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Abstract 

As information technology is moving toward a big data era, the conventional Von Neumann architecture 

has shown limitation in performance. This is constrained by the large volume of data being continuously 

fetched and stored through input-output (IO) device, which not only adds performance penalty but power 

penalty as well. Therefore, it is necessary to bring processing unit as close as possible to memory for 

minimizing data transmission. Memristors provide dual functionalities of data storage and computing at the 

same location without data transmission, therefore is one of the most promising candidates for energy 

efficient in-memory computing. However, being stochastic in nature, variations in memristor device is one 

of the major challenges in its use towards in-memory computing. In this thesis, we demonstrate novel 

memristor devices with unique characteristics, which could facilitate reprogrammable application and high-

density storage. Further, we demonstrate the applications of the fabricated memristor devices for in-memory 

computing, with a motive for less sensitive circuits towards variations in devices. 

In the first device, TiO2 and maple leaves (ML) are combined to form a functional layer (TiO2-ML) inside 

memristive devices, which demonstrate both the capacitive effect and the non-volatile storage capability. 

When the voltage increases from zero, the device firstly enters a capacitive-coupled memristive state at low 

voltage before switch to normal memristive state at a higher voltage. The existence of capacitive coupled 

and memristive behavior, modulated by programming voltage, forms a unique reprogrammable device. In 

the second device, formed by Al/TiO2-Graphene-DNA/Pt layers, high performance and stable intermediate 

multistate resistive switching behaviors have been achieved. Further, for in-memory computing, a high-

density memory and multibit parallel logic computations are realized based on the multistate resistive 

switching behaviors. This improves data storage capacity and performance up to 2 with respect to 

conventional single bit memristor devices when they are used to store binary data, without any compromise 

in accuracy. Further, we use Al/TiO2/Al memristor device, to demonstrate a variation tolerant analog-

digital-hybrid matrix multiplication circuit, for high precision and efficient in-memory computing. It was 

observed that, in comparison to conventional analog based matrix multiplication scheme using memristor, 

the proposed scheme improves the average accuracy up to 16.35%, with sacrificing power, performance 

and area up to 18.5%, 8.2% and 3.2% respectively. This work provides a new horizon on the memristor 

devices and will improve the understanding of engineering device and circuits for efficient and variation 

tolerant in-memory computing. 
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Chapter 1 

Introduction 

1.1 In-Memory Computing  

1.1.1 Need for New Computing Paradigm  

Artificial intelligence and machine learning have proven to provide means for several advanced 

applications. Recently, various improvements and achievements have been accomplished through deep 

leaning to implement a wide range of applications such as object detection, face detection, self-driving cars, 

predictive technology, chat bots, self-learning robots, game playing computers, etc. [1-9].  Although 

machine learning theories have been developed since 1980s, it was not until the last decade when the field 

started to boom with an explosive scale of real-world applications.  [10-12].  

 

Figure 1.1. The trend of increasing power densities and clock frequencies of processors [13]. 
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One of the key challenges in the early days was inability of hardware machines to support these applications 

to process large database, often with hundred or more parameters associated with it.   Fortunately, 

continuous CMOS scaling has eventually reached the level to enable the hardware for implementation of 

deep learning applications.  

The CMOS scaling, i.e., the decreasing size of transistor, has been directly associated with the increase 

in frequency of the processor which in turn can speed up the computation. However, as the frequency of 

the processor is increased, its power density increases as well. As historical data shown in Figure 1.1 [13], 

the frequency and power of modern processors have been increasing in a highly correlated manner since 

1971. Such trend, however, has started to saturate when Moore’s Law eventually comes to an end.   Under 

the current scaling scenarios, with further increase in frequency, the power density would become too large 

and it is impossible for the chip to cool down by evacuating heat. Therefore, anymore increase in frequency 

could result in damaging the chip. This is the known as heat wall and is the first limitation in the existing 

computing paradigm. 

 

 

Figure 1.2. Memory wall issue in conventional Von Neumann Architecture [14]. 

 

The second limitation of the scaling is shown in Figure 1.2, which is known as memory wall [13,14]. The 

conventional computers are based on Von-Neumann architecture, where the CPU or the basic processing 

unit and memory unit are separate. However, in case of data intensive computation such as deep learning, 

a high volume of data movement between processing unit and the memory is involved, which causes high 
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latency and power consumption. In addition, as the technology is scaled, the gap between performance of 

processing unit and memory is widening, as shown in Figure 1.3 [15]. Thus, increasing frequency further 

adds only little to performance in case of data intensive operation, as processing units needs to sit idle for 

the time the data is being fetched from the memory.  

Hence, the traditional Von-Neumann architecture is no longer efficient moving forward. Novel 

computing architectures are explored for more advanced applications and faster processing. 

 

Figure 1.3. Processor Memory performance gap widening trend [15]. 

1.1.2 In-Memory Computing  

 

Figure 1.4. In-memory computing paradigm [14]. 
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As illustrated in the Figure 1.1, human brain has much less power density as well as lower frequency of 

operation comparing with processors based on Von-Neumann architecture, yet it is able to solve very 

complex problems. One of the key reasons for such efficient operation is that the operation of the brain 

involves computation and storage of the data in the same region. Therefore, for performing more complex 

operation more efficiently, it is necessary to shift hardware designs more closer to paradigm of brain. This 

has inspired researchers to explore in-memory computing architecture, in which computation and memory 

storage takes within the same unit, as shown in Figure 1.4. These architectures are termed as in-memory 

computing architectures. 

1.2 Memristor 

Several emerging nanoscale memory technologies such as memristor, phase change memory, magnetic 

memory, and ferromagnetic memory have been explored for in-memory computing [16].  

The memristor was proposed by L. Chua in 1971 based on missing element in the symmetry of 

fundamental circuit theory [17]. The classical circuit theory is based on four fundamental quantities (i) 

current, (ii) voltage, (iii) charge, and (iv) flux-linkage. The resistor, capacitor and inductor relate voltage-

current, voltage-charge and current-flux linkage respectively. Therefore, based on symmetry, L. Chua 

proposed fourth element relating charge and flux, and named it as memristor. Although it was proposed in 

1971, the memristor remain unobserved for several decades. It was identified recently in 2008 in HP labs 

[18]. Memristor devices have many attractive properties such as nanoscale dimensions, low power 

consumption and non-volatile memory [19-22]. This makes them suitable for many applications such as 

computer memories, programmable circuits and in-memory computing circuits [16].  

Memristor (also known as resistive random-access memory, RRAM or ReRAM), is a combination of 

two words, memory and resistor. As its name indicates, memristor behaves similar to a non-linear resistor 

in a sense that it opposes the flow of charge in the same as resistor does. The difference is that the memristor 

has nonvolatile memory of its states [19]. So, its resistance value changes permanently depending on how 

much charge has flown through the device. As long as the input signal across the memristor is applied, the 

device keeps changing its resistance. Once the input signal is removed the memristor will in theory maintain 

its resistance indefinitely or until input signal is applied again. To change the resistance of the device, 

appropriate input voltages need to be applied for the appropriate duration of time.  



 

 5 

The structure of a memristor device is a simple two-terminal structure where a dielectric layer is 

sandwiched between two electrodes. The resistance of the sandwiched dielectric layer is controlled by the 

potential difference applied across it, thus forming a memristor.  

 

 

Figure 1.5. Schematic illustration of switching mechanism of memristor [23]. 

The operation of device can be explained by conductive filament growth and rupture in oxide region with 

application of potential difference at both the electrodes, as shown in Figure 1.5 [23]. During the one-time 

electroforming process after the device fabrication, a high voltage, known as forming voltage, is applied to 

generate mobile oxygen ions through dielectric breakdown. As a result, a conductive filament is formed 

due to oxygen vacancies in the dielectric layer. During normal write operations, a programming voltage, 

lesser than forming voltage, is applied between top electrode and bottom electrode to control this conductive 

filament and thus device resistance. When a negative programming voltage Vreset is applied at top electrode 

with bottom electrode grounded, the oxygen ions migrate back to the oxide layer. Therefore, the conductive 

filament ruptures and the device behaves as a high resistance device, which is known as high resistance 

state (HRS) of the device. Similarly, when a positive programming voltage Vset is applied at top electrode 
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with bottom electrode grounded, the conductive filament grows back again and the device behaves as a low 

resistance device, which is known as low resistance state (LRS) of the device. To read the resistance state 

of the device, a read voltage Vread, (Vread< Vset/2; Vread< Vreset/2) is applied across the device to sense the read 

current.  

An ideal memristor should have large ILRS/IHRS ratio (>102) i.e.., the ratio of read current when the device 

is in LRS (low resistance state) to that when the device is in HRS (high resistance state) [16,23-25]. 

Additionally, an ideal memristor should have high endurance (i.e., device characteristics should not change 

with several set and reset cycles) and retention (i.e., the device should be able to retain resistance state for 

a long period of time) ability. It has been shown that very high level of endurance (120 billion cycles) and 

retention (> 10 years) have recently been achieved in memristor device [16].  

1.3 Scope of Research 

One of the major hurdles for the use of memristor is its stochastic nature including cycle to cycle variations 

and device to device variations. This has limited the use of memristor yet to be commercialized even though 

posing enormous benefits. Moreover, there still remains a lot from a materials point of view to be explored 

in order to achieve better performance and more stable device, especially using biomaterials, which 

provides a cleaner source of fabrication for the memristor device.  

In this thesis, we will try to address these issues in in-memory computing using memristor devices. The 

thesis will cover development of memristor device using maple leaves as biomaterials. Further, we will 

explore the use of DNA along with graphene, for the fabrication of memristor device and its application 

towards development of high-density memory and parallel logic circuits. Lastly, we will discuss novel 

circuits for performing matrix multiplication using memristor, with the proposed design being more tolerant 

towards stochastic nature of the memristor device. 

1.4 Organization 

The thesis is divided in four main chapters. The Chapter 2 covers brief review about the related work about 

memristor devices and its applications in in-memory computing. In Chapter 3, memristor device 

development using maple leaves as a part of functional layer and the behavior of the device under different 

voltage range will be discussed. In Chapter 4, high density memory and parallel in-memory logic operations 

using memristor based on DNA as biomaterial functional layer along with graphene and TiO2 will be 

presented. In Chapter 5, novel analog-digital-hybrid matrix multiplication scheme to counter stochastic 
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nature of the device will be discussed based on memristor with TiO2 as functional layer.  The Chapter 6 

summarizes the research work and proposes the future work. 
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Chapter 2 

Related work 

2.1 Introduction 

Since the discovery of memristor device in 2008 by HP, a wide range of materials have been explored to 

improve the device stability, behavior, endurance, and fabrication methods. Recently, a lot of work has also 

been particularly devoted towards fabrication of memristor using biomaterials for its easy availability, 

cheaper fabrication method and environment friendly source. From the circuit and system levels, memristor 

devices have been widely explored for its applications in in-memory computing. In this chapter, we will 

discuss briefly about previously explored materials for the memristor in section 2.2, followed by various 

applications of the memristor in in-memory computing in section 2.3.  

2.2 Development of Memristor Device 

The structure of a memristor device is a simple two-terminal layered structure, where an oxide layer is 

sandwiched between two metal electrodes, as shown in Figure 2.1. However, the selection of materials and 

the fabrication method plays an important role in the device characteristics.  

 

Figure 2.1. Structure of memristor device. 

 

 The materials for the oxide layer can be a single uniform oxide layer or a combination of multiple 

oxide layer. Broadly, the oxide layer can be categorized as inorganic layer, and organic layer, which are 

discussed in following section 2.1.1 and 2.1.2 respectively.  

2.2.1 Memristor based on Inorganic Materials  

A number of inorganic metal oxides have been observed to show memristive behavior, with majority of 

them are transition metal oxides, and few are lanthanide series metal oxides [23]. It has been observed that 

among different oxides, Cu2O and WO3, shows most compatibility with the conventional CMOS devices 
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because a single additional oxidation stage of the Cu or W via/plug is required respectively [23]. The 

deposition methods of these inorganic metal oxides usually include the ALD (atomic layer deposition), 

PLD (pulse laser deposition), reactive sputtering, and oxidation of a corresponding metal. 

TiO2 is one of the initial materials to be explored for the memristor application. Yang et al. 

fabricated 50nm x 50nm Pt/TiO2/Pt memristor devices, which exhibited stable switching behavior [26]. 

Strukov et al. explained that the switching mechanism of the Pt/TiO2/Pt device is based on the movement 

of the positive charged oxygen vacancies [18]. HfO2 is also an excellent memristor material and its explored 

widely for its application in memristor technology. In the primary stage of HfO2 based memristor 

investigation, the TiN/HfO2/Pt structure is typically used to achieve the memristive characteristics [27].  

 

 

Figure 2.2. TiN/TiO2/HfO2/TiN memristor behavior (a) I-V characteristics. (b) switching endurance 

[28].  

 

H. Lee et al. used combination of TiO2 and HfO2 as oxide layer for the fabrication of memristor. 

The typical I–V curve and the variation in resistance with switching cycle for the fabricated memristor, is 

shown in Figure 2.2 [28]. The resultant TiN/TiO2/HfO2/TiN memristor with high-speed operation showed 

large ILRS/IHRS ratio (> 100), reliable switching endurance (> 106 cycles), long high-temperature lifetime, 

and high device yield (~100%).  

Among other materials, Al2O3 based memristor behaves very similar to that of HfO2 based 

memristor in many characteristics. Additionally, Al2O3 based memristor also showed unique characteristics 
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of the low reset current [23]. Using Al/AlO2/Pt memristor device, Wu et al. first demonstrated low reset 

current down to ~1 uA [29]. Further, Kim et al. doped the AlO2 with nitrogen and achieved even lower 

reset current (< 100 nA). The low energy/power consumption of AlO2 based memristor is a striking feature 

[30]. 

2.2.2 Memristor based on Organic Materials  

In comparison to memristor with inorganic oxide layer, the oxide layer based on biomaterials are relatively 

less stable, have lower endurance and lower ILRS/IHRS ratio. However, the major advantage of using 

biomaterials for the fabrication of memristor is its easy availability, cheaper cost of fabrication and 

environmentally friendly source [16,31].  

 

 

Figure 2.3. Silk based memristor behavior (a) I-V characteristics. (b) Endurance test [32]. 

 

Hota et al., demonstrated fabrication of memristor based on biomaterials using natural silk cocoon fibroin 

protein of silkworm, Bombyx mori [32]. Additionally, the film developed was transparent across most of 

the visible spectrum. ITO and Al were used as top and bottom electrode. The I-V characteristics of the 

device is shown in Figure 2.3a. The endurance test of the device is shown in Figure 2.3b. It can be clearly 

observed that in comparison to device based on complete inorganic oxide layer (shown in Figure 2.2), 

device based on biomaterials shows lesser endurance with cycle, and has lower ILRS/IHRS ratio.   
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B. Sun et al., demonstrated fabrication of memristor with natural biomaterials made from spider silk 

(fibroin) developing Ag/Fibroin/Au structure, where the device showed ILRS/IHRS of 60 [33]. Chen et al., 

fabricated memristor with egg albumen film Al/egg white/ITO structure, where the device showed ILRS/IHRS 

> 103 [34].  

Mao et al., demonstrated environmentally friendly and sustainable bio-memristor device with Ag/walnut 

skin (WS)/ITO structure. Interestingly, the fabricated device exhibited an overwhelming capacitance effects 

in the bio-memristor device [35]. Xingli He et al., demonstrated use of Egg albumen as the dielectric, and 

dissolvable Mg and W, as the top and bottom electrodes, respectively in order to produce water soluble 

memristors [36]. The device showed ILRS/IHRS ratio in the range of 102~104. It was further demonstrated that 

the Mg and W electrodes, and albumen film all can be dissolved in water within 72 hours.  

Ham et al., demonstrated tunable memristor using light illumination [37]. The fabricated device consisted 

of organolead halide perovskite (OHP) as dielectric layer, in which the resistance state is modified by both 

electrical pulses and light illumination. Owing to the accelerated migration of the iodine vacancy inherently 

existing in the coated OHP film under light illumination, the OHP based device exhibited light-tunable 

resistivity functionalities with very low programming inputs (≈0.1 V). 

Ku et al., reported the use of organic-inorganic hybrid perovskite materials for the fabrication of 

Ag/MAPbI3/FTO memristor [38]. Further they demonstrated the use of fabricated device for neuromorphic 

computing. The results showed that the with energy consumption of the MAPbI3-based memristor to be 

estimated as low as 47 fJ/um2, which as close as human brain.  

The conduction mechanisms observed for the memristor based on organic materials remains same as 

memristor based on inorganic materials (formation and rupture of conductive filaments), which was 

confirmed by SEM imaging [16,23,31].  Generally, for the deposition of biofilm, spin coating method was 

used in above cases, which makes the fabrication step very easy [32-35]. However, the inability to control 

film thickness and maintaining film uniformity using spin coating deposition, is one of its major drawbacks. 

Therefore, the device shows lesser endurance and retention ability in comparison to inorganic oxide films. 

However, other than cheaper fabrication and maintaining cleaner environment, the organic materials based 

memristor also adds extraordinary features to the device, which makes it noteworthy to be investigated 

further. 
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2.3 Applications of Memristor for In-Memory Computing 

As discussed in chapter 1, in-memory computing is to perform computation within the memory blocks. As 

shown in Figure 2.4, there are several aspects related to computations within the memory [16]. In this 

section, we will briefly examine the different digital and analog computing schemes that have been 

proposed. The most important element of in-memory computing is development of high-density memory 

architecture. We will discuss various recent advancements in 2D, and 3D memory architectures based on 

memristor devices in section 2.3.1. For in-memory digital computing, in-memory logics are also being 

explored for implementation of general logic computation within the memory. Memristor provides various 

alternative to carry out digital Boolean operations, which will be briefly reviewed in section 2.3.2. One of 

the other important innovations in in-memory computing is the development of hardware based neural 

networks and deep learning within the memory, which deals in TBs of data. The hardware implementation 

of such in-memory computing based machine learning applications, has shown promising results in terms 

of performance improvement and power reduction in comparison to Von-Neumann architecture [16], which 

will be discussed in section 2.3.3. In section 2.3.4, brain inspired computing or neuromorphic processors 

within the memory will be discussed, which relies on fundamental principal of working of brain, and is one 

the major focus of recent study on in-memory computing.  

