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Abstract   

Alzheimer’s disease (AD) is a neurodegenerative disease and the most common cause of 

dementia. According to the World Health Organization (WHO) in 2019, dementia affects around 

50 million people worldwide and this number is still going to increase by 10 million every year. 

Currently, some treatments can delay the symptoms but no effective cure is available for AD. 

Part of the reason is that the current definitive diagnosis of AD can only occur after patients’ 

death, by finding two hallmarks, amyloid-β (Aβ) plaques and tau proteins, in patients’ brains. 

Although the early confirmation of amyloid in the brain can be achieved by using positron 

emission tomography (PET) or analyzing cerebral spinal fluid (CSF), both of them are invasive 

to human health, PET also involves expensive procedures.   

Fortunately, the over-accumulation of one hallmark Aβ has also been found in the retinas of AD 

patients, which Dr. Campbell’s group has shown is naturally birefringent under polarized light. 

Considering the optical accessibility of the retina, our group has proposed that polarimetry 

imaging device could be a strong candidate as an early diagnostic method for AD. The presumed 

retinal amyloid deposits have been detected by our Mueller matrix polarimetry method ex vivo. 

Since thioflavin fluorescence is a biomarker for amyloid, we stained the retinal deposits with 

thioflavin dye and then imaged using fluorescence microscopy to determine the existence of a 

thioflavin fluorescence signal. To avoid the use of a dye in future in vivo live eye imaging, this 

thesis presents a method to predict the existence of thioflavin fluorescence of retinal deposits 

from their interactions with polarized light by combining polarimetry and machine learning. 

Three machine learning algorithms have been trained and tested, two oversampling methods 

have been applied to solve the problem of the low number of non-fluorescence deposits as 

polarimetry detects amyloid with high accuracy. The results suggest that the fluorescent retinal 

deposits can be differentiated from non-fluorescence deposits with high accuracy, and two 

polarimetric properties appear have high importance in predicting thioflavin fluorescence. 

To ensure that the source of fluorescence is amyloid-β protein, the second research project in this 

thesis aims to differentiate pure amyloid-β protein deposits from another protein alpha-synuclein, 

which contains a β-sheet structure and amyloid-like fibrils thus also show positivity in thioflavin 

fluorescence. A powerful convolutional neural network model (CNN) -the residual neural 

network, also known as Resnet, has been applied to differentiate the polarization images of pure 
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Aβ-42 protein deposits, which is the amyloid that most relevant for AD, from the alpha-

synuclein pure protein. The performance of CNNs trained by images of different polarimetric 

properties is compared with the machine learning algorithm used before. The CNN models, 

which directly take the images of the polarimetric properties as input, have outperformed the 

machine learning algorithms tested in differentiating Aβ-42 and alpha-synuclein protein deposits. 

The results reported here may be useful to assist in the label-free detection of these two types of 

retinal amyloid deposits in live-eye imaging. 
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Chapter 1 

 

1 Introduction 
 

1.1 Introduction of Alzheimer’s disease  

Alzheimer’s disease (AD) is the most common cause of dementia which gives rise to the 

cognitive difficulties for patients and, in its late stages leads to death. It is currently the 6th 

leading cause of death in the United States1. Currently, AD is usually only definitely diagnosed 

after death, by characterizing the over-accumulation of the insoluble plaques composed of the 

amyloid-beta (Aβ) protein inside the brain2. Before death, positron emission tomography (PET) 

amyloid or tau brain scans are also used in trials of therapies for AD or  in some jurisdictions, 

(for example, the Canadian province of Quebec), they are funded for use when a diagnosis is 

difficult.  PET brain scans and another early diagnostic method (analyzing proteins in cerebral 

spinal fluid (CSF)) are invasive and very expensive. For example, per PET scan costs 900 to 

1400 USD3 and very few hospitals have the scanners. 

However, an over-accumulation of Aβ has also been found in the retina of those with AD. and 

Dr. Campbell’s lab has shown that the Aβ is naturally birefringent under polarized light4. Thus, a 

non-invasive, inexpensive method using polarimetry has been proposed by our group for the 

label-free detection of the amyloid deposits and the early onset of AD4. The two research 

projects introduced in this thesis combine polarimetry with machine learning and a deep neural 

network, with the aim of replacing staining of the deposits in in vivo live eye imaging for AD 

early diagnosis which is invasive. 

Further information on AD and AD diagnosis can be found in section 2.1. 
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1.2 Polarized light, Stokes vector and Mueller matrix 

In this project, polarized light is used to interact with the samples, the Stokes vector is used to 

describe the polarization state of the light and the Mueller matrix is used to measure the change of 

the polarization state during interaction with the tissue. The polarized light, Stokes vector and 

Mueller matrix are introduced in the following. 

Light can be described as an electromagnetic wave, which has electric field component 𝑬 and 

magnetic field component, 𝑩 perpendicular to the propagation of light. Because of this, light as a 

plane wave tends to exhibit the property called polarization. The polarization is defined here as the 

direction of the electric field vibration relative to the direction of light propagation. Imaging a 

plane wave propagating in the z-direction, its electric field components in the x-direction 𝐸𝑥(𝑧, 𝑡) 

and y-direction 𝐸𝑦(𝑧, 𝑡) can be written as 

𝐸𝑥(𝑧, 𝑡) =  𝐴𝑋(𝑡) cos(𝜏 + 𝛿𝑥) (1.1) 

𝐸𝑦(𝑧, 𝑡) =  𝐴𝑦(𝑡) cos(𝜏 + 𝛿𝑦) (1.2) 

where 𝐴𝑋(𝑡) and 𝐴𝑦(𝑡) are the wave amplitudes in the x and y directions, 𝛿𝑥 and 𝛿𝑦 are the 

phases in these two directions. τ = ωt − kz is the propagator term, where ω and k are the 

angular frequency and wavenumber of this light wave propagating in the z-direction. 

Now, we can rearrange Eqs 1.1 and 1.2 to display the locus of the endpoint of the electric field as 

it propagates through a period, by first dividing the amplitudes,  

𝐸𝑥(𝑡)

𝐴𝑥(𝑡)
= cos(τ) cos(𝛿𝑥) − sin(𝜏) sin(𝛿𝑥) (1.3) 

𝐸𝑦(𝑡)

𝐴𝑦(𝑡)
= cos(τ) cos(𝛿𝑦) − sin(𝜏) sin(𝛿𝑦) (1.4) 

then by combining the phase terms  𝛿𝑥 and 𝛿𝑦, this gives, 

𝐸𝑥(𝑡)

𝐴𝑥(𝑡)
sin(𝛿𝑦) −

𝐸𝑦(𝑡)

𝐴𝑦(𝑡)
 sin(𝛿𝑥) = cos(τ) sin(𝛿𝑦 − 𝛿𝑥) (1.5) 

𝐸𝑥(𝑡)

𝐴𝑥(𝑡)
cos(𝛿𝑦) −

𝐸𝑦(𝑡)

𝐴𝑦(𝑡)
 cos(𝛿𝑥) = sin(τ) sin(𝛿𝑦 − 𝛿𝑥) (1.6) 

and finally by squaring and adding Eq 1.5 and Eq 1.6, one gets 
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𝐸𝑥(𝑡)
2

𝐴𝑥(𝑡)2
+ 

𝐸𝑦(𝑡)
2

𝐴𝑦(𝑡)2
− 2

𝐸𝑥(𝑡)

𝐴𝑥(𝑡)

𝐸𝑦(𝑡)

𝐴𝑦(𝑡)
cos(𝛿) = 𝑠𝑖𝑛2(𝛿) (1.7) 

where δ = 𝛿𝑦 − 𝛿𝑥. It is clear that Eq 1.7 describes a trajectory in an ellipse shown in Fig 1.1, 

known as the polarization ellipse. 

 

Figure 1.1 The schematic of the polarization ellipse. 

 

Multiplying Eq 1.7 by 4𝐴𝑥(𝑡)
2𝐴𝑦(𝑡)

2 and taking time averages represented by 〈… 〉 gives 

4〈𝐴𝑦(𝑡)
2𝐸𝑥(𝑡)

2〉 + 4〈𝐴𝑥(𝑡)
2𝐸𝑦(𝑡)

2〉 − 8〈𝐴𝑥(𝑡)𝐴𝑦(𝑡)𝐸𝑥(𝑡)𝐸𝑦(𝑡) cos(𝛿)〉 = 4〈(𝐴𝑥(𝑡)𝐴𝑦(𝑡)𝑠𝑖𝑛(𝛿))2〉(1.8) 

For monochromatic waves, the amplitudes are constant, and the time average of 𝐸𝑖(t) and 𝐸𝐽(𝑡) 

can be computed using 〈𝐸𝑖(t)𝐸𝑗(t)〉 =  lim
𝑇→∞

1

𝑇
∫ 𝐸𝑖(t)𝐸𝑗(t)dt

𝑇

0
. So Eq 1.8 can be written as 

4𝐴𝑥
2𝐴𝑦

2 − 4(𝐴𝑥𝐴𝑦 cos(𝛿))
2
= (𝐴𝑥𝐴𝑦 sin(𝛿))

2
(1.9) 

 

which is equivalent to, 

(𝐴𝑥
2 + 𝐴𝑦

2)
2
− (𝐴𝑥

2 − 𝐴𝑦
2)

2
− (2𝐴𝑥𝐴𝑦𝑐𝑜𝑠(𝛿))2 − (2𝐴𝑥𝐴𝑦𝑠𝑖𝑛(𝛿))2 = 0 (1.10) 
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From here, we define the Stokes vector (𝑆0, 𝑆1, 𝑆2, 𝑆3) as 

(

 
 

𝑆0 = 𝐴𝑥
2 + 𝐴𝑦

2

𝑆1 = 𝐴𝑥
2 − 𝐴𝑦

2

𝑆2 = 2𝐴𝑥𝐴𝑦𝑐𝑜𝑠(𝛿)

𝑆3 = 2𝐴𝑥𝐴𝑦𝑠𝑖𝑛(𝛿))

 
 

(1.11) 

Obviously, 𝑆0
2 = 𝑆1

2 + 𝑆2
2 + 𝑆3

2.where  𝑆1, 𝑆2 and 𝑆3 represent the intensity differences in the 

horizontal and vertical linear polarizations, +45° and -45° linear polarizations, and right and left 

circularly polarized light, respectively. 

When a beam of polarized light with Stokes vector S interacts with a media, its polarization state 

will change into a new one 𝑺′ = {𝑆0
′, 𝑆1

′, 𝑆2
′, 𝑆3

′}, where 

(

 
 

𝑆0
′ = 𝑚00𝑆0 + 𝑚01𝑆1 + 𝑚02𝑆2 + 𝑚03𝑆3

𝑆1
′ = 𝑚10𝑆0 + 𝑚11𝑆1 + 𝑚12𝑆2 + 𝑚13𝑆3

𝑆2
′ = 𝑚20𝑆0 + 𝑚21𝑆1 + 𝑚22𝑆2 + 𝑚23𝑆3

𝑆3
′ = 𝑚30𝑆0 + 𝑚31𝑆1 + 𝑚32𝑆2 + 𝑚33𝑆3)

 
 

(1.12) 

The above linear relationship can be written in the matrix form: 

                                                 

{
 
 

 
 𝑆0

′

𝑆1
′

𝑆2
′

𝑆3
′}
 
 

 
 

 =  {

𝑚00 𝑚01 𝑚02 𝑚03
𝑚10 𝑚11 𝑚12 𝑚13

𝑚20 𝑚21 𝑚22 𝑚23
𝑚30 𝑚31 𝑚32 𝑚33

} {

𝑆0

𝑆1

𝑆2

𝑆3

} (1.13) 

𝐌 = {

𝑚00 𝑚01 𝑚02 𝑚03
𝑚10 𝑚11 𝑚12 𝑚13

𝑚20 𝑚21 𝑚22 𝑚23
𝑚30 𝑚31 𝑚32 𝑚33

} (1.14) 

 

The 4-by-4 matrix M written here is called the Mueller matrix, it describes quantitatively the 

change of the state of the polarized light during the interaction. The polarimetric properties used 

in experimental Chapters 2 and 3 can each be computed from the Mueller matrix, from the 

equations listed in the Appendix 2. 
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1.3 Polarimetry and polarimetric properties 

To measure the Mueller matrix of a sample, transmission Mueller matrix polarimetry is used 

which is composed of a polarization state generator (PSG) and a polarization state analyzer 

(PSA). A diagram of polarimeter was shown in Fig 2.1, Chapter 2. Our polarimetry 

measurements are taken in a Nikon transmission microscope, retrofitted with a 633nm filter to 

produce red incoherent light. The PSG consists of a horizontal polarizer 𝑀𝑝 followed by a 

quarter wave plate (QWP) with its fast axis at an angle θ, relative to the linear polarizer, 

giving 𝑀𝑞𝑤𝑝. The QWP is followed by a linear polarizer in the PSA. The Mueller matrix of the 

linear polarizer is: 

Mp =
1

2
 (

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

) (1.15) 

And, as the QWP fast axis is rotated to an angle, 𝜃 relative to the axis of the polarizer, 

𝑀𝑞𝑤𝑝 = (

1 0 0 0
1 𝑐𝑜𝑠2(2𝜃) cos(2𝜃) sin(2𝜃) − sin(2𝜃)

0 cos(2𝜃) sin(2𝜃) 𝑠𝑖𝑛2(2𝜃) sin(2𝜃)

0 sin(2𝜃) − cos(2𝜃) 0

) (1.16) 

Thus, for a beam of unpolarized input light 𝑆𝑖𝑛 = (1,0,0,0)𝑇, after going through the PSG, it 

will have a new polarization state 𝑆𝐺(𝜃𝑔), where 𝜃𝑔 is the angle of the fast axis for the QWP in 

the PSG. 

