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Abstract

Artificially engineered atoms, built using superconducting electrical circuits, have had a
broad impact on the field of quantum information and quantum computing. Based on the
Josephson effect, superconducting qubits have provided a robust platform for engineering
light-matter interactions at the single-photon level. The ability to precisely control and
manipulate single photons using superconducting qubits and cavities, a field now popularly
known as circuit quantum electrodynamics (circuit QED), has enabled new and novel
regimes in quantum physics, which previously remained inaccessible. For instance, the
coupling between individual photons and artificial atoms have been shown to reach the
ultrastrong and deep-strong regimes, a feat which is difficult to achieve with natural atoms.
The superconducting circuit platform is now a promising contender for building large-scale
quantum processors, attracting large investments from academic, industry and government
players.

This thesis uses superconducting circuits to engineer photon interactions in two separate
studies. The first is aimed at studying the physics of “giant” artificial-atoms. The second
study explores the route towards building a quantum heat engine using two parametrically-
coupled, superconducting microwave cavities. We review the theoretical ideas and concepts
which motivate our work, along with discussions of the design methodology, simulations,
fabrication, measurement setup and the experimental findings.

In the first study, we explore a giant artificial atom, formed from a transmon qubit,
which is coupled to propagating microwaves at multiple points along an open transmission
line. The multipoint coupling nature of the transmon allows its radiated field to interfere
with itself leading to some striking “giant” atom effects. For instance, we observe strong
frequency dependent couplings of the transmon’s transition levels to its electromagnetic
environment, a feature which is not observed with ordinary artificial atoms. We measure
large on/off ratios, as high as 380, for the coupling rate of the |0) — |1) transition. Further-
more, we show that we can enhance or suppress the coupling rate of the |1) —|2) transition
relative to the |0) — |1) transition, by more than a factor of 200. The relative modulation
of the coupling rates was exploited to engineer a metastable state in the giant transmon
and demonstrate electromagnetically-induced transparency (EIT), a typical signature of a
lambda system. Our results show that we can transform the ladder structure of an ordinary
transmon into a more interesting lambda system using a giant transmon, thereby paving
the way for exploring new possibilities to study three-level physics in a waveguide-QED
setting.

Extending giant atom physics to multiple giant atoms, we then explore a device with
two giant artificial atoms connected in a braided configuration to a transmission line. The
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braided topology of the qubits, offers an interesting regime where the qubits can interact
with each other in a decoherence-free environment, where the interaction is mediated by
virtual photons in the transmission line. We probe the resonant behavior of the qubits
at two different frequency bias points, where we observe qualitatively different scattering
behavior. Furthermore, when probing for the Autler-Townes Splitting (ATS), multiple
resonances are observed for both resonant and off-resonant cases instead of the familiar
doublet in the ATS spectroscopy. This comes as a surprise as the frequency-level spacings
in both qubits are nominally identical. We believe these features could be an indication
of a novel resonant interaction between the qubits facilitated by the braided topology. An
effort to understand this theoretically is underway.

For our second study, we explore a system with two parametrically-coupled supercon-
ducting resonators, which implements an optomechanical-like interaction in an all-electrical
network. The nonlinear nature of this interaction is mediated by a superconducting quan-
tum interference device (SQUID), where the current in one resonator couples to the photon
number in the other resonator. We propose to use this system to build a “photonic piston”
engine in the quantum regime. We motivate the feasibility of the proposal by reviewing key
theoretical results which demonstrate an Otto-cycle by appropriately driving the system
with noise. Our experimental findings demonstrate the crucial nonlinear coupling that is
required for the engine to work. We also show that we can increase the coupling strength
between the resonators depending on the chosen flux operating point.
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Chapter 1

Introduction

1.1 Waveguide quantum electrodynamics with giant
artificial atoms

Light-matter interaction (LMI) has been one of the most widely explored phenomena in
physics. In the microscopic limit, quantum-mechanical interactions can even be engineered
between individual photons and atoms. Over the last decades, we have seen many seminal
experiments where natural atoms are coupled to quantized electromagnetic fields in high-
finesse optical and microwave cavities, a field known as cavity quantum electrodynamics
(cavity QED) [I—1]. In more recent years, artificial atoms made using Josephson junc-
tions were coupled to superconducting circuits to demonstrate new regimes of light-matter
coupling in the microwave domain [5—10], a thriving field of research known as circuit QED.

The simplest theoretical treatments of LMI study the coupling of a two-level emitter,
e.g., an atom or qubit, to one or more quantized electromagnetic (EM) modes using a
series of approximations. The well-known Jaynes-Cummings model [I1], which treats the
coupling to a single EM mode, uses two key approximations. Firstly, the atom is treated
as an ideal dipole, which is a valid approximation when the emitter is much smaller than
the wavelength of light, as shown in Fig. 1.1(a). Secondly, the dynamics of the LMI are
studied under the rotating-wave approximation (RWA), which is applicable when the light-
matter coupling strength is still in the perturbative regime. This simplified treatment of
LMI has been successful in explaining many phenomena in quantum optics with excellent
agreement between theory and experiment [9]. In more complicated systems, where the
emitter is coupled to a continuum of electromagnetic modes, the dipole approximation and
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Figure 1.1: Small atom vs. a giant atom, coupled to an electromagnetic mode.

the RWA are still used with an additional, third assumption that the overall dynamics of
the continuum are Markovian. The validity of the Markovian approximation is tied both
to the small size of the emitter and the perturbative nature of the coupling.

Recent developments in microwave quantum optics using superconducting qubits cou-
pled to open transmission lines, a field dubbed waveguide QED, have enabled experiments
that demonstrate strong coupling of the qubit to the EM continuum [9,12—18]. The ability
to tightly confine and guide microwaves in these setups has opened up new avenues for
single-photon routing [19], photon shaping [20], vacuum-mode engineering [21], interac-
tions between distant qubits with collective decay effects [22], and observation of a large
collective Lamb shift [23]. Flux qubits have been shown [7, 5] to operate in the so-called
ultrastrong coupling regime [10], where the qubit’s coupling rate to the EM continuum
is comparable to its transition frequency, i.e., far beyond the perturbative regime. As
a further consequence of this ultrastrong coupling, the EM spectral density seen by the
emitter can no longer be approximated as frequency-independent, making the LMI a non-
Markovian process. More recently, non-Markovian phenomena have been explored in a
new setting where a transmon qubit is coupled to propagating phonons, in the form of
surface acoustic waves (SAWs) [21]. Due to the slow velocity of the waves, the ratio of the
size of the transmon to the wavelength of the SAW can be ~ 100 [25,20] [see Fig. 1.1(b)].
In this limit, the dipole approximation clearly breaks down and new “giant atom” effects
appear [27-30]. This includes scenarios where the qubit’s radiated field can interfere with
itself, creating a variety of non-Markovian behaviors [30-33]. For instance, nonexponential
decay of the qubit was recently observed in such a system [24].