 

 

Figure 2.4. Aspects of in-memory computing [16]. 
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2.3.1 Development of High-Density Memory 

The memristor device is widely explored as non-volatile memory in various computing architectures, 

largely due to its smaller area, high packing density, low power, high switching speed and its compatibility 

with conventional CMOS device. The data is stored in form of resistance state of the device. Broadly, the 

use of memristor as non-volatile memory can be categorized as analog memory and digital memory.  

Generally, a crossbar structure is utilized for memory using memristor, where top electrode forms the word 

line and bottom electrode forms the bit line, and the memristor device is formed at junction of each wordline 

and bitline. For digitally storing data in memristor, 0s and 1s are stored in form of HRS and LRS 

respectively [39-42]. For writing data, a Vset or Vreset potential difference is applied across the device through 

word line and bit line. For reading the data, a Vread pulse (generally lower than Vset/2 and Vreset/2) is applied 

at the word line and current flowing through bit line is sensed to determine the stored resistance state of the 

device [44].  

 

Figure 2.5. The colour map of the readout conductance with a reading voltage of 3 V using memristor 

based on hexagonal boron nitride and graphene [44]. 

 

However, it has been demonstrated that memristor could be used in more efficient manner in an analog 

way, where more information can be stored in a single memristor. In this, intermediate resistance states are 

being explored to store data. The use of memristor in analog way helps in reducing the area of the memory 

significantly [44, 45].  

L. Sun et al., demonstrated use of memristor as memory in an analog way as shown in Figure 2.5, 

where a 12x12 crossbar structure was used to store data in form for conductance. The device used for the 

demonstration based on hexagonal boron nitride and graphene, with ILRS/IHRS ratio larger than 103 [44]. 

However, the use of memristor as memory in analog way also creates issue of precision during memory 

write operations due to stochastic nature of memristor device [46-48]. 
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Figure 2.6. (a) The schematic of 3D vertical memristor array [49]. (b) The schematic of stacked 

memristor based memories with peripheral circuit [50]. 

 

Other than planer crossbar structure, a lot of research has also been focused on developing 

architecture in 3D manner to increase the memory density, as shown in Figure 2.6 [49,50]. The Figure 2.6a 

shows stacking of memristor positioned vertically over one another [49]. The Figure 2.6b shows stacking 

of memristor layer over the other [50]. The integration of memristor in 3D architecture manner increases 

the memory density; however, it makes the fabrication process significantly more complex and potentially 

more expensive. 

 

2.3.2 In-Memory Logic 

In the past two decades, in-memory digital computing has focused on identifying novel logic gate concepts 

with lower energy and area consumption [16]. Resistive switching devices, such as memristor, provides a 

number of advantages in digital computing, including direct access by interconnect lines, the capability to 

electrically reconfigure the device, and nanoscale miniaturization. Figure 2.7 shows various methods to 

perform digital Boolean operations using memristor, differing by the input type, the output type, and the 

physical operation to describe the logic function [51-53]. 

In the logic gate of Figure 2.7a, the two input states X1 and X2 are represented by the voltage 

values applied to the top and bottom electrodes, respectively, while the output of the logic operation is 

stored as the resistance of the memristor device [51]. The output of the computation is the resistive state, 

namely a logic value 0 for the HRS, and 1 for the LRS, where the memristor device is initialized to state 1. 

One of the major drawbacks of this method is the requirement of sense amplifier to detect the state of the 

device, and the conversion of resistive state to voltage state for the operations. Figure 2.7b shows the inputs 
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and outputs for implementation of IMP logic. The IMP or “imply logic” is a fundamental but powerful 

Boolean logic operation on two operands (p and q) such that “p IMP q” is equivalent to “(~ p) OR q”. 

 

 

Figure 2.7. (a) V–R logic gate based on memristor, and (b) corresponding truth table for material 

implication (IMP) operation [16]; (c) The basic gate/latch circuit based on memristor, and (d) The 

truth table for the q←pIMPq [52]; (e) 2T2R logic structure with back-to-back RRAM pair, and (f) 

corresponding truth table for P/Q and P’/Q’ when (VU, VL, GP, GQ) = (1, 0, 1, 1): P’=Q→P (IMP), 

Q’=0 (bit set). P’=Q→0 (NOT) operation is highlighted in blue [53]. 

 

The logic gate in Figure 2.7c, is fully resistance based logics, where the inputs are stored initially in 

memristor p and q. Bit ‘0’ is stored in form of HRS, while bit ‘1’ is stored in form of LRS [52]. To execute 

IMP function a pulse of Vcond and Vset is applied to p and q respectively, and the final result is stored in form 

of resistance state of q. Figure 2.7d shows the truth table for the operation of IMP function using logic gate 

shown in Figure 2.7c.  

The Figure 2.7e shows another example fully resistance logic, based on memory ratioed logic [53]. In 

this, two memristor are connected back to back and are initialized to inputs P and Q. After application of 
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appropriate voltage pulse, memristor P stores the final resistance state as P`=Q→P and Q`=0 as shown in 

truth table 2.7f. The basic principal behind is the voltage drop across the memristors based on its initial 

input resistance values. 

 

2.3.3 Machine Learning Accelerators 

One of the important uses of memristors for in-memory computing is in machine learning 

accelerators for faster and efficient matrix multiplication using crossbar array. A crossbar array consists of 

multiple intersections between orthogonal row and column electrodes, each intersection containing a 

memristor element [16]. The crossbar memories are extremely attractive to reduce the bit cell size, as the 

individual device area is just 4F2, where F is the lithographic feature size in the process technology. From 

the viewpoint of in-memory computing, the crossbar array naturally provides a hardware accelerator for 

analog matrix–vector multiplication (MVM). Figure 2.8 illustrates the concept of MVM in a crossbar array, 

where a voltage Vj is applied to the jth column, with j = 1, 2, …, N, where N is the number of rows and 

columns. The voltage-induced currents of each resistive element are collected at the grounded rows, 

yielding a total current. 

Ii = ∑ j Gij Vj                                        (2.1) 

at the ith row, where Gij is the conductance of the resistive memory at row i and column j. Equation (2.1) 

is the analog product of the conductance matrix Gij and the voltage vector Vj, which implements a hardware-

based MVM via Ohm’s law and Kirchhoff ’s law [54].  

Crossbar MVM can be adopted for a broad range of problems, including image compression, sparse 

coding, and implementation of artificial neural networks (ANNs), where Gij has the meaning of a synaptic 

weight, Vj is a pre-synaptic spike amplitude, and Ii is the input signal to the ith neuron.  

The time consumed in computation of complex algorithms in machine learning and deep learning is 

dominated by repeated matrix vector multiplication on huge data set. A separate hardware for matrix 

multiplication inside memory provides huge boost in performance of machine learning algorithms. The 

analog MVM in the crossbar can be carried out in just one step, as opposed to the digital CMOS based 

MAC operation, which is a time and energy-consuming step in classical computers. Note that a significant 

amount of energy for crossbar-based MVM is spent in operating analogue-to-digital converters that 

transform the digital input vector into analog voltages Vj in cases where the input of the calculations does 

not come directly from analog sensors, or where further digital processing of the output is needed [16,55]. 
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Figure 2.8. Matrix vector multiplication using analog crossbar array memristors [16].  

 

Crossbar MVM has one of the major disadvantages in terms of precision as it relies on memristor devices, 

which are stochastic in nature [48,55]. The precision is least of intermediate resistance, when performing 

analog matrix vector matrix multiplication. Another method, proposed by Leibin Ni et al which performs 

MVM on memristor crossbar array in digital way, where memristor is programmed only to HRS and LRS, 

thus avoiding the precision issue. As shown in Figure 2.9, the method is based on four major steps [55,56].  

The first step is called parallel digitizing, which requires N × N memristor crossbars. The idea is to split 

the matrix vector multiplication to multiple inner-product operations of two vectors. Each inner product is 

produced by one memristor crossbar. All columns are configured with same elements that correspond to 

one column, therefore the voltages on bit-lines (BLs) are all identical. The key to obtain the inner product 

is to set ladder type sensing threshold voltages for each column. 

The inner-product output of parallel digitizing step is determined by the position where the result of first 

step changes from 0 to 1. In the second step, XOR operation is performed for every two adjacent bits on 

the output of the first step, which gives the result index. The third step takes the output of XOR step and 

produces in binary format as an encoder. The last step is comprised of addition of all inner products.   

In contrast to analog MVM using memristor crossbar array, this method provides better precision and 

consumes lesser area, with penalty in power by 3.12x [55]. 
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Figure 2.9. Digital Matrix Vector Multiplication using memristor crossbar array (a) Parallel 

digitizing step of RRAM crossbar in matrix multiplication. (b) XOR step of RRAM crossbar in 

matrix multiplication. (c) Encoding step of RRAM crossbar in matrix multiplication (d) RRAM-

based inner-product operation [55,56]. 

 

 

2.3.4 Neuromorphic Computing 

Similar to functioning of brain, in addition to performing all the computation within the memory, 

the neuromorphic computing is based on mimicking the brain synapse on hardware. Various models such 

as leaky integrate and fire, Hodgkin-Huxlex, integrate and fire models, etc have been proposed to imitate 

functioning of brain to implement neuromorphic computing. In various research papers, memristor is used 

as implementation of synapse [57-64]. Inside the human brain, to neurons are connected through synapse. 

In neuromorphic computing, weight between two neurons (or the connection between two neurons) is stored 
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in form of memristor’s resistance state. The weight of this device is updated depending upon neuron spike. 

STTP is one example of weight update rule [60].  

 

 

Figure 2.10. (a) memristor-CMOS synapse with 2T1R configuration. (b) voltage waveforms for VCG 

and VTE applied by the pre-synaptic neuron in the spike event (c) and overall circuit including the 

synapse and the pre- and post-synaptic neurons. The overlap between VCG and VTE pulses causes a 

negative current proportional to the synaptic weight, which is integrated by the post-synaptic neuron 

and eventually contributes to fire [60]. 

 
Figure 2.10 shows implantation of leaky integrate and fire model using memristor [60]. Figure 

2.10b shows the voltage VCG applied to the gate of the communication gate and VTE to the top electrode, 

which are both applied by the pre-synaptic neuron in the spike event. The applied voltage spikes in the 

figure induce a spiking synaptic current, which is proportional to the conductance of the memristor, thus 

serving as a storage element of the synaptic weight. The synaptic current flows through the synaptic circuit 

and is fed into the input terminal of the post-synaptic neuron, where integration and fire take place as shown 

in the schematic circuit of Figure 2.10c. As the integrated current exceeds a certain threshold, the post-

synaptic neuron fires, sending a spike to the following neurons in the network,  as well as applying a 

feedback spike to the fire gate.  
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Several neurons are connected together, forming virtual brain on hardware, which forms basis of 

neuromorphic computing, which is a promising candidate for the next generation of computing 

technologies. [57-60].  

2.4 Summary 

The memristor provides an efficient hardware technology to perform in-memory computing in terms of 

power, area, speed and functionality. However, the roads are not straight forward, rather it is full of 

challenges such as stochastic nature of the device, fabrication of 3D architecture, etc. In this thesis we will 

discuss the fabrication of memristor using maple leaves along with TiO2 layer, where the device shows 

reversible capacitive coupled and pure memristive behavior, modulated by external voltage. Further, we 

will discuss the fabricated device using graphene as interlayer, where the device shows great potential for 

multi bit memory, rendering the need for 3D memory architecture moot. Lastly, we will discuss novel 

design for machine learning accelerator using memristor, with better precision and more tolerance to 

variation, at the moderate expense of power, performance and area. 
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Chapter 3 

Capacitive-Coupled Memristive Behavior based on Organic-Inorganic 

Heterojunction 

3.1 Overview 

The reprogrammable device is one of the important needs for circuit design. In this Chapter, TiO2 and 

maple leaves (ML) are combined to form a functional layer (TiO2-ML) inside memristive devices, which 

demonstrate both the capacitive effect and the non-volatile storage capability. When the voltage increases 

from zero, the device firstly enters a capacitive-coupled memristive state at low voltage before switch to 

normal memristive state at a higher voltage. The existence of the capacitive behavior results in a non-zero-

crossing I-V characteristic different from the zero-crossing curve observed in normal memristive device.  

3.2 Introduction 

Both memristor and capacitor share a similar two-terminal structure with a dielectric layer sandwiched 

between two metal electrodes. While ideal capacitor has a dielectric layer with infinite resistance, resistive 

paths form and rupture inside the dielectric layers of memristors.  Thus, the memristor could demonstrate 

capacitance characteristic during a unique/extreme phase of operation [65, 66]. That is to say that the 

capacitive effect and the memristive effect can evolve with each other [67]. 

In previous reports, the capacitive effect was usually submerged by the high current density caused by 

the formation of conductive filaments [68]. That is, after the conductive filament was formed between the 

top electrode and the bottom electrode, it will short-circuit the capacitive effect, thereby exhibiting a pure 

memristive effect. I. Valov and J. L. M. Rupp’s groups emphasized that the redox reaction caused by 

moisture at the interface/surface plays a leading role for the generation of capacitive state in a memristive 

device [69-71]. However, moisture does not provide a reliable way to precisely control the electronic 

behavior. In addition, moisture should generally be avoided in the operation of electronic device because 

moisture often causes the failure of electronic performance. Besides, the previously observed such 

behaviors provide very small difference between memristive states of the device to be used in applications. 

In this Chapter, we proposed a new device structure which uses voltage to control the device evolving 

between capacitive behavior and pure memristive behavior. The organic-inorganic heterojunction provides 

better stability and a greater difference between the resistance states of memristor device. Based on 

theoretical analysis, a physical model is proposed to understand the evolution process.  
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In the following section 3.3, we will discuss device fabrication steps and its characterization. In section 

3.4, we will discuss the results, followed by conclusion in section 3.5.  

3.3 Device Fabrication and its Characterization 

The preparation process of the organic-inorganic heterojunction device with Ag/TiO2-ML/Al structure is 

shown in Figure 3.1.  

 

Figure 3.1. The preparation process of organic-inorganic heterojunction device with Ag/TiO2- ML/Al 

structure. (a) masking for bottom electrode deposition (c) Al sputtering for bottom electrode (d) 

formation of bottom electrode (e) deposition of bio film using spin coating method (f) TiO2 film layer 

formation over bottom electrode (g) Al sputtering for top electrode (h) device formation. 

 

Firstly, glass substrates were cleaned subsequently in acetone, ethanol and isopropyl alcohol, and dried 

under nitrogen gas flow. We use the shadow mask process to deposit bottom electrodes. The mask is placed 

on the clean glass substrate, and the Al bottom electrode with a thickness of ~200 nm was deposited using 

sputtering. Next, the mask was removed, and biofilm made of maple leaves was deposited using a spin-

coating technique. To prepare bio-film layer, we extracted the ultrafine ML powder from maple leaves by 

multiple grinding and suction filtration methods, as shown in Figure 3.2. Then we prepared a ML solution 

for the deposition of ML film by spin coating on a glass substrate with the Al bottom electrode. The sample 

was then allowed to dry in the oven for ~24 hours in order to remove any moisture, followed by the 

deposition of second oxide layer TiO2 with the thickness of ~20 nm using sputtering. Finally, the top 
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electrode Ag with a thickness of ~300 nm was deposited using sputtering with the mask rotated by 90° 

compared to the bottom electrode. An organic-inorganic heterojunction memristive device with Ag/TiO2-

ML/Al structure was obtained following these steps. An optical photograph of the as-prepared device is 

shown in Figure 3.3.  

 

Figure 3.2. The preparation process of maple leaf solution for memristor. (a) Maple. (b) Maple leaves. 

(c) Maple leaf powder. (d) Maple leaf powder solution. 

 

 

Figure 3.3. The optical photograph of the as-prepared device. 

To study the memristive device behavior, we connect the bottom electrode to the ground and then apply 

voltage sweep at the top electrode in the order of 0 V → 1.0 V → 0 V → -1.0 V → 0 V varying linearly at 

a constant rate of 0.1 V/s. The experiment is repeated by increasing the voltage ranges from ±1.0 V to ±3.0 

V, ±5.0 V, and ±7.0 V, respectively. Finally, the experiment is repeated by changing the voltage sweeping 

rate. 

3.4 Result and Discussions 

The I-V curves with Vmax = 1.0 V, 3.0 V, 5.0 V and 7.0 V are presented in Figure 3.4a, c, e, g (linear scale) 

and Figure 3.4b, d, f, h (logarithmic scale), respectively. These I-V curves with 30~100 cycles are shown 
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in Figure 3.5. At Vmax = 1.0 V, Figure 3.4a shows that the I-V curve is non-zero crossing and does not have 

point of intersection. It is known that this non-zero-crossing I-V curve indicates that a capacitive effect is 

present in the memristor [72-74].  

 

Figure 3.4. (a, c, e, g) The I-V curves under different voltage windows. (b, d, f, h) The corresponding 

logarithmic I-V curves. (i) The I-V curve at 1.0 V under different voltage change rate. (j) The 

corresponding logarithmic I-V curves. 

 

When Vmax is increased to 3.0 V, it can be observed that there is a crossover behavior in the I-V 

curve, and the intersection is in the first quadrant (Figure 3.4c). However, this I-V curve is still non-zero-

crossing. When continuing to increase the test voltage to Vmax = 5.0 V, the I-V curve shows two cross-over 

actions, as observed from Figure 3.4e, and the two intersections are in the first and third quadrants, 

respectively. This is when the device transits from capacitive behavior into capacitive-coupled memristive 

behavior. In order to further observe the change of the I-V curve at a higher voltage, the Vmax was further 

increased to 7.0 V (Figure 3.4g). The standard memristive behavior is observed with a zero-crossing I-V 
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hysteresis curve. These I-V characteristics are repeatable, which can be controlled by the selection of Vmax. 

By increasing Vmax, the proposed device evolves from a capacitive behavior to capacitive-coupled 

memristive behavior and eventually to a pure memristive behavior. 

