1 − (1/2)k. When Algorithm 2 does not succeed, it
either returns a proper subset of the solutions, or FAIL. Note that Algorithm 2 is shown to
succeed in a single run with probability at least 1− 11/32, and we bound the probability
of success with 1− 1/2 for simplicity.

8.1 The hypersurface cases

8.1.1 Bounding the degrees of the genericity polynomials

Let hi ∈ C[A] be the polynomials from Theorem 3.2.1. Put h :=
∏n

i=1 hi and note that

deg h ≤
n∑
i=1

deg hi ≤ 5n3(2d)2n. (8.1)

IfA ∈ Cn×n does not cancel h, thenA is invertible and fA satisfies Hi for all i ∈ {1, . . . , n}.
Now, assuming that A is such a matrix, let gi ∈ C[S1, . . . , Si−1] be the polynomials from
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Theorem 3.2.2 applied to fA. Denote by g :=
∏n

i=1 gi, and note that

deg g ≤
n∑
i=1

deg gi ≤ nd2n. (8.2)

If σ ∈ Ci−1 does not cancel g, then fA and σ satisfy H
′

i for all i ∈ {1, . . . , n}.

8.1.2 Algorithm analysis: the compact hypersurface case

Algorithm 1: CompactHypersurfaceCase

Input: f ∈ Z[X1, . . . , Xn] of degree at most d and height at most b with
V (f) ⊂ Cn smooth and compact, and 0 < ε < 1

Output: a zero-dimensional parameterization that includes at least one point in
each connected component of V (f) ∩ Rn, with probability of success at
least 1− ε.

1 Construct

S :=
{

1, 2, . . . , d2ε−15n3(2d)2ne
}

and randomly choose A ∈ Sn2
;

2 Build a straight-line program Γi that computes the equations{
fA,

∂fA

∂X2

, . . . ,
∂fA

∂Xn

}
3 Run [37, Algorithm 2] k ≥ lg(2/ε) + 1 times with input Γi;
4 return the highest cardinality zero-dimensional parameterization from step 3.

Pseudocode. Algorithm 1 requires that the input system be given by a straight-line
program. We build it (at Step 2) in the straightforward manner already suggested in the
introduction: given f , we can build a straight-line program that evaluates f in O(dn)
operations, by computing all monomials of degree up to d, multiplying them by the corre-
sponding coefficients in f , and adding results. To obtain a straight-line program for fA, we
add O(n2) steps corresponding to the application of the change of variables A. From this,
we can compute the required partial derivatives of fA for the same asymptotic cost [9];
this gives Γi.
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If fA satisfies H1(1), then by the Jacobian criterion [14, Corollary 16.20], the param-
eterizations returned in step 4 are zero-dimensional. Then, correctness of Algorithm 1 is
established in [4, 5].

Bit complexity. The following lists the costs for each step of Algorithm 1:

1. We defined S := {1, 2, . . . , d2ε−15n3(2d)2ne} and therefore the height of any ai,j ∈ S
is at most

log 2/ε+ log(5n3(2d)2n) ∈ O∼(log 1/ε+ n log d).

2. After computing the partial derivatives, the height grows by at most another factor
of log d. Thus, all polynomials in the system considered at Step 3 have height

O∼(b+ d log 1/ε+ dn).

All integer coefficients appearing in Γi satisfy the same bound.

3. As a result, after applying [37, Algorithm 2] k = O(log(1/ε)) times, the total boolean
cost of the algorithm is

O∼(d3n+1(log 1/ε)(b+ log 1/ε))

where the polynomials in the output have degree at most dn, and height at most

O∼(dn+1(b+ log 1/ε)).

This proves the runtime estimate, as well as our bounds on the height of the output.

Error probability. As we argued above, the algorithm is guaranteed to succeed, as long
as our call to Algorithm 2 in [37] succeeds. Now, by construction of

S :=
{

1, 2, . . . , d2ε−15n3(2d)2ne
}

where A ∈ Sn2
is randomly chosen, we have

P[h(A) = 0] ≤ deg h

|S|
= ε/2.
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Let E be the event that the parameterization returned in step 4 of Algorithm 1 is correct.
Then, the probability of success is at least

P[h(A) 6= 0]× P[E | h(A) 6= 0].