In this thesis, we explore a recent theoretical proposal to realize a giant artificial atom
in a waveguide-QED system, where an otherwise conventional transmon qubit is coupled
at multiple points to propagating microwaves in a transmission line (TL) [27]. The TL
is suitably meandered with wavelength-scale distances between the coupling points. Even
though the physical size of the transmon is small when compared to the wavelength of
interest, the electric field at each coupling point in the TL is different. As a result, the
transmon cannot be treated as a simple dipole, where the multipoint-coupling feature
allows the emission amplitudes of the transmon to interfere with themselves, making it an
effective giant artificial atom. This interference results in strongly frequency-dependent
coupling of its many transitions, an effect that is not seen with an ordinary transmon [34].
Stronger modulation of the coupling strengths is made possible by increasing the number
of coupling points [27]. We present experimental results comparing two separate giant
transmons with different numbers of coupling points. We extract the coupling rates of the
|0) —|1) and |1) —|2) transitions of the giant transmon as a function of frequency, and show
that these can be strongly modulated. We further use this prototype system to engineer
the giant transmon into an effective lambda system with a metastable excited state. As a
benchmark of the system, we use it to demonstrate a phenomenon characteristic of lambda
systems, namely, electromagnetically induced transparency (EIT).

The dynamics of the giant artificial atom was also studied in the setting of multiple giant
atoms which are coupled to a TL [28]. The multi-point coupling nature was exploited to
connect the giant atoms in various configurations. In the case of the braided configuration,
these atoms were shown to interact in a decoherence-free environment mediated by virtual
photons in the TL, a regime of qubit operation which has not been widely explored. The
emergence of a decoherence-free space in a waveguide-QED architecture, where qubits
are otherwise strongly coupled to a continuum of modes, is an exciting regime to explore
photon mediated interactions between spatially separated qubits. This could pave way
for new applications in quantum communication [35] and quantum simulation [30]. We
explore a device with two giant artificial atoms connected in a braided configuration. Our
experimental findings seem to suggest novel physics at play when the qubits are resonant
with each other.

1.2 Towards quantum heat engines using supercon-
ducting resonators

Richard Feynman in his famous 1959 MIT talk “There’s plenty of room at the bottom” [37]
envisioned a scenario where heat engines could be built from single atoms. This insight of



Feynman has been one of the key driving forces in order to study thermodynamics in the
quantum regime. Do the classical limits of thermodynamics apply to the quantum world?
Can we build quantum heat engines which exceed the Carnot efficiency or does the efficiency
bound still hold in the quantum case? Unless the theory is tested by appropriately designed
experiments, these are open questions which still need answers. The field of quantum
thermodynamics has progressed rapidly with emerging new theoretical ideas using quantum
matter as a working substance [38—18] along with advances in experimental efforts [19-51].

Recently, O. Abah et al, [17] proposed a quantum heat engine using a single ion in a
specially designed RF trap. They use the coupled vibrational modes of the ion to implement
a quantum Otto cycle. Their proposal was realized in an experiment by Rofinagel et al [51],
making Feynman’s dream of building heat engines using single atoms a reality. Although
this was an impressive demonstration, the dynamics of the engine were still classical owing
to the dominant thermal noise.

Here, we propose to build a quantum heat engine analogous to the single-ion engine
with tools borrowed from circuit QED. Johansson et al worked out the theory of a coupled
resonator system using superconducting circuits, which implements a novel nonlinear cou-
pling using a superconducting quantum interference device (SQUID) [52]. We realize that
this system is a promising platform for implementing a “photonic-piston engine” with a
potential to demonstrate an Otto cycle in the quantum regime [53], an all-electrical system
to test some of the open questions in quantum thermodynamics. We explore the dynam-
ics of the coupled-resonator device, which implements an optomechanical-like interaction
Hamiltonian. We demonstrate the crucial nonlinear coupling between the resonators, a
basic requirement for realizing an Otto-cycle in such a device.

1.3 Thesis overview

The thesis is structured in the following way. Chapter 2 discusses the important theoret-
ical ideas on which the the experimental results are based. The ideas are developed using
well established concepts in circuit QED and microwave engineering, with key theoretical
results borrowed in certain places. We begin by introducing the Josephson relations, a pri-
mary driver for building a key component in circuit QED, the Josephson junction, the only
known nonlinear, lossless inductor. Two Josephson junctions in a closed superconducting
loop form a SQUID, a nonlinear, tunable and lossless inductor. We then introduce the
Cooper-pair box and its cousin, the transmon qubit, an artificial atom that is ubiquitous
in circuit QED. In order to couple the qubit to the external environment to perform useful
operations, microwave transmission lines and cavities are typically used in circuit QED.
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We discuss the relevant microwave theory keeping in mind the devices that are studied
in this thesis. A classical treatment of an artificial atom coupled to a transmission line
is then presented. The chapter ends with a discussion on giant artificial atoms and on
the implementation of a quantum heat engine with superconducting circuits. Chapter 3
discusses the design methodology and the simulations performed to operate the devices in
the right regime. Several variations were studied using commercially available electromag-
netic simulation packages. Attempts to explain the observed experimental signatures and
theoretical deviations are discussed by incorporating changes in the simulation parameters.
Chapter 4 introduces the fabrication process flow for making the devices discussed in this
thesis. Critical steps during the fabrication process are reviewed. Also discussed are the
various challenges and aspects of low temperature measurements. The fridge setup used in
the measurements is also presented. Chapter 5 presents our experimental results for the
single giant transmon devices where we demonstrate strong frequency dependent couplings
of the transmon’s transition levels. We engineer the giant transmon as a lambda system
and demonstrate electromagnetically-induced transparency (EIT). Chapter 6 discusses
the experimental results for a device with two giant transmons which are connected in a
braided configuration. Chapter 7 presents our experimental findings of a device which
implements two parametrically coupled resonators with an optomechanical-like interaction
Hamiltonian. We demonstrate the nonlinear interaction in the device, which is crucial for
exploring the device as a quantum heat engine. In the end, Chapter 8 summarises the
overall conclusions from the work presented in this thesis.



Chapter 2

Background and Theory

This chapter introduces the theoretical ideas which form the basis of the physics explored
in this thesis. At the heart of our devices is the Josephson junction, which provides
the necessary nonlinearity in the system, making it possible to build artificial atoms and
tunable microwave cavities. We will begin the discussion by introducing the Josephson
equations and the superconducting quantum interference device (SQUID). Next, we will
explore how a SQUID can be used in a macroscopic electrical circuit to mimic an artificial
atom. Following standard textbook ideas, we will examine the properties of a microwave
transmission line (TL), a key component for building microwave cavities (resonators). An
artificial atom embedded in a microwave cavity or a TL is one of the most successful
candidates for studying light-matter interaction (LMI) in the microwave regime, a growing
field of research known as circuit QED. We will review this interaction of an artificial atom
coupled to a TL, a prototype example of a typical waveguide-QED setup. We will then
highlight the central results of giant artificial atoms coupled to a TL [27,28]. Towards the
end, we will explore a circuit that implements longitudinal coupling (optomechanical-like
interaction) between two microwave cavities [52]. We will see how this setup can be used
as a candidate prototype for building a quantum heat engine [52].