 

 

Figure 3.5. The I-V curves for multiple cycles (a) 100 cycles under voltage window of 1.0 V. (b) 80 

cycles under voltage window of 3.0 V (c) 50 cycles under voltage window of 5.0 V (d) 30 cycles under 

voltage window of 7.0 V. 

 

Besides, to understand the capacitive effect in the capacitive-coupled memristive device, different 

voltage sweep rates (dV/dt) of 0.20, 0.10, 0.07, 0.05 and 0.04 V/s are applied with Vmax = 1.0 V. These 

results are shown in Figure 3.4i (linear scale) and Figure 3.4j (logarithmic scale). The bottom electrode is 

grounded, and voltage sweep is applied at the top electrode from 0 V → 1.0 V → 0 V → -1.0 V. In a 
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capacitor, I  dV/dt, it is consistent with these results shown in Figure 3.4i. This further proves the 

occurrence of capacitive effect in the device at low voltage. 

The endurance test and the retention test of the device was performed for standard memristor 

behavior, when the voltage sweeping window is varied as 0 V → 7.0 V → 0 V → -7.0 V. The endurance 

test of the device measured at reading voltage of 0.25V is shown in Figure 3.6a.  The test shows that cycle 

to cycle the device shows small variations in resistance states. The retention test of the device measured for 

1000sec for HRS and LRS state of the device is shown in Figure 3.6b. The test shows the device is able to 

retain the resistance state without much degradation.  

 

Figure 3.6. (a)The endurance test of the device at Vread of 0.25 V. (b) Retention test of the device. 

 

To understand the conduction mechanism in Ag/TiO2-ML/Al device, we re-plotted the I-V curves in a 

log–log scale (with |V| for negative voltages), as shown in Figure 3.7, and perform linear extrapolation to 

each section of the curves. Based on the fitting results, it is very obvious that there are sections in the log-

log I-V curves with negative slopes (e.g. -0.15, -4.15 and -2.05) when the device is tested at Vmax = 1.0 V, 

3.0 V, and 5.0 V. However, no negative slope is observed when the device is tested at 7.0 V. The appearance 

of these negative slopes is most likely due to the I-V behavior of a capacitive device [72-75]. When the test 

voltage is low, no conductive filament exists in the dielectric layer. Thus, the capacitive effect dominates 

in the proposed device. However, when the external voltage is increased to 7.0 V, a conductive filament 

was formed in the functional layer of the device, which shorts the top and bottom electrodes of the device. 
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In this case, the current is dominated by conduction current, causing the capacitance effect to disappear, 

thereby exhibiting a pure memristive effect with positive slopes in log-log I-V curves. 

 

Figure 3.7. (a, c, e, g) Experimental data and fitted lines of I-V curves of memory device in positive 

voltage region. (b, d, f, h) Experimental data and fitted lines of I-V curves of memory device in 

negative voltage region. 

 

In addition, we further analyze the case of a positive slope. We can see that the Ohmic conduction 

behavior (slope of ~1.0) occurs in the positive voltage region when a low voltage is applied to the device 

(Figure 3.7g). However, the device obeys the space-charge-limited conduction (SCLC) behavior (slope ~ 

2.0) in the negative voltage region when a low voltage is applied to the device (Figure 3.7h), indicating that 

electrons are conducted from the un-filled SCLC of the trap change to the trap filled SCLC[76-79]. It obeys 

the following equation: 

𝐽𝑡𝑟𝑎𝑝−𝑓𝑖𝑙𝑙𝑒𝑑 =
9

8
𝑛𝜀𝜇[

𝑉2

𝑑3
]                                 (3.1) 

where J is the current density, n is the permittivity of free space, ε is the relative dielectric constant, μ is the 

mobility of charge carriers, V is the applied voltage, and d is the thickness of the functional layer. At the 

same time, we can observe larger slopes (~3.15 and ~4.05) in the high voltage range. This larger slope 

reflects the current density and energy distribution of the trap. That is to say, a conductive filament was 

formed in the functional layer at a high voltage, at this point, the capacitive effect completely disappears. 

Based on the above analysis, it is thus expected that the main conduction mechanism in our device would 
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be the trap-controlled SCLC by the defects and formation of conductive filaments induced by oxygen 

vacancies and Ag ions inside the TiO2-ML bilayer film, as shown in Figure 3.8.  

 

Figure 3.8. Schematics showing the electrons and oxygen vacancy diffusion processes. The conductive 

channel is multilevel formed under high voltage district (HVD).  

 

Figure 3.8 illustrates the carrier transport mechanism in the TiO2-ML bilayer film, which display 

the conversion of the device between high resistance state (HRS) and the low resistance state (LRS) in the 

low voltage district (LVD) and the high voltage district (HVD), respectively. It can be seen that when a 

positive voltage is applied to the top electrode of the device, a positive charge, including oxygen vacancies 

(V0
2+) and holes, will move toward the bottom electrode along the direction of the electric field and a 

negative charge region will be shielded at the bottom interface. At the same time, the anode dissolution 

reaction equation of Ag atoms in the top electrode occurs according to the reaction [80,81].  

Ag → Ag+ + e―                             (3.2) 

The positive and negative ions moving in the electric field carry displacement current, which leads 

to the capacitive effect at the low voltage in the functional layer (Figure 3.8a, b). The displacement current 

exhibits a non-zero-crossing I-V curve. Moreover, as the voltage increases, the ion concentration 

correspondingly increases, which further changes the memristive behavior (the circular direction of the I-
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V curve) because of the internal electromotive force [82], thus exhibiting a different mode of capacitive-

coupled memristive effect in our device. 

At high voltages, the device generates Joule heat locally due to high currents, which enhances the 

mobility of Ag ions and oxygen vacancies, and the high electric field can effectively accelerate the 

migration of electrons and ions [83-85]. After it reaches a certain threshold, it will eventually form Ag 

conductive filaments and oxygen vacant conductive filaments inside TiO2-ML functional layer (Figure 

3.8c). Once the conductive filaments were formed, it provides a path for the conductive current to travel 

between the two electrodes, overwhelming any displacement current. At this time, the capacitive effect 

completely is largely suppressed, showing a pure memristive effect. After the voltage polarity is inverted, 

the Ag+ ions and oxygen vacancy will be pushed back to the top electrode due to the Coulomb repulsion 

effect, resulting in the conductive filament to be partially dissolved to form a large gap in the functional 

layer [86-88]. The carriers of the conduction current are expected to tunnel through this gap. Hence, the 

device returns to the HRS after such a reset process (Figure 3.8d). This process at high voltage is similar to 

those reported in the standard memristive device. 

3.5 Summary 

In summary, through the organic-inorganic heterojunction devices fabricated using TiO2 and natural maple 

leaves as a functional layer, we proposed a novel memristive device which shows capacitive behavior at 

low voltages and normal memristive behavior at high voltages. Further, a theoretical analysis is provided 

to explain the operation and behavior of the device.  The existence of capacitive coupled and memristive 

behavior, modulated by programming voltage, could provide way for new reprogrammable devices for in-

memory computing. 
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Chapter 4 

High Density Memory and Multibit In-Memory Logic based on Graphene 

as Interlayer in Multi-State Memristor  

4.1 Overview 

As information technology moves toward a big data era, the conventional Von Neumann architecture 

has shown limitation in performance. This is constrained by the continuous large volume of data being 

fetched and stored through input-output (IO) device [89, 90]. Therefore, it is necessary to bring 

processing unit as close as possible to memory for minimizing data transmission. Memristors provides 

dual functionalities of data storage and computing at the same position without data transmission, 

therefore is one of the most promising candidates for energy efficient in-memory computing. In this 

chapter, we demonstrate a memristor device, formed by Al/TiO2-Graphene-DNA/Pt layers, with high 

performance and stable intermediate multistate resistive switching behaviors. It was observed that the 

asynchronous conduction by either oxygen vacancies migration or injected electron transfer is 

responsible for the multistate resistive switching behaviors. Further, for in-memory computing, a high-

density memory and multibit parallel logic computations are realized based on the multistate resistive 

switching behaviors. This improves data storage capacity and performance up to 2 with respect to 

conventional memristor devices when they are used to store binary data. This work provides a new 

horizon on the multistate resistive switching and the complete logic hardware. 

4.2 Introduction 

Recent research has been devoted to design advanced biomaterial-based resistive switching devices 

in order to achieve sustainable, environmental-friendly and biodegradable electronics [32-36,77,91-94]. 

Unfortunately, the performance of pure biomaterial-based resistive switching device is usually inferior 

compared to inorganic materials-based counterparts. This is because biomaterials are prone to degrade 

under the electric field or via chemical reactions with water molecules in the air, which ultimately leads 

to the failure of device [94, 95]. Therefore, inorganic-organic multilayer structures, as functional 

materials in resistive switching device, have recently attracted great attention. These hybrid structures 

can achieve better performance in terms of HRS/LRS resistance ratio, retention and cycle stability [96-

98]. 

Since resistive switching behavior firstly reported in TiO2 a few decades ago, it has been observed in 

other semiconductor materials systems [18,99,100]. Meanwhile, DNA, an organic compound of 

deoxyribonucleic acid, is a natural, renewable, and biodegradable biomaterial which shows potential in 

light emitting diodes and field effect transistors [101, 102]. Recently, DNA has been reported as a 

functional layer in resistive switching devices which exhibit good memory behaviors [103, 104]. 
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Moreover, graphene has different electron conductivity along horizontal and vertical directions of the 

basal plane, which can be used in advanced electronic devices [105, 106]. Here, we design a new 

inorganic-organic TiO2-Graphene-DNA hybrid multilayer, as a functional layer to study its memory 

behaviors in resistive switching devices.  

In this chapter, we explore, for the first time, the behavior of inorganic-organic TiO2-Graphene-DNA 

hybrid materials in non-volatile resistive switching devices. It was fabricated with a simple capacitor 

configuration consisting of Al/TiO2-Graphene-DNA/Pt. We demonstrate that this memristor has 

advantages in in-memory computing by achieving parallel computing, higher storage capacity, and 

improved area savings. In the previous works, memristors were used as planer digital memory (storing 

binary data in form of either HRS or LRS) [39-42]. However, the memory density in case of using 

memristor as planer digital memory remains poor as only single bit can be stored in memristor. 

Furthermore, it was also demonstrated that memristors could be used in multilevel way, where device 

is used in analog mode by utilizing intermediate resistance state of the device [44,45]. However, the 

accuracy and precision of writing data in form of intermate resistance state of the device is very poor 

[46-48]. In order to achieve higher memory density and higher accuracy, 3D architectures were 

proposed, which makes the fabrication steps complicated [49,50]. In this chapter, we demonstrate high 

density memory can be achieved by storing 2-bits using fabricated device Al/TiO2-Graphene-DNA/Pt, 

without any compromise in accuracy and maintaining easier fabrication method. Further, we 

demonstrate the cell can be used perform two simultaneous operations at a time. Compared with other 

in-memory computing techniques, this memory system has great advantages in parallel processing, 

power reduction and area savings. The described resistive switching device has stable multi-resistance 

states, which can process up to two parallel operations in a single memristor.  

4.3 Device Fabrication and its Characterization 

 

Figure 4.1. The preparation process of memristive device with Al/TiO2-Graphene-DNA/Pt 

structure. 
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For the device fabrication, firstly, glass substrates were cleaned and dried by nitrogen gas flow. 

Subsequently, a layer of Pt was deposited on the glass substrate by magnetron sputtering, as shown in 

Figure 4.1. Then an organic DNA layer was spin-coated onto a bottom electrode Pt. When the spin-

coated DNA was completely dried, a layer of graphene was deposited on the DNA by solution method. 

Then, we deposited a layer of titanium dioxide (TiO2) film on graphene by magnetron sputtering. 

Finally, a mask was used to deposit a top electrode Al with 300 nm thickness and 500 μm in width. As 

a result, we got a resistive switching device with Al/TiO2-Graphene-DNA/Pt structure. The current-

voltage (I-V) properties were measured using an electrochemical workstation, where a pulse is applied 

at the top electrode of the fabricated device, with its bottom electrode grounded. Similarly, devices with 

structure Al/TiO2 /Pt, Al/ DNA/Pt, and Al/TiO2-DNA/Pt were fabricated and their I-V properties were 

measured. 

4.4 Device Characteristics and Study of its Mechanism  

 

Figure 4.2. (a-d) I-V curves for the first cycle. (a1-d1) corresponding logarithmic I-V curves. 

 

The Figure 4.2 presents typical first cycle I-V characteristics of four fabricated devices 

(Al/TiO2/Pt, Al/DNA/Pt, Al/TiO2-DNA/Pt and Al/TiO2-Graphene-DNA/Pt) under the voltage sweep of 

0 V → 5.0 V → 0 V → −5.0 V → 0 V. The I-V curve with more than 100 cycles is shown in Figure 

4.3. We can observe that the I-V curve given after many cycles (>100 cycles) is nearly identical to the 

curve obtained in the initial characterization, indicating excellent endurance of the resistive switching 

device. The corresponding I-V curves of Figure 4.2a-d in logarithmic form are displayed in Figure 

4.2a1-d1.  
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Figure 4.3. (a-d) The I-V curves with 100 consecutive cycles. (a1-d1) The corresponding logarithmic I-V 
curves. 

The I-V response curves of these devices show obvious changes with different device structures in Figure 

4.2. As the number of active layer increases, the loop of the I-V curve becomes larger. In particular, for Al/TiO2-

Graphene-DNA/Pt device (Figure 4.2d), when an external voltage is scanned from 0 to 5.0 V, the device switches 

from HRS to LRS after two set processes around voltage of 3.05 V and 4.25 V. After this transition, the LRS would 

not change until a sufficiently large opposite voltage is applied. The resistance state returns to the HRS after it goes 

through two reset processes happening around voltages of -2.45 V and -3.75 V. The two set and two reset processes 

appear in the opposite voltage regions, indicating that the as-prepared device displays bipolar multistate resistive 

switching memory performance [107]. 

The uniformity of DNA film is critical for the device prepared by spin-coating method. This may affect the 

stability and reliability of the switching operation. To evaluate the stability of as-prepared devices, we randomly 

characterize the resistance switching characteristics at different locations of the devices. Fitting to Gaussian 

distributions, Figure 4.4 shows the medians of the set voltages in each type of devices are 4.85 V (Al/TiO2/Pt), 3.40 

V (Al/DNA/Pt) and 3.30 V (Al/TiO2-DNA/Pt). By nonlinear fitting, the medians of the reset voltages in each type of 

device are -4.5 V (Al/TiO2/Pt), -3.85 V (Al/DNA/Pt) and -3.80 V (Al/TiO2-DNA/Pt), respectively.  

However, for Al/TiO2-Graphene-DNA/Pt device, there are two distinguished peaks, with median set voltages 

(3.05 V and 4.25 V) and two peaks of reset voltages (median value at -3.75 V and -2.45 V). Since the set and reset 

voltages correspond to the write and erase operation in the resistive switching device [108], these multilevel set and 

reset processes provide a basis for the preparation and application of multistate memory in memristor devices [109]. 

The Al/TiO2-Graphene-DNA/Pt devices exhibit multilevel conduction states, as shown in Figure 4.5. At 

different negative bias of 3.75 V and 2.45 V, it can be observed a current of 0.135 mA (defined as state-0) and 

4.75~6.65 mA (defined as state-1) at reset voltages of -2.45 V and -3.7 V, respectively. Subsequently, the device 

shows a current of 7.25~11.45 mA (defined as state-2) and 17.85~19.85 mA (defined as state-3) at the set voltage of 

3.05 and 4.25 V, respectively. The multilevel conduction states are likely due to the formation of different conductive 
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filaments in the TiO2-Graphene-DNA layer at different biases. When the set voltage exceeds 4.25 V, the conductive 

filaments are completely formed between the top electrode and the bottom electrode, resulting in the maximum 

current of 20 mA. The device shows the four resistance states are almost the same over 100 test cycles, as shown in 

Figure 4.5. No obvious deterioration was observed, which indicates a good operational stability of the memory 

device.  

 

Figure 4.4. The range of Vset and Vreset voltages, and the fitting curve is satisfied the Gaussian distribution. a 

Al/TiO2/Pt device. b Al/DNA/Pt device. c Al/TiO2-DNA/Pt device. d Al/TiO2-Graphene-DNA/Pt device. 

 

 

Figure 4.5. The endurance characteristics of Al/TiO2-graphene-DNA/Pt device at different 

conduction states under different bias. 
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Figure 4.6. The relation between HRS/LRS resistance ratio and device structures. 

The relationship between HRS/LRS resistance ratio and device structures is shown in Figure 

4.6. It is worth noting that the Al/TiO2-Graphene-DNA/Pt device represents the largest resistance ratio 

(~34.8) among the four types of devices. With the increases of the number of the active material layers, 

the HRS/LRS resistance ratio of devices is enlarged gradually. More importantly, graphene as an 

insertion layer can significantly improve the HRS/LRS resistance ratio of the device. This may be 

because graphene hinders the rapid migration of electron and oxygen vacancies along the vertical 

direction of basal plane, so that conductive filaments cannot be formed at low voltages across the top 

and bottom electrodes. 

 

Figure 4.7. Experimental data and linear fitting of I-V curves of memory device in positive and 

negative voltage regions, respectively. (a) Al/TiO2/Pt device. (b) Al/DNA/Pt device. (c) Al/TiO2-

DNA/Pt device. (d) Al/TiO2-Graphene-DNA/Pt device. 

 

It is necessary to explore the resistive switching mechanism in this new hybrid inorganic-

organic multilayer structure. In previous reports, researchers have proposed physical models to explain 

the resistance switching phenomenon in different types of resistance switching devices [110-113]. 