𝑆𝐺(𝜃𝑔) =  
1

2
(1, 𝑐𝑜𝑠2(2𝜃𝑔), cos(2𝜃𝑔) sin(2𝜃𝑔) , sin(2𝜃𝑔))

𝑇
(1.17) 

Note that the output light 𝑆𝐺(𝜃𝑔) has become polarized with an intensity, 𝑆0 = 1, such that 𝑆0
2 =

𝑆1
2 + 𝑆2

2 + 𝑆3
2. 

The light will then interact with the sample Muller matrix 𝑀𝑠, and go through the PSA. The 

output 𝑆′can be expressed as 

𝑆′ = 𝑀𝑃𝑆𝐴𝑀𝑠𝑀𝑃𝑆𝐺𝑆𝑖𝑛 (1.18) 
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Where 𝑀𝑃𝑆𝐴 and 𝑀𝑃𝑆𝐺 represent the Muller matrix of the PSA and PSG, respectively and 

𝑀𝑠 is the Mueller matrix of the sample being measured. 

Since only the beam intensity of 𝑆′ can be measured, to solve for the elements in the 4×4 Muller 

matrix, a 4×4 intensity matrix I can be constructed by rotating the QWPs in the PSG and PSA to 

4 different angles, respectively.  

(

𝐼𝐺1𝐼𝐴1 𝐼𝐺2𝐼𝐴1 𝐼𝐺3𝐼𝐴1 𝐼𝐺4𝐼𝐴1

𝐼𝐺1𝐼𝐴2 𝐼𝐺2𝐼𝐴2 𝐼𝐺3𝐼𝐴2 𝐼𝐺4𝐼𝐴2

𝐼𝐺1𝐼𝐴3 𝐼𝐺2𝐼𝐴3 𝐼𝐺3𝐼𝐴3 𝐼𝐺4𝐼𝐴3

𝐼𝐺1𝐼𝐴4 𝐼𝐺2𝐼𝐴4 𝐼𝐺3𝐼𝐴4 𝐼𝐺4𝐼𝐴4

) = 𝑀𝑃𝑆𝐴𝑀𝑠𝑀𝑃𝑆𝐺 (1.19) 

Where 𝐼𝐺𝑚𝐼𝐴𝑛 represents the intensity exiting the instrument when the PSG is at angle, 𝜃𝑚 and 

PSA is at angle 𝜃𝑛. 

Thus, by inverting the matrix 𝑀𝑃𝑆𝐴 and 𝑀𝑃𝑆𝐺, the elements in the Mueller matrix of the material 

being measured can be calculated as 

𝑀𝑠 = (𝑀𝑃𝑆𝐴)
−1𝐼(𝑀𝑃𝑆𝐺)−1 (1.20) 

The resulting image will be a spatially-resolved Mueller matrix image, which means the Mueller 

matrix of the sample will be calculated at each pixel of the original measurements.  

As mentioned earlier in Section 1.2, the polarimetric metrics listed in the Appendix can each be 

calculated from the Mueller matrix, Ms. When measuring amyloid deposits in retinal tissue in 

Chapter 2, two metrics, linear anisotropy (LA) and linear retardance (also known as retardation) 

(LR), show high importance. LR is the linear component of the retardance, which describes the 

resultant relative phase difference between two orthogonal polarization components after they 

traverse the retinal sample. Our group has also found that LR gives the highest contrast between 

the amyloid deposits and the surrounding retina background. The retardance we detected in turn 

must result from the birefringent nature of the retinal deposits, which is a different refractive 

index is seen by the two orthogonal polarizations of the light. Although amyloid deposits stained 

with the dye Congo red are known to be birefringent5, our group is the first to demonstrate 

intrinsic birefringence in unstained deposits6. Retardance of the sample can be derived using the 

retarder matrix 𝑀𝑅 from the polar decomposition of the measured matrix7 M =  𝑀∆𝑀𝑅𝑀𝐷, where 

𝑀𝑅 is in the form of  
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𝑀𝑅 = (
1 0𝑇

0 𝑚𝑅
) (1.21) 

The 𝑚𝑅 is a 3-by-3 matrix, and the retardance vector can be calculated by 

𝑅⃑ = 𝑐𝑜𝑠−1 [
𝑡𝑟(𝑀𝑅)

2
− 1] (1.22) 

The first two components of 𝑅⃑  are linear (horizontal/ vertical, and 45°/ -45°), the third is circular 

retardance. 

LA is a quantitative measurement of the polarimetric anisotropy caused by the linear components 

of retardance and diattenuation which are relative to the horizontal axis. To derive LA, one can 

present the Mueller matrix in the form of 

M = 𝑚00 (

1 𝐷1 𝐷2 𝐷3

𝑃1 𝑘1 𝑟3 −𝑟2
𝑃2 𝑞3 𝑘2 𝑟1
𝑃3 −𝑞2 𝑞1 𝑘3

) (1.23) 

The anisotropies between symmetric elements in the Mueller matrix are then defined as follow: 

𝛼1𝐷  ≡ 𝐷1 + 𝑃1,  𝛼1𝑅 ≡ 𝑟1 − 𝑞1

𝛼2𝐷  ≡ 𝐷2 + 𝑃2,  𝛼2𝑅 ≡ 𝑟2 − 𝑞2

𝛼3𝐷  ≡ 𝐷3 + 𝑃3,  𝛼3𝑅 ≡ 𝑟3 − 𝑞3

(1.24) 

Where 𝛼1𝐷,  𝛼1𝑅 refer to the linear horizontal anisotropy from diattenuation and retardance; 𝛼2𝐷 , 

𝛼2𝑅 correspond to the linear 45° anisotropy, 𝛼3𝐷 , 𝛼3𝑅 correspond to circular anisotropy. 

Thus, the anisotropy coefficients of linear horizontal, linear 45° and circular components can be 

defined as 

𝛼1 ≡ √
𝛼1𝐷

2 + 𝛼1𝑅
2

∑

𝛼2 ≡ √
𝛼2𝐷

2 + 𝛼2𝑅
2

∑

𝛼3 ≡ √
𝛼3𝐷

2 + 𝛼3𝑅
2

∑

 (1.25) 
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∑ can be interpreted as the description of total polarimetric anisotropy, defined as 

∑ ≡ 3 − 𝑘2 + 2𝐷𝑇𝑃 − 2𝑟𝑇𝑞 (1.25) 

Where D ≡ (
𝐷1

𝐷2

𝐷3

), P ≡ (
𝑃1

𝑃2

𝑃3

), k ≡ (
𝑘1

𝑘2

𝑘3

), r ≡ (

𝑟1
𝑟2
𝑟3

), q ≡ (

𝑞1

𝑞2

𝑞3

) for simplicity. 

Thus, the value of LA =  √𝛼1
2 + 𝛼2

2, and circular anisotropy equals 𝛼3. 

Linear diattenuation (LD) is another important metric we used in the analysis of Chapter 3. LD is 

the linear component of diattenuation, which describes the dependency of light transmittance on 

its polarization state (the light with different polarization states will be absorbed by different 

amounts). Diattenuation can be derived from the 4×4 Mueller matrix introduced before, which 

can also be written as 

M = 𝑚00 (1 𝐷𝑇

𝑃 𝑚
) (1.26) 

 where 𝐷𝑇 = (𝑚01,𝑚02, 𝑚03) is called the diattenuation vector. 𝑚01, 𝑚02 are the 

horizontal/vertical and 45°/ -45° diattenuation values which combine to give linear diattenuation. 

So the value of LD is 

LD = √𝑚01
2 + 𝑚02

2 (1.27) 

 

1.4 Fluorescence microscope 

In this research, the fluorescence microscope was used to examine the thioflavin fluorescence of 

sample deposits. Samples need to be stained with Thioflavin-S and counterstained with DAPI 

before being viewed with the microscope. The fluorescence microscope takes the light reflected 

from the sample, the excitation wavelength for fluorescence microscope is in the wavelength of 

blue light (490nm), with emission in green wavelength (525nm). 
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1.5 Theory of Neural Networks 

Research on neural networks has been ongoing since the 1940s, and its definition now varies in 

different disciplines. This thesis takes the concept proposed by Kohonen, which defines the neural 

networks as “massively parallel interconnected networks of simple adaptive elements and their 

hierarchical organizations which are intended to interact with the objects of the real world in the 

same way as biological nervous systems do”8.  

The “simple adaptive elements” refers to the basic computational unit “neuron” in the network, 

which is a mathematical model of the real neuron in the brain proposed by McCulloch and Pitts9. 

As shown in Fig 1.2, the current neuron (the yellow circle) is getting input signals from other 

neurons (represented by 𝑥𝑖 for the ith neuron), which travel through the connections and interact 

multiplicatively with weighting (𝑤𝑖  for the ith connection). A bias term (b) is added to the 

weighted sum (∑ 𝑤𝑖𝑥𝑖𝑖 ) which functions as the intercept in a linear equation to help the neuron 

model better fit the given input.  

 

 

Figure 1.2. The schematic of the neuron model proposed by McCulloch and Pitts. 

 

The weighted sum with bias (∑ 𝜔𝑖𝑖 𝑥𝑖 + 𝑏) finally yields the output of the current neuron by 

applying an activation function. In this project, the Rectified Linear Unit (ReLU)10 is used as the 

activation function. The formula of ReLU is given by, 

f(x) = max(0, 𝑥) (1.28) 
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The neurons can be “parallel interconnected” to become a network known as a fully-connected 

network11, shown in Fig 1.3. The external input is taken by the neurons in the input layer, the 

signal is processed in the hidden layers and output layer, and the final output is coming from the 

neurons in the output layer. 

 

 

Figure 1.3. The schematic of a fully connected neural network 

The process of learning for a network is the process of updating the connection weights between 

each neuron. One can compare the output from the network with the real label of the input and 

update the weight by following a certain learning rule. In this research, the backpropagation 

algorithm12 based on stochastic gradient descent (SGD) strategies13 was applied to train the 

neural network. The algorithm first measures the error of the output to the label 𝐸𝑘, then tracks 

the error in reverse by computing the error gradient across all connection weights, and finally 

updates the weight by gradient descent. The detailed calculation is as follows. 

𝐸𝑘 = 𝐿(𝑦, 𝑦𝑘) (1.29) 

where y is the real label and 𝑦𝑘 is the output from the network, L is the loss function. For a 

binary classification, the label y can be set to {0, 1}; for a multiclass classification, for example 

three classes, the label y can be represented in the form of {[1,0,0], [0,1,0], [0,0,1]}. In this 

research, we use cross entropy loss, given by 
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𝐿(𝑦, 𝑦𝑘) =  −[𝑦log(𝑦𝑘) + (1 − 𝑦) log(1 − 𝑦𝑘)] (1.30) 

Thus, one can minimize 𝐿(𝑦, 𝑦𝑘) with respect to 𝑦𝑘 to get the prediction 𝑦𝑘 closer to the real 

label y. For example, if 𝑦𝑘 = y = 0 or 𝑦𝑘 = y =1, 𝐿(𝑦, 𝑦𝑘) will be zero. 

For a given learning rate η, one can get, 

∆𝑤ℎ𝑗 = −η
∂𝐸𝑘

∂𝑤ℎ𝑗

(1.31) 

where ∆𝑤ℎ𝑗 is the update for the connection weight between the hth neuron and the jth. 

Notice that 𝑤ℎ𝑗 first determines the output from the hth neuron 𝛽𝑗, then affects the output from 

the jth neuron 𝑦𝑘, and finally affects 𝐸𝑘.  