2.1 Superconductivity

One of the hallmarks of physics in the last century was the discovery of superconductivity by
Heike Kamerlingh Onnes, a Dutch physicist, in 1911 [54]. He observed that the resistance
of mercury dropped significantly at 4.2 K upon cooling it with liquid helium. This newly
discovered state of matter, which he called the superconducting state, received widespread



attention, which ultimately led him to win a Nobel prize in physics in the year 1913.
Unlike many experimental discoveries in physics, which are a consequence of developed
theoretical models, the microscopic and phenomenological theories of superconductivity
came long after its discovery [55-57].

The transition from normal metal to the superconducting state happens at the critical
temperature, T,., which varies for different metals. Below this temperature, the electrons
in the superconductor pair up to form Cooper pairs. The attractive force that causes this
pairing is mediated by the electron interaction with the lattice phonons. The microscopic
theory of superconductivity, which explains the nature of the formation of Cooper pairs, is
explained by the BCS-theory [55,56]. Under normal circumstances, the fermionic nature
of electrons allows a spin-up electron to pair with a spin-down electron thereby obeying
the Pauli’s exclusion principle. However, in a superconductor, the bosonic Cooper pairs,
condense into a single quantum wavefunction ¥ = ,/n.e? where 6 is the superconducting
phase and n, is the density of Cooper pairs. The Cooper pairs flow along the supercon-
ductor in unison, maintaining a constant phase d between each pair. The bound state
energy of a Cooper pair depends on the superconducting gap, 2A, which is the minimum
energy required to break them into quasiparticles. Cooper pairs flow without scattering
with the lattice phonons, which results in zero resistance at DC. This also explains why
superconductors are bad conductors of heat.

Another key feature of superconductivity that distinguishes it from a normal metal is
its response to externally applied magnetic fields. A type-1 superconductor, like aluminum,
expels magnetic fields from its bulk when it undergoes a superconducting transition. This
principle of perfect diamagnetism is explained by the Meissner effect [58]. We will see later
on how this effect can be used to our advantage for building magnetic shields useful in
superconducting experiments.

2.1.1 Josephson effect

In this section, we will introduce the seminal work of Brian Josephson who investigated
the mechanism of tunnelling of Cooper pairs across two superconducting electrodes with
a tunnelling barrier between them [59] as shown in Fig. 2.1(a). The two effects he pre-
dicted, the DC and the AC Josephson effect, remain as one of the greatest successes of the
applicability of superconductivity in present day life. The junction formed by the barrier
between the electrodes, popularly known as the Josephson junction (JJ), is ubiquitous in
the field of circuit-QED. The JJ used in this thesis is fabricated using aluminum electrodes
with a thin barrier of aluminum oxide between them.
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Figure 2.1: (a) Illustration of a Josephson junction formed by a tunnel barrier sandwiched
between two superconducting electrodes. Also shown is its equivalent circuit. (b) A pair
of Josephson junctions connected in a loop to form a SQUID.

The current, I, across a JJ depends on the phase difference of the Cooper pair wave-
functions, 6 = 0; — 5, across the barrier as

I =1.siné, (2.1)

where [, is the critical current of the junction which is the maximum current that the
junction can withstand before it goes to the normal state. Typically, I. is controlled by
the thickness of the tunnelling barrier. The nonlinear current-phase relationship given
by Eq. (2.1) is called the DC Josephson effect since a DC current can flow through the
junction without a voltage drop across it. A time-varying phase difference, §(t), gives rise
to a voltage, V, across the junction as

_%yds

= 2.2
2 dt’ (2:2)

where &y = h/(2e) is the flux quantum. The voltage-phase relation given by Eq. (2.2) is
referred to as the AC Josephson effect, as applying a DC voltage across the junction gives
rise to an AC current through it. Using Eqgs. (2.1) and (2.2), we can derive the expression
for the Josephson inductance, L; as

B 1

L;=— .
4 27 1. cosd

(2.3)

It is evident from Eq. (2.3) that L; is nonlinear due to its dependence on §. The physi-
cal geometry of the JJ also gives rise to a parallel capacitance, C';, which depends on the



junction area and the oxide dielectric. Due to the small size of the junction, the plasma fre-
quency f; = 1/(2m/L;C}) is several tens of GHz. Since most superconducting microwave
circuits that employ JJs operate at much lower frequencies, typically 4-12 GHz, the JJ
behaves as a nonlinear, nondissipative inductor in this frequency regime. To calculate the
characteristic energy scale for the junction, typically known as the Josephson energy FE,
consider the work done, AFE on the junction when the junction phase § changes over time.
This can be calculated using the Josephson relations as,

AFE = /Ith = — (%) I.cosd = —FEjcoso,

™

where E; = (®y/27)1..

2.1.2 DC SQUID

We now introduce the DC superconducting quantum interference device (SQUID), hence-
forth referred to as SQUID. A SQUID is a closed superconducting loop interrupted by
two tunnel barriers in parallel as shown in Fig. 2.1(b). First invented by Ford Research
Labs [00], the present day SQUID is one of the most sensitive magnetic field detectors that
can be built.

The inductance of the SQUID depends on the total flux ® threading its loop as shown
in Fig. 2.1(b). The gauge-invariant phase difference across the junctions, §; and ds, also
depends on ®. Hence, in order to derive the SQUID equations, we have to consider the
phase contributions of the junctions and the superconductor around the SQUID loop in
response to ® following the notation shown in Fig. 2.1(b). This can be written as,

f V@dl = (eb - 60,) + (60 - eb) + (9d - 9@) + (9(1 - ed) . (24)
c
We can now calculate each of these phase contributions by using the definition for the

gauge-invariant phase, d, for the junctions and the supercurrent equation for the elec-
trodes [01]. For the junctions we have,

o Y.
0, —0,=—-06, — — Adl.
b 1 o, /.
o [
0; — 0. =06 — — Adl.
¢ 2 CI)O c



where A is the electromagnetic vector potential. For the electrode sections we use the
supercurrent equation [(1] which relates the supercurrent, J;, together with A and the
phase of the Cooper pairs, 6, as,

C C_’ 2 C_‘
ec—ebz/vedzz—A/ Jsdz——”/Adz.
b b Dy J

a a . 2 a -
0, — 0y — / Vodl = —A/ Jdl— =2 | Al
d d Dy Jy

By considering the contour of integration within the bulk of the superconductor where
Js = 0 and adding the above four equations gives us the total phase difference around the

SQUID loop as,

2 .
f VOdl = 6y — 6, — (; Adl.

0oJo
To preserve the continuity of phase around the superconducting loop, the total phase must
be an integer multiple of 2. The previous equation now reads,

(52 51 =2mn + —®. (25)

From Fig. 2.1(b), the total current through the SQUID is now,
I = 1071 sin 51 + Ic’g sin (52.