Defect states, such as lattice defects and oxygen vacancies, can be readily formed in the DNA film 
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during the solution-based thin film-deposition processes, which may act as trapping sites of charge 

carrier [114-116]. To further understand the mechanism based on conduction theory, the I-V curves 

were plotted in a semi-logarithmic scale as shown in Figure 4.7, the I-V curve with slope of ~1.0 can 

be attributed to Ohmic conduction in the lower-voltage region, and its J-V resigned equation is as 

follows [117]: 

𝑱 = 𝒒𝒏𝜺𝝁 
𝑽

𝒅
                                                                    (4.1) 

The above equation reflects the relationship between the current (J), electronic charge (q), the 

concentration of the free charge carriers (n), dielectric constant (ε), electron mobility (μ), applied voltage 

(V) and thickness of the functional layer (d). In the region with slope of ~1.13 for Al/DNA/Pt device, 

the current conduction is dominated by Poole–Frenkel (PF) conduction in the DNA layer, as shown in 

Figure 4.7b, f. It can be described by the equation [118]:   

𝑱𝐏𝐅 = 𝒒𝒏𝜺𝝁 ∙ 𝐞𝐱𝐩(
−𝒒(𝐁−√(𝒒𝑬/𝝅𝜺𝜺𝟎 )

𝒌𝐁𝑻
                          (4.2) 

 

where ΦB is the barrier height, kB is the Boltzmann constant, T is the absolute temperature, and ε0 is the 

permittivity of free space. In addition, the I-V curve obeys space-charge-limited conduction (SCLC) 

with slope of ~2.0 at the higher bias voltage region [119]. As the number of injected carriers into the 

functional layer increases under higher electric field, the traps in the interface charge limited region are 

continuously filled up with injected carriers. It is usually called trap-filled SCLC, which can be 

described as follows [119]: 

𝑱𝐭𝐫𝐚𝐩−𝐟𝐢𝐥𝐥𝐞𝐝 =
𝟗

𝟖
𝒏𝜺𝝁[

𝑽𝟐

𝒅𝟑 ]                                                 (4.3) 

After that, the injected carriers move freely into the TiO2-Graphene-DNA functional material, leading 

to the current rapidly jumping up to LRS. In the LRS, the current is fully controlled by the oxygen 

vacancy conduction. In this situation, the I-V curve follows Child's conductive law, that is J∝V2 [120]. 

Therefore, the I-V curve corresponds to Ohmic and SCLC conduction mechanism in three other devices 

in Figure 4.7, while Al/DNA/Pt device is followed by PF conduction.

Based on the conductive analysis in Figure 4.7, the conduction mechanism of Al/TiO2-

Graphene-DNA/Pt device would be the trap controlled SCLC by the defects and the formation of 

conductive filaments, which are induced by oxygen vacancies inside the TiO2-Graphene-DNA 

multilayer film, shown in Figure 4.8. A large amount of oxygen vacancies is contained in the TiO2 film 

prepared by sputtering [121-123]. Initially, the oxygen vacancies in the TiO2 layer move toward the 

TiO2/graphene interface along the direction of the applied electric field, and the electrons in the DNA 

layer move toward the graphene/DNA interface, shown in Figure 4.8b. Due to the blocking of graphene, 

most of oxygen vacancies are unable to pass through the graphene into the DNA layer at low voltage, 

while electrons are also limited at the graphene/DNA interface at low voltage, shown in Figure 4.8b. 
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With the oxygen vacancies accumulate in the TiO2 layer, a conductive filament composed of oxygen 

vacancies is gradually formed [81, 124]. 

 

Figure 4.8. (a) Typical I-V curve labelled different states with the models showing in (b-f); (b-f) 

the schematic diagram of physical dynamic processes for these states for Al/TiO2-Graphene-

DNA/Pt device. 

 

When this filament shorts the top electrode Al and graphene, there is a sudden increase in current, shown 

in Figure 4.8c. As the external voltage is further increased, oxygen vacancies overcome the energy 

barrier and enter the DNA layer in Figure 4.8d. Oxygen vacancies are also accumulated to form 

conductive filaments along DNA. Since DNA is a complex macromolecule containing nucleotides, 

carbohydrates, and phosphate groups, which provides a good channel for the formation of conductive 

filaments. When the oxygen vacancies conductive filament shorts the top electrode A1 and the bottom 

electrode Pt, we observe the sudden increase of current again, shown in Figure 4.8d. With the voltage 

sweep enters the negative voltage region, the conductive filaments, composed of oxygen vacancies, are 

successively disconnected in the TiO2 layer (Figure 4.8e) and the DNA layer (Figure 4.8f) due to the 

electrochemical reaction processes. Thus, the current has two mutational reductions correspondingly. 

Therefore, the multilevel conduction and disconnection of the conductive filaments lead to two sets and 

two resets processes, respectively, in the resistance switching devices. The novelty of our method is 

that the use of a graphene interlayer allows the conductive filaments to be multilevel states. This enables 

achieving an implementation of a multilevel memory. This is important for non-volatile memory and 

logic operation [125]. 

4.5 High-Density Memory using Al/TiO2-graphene-DNA/Pt as Memristor 

As discussed in Chapter 2, memristor could be used as memory in two ways i.e., in digital mode or 

in analog mode. In digital mode, HRS and LRS state of the device is used to store binary data ‘0’ and 

‘1’. However, in this mode, the memory density is relatively lower, as only single bit can be stored in 

the device. In the analog mode, intermediate resistance state of the device is utilized in order to store 



 

 38 

more information in single memristor device, or in other words, memory density is higher in analog 

mode. However, memristor being stochastic in nature, results in inaccuracy during memory write 

operation, especially when writing to an intermediate resistance state of the device.  

 

 

Figure 4.9. Al/TiO2-DNA/Pt device modelling with variation. Cycle A represents device 

characteristics with maximum Vset and Vreset. Cycle B represents device characteristics with 

minimum Vset and Vreset.   

 

 

Figure 4.10. (a) Write operation in Al/TiO2-DNA/Pt device in Cycle A (with maximum Vset and 

Vreset) and Cycle B (with minimum Vset and Vreset).  (b) Variation in resistance state between Cycle 

A and Cycle B in Al/TiO2-DNA/Pt Device. 

 

To understand the effect of variation, we use the ASU ReRAM model [126] tuned to the fabricated 

Al/TiO2-DNA/Pt device, having typical memristor characteristics. The comparison between modelled 

device and the fabricated device is shown in Figure 4.9a. The device variation is also measured and 
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modelled by adjusting the parameters between Cycle-A and Cycle-B to cover the maximum and 

minimum change in Vset and Vreset.  Due to this variation, the programming of data in the system 

generates inaccuracy as shown in Figure 4.10. Therefore, it can be inferred that the usage of unstable 

intermediate states in memristors can lead to imprecision. As shown in Figure 4.10b, it can be observed 

that, writing inaccuracy is maximum for intermediate state, while minimum for LRS and HRS. The 

maximum and minimum possible length of the conductive filament in oxide layer restricts the variation 

of HRS and LRS states.  

 

 

Figure 4.11. Al/TiO2-graphene-DNA/Pt device modelling with variation. Cycle A represents 

device characteristics with maximum Vset1 Vset2 Vreset1and Vreset2. Cycle B represents device 

characteristics with minimum Vset1 Vset2 Vreset1and Vreset2.   

 

To overcome this challenge of overall accuracy within small area, the proposed Al/TiO2-Graphene-

DNA/Pt device can provide a promising solution for high density memory [16,127,128]. The flexibility 

of four stable memory states in the device can play an important role in designing a memristor chip 

because a single device can store and process 2-bits at the same time. As a result, the memory array 

based on Al/TiO2-Graphene-DNA/Pt resistive switching cells can be used to perform multibit operation 

with improved speed and accuracy in a small area and easier fabrication technique.  

As shown in Figure 4.11, the ASU ReRAM model [126] is tuned to the fabricated Al/TiO2-DNA/Pt 

device. The device variation is also measured and modelled by adjusting the parameters between Cycle-

A and Cycle-B to cover the change in Vset1, Vset2, Vreset1 and Vreset2. In Figure 4.12, the as-fabricated 

Al/TiO2-Graphene-DNA/Pt device shows 4 stable states with two stable intermediate states, which can 

store 2-bits data at same time.  In order to write bits ‘11’,’10’, a set voltage of 4.25V and 3.05V are 

applied at the top electrode respectively, with bottom electrode grounded. Similarly, in order to write 

bits ‘01’, ‘00’, a reset voltage of 3.75V and 2.45V are applied respectively, with top electrode at 0V. 

In-order to read the resistance state of the device, a read voltage of 1V is applied across the device to 

measure the current. A current of 8.71mA,1.91mA, 1.12mA and 0.27mA currents were observed 
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flowing through the device during the reading operation of ‘10’,’11’,’01’ and ‘00’, respectively. This 

proves the use of device for the storage of 2-bits in a single memristor. 

 

Figure 4.12. 2-bit memory operation using Al/TiO2-graphene-DNA/Pt modelled device (a) Word 

line or the top electrode voltage (b) bit line or the bottom electrode voltage (c) device current. 

Cycle-1 represents writing and reading data ‘10’, followed by writing and reading data ‘11’,’01’ 

and ‘00’ in cycle-2, cycle-3 and cycle-4 respectively. 1.91mA, 8.71mA, 1.12mA and 0.27mA 

currents were observed flowing through the device during the reading operation of ‘10’,’11’,’01’ 

and ‘00’, respectively. 

 

Moreover, as shown in Figure 4.13a, the proposed device shows can be programmed to 4 stable 

states despite variations in device. The Figure 4.13b, the change in programing resistance state due to 

variation in device. It can be overserved that, similar to Al/TiO2-DNA/Pt device with conventional 

memristor characteristics, though the intermediate resistance state is affected due to variations, 

resistance state-3, state-2, state-1, and state-0 can be programmed with more precision, attributed to 

limits in growth and rupture of conductive filament growth. The storing of data digitally significantly 

increases the accuracy w.r.t variations in device, and the fabricated Al/TiO2-Graphene-DNA/Pt device 

reduces the number of required memristor to store the data digitally by half. The proposed Al/TiO2-
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Graphene-DNA/Pt device shows a great potential for the use in non-volatile memories in the existing 

technologies with the potential of storing twice the data size for the same number of memristors, without 

any loss of accuracy and maintaining simpler fabrication method. 

 

 

Figure 4.13. (a) Write operation in Al/TiO2-grphene-DNA/Pt device in Cycle A (with maximum 

Vset1 Vset2 Vreset1and Vreset2) and Cycle B (with minimum Vset1 Vset2 Vreset1and Vreset2). (b) Variation in 

resistance state between Cycle A and Cycle B in Al/TiO2-graphene-DNA/Pt Device. 

4.6 In-Memory Logic 

In this section, we demonstrate a system, which can perform two operations in parallel with 

maximum six inputs operands using the as-prepared cell. One operation calculates the output A_ as a 

function of input A, C, D, E, and F, while the other operation calculates the output B_ as a function of 

inputs A, B, C, D, E, and F, where A and B are the initial resistance states, C and D are word line 

amplitude, E and F are bit line amplitude, and A_ and B_ are final resistance states of the device. The 

parallel operations are performed on resistance states.  

The inputs A and B are mapped with one of the four resistance states of a single memory cell prior 

the operation. The state (A, B) = (11) is applied by initializing the resistive switching device with an 

experimentally obtained set voltage of 4.25 V. This will result in the resistance state of read current 

~8.71 mA at read voltage of 1.0 V. Similarly, the logical states (AB) = (10), (01), (00) correspond to 

the resistance states after applying a set voltage of 3.05 V or a reset voltage of -2.45 V or a reset voltage 

of -3.75 V, respectively. The read current for these logical states (10), (01), and (00) are 1.91 mA, 1.12 

mA and 0.2739 mA, respectively in the corresponding reading cycle, when read voltage of 1.0 V was 

applied. Thus, it can store and process 2-bits A and B at same time. The inputs C and D are mapped as 

input word line voltage on the top electrode of resistive switching device. If the input of (C, D) is (11), 

the word line voltage level during the operation is 4.25 V. Similarly, if the inputs are (C, D) = (10), (01) 

and (00), the word line voltages during operation are 1.3 V, -1.7 V and -4.7 V, respectively. The system 
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is designed to accommodate all transitions in resistance states ranging from state 3 to state 0 and then 

from state 0 to state 3, depending upon word line and bit line voltage. The device could be used for 

different voltage ranges, depending upon which the operations will differ. The bit line voltage on the 

bottom electrode maps the 2-bits E and F in same manner as C and D on word line voltage on the top 

electrode. The output of the computation is stored as the final resistance state of memristor A_ and B_ 

after the word line and bit line voltage pulse. The truth table for A_ and B_ is shown in Figure 4.14a 

and 4.14b respectively. To identify the dependencies of final resistance state (A_, B_) on word line (C, 

D), bit line (E, F) and initial state of the device (A, B), we solve Karnaugh map [129] derived from the 

truth tables, shown in Figure 4.15 and Figure 4.16. As shown in Figure 4.15, in order to derive equation 

of A_, a six variable Karnaugh map is drawn and output A_ corresponding to the input combination of 

A, B, C, D, E and F are mapped. Similarly, as shown in Figure 4.16, in order to derive the equation of 

B_, a six variable Karnaugh map is drawn and output B_ corresponding to the input combination of A, 

B, C, D, E and F are mapped. The Karnaugh map is solved based on maximum grouping of all outputs 

of A_ and B_. All the groups formed are shown in Figure 4.15 and Figure 4,16, each forming a 

component in sum of product (SOP) form equation of A_ and B_ respectively. 

The output resistance state of the operation after solving Karnaugh maps can be written as following 

complex equation (4.4) and (4.5): 

A__ =  C. ~E + A.~E. ~F + D. ~E. ~F + A. D. ~E + A. C. ~F + C. D. ~F + A. C. D                              (4.4) 

B__ =  C. ~E. ~F + C.D. ~E + A.B. ~E + A. B.C +  B. ~C.~D. ~E +  B.~C. ~E. F  +  B. C. ~D. ~F +

 B. C.E. F + B. ~C.D. E. ~F +  A. ~C. ~D. ~E.F +  A. ~C.D. E. ~F +  A. C. ~D. E. F                        (4.5)  

The two computations are performed in parallel, thus saving processing cost up to two times.  

Figure 4.17 shows a group of all 2-operand parallel operations that can be performed. The parallel 

AND operation is demonstrated in Figure 4.18. When we fix D, E and F as “1”, equations (4.4) and 

(4.5) will be simplified to AND operations of A_ = A AND C, B_ = B AND C, as the first group in 

Figure 4.17, as shown in below in equations (6) and (7), respectively. 

A__ =  C. (0) +  A. (0).(0) +  (1).(0). (0) +  A. (1).(0) +  A. C. (0) +  C. (1).(0) +  A.C. (1) 

A__ = A.C                                                                                                                                                           (4.6) 

B__ =  C. (0).(0) +  C. (1).(0) +  A. B.(0) +  A.B. C +  B. ~C.(0).(0) +  B.~C. (0).(1) +

 B. C.(0). (0) +  B.C. (1).(1) +  B.~C. (1).(1).(0) +  A.~C. (0).(0).(1) +  A.~C. (1).(1).(0) +

 A. C. (0).(1).(1)   

B__ =  A. B. C +  B.C =  B.C                                                                                                                        (4.7)  

To physically implement these AND operations, we first program (initialize) the cell to one of the 

four resistance states correspond to the input (A, B). In this case, the input A and B are “bit 1” and “bit 
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0”, respectively. Thus, the cell is initialized to (10) state, the resistance state 2. During the operation 1 

in Figure 4.17, a pulse of fixed 4.25 V is applied on BL (the bottom electrode) as shown in Figure 4.18. 

(As E and F are constant “bit 1” for operation 1, thus (E, F) = (1 1), therefore BL voltage is 4.25 V). On 

WL (the top electrode), if input C is “bit 1”, a pulse of 4.25 V is applied during operation 1 in Figure 

4.17. At this case (C, D) = (1 1), thus, WL voltage is 4.25 V. If input C is “bit 0”, a pulse of -1.7 V is 

applied during the operation 1. At this case (C, D) = (0 1), therefore WL voltage is -1.7 V, as explained 

in paragraph above. The final resistance gives the output (A_B_). In this example, input C is “bit 1”, 

thus WL pulse of 4.25 V is applied, as shown in Figure 4.18. The read operation of (1 0), the resistance 

state 2, shows successful parallel AND operation A_= A AND C (input A = 1, C = 1) and B_ = B AND 

C (input B = 0, C = 1). This implies the resultant resistance states A_ and B_ are “bit 1” and “bit 0” 

respectively. Figure 4.19 shows all other possible combination of inputs A, B and C to perform parallel 

operations A_= A AND C and B_= B AND C. Figure 4.17 shows a list of 2-operand parallel operations 

that can be performed. The system is able to compute all operations in a single step and inputs are in 

their true states. No complementary versions of inputs were required. In a similar manner, 3-operand 

and 4-operand parallel operations can be derived from equations (4.4) and (4.5). 
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Figure 4.14. (a) Truth table for A_. (b) Truth table for B_. 