∂𝐸𝑘

∂𝑤ℎ𝑗
= 

∂𝐸𝑘

∂𝑦𝑘
 
𝜕𝑦𝑘

𝜕𝛽𝑗
 
𝜕𝛽𝑗

𝜕𝑤ℎ𝑗

(1.32) 

Thus, the updated connection weight between the hth and jth neurons will be, 

𝑤ℎ𝑗
′ = 𝑤ℎ𝑗 −  η

∂𝐸𝑘

∂𝑤ℎ𝑗

(1.33) 

 

1.6 Theory of Convolutional Neural Networks 

When David H Hubel and Torsten Wiesel studied the visual cortex of cats in the 1950s, they 

found that some neurons in the visual cortex have a small local receptive field and can only 

recognize some simple shapes such as a horizontal or a vertical lines14,15. However, they can pass 

these simple shapes to the higher-level neurons which have larger local receptive fields, allowing 

the visual system of the cats to detect more complex patterns14,15. This result inspired the 

research in the field of neural networks and computer vision and later the concept of 

“convolutional neural network (CNN)” was proposed. In 1998, Yann LeCun et al. proposed the 

famous CNN architecture – LeNet-516. This fundamental network is the origin of many modern 

CNN architectures and it introduces two new building blocks of CNN that are not included in the 

concept of neural network – convolutional layers and pooling layers. 
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1.6.1 Convolutional layers 

A neuron in the convolutional layers has a small receptive field. Unlike in a fully connected 

layer, they are not connected to every single pixel/neuron in the previous layer. For example, the 

neurons in the first convolutional layer are only connected to some pixels of the input image 

within their receptive fields, and only those neurons (first convolutional layer) in the receptive 

fields of the second convolutional layer are connected to the corresponding neuron in the second 

convolutional layer.  This allows the subsequent convolutional layer to extract higher-level 

features based on the output of the previous layer, while the previous convolutional layer can 

focus on more fundamental features. A schematic of this convolution is shown in Fig 1.4. 

 

 

Figure 1.4. Convolution between layers with no padding and stride = 1, included with the permission of the 

author in Appendix 3 17. The blue map is the input layer, the cyan map is the output layer. The dark blue square 

is the receptive field of the neuron in the cyan map.  

 

The weights of the neurons in the receptive field are called the filter. The weights will change 

during training, so CNN can find the most useful filter according to its task. The length of the 

receptive field is called the filter size, which equals three in the example in Fig 1.4. In addition to 

filter size, other spatial parameters that determine the size of the output are the depth of the filter, 

stride and zero-padding. One can stack multiple filters to get a 3D filter, the depth of which 
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equals to the number of the included filters. The stride is the spacing when we slide the filter in 

the plane of the receptive field. In the example of Fig 1.4, the filter is moved one pixel at a time, 

so the stride is equal to 1. Finally, in order to get a specific output size, it is common to pad zeros 

around the inputs, which is called zero-padding.  Fig 1.5 displays a sample convolution with 

zero-padding and a different stride, both set to 2. 

 

 

Figure 1.5. Convolution between layers with zero padding = 2 and stride = 2, included with the permission of 

the author in Appendix 3 17. The blue map is the input layer, the cyan map is the output layer. The dark blue 

square is the receptive field of the neuron in the cyan map. The white region is zero-padding. 

 

In Fig 1.5, both the width and height of the input layer are increased by 2 due to zero-padding, so 

the value of zero-padding is 2. The filter moves 2 pixels at a time, which means the stride equals 

2 as well. Generally, for an input with the size 𝑊1  ×  𝐻1  ×  𝐷1 (where W, H and D are width, 

height and depth), if the filter has the size equal to F with a stride S and zero-padding P, the size 

of the output will be, 
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𝑊2 = 
𝑊1 − 𝐹 + 2𝑃

𝑆
+ 1 (1.34) 

𝐻2 = 
𝐻1 − 𝐹 + 2𝑃

𝑆
+ 1 (1.35) 

 

1.6.2 Pooling layers 

The principle of pooling layers is similar to convolutional layers. The neurons in the pooling 

layer are also only connected to the neurons in the previous layer within the corresponding 

receptive field. The size of the field, stride and zero-padding need to be specified in the same 

way as for the convolutional layer. The only difference is that there are no weights in the pooling 

layer, instead, the output size is reduced by simply taking the average or the maximum of the 

receptive field. In this project, Max-pooling is used, as shown in Fig 1.6. 

 

 

Figure 1.6. A schematic of max-pooling. The 4×4 matrix represents the input, after max-pooling, the output is 

a 2×2 matrix. 
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In Fig 1.6, the size of the Max-pool filter is 2, the stride is 2, which perfectly fits the 4×4 input 

matrix to generate a 2×2 output, so there is no need for zero-padding. The numbers in the output 

are the largest in the areas of the same color as the input. 

By applying pooling, computational load and memory usage can be reduced. At the same time, 

pooling can also slow down the overfitting due to the reduction of the number of parameters in 

the network. 
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Chapter 2 

 

2 Predicting thioflavin fluorescence of retinal 

amyloid deposits associated with Alzheimer’s 

disease by their polarimetric properties18 

 

2.1  Introduction 

Alzheimer’s disease (AD) is a neurodegenerative disease which leads to cognitive impairment and 

ultimately, death. AD is the primary cause of dementia. In 2010, the worldwide prevalence of 

dementia was 35.6 million and this number is predicted to triple by 20508. Currently, this disease 

can only be definitively diagnosed post-mortem through the severity of two hallmarks: amyloid 

plaques (composed of misfolded amyloid-β protein) and neurofibrillary tangles (composed of tau 

protein), both of which begin to accumulate in the brain prior to symptoms of cognitive 

impairment19. Detection of amyloid, tau and neurodegeneration (ATN) in the brain is 

recommended for detecting changes associated with the AD disease process in clinical trials of 

novel treatments20. Confirmation of amyloid in the brain is currently achieved using positron 

emission tomography (PET)21 or analyzing cerebral spinal fluid (CSF)22. However, both methods 

are invasive: PET uses a radiative isotope injection21, while a CSF test requires extraction of fluid 

from the patient’s spine22. Currently, there is no effective cure for AD. However, it has been 

suggested that earlier detection of brain amyloid in prodromal disease could enable more 

successful treatment before damage from amyloid and tau accummulates23. Furthermore, the ATN 

framework allows for the incorporation of other biomarkers of amyloid in the brain5. Therefore, it 

is important to develop a non-invasive method to detect amyloid in association with AD prior to 

AD diagnosis. Potential peripheral biomarkers of AD include detection of amyloid in the retina24. 

Many changes have been measured in the retina in association with AD25. An over-accumulation 

of amyloid deposits has been found in the retinas of AD patients by our group (M.C.W. Campbell, 
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et al. IOVS 2010;51:ARVO E-Abstract 5778) and others23,26, including immunohistochemistry 

positivity for the presence of amyloid-2,27,28 (Yuchun Tsai, et al. IOVS 2014;55:ARVO E-abstract 

523-524). We demonstrated that it is possible to detect amyloid deposits in the retina using 

polarized light in an imaging device with animal models (Michael Tokiyoshi Hamel, et al. IOVS 

2016;57:ARVO E-Abstract 2216) and humans (Tao Jin, et al. IOVS 2017;58:ARVO E-Abstract 

3367; David DeVries, et al. IOVS 2015;56:ARVO E-Abstract 2385), as the interactions of the 

deposits with polarized light is significantly different from those of the surrounding retina. Retinal 

deposits were confirmed to be amyloid via Thioflavin-S staining29. Koronyo et al. have also 

demonstrated the feasibility of in vivo detection of retinal amyloid deposits using curcumin 

staining30. This method, however, requires the ingestion of curcumin for 2-10 days to bind with 

the deposits30. Our group has also shown that the number of amyloid deposits in the anterior retina 

predicts the severity of AD pathology in the brain, including severity of brain amyloid31 (Frank 

Corapi, et al. IOVS 2018;59:ARVO E-Abstract 1582) . 

Thioflavin is a fluorescent marker of amyloid, including amyloid-β, known to occur in AD. 

Thioflavin also stains other amyloids32, some of which are associated with other neurodegenerative 

diseases33. In the ATN diagnostic framework for AD, amyloid PET scans are an approved method 

of measuring brain amyloid20. Similarly, a dye used in amyloid PET scans,  Pittsburgh compound 

B, is an uncharged analog derived from thioflavin and thus marks amyloid and may not be specific 

to amyloid-β34.  

A number of studies have applied machine learning techniques to AD diagnosis. Two studies used 

a supporting vector machine (SVM) algorithm to distinguish those with AD from controls using 

neuroimaging data from magnetic resonance imaging (MRI)35,36. Another used random forest (RF) 

analysis on MRI data to separate those with AD from healthy controls and compared the 

performance of RF with SVM37. In optical coherence tomography, a SVM-based 3D segmentation 

of retinal layers has been reported in both diseased and normal retina38. In addition, images taken 

with polarized light of morphologically similar algae have been classified with a convolutional 

neural network39. 

In those with brain amyloid, imaging with polarized light (polarimetry) detects the majority of the 

deposits stained with Thioflavin-S (true positives), some deposits that are not stained by 

Thioflavin-S (false positives) and fails to detect a few Thioflavin-S positive deposits (false 
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negatives). The purpose of this study was to differentiate Thioflavin-S positive amyloid deposits 

(true positives) from those deposits without Thioflavin-S fluorescence (false positives), based on 

the polarimetric images of the deposits in order to identify amyloid deposits without the use of 

dye. To this end, we implemented and compared machine learning approaches which can predict 

the presence of retinal amyloid fluorescence using only the information from images obtained with 

polarized light.  

 

2.2  Method 

2.2.1 Sample preparation 

2.2.1.1   

Eyes (N=28) were obtained post-mortem from donors in compliance with the Declaration of 

Helsinki. Informed consent was obtained from the donors by our collaborators Robin Ging-Yuek 

Hsiung and Ian MacKenzie at UBC and the research was approved by the Human Research Ethics 

Committee of the University of Waterloo. Upon post-mortem examination (NIA-AA guidelines19) 

by Dr Veronica Hirsch-Reinshagen of the Vancouver General Hospital, 23 donors had a high 

cumulative score of AD neuropathologic change, 4 had a moderate score and 1 had a low score; 

all had evidence of brain amyloid. Preparation, and imaging as described herein was performed by 

Rachel Redekop, Monika Kitor and Laura Emptage. Eyes were immersed in 10% formalin prior 

to dissecting, staining and flat-mounting the retina. Retinas were stained with 0.1% Thioflavin-S, 

counterstained with DAPI and cover-slipped. Each retina was imaged with fluorescence and 

polarimetric microscopy to determine presumed amyloid deposits. In total, 920 polarization 

positive retinal deposits found in anterior retinal layers from 28 individuals were analyzed, 

including 789 deposits with fluorescence signals and 131 deposits without fluorescence signals. 

An additional 16 deposits had only fluorescent signals; 13 of these deposits had no polarimetric 

signals and 3 had unclear polarimetric signals. 

2.2.1.2 Pure amyloid samples 

Aβ (1-42) was purchased from rPeptide. 1 mL of 10 mM HEPES and 150 mM NaCl (pH of 7.4) 

was added to 0.5 mg of Aβ (1-42) and incubated at 37°C for 72 hours without shaking. Stained Aβ 

was prepared by adding 500 µL of filtered 1.25 mM Thioflavin-T in 50 mM of PBS and allowing 
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it to sit for 5 min before gently rinsing the amyloid deposited on glass with 50 µL of distilled water 

(x3). Samples were then blown dry with a gentle stream of compressed N2 and cover slipped. 

 

2.2.2 Mueller matrix polarimetry 

An inverted transmission Nikon microscope was modified for polarimetric imaging to detect the 

interaction of retinal deposits with polarized light. A polarization state generator (PSG) and a 

polarization state analyzer (PSA) were placed before and after the sample, respectively. Both the 

PSG and PSA are composed of a linear polarizer and a quarter wave plate (QWP), with the 

polarizer followed by a QWP in the PSG and the opposite in the PSA. The light travels from the 

PSG through the sample to the PSA before being collected by the camera (Fig 2.1). 

 

Figure 2.1. A schematic diagram represents the setup of the microscope channel for polarimetric imaging. P1 

and P2 are linear polarizers, 
𝝀

𝟒
 marks quarter wave plates. The CCD is a camera with a charge-coupled device. 

 

The QWP in the PSG is rotated to 4 angles (45˚, 0°, -30˚, and -60°) to generate 4 different input 

polarization states. The output at each setting was determined by rotating the QWP in the PSA to 

the same 4 angles. Thus, a combination of 16 measurements were performed for each sample. The 
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images obtained were registered to compute the Mueller matrix of the sample at each image pixel. 

The intensity, 𝐼𝑖 recorded in the ith measurement is then, 

𝐼𝑖 = 𝑀𝑃𝑆𝐴,𝑖𝑀𝑠𝑀𝑃𝑆𝐺,𝑖𝑆𝑖𝑛 (𝑖 = 0,1,2, … , 15) (2.1)  

where  𝑆𝑖𝑛 stands for the Stokes vector of the incident light; 𝑀𝑃𝑆𝐴,𝑖 and 𝑀𝑃𝑆𝐺,𝑖  are the Mueller 

matrices of the PSG and PSA. Since the Mueller matrices of these elements are known, the Mueller 

matrix of sample, 𝑀𝑠, can be determined.  This analysis was performed by Erik Mason. 