By writing 6 = (d; + d2)/2, the above equation can be re-written as,

I=1.sin|d—m n+3 + I.osin( 6+ n—i—g )
’ D ’ D

Consider the case when n = 0 which simplifies the above equation to,

P (ICQ _Ic 1) 7'['@)
I=(1I.1+1. sin § cos — + —————= cos d sin —
(e 2) ( Dy (Lea+1.2) O
Rewriting the sum of critical currents as 1.1+ 1.2 = I. and the difference as I.o— 1.1 = Al
we have,

o Al o
I=1, (smécos 7(;—0 + I cos 6 sin 7(;—0) (2.6)

Differentiating Eq. (2.6) with respect to time, we obtain an expression for the SQUID
inductance as,

Lmax
foa = cosd cos 22 — Ale i §sin 22
o 1. Do
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where, the linear part of the SQUID’s inductance is written as L™ = &q/(271.). For
a symmetric SQUID, the junctions are identical and so Al. = 0 and I. — 2[.. We
immediately can then see the similarity with that of a single junction as derived in Eq. (2.3)
with the exception of the external flux term. Rewriting Ly, in terms of I, we get,

max
Ly = ——t2
a 2 nd 12
COS a — E

Simplifying the above expression in the limit of I < I., we obtain the inductance for a
symmetric SQUID as,

Lo = 29— (2.7)

The SQUID can thus be considered as a flux tunable inductor which forms the crucial
building block for all devices presented in this thesis. The tunable Josephson energy, E ;g
is given by,

max Tr@
EJ,sq = EJ,sq COS (}TO ) (28)

where B2 = (&g /27)(21.).

Jisq T
The linear part of the inductance for both single junction and the SQUID depends on
the critical current. As mentioned earlier, the critical current I. for the single junction
or the SQUID depends on the thickness of the tunnel barrier. When the junction is
fabricated, its room temperature normal state resistance R, has a direct relation with its
critical current. This is given by the Ambegaokar-Baratoff relation [(2],

A
I.= ——, 2.9
2¢eR, (2.9)

where A = 1.76kgT, and kg is the Boltzmann constant. For thin film Al;, A ~ 210 peV.
By calibrating the oxidation conditions of Al during fabrication, we can target a design
specific R,, which will reflect in I, when the devices are measured.

2.2 Artificial atom: Cooper-pair box

In the previous section, we derived the equation for the Josephson inductance for a single
junction and the SQUID using the Josephson relations. In this section, we describe how

11
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Figure 2.2: Equivalent circuit diagram for (a) the Cooper-pair box and (b) the transmon.

a JJ can be configured to be used an an artificial atom by utilizing the nonlinearity that
it inherently possess. We will introduce the Hamiltonian of such a circuit based on the
theoretical work that is presented in [34]. By diagonalizing the Hamiltonian in the chosen
basis, we show the eigenenergies for the multiple transitions of the artificial atom thus
formed.

Superconducting qubits can be constructed in multiple ways depending on the mech-
anism of control of the qubit states. The most popular being the charge qubit, the flux

qubit and the phase qubit. A review of these qubits can be found in [9]. Here, we focus on
the charge qubit which is based on the Cooper-pair box (CPB) [63-65] and an extension
of the CPB, the transmon qubit [34]. The artificial atoms studied in this thesis employ

the transmon design.

A Cooper-pair box is an electrical circuit that consists of a superconducting island
which connects to a grounded superconducting reservoir via a JJ as shown in Fig. 2.2(a).
Cooper pairs can tunnel to and from the island into the reservoir which is controlled by
two dominant energy scales, the charging energy FE. and the Josephson energy F;. The
total capacitance of the island, Cx = C, + C; determines E, = (2¢)?/2Cy, which is the
amount of energy needed to transfer a Cooper pair into the island. The gate voltage V,
determines the offset gate charge n, = CyV,/2e, in the reduced form, on the island which
can be modified by V;. The Josephson energy E; (defined earlier for a JJ) determines the
coupling of the Cooper pairs between the island and the reservoir. To have a tunable E;,
the single junction shown in Fig. 2.2(a), can be replaced by a SQUID where E;4, can be
tuned by the external flux ®.

We now introduce the Hamiltonian of the Cooper-pair box in the charge (number) basis
following the discussion presented in [34,65]. If the operator n indicates the number of
excess Cooper pairs in the island, the total Hamiltonian including the contributions from

12
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Figure 2.3: Energy spectrum vs. the offset gate charge for the Cooper-pair box when (a)
EJ/EC = 0.1 and (b) EJ/EC = 10.

E. and E; can be written as,

o

Frops =45, 3" (= n,* ) (nl = =2 37 (n ) ul 4 ) n 1. (210

n=—oo n=—oo

The discrete energy spectrum FEj of state |k) can be written in terms of F[CPB, which is
continuous in ng, as,

Hepg |k) = Ej |k) (2.11)

where, |k) are the eigenstates of the CPB and Ej, the eigenenergies, which can be solved
by diagonalizing Hepp in a truncated space for n. The CPB operates in a regime where
E. > FE; where the qubit state is mostly governed by the charging energy of the gate
capacitance. We plot the energy spectrum for the first three levels of the CPB in Fig. 2.3(a)
for E;/E. = 0.1. The transition energy of the different levels can be tuned by the offset
charge n,. The sweet spot for operating the CPB is at odd-integer multiples of n, = 0.5.
At these bias points, the ground state and the first excited state of the CPB hybridize to
form an avoided-level crossing where the separation depends on E;. Since the difference
in energies between the first and the second excited state is much greater than that of the
ground and the first excited state, the lowest two energy levels can be selectively addressed
without populating the higher levels. This difference in energies is frequently referred to
as the anharmonicity. The CPB operating at the sweet spot in the low E;/FE, regime does
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well as a two-level system due to its large anharmonicity. However, the price one pays
is at the cost of charge noise as small changes in ny can result in large qubit frequency
fluctuations.

2.2.1 Transmon regime

To overcome sensitivity of the CPB to charge noise, a large shunt capacitance Ceg is
added across the junction which increases the overall capacitance Cy of the island, i.e,
Cy, = Cy + Cj + Ce as shown in Fig. 2.2(b). The single junction is replaced by a SQUID
which allows for the tuning of E;4,. The reduction of E. makes the ratio £;/E. large. The
CPB operating in the regime where E; > FE. is more popularly known as the transmon
qubit [31]. The large E,;/E. causes an exponential suppression in the charge dispersion
resulting in an energy profile which is more flat [34]. This helps to reduce the sensitivity
of the transmon to charge noise with a wide operating range for n,. However, this comes
at a price of reduced anharmonicity between the energy levels. The |0) — |1) transition
frequency, wyp can be written as [31],

W10 = ( SEJ’SqEC — EC)/h (212)
The anharmonicity between the first two transitions is given by [31],

|(,U21 — W10| = Ec/h (213)

2.3 Microwave transmission-line theory

The goal of this section is to introduce the theory of a microwave TL as a starting point
for analyzing circuits that are studied in this thesis. Typically, the characteristic length of
a TL is a significant fraction of the wavelength or even several wavelengths. As a result,
the voltage V(z,t) and the current /(z,t) in a TL will vary in both magnitude and phase
along its length.