 

         

(a)                                                                                           (b) 

A B C D E F A_

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 1 0 0

0 0 0 0 1 1 0

0 0 0 1 0 0 1

0 0 0 1 0 1 0

0 0 0 1 1 0 0

0 0 0 1 1 1 0

0 0 1 0 0 0 1

0 0 1 0 0 1 1

0 0 1 0 1 0 0

0 0 1 0 1 1 0

0 0 1 1 0 0 1

0 0 1 1 0 1 1

0 0 1 1 1 0 1

0 0 1 1 1 1 0

0 1 0 0 0 0 0

0 1 0 0 0 1 0

0 1 0 0 1 0 0

0 1 0 0 1 1 0

0 1 0 1 0 0 1

0 1 0 1 0 1 0

0 1 0 1 1 0 0

0 1 0 1 1 1 0

0 1 1 0 0 0 1

0 1 1 0 0 1 1

0 1 1 0 1 0 0

0 1 1 0 1 1 0

0 1 1 1 0 0 1

0 1 1 1 0 1 1

0 1 1 1 1 0 1

0 1 1 1 1 1 0

1 0 0 0 0 0 1

1 0 0 0 0 1 0

1 0 0 0 1 0 0

1 0 0 0 1 1 0

1 0 0 1 0 0 1

1 0 0 1 0 1 1

1 0 0 1 1 0 0

1 0 0 1 1 1 0

1 0 1 0 0 0 1

1 0 1 0 0 1 1

1 0 1 0 1 0 1

1 0 1 0 1 1 0

1 0 1 1 0 0 1

1 0 1 1 0 1 1

1 0 1 1 1 0 1

1 0 1 1 1 1 1

1 1 0 0 0 0 1

1 1 0 0 0 1 0

1 1 0 0 1 0 0

1 1 0 0 1 1 0

1 1 0 1 0 0 1

1 1 0 1 0 1 1

1 1 0 1 1 0 0

1 1 0 1 1 1 0

1 1 1 0 0 0 1

1 1 1 0 0 1 1

1 1 1 0 1 0 1

1 1 1 0 1 1 0

1 1 1 1 0 0 1

1 1 1 1 0 1 1

1 1 1 1 1 0 1

1 1 1 1 1 1 1

A B C D E F B_

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 1 0 0

0 0 0 0 1 1 0

0 0 0 1 0 0 0

0 0 0 1 0 1 0

0 0 0 1 1 0 0

0 0 0 1 1 1 0

0 0 1 0 0 0 1

0 0 1 0 0 1 0

0 0 1 0 1 0 0

0 0 1 0 1 1 0

0 0 1 1 0 0 1

0 0 1 1 0 1 1

0 0 1 1 1 0 0

0 0 1 1 1 1 0

0 1 0 0 0 0 1

0 1 0 0 0 1 1

0 1 0 0 1 0 0

0 1 0 0 1 1 0

0 1 0 1 0 0 0

0 1 0 1 0 1 1

0 1 0 1 1 0 1

0 1 0 1 1 1 0

0 1 1 0 0 0 1

0 1 1 0 0 1 0

0 1 1 0 1 0 1

0 1 1 0 1 1 1

0 1 1 1 0 0 1

0 1 1 1 0 1 1

0 1 1 1 1 0 0

0 1 1 1 1 1 1

1 0 0 0 0 0 0

1 0 0 0 0 1 1

1 0 0 0 1 0 0

1 0 0 0 1 1 0

1 0 0 1 0 0 0

1 0 0 1 0 1 0

1 0 0 1 1 0 1

1 0 0 1 1 1 0

1 0 1 0 0 0 1

1 0 1 0 0 1 0

1 0 1 0 1 0 0

1 0 1 0 1 1 1

1 0 1 1 0 0 1

1 0 1 1 0 1 1

1 0 1 1 1 0 0

1 0 1 1 1 1 0

1 1 0 0 0 0 1

1 1 0 0 0 1 1

1 1 0 0 1 0 0

1 1 0 0 1 1 0

1 1 0 1 0 0 0

1 1 0 1 0 1 1

1 1 0 1 1 0 1

1 1 0 1 1 1 0

1 1 1 0 0 0 1

1 1 1 0 0 1 1

1 1 1 0 1 0 1

1 1 1 0 1 1 1

1 1 1 1 0 0 1

1 1 1 1 0 1 1

1 1 1 1 1 0 1

1 1 1 1 1 1 1
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                  Figure 4.15. Derivation of A_ in SOP form using Karnaugh map. 

 

 

                     Figure 4.16. Derivation of B_ in SOP form using Karnaugh map. 
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Figure 4.17. Parallel operations allowed by the proposed Al/TiO2-Graphene-DNA/Pt device. 

 

 

 

Figure 4.18. Parallel AND operations A_ = A AND C and B_ = B AND C for inputs A, B 

and C as 1, 0, and 1, respectively. (a) Word line or the top electrode voltage (b) bit line or 

the bottom electrode voltage (c) device current. 

Operations Output

A C A_ = A.C

B C B_ = B.C

NOT E - A_ = ~E

NAND E F B_ = ~(E.F)

NOT E - A_ = ~E

NAND E F B_ = ~(E.F)

NOR E F A_ = ~E.~F

EXOR E F B_ = E.~F + ~E.F

NAND E F A_ = ~(E.F)

EXNOR E F B_ = E.F + ~E.~F

RIMP C E A_ = C + ~E

IMP C E B_ = C.~E

IMP C E A_ = C.~E

IMP C E B_ = C.~E

OR A C A_ = A+C

BIT TRANSFER C - B_ = C

A=0; B=0; C=1; D=0

A=1; B=1; C=0; D=1

A=0; B=1; C=0; D=1

A=1; B=0; C=1; D=0

A=1; B=0; D=0; F=0

A=B=D=F=0

B=D=E=F=0OPERATION 8

OPERATION 1

OPERATION 2

OPERATION 5

OPERATION 6

OPERATION 3

OPERATION 4

Inputs

AND D = E = F =1

Conditions

OPERATION 7
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Figure 4.19. Parallel AND operations A_ = A AND C and B_ = B AND C for inputs A, B 

and C as (a) 000; (b) 001; (c) 010; (d) 011; (e) 100; (f) 110; (g) 111, respectively.  
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4.7 Summary 

In summary, a novel resistive switching device has been demonstrated with the structure of Al/TiO2-

Graphene-DNA/Pt. The device shows an excellent resistive switching memory behavior with stable 

multi-level resistance states, which enables 2-bit storage capacity in a single device. Using such device, 

parallel logic operations for in-memory computing can be performed, which could provide a way for 

more faster and energy efficient solution for in-memory logic. Our study provides a guide for the design 

of new functional materials for the multistate logic operation in advanced resistive switching devices, 

which could move toward environmentally friendly as well as energy efficient in-memory computing. 
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Chapter 5 

Varition Tolerant Matrix Multiplication Method using Memristor for 

In-Memory Computing 

5.1 Overview 

Recently, the emphasis has been shifted toward hardware architectures for the implementation of 

machine learning applications to meet the demand for faster and more efficient operations on the 

massive amount of data. Because of their advantages of non-volatility, nanometer size, and easily 

integrated crossbar structure, memristor devices are widely explored for such hardware 

implementations. In these applications, matrix multiplication is one of the most frequently executed 

operations. Most of the current matrix multiplication schemes using memristors are highly variation 

sensitive and suffer from programming inaccuracy. In this work, we propose an analog-digital-hybrid 

based matrix multiplication approach to address the issue, providing an efficient way to implement 

matrix multiplication using memristor devices. For an input matrix size of 8 with 10-bit elements, the 

proposed technique improves the average accuracy up to 16.35% with penalties in power, performance, 

and area up to 18.5%, 8.2%, and 3.2% respectively compared with conventional matrix multiplication 

design using memristors in the analog/multi-level manner. 

 

5.2 Introduction 

With the recent technology advancements, the society has entered a new era of big data. A 

drastic amount of information is generated and processed all the time. Such huge volume of data enables 

a rapid growth in the domains of machine learning, which in turn post challenges in hardware 

technology. It is expected that innovations in hardware technology would lead to better data-heavy 

machine learning applications at higher speed, better energy efficiency, etc. One of the major 

requirements in implementing machine learning algorithms, particularly neural network and deep 

networks, is to perform matrix multiplication repeatedly on large volumes of data [56,130,131]. On 

average, 80-90% of the runtime in machine learning algorithms is consumed by matrix multiplication 

[132].  While there are many ways to conduct matrix multiplication on hardware, memristor provides 

one of the most efficient methods in terms of area, speed and power consumption [55,133,134]. 

However, there are several challenges associated with the matrix multiplication using memristor. In this 

chapter, we propose an analog-digital-hybrid approach to counter the problems with moderate penalty 

in power, performance and area (PPA). In the following section 5.3, the fabrication and the operation 

of memristor devices will be discussed. In section 5.4, the existing matrix multiplication techniques 

using memristors will be briefly reviewed. In section 5.5, design technique is proposed to counter the 
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problems associated with the existing design technique. Section 5.6 and 5.7 include experimental setup 

and the results to compare the designs. Section 5.8 summarizes the chapter. 

5.3 Fabrication and Operation of memristor devices 

5.3.1 Device Fabrication  

As discussed in previous chapters, memristor (or RRAM) device is a two-terminal device comprising 

an oxide dielectric layer sandwiched between the top and bottom electrode as shown in Figure 5.1a. In 

this work, we fabricated the device with structure Al/TiO2/Al. The detailed fabrication step is shown in 

Figure 5.1b-h. Firstly, glass substrates were cleaned subsequently in acetone, ethanol and isopropyl 

alcohol, and dried under nitrogen gas flow. We use the shadow mask process to deposit bottom 

electrodes. The mask is placed mounted on the clean glass substrate, and the Al bottom electrode with 

a thickness of ~200 nm was deposited using sputtering, as shown in Figure 5.1b-d. This is followed by 

the deposition of oxide layer TiO2 with the thickness of ~30 nm using sputtering, as shown in Figure 

5.1e-f. Finally, the top electrode Al with a thickness of ~300 nm was deposited using sputtering with 

the mask rotated by 90° relative to the bottom electrode, as shown in Figure 5.1g. Following these steps, 

a metal-oxide-metal device with Al/TiO2/Al structure was obtained at each junction of top and bottom 

electrodes, as shown in Figure 5.1h. 

 

 

Figure 5.1. Schematics showing the deposition process of layers for memristor device. (a) 

schematic for memristor structure (b) masking for bottom electrode deposition (c) Al sputtering 

for bottom electrode (d) formation of bottom electrode (e) deposition of TiO2 film (f) TiO2 film 

layer formation over bottom electrode (g) Al sputtering for top electrode (h) device formation 

 

5.3.2 Device Operation  

The I-V curve of the fabricated memristor device to be used in this chapter is shown in Figure 5.2a. The 

operation of device can be explained by conductive filament growth and rupture in oxide region with 
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application of potential difference at both the electrodes. During the one-time electroforming process 

after the device fabrication, a high voltage, known as forming voltage, is applied to generate mobile 

oxygen ions through dielectric breakdown. As a result, a conductive filament is formed due to oxygen 

vacancies in the dielectric layer. 

During normal write operations, a programming voltage, lesser than forming voltage, is applied between 

top electrode and bottom electrode to control this conductive filament and thus device resistance. When 

a negative programming voltage Vreset around -2.3V is applied at top electrode with bottom electrode 

grounded, the oxygen ions migrate back to the oxide layer. Therefore, the conductive filament ruptures 

and the device behaves as a high resistance device, which is known as high resistance state (HRS) of 

the device. Similarly, when a positive programming voltage Vset around +2.5V applied at top electrode 

with bottom electrode grounded, the conductive filament grows back again and the device behaves as a 

low resistance device, which is known as low resistance state (LRS) of the device. To read the resistance 

state of the device, a read voltage Vread of 0.1V is applied across the device to sense the read current. 

The ratio of read current in LRS and HRS (i.e., ILRS/IHRS) for the fabricated device is observed to be ~8.   

 
Figure 5.2. (a) Multiple cycle I-V curve of fabricated device. (b) Variation in I-V curve for 

fabricated and modelled device for maximum Vset (Cycle A) and minimum Vset (Cycle B). (c) 

Programming by changing pulse width at 2.6V pulse amplitude  (d) Programming by changing 
pulse amplitude at 20ps pulse width (e) Variation in resistance between cycle A and cycle B when 

programmed by changing pulse width at pulse amplitude of 2.6V  (f) Variation in resistance 

between cycle A and cycle B when programmed by changing pulse amplitude at pulse width of 

20ps. 

 

To use memristor in digital circuit, the binary data is stored in form of HRS and LRS of the device. For 

applications in analog circuits, the memristor is programmed to intermediate resistance values by 
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partially forming conductive filament. The intermediate resistance state is achieved either by controlling 

voltage [47,135] between Vset and Vreset or by varying pulse width to control of conductive filament 

length.    

The current I can be expressed in terms of the length of this conductive filament and applied voltage V, 

as shown in Equation (5.1) [126], where g is the gap between conductive filaments. 

 I = Io exp(−
𝑔

𝑔𝑜
) sinh(

𝑉

𝑉𝑜
)    (5.1) 

The Io, go and Vo are the fitting parameters, adjusted according to the fabricated device.  

The growth and rupture of conductive filament can be expressed in terms of gap g between conductive 

filaments as expressed below: 

𝑑𝑔

𝑑𝑡
 = - v0 [exp(−

𝑞𝐸𝑎𝑔

𝑘𝑇
) exp(

𝛾𝑎0

𝐿

𝑞𝑉𝑝

𝑘𝑇
) - exp(−

𝑞𝐸𝑎𝑟

𝑘𝑇
) exp(−

𝛾𝑎0

𝐿

𝑞𝑉𝑝

𝑘𝑇
)]     (5.2) 

The device is modelled with the ASU RRAM model [126] calibrated to experimental data, as shown in 

Figure 5.2b. The modelled device I-V characteristics matches with that of the experimental data. Due 

to stochastic nature of the conductive filament formation, even small atomic fluctuations result in 

difference in resistance state of device. Thus, the device tends to have lot of variations, which is evident 

from multiple cycle of the I-V curve in Figure 5.2a. The device variation is also measured and modelled 

by adjusting the parameter of γ in the equation (5.2) between 17.59 (Cycle-A) and 18.04 (Cycle-B) to 

cover the maximum and minimum change in Vset and Vreset.  γ is monotonically related with how much 

g responses to the programming voltage. 

The variation in device leads to programming inaccuracy, which is most vulnerable for intermediate 

states. The Figure 5.2c and Figure 5.2d shows the programming inaccuracy for device with maximum 

and minimum Vset. The device programming is performed by changing pulse amplitude and pulse width, 

as shown in Figure 5.2c and 5.2d respectively. It can be clearly observed that even due to small 

variations in device the programming inaccuracy is significant. The programming inaccuracy due to 

variation for the intermediate resistance state is maximum, while for the device’s HRS and LRS states 

it is minimum as shown in Figure 5.2e and 5.2f. The higher precision for HRS and LRS can be explained 

because of lower and upper limits to conductive filament formation. Thus, by increasing the time-period 

or amplitude of the pulse, it is possible to ensure better accuracy in programming the device to HRS 

and LRS states. 

5.4 Existing Matrix Multiplication Technique using Memristor 

In many reported matrix multipliers, memristor crossbar is used in an analog way [48,136,137]. 

In this, as shown in Figure 5.3, each memristor conductance is programmed to different levels according 

to the first input matrix. The second input matrix is programmed to word line voltage amplitude through 

a DAC (Digital-to-Analog Converter). When the voltage pulse is applied, there will be a current 
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associated with each cross point of memristor crossbar array. The sum of current through each cross 

point in bitline corresponds to the element of output matrix. The output current through bit line is 

amplified and passed through ADC (Analog-to-Digital Converter) to compute and store the resultant 

matrix in digital form. However, this approach is highly sensitive to memristor variation [46,48,138-

142]. Moreover, programming each memristor device to an intermediate state is itself a challenge. 

Though techniques have been proposed to improve programming accuracy [143-146], it does not 

eliminate the problem completely and increases the programming time. Thus, it counters the advantage 

of using memristor crossbar to speed up the matrix multiplication in the first place. 

 

 
Figure 5.3. Analog matrix multiplication using memristor. The conductance of each memristor 

cell (e.g. g11, etc.) are sensitive to the device variation and noise.  

 

One other approach proposed in the literature [55,56] is using a digitalized matrix multiplication 

technique. The digitalized way of matrix multiplication only uses binary state of memristor and is more 

tolerant of variation. It also saves area since there is no requirement of ADC and DAC, at the expense 

of speed and power. However, it can be used only for binary matrix multiplication. To perform decimal 

matrix multiplication, it requires circuit for multiple threshold calculations, and circuit for shift and add 

operation after each binary multiplication, which leads to significant penalty in delay. Compared to 

analog counterpart, digitalized approach [56] suffers 3.12x power consumption. In this work, we 

propose an analog-digital-hybrid matrix multiplication technique, to counter the variation in the 

memristor device moderate trade-off of power, speed or area as compared to analog matrix 

multiplication. 
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5.5 Design for Matrix multiplication 

 

 

Figure 5.4. (a) Schematic for computation of single output element (C[1][1] = A[1,1..m] x B[1..m, 

1]) using the proposed analog digital hybrid matrix multiplication. Each element in B is a n-bit 

binary number. (b) Full schematic for analog digital hybrid matrix multiplication (not necessarily 
m copies of Figure 5.4a). 

 

In the proposed matrix multiplication circuit, to calculate output matrix C = A x B, we use an analog-

digital-hybrid approach to address the issue of variation in memristor devices. A and B are input 

matrices with m # of columns and rows respectively. If digitized, each element of A corresponds to a 
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p-bit binary number and each element of B corresponds to a n-bit binary number, where n and p depends 

upon the range of values in the input matrices. Each element of A used in multiplication is mapped to 

programming voltage levels using p-bit DACs during the computation. Each element of Input B in 

active computation is mapped to the resistance values of n # of memristor cells in a binary approach 

(i.e., 1 mapped to LRS and 0 mapped to HRS) to improve programming accuracy and decrease the 

sensitivity to variations. Figure 5.4a explains the circuit to implement multiplication of A row#1 (1st 

row of matrix A) and B col#1 (1st column of matrix B), consisting of a crossbar array with size m x n 

single-bit memristor cells and an amplifying circuit.   

Using p-bit DACs, the elements A row#1 (i.e., A[1][1], A[1][2], A[1][3],…..., A[1][m]) are converted 

to different levels of voltages (i.e., V(A[1][1]), V(A[1][2]), V(A[1][3]),…..., V(A[1][m])) to be fed into 

the wordlines of the RRAM array, respectively. The top and bottom electrodes of the memristor are 

connected to the wordlines (whose voltages are controlled by Matrix A) and bitlines (which are then 

each connected to a resistor r respectively. The ith element (i=1,2,3,….m) of B col#1 (i.e., B[i][1]) is 

stored in the ith row of the memristor matrix, with conductance of the n # of memristor devices in that 

row to be g1(B[i][1]), g2(B[i][1]), to gn(B[i][1]). These conductances are the reciprocal of either LRS or 

HRS values. 