 

2.2.3 Machine learning approach 

I undertook the machine learning analysis. Means and standard deviations of polarimetric 

properties (features) of the segmented deposits were used as feature inputs for machine learning 

algorithms which then learn to classify the deposits as members of the thioflavin positive or 

negative datasets labelled by their class. Thus, the algorithms are often referred to as classifiers. 

For definitions of machine learning terms please refer to Appendix 1. 

 

2.2.4 Segmentation and calculation of properties of polarimetric images 

From the 16 element Mueller matrix calculated at each pixel, the state of polarized light exiting 

from the sample for each possible state of light input can be calculated. The way in which the input 

polarized states are changed to the exiting states is described by the Mueller matrix of each pixel 

of the sample which can then be expressed as polarimetric properties. For example, one state of 

incident polarization could be preferentially absorbed (the property of diattenuation) or the 

refractive index seen by different polarizations could differ (the property of retardance) or 

polarized light could be changed to partially polarized light40.  

For each deposit, the mean and standard deviation (STD) of 14 polarimetric properties were 

extracted from the Mueller matrix values of the segmented pixels and used as feature inputs for 

machine learning algorithms. Linear retardance (LR), circular retardance, and depolarization 

power were extracted by the polar decomposition method7. Two polarimetric properties, linear 

anisotropy (LA) and circular anisotropy, were calculated from the Mueller matrix components41. 

Four polarimetric properties computed by the Mueller matrix transformation technique were: 
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metric A (a measure of LA), metric b (sensitive to small sources of scattered light in samples), 

metric t (related to the magnitude of the anisotropy) and metric x (related to the direction of the 

aligned fibrous structures)42,43. Linear and circular polarizance and diattenuation were directly 

obtained from the polarizance and diattenuation vectors of the Mueller matrix. The Q metric is a 

polarimetric property which contains information on depolarization, polarizance and 

diattenuation44. Table A1 in Appendix 2 summarizes all 14 polarimetric properties with equations. 

Polarimetric properties of presumed amyloid deposits (plotted as images) were segmented from 

the surrounding retinal background by a custom polarimetry segmentation method (Erik Mason, 

et al. IOVS 2019;60:ARVO E-Abstract 179). 

 

2.2.5 Oversampling methods for solving data imbalance 

As described in Section 2.1, our two datasets do not have balanced deposit numbers (789 

fluorescence positive and 131 fluorescence negative deposits). In this study, the minority (smaller) 

dataset contains samples with polarization signals but no fluorescence signals, and the majority 

(larger) dataset contains samples with both polarization and fluorescence signals. This imbalance, 

frequently observed in medical datasets, can lead to poor performance of most classification 

algorithms45. Two oversampling methods were used to resolve data imbalance while maintaining 

the information of the original dataset: 1) sampling fluorescence negative retinal background and 

2) the borderline-SMOTE algorithm46. 

2.2.5.1 Method 1: Retinal oversampling–adding the surrounding retinal background 

To supply more samples with no fluorescence signal, regions with the same shape as a polarimetric 

positive deposit in a nearby fluorescence and polarimetric negative retinal region were extracted 

(Fig. 2.2). The extracted region has no fluorescence signal and a weak polarization signal. We then 

calculated the mean and STD of the polarimetric signals from these regions and labeled them as 

non-fluorescence deposits. 658 of the above regions were randomly selected from the eligible 

retina areas. As a result, we have an equal number (789) of fluorescence positive and fluorescence 

negative samples after oversampling. 
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Figure 2.2. An example of the retinal oversampling method. In the linear anisotropy image of a polarimetric 

positive deposit, a region with the same shape (blue dashed line) as the deposit (red line) with no fluorescence 

signal is extracted as a fluorescence negative sample. Scale bar: 20 μ. 

 

2.2.5.2 Method 2: oversampling by borderline-SMOTE 

Another way of oversampling is to artificially generate data to add to the minority dataset. Here, 

an improved version of the SMOTE algorithm47 – borderline-SMOTE46 was applied. This 

algorithm first performs k-nearest neighbor analysis on the thioflavin negative (minority) dataset 

where the nearest neighbors may be within either or both minority and thioflavin positive 

(majority) datasets. Based on the type of nearest neighbors, deposits in the minority dataset are 

ranked into three subsets: noise, danger and safe. Deposits in the noise subset have all nearest 

neighbors in the majority dataset; deposits in the safe subset have more than half of their nearest 

neighbors in the minority dataset. These subsets are relatively far from the border between the 

minority and majority datasets. Deposits in the danger subset have more than half but not all of 

their nearest neighbors in the majority dataset. A certain number of new synthetic data is generated 

by performing SMOTE algorithm only on the danger subset. 
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2.2.6 Applying machine learning algorithms 

Since different polarimetric properties have different scales due to their nature (e.g. LR ranges 

from 0˚ to 180˚ while linear diattenuation ranges from 0 to 1), a widely used method called min-

max scaling which converts all polarimetric properties to have the same scale using formula (2) 

was applied to standardize polarimetric property scales. 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
  (2.2) 

where 𝑋𝑚𝑖𝑛  and 𝑋𝑚𝑎𝑥  represent the minimum and maximum theoretical values of a given 

polarimetric property. 

The rescaled combined thioflavin negative and thioflavin positive polarimetric datasets were then 

randomly split into two sets for training (80%) and testing (20%). During training, 10-fold cross-

validation was performed to evaluate the accuracy and robustness of the classifiers48. Three 

different algorithms were trained to automatically determine the existence of a fluorescence signal: 

linear discriminant analysis (LDA), SVM and RF. The hyper-parameters (input settings, Appendix 

2: Table 2) of SVM and RF were optimized by the randomized search function provided in the 

scikit-learn library49, which selects random combinations in a grid of hyper-parameters to train the 

model and return the combination with the best accuracy.  

Apart from the mean accuracy (ACC) returned from 10-fold cross-validation, we also evaluated 

the performance of each trained algorithm (classifier) by computing sensitivity (SEN), specificity 

(SPE) and area under the receiver operating characteristic curve (AUC) on the test set. The 

evaluations were repeated 5 times to establish STDs. A receiver operating characteristic (ROC) 

curve was calculated for each classifier to compare their classification performance50. 

Finally, the variable importance51 was obtained from the RF analysis to assess the importance of 

each polarimetric property in predicting deposit fluorescence. The variable importance is 

calculated by the average decrease of the Gini impurity when each property is considered. At each 

node τ, the Gini impurity is calculated as, 

𝐺𝑖𝑛𝑖(τ) = 1 − ∑ 𝑝𝑘
2

𝑘
(2.3) 
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where k stands for the class (or label) of each dataset, fluorescence positive or fluorescence 

negative; 𝑃𝑘 stands for the proportion of the sample placed in class k before and after splitting at 

a node. The property with the smallest Gini impurity is chosen for node splitting. 

 

2.3  Result 

2.3.1 Visualization of retinal deposits 

A Mueller Matrix of a polarimetric and fluorescence positive deposit is shown in Appendix Fig 

A1. The deposit is clearly visible against the surrounding retina. 

 

 

 

Figure 2.3. Linear retardance (LR), linear anisotropy (LA) and fluorescence images of four retinal deposits (1 

and 2 have fluorescence signals while 3 and 4 do not) and two pure Aβ-42 proteins with fluorescence signals. 

Range of LR: [0°, 180°], LA: [0, 1]. Scale bar in the upper left panel: 20 μ. 
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Four examples of the polarimetric properties of retinal deposits (two fluorescence positive and two 

fluorescence negative) are displayed in Fig. 2.3. In general, these polarimetric properties change 

pixel-to-pixel as well as between deposits and surrounding retina. These deposits have signals in 

polarimetric properties including LR and LA. Retinal deposits 1 and 2 and both pure protein 

deposits are positive for thioflavin fluorescence. The distributions of the strength of polarimetric 

properties across retinal deposits differ between fluorescence positive and negative deposits but 

are similar between fluorescence positive retinal deposits and pure proteins. Using machine 

learning algorithms, our aim was to identify the differences in polarimetric properties between 

fluorescence positive and negative retinal deposits and predict the existence of a fluorescence 

signal.  

Initially, 16 deposits appeared to be fluorescent positive and polarization negative but a 

comparison of the averages of polarization signals from each deposit and surrounding retina found 

that 3 deposits had weak polarization signals. None of the 16 deposits were included in the datasets. 

 

2.3.2 Performance of the three algorithms in classification 

The performance of the three algorithms (LDA, SVM and RF) in classification was assessed using 

three different methods (without oversampling, retinal oversampling method and oversampling by 

borderline-SMOTE) and the outcomes are shown in Table 1. The AUCs are summarized in Table 

2 and the ROC curves are shown in Fig. 2.4. 

 

Table 2.1. ACC, SEN and SPE of the three machine learning classifiers under three sampling strategies 

Method Without oversampling Retinal oversampling Borderline-SMOTE 

oversampling 

 ACC SEN SPE ACC SEN SPE ACC SEN SPE 

LDA 90.3 ± 

0.7% 

96.6 ± 

2.1% 

47.5 ± 

3.9% 

90.9 ± 

0.0% 

91.1 ± 

3.1% 

93.4 ± 

1.2% 

80.5 ± 

0.7% 

76.8 ± 

1.4% 

85.4 ± 

2.4% 

SVM 85.9 ± 

0.7% 

100.0 ± 

0.0% 

0.0 ± 

0.0% 

92.5 ± 

0.3% 

95.6 ± 

0.7% 

91.4 ± 

0.7% 

93.1 ± 

0.5% 

91.0 ± 

1.2% 

95.0 ± 

1.1% 

RF 91.3 ± 

0.8% 

97.0 ± 

2.2% 

45.9 ± 

1.5% 

93.7 ± 

0.2% 

95.5 ± 

1.3% 

92.1 ± 

2.1% 

94.6 ± 

0.8% 

93.6 ± 

2.1% 

96.7 ± 

0.77% 
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The means  standard deviations are given for each of accuracy (ACC), sensitivity (SEN) and specificity (SPE) for 

each of linear discriminant analysis (LDA), supporting vector machine (SVM) and random forest (RF), without 

oversampling and with two different oversampling methods.  

 

ACC is the mean accuracy from 10-fold cross-validation. Shown are the mean values with STDs 

obtained from shuffling and recalculating the training and test sets 5 times. From Table 1, the SPEs 

of all classifiers are significantly improved after applying oversampling methods. Among the three 

classifiers, the performance of LDA is the most sensitive to the choice of oversampling method, 

with ACC, SEN and SPE dropping by 11% on average in the borderline-SMOTE method 

compared with retinal oversampling. SVM had lower SEN but higher SPE in borderline-SMOTE 

oversampling, giving a negligible change in ACC. Both SVM and RF perform well and are 

relatively insensitive to the oversampling method with ACC of RF slightly above SVM at 94-95%. 

 

Table 2.2. Summary of AUC of the ROCs of the three machine learning classifiers under three sampling strategies 

Method Without oversampling Retinal oversampling Borderline-SMOTE 

oversampling 

 AUC AUC AUC 

LDA 0.863 ± 0.015 0.958 ± 0.003 0.885 ± 0.011 

SVM 0.859 ± 0.019 0.967 ± 0.008 0.975 ± 0.003 

RF 0.880 ± 0.019 0.981 ± 0.006 0.986 ± 0.007 

The area under the receiver operating characteristic curve (AUC of the ROC) is shown  its standard deviation for 

each of the 3 classifiers: linear discriminant analysis (LDA), support vector machine (SVM) and random forest (RF) 

without and with two oversampling methods, retinal oversampling and borderline-SMOTE oversampling.  
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Figure 2.4. Receiver operating characteristic (ROC) curves for fluorescence signal prediction by the three 

classifiers under three sampling strategies. True positive rate is sensitivity and false positive rate is 1-specificity. 

  

Overall, the AUCs of the three classifiers in Table 2.2 increased after using oversampling methods, 

from previously lower than 90% to more than 95%, except for the LDA classifier in the borderline-

SMOTE method which was not different from before oversampling. The AUC values for the RF 

and SVM classifiers were not significantly different between the two oversampling methods. The 

RF classifier has the highest AUC in comparison to LDA and SVM using the borderline-SMOTE 

oversampling (AUC=0.986). 

 

2.3.3 Importance of polarimetric properties 

We ranked the polarimetric properties by their importance as feature inputs in RF analysis in Fig. 

2.5 for retinal oversampling and in Fig. 2.6 for the borderline-SMOTE oversampling method. 
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Figure 2.5. The variable importance of 28 polarimetric properties as feature inputs (mean and standard 

deviation of 14 polarimetric properties) from RF analysis with retinal oversampling. The sum of the variable 

importance of all features is 1.  

 

 
 

Figure 2.6. The variable importance of 28 feature inputs (mean and standard deviation of 14 polarimetric 

properties) for RF analysis with borderline-SMOTE oversampling. The sum of the variable importance of all 

feature is 1. 
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In retinal oversampling (Fig. 2.5), LR and LA were two dominant polarimetric properties 

(features) in predicting Thioflavin-S fluorescence. Their means and STDs together accounted for 

74.8% of the total variable importance. Therefore, other feature inputs with lower importance were 

excluded, and the analysis was rerun with only mean and STD of these 2 polarimetric properties 

as feature inputs. Table 2.3 summarizes the results of retinal oversampling before and after this 

selection.  