To study this behavior we use the transmission line theory, where the TL is modelled
as a two-wire conductor in order to sustain a transverse electromagnetic mode (TEM).
Following the standard procedure prescribed in [66], we can derive the equations for V (z, t)
and [ (z,t) by considering the lumped-element model for an infinitesimal section Ax of the
TL as shown in Fig. 2.4, where Ry is the series resistance for both conductors, Lg is the
self-inductance between the conductors, Go is the conductance between the conductors

14
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Figure 2.4: Lumped-element equivalent circuit model of a transmission line (TL).

facilitated by the dielectric and Cj is the capacitance between the conductors. All these
parameters are defined per unit length of the two conductors. The currents and voltages
are defined at the input and the output of the conductors as shown in Fig. 2.4. Using
Kirchhoft’s laws, we can write,

dl(x,t)

V(z+ Ax,t) — V(z,t) = — (LOAx + ROAx](x,t)> .

dV(xz + Az, t)
dt

I(x + Az, t) — I(z,t) = — (C’OA:U + GoAzV (x + Az, t)) :

Dividing the above equations with Az and taking the limit, Az — 0, we can obtain the
Telegrapher equations as,

W = — (Lod[ilxt’ J + Ro“%ﬂ) -
s (G0 )

For sinusoidal time-varying voltage and current phasors, at steady state, the Telegrapher
equations reduces to the wave equations which can be written as,

d*V (x)

e YV (z)=0
d;”[ (@) (2.14)
T — V1@ =0

where v = a + i = \/(Ro + iwL)(Go + iwCy) is the complex propagation constant, « is
the attenuation constant and /3 is the phase constant of the TL. The solutions for Eq. (2.14)
can be written in terms of forward (denoted by superscript +) and backward (denoted by

15



superscript —) propagating voltages and currents as,

Vizg)=VTe ™+ V- e®

2.15
I(z) =T e "™ +1 ¢e” (2.15)

where [T = V*¥/Zy and I~ = =V~ /Zy and Zy = +/(Ro +iwlg)/(Go +iwCp) is the
characteristic impedance of the TL. Using Eq. (2.15), we can write the expressions for
V(x,t) = Re[V(x)e™'] and I(z,t) = Re[l(x)e™!] as,

V(x,t) = V*cos(wt — fx)e * + V™~ cos(wt + Bx)e*”

. _ 2.16
I(x,t) = ‘;—O cos(wt — fx + ¢*)e " — ‘;—0 cos(wt + Pz + ¢~ )e™” (2.16)

where, ¢* is the phase angle of the complex current I* with respect to V*.

Coplanar Waveguide (CPW)

For the devices that are presented in this thesis, the architecture of choice to implement
a TL is the finite-ground coplanar waveguide (CPW) [67], which is shown pictorially in
Fig. 2.5. It consists of a central conductor, the signal line of width W and ground plane
conductors on either side separated by a gap S from the signal line. The metal is pat-
terned on the substrate of height H which has a relative dielectric constant €,.. The CPW
architecture has many advantages over other conventional TL architectures. The circuit
is planar and can be fabricated using standard micro fabrication techniques with relative
ease. The characteristic impedance Z§FW of the CPW TL depends solely on the circuit
geometry and is given by [(7],

30m K (k)
ZEPW — 0 2.17
0 /_Eeff K(ko) ( )

where K (ko) and K(kj) are the complete elliptic integrals of the first kind where ky =
W/(W +28) and k) = /1 — k. The inductance L, and capacitance Cy per unit unit
length of the CPW TL is given by [(7],

I, — Mo K(k)
4 K(ko) (2.18)
Co = 4€0€eﬂ‘ K(kO)
K (ko)



Figure 2.5: Coplanar waveguide architecture of a transmission line formed by a central
conductor of width W, equally separated from ground planes on both sides by a gap S, on
top of a substrate of height H.

where, 19 and €y are the permeability and permittivity of free space satisfying ¢ = 1/, /1o
and €. = (1+4¢,)/2. For a typical superconducting circuit, the conductors are formed using
a superconducting metal with thickness ¢ < W, S and the substrate height H > W, S.
Due to the substrate dielectric, the phase velocity of the waves in a CPW TL, v = ¢/e.g =

1/V/LoCo.

2.3.1 Lossless transmission line terminated by a load

As mentioned before, the advantage of working with superconducting circuits is that the
TL can be approximated to be lossless. We will now simply the equations presented earlier
under the lossless approximation. For a lossless TL, Ry = Gy = 0 and hence Zy = /Lo /Cp.
The complex propagation constant v = i and f = w/v = wy/LeCy and the wavelength
A = 27v/w. We will now consider a lossless TL which is terminated by an arbitrary load
impedance Zj, as shown in Fig. 2.6.

Using Eq. (2.15), Z, can be written as,

By defining the reflection coefficient I' = V= /V*| the above equations can be re-written

as,
L7

- & = 2.19
Z1 + Zy ( )
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Figure 2.6: A lossless transmission line terminated by an arbitrary load impedance.

Using Eqgs. (2.15) and (2.19) , we can write an expression for the input impedance Z;, of
the TL as seen from a point x = —[ into the direction of the load as,

V+€i,6’l + Fv-i-e—i,@l
Zi_‘(v+am—¢w~e4M) 0

Simplifying the above expression, we obtain,

Z1, + 12y tan [l
Zin = : Z 2.20
<ZO+ZZLtan6l 0 (2.20)

Eq. (2.20) forms the starting point for deriving equations for TL resonators which are
discussed in this thesis.

2.3.2 Capacitively coupled )\/4 (quarter-wave) resonator

Microwave resonators can be constructed in a variety of ways [66]. Here, we will focus
on TL-based resonators with specific boundary conditions which behave as resonators. In
particular, we consider a lossless TL of a finite length [ which is short-circuited to ground on
one end and an open-circuit boundary on the other end. The grounded boundary condition
implements a voltage-node and the open-circuit condition creates a voltage-antinode. This
will result in standing waves corresponding to a wavelength A = 4l/n, where n is an
odd integer which represents the mode number. The circuit will resonate at frequencies
fn = nv/4l. For our purposes, we are interested only in the fundamental mode. The circuit
is shown in Fig. 2.7(a).

We begin by considering the input impedance of a shorted TL of length [ = A/4 without
the effect of the coupling capacitor C.. Using Eq. (2.20) we can write this down as,

ZM* = j Zy tan (B1) . (2.21)

in
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We can now look at the behavior of this circuit near its resonance frequency by writing Sl
as,

51— wol N Awl

Up Up

where, wy is the fundamental resonance frequency for the A/4 resonator and Aw = w — wy
is the detuning from wy. Using the fact that [ = A\/4 and v = (wp\)/27, we can reduce
Eq.(2.21) to,

A4 T iQZOWO (2 22)
T rAw '
Consider the input impedance of a parallel lumped-element LC circuit near its resonance

frequency which can be derived as,

Z

in

—J
zLC _ ) 2.2
in = SEAL (2.23)

Comparing Eq. (2.22) and Eq. (2.23), one can see the similarity in behavior of the short

circuited A/4 resonator as a parallel LC' circuit near wy with the following lumped param-

eters:
4Z0 ™
L=— ;

_ (2.24)
TTWo 4200.10

For the case when a # 0, it can be shown that the loss can be lumped into the parallel
resistor R = Zy/(al) [60].