Set k = lg(2/ε) + 1 so that
1− 2−k ≥ 1− ε/2,

and therefore

P[success] ≥ (1− ε/2)P[E | h(A) 6= 0]

≥ (1− ε/2)(1− 2−k)

≥ (1− ε/2)(1− ε/2)

≥ 1− ε.

This finishes the proof of theorem 1.3.1.
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8.1.3 Algorithm analysis: the hypersurface case, without com-
pactness

Algorithm 2: HypersurfaceCase

Input: f ∈ Z[X1, . . . , Xn] of degree at most d and height at most b, and 0 < ε < 1
Output: n zero-dimensional parameterizations, the union of whose zeros includes

at least one point in each connected component of V (f) ∩ Rn, with
probability of success at least 1− ε.

1 Construct
S := {1, 2, . . . , d3ε−15n3(2d)2ne}

and
T := {1, 2, . . . , d3ε−1nd2ne},

and randomly choose A ∈ Sn2
, and σ ∈ T n−1;

2 for i← 1 to n do
3 Build a straight-line program Γi that computes the equations{

X1 − σ1, . . . , Xi−1 − σi−1, f
A, ∂fA

∂Xi+1
, . . . , ∂f

A

∂Xn

}
;

4 Run [37, Algorithm 2] k ≥ lg(3n/ε) times with input Γi;
5 Let Qi be the highest cardinality zero-dimensional parameterization returned

in step 4 ;

6 return [Q1, . . . ,Qn].

Pseudocode. If fA satisfies Hi, and fA and (σ1, . . . , σi−1) satisfy H′i for all i, then
Theorem 2 in [34] establishes correctness for Algorithm 2.

Bit complexity. The following lists the costs for each step of Algorithm 2:

1. We defined S := {1, 2, . . . , d3ε−15n3(2d)2ne} and therefore the height of any ai,j ∈ S
is at most

log 3/ε+ log(5n3(2d)2n) ∈ O∼(log 1/ε+ n log d).

Since |T | < |S|, the height of any σk ∈ T is at most the same.

2. After computing the partial derivatives, the height grows by at most another factor
of log d. Thus, all polynomials in the system considered at Step 3 have height

O∼(b+ d log 1/ε+ dn).
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All integer coefficients appearing in Γi satisfy the same bound.

3. As a result, after applying [37, Algorithm 2] k times for each index i, with k =
O(log n+ log 1/ε), the total boolean cost of the algorithm is

O∼(d3n+1(log 1/ε)(b+ log 1/ε))

where the polynomials in the output have degree at most dn, and height at most

O∼(dn+1(b+ log 1/ε)).

This proves the runtime estimate, as well as our bounds on the height of the output.

Error probability. Algorithm 2 (HypersurfaceCase) is also guaranteed to succeed, as
long as our call to Algorithm 2 in [37] succeeds. Now, by construction of

S := {1, 2, . . . , d3ε−15n3(2d)2ne}

and
T := {1, 2, . . . , d3ε−1nd2ne},

where A ∈ Sn2
and σ ∈ T n−1 are randomly chosen, we have

P[h(A) = 0] ≤ deg h

|S|
= ε/3

and

P[g(σ) = 0] ≤ deg g

|T |
= ε/3.

Let E now be the event that the parameterizations [Q1, . . . ,Qn] returned in step 6 of
Algorithm 2 are correct. Then, the probability of success is equal to

P[h(A) 6= 0]× P[g(σ) 6= 0 | h(A) 6= 0]× P[E | h(A)g(σ) 6= 0].

Set k = lg(3n/ε) so that

(1− 2−k)n = (1− ε/(3n))n ≥ 1− ε/3,

by Bernoulli’s inequality. Therefore,

P[success] ≥ (1− ε/3)(1− ε/3)P[E | h(A)g(σ) 6= 0]

≥ (1− ε/3)(1− ε/3)(1− 2−k)n

≥ (1− ε/3)(1− ε/3)(1− ε/3)

≥ 1− ε.