 

Table 2.3. Classification performance by retinal oversampling before and after applying feature selection 

Method 

 

Retinal oversampling method  

Before feature selection                                     After feature selection 

 ACC SEN SPE ACC SEN SPE 

LDA 90.9 ± 0.0% 91.1 ± 3.1% 93.4 ± 1.2% 89.1 ± 0.3% 84.5 ± 3.4% 94.4 ± 1.6%  

SVM 92.5 ± 0.3% 95.6 ± 0.7% 91.4 ± 0.7% 92.4 ± 0.3% 94.0 ± 1.4% 92.0 ± 2.1% 

RF 93.7 ± 0.2% 95.5 ± 1.3% 92.1 ± 2.1% 92.8 ± 0.5% 94.9 ± 0.7% 91.4 ± 2.4% 

The average accuracy (ACC), sensitivity (SEN) and specificity (SPE)  standard deviation before feature selection 

(with all polarimetric properties included) and after feature selection (with a small subset included) for each of the 3 

classifiers: linear discriminant analysis (LDA), support vector machine (SVM) and random forest (RF) for the retinal 

oversampling method.  

 

From Table 2.3, there was a decrease in the ACC and SEN for LDA; and a small decrease in ACC 

for RF but no other significant changes after performing feature selection. Although only four 

polarimetric properties were used as features, SVM and RF classifiers still achieved over 90% in 

ACC. Thus, other polarization metrics can be excluded to speed up the analysis with little loss in 

performance in predicting deposit florescence. 

In contrast, the variable importance distribution of each polarization feature was much different 

under borderline-SMOTE oversampling in Fig. 2.6 than in retinal oversampling with a much 

smaller range of contribution values (contributions range from 1.5% to 10.1%). Therefore, feature 

selection was not applied for the borderline-SMOTE oversampling method as there was no 

evidence of dominant polarimetric properties.   
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2.4 Discussion 

There are some limitations in this study. Firstly, it is difficult to quantitatively evaluate the 

similarity between an oversampled dataset and the actual dataset. This may affect the 

generalization and robustness of our models. Because retinal deposits are found sparsely 

distributed across the retina, retinal oversampling is justified. Although more data from retinal 

deposits with polarimetric but no fluorescence signals would further validate the reliability of the 

oversampling methods, since polarimetry predicts thioflavin positivity with high accuracy, such 

false negative deposits are scarce.  

Secondly, the limited number of retinas (28) and deposits (920, before oversampling) involved in 

this study could bias our models. Thus, it would be helpful to analyze more retinas to enhance the 

generalization of the models before moving to a clinical setting. However, the number of paired 

retinas and brains available post-mortem are limited. In vivo studies could compare retinal 

polarimetry and in vivo brain amyloid measurements in larger sample sizes.  

Thirdly, other classification models such as convolutional neural networks should be tested to see 

if they can further improve the already excellent accuracy of the classification of thioflavin positive 

(presumed amyloid) versus thioflavin negative deposits. Considering the accuracy as well as the 

computation/memory and time costs of the models, we could then select the one that would be best 

for clinical application.  

Amyloid stained with Congo red is known to interact with polarized light producing an apple green 

birefringence signal52,5. We have shown that unstained pure amyloid- and thioflavin positive 

retinal amyloid deposits also interact with polarized light and show very similar variations of LR 

and depolarization across deposits (Corapi F, et al. IOVS 2018;59:ARVO E-Abstract 1582). These 

similarities and thioflavin positivity53 are presumably due to the fibrillary, well-ordered structure 

of these deposits53. Thus, it is not unexpected that LR and polarimetric properties which are related 

to LR (such as LA) are important to distinguishing thioflavin positive (amyloid) deposits from 

those that are not thioflavin positive.  

Amyloid deposits show a range of polarimetric property strength, both within and between 

deposits, potentially due to a variety of factors including: variations in thickness (thinner regions 

have weaker signals, usually at the edge of deposits (e.g. deposit 2 in Fig. 3), in the uniformity of 
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orientation of the fibrils and potential differences in amyloid species. Thioflavin has been known 

to stain amyloid species other than amyloid-, such as alpha-synuclein32. By choosing retinas from 

donors with a brain pathology of amyloid deposits of the Alzheimer’s type, we expect the majority 

of thioflavin positive deposits to contain amyloid-. The lack of polarization signals for a small 

number (16) of thioflavin positive deposits may indicate one or more of the following: thinner 

deposits (Tao Jin, et al. IOVS 2017;58:ARVO E-Abstract 3367), more disordered deposits or the 

presence of other impurities (analogous to neuritic material found in brain plaques)54. 

Despite the range of polarimetric properties of deposits in the retina which indicates differing 

interactions with polarized light, in the present study, we trained machine learning classifiers to 

precisely and robustly distinguish polarimetry positive retinal deposits with and without thioflavin 

fluorescence signals. In turn, thioflavin positivity defines a presumed amyloid deposit. In this 

study, the RF and SVM classifiers exhibited high accuracy, sensitivity and specificity. Two 

oversampling methods proved to be useful for dealing with the larger numbers of fluorescence 

positive versus negative deposits and improved the specificity, AUC and, in all but one case, the 

ACC of the classifications. 

Using the RF algorithm with the retinal oversampling method, we found that the means and STD 

of two polarimetric properties, LR and LA, have superior performance in predicting fluorescence 

positivity. We can use only these four properties as feature inputs to produce excellent 

classification performance. From the perspective of the physical meanings of these two 

polarimetric properties, LR is directly related to the linear birefringence which results from the 

ordered alignment of the fibrils. LA is a measure of the polarimetric anisotropy of samples, which 

can be interpreted as the different optical responses to light polarized in different directions caused 

by the samples’ LR and linear diattenuation41,55. LA is postulated to have a periodic variation that 

reflects the geometric structure of samples41 such as the orientation of fibrillary structures. The 

high importance of these two polarimetric properties suggests that the ordered arrangement of 

fibrils may be the key to distinguishing between fluorescence and non-fluorescence deposits. 

Given the similarities between LR and LA patterns in deposits in Fig. 2.3, for amyloid, retardation 

appears to contribute more to LA than diattenuation.  

In the case of the second (borderline-SMOTE) oversampling method, the variable importance 

returned from RF analysis indicates that LA and LR are no longer dominant variables. The 
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contributions of all variables are within one order of magnitude. This difference in variable 

contribution is likely caused by the differing data introduced by the two oversampling methods. 

We performed a t-distributed stochastic neighbor embedding (t-SNE) 56 (see Appendix) to show 

the distributions of the polarimetric properties of each deposit for each oversampling method. The 

t-SNE algorithm maps the local distance information from the original high-dimensional space (of 

14 properties) to a two low-dimensional space. Perplexity, whose value is varied, provides a 

smooth measurement of the number considered as neighbors, which alters the algorithm’s attention 

on local and global information (local variations dominate at a small perplexity). The t-SNE 

visualization plots for differing values of perplexity are displayed in Fig. 2.7a for the retina 

oversampling method and Fig. 2.7b for the borderline-SMOTE oversampling method.  
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Figure 2.7. Two-dimensional t-SNE visualization of the polarization properties of the fluorescent positive and 

fluorescent negative datasets from a) the retinal oversampling method and b) the borderline-SMOTE 

oversampling method under different values of perplexity. The distribution focus moves from the local to the 

global as the perplexity increases. FP and FN are fluorescent positive and negative deposits respectively. 

T_SNE_1 and T_SNE_2 are the axis of the two-dimensional space to which the t-SNE mapped the higher 

dimensions. 

 

We can see in the t-SNE perplexity plots (Figs 2.7a and 2.7b), that the data points of fluorescent 

negative and fluorescent positive areas are somewhat more separated in the retinal oversampling 

method than in the borderline-SMOTE oversampling method. As the perplexity increases, the 

sample distribution with negative fluorescence in retinal oversampling tends to aggregate at both 

ends of the dataset, while the borderline-SMOTE oversampling method produces a more complex 

data distribution. This implies that the properties of deposits identified in the borderline-SMOTE 

oversampling are closer to those of the fluorescent positive deposits than in retinal oversampling. 

The differing data distributions are consistent with lower accuracy for LDA with borderline-

SMOTE. It is also not surprising that for the two oversampling methods, differing polarimetric 

properties differentiate fluorescent positive from fluorescent negative deposits. 

The methods described here predict from the polarimetric properties of retinal deposits, with high 

accuracy, the existence of amyloid with thioflavin positive fluorescence signals. We have shown 
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that, in combination with machine learning algorithms, imaging using Mueller matrix polarimetry 

can detect amyloid positive deposits in the ex vivo retina without using a dye. We have previously 

reported that the polarimetric signals from retinal amyloid deposits measured in double pass, 

analogous to the live eye imaging method proposed in Campbell’s patents57, give polarimetric 

signals which are twice as large as those seen in single pass measurements (Photonics North 

presentation, 2016). Our preferred live eye implementation uses a confocal scanning laser 

ophthalmoscope combined with polarimetry. Using the methods described here, we expect that 

thioflavin positive retinal deposits could be identified with high accuracy in live-eye imaging. In 

turn, we have previously shown that the number of retinal amyloid deposits predicts the severity 

of amyloid in the brain31. Therefore, in vivo dye-free polarimetric imaging of deposits in the retina 

could determine brain amyloid non-invasively, in contrast to current invasive methods.  The results 

reported here are an important step towards development of a novel, non-invasive, clinical method 

of imaging retinal amyloid as a predictor of brain amyloid.    
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Chapter 3 

 

3 Differentiating pure Amyloid Beta-42 and 

Alpha-Synuclein proteins by a convolutional 

neural network  

 
3.1 Introduction 

In the previous two chapters, I have introduced the use by our group of Mueller matrix polarimetry 

to detect amyloid deposits on the retina as a promising method to achieve the early diagnosis of 

AD. Since thioflavin fluorescence is the gold standard for the detection of amyloids, we developed 

machine learning algorithms to predict the fluorescence signal of a retinal deposit from the 

polarimetric signals. This determines if that detected deposit is a presumed amyloid deposit, and, 

because it uses polarimetric properties, it avoids the use of a dye in in vivo live-eye imaging. 

However, another protein called alpha-synuclein (alpha-syn) contains a β-sheet structure and 

amyloid-like fibrils58, thus also may be positive in thioflavin staining58. Similar to amyloid beta 

(Aβ), a biomarker of Alzheimer’s disease (AD), alpha-syn can also aggregate to form an 

intraneuronal proteinaceous inclusion called Lewy bodies which are associated with a number of 

neurodegenerative disorders other than AD59. It is generally believed that the formation of Lewy 

bodies is associated with Parkinson’s disease (PD)59. Studies have also shown that Lewy body 

brain pathology may exist in AD patients60–62, and a synergistic interaction may exist between Aβ 

deposits found in AD and alpha-syn which affects the progression of AD59. In either case, it is 

important to determine whether the protein deposit detected from polarimetric images is Aβ or 

alpha-syn. Currently, the method to distinguish between alpha-syn and Aβ mainly depends on 

immunohistochemistry, which involves the process of binding antibodies to specific proteins63. 

This method is often toxic and not very efficient in in vivo live eye imaging. A method that can 

make a real-time judgment through imaging will have a promising application in live eye imaging. 
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Since 2010, the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) has been held. 

With the help of the huge dataset provided by this project, which includes more than 1 million 

images from more than 20000 categories64, the convolutional neural network (CNN)’s ability to 

recognize images has been significantly boosted and it soon outperformed other algorithms65. The 

success of CNN on ImageNet has been applied to the field of medical diagnosis. For example one 

study used a CNN architecture with four convolutional layers and two fully connected layers to 

diagnose glaucoma in the retina on two glaucoma datasets (ORIGA and SCES)66.  Another used a 

thirteen-layer CNN architecture on brain electroencephalogram signals to diagnose PD67. They 

both achieved a decent accuracy but also have a common feature: the architectures of CNNs are 

not deep enough. In 2015, Kaiming He et al. found that increasing the depth of CNNs by simply 

stacking multiple layers did not improve the performance of the networks68. The deeper network 

they trained (56 layers) had both higher training and testing errors compared to the 20-layer 

network68. This degradation in the performance of a network when adding more layers is not 

simply due to overfitting. To solve this problem, Kaiming He et al. proposed a new CNN 

architecture called residual network (Resnet), which won 1st place on the 2015 ILSVRC 

competition68. In optical coherence tomography images of the retina, Resnet was trained to classify 

abnormalities including cystoid macular edema, serous macular detachment, epiretinal membrane 

and macular hole69. Resnet has also been used to assist in the detection of coronavirus (COVID-

19), using chest X-ray radiographs of infected and suspected patients70.  