The coupling capacitor C, couples the /4 resonator to the external environment via
a feedline of impedance Z, as shown in Fig. 2.7(a) as well as in its equivalent lumped-
element model in Fig. 2.7(b). The task now is to calculate the overall impedance Z 4 of
the resonator in presence of C,.. This is done by transforming the series circuit formed
by the elements Zy and C. into an effective parallel circuit comprising of Z) and C” (see
Fig. 2.7(c)) and equating the real and imaginary parts of the series and parallel circuit
respectively as,
A 14 w2C?Z4?
T 1wz W21 707
The above equations can be further simplified by making the quality factors of the series
and parallel circuit to be the same, i,e, 1/(wC.Zy) = wC’Zj. This is done to ensure that
the series circuit behavior is the same as the transformed parallel circuit when connected
to an external resonant circuit. With this, Eq. (2.25) can be further simplified to give,

Zo L O, = (2.25)

1+ w20c2Z02 . O/ Cc

7! = gy e 20 S
0 20 20272 ’ ¢+ w202 7,2

(2.26)
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Figure 2.7: (a) Model of a capacitively-coupled quarter-wave resonator. (b) Equivalent
circuit of the model shown in (a) where the shorted TL is replaced by a parallel LC circuit.
(¢) Redrawing the circuit in (b) after a series to parallel circuit transformation.

The circuit representation in Fig. 2.7(c), offers a simplified platform to extract the
internal, Q;., and external, QQ.y, quality factors of the resonant circuit coupled to its
environment. The quality factor is a measure of loss in the circuit. For superconducting
resonators, the internal loss in the circuit, typically occurs due to dielectric loss or due to
two level systems (TLS) among many others [68,69]. This internal loss, although negligible,
can then be lumped into R. Resonators with Qs > 1,000,000 have been demonstrated
using superconducting circuits using improved fabrication techniques [70]. Another channel
of loss is represented by the resonator’s coupling to its environment which in Fig. 2.7(c)
is due to the transformed Z|. By varying C., we can control the amount of energy that
can be injected into the resonator which also sets the rate at which energy leaks out of the
system. The total loss is then set by Q. which can be written as,

1 1 1
= + 2.27
Qtot Qint Qext ( )
Using the expressions for quality factor for parallel RLC circuits from [66], Qiny and Qext
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Figure 2.8: (a) Magnitude and (b) phase of the reflection coefficient for a capacitively-
coupled quarterwave resonator in the under-coupled, critically-coupled and over-coupled
regimes.

for the circuit shown in Fig. 2.7(c) can be worked out as,

c
ot = woR | C e
@ine = o ( +1+wgcgzg>
1

22 r72
a2z, O+ i) +C)

(2.28)
Qext =

where, wy = 1/4/L(C + C"). Under experimental conditions, (wyC.Zy)* < 1 and so the

above expressions for Qi and Qe reduce to,

C+C.

—_— 2.29
WOOCQZO ( )

Qint - WOR<C + Oc) ; Qext —
Since all the elements in Fig. 2.7(c) are in parallel, we can now write an expression for
admittance Yy, = 1/Zy4 as,

1 1
— y / .
f>\/4——R+—Z L+ZW(C+CC)

After some algebraic manipulations, the impedance of the A/4 resonator can be written as,
1 -1
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The reflection coefficient I'y /4 of the resonator with respect to Z; can be calculated using,

Zxja — Z

Fyy=-—"——.
A/4 Zop t 2

From the definitions of Qin; and Qex given by Eq. (2.29), a simplified equation for I'y /4
can be evaluated as,

T 1 2&
Dyyg = St Qim0 (2.31)
Qext + Qint + ZQW_O

The total quality factor of the circuit, Q., depends on the participation of Qe and Qiu.
Depending on the value of C,, the resonator can be either undercoupled (Qor ~ Qint),
critically coupled (Qext = Qint) or overcoupled (Qior ~ Qext). Typically, resonators are
designed to be in the over-coupled regime of operation, as the total loss mostly depends on
the coupling to the environment which is under the control of the experimenter. Figure 2.8
shows the magnitude, ’F A /4’, and phase, ZI'y/, using Eq. (2.31) for three different coupling
regimes at a fixed Qi and varying (exs-

2.3.3 Frequency tunable )\/4 resonator

The previous section introduced the basic operation of a short-circuited A/4 cavity. The
equations were derived with the load impedance Z; = 0. In this section, we present a
frequency tunable \/4 resonator for a non-zero Z; which is introduced by the impedance
of a SQUID. For a symmetric-SQUID terminated \/4 resonator, Z; = Z, is modified by

]C:' Z()sﬁ
1

— Y

sq

|
1
-1 [=1/4 0

Figure 2.9: Model of a capacitively-coupled, SQUID terminated quarter-wave resonator
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the flux-tunable inductance Ly, of the SQUID (see Eq. (2.7)) as,

P
2m(21.)

Zsq = wlsqg = w

(2.32)

s
COS ‘}TO

where, I. is the maximum critical current of each junction. From Fig. 2.9, the total
impedance, Zi‘}4, of a lossless TL of length [ = A/4 and characteristic impedance Zj,
coupled to its environment by a coupling capacitor C. on one end and terminated by a
SQUID on the other is given by,

1 Zsq + 12y tan Bl
78 = — 4 7,=-4 2.33
M w0, * OZO + 125y tan Bl ( )
The reflection coefficient Ff\(} , can then be written as,
Z4 —Z
s, = A 0 (2.34)

VTS 2o

We can solve Eq. (2.34) numerically by choosing appropriate values for C., I. and [. The
value of Zy = 50 (2, unless specified otherwise. Figure 2.10 shows the frequency tunability
of an extremely overcoupled \/4 resonator as a function of ®/®g, a design that is exper-
imentally motivated which is discussed in Chapter 7. The color represents the phase of
the reflection coefficient, 4Fi‘>4. To obtain the plot in Fig. 2.10, we use I. = 0.325 uA,
[ =3.75 mm, C. = 150 fF and Z, = 50 Q.

2.3.4 Capacitively-coupled \/2 resonator

In this section, we present a simple analysis for a two port network which comprises a TL
of length [ = A\/2, coupled to its environment using input and output coupling capacitors
C. as shown in Fig. 2.11(a). The circuit thus formed is a half-wave resonator which is
another class of TL based resonators discussed in this thesis. Two-port networks, such as
the circuit shown in Fig. 2.11(a), can be analyzed using the transmission (ABCD) matrix
method [66]. Each component of the circuit is represented by a two-port ABCD matrix
and when multiple components are cascaded together, the ABCD matrix of the full circuit
is obtained by simply multiplying the individual matrices.