The current flowing through jth bit line can be computed as:  

Ij = ∑  𝑖=𝑚
𝑖=1 V(A[1][i]) * gj(B[i][1])    (5.3) 

A small resistance r is used to sense current through each bit line. The value of r (= 0.5kΩ in this 

example, ~0.02xLRS) should be much smaller than the value of LRS, in order to avoid any alteration 

in current flowing through each bit line. The voltage across r in each jth bit line can be given as: 

Vj = Ii * r = ∑ r𝑖=𝑚
𝑖=1  * V(A[1][i]) * gj(B[i][1])    (5.4) 

Now, weighted sum of each sampled voltage is added using an inverting sense amplifier. This can be 

expressed as:   

Vsa = - ∑ R𝑗=𝑛
𝑗=1 1*[Vj / (2n-bR2)]    (5.5) 

The value of R1 and R2 used in this case is 5kΩ and 10kΩ respectively. The output matrix element 

C[1][1] is finally computed by amplifying Vsa using another inverting buffer followed by an 

(n+p+log2(m))-bit ADC, and is stored in digitized form, where m is input matrix size. 

The Figure 5.4a shows computation of single element (C[1][1]) of output matrix. The Figure 5.4b 

shows the computation of first row of output matrix, where all m # of columns of Matrix B are stored 

in digital form in memristor crossbar array of size m x (mn). Once the output is computed, in the next 

step, a set of pulse corresponding to next row of Matrix A is applied to word line to compute next row 

elements of output Matrix. This process is repeated for all rows of matrix A to perform matrix 

multiplication.   

Similar to the conventional analog multiplication method, I i (and thus Vi) reflects the levels of the 

DAC outputs from input A. However, unlike the conventional analog method, memristor cells are only 
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used as binary devices. This avoids the impact from variations which are problematic for multi-level 

memristor cells. Moreover, though this proposed hybrid approach requires more memristor cells, the 

total memristor array area is still only marginal compared with the peripheral circuit. In contrast to 

digital matrix multiplication technique, which involves multiplication in memristor crossbar array, 

repetitive threshold calculation, comparator circuit, XNOR circuit, decoding logic followed by a shift 

and add circuit, all resulting in more performance delay and power loss, the proposed technique is 

simple to implement with less power consumption and less delay in performance.  

5.6 Using proposed matrix multiplication circuit for neural network application 

 
Figure 5.5. Edge detection by convolution of matrix. (a) Filter and Input image. (b) Computation 

of first element of convolution matrix. (c) Conversion of filter and image patch to 1D. (b) Matrix 

multiplication using analog-digital hybrid matrix multiplication circuit. (e) Computation of 

second element of convolution matrix. 
 

We perform image classification by implementing a convolution neural network (CNN) to compare 

the design's performance and accuracy. A CNN consists of multiple matrix convolution layers, pooling 

layers, and weighted summation layer followed by an activation function. The matrix convolution layer 

is the key component of CNN and is the most computationally heavy block. In this, convolution of input 

image takes place through mathematical filters by repeated matrix multiplication, to detect the presence 
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of a set of features in the image. In this paper, we discuss only the matrix multiplication component in 

matrix convolution layer of the image classification using CNN.  

A set of 250 hand-written digit images from the UCI data set [147] were used as inputs to matrix 

convolution layer in CNN, for matrix multiplication. The original 8x8 pixel grayscale images were 

passed through a 3x3-dimensional filter, as shown in Figure 5.5b. The convolution is performed by 

fattening out image and filter first in one-dimension matrix, as shown in Figure 5.5c, and performing 

matrix multiplication to compute the output element, as shown in Figure 5.5d. The image pixel data is 

mapped to memristor crossbar, and filter is passed as word line voltage. The image pixel is mapped to 

memristor crossbar by applying a programming voltage of 2.6V and pulse width of 20ps and varying 

them w.r.t inputs. The output is computed using summation of weighted current flowing through each 

bit line, as discussed in section 5.5. The filter is shifted by 1 pixel and the experiment is repeated to 

compute the next element of convolution matrix, as shown in Figure 5.5e. The results of the matrix 

multiplication using the memristor crossbar array, and the effect of variations, with both the analog 

matrix multiplication method and the proposed analog-digital-hybrid matrix multiplication method 

were analyzed and compared, which are discussed in following section 5.7. 

 

5.7 Result and Discussions 

5.7.1 PPA Analysis 

It is observed that the total power of the proposed approach increases modestly compared to that of 

the analog matrix multiplication technique, as shown in Figure 5.6a. The reason behind the trend is that 

a major portion of power during matrix multiplication is consumed by peripheral devices comprised of 

the sense amplifier, ADC and DAC, as shown in Figure 5.6b. However, during the initial programing 

stage, where a larger memristor array is required to be initialized as per the input matrix, it causes 

additional power dissipation.  

In the matrix multiplication computation in section 5.6, it is observed that the average speed for 

analog-digital-hybrid matrix multiplication technique degrades by ~4 to 8.2% overall, as in analog-

digital-hybrid matrix multiplication, higher resistance values are required for the summation stage i.e., 

2n-1R2 (e.g., ~250 times higher resistance, if range of values is 256), thus adding propagation delay to 

the signal. In addition, the sense amplifier inputs need to be stabilized before computing the output, 

which adds to the delay.  
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Figure 5.6. (a) Total Power (memristor programming + Matrix multiplication) for analog design 

technique and analog-digital-hybrid design technique. (b) Power distribution (for Matrix 

multiplication only) for analog-digital-hybrid matrix multiplication technique. 

 

The area of the design is evaluated based on number of memristors and transistors and widths of 

transistors used in the schematic. (Figure 5.7a). Figure 5.7b shows the estimated area penalty with 

respect to analog matrix multiplication varying with matrix size when the range of element values (p 

and n) is kept constant. When matrix size is varied from 2 to 8, keeping range of element values as 256 

(i.e. p = n = 8 for Matrix A and B), the area increase varies from 1.1% to 3.2% for the proposed design 

technique compared to analog matrix multiplication technique. Figure 5.7c shows the estimated area 

penalty varying with range of element values, keeping matrix size the same. When range of element 

values is varied from 16 to 1024 (i.e. p = n = 4 to 10), keeping matrix size of 3, the area increase varies 

from 0.9% to 2.1% for the proposed design technique compared to analog matrix multiplication 

technique. The increase in area is due to the need for circuit to sum up the weighted currents and a larger 

memristor array for binary processing of matrix. 

In comparison to digital matrix multiplication method (without including externally required shift 

and add circuit in digital matrix multiplication method) [55], the estimated power consumption is 

reduced to 37% and the speed is enhanced by 277%, however, the gain is at the expense of area penalty 

of approximately 11.65 times, for a matrix size of 8. The reason behind the increase in area consumption 

is the use of DAC and ADC circuits in analog-digital-hybrid matrix multiplication, which are not 

required in digital matrix multiplication circuit.  
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Figure 5.7. (a) Device dimensions used for design evaluation. (b) Circuit Area vs Matrix size for 
analog matrix multiplication technique and analog-digital-hybrid design technique for range of 

element values as 256 and input matrix size varying from 2 to 8.  (c) Circuit Area vs Matrix size 

for analog matrix multiplication technique and analog-digital-hybrid design technique for input 

matrix size 3 and range of element values varying from 16 to 1024 (i.e. n from 4 to 10 and assuming 

n = p). 
 

5.7.2 Impact of variations in memristor 

The resistance of the memristor device is a function of the gap between the formation of the 

conductive filament. The stochastic nature of memristor leads to variations in conductive filament 

growth and thus the resistance (or conductance) of the device, as discussed in section 5.3. We use cycle 

A as the reference memristor behavior. The device behavior, as shown in Figure 5.2b, would vary 

between the black and red curves, corresponding to Cycle A and Cycle B, respectively.  The average 

variation in conductive filament growth between Cycle A with maximum Vset and another cycle is 

defined as ∆g.  ∆g for cycle B with minimum Vset in the measured fabricated memristor, is observed to 

be ~ 0.21nm. To study the effect of variation, we induce this variation (or change) in the conductive 

filament gap. This is done by varying model from Cycle A (i.e., model parameter γ=17.59) with 

maximum Vset to Cycle B (i.e., γ=18.04) with minimum Vset, discussed in section 5.3, with intermediate 

γ values and observe the effect on output computation for matrix multiplication in convolution layer of 

CNN, discussed in section 5.6. These γ values correspond to ∆g from 0 to 0.21nm. We define the output 

error as change in output value w.r.t Cycle A (model parameter γ=17.59), indicating how far the output 

is from that of the reference. As shown in Figure 5.8a, the variation in output of the analog matrix 

multiplication technique is much more dominant as compared to the analog-digital-hybrid matrix 
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multiplication method. Moreover, as the range of element values is increased, the effect of variation 

becomes more severe in analog matrix multiplication, as shown in Figure 5.8b.  

 

Figure 5.8. Matrix multiplication computation output error (w.r.t computation in cycle-A i.e., 

γ=17.59) between analog design technique and analog-digital-hybrid design technique with 

respect to variations in memristor devices. (a) Matrix multiplication output error for range of 

element values as 64 (n = p = 6) and 16 (n = p = 4). (b) Matrix multiplication output error for 
range of element values as 1024 (n = p = 10) and 256 (n = p = 8).  

 

Due to such impact, matrix multiplication using memristor crossbar array in analog way becomes 

less practical for matrix with large range of element values (i.e., large p and n), even with significant 

advantages in power and performance with respect to CMOS based matrix multiplication circuits 

[148,149]. While in the proposed analog-digital-hybrid matrix multiplication technique the 

vulnerability due to variation is less and does not deteriorates with increasing range of elements values 

(i.e., large p and n).  

This high level of variation tolerance is expected in the proposed circuit because by digitally storing 

matrix in memristor crossbar, no intermediate resistance levels in the memristor devices are used.  In 

case of storing data in analog way in memristor, the effective difference between resistance states is 

comparatively smaller. Binary memristor cells are also more robust in terms of retention and endurance. 

These benefits are particularly helpful with scaling of the circuit when variation, retention and 

endurance could hurt more at the circuit level. 

 

5.8 Summary 

The analog-digital hybrid approach of memristor based matrix multiplication design is proposed. The 

performance and accuracy of the proposed design is examined using an example of matrix 

multiplication in convolution neural network (CNN). Comparing with the widely used analog approach, 

the proposed method demonstrates significant improvement against the impact of variation with small 
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penalty of area, power and performance.  The robustness against variation in the proposed approach 

would be more beneficial with increasing matrix size and range of element values. Thus, the proposed 

design could play an important role in moving forward towards faster machine learning accelerators 

with better accuracy. 
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Chapter 6 

Conclusions and Future Work 

6.1 Conclusions 

The research focused on TiO2 based memristive devices, along with biomaterials for the applications in 

in-memory computing. Three types of TiO2 based memristive devices were explored and their switching 

mechanisms were discussed, along with various applications in in-memory computing.   

The first device, based on TiO2 with maple leaves as oxide layers, exhibited a unique property of 

capacitive coupled behavior at low voltage, while memristive behavior at high voltage. The existence 

of capacitive coupled and memristive behavior, modulated by programming voltage, could provide way 

for new reprogrammable devices for in-memory computing.  

The second memristor, based on TiO2, graphene and DNA as oxide layers, shows resistive switching 

memory behavior with stable multi-level resistance states, which enables 2-bit storage capacity in a 

single device. The device provides an alternative for high density memory using memristor, with easier 

fabrication technique and without any loss of accuracy. Using the device, parallel logic operations for 

in-memory computing was performed, which could provide a way for more faster and energy efficient 

solution for in-memory logic. 

Further, the third memristor device, based on TiO2 as a single oxide layer, was utilized to study and 

design variation tolerant matrix multiplication system for in-memory computing. It was demonstrated 

that with respect to conventional analog matrix multiplication using memristor, the proposed analog-

digital-hybrid matrix multiplication could improve the accuracy up to 16.35%, with the power, 

performance and area loss up to 18.5%, 8.2% and 3.2% respectively.  

The proposed memristors with their novel applications could provide a new prospect for engineering 

devices and circuits for in-memory computing applications.  

6.2 Future Work 

For future work, the devices and circuits could be modified and explored further to improve the area 

density and power. The detailed research for the future work is listed as follows: 

1. Development of selector based memristor devices in order to avoid sneak path current, is one 

of the major tasks for future work. In order to avoid sneak path current without sacrificing 

circuit packing density due to added transistors, addition of selector materials integrated 

within memristor devices could prove helpful.  

2. The deposition process used for biomaterials in the research was spin coating. In spic coating 

method, it is difficult to achieve uniformity in devices and control the thickness of the layers. 
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Therefore, in order to reduce variations among devices and increasing reproducibility of 

devices with same oxide thickness, more sophisticated deposition method such as MLD 

(Molecular layer deposition) process can be used. 

3. The fabrication technique used in the research is shadow mask process, where masks with 

dimensions of um scale were used. This process enables fast and cheap prototyping. 

However, it not only adds area to the device, but also increases cycle to cycle variations, as 

the probability of multiple conductive filaments formation increases. Consequently, as the 

number of conductive filaments formed between top and bottom electrode increases and 

varies with each cycle, the cycle to cycle variation also increases in the device. Therefore, in 

order to reduce the cycle to cycle variations in the fabricated device, the mask dimensions 

and thus device area should be reduced.  

4. The fabricated devices, especially those using biomaterials present high current. Though the 

device shows unique features, high currents increases the power dissipation. In order to 

reduce the current, as disused above, MLD process can be explored to control film thickness 

and area of the device can be reduced to avoid multiple conductive filament formation. In 

addition to that, materials such as Al2O3 (which has shown low power memristive effect) can 

be used along with the existing oxide layer.  

5. The proposed device based on TiO2-graphene-DNA as functional layer has shown four stable 

resistance state, which was utilized to demonstrate 2-bit memory storage and parallel 

operations. The device could be engineered to support a greater number of stable resistance 

state, by increase the number of active layer materials in addition to graphene layer.   



 64 

Bibliography 

[1] M. Shah and R. Kapdi, “Object detection using deep neural networks,” Proc. 2017 Int. Conf. Intell. 
Comput. Control Syst. ICICCS 2017, vol. 2018-Janua, pp. 787–790, 2017, doi: 
10.1109/ICCONS.2017.8250570. 

[2] S. S. Farfade, M. Saberian, and L. J. Li, “Multi-view face detection using Deep convolutional neural 
networks,” ICMR 2015 - Proc. 2015 ACM Int. Conf. Multimed. Retr. , pp. 643–650, 2015, doi: 
10.1145/2671188.2749408. 

[3] X. Sun, P. Wu, and S. C. H. Hoi, “Face detection using deep learning: An improved faster RCNN 
approach,” Neurocomputing, vol. 299, pp. 42–50, 2018, doi: 10.1016/j.neucom.2018.03.030. 

[4] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-view 3D object detection network for autonomous 
driving,” Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, vol. 2017-Janua, pp. 
6526–6534, 2017, doi: 10.1109/CVPR.2017.691. 

[5] X. Wang, W. Zhang, X. Wu, L. Xiao, Y. Qian, and Z. Fang, “Real-time vehicle type classification with 
deep convolutional neural networks,” J. Real-Time Image Process., vol. 16, no. 1, pp. 5–14, 2019, 
doi: 10.1007/s11554-017-0712-5. 

[6] M. Bojarski et al., “End to End Learning for Self-Driving Cars,” pp. 1–9, 2016, [Online]. Available: 
http://arxiv.org/abs/1604.07316. 

[7] R. Yan, “‘Chitty-chitty-chat bot’: Deep learning for conversational AI,” IJCAI Int. Jt. Conf. Artif. Intell., 
vol. 2018-July, pp. 5520–5526, 2018. 

[8] P. C. Yang, K. Sasaki, K. Suzuki, K. Kase, S. Sugano, and T. Ogata, “Repeatable Folding Task by 
Humanoid Robot Worker Using Deep Learning,” IEEE Robot. Autom. Lett., vol. 2, no. 2, pp. 397–
403, 2017, doi: 10.1109/LRA.2016.2633383. 

[9] V. Mnih et al., “Playing Atari with Deep Reinforcement Learning,” pp. 1–9, 2013, [Online]. 
Available: http://arxiv.org/abs/1312.5602. 

[10] T. M. Mitchell, “The Need for Biases in Learning Generalizations,” Readings Mach. Learn., no. CBM-
TR-117, pp. 184–191, 1980, [Online]. Available: 
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.5466. 

[11] M. Education, “Readable introduction to Unix has plenty of examples,” pp. 510–511. 

[12] M. M. T. Carbonel, G. jaime, Michalski, S.Ryszard, “an-Overview-of-Machine.Pdf.” p. 23, 1983. 

[13] P. A. Merolla et al., “A million spiking-neuron integrated circuit with a scalable communication 
network and interface,” Science (80-. )., vol. 345, no. 6197, pp. 668–673, 2014, doi: 
10.1126/science.1254642. 

[14] A. Sebastian et al., “Temporal correlation detection using computational phase-change memory,” 
Nat. Commun., vol. 8, no. 1, 2017, doi: 10.1038/s41467-017-01481-9. 



 

 65 

[15] P. Jacob et al., “Mitigating memory wall effects in high-clock-rate and multicore CMOS 3-D 
processor memory stacks,” Proc. IEEE, vol. 97, no. 1, pp. 108–122, 2009, doi: 
10.1109/JPROC.2008.2007472. 

[16] D. Ielmini and H. S. P. Wong, “In-memory computing with resistive switching devices,” Nat. 
Electron., vol. 1, no. 6, pp. 333–343, 2018, doi: 10.1038/s41928-018-0092-2. 

[17] L. O. Chua, “Memristor—The Missing Circuit Element,” IEEE Trans. Circuit Theory, vol. 18, no. 5, pp. 
507–519, 1971, doi: 10.1109/TCT.1971.1083337. 

[18] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The missing memristor found,” Nature, 
vol. 453, no. 7191, pp. 80–83, 2008, doi: 10.1038/nature06932. 

[19] R. Waser, R. Dittmann, C. Staikov, and K. Szot, “Redox-based resistive switching memories 
nanoionic mechanisms, prospects, and challenges,” Adv. Mater., vol. 21, no. 25–26, pp. 2632–
2663, 2009, doi: 10.1002/adma.200900375. 

[20] C. Schindler, M. Weides, M. N. Kozicki, and R. Waser, “Low current resistive switching in Cu-SiO2 
cells,” Appl. Phys. Lett., vol. 92, no. 12, pp. 1–4, 2008, doi: 10.1063/1.2903707. 