The purpose of this study was to differentiate protein deposits found in different neurodegenerative 

conditions. (Aβ-42 is the predominant protein in deposits in AD (with Aβ-40 present to a lessor 

degree) and alpha-syn deposits predominate in Parkinson’s and some other diseases.  We wished 

to differentiate pure deposits of the two proteins, based on their polarimetric images without using 

immunohistochemistry or other dyes. The ultimate goal is to differentiate retinal Aβ and alpha-syn 

deposits using a live eye imaging system. Here I start by differentiating deposits of pure Aβ-42 

and alpha-syn proteins which others in our group have grown. To this end, I implemented and 

compared Resnet-based CNN models trained on the images of different polarimetric properties of 

pure Aβ-42 and alpha-syn.  
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3.2 Methods 

3.2.1 Sample preparation 

The preparation of pure Aβ-42 deposits is introduced in section 2.2.1.2. Here, I present the 

preparation of pure alpha-syn protein deposits by other group members. 

250 µL of filtered PBS (pH=7.4) was added to 1 mg of alpha-syn and incubate for two months 

unagitated at 37°C. Stained alpha-syn was prepared by adding 100 µL of filtered 1.25 mM 

Thioflavin-T in 80 mM in 100 µL of alpha-syn solution and allowing it to sit for 5 min. Clean 

glass slides were then drawn through the solution, resulting in deposits of alpha syn on the glass. 

After being incubated for 15 min under high-humidity conditions created by keeping boiled water 

in the incubator with the slides, samples were rinsed twice with 50 µL water to remove salt and 

loosely bound peptide. Samples were then blown dry with a gentle stream of compressed N2 and 

cover slipped. This procedure was completed by other personnel in the lab. 

In this project, 360 pure protein deposits were prepared and analyzed, including 184 containing 

Aβ-42 and 176 containing alpha-syn. They were then imaged using the Muller matrix polarimetry 

device introduced in section 2.2.2 to get raw images from which the images representing their 

various polarimetric properties were calculated. The two polarimetric properties which showed 

high contrast for thioflavin positive deposits in AD (presumed to contain Aβ) in Chapter 2, LR and 

LA, were selected to train the CNN. Another property, linear diattenuation (LD) was tested since 

it exhibited high variable importance in RF analysis for separating Aβ-42 and alpha-syn. 

The RF analysis here is similar to the previous analysis in Section 2.2.6, in which means and STDs 

of 14 polarimetric properties (see appendix 2) of Aβ-42 and alpha-syn were used. The variable 

importance is evaluated based on the average decrease of Gini impurity51 when each property was 

considered. 

 

 

3.2.2 The Classification model - Resnet 101 

The model used in this project to perform CNN, Resnet 10168, is a type of residual network. The 

residual network adapts a structure called skip connections to avoid degradation in accuracy as the 
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depth of the network increases68. The schematic of the skip connections in Resnet is shown in Fig 

3.1, with a comparison to a regular neural network. 

 

 

Figure 3.1. Schematics of a regular neural network (left) and a residual neural network with skip connections 

(right). In the residual network, the identity of input is also added to the output of the stacked layers to get the 

final output.  

 

In Fig 3.1, the main difference between the residual network and regular network is that the 

residual network adds the identity mapping of input x and the output of the stacked layers F(x), 
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which will force the network to model the target function H(x) =  𝐹(𝑥) + 𝑥 instead of F(x). 

According to the hypothesize of Kaiming He et al., it is easier to optimize the residual target 

function H(x) =  𝐹(𝑥) + 𝑥 than to optimize the original target function F(x)68. One can consider 

the extreme case where the optimal target function is the identity of the input X, it would be 

easier to push F(x) close to 0 than to fit F(x) to x by optimizing multiple layers of weights. 

With the skip connection, the pre-trained Resnet 101 on ImageNet64 can go as deep as 101 layers 

and exhibited excellent performance in ILSVRC competition68. Thus it was chosen for use in this 

project. Its architecture can be summarized as follows68: 

 

Table 3.1 The Architectures of Resnet 101, with the skip connections between convolutional layers in 

convolutional units 2 to 5 68. 

Model name Resnet 101 

Convolutional unit 1 7×7 filter size, depth 64, stride 2, convolutional layer 

3×3 max pooling, stride 2 

Convolutional unit 2 
[
1 × 1, 64, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1
3 × 3, 64, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1
1 × 1, 256, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1

] × 3, convolutional layer 

Convolutional unit 3 
[
1 × 1, 128, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1
3 × 3, 128, 𝑠𝑡𝑟𝑖𝑑𝑒 = 2
1 × 1, 512, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1

] × 4, convolutional layer 

Convolutional unit 4 
[
1 × 1, 256, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1
3 × 3, 256, 𝑠𝑡𝑟𝑖𝑑𝑒 = 2
1 × 1, 1024, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1

] × 23, convolutional layer 

Convolutional unit 5 
[
1 × 1, 512, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1
3 × 3, 512, 𝑠𝑡𝑟𝑖𝑑𝑒 = 2
1 × 1, 2048, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1

] × 3, convolutional layer 

Average pooling 

One fully connected layer 

 

Taking the classifier unit in the VGGNet71 as a reference, four fully connected layers (input size 

2048, output size 512), (input size 512, output size 128), (input size 128, output size 32), (input 
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size 32, output size 2) were added to replace the original fully connected layer (input size 2048, 

output size 1000), to match the output size with the number of classes (2), with the ReLU layers 

followed by each. A regulation technique called dropout72(see appendix) was applied on the last 

three fully connected layers with dropout rates 0.5, 0.2, 0.272, respectively, to prevent overfitting. 

 

3.2.3 Training and evaluating the CNN models 

The polarimetric images used in evaluating the CNN models were either [1018 pixels (height), 

1269 pixels (width), with 1 channel] or [1018 pixels (height), 1269 pixels (width), with 3 

channels.  They were then were resized to [224 pixels (height), 224 pixels (width), and 3 

channels to fit the input size of Resnet 101.  The single channel images were duplicated in the 

RGB channels to create three channel images. The input image pixels were first min-max scaled 

to the range of [0, 1], then converted into a standard score73 by, 

𝑥𝑖
′ = 

𝑥𝑖 − 𝜇

𝜎
 

where 𝑥𝑖 is the pixel value of an input image i,  𝜇 is the average of all input images across all 

positions, 𝜎 is the average of the STD of all input images. Since an average of zero speeds up the 

convergence to the local optimum74, µ is set to be 0.5 which is close to the midpoint of the input 

images range from 0 to 1. 𝜎 is also set to 0.5, which will transform the range (0 to 1) to the range 

(-1 to 1), since a STD of 1 is recommended for efficient convergence74. Thus, the average and 

STD of the scaled input images can be close to 0 and 1, respectively. 

The whole image set was split into three subsets for training (252), validation (36) and testing 

(72) in a ratio of 7: 1: 2. The learning curves for training and validation were plotted with the 

improvement in accuracies to monitor the performance of network learning and generalizing for 

each of the 4 different images of polarimetric properties tested. The loss function was computed 

using the cross entropy loss introduced in section 1.3. The CNNs were trained following the 

backpropagation rule12 and SGD13 (both introduced in section 1.3), with a learning rate = 0.01 

and momentum75 = 0.9. The networks were trained using mini-batch75 with batch size = 10 and 

for 100 epochs. The learning rate was set to decay every 5 epochs by multiplying a decay rate of 
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0.8. This prevented the learning rate from being overly large as training progressed, which would 

not be conducive to convergence. 

In order to compare the performance of maps of different polarimetric properties in classifying 

Aβ-42 and α-syn, the polarimetric maps (images) of LR, LA and LD were used to train the 

Resnet 101 models, as well as their combination image which is made by setting the three 

channels of RGB to be the single-channel images of LR, LD and LA, respectively. The purpose 

of testing the combination image is to explore whether stacking multiple polarimetric images 

will improve the performance of CNN, or will average or reduce the performance. In addition, 

LDA, SVM and RF classifiers were trained and tested following the same procedures described 

in chapter 2, in order to compare the performance of CNNs with these machine learning 

techniques. 

 

3.2.4 Visualization the deep inside CNN using saliency map 

After training the CNN, it is important to ensure that our model is making decisions based on the 

features relevant to the proteins. A model with high accuracy but unknown judgments is not what 

we prefer. Here, a technique called saliency map76 is used to visualize the “black box” of the 

neural network by computing the “saliency” (importance) of each pixel in the image to the result.   

For a given image 𝐼0, the network will return a score 𝑆𝑐 for each class. In our case, the two 

classes are: Aβ-42 and alpha-syn. The saliency map is made by computing the gradient of the 

score of the class predicted by the network with respect to each pixel I in 𝐼0.  

ω = 
𝜕𝑆𝑐

𝜕𝐼
|
𝐼0

 

One can note that ω is a gradient map of an image 𝐼0. Intuitively, the gradient describes the 

ability of each pixel to affect the score. A large gradient for a pixel implies that a small change in 

that pixel can greatly change the value of 𝑆𝑐. Thus, regions which most contribute to the 

prediction of the CNN should be highlighted in the saliency map. And if our model works 

properly, the highlighted region should be related to some features of the protein deposits. 
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3.3 Results 

3.3.1 Visualization and comparison of Aβ-42 and alpha-syn pure protein deposits 

 

Figure 3.2. LR, LD, LA and a combination images of polarimetric properties (R channel: LR, G channel: LD, 

B channel: LA) of four pure protein deposits (the top two are Aβ-42 and the bottom two are alpha-syn). Range 

of LR: [0°, 180°], LA: [0, 1], LD: [0, 1], combination: normalized to [0, 1]. Scale bar in the upper left panel: 20 

μ. 

 

Four examples of pure protein deposits are displayed in Fig 3.2; the first two are pure Aβ-42 and 

the last two are pure alpha-syn. From the morphological point of view, the shapes of the deposits 

vary not only within protein type but also between proteins. Thus, it is difficult to find a particular 

rule to distinguish Aβ-42 and alpha-syn morphologically. Aβ-42 and alpha-syn also do not show 

an obvious difference in their polarization images. Further statistical t-tests confirmed that there 

were no significant differences between Aβ-42 and alpha-syn in the mean values and STDs of their 

polarimetric properties including LR (P = 0.20 for mean, P = 0.43 for STD), LD (P = 0.06 for 

mean) and LA (P = 0.18 for mean, P = 0.76 for STD), except for the STD of LD (P = 0.02) showing 

a significant difference. The shape-related metrics from blob analysis such as the area, the 

eccentricity, the major and minor axis, the orientation and the fractal dimension of the deposits 

were also compared between the Aβ-42 and alpha-syn. Only the fractal dimension shows a 
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significant difference (P = 0.03) while the P-value of the other metrics are all higher than 0.05. 

These results suggest that it is difficult to visually or statistically differentiate Aβ-42 and alpha-

syn, despite the potential shape difference between the two deposit types given by the fractal 

dimension. By training CNN, we expect that the network can recognize any shape differences and 

subtle differences in the distributions of polarimetric properties across deposits of the two types. 

The thickness of Aβ-42 and alpha-syn deposits were also compared using a subset on which 

confocal microscopy was performed to investigate their thickness (40 Aβ-42 and 40 alpha-syn 

deposits). Welch’s t test was used to test the differences in thickness and found no statistically 

significant difference between Aβ-42 and alpha-syn in thicknesses (P = 0.97). There is also no 

statistically significant difference in LR for the subset tested for thickness and the larger dataset 

used for network training. 

 

3.3.2 Classification performance of CNN 

The performance accuracy of CNNs trained using the images of different polarimetric properties 

(LR, LD, LA and a combination of the three) are shown in Table 3.1, and compared with the three 

machine learning algorithms used in Chapter 2 (LDA, SVM and RF). The training and validation 

learning curves of the four CNNs are shown in Fig 3.3 and Fig 3.4. 

 

Table 3.2. Table of classification performance of the 7 methods ranked by accuracy 

Rank Method Accuracy 

1 CNN with LR images 90.2 ± 0.3% 

2 CNN with LA images 86.2 ± 0.1% 

3 CNN with combination images 84.7 ± 1.4% 

4 CNN with LD images 76.9 ± 0.8% 

5 RF 66.3 ± 1.4% 

6 LDA 57.7 ± 0.6% 

7 SVM 50.9 ± 0.4% 

 

The accuracies shown are the mean values with STDs obtained from shuffling and recalculating 

the training and testing sets 3 times. From Table 3.1, the CNN trained by LR images has the highest 

accuracy around 90%. The accuracy of the CNN trained by LA images is lower than the CNN with 
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LR images, but higher than the CNN with combination images. The CNN trained by LD images 

had the lowest accuracy among all the CNNs. The combination image of LR, LD and LA in the 

RGB channels gives approximately the average performance of each trained separately. All CNNs 

have better performance than the machine learning methods (RF, SVM and LDA), with the worst-

performing CNNs 10% more accurate than the best-performing machine learning method (RF). 