In the circuit shown in Fig. 2.11(a), the three components correspond to the input and
output coupling capacitors together with the TL line of length \/2. In general, the ABCD
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Figure 2.10: Frequency tunability of a capacitively-coupled, SQUID terminated \/4 res-
onator where the color shows él‘i(} 4 for different flux bias conditions.

matrix M for a two-port network is written as,

¥

C D
where the elements of the matrix correspond to A, B, C and D. Depending on the compo-

nent, the matrix elements differ. The ABCD matrices for a capacitor C, and the TL can
be written as [60],

1 - cos Bl iZysin Bl
_ iwCe . — .
Me. = [0 1 ] ’ M LLO sin 8l cos Sl (2.35)

The overall matrix M), = Mc,.Mr1,.Mc, can be evaluated which gives us the new matrix
elements A, B, C' and D for the capacitively-coupled A\/2 resonator. Using the ABCD
parameters, the S-parameters can be calculated using the conversion table given in [66].
The transmission coefficient, or Sy, can be written down as,

2

-
A A+%+C%+D

(2.36)

By numerically solving for the different matrix elements using appropriate values for [ =
A/2 and C., we can obtain Sy;. Figure 2.11(b) shows the |Ss;| obtained using [ = 178 mm
and C, = 130 fF, both of which are experimentally motivated. As expected, we see the
fundamental mode of the \/2 resonator at fy/, = 329 MHz.
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Figure 2.11: (a) Model of a capacitively-coupled lossless A/2 resonator. (b) |Sa;| calculated
numerically using the ABCD matrix method.

The actual implementation of the A/2 resonator in this thesis follows a novel stepped-
impedance design of the TL which is motivated and discussed in Chapter 3. The result
shown in Fig. 2.11(b) assumes that Z, = 50 Q for the entire resonator’s length. However,
we note that the A BC'D matrix method can be adopted to simulate the stepped-impedance
design of the TL relatively easily.

2.4 Artificial atom coupled to a transmission line

We now introduce a transmon which is capacitively coupled to a TL. The network is shown
in Fig. 2.12(a), where the transmon is replaced by its equivalent circuit, which is described
earlier. A simplified version of this circuit showing the relevant impedances is shown in
Fig. 2.12(b). This circuit forms the basis of many experimental studies where the qubit is
coupled to a continuum of vacuum modes of the TL [14,16,17,19,21]. To analyze such a
circuit, we approximate the transmon qubit as a classical harmonic oscillator. Although
a harmonic oscillator has infinite, equally-spaced energy levels, it can be treated as an
effective two-level system under the approximation that the incident field in the TL is
weak enough to only excite the |0) — |1) transition of the qubit.

2.4.1 Classical scattering model

At the coupling point, the characteristic impedance Zy of the TL is interrupted by the
transmon’s impedance, which causes the incoming field to scatter resulting in reflection.
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Figure 2.12: (a) Equivalent circuit of a transmon qubit capacitively coupled to a TL. (b)
Rewriting the circuit in (a) in terms of the transmon impedance.

Following the procedure outlined in [71], we are interested in deriving the reflection coeffi-
cient, r, and the transmission coefficient, ¢, of the two-port network shown in Fig. 2.12(b).
The transmon impedance, Z;, is given by,

1 1\
Zr = ) C’e :
’ iwC, * (zw i ZwLJ)

The impedance Z’ seen from the left of the coupling point as shown in Fig. 2.12(b) can be
written as,

r_ ZtrZO
Ztr + ZO
Using the above impedances, r can be calculated as,
A Z() . OJCgZO(l — LJCefwa)

. _ . (2.37)
2"+ 20 w0, Zy(1 — LyCag?) + 12 (1 - 57)
0

Near the resonance frequency wy = 1/4/L;(C, + Ceg), we can write w = wy + dw. After
some algebraic manipulations, » can be approximated near wy as,

-1
idw

14+ —
+F

(2.38)

where I' = wjC? Zy/ (4(Cy + Cegr)) is the relation rate of the qubit into the TL. Using the
ABCD matrix for a shunt impedance across a TL (see Fig. 2.12(a)), it can be shown that
t =1+r [66]. Figure 2.13 shows |r| and |¢| as a function of w for Cy = 10 {F, Ceg = 30 {F,
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Figure 2.13: Magnitude of reflection |r| and transmission coefficient |¢| for a transmon
coupled to a transmission line using a classical model

L; =18 nH and Z, = 50 €. Similar results (not shown here) were obtained by using the
ABCD matrix method to obtain the S11 and S21 scattering parameters for the network
shown in Fig. 2.12(b).

The quantum model for an artificial atom coupled to 1D vacuum can been derived
using a master equation solution and is discussed in [13,71]. The transmission coefficient
t for the |0) — |1) transition can be written as,

1— iéwp/%O

) , (2.39)
1+ (dwp/v10)” + 92/ (T'10710)

tzl—’l“()

where dw,, is the probe frequency detuning from wyg, I'y is the dephasing rate (sum of
pure dephasing and non-radiative decay), v10 = I'10/2 4+ I'y is the total decoherence rate,
ro = I'o/270, and €, is the probe Rabi frequency which is proportional to the probe
amplitude.

2.5 Giant artificial atoms

The transmon qubit, discussed earlier, has been very successful in its applicability in cir-
cuit QED, paving the way for many seminal demonstrations of light-matter interactions
and quantum computation protocols [9]. Its versatility so far has been limited by the lad-
der structure of its transition levels which imposes a strict condition on their relaxation
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(coupling) rates [72], i.e,
FnJan = (n + 1>F170, (240)

where, I'; ; is the relaxation rate of the |i) —|j) transition. As a result, the relaxation rates of
its many transitions are fixed by design irrespective of the transmon’s operating frequency.
To circumvent this limitation, a new design was first proposed by Kockum et al [27], where
an ordinary transmon qubit can be engineered to behave as a giant artificial atom by
coupling the transmon to propagating photons of a 1D TL at multiple points, which are
spatially separated by an order of wavelength A\. As the photons travel, they pick up a
phase ¢ between the coupling points which causes the emission/absorption amplitudes of
the giant transmon to interfere, resulting in a frequency-dependent coupling of its transition
levels, an effect which is not observed in an ordinary transmon. By suitably engineering the
anharmonicity of the qubit, the coupling rate of the |1) — |2) transition can be modulated
relative to the [0) — |1) transition, adding a new flavour to the existing transmon toolbox.
This feature of the giant transmon enables new possibilities where interesting three-level
physics can now be engineered and explored [29].

Extending to designs with multiple giant artificial atoms, Kockum et.al, predicted in-
teresting new regimes when these artificial atoms are connected in certain physical ge-
ometries [28]. One such topology is when two giant artificial atoms are connected in a
braided configuration. In this particular design, the qubits interact with each other in a
decoherence-free space (DCF), where both the individual relaxation rates and the collective
decay rates of the qubits are zero but with a non-zero exchange interaction between them.
Such a setup is valuable from a quantum communication perspective where waveguides are
required to transfer information between different parts of a larger superconducting net-
work in a DCF environment. In this section, we briefly review the work presented in [27]
and [28] to motivate our experimental efforts in this direction.