This finishes the proof of Theorem 1.3.2.
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8.2 The general case

8.2.1 Bounding the degrees of the genericity polynomials

Let ∆i ∈ C[A] be the polynomials from Theorem 3.2.8. Denote by ∆ :=
∏n−p+1

i=1 ∆i, and
note that

deg ∆ ≤
n−p+1∑
i=1

deg ∆i ≤ 6n3(2d)5n. (8.3)

If A ∈ Cn×n does not cancel ∆, then A is invertible and FA satisfies Gi for all i in
{1, . . . , n− p+ 1}. Now, assuming that A is such a matrix, let Ξi ∈ C[S1, . . . , Si−1] be the
polynomials from Theorem 3.2.9 applied to FA. Denote by Ξ :=

∏n−p+1
i=1 Ξi, and note that

deg Ξ ≤
n−p+1∑
i=1

deg Ξi ≤ 3n2(nd)3n. (8.4)

If σ ∈ Ci−1 does not cancel Ξ, then FA and σ satisfy G
′

i for all i ∈ {1, . . . , n − p + 1}.
And finaly, denote by Υ :=

∏n−p+1
i=1 Υi, and note that

deg Υ ≤
n−p+1∑
i=1

deg Υi ≤ n(nd)n. (8.5)

If u ∈ Cp does not cancel Υ, then u satisfies G
′′

i for all i ∈ {1, . . . , n− p+ 1}.

8.2.2 Analysis of the algorithm

Pseudocode. Algorithm 3 (GeneralCase) also requires that the input system be given by
a straight-line program. And we again build it (at Step 3) in the straightforward manner:
given F = (f1, . . . , fp) in C[X1, . . . , Xn], we can build a straight-line program that evaluates
each fi in O(dn) operations, by computing all monomials of degree up to d, multiplying
them by the corresponding coefficients in fi, and adding results. And as said already, to
obtain a straight-line program for fAi , we add O(n2) steps corresponding to the application
of the change of variables A. The number of operations here is thus

O(ndn + n2) = O∼(dn).
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From this, we can compute and evaluate the required partial derivatives in the Jacobian
of FA in

O(n2dn) = O∼(dn)

operations [9]. Then, the matrix vector product with the vector of Lagrange multipliers
adds a cost that is polynomial in n, and which we can therefore neglect in the soft oh
notation. Finally, we add the linear equations X1 − σ1, . . . , Xi−1 − σi−1; this gives Γi, and
the total cost for computing the straight line program is O∼(dn).

Algorithm 3: GeneralCase

Input: F = (f1, . . . , fp) ∈ Z[X1, . . . , Xn]p with deg(fi) ≤ d and ht(fi) ≤ b, and
0 < ε < 1

Output: n zero-dimensional parameterizations, the union of whose zeros includes
at least one point in each connected component of V (F ) ∩ Rn, with
probability at least 1− ε

1 Construct
S := {1, 2, . . . , d4ε−16n3(2d)5ne},

T := {1, 2, . . . , d4ε−13n2(nd)3ne},

and
R := {1, 2, . . . , d4ε−1(nd)ne},

and randomly choose A ∈ Sn2
,σ ∈ T n−1, and u ∈ Rp;

2 for i← 1 to n do
3 Build a straight-line program Γi that computes the equations{

X1 − σ1, . . . , Xi−1 − σi−1, F
A,Lagrange(FA, i, (L1, . . . , Lp)),

p∑
i=1

uiLi − 1

}

4 Run [37, Algorithm 2] k ≥ lg(4n/ε) times with input Γi;
5 Let Qi be the highest cardinality zero-dimensional parameterization returned

in step 4;
6 Compute a parameterization of the projection of Qi onto the X-space, and let

Q
′
i denote this new parameterization ;

7 return [Q
′
1, . . . ,Q

′
n].