[21] A. C. Torrezan, J. P. Strachan, G. Medeiros-Ribeiro, and R. S. Williams, “Sub-nanosecond switching 
of a tantalum oxide memristor,” Nanotechnology, vol. 22, no. 48, 2011, doi: 10.1088/0957-
4484/22/48/485203. 

[22] S. H. Jo, K.-H. Kim, and W. Lu, “High-Density Crossbar Arrays Based on a Si Memristive System,” 
Nano Lett., vol. 9, no. 2, pp. 870–874, 2009, doi: 10.1021/nl8037689. 

[23] H. S. P. Wong et al., “Metal-oxide RRAM,” Proc. IEEE, vol. 100, no. 6, pp. 1951–1970, 2012, doi: 
10.1109/JPROC.2012.2190369. 

[24] M. Lanza et al., “Recommended Methods to Study Resistive Switching Devices,” Adv. Electron. 
Mater., vol. 5, no. 1, pp. 1–28, 2019, doi: 10.1002/aelm.201800143. 

[25] Z. Tang, Y. Wang, Y. Chi, and L. Fang, “Comprehensive sens ing current analysis and its guideline for 
the worst-case scenario of rram read operation,” Electron., vol. 7, no. 10, pp. 14–16, 2018, doi: 
10.3390/electronics7100224. 

[26] J. J. Yang, M. D. Pickett, X. Li, D. A. A. Ohlberg, D. R. Stewart, and R. S. Williams, “Memristive 
switching mechanism for metal/oxide/metal nanodevices,” Nat. Nanotechnol., vol. 3, no. 7, pp. 
429–433, 2008, doi: 10.1038/nnano.2008.160. 

[27] L. Goux et al., “Evidences of oxygen-mediated resistive-switching mechanism in TiN\ HfO 2 \Pt 
cells,” Appl. Phys. Lett., vol. 97, no. 24, pp. 2010–2013, 2010, doi: 10.1063/1.3527086. 

[28] H. Y. Lee et al., “Low power and high speed bipolar switching with a thin reactive ti buffer layer in 
robust HfO2 based RRAM,” Tech. Dig. - Int. Electron Devices Meet. IEDM, pp. 3–6, 2008, doi: 
10.1109/IEDM.2008.4796677. 

[29] Y. Wu, B. Lee, and H. S. P. Wong, “Al2O3-based RRAM using atomic layer deposition (ALD) with 1-



 

 66 

μa RESET current,” IEEE Electron Device Lett., vol. 31, no. 12, pp. 1449–1451, 2010, doi: 
10.1109/LED.2010.2074177. 

[30]     W. Kim et al., "Forming-free nitrogen-doped AlOX RRAM with sub-μA programming current," 2011 
Symposium on VLSI Technology - Digest of Technical Papers, Honolulu, HI, 2011, pp. 22-23. 

[31] T. Fu et al., “Bioinspired bio-voltage memristors,” Nat. Commun., vol. 11, no. 1, pp. 1–10, 2020, 
doi: 10.1038/s41467-020-15759-y. 

[32] M. K. Hota, M. K. Bera, B. Kundu, S. C. Kundu, and C. K. Maiti, “A natural silk fibroin protein-based 
transparent bio-memristor,” Adv. Funct. Mater., vol. 22, no. 21, pp. 4493–4499, 2012, doi: 
10.1002/adfm.201200073. 

[33] B. Sun, D. Liang, X. Li, and P. Chen, “Nonvolatile bio-memristor fabricated with natural bio-
materials from spider silk,” J. Mater. Sci. Mater. Electron., vol. 27, no. 4, pp. 3957–3962, 2016, doi: 
10.1007/s10854-015-4248-9. 

[34] Y. C. Chen, H. C. Yu, C. Y. Huang, W. L. Chung, S. L. Wu, and Y. K. Su, “Nonvolatile bio-memristor 
fabricated with egg albumen film,” Sci. Rep., vol. 5, pp. 1–12, 2015, doi: 10.1038/srep10022. 

[35] S. Mao et al., “A Bio-memristor with Overwhelming Capacitance Effect,” Electron. Mater. Lett., vol. 
15, no. 5, pp. 547–554, 2019, doi: 10.1007/s13391-019-00150-x. 

[36] X. He et al., “Transient Resistive Switching Devices Made from Egg Albumen Dielectrics and 
Dissolvable Electrodes,” ACS Appl. Mater. Interfaces, vol. 8, no. 17, pp. 10954–10960, 2016, doi: 
10.1021/acsami.5b10414. 

[37] S. Ham, S. Choi, H. Cho, S. I. Na, and G. Wang, “Photonic Organolead Halide Perovskite Artificial 
Synapse Capable of Accelerated Learning at Low Power Inspired by Dopamine-Facilitated Synaptic 
Activity,” Adv. Funct. Mater., vol. 29, no. 5, pp. 1–8, 2019, doi: 10.1002/adfm.201806646. 

[38] B. Ku, B. Koo, A. S. Sokolov, M. J. Ko, and C. Choi, “Two-terminal artificial synapse with hybrid 
organic–inorganic perovskite (CH3NH3)PbI3 and low operating power energy (∼47 fJ/μm2),” J. 
Alloys Compd., vol. 833, 2020, doi: 10.1016/j.jallcom.2020.155064. 

[39] Y. Y. Chen et al., “Endurance/Retention Trade-off on <formula formulatype="inline"><tex 
Notation="TeX">$\hbox{HfO}_{2}/\hbox{Metal}$</tex> </formula> Cap 1T1R Bipolar RRAM,” IEEE 
Trans. Electron Devices, vol. 60, no. 3, pp. 1114–1121, 2013, doi: 10.1109/TED.2013.2241064. 

[40] Y. Chen and C. Petti, “ReRAM technology evolution for storage class memory application,” Eur. 
Solid-State Device Res. Conf., vol. 2016-October, pp. 432–435, 2016, doi: 
10.1109/ESSDERC.2016.7599678. 

[41] Y. Ji et al., “Integrated all-organic 8 × 8 one transistor-one resistor (1T-1R) crossbar resistive 
switching memory array,” Org. Electron., vol. 29, pp. 66–71, 2016, doi: 
10.1016/j.orgel.2015.11.020. 

[42] C. Xu et al., “Overcoming the challenges of crossbar resistive memory architectures,” 2015 IEEE 



 

 67 

21st Int. Symp. High Perform. Comput. Archit. HPCA 2015, pp. 476–488, 2015, doi: 
10.1109/HPCA.2015.7056056. 

[43] P. Schrögmeier et al., “Time discrete voltage sensing and iterative programming control for  a 4F2 
multilevel CBRAM,” IEEE Symp. VLSI Circuits, Dig. Tech. Pap. , pp. 186–187, 2007, doi: 
10.1109/VLSIC.2007.4342708. 

[44] L. Sun et al., “Self-selective van der Waals heterostructures for large scale memory array,” Nat. 
Commun., vol. 10, no. 1, pp. 1–7, 2019, doi: 10.1038/s41467-019-11187-9. 

[45] H. Kim, M. P. Sah, C. Yang, and L. O. Chua, “Memristor-based multilevel memory,” 2010 12th Int. 
Work. Cell. Nanoscale Networks their Appl. CNNA 2010, vol. 1, no. 5, pp. 1–6, 2010, doi: 
10.1109/cnna.2010.5430320. 

[46] F. Alibart, L. Gao, B. D. Hoskins, and D. B. Strukov, “High precision tuning of state for memristive 
devices by adaptable variation-tolerant algorithm,” Nanotechnology, vol. 23, no. 7, pp. 3–10, 2012, 
doi: 10.1088/0957-4484/23/7/075201. 

[47] R. Berdan, T. Prodromakis, and C. Toumazou, “High precision analogue memristor state tuning,” 
Electron. Lett., vol. 48, no. 18, pp. 1105–1107, 2012, doi: 10.1049/el.2012.2295. 

[48] B. Li, P. Gu, Y. Wang, and H. Yang, “Exploring the Precision Limitation for RRAM-Based Analog 
Approximate Computing,” IEEE Des. Test, vol. 33, no. 1, pp. 51–58, 2016, doi: 
10.1109/MDAT.2015.2487218. 

[49] Q. Luo et al., “Super non-linear RRAM with ultra-low power for 3D vertical nano-crossbar arrays,” 
Nanoscale, vol. 8, no. 34, pp. 15629–15636, 2016, doi: 10.1039/c6nr02029a. 

[50] M. J. Lee et al., “Low-temperature-grown transition metal oxide based storage materials and oxide 
transistors for high- density non-volatile memory,” Adv. Funct. Mater., vol. 19, no. 10, pp. 1587–
1593, 2009, doi: 10.1002/adfm.200801032. 

[51] E. Linn, R. Rosezin, S. Tappertzhofen, U. Böttger, and R. Waser, “Beyond von Neumann - Logic 
operations in passive crossbar arrays alongside memory operations,” Nanotechnology, vol. 23, no. 
30, 2012, doi: 10.1088/0957-4484/23/30/305205. 

[52] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and R. S. Williams, “Memristive 
switches enable stateful logic operations via material implication,” Nature, vol. 464, no. 7290, pp. 
873–876, 2010, doi: 10.1038/nature08940. 

[53] Z. Yang, Y. Ma, and L. Wei, “Functionally complete boolean logic and adder design based on 2T2R 
RRAMs for post-CMOS in-memory computing,” Proc. ACM Gt. Lakes Symp. VLSI, GLSVLSI, pp. 147–
152, 2019, doi: 10.1145/3299874.3317993. 

[54] S. N. Truong and K. S. Min, “New memristor-based crossbar array architecture with 50-% area 
reduction and 48-% power saving for matrix-vector multiplication of analog neuromorphic 
computing,” J. Semicond. Technol. Sci., vol. 14, no. 3, pp. 356–363, 2014, doi: 
10.5573/JSTS.2014.14.3.356. 



 

 68 

[55] L. Ni, Y. Wang, H. Yu, W. Yang, C. Weng, and J. Zhao, “An energy-efficient matrix multiplication 
accelerator by distributed in-memory computing on binary RRAM crossbar,” Proc. Asia South 
Pacific Des. Autom. Conf. ASP-DAC, vol. 25-28-Janu, pp. 280–285, 2016, doi: 
10.1109/ASPDAC.2016.7428024. 

[56] H. Yu, L. Ni, and H. Huang, “Distributed in-memory computing on binary memristor-crossbar for 
machine learning,” Stud. Comput. Intell., vol. 701, no. 3, pp. 275–304, 2017, doi: 10.1007/978-3-
319-51724-7_12. 

[57] W. Ma, M. A. Zidan, and W. D. Lu, “Neuromorphic computing with memristive devices,” Sci. China 
Inf. Sci., vol. 61, no. 6, pp. 1–9, 2018, doi: 10.1007/s11432-017-9424-y. 

[58] I. Boybat et al., “Neuromorphic computing with multi-memristive synapses,” Nat. Commun., vol. 
9, no. 1, pp. 1–12, 2018, doi: 10.1038/s41467-018-04933-y. 

[59] P. Sheridan and W. Lu, “Memristor Networks,” Memristor Networks, 2014, doi: 10.1007/978-3-
319-02630-5. 

[60] D. Ielmini, “Brain-inspired computing with resistive switching memory (RRAM): Devices, synapses 
and neural networks,” Microelectron. Eng., vol. 190, pp. 44–53, 2018, doi: 
10.1016/j.mee.2018.01.009. 

[61] L. Chua, V. Sbitnev, and H. Kim, “Hodgkin-Huxley axon is made of memristors,” Int. J. Bifurc. Chaos, 
vol. 22, no. 3, pp. 1–48, 2012, doi: 10.1142/S021812741230011X. 

[62] L. Chua, “Memristor Networks,” Memristor Networks, 2014, doi: 10.1007/978-3-319-02630-5. 

[63] M. Teimoori, A. Ahmadi, S. Alirezaee, S. V. A. D. Makki, and M. Ahmadi, “A novel memristor based 
integrate-and-fire neuron implementation using material implication logic,” Can. Conf. Electr. 
Comput. Eng., vol. 2015-June, no. June, pp. 1176–1179, 2015, doi: 10.1109/CCECE.2015.7129442. 

[64] J. Q. Yang et al., “Leaky integrate-and-fire neurons based on perovskite memristor for spiking 
neural networks,” Nano Energy, vol. 74, p. 104828, 2020, doi: 10.1016/j.nanoen.2020.104828. 

[65] R. and M. A. Stefan Tappertzhofen, Ilia Valov, Tohru Tsuruoka, Tsuyoshi Hasegawa, “Generic 
Relevance of Counter Charges,” ACS Nano, vol. 7, no. 7, pp. 6396–6402, 2013. 

[66] S. Tappertzhofen, S. Menzel, I. Valov, and R. Waser, “Redox processes in silicon dioxide thin films 
using copper microelectrodes,” Appl. Phys. Lett., vol. 99, no. 20, pp. 2011–2014, 2011, doi: 
10.1063/1.3662013.  

[67]    B. Sun et al., “A Unified Capacitive-Coupled Memristive Model for the Nonpinched Current-Voltage 
Hysteresis Loop,” Nano Lett., vol. 19, no. 9, pp. 6461–6465, 2019, doi: 
10.1021/acs.nanolett.9b02683. 

[68]     G. Zhou, X. Yang, L. Xiao, B. Sun, and A. Zhou, “Investigation of a submerging redox behavior in 
Fe2O3 solid electrolyte for resistive switching memory,” Appl. Phys. Lett., vol. 114, no. 16, 2019, 
doi: 10.1063/1.5089147. 



 

 69 

[69]      S. et al. Archibald, “Ac ce pte d M us pt,” Geophys. Res. Lett., vol. in press, pp. 0–31, 2017. 

[70]     D. Y. Cho, M. Luebben, S. Wiefels, K. S. Lee, and I. Valov, “Interfacial Metal-Oxide Interactions in 
Resistive Switching Memories,” ACS Appl. Mater. Interfaces, vol. 9, no. 22, pp. 19287–19295, 2017, 
doi: 10.1021/acsami.7b02921. 

[71]    F. Messerschmitt, M. Jansen, and J. L. M. Rupp, “When Memristance Crosses the Path with Humidity 
Sensing—About the Importance of Protons and Its Opportunities in Valence Change Memristors,” 
Adv. Electron. Mater., vol. 4, no. 12, pp. 1–10, 2018, doi: 10.1002/aelm.201800282. 

[72]    S. Zhu et al., “An excellent pH-controlled resistive switching memory device based on self-colored 
(C7H7O4N): N extracted from a lichen plant,” J. Mater. Chem. C, vol. 7, no. 25, pp. 7593–7600, 
2019, doi: 10.1039/c8tc06207b. 

[73]     S. Mao et al., “PH-Modulated memristive behavior based on an edible garlic-constructed bio-
electronic device,” New J. Chem., vol. 43, no. 24, pp. 9634–9640, 2019, doi: 10.1039/c9nj02433f. 

[74]     L. Zheng et al., “Metal ions redox induced repeatable nonvolatile resistive switching memory 
behavior in biomaterials,” ACS Appl. Bio Mater., vol. 1, no. 2, pp. 496–501, 2018, doi: 
10.1021/acsabm.8b00226. 

[75]       I. Salaoru, A. Khiat, Q. Li, R. Berdan, and T. Prodromakis, “Pulse-induced resistive and capacitive 
switching in TiO2 thin film devices,” Appl. Phys. Lett., vol. 103, no. 23, 2013, doi: 
10.1063/1.4840316. 

[76]   H. Wang et al., “Configurable Resistive Switching between Memory and Threshold Characteristics 
for Protein-Based Devices,” Adv. Funct. Mater., vol. 25, no. 25, pp. 3825–3831, 2015, doi: 
10.1002/adfm.201501389. 

[77]    N. R. Hosseini and J. S. Lee, “Biocompatible and Flexible Chitosan-Based Resistive Switching Memory 
with Magnesium Electrodes,” Adv. Funct. Mater., vol. 25, no. 35, pp. 5586–5592, 2015, doi: 
10.1002/adfm.201502592. 

[78]    H. Wang et al., “Sericin for resistance switching device with multilevel nonvolatile memory,” Adv. 
Mater., vol. 25, no. 38, pp. 5498–5503, 2013, doi: 10.1002/adma.201301983. 

[79] N. Raeis Hosseini and J. S. Lee, “Resistive switching memory based on bioinspired natural solid 
polymer electrolytes,” ACS Nano, vol. 9, no. 1, pp. 419–426, 2015, doi: 10.1021/nn5055909. 

[80] G. Zhou et al., “Investigation of the behaviour of electronic resistive switching memory based on 
MoSe2-doped ultralong Se microwires,” Appl. Phys. Lett., vol. 109, no. 14, 2016, doi: 
10.1063/1.4962655. 

[81] G. Zhou et al., “Coexistence of Negative Differential Resistance and Resistive Switching Memory at 
Room Temperature in TiOx Modulated by Moisture,” Adv. Electron. Mater., vol. 4, no. 4, pp. 1–12, 
2018, doi: 10.1002/aelm.201700567. 

[82] I. Valov et al., “Nanobatteries in redox-based resistive switches require extension of memristor 



 

 70 

theory,” Nat. Commun., vol. 4, pp. 1771–1779, 2013, doi: 10.1038/ncomms2784. 

[83] M. S. Kadhim et al., “ Existence of Resistive Switching Memory and Negative Differential Resistance 
State in Self-Colored MoS 2 /ZnO Heterojunction Devices ,” ACS Appl. Electron. Mater., vol. 1, no. 
3, pp. 318–324, 2019, doi: 10.1021/acsaelm.8b00070. 

[84] X. Yan et al., “Self-Assembled Networked PbS Distribution Quantum Dots for Resistive Switching 
and Artificial Synapse Performance Boost of Memristors,” Adv. Mater., vol. 31, no. 7, pp. 1–9, 2019, 
doi: 10.1002/adma.201805284. 

[85] C. Zhang et al., “Bioinspired Artificial Sensory Nerve Based on Nafion Memristor,” Adv. Funct. 
Mater., vol. 29, no. 20, pp. 1–10, 2019, doi: 10.1002/adfm.201808783. 