2.5.1 Single-giant artificial atom

Here, we review some of the main aspects of a giant artificial atom which is coupled to a
1D TL at multiple points using the results presented in [27]. The TL is suitably meandered
such that the spacing between subsequent coupling points is of the order of A as illustrated
by a cartoon in Fig. 2.14(a), where a giant artificial atom is coupled at three points along
a meandered TL. We consider the symmetric case where the coupling strength at each
point is the same and the distance between subsequent coupling points is constant, i.e,
To —x1 = 3 — x2 = A. The phase acquired by a photon as it propagates between the
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Figure 2.14: (a) Cartoon of a giant artificial atom coupled to a TL at three points. (b)
Normalized T'yo for the |0) —|1) transition of the giant artificial atom vs. wyg/wy [27]. The
arrows show the frequency points where the qubit is strongly and weakly coupled to the
TL. The value of w), is fixed by design.

coupling points is given by,
6 =00y — 2) = 2020 (2.41)
v Wi
where, wyg is the |0) — |1) transition frequency of the transmon and wy = 2wv/\ which is
fixed by design. The phase ¢ can thus be varied by varying wig. The relaxation rate I'y
depends on ¢ and is worked out to be [27],

1 — cos(No)
1 — cos(9)

where, v is the bare relaxation rate without any interference effects and N is the number
of connection points. Figure 2.14(b) shows I'jy/v as a function of wyg/wy for different N.
When wyg = wy (shown by green arrow), we see a maximum in the profile as ¢ contributes
to the constructive interference of the emission/absorption amplitudes of the giant trans-
mon. At this point, the giant transmon is maximally coupled to the TL. We also observe
frequency points where the coupling is ideally turned off (shown by red arrows). These
points correspond to when the emission/absorption amplitudes destructively interfere. By
increasing the number of coupling points, we see that the frequency dependence of the cou-
pling can be made much stronger resulting in more frequency points where the coupling is
Z€ero.

[y (wi0) =7 (2.42)

Another striking feature of a giant transmon is the ability to relatively tune the relax-
ation rates of its multiple transitions. For the first two transitions of the transmon, we
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Figure 2.15: Relative modulation of the relaxation rates of the |0) — |1) and |1) — |2)
transition for anharmonicity chosen such that E./h = 0.166w, for an artificial atom with
six coupling points [27]. By biasing the |0) — |1) transition at the frequency points marked
by dashed arrows, 8 can be enhanced or suppressed

can define the relaxation rate modulation factor, 8 = T'y;/T'1p. Using Eq. (2.40), 5 = 2
for an ordinary transmon. For the giant transmon, we can modulate § by choosing the
anharmonicity such that when the |0) — |1) transition is minimally coupled, the |1) — |2)
transition can be maximally coupled or vice-versa. This is shown in Fig. 2.15 for N = 6,
where we plot I'jp and I'y; for an anharmonicity E./h = 0.166w, using the analysis pre-
sented in [27]. At the two frequency bias points shown by grey arrows, we observe that
[ can be modulated strongly, deviating from the factor 2. In order to obtain maximum
modulation of 5 on both sides of the spectrum, the anharmonicity plays an important role.
Increasing the number of connection points, eases the requirement of E.,.

The ability to modulate 3, allows many interesting quantum optics effects that can
now be explored with the giant transmon as a metastable state can now be engineered.
One particular effect, which we explore is electromagnetically induced transparency (EIT)
which is discussed in Chapter 5.

2.5.2 Braided-giant artificial atoms

The single giant transmon reviewed in the previous section can now be extended to multiple
giant transmons which forms the basis of the theoretical study presented in [28]. Since each
transmon has multiple coupling points, the qubits can now be connected in multiple ways.
Out of these, we are interested in the case of the braided giant transmons. A cartoon
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Figure 2.16: (a) Cartoon of giant artificial atoms, each with two coupling points to a TL,
connected in a braided configuration. (b) Theoretical rates for the braided giant trans-
mon configuration [28]. There exists a special frequency bias point shown by the arrow,
where the qubits can have an exchange interaction in a decoherence-free environment. The
interaction is mediated by virtual photons in the TL.

illustrating the braided transmons is shown in Fig. 2.16(a) where each transmon has two
coupling points to the TL and are braided such that the first connection point x5 of the
bottom transmon is between the first x; and the second connection point z3 of the top
transmon.

As before, we are interested in the symmetric case where the coupling of the transmon
to the TL is the same at each connection point and the spacings between the points is
fixed, i.e, xo — 21 = x3 — 3 = x4 — x3 = A/4. For simplicity, both transmons are identical.
The transmons are characterized by their individual relation rate, I'j,q, collective decay
rate, ['con, and the exchange interaction strength, g which is mediated by the TL. Using

the results from [28], these rates are expressed as,
Tina = 29(1 + cos 26)
Leon = v(3cos ¢ + cos 39) (2.43)
g= %(38111(25 + sin 3¢)

where, ¢ is the phase as defined earlier. The normalized rates are plotted in Fig. 2.16(b)
as a function wip/wy. It is to be noted that I'cop is plotted as |Tcon|. The striking feature
of the braided transmon design is the operating point w;g = wy where I'iyg = T'eon = 0
but g # 0. At this bias point, referred to as the DCF frequency, the qubits interact with
each other in a decoherence-free environment, mediated by virtual photons in the TL.
Photon-mediated interactions between distant qubits have been previously demonstrated
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in circuit QED [22], but not in a fully protected space. Recently, at the time of our own ex-
perimental explorations with braided transmons, the DCF interaction was experimentally
demonstrated by another competing group [73].

2.6 Photonic piston using superconducting resonators

We now switch gears to discuss a theoretical proposal on the implementation of a quantum
heat engine using superconducting resonators. We call this the “Photonic piston”. The
system consists of two resonators: a high frequency, SQUID-terminated \/4 resonator,
which is analogous to a mechanical piston and a low frequency, A/2 resonator which is
used to store the work thus performed in the form of a coherent current at steady state.
This section introduces the basics of such a device.

2.6.1 Optomechanical-like interaction Hamiltonian

In order to better understand the photonic piston engine, it is good to build an intuition for
it from standard optomechanics theory [71]. As it turns out, the optomechanical interaction
Hamiltonian, which we will discuss shortly, closely simulates the piston action in our device.
To see this, consider a standard optomechanical setup as shown in Fig. 2.17(a). The setup
consists of an optical cavity, with resonance frequency w,., made up of two semi-transparent
mirrors out of which one of them can mechanically vibrate with resonance frequency €2,,.
As the mirror vibrates, w. changes. In other words, the position of the movable mirror
parametrically couples to the cavity’s resonance frequency. The Hamiltonian of such a
system can be written as,

H = hw.a'a + BQ,,b'b,

where, a(a’) and b(b') are the annihilation(creation) operators for photons and phonons
respectively. Since the position co-ordinate x of the movable mirror parametrically couples
to the cavity’s resonance frequency w.(z), one can expand w, near the equilibrium position
of the mirror, zo = 0 as:

Ow,
we(r) =we +r—+ ...

oz

Using just the linear term in the expansion, the Hamiltonian of the system can be re-written
as:

H = hw.a'a + hQnb'b — hGa,pea’a (b + b7) (2.44)
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Figure 2.17: (a) A typical optomechanical setup consisting of two mirrors forming an optical
cavity of frequency w.. One of the mirrors can mechanically vibrate with frequency (2, as
shown. (b) Illustration of superconducting resonators implementing an optomechanical-
like interaction in an all-electrical network. The nonlinear interaction is mediated by the
SQUID.

where, G = —0w,/0x is the cavity pull-in parameter, z,, is the zero point fluctuations
of the mirror and & = ¢ (b—l— bT) is the position operator. The single photon cou-
pling strength is given by gy = Gx,e. The parametric interaction