 

 

Figure 3.3. The learning curves of the CNNs trained by LR, LD, LA and their combination images over 100 

epochs. 
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Figure 3.4. The validation learning curves of the CNNs trained by LR, LD, LA and their combination images 

over 100 epochs. 

 

From Fig 3.3, the training accuracies of four CNNs all improved rapidly in the first 20 epochs and 

then slowly improved in the next 30 epochs. At the 50 epoch, the training accuracies of the 

networks were already close to 100%, except the CNN trained by LD which still had relatively 

large fluctuations. After 100 epoch, all CNNs were stable at 100% training accuracy. 

However, the validation learning curves in Fig 3.4 fluctuated more than the training learning 

curves. The differences between the four CNNs were also more obvious. The LR curve had the 

most fluctuations in the first 50 epochs, then gradually slowed down and stabilized at above 0.9. 

The LA and combination curves showed a similar trend, with relatively large fluctuations in the 

early epochs then reduce to smaller fluctuation around 0.8 in the final epoch. The CNN trained by 

LD had the lowest validation accuracy, fluctuating between 0.7 and 0.8 after the 85th epoch.  
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3.3.3 Visualizing and Understanding the network  

The saliency maps of four sample protein deposits (two Aβ-42 and two alpha-syn) are shown in 

Fig 3.5, which are from the CNNs trained with LR, LD, LA and combination images, 

respectively. The LR images of the protein deposits are also included as a reference. 

 

Figure 3.5. LR images and saliency maps of four pure protein deposits (the first two are Aβ-42 and the other 

two are alpha-syn). LR images are in the leftmost panel, then from left to right: Saliency map from the CNNs 

with LR, LD, LA and their combination image. Range of LR: [0°, 180°], LA: [0, 1], LD: [0, 1], combination: 

normalized to [0, 1]. Scale bar in the upper left panel: 20 μ. 

 

The shapes of the four sample proteins can be clearly visualized in the saliency maps of LR, 

although the protein regions have lower rather than higher scores. The regions with lower 

saliency were in the same location as the original protein deposits with similar shapes. 

The shapes of the protein deposits were less defined in some LD saliency maps compared to the 

LR saliency maps. In LD, the difference between the protein region and the background was less 

pronounced in Aβ-42, deposit 2.  In Aβ-42 deposit 1 and alpha-syn deposit 2, some parts of the 
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background regions in the upper right corner shared the same saliency with the protein deposits. 

However, they still have roughly the same morphology as the corresponding protein deposits in 

the LR images.   

The visualization of proteins in some LA saliency maps is closer to that in the LR images and 

saliency maps, but not in all. Overall the LR saliency maps best correlate with the corresponding 

deposit polarimetric images. 

Unlike the saliency maps from individual properties, the saliency maps for the combination 

images showed higher values for the protein regions than for the background. The regions with 

high saliency are similar in shape to the corresponding LR images of the deposits. However, 

there were also regular bright spots in these saliency maps outside the deposit regions, especially 

in the lower parts of Aβ-42 1 and 2. 

In conclusion, the above results on saliency are reassuring as they indicate that our CNN models 

are making decisions based on a part of the image known to be related to the shapes of the 

corresponding protein deposits, rather than randomly selected areas. 
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Figure 3.6. Four examples of saliency maps with non-uniformly highlighted backgrounds. The red boxes 

select some regions that are significantly brighter than the most background regions. 

 

Although the shape of the protein deposits can be visualized in saliency maps, variations can be 

observed in the saliency values of the background regions. Taking the four protein deposits in 

Fig 3.6 as an example, the region selected by the red boxes are brighter than other regions in the 

backgrounds. In order to confirm whether this is caused by the presence of a birefringent protein 

deposit in the background, we examined the protein deposits under 45° PSG and 45° PSA. If the 

linear retardance signal were real, a signal should be found in the corresponding positions in the 

45° PSG, 45° PSA microscope images, Fig 3.7 displays the microscope images of the four 

proteins in 45° PSG, 45° PSA setting. 

 

Figure 3.7. The microscope images of the four example protein deposits under 45° PSG and 45° PSA, [0, 1]. 
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In Fig 3.7 and in the original LR images, no signals could be found in the background thus we 

can exclude that those brighter regions are caused by the small background protein deposits.  

For future direction, this project could potentially be further developed to differentiate four types 

of proteins: Aβ-38, Aβ-40, Aβ-42 and alpha-syn simultaneously. A decrease of Aβ-38 in the 

brain is associated with Frontotemporal lobar degeneration (FTLD)77, which is also associated 

with alpha-syn78. Both Aβ-40 and Aβ-42 are associated with cerebral amyloid angiopathy (CAA) 

and AD, with Aβ-40 more prevalent in CAA and Aβ-42 prevalent in AD79. Thus, differentiating 

these four protein types could help distinguish between neurodegenerative diseases such as AD, 

PD, FTLD and CAA. Currently we are only classifying the polarimetry images of a deposits as 

containing different types of proteins. The method could be also be extended from protein 

classification to deposit detection. This would involve a pixel-by-pixel classification of the 

images to automatically localize the protein deposits, by using more advanced deep learning 

approaches such as YOLO80 and R-CNN81. Such models could then be tested to determine the 

type and location of the detected protein deposits in in-vivo live eye imaging, as well as 

achieving a real-time image segmentation of the deposits. 

The methods described in this project can differentiate pure Aβ-42 and alpha-syn deposits with a 

high accuracy of 90%, by using a modified convolutional neural network – Resnet 101 trained by 

LR images, without using dyes or immunohistochemistry. Using the method described in chapter 

3, we expect that, using polarimetry, the thioflavin positive retinal amyloid deposits could first 

be identified with high accuracy in live-eye imaging. Subsequently, work in this chapter 

demonstrates that retinal deposits containing Aβ-42 could be distinguished from those containing 

alpha-syn by their polarimetric images.  In turn, we have shown that the number of retinal 

deposits containing Aβ are predictive of the severity of Aβ in the brain, associated with AD. If it 

can be shown that alpha-syn in the retina is also predictive of alpha-syn in the brain, the 

differentiation of the two biomarkers in the retina may provide biomarkers for the differentiation 

of the neurodegenerative diseases associated with Aβ, for example AD from diseases associated 

with alpha-syn such as PD. The presented method may be applied in the future to the 

differentiation of additional neurodegenerative diseases, based on their interactions with 

polarized light. Compared to the other invasive methods, polarimetry is a promising dye-free 
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method of detecting retinal amyloid and other proteins in live eye imaging. The results reported 

here serve as an important first validation of the feasibility of this approach. 

 

 

3.4 Discussion 

In this study, pure deposits of Aβ-42 and alpha-syn were differentiated based on images of their 

polarimetric properties which map their interactions with polarized light. These properties in turn 

are calculated from 16 raw images taken in a polarimeter. Of the polarimetric properties tested, 

maps of linear retardance gave the best accuracy (above 90%) in differentiation and adding 

additional properties did not improve the accuracy. From the resulting saliency maps, the 

differences detected for classification of the two deposit types, were based on differences 

between the linear retardance of the deposits and the background.  

Aβ-42 is known to form deposits of a well ordered fibrillar form. Although these deposits were 

known to interact with polarized light after a dye, Congo red aligned with the fibrils5,52, our 

group was the first to show evidence that amyloid beta deposits have intrinsic interactions with 

polarized light in the absence of a dye6. Here we show analogous results for deposits of alpha-

syn. Likely thus is also due to their fibrillar nature82. 

The differences between linear retardance maps of the two types of pure protein deposits which 

allowed CNN to classify them with such high accuracy could originate from several sources. 

Linear retardance at a given position is the product of thickness and birefringence. A subset of 

the pure Aβ-42 and alpha-syn deposits studied here were not significantly different in average 

thickness. All deposits were also not significantly different in their average linear retardance. 

This would suggest that the average birefringence of the two types of deposit may not differ 

significantly. Also, there were no statistically significant differences in size and shape-related 

metrics, measured using blob analysis. However, the maps of linear birefringence apparently do 

differ both in their fractal dimension and potentially the distribution of linear retardance values 

across the images. This may point to a difference in the way in which the two types of deposits 

grow and/or the exact arrangement of the fibrils within the deposits.  
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This work was done using a pretrained residual Convolutional Neural network with a number of 

different settings, of which the CNN model trained by LR with dropout in fully connected layers 

and the step-decay learning rate gave the best accuracy. Other CNN models trained by LA, LD 

and a combination image of LR, LD and LA gave lower accuracies than the CNN trained by LR. 

There are limitations in this study. First, there are limited number of pure protein deposits for 

training CNN as it requires a considerable time to grow them. Only 360 protein deposits were 

used in this project, of which 70% (252) were used for training the networks. The lack of training 

data could cause overfitting and poor generalization of the models, which may be the reason why 

the training accuracies of the four CNNs all achieved 100%, but their testing accuracies did not. 

However, the overall accuracies achieved were high. The dropout technique was applied here to 

prevent overfitting. I tested other techniques such as L1 regularization and L2 regularization75 

have been tested but they were not as good as dropout. Collecting more data would still be the 

most effective way to improve the performance of CNN. Using only 10% of the protein deposits 

(36) for validation lead to validation learning curves that increased overall but had many 

oscillations. This leaves more samples for training and results in a high overall accuracy. 

Second, the similarity between pure protein deposits and those in the retina containing these 

proteins needs to be examined. Similar variations in polarimetric properties across deposits have 

been found between retinal amyloid and pure Aβ-42 deposits (Corapi F, et al. IOVS 

2018;59:ARVO E-Abstract 1582). The interactions with polarized light of pure alpha-syn 

deposits still need to be compared with interaction of protein deposits in the retinas of those with 

diseases associated with deposits containing alpha-syn for example Parkinson’s disease.  

However, these initial results suggest that polarimetry may be an important label free method of 

detecting different protein deposits in the retina as biomarkers of different neurodegenerative 

diseases. 

In section 3.3, the saliency maps of the CNNs trained by LR, LD and LA images showed de-

emphasized rather than highlighted protein regions, with the shape of the deposits. This can be 

interpreted as another representation of protein deposits’ shapes from the networks’ perspective, 

accomplished by recognizing the shape of the regions around the protein deposits. This 

reinforces that, in differentiating the deposits of amyloid-β42 and α-synuclein, the CNN method 

is using the properties of the deposits and the surrounding regions. 
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We (M.C.W. Campbell, et al. IOVS 2010;51:ARVO E-Abstract 5778) and others23,26 have 

demonstrated the presence of amyloid deposits in the retina in those with Alzheimer’s disease, 

including the presence of Aβ-42. Alpha-syn deposits have been reported in the retinas of those 

with neurodegenerative diseases in which alpha-syn deposits are found in the brain. However, as 

discussed above, the polarimetric properties of LR, LA and LD of retinal deposits containing 

alpha-syn still need to be compared with those of pure alpha-syn deposits. Then the performance 

of our machine learning models in differentiating retinal deposits containing amyloid-β and those 

containing α-syn needs to be tested. Once the ability to differentiate the two deposit types were 

established, it could form the basis of a differential diagnosis of the two classes of 

neurodegenerative diseases which involve the two proteins, with the potential for earlier, less 

expensive diagnosis than the brain scans currently used83. 
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Chapter 4 

 

4 Conclusion 

 

In this thesis, two different but associated research projects were presented on the theme of 

detecting amyloid deposits noninvasively in the retina of the eye. In Chapter 2, our group have 

shown that retinal deposits can be imaged by the Mueller matrix polarimetry with high 

resolution. By using the fluorescence microscope, we confirmed that most retinal deposits, 

detected in polarimetry, have thioflavin fluorescence signals, which is an established marker for 

amyloid.   

However, a small percent of the retinal deposits are negative in fluorescence. Since imaging by 

fluorescence involves staining which is invasive for live eye imaging, machine learning 

algorithms were used to predict the presence of fluorescence signals of the detected deposits 

from their interactions with polarized light, without the use of dye. Of the machine learning 

methods used, the Random Forrest algorithm achieved the highest accuracy of 95%, thereby 

separating the presumed amyloid deposits from other retinal deposits.  

Another protein, alpha-synuclein (alpha-syn) contains amyloid-like fibrils and also stains with 

thioflavin58. Since alpha-syn is related to other neurodegenerative diseases, including 

Parkinson’s disease (PD)59 which is also associated with alpha-syn in the retina84, it is important 

to differentiate it from amyloid beta (Aβ) to allow the amyloid retinal deposits detected by 

polarimetry to be classified as either amyloid beta, as a biomarker of AD and related diseases or 

alpha-syn as a biomarker of PD and related diseases. For this purpose, in Chapter 3, 

Convolutional neural networks (CNNs), which can directly take the images of polarimetric 

properties as input, were trained and tested on images of selected properties of pure Aβ and 

alpha-syn protein deposits grown by others in our lab. The aim was to provide a real-time 

differentiation of retinal deposits containing Aβ and alpha-syn that could be applied to live eye 

imaging. Our best CNN model can achieve 90% accuracy. Thus it is promising to the 
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differentiate of retinal deposits containing Aβ from those containing alpha-syn using a 

noninvasive method, advantageous for live eye imaging and important to the differentiation of 

diseases associated with the two protein types. 