[86] S. Seo et al., “Recent Progress in Artificial Synapses Based on Two-Dimensional van der Waals 
Materials for Brain-Inspired Computing,” ACS Appl. Electron. Mater., vol. 2, no. 2, pp. 371–388, 
2020, doi: 10.1021/acsaelm.9b00694. 

[87] L. Shao et al., “Optoelectronic Properties of Printed Photogating Carbon Nanotube Thin Film 
Transistors and Their Application for Light-Stimulated Neuromorphic Devices,” ACS Appl. Mater. 
Interfaces, vol. 11, no. 12, pp. 12161–12169, 2019, doi: 10.1021/acsami.9b02086. 

[88] Y. Wang et al., “Self-Doping Memristors with Equivalently Synaptic Ion Dynamics for Neuromorphic 
Computing,” ACS Appl. Mater. Interfaces, vol. 11, no. 27, pp. 24230–24240, 2019, doi: 
10.1021/acsami.9b04901. 

[89] M. M. Shulaker et al., “Carbon nanotube computer,” Nature, vol. 501, no. 7468, pp. 526–530, 2013, 

doi: 10.1038/nature12502. 

[90] T. Hasegawa, K. Terabe, T. Tsuruoka, and M. Aono, “Atomic switch: Atom/ion movement 

controlled devices for beyond von-Neumann computers,” Adv. Mater., vol. 24, no. 2, pp. 252–267, 

2012, doi: 10.1002/adma.201102597. 

[91] S. P. Park, Y. J. Tak, H. J. Kim, J. H. Lee, H. Yoo, and H. J. Kim, “Analysis of the Bipolar Resistive 

Switching Behavior of a Biocompatible Glucose Film for Resistive Random Access Memory,” Adv. 

Mater., vol. 30, no. 26, pp. 1–8, 2018, doi: 10.1002/adma.201800722. 

[92] B. Sun et al., “An organic nonvolatile resistive switching memory device fabricated with natural 

pectin from fruit peel,” Org. Electron., vol. 42, pp. 181–186, 2017, doi: 

10.1016/j.orgel.2016.12.037. 

[93] Z. Lv, Y. Zhou, S. T. Han, and V. A. L. Roy, “From biomaterial-based data storage to bio-inspired 

artificial synapse,” Mater. Today, vol. 21, no. 5, pp. 537–552, 2018, doi: 

10.1016/j.mattod.2017.12.001. 

[94] K. Nagashima et al., “Cellulose nanofiber paper as an ultra flexible nonvolatile memory,” Sci. Rep., 

vol. 4, pp. 1–7, 2014, doi: 10.1038/srep05532. 

[95] W. Wu et al., “Biodegradable skin-inspired nonvolatile resistive switching memory based on gold 

nanoparticles embedded alkali lignin,” Org. Electron., vol. 59, pp. 382–388, 2018, doi: 



 

 71 

10.1016/j.orgel.2018.05.051. 

[96] E. Ercan et al., “A Redox-Based Resistive Switching Memory Device Consisting of Organic–

Inorganic Hybrid Perovskite/Polymer Composite Thin Film,” Adv. Electron. Mater., vol. 3, no. 12, 

pp. 1–8, 2017, doi: 10.1002/aelm.201700344. 

[97] J. Choi, J. S. Han, K. Hong, S. Y. Kim, and H. W. Jang, “Organic–Inorganic Hybrid Halide 

Perovskites for Memories, Transistors, and Artificial Synapses,” Adv. Mater., vol. 30, no. 42, pp. 

1–21, 2018, doi: 10.1002/adma.201704002. 

[98] K. Mohanta, J. Rivas, and R. K. Pai, “Reverse switching phenomena in hybrid organic-inorganic 

thin film composite material,” J. Phys. Chem. C, vol. 117, no. 1, pp. 124–130, 2013, doi: 

10.1021/jp309750p. 

[99] D. H. Kwon et al., “Atomic structure of conducting nanofilaments in TiO2 resistive switching 

memory,” Nat. Nanotechnol., vol. 5, no. 2, pp. 148–153, 2010, doi: 10.1038/nnano.2009.456. 

[100] B. J. Choi et al., “Resistive switching mechanism of TiO2 thin films grown by atomic-layer 

deposition,” J. Appl. Phys., vol. 98, no. 3, 2005, doi: 10.1063/1.2001146. 

[101] P. Zalar et al., “DNA electron injection interlayers for polymer light-emitting diodes,” J. Am. Chem. 

Soc., vol. 133, no. 29, pp. 11010–11013, 2011, doi: 10.1021/ja201868d. 

[102] C. Yumusak, T. B. Singh, N. S. Sariciftci, and J. G. Grote, “Bio-organic field effect transistors based 

on crosslinked deoxyribonucleic acid (DNA) gate dielectric,” Appl. Phys. Lett., vol. 95, no. 26, pp. 

0–3, 2009, doi: 10.1063/1.3278592. 

[103] S. Qin, R. Dong, X. Yan, and Q. Du, “A reproducible write-(read)n-erase and multilevel bio-

memristor based on DNA molecule,” Org. Electron., vol. 22, pp. 147–153, 2015, doi: 

10.1016/j.orgel.2015.03.045. 

[104] B. Sun, L. Wei, H. Li, X. Jia, J. Wu, and P. Chen, “The DNA strand assisted conductive filament 

mechanism for improved resistive switching memory,” J. Mater. Chem. C, vol. 3, no. 46, pp. 12149–

12155, 2015, doi: 10.1039/c5tc02732b. 

[105] A. A. Balandin et al., “Superior thermal conductivity of single-layer graphene,” Nano Lett., vol. 8, 

no. 3, pp. 902–907, 2008, doi: 10.1021/nl0731872. 

[106] D. C. Marcano et al., “Improved synthesis of graphene oxide,” ACS Nano, vol. 4, no. 8, pp. 4806–

4814, 2010, doi: 10.1021/nn1006368. 

[107] Q. Liu et al., “Formation of multiple conductive filaments in the Cu/ ZrO2:Cu/Pt device,” Appl. 

Phys. Lett., vol. 95, no. 2, pp. 3–6, 2009, doi: 10.1063/1.3176977. 

[108] J. Park, S. Lee, J. Lee, and K. Yong, “A light incident angle switchable ZnO nanorod memristor: 

Reversible switching behavior between two non-volatile memory devices,” Adv. Mater., vol. 25, no. 

44, pp. 6423–6429, 2013, doi: 10.1002/adma.201303017. 

[109] L. Liu et al., “Multilevel resistive switching in Ag/SiO2/Pt resistive switching memory device,” 

Jpn. J. Appl. Phys., vol. 54, no. 2, pp. 3–6, 2015, doi: 10.7567/JJAP.54.021802. 



 

 72 

[110] F. C. Chiu, T. M. Pan, T. K. Kundu, and C. H. Shih, “Thin film applications in advanced electron 

devices,” Adv. Mater. Sci. Eng., vol. 2014, pp. 2–4, 2014, doi: 10.1155/2014/927358. 

[111] J. Szmytkowski, “The influence of the thickness, recombination and space charge on the loss of  
photocurrent in organic semiconductors: An analytical model,” J. Phys. D. Appl. Phys., vol. 40, no. 

11, pp. 3352–3357, 2007, doi: 10.1088/0022-3727/40/11/015. 

[112] D. S. Jeong et al., “Emerging memories: Resistive switching mechanisms and current status,” 

Reports Prog. Phys., vol. 75, no. 7, 2012, doi: 10.1088/0034-4885/75/7/076502. 

[113] A. V. Shaposhnikov, T. V. Perevalov, V. A. Gritsenko, C. H. Cheng, and A. Chin, “Mechanism of 

GeO 2 resistive switching based on the multi-phonon assisted tunneling between traps,” Appl. Phys. 

Lett., vol. 100, no. 24, 2012, doi: 10.1063/1.4729589. 

[114] J. Kim, S. H. Lee, J. H. Lee, and K. H. Hong, “The role of intrinsic defects in methylammonium 
lead iodide perovskite,” J. Phys. Chem. Lett., vol. 5, no. 8, pp. 1312–1317, 2014, doi: 

10.1021/jz500370k. 

[115] M. A. Green, A. Ho-Baillie, and H. J. Snaith, “The emergence of perovskite solar cells,” Nat. 

Photonics, vol. 8, no. 7, pp. 506–514, 2014, doi: 10.1038/nphoton.2014.134. 

[116] H. Shi and M. H. Du, “Shallow halogen vacancies in halide optoelectronic materials,” Phys. Rev. B 

- Condens. Matter Mater. Phys., vol. 90, no. 17, pp. 1–6, 2014, doi: 10.1103/PhysRevB.90.174103. 

[117] F. C. Chiu, H. W. Chou, and J. Y. M. Lee, “Electrical conduction mechanisms of metal La2 O3 Si 

structure,” J. Appl. Phys., vol. 97, no. 10, 2005, doi: 10.1063/1.1896435. 

[118] S. Wu et al., “Bipolar resistance switching in transparent ITO/LaAlO3/ SrTiO3 memristors,” ACS 

Appl. Mater. Interfaces, vol. 6, no. 11, pp. 8575–8579, 2014, doi: 10.1021/am501387w. 

[119] H. W. Shin, J. H. Park, H. Y. Chung, K. H. Kim, H. D. Kim, and T. G. Kim, “Highly uniform 

resistive switching in SiN nanorod devices fabricated by nanosphere lithography,” Appl. Phys. 

Express, vol. 7, no. 2, 2014, doi: 10.7567/APEX.7.024202. 

[120] Y. Sharma, P. Misra, and R. S. Katiyar, “Unipolar resistive switching behavior of amorphous 

YCrO3 films for nonvolatile memory applications,” J. Appl. Phys., vol. 116, no. 8, pp. 1–6, 2014, 

doi: 10.1063/1.4893661. 

[121] J. Zhang et al., “Increasing the oxygen vacancy density on the TiO2 surface by La-doping for dye-

sensitized solar cells,” J. Phys. Chem. C, vol. 114, no. 43, pp. 18396–18400, 2010, doi: 

10.1021/jp106648c. 

[122] R. Schaub et al., “Oxygen vacancies as active sites for water dissociation on rutile TiO2(110),” 

Phys. Rev. Lett., vol. 87, no. 26, pp. 266104-1-266104–4, 2001, doi: 

10.1103/PhysRevLett.87.266104. 

[123] E. Carter, A. F. Carley, and D. M. Murphy, “Evidence for O2- radical stabilization at surface oxygen 

vacancies on polycrystalline TiO2,” J. Phys. Chem. C, vol. 111, no. 28, pp. 10630–10638, 2007, 

doi: 10.1021/jp0729516. 

[124] U. Celano et al., “Three-dimensional observation of the conductive filament in nanoscaled resistive 



 

 73 

memory devices,” Nano Lett., vol. 14, no. 5, pp. 2401–2406, 2014, doi: 10.1021/nl500049g. 

[125] Z. Lv et al., “Mimicking Neuroplasticity in a Hybrid Biopolymer Transistor by Dual Modes 

Modulation,” Adv. Funct. Mater., vol. 29, no. 31, pp. 1–11, 2019, doi: 10.1002/adfm.201902374. 

[126] P. Y. Chen and S. Yu, “Compact Modeling of RRAM Devices and Its Applications in 1T1R and 

1S1R Array Design,” IEEE Trans. Electron Devices, vol. 62, no. 12, pp. 4022–4028, 2015, doi: 

10.1109/TED.2015.2492421. 

[127] Y. Wang et al., “Photonic Synapses Based on Inorganic Perovskite Quantum Dots for Neuromorphic 

Computing,” Adv. Mater., vol. 30, no. 38, pp. 1–9, 2018, doi: 10.1002/adma.201802883. 

[128] M. D. Pickett, G. Medeiros-Ribeiro, and R. S. Williams, “A scalable neuristor built with Mott 

memristors,” Nat. Mater., vol. 12, no. 2, pp. 114–117, 2013, doi: 10.1038/nmat3510. 

[129] J. H. Tucker and M. A. Tapia, “Using Karnaugh maps to solve Boolean equations by successive 

elimination,” Conf. Proc. - IEEE SOUTHEASTCON, vol. 2, no. 7, pp. 589–592, 1992, doi: 

10.1109/secon.1992.202260. 

[130] L. Ni, H. Huang, and H. Yu, “On-line machine learning accelerator on digital RRAM-crossbar,” 

Proc. - IEEE Int. Symp. Circuits Syst., vol. 2016-July, no. 3, pp. 113–116, 2016, doi: 

10.1109/ISCAS.2016.7527183. 

[131] M. C. Lee, W. L. Chiang, and C. J. Lin, “Fast matrix-vector multiplications for large-scale logistic 

regression on shared-memory systems,” Proc. - IEEE Int. Conf. Data Mining, ICDM, vol. 2016-

Janua, pp. 835–840, 2016, doi: 10.1109/ICDM.2015.75. 

[132] V. Sze, Y. H. Chen, J. Einer, A. Suleiman, and Z. Zhang, “Hardware for machine learning: 

Challenges and opportunities,” Proc. Cust. Integr. Circuits Conf., vol. 2017-April, 2017, doi: 

10.1109/CICC.2017.7993626. 

[133] M. Hu et al., “Dot-product engine for neuromorphic computing,” pp. 1–6, 2016, doi: 

10.1145/2897937.2898010. 

[134] H. Huang et al., "A 3D multi-layer CMOS-RRAM accelerator for neural network," 2016 IEEE 

International 3D Systems Integration Conference (3DIC), San Francisco, CA, 2016, pp. 1-5, doi: 

10.1109/3DIC.2016.7970014. 

[135] J. Gomez, I. Vourkas, A. Abusleme, G. C. Sirakoulis, and A. Rubio, “Voltage Divider for Self -

Limited Analog State Programing of Memristors,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 

67, no. 4, pp. 620–624, 2020, doi: 10.1109/TCSII.2019.2923716. 

[136] L. Xia et al., “Technological Exploration of RRAM Crossbar Array for Matrix-Vector 

Multiplication,” J. Comput. Sci. Technol., vol. 31, no. 1, pp. 3–19, 2016, doi: 10.1007/s11390-016-

1608-8. 

[137] M. Hu, H. Li, Y. Chen, Q. Wu, G. S. Rose, and R. W. Linderman, “Memristor crossbar-based 

neuromorphic computing system: A case study,” IEEE Trans. Neural Networks Learn. Syst., vol. 

25, no. 10, pp. 1864–1878, 2014, doi: 10.1109/TNNLS.2013.2296777. 

[138] M. Zhao, B. Gao, Y. Xi, F. Xu, H. Wu, and H. Qian, “Endurance and Retention Degradation of 



 

 74 

Intermediate Levels in Filamentary Analog RRAM,” IEEE J. Electron Devices Soc., vol. 7, pp. 

1239–1247, 2019, doi: 10.1109/JEDS.2019.2943017. 

[139] Y. Liao et al., “A Compact Model of Analog RRAM with Device and Array Nonideal Effects for 
Neuromorphic Systems,” IEEE Trans. Electron Devices, vol. 67, no. 4, pp. 1593–1599, 2020, doi: 

10.1109/TED.2020.2975314. 

[140] Y. Xiang et al., “Impacts of State Instability and Retention Failure of Filamentary Analog RRAM 
on the Performance of Deep Neural Network,” IEEE Trans. Electron Devices, vol. 66, no. 11, pp. 

4517–4522, 2019, doi: 10.1109/TED.2019.2931135. 

[141] E. A. Cartier et al., “Reliability Challenges with Materials for Analog Computing,” IEEE Int. Reliab. 

Phys. Symp. Proc., vol. 2019-March, pp. 1–10, 2019, doi: 10.1109/IRPS.2019.8720599. 

[142] H. Wu et al., “Reliability Perspective on Neuromorphic Computing Based on Analog RRAM,” IEEE 

Int. Reliab. Phys. Symp. Proc., vol. 2019-March, pp. 1–4, 2019, doi: 10.1109/IRPS.2019.8720609. 

[143] Y. Liu, B. Gao, M. Zhao, H. Wu, and H. Qian, “The impact of endurance degradation in analog 

RRAM for in-situ training,” Proc. Int. Symp. Phys. Fail. Anal. Integr. Circuits, IPFA, 2019, doi: 

10.1109/IPFA47161.2019.8984759. 

[144] W. Huangfu et al., “Computation-oriented fault-tolerance schemes for RRAM computing systems,” 

Proc. Asia South Pacific Des. Autom. Conf. ASP-DAC, pp. 794–799, 2017, doi: 
10.1109/ASPDAC.2017.7858421. 

 

[145] A. Hayakawa et al., “Resolving endurance and program time trade-off of 40nm TaOx-based 

ReRAM by Co-optimizing verify cycles, reset voltage and ECC strength,” 2017 IEEE 9th Int. Mem. 

Work. IMW 2017, vol. 4, pp. 2–5, 2017, doi: 10.1109/IMW.2017.7939101. 

[146] Z. Song et al., “ITT-RNA: Imperfection Tolerable Training for RRAM-Crossbar based Deep 

Neural-network Accelerator,” IEEE Trans. Comput. Des. Integr. Circuits Syst., vol. XXX, no. XXX, 

pp. 1–14, 2020, doi: 10.1109/TCAD.2020.2989373. 

[147]    E.Alpaydin and Fevzi. Alimoglu. (1998, July). Pen-Based Recognition of Handwritten Digits Data 

Set. . [Online]. Available: http://archive.ics.uci.edu/ml/datasets/Pen-

Based+Recognition+of+Handwritten+Digits 

[148]  Z. Sun, G. Pedretti, E. Ambrosi, A. Bricalli, W. Wang, and D. Ielmini, “Solving matrix equations in 

one step with cross-point resistive arrays,” Proc. Natl. Acad. Sci. U. S. A., vol. 116, no. 10, pp. 

4123–4128, 2019, doi: 10.1073/pnas.1815682116. 

[149]  Z. Sun, G. Pedretti, and D. Ielmini, “Fast solution of linear systems with analog resistive switching 
memory (RRAM),” Proc. 4th IEEE Int. Conf. Rebooting Comput. ICRC 2019, no. 648635, pp. 1–

5, 2019, doi: 10.1109/ICRC.2019.8914709. 

 

 