If FA satisfies Gi and FA and σ satisfy G′i then Theorem 2 in [34] tells us that the
parameterizations returned in step 5 are zero dimensional. Then, if u satisfies G

′′
i for all
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i ∈ {1, . . . , n− p + 1}, Proposition 3.3.1 gives us that the polar varieties are contained in
the projections of the Lagrangian systems, and therefore Theorem 2 in [34] also establishes
that the parameterizations returned in step 7 will contain one point on each connected
component of V ∩ Rn.

Bit complexity. The following lists the costs for each step of Algorithm 3:

(1) We defined S := {1, 2, . . . , d4ε−16n3(2d)5ne} and therefore the height of any ai,j ∈ S is
at most

log 4/ε+ log(6n3(2d)5n) ∈ O∼(log 1/ε+ n log d).

Since |R| < |T | < |S|, we also have that the height of any σk ∈ T and ul ∈ R is at most
the same.
(3) After computing the partial derivatives in the Jacobian matrix, the height grows by
at most another factor of log d. Thus, all polynomials in the system considered at Step 3
have height

O∼(b+ d(log 1/ε+ n log d)) = O∼(b+ d log 1/ε+ dn).

All integer coefficients appearing in Γi satisfy the same bound.

(4) As a result, after applying [37, Algorithm 2] k times for each index i, with k = O(log n+
log 1/ε), the total boolean cost of the algorithm is

O∼(d3n+2p+1(log 1/ε)(b+ log 1/ε))

where the polynomials in the output have degree at most dn+p, and height at most

O∼(dn+p+1(b+ log 1/ε)).

This proves the runtime estimate, as well as our bounds on the height of the output.

Error probability. As we argued above, Algorithm 3 is guaranteed to succeed, as long
as our call to Algorithm 2 in [37] succeeds. Now, by construction of

S := {1, 2, . . . , d4ε−16n3(2d)5ne},

T := {1, 2, . . . , d4ε−13n2(nd)3ne},

and
R := {1, 2, . . . , d4ε−1n(nd)ne},
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where A ∈ Sn2
,σ ∈ T n−1 and u ∈ Rp are randomly chosen, we have

P[∆(A) = 0] ≤ deg ∆

|S|
= ε/4,

P[Ξ(σ) = 0] ≤ deg Ξ

|T |
= ε/4

and

P[Υ(u) = 0] ≤ deg Υ

|R|
= ε/4.

Let E be the event that the parameterizations [Q
′
1, . . . ,Q

′
n] returned in step 7 of Algorithm

3 are correct. Then, the probability of success is equal to

P[∆(A) 6= 0]× P[Ξ(σ) 6= 0 | ∆(A) 6= 0]× P[Υ(u) 6= 0 | ∆(A)Ξ(σ) 6= 0]

× P[E | ∆(A)Ξ(σ)Υ(u) 6= 0].

Set k = lg(4n/ε) so that

(1− 2−k)n = (1− ε/(4n))n ≥ 1− ε/4,

by Bernoulli’s inequality. Therefore,

P[success] ≥ (1− ε/4)(1− ε/4)(1− ε/4)P[E | ∆(A)Ξ(σ)Υ(u) 6= 0]

≥ (1− ε/4)(1− ε/4)(1− ε/4)(1− 2−k)n

≥ (1− ε/4)(1− ε/4)(1− ε/4)(1− ε/4)

≥ 1− ε.

This finishes the proof of theorem 1.3.4.
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Chapter 9

Conclusions

9.1 Contributions

Our main contributions were to analyze precisely what conditions on our parameter choices
guarantee success. And we accomplished this by revisiting key ingredients in the proofs
given in [4] and [34], and giving quantitative versions of these results, bounding the degrees
of the hypersurfaces we have to avoid.

9.2 Further work

This work should be seen as a step toward the analysis of further randomized algorithms
in real algebraic geometry. In particular, randomized algorithms for deciding connectivity
queries on smooth and bounded algebraic sets have been developed in a series of papers
[35, 38], and could be revisited using the techniques introduced here. Indeed, we have
accomplished some of the work that is needed for these references; these algorithms require
Noether position for polar varieties and transversality for algebraic sets.
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