For future directions, the work presented in this thesis can be further explored in several ways: 

1. The machine learning classifiers in chapter 2 could be tested and optimized in in vivo 

studies in a larger sample size.  

2. Improvements can be explored for the CNN models: including 1) increasing the numbers 

of images used as input through additional attempts at data augmentation (e.g. Random 

rotation, reflection and translation of the images). This would provide more training data 

without the collection of new data. 2) The filters and the feature maps of the 

convolutional layers could be visualized to increase the interpretability of neural 

networks and the impact of the size of the network on the accuracy of the protein 

prediction could also be explored. 

3. The classification of protein deposits in the retina is a path to the differentiation of 

different neurodegenerative diseases. The CNN models can be developed to recognize 

four pure protein deposits: Aβ-42, Aβ-40, Aβ-38 and α-syn, the number of which are 

associated with AD, CAA, FTID and PD. Although the protein deposits interact with 

disease pathologies in a complex manner, being able to distinguish these deposit 

biomarkers is still beneficial to the research of diseases differentiation. The models would 

first be tested on pure protein deposits and then on retinal protein deposits. 

4. The classification of proteins’ types can also be a path to the object detection of the 

deposits’ regions in live eye imaging using techniques like R-CNN/YOLO. By do this, 

researchers can not only know the type of a protein deposits, but also quick locating or 

even segmenting the deposits. 

In conclusion, with the help of machine learning algorithms and deep neural network techniques, 

the existence of thioflavin fluorescence of a retinal deposit can be predicted from its interaction 

with polarized light. In addition, the AD biomarker Aβ-42 can also be differentiated from the PD 

biomarker alpha-syn by their polarization images. They together validate that the Mueller matrix 

polarimetry is a promising non-invasive dye-free method for detecting retinal amyloid and 

making the early diagnosis of AD. 
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Appendix 1: Definitions of machine learning 

terms not defined in the text 

  
Words and phrases in bold are used in the main text. 

Feature: A feature is a property input to the machine learning algorithm. In this paper we use 

polarimetric properties which describe interactions of the sample with polarized light. 

Datasets of each class: The groups into which the data is classified, each of which has a unique 

label, are referred to as classes. In our case, we have two datasets of deposits labelled with the 

classes, thioflavin positive and thioflavin negative, both members of which are described by 

polarimetric properties.  When datasets contain unequal numbers of data, this is referred to as data 

imbalance. 

Machine learning algorithm: Computer programs (algorithms) that can “learn” from training 

data and improve their performance in predicting the class of input testing data. Our two datasets 

are labelled thioflavin positive and thioflavin negative. After learning training, these programs 

are given testing data, which they classify into the classes. These algorithms are also known as 

classifiers. The algorithms we test are: 

Linear discriminant analysis (LDA): uses training data to learn linear equations which 

produce values which are close for members of the same dataset, and far apart for members 

of different datasets. These equations are then used to classify testing data into classes. 

Supporting vector machine (SVM): When training, SVM finds a decision boundary in the 

feature space to separate the different datasets as far as possible. Testing data are classified 

based on which side of the boundary they fall on. SVM heavily weights data close to the 

decision boundary. 

Random forest (RF): RF uses many decision trees to generate a consensus decision. A 

decision tree classifies data points by using multiple properties to differentiate data into 

separate classes. When training, many trees fit a random subset of the training set. Each data 

point is available to be sampled multiple times during training. This is called bootstrapping. 
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When testing, bootstrapping again generates many subsets, and each is classified. This 

classification uses a decision tree based on Gini impurity. Data points are then classified into 

the class where it was most frequently placed. 

Gini impurity: is a commonly used metric in RF decision trees to decide the optimal 

property to split the data into subsets. In general, as the splitting continues, the amount of 

data in branch nodes of a decision tree which belong to the same class should increase, this 

implies that the “purity” of the nodes is increasing. The purity of a dataset varies inversely 

with Gini impurity (Equation 3). The property with the smallest Gini impurity is chosen for 

node splitting. The decrease in Gini impurity at each node over the tree is summed to 

calculate the variable importance of each property. 

Oversampling strategy: If the datasets of each class are not balanced in their number of data 

points, these methods can be applied to increase the data points in the dataset with lower numbers 

(minority, in our case thioflavin negative deposits). Our majority dataset consists of thioflavin 

positive deposits. 

K-nearest neighbor analysis, used in oversampling: Determine the k points nearest a given 

point (from the nearest to the kth nearest). The points are defined by the values of the mean and 

STD of each of the polarimetric properties. The nearest points have the most similar properties. 

SMOTE algorithm: A commonly used algorithm to generate synthetic samples (oversample) 

in the minority dataset to balance the number in the majority dataset. The algorithm begins 

by searching for the k-nearest neighbors of the same class (k is usually set to 5) for every 

sample in the minority dataset, then randomly generates a number of new synthetic data 

points along the line between the minority datapoint and its nearest neighbors. The number of 

synthetic data points matches the total number in the minority dataset to the majority dataset. 

Borderline-SMOTE oversampling: Based on SMOTE oversampling, borderline-SMOTE 

only performs the SMOTE algorithm on examples in the minority dataset that have nearest 

neighbors in the majority dataset as these are easily misclassified. 

Cross-validation: (10-fold): divides the data into 10 subsets with similar size. One subset is used 

as the testing data and the other 9 are the training data. This is repeated for the other 9 subsets 

and the average of the 10 results is output. 
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t-distributed stochastic neighbor embedding (t-SNE)56 test:  a machine learning method for 

dimension reduction that can help to identify the patterns of properties in the datasets. The main 

advantage of t-SNE over other dimension reduction methods (such as principal component 

analysis) is the ability to maintain local patterns in the dataset. This means that similar points in 

high-dimensional space are still close to each other in a lower-dimensional projection. 

Perplexity: Perplexity is a parameter that controls the dimension reduction in t-SNE. It can be 

interpreted as the nearest neighbors considered when matching the original (high-dimensional 

space) and the fitted (low-dimensional space) of each point. A smaller perplexity means only 

a few points are considered as the nearest neighbors when doing fitting, which highlights the 

information local to the data points. A higher perplexity means that more points are considered 

as the nearest neighbors, giving a more “global view”. 

Convolutional Neural Network (CNN): is a type of deep neural network model which involves 

convolutional layers and convolution operations. 

Batch normalization:  Batch normalization is usually applied after the fully connected layer 

or the convolutional layer of a CNN, to normalize the output of each neuron in the layer into a 

unit Gaussian distribution before being trained in the next layer. Since the network is usually 

trained by mini-batch, the normalization will be implemented on the data with a batch size and 

is thus called batch normalization. 

Momentum: is added when updating the weights, with the aim of adjusting the weights by 

considering the impact from the previous gradients. Thus, the weight ω will be updated to 𝜔′ 

by 

𝜔′ =  𝜔 −  𝑚 

where m =  β𝑚− +  η
∂𝐸𝑘

∂ω
 

m is the momentum vector, 𝑚−  is the previous momentum vector, 𝐸𝑘  is the difference 

between the predicted label and the label measured by the loss function, and β is a 

hyperparameter range from 0 to 1 for controlling the momentum. In this thesis, βis set to be 
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0.9. Compared to Eq 1.33 in Chapter 1, one can find the weight updated by momentum will 

take the previous gradients 
∂𝐸𝑘

−

∂𝜔−
 into consideration. 

The score returned by the neural network: ranges from 0 to 1 with respect to each class, 

which describes the probability of the input belonging to each class, respectively. For example, 

if the score returned by CNN for a given input is (0.2, 0.8) with respect to Aβ-42 and alpha-

syn, then it is more likely to be alpha-syn. 

Dropout: is a popular regularization technique for deep neural networks. During the training, 

every neuron in each layer will have a certain probability to be temporarily inactive. Inactive 

means that the inactive neuron will not be connected with other neurons in the network, it is 

“dropped out”. The probability of this is known as the dropout rate.  

Learning curves: a plot that shows the improvement of training or validation in accuracy, with 

respect to the training/validation time. 

Mini-batch: Instead of computing the SGD of all the data in a dataset simultaneously, in 

practice, the dataset is usually divided into multiple small batches, known as the mini-batches 

with a batch size equal to the number of samples included in each mini-batch. Then SGD is 

performed on each mini-batch in turn. 

Epochs: When the neural network learns from all the training data in a training dataset, it is 

called an epoch. Normally, a neural network will need to be trained several times in order to 

get a decent performance and use several epochs of data. 

L1 regularization: In order to alleviate the problem of overfitting, a penalty term is often added 

to the loss function. If the introduced penalty term is the L1 norm of the weights ω, then it is 

called L1 regularization. 

𝐂 = The cross entropy loss +  λ‖𝜔‖1 , where λ > 0  and can be specified by users to control 

the regularization. 

L2 regularization: Similar to L1 regularization, if the introduced penalty term is the L2 norm 

of the weights ω, then it is called L2 regularization. 
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𝐂 = The cross entropy loss +  λ‖𝜔‖2
2 , where λ > 0  and can be specified by users to control 

the regularization. 
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Appendix 2  
 

Table A 1. Equations for the polarimetric properties used as features in the machine learning algorithms. 

𝑀𝑖𝑗  is the Mueller matrix element in the ith row and jth column. 𝑀∆and 𝑀𝑅  are the depolarization and retardance 

matrices obtained from polar decomposition7 

Feature name Equation 

Linear retardance (LR) √(𝑀𝑅23 − 𝑀𝑅32)
2 + (𝑀𝑅31 − 𝑀𝑅13)

2

2𝑠𝑖𝑛{𝑐𝑜𝑠−1 [
𝑡𝑟(𝑀𝑅)

2
− 1]}

 

Circular retardance 𝑀𝑅12 − 𝑀𝑅21

2𝑠𝑖𝑛{𝑐𝑜𝑠−1 [
𝑡𝑟(𝑀𝑅)

2
− 1]}

 

Linear diattenuation 
√(𝑀01

2 + 𝑀02
2) 

Circular diattenuation 𝑀03 

Depolarization power 
1 − 

|𝑡𝑟(𝑀∆) − 1|

3
 

Metric b 𝑀22 + 𝑀33

2
 

Metric t √(𝑀22 − 𝑀33)
2 + (𝑀23 + 𝑀32)

2

2
 

Metric A 2𝑏 ∗ 𝑡

𝑏2 + 𝑡2
 

Metric x 𝑡𝑎𝑛−1(
𝑀31

𝑀21
)

2
 

Linear polarizance 
√𝑀10

2 + 𝑀20
2 

Circular polarizance 𝑀30 
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Q metric ∑ (𝑀𝑖𝑗
2 − 𝑀00

2)3
𝑖,𝑗=0

𝑀00
2 − 𝑀01

2 − 𝑀02
2 − 𝑀03

2

1 + 𝑀01
2 + 𝑀02

2 + 𝑀03
2  

Linear anisotropy (LA) √(𝑀01 + 𝑀10)
2 + (𝑀02 + 𝑀20)

2 + (𝑀23 − 𝑀32)
2 + (𝑀13 − 𝑀31)

2

√𝛴
 

Circular anisotropy √(𝑀03 + 𝑀30)
2 + (𝑀12 − 𝑀21)

2

√𝛴
 

where 𝛴 = (3𝑀00
2 − 𝑀11

2 − 𝑀22
2 − 𝑀33

2) + 2(𝑀01𝑀10 + 𝑀02𝑀20 + 𝑀03𝑀30 − 𝑀23𝑀32 − 𝑀13𝑀31 − 𝑀12𝑀21),. 

 

Table A 2. Hyper-parameters of SVM and RF 

where the parameters used are defined in49 

Classifier Hyper-parameter distributions 

 Kernel: [radial basis function, polynomial, 

sigmoid] 

SVM Degree of polynomial kernel function: [1,2,3] 

Gamma: [0.001, 0.01, 0.1] 

Shrinking: [True, False] 

 Cost parameter: 1 

Search iteration:30 

 Number of trees: a random integer in 

[100,1000] 

RF Bootstrap: [True, False] 

Max features of splitting: a random integer in 

[1,28] 

Minimal sample of splitting: a random integer in 

[2,27] 

Criterion: [Gini impurity, information gain] 

 Maximum tree depth: unlimited 

Search iteration: 100 
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Figure A1. A spatially resolved Mueller matrix (MM) of a polarimetric and fluorescence positive deposit. 

Elements are coded by row and column number (M00 to M33) and each pixel position has 16 elements 

associated with it. The matrix elements are normalized by M00. 
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Appendix 3: Permission Statements 

 

 

Figure A2. Permission for inclusion of figure 1.4 and 1.5. 
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Figure A3. Permission for inclusion of the paper on TVST journal as my second chapter, in which I am the 

first author. 

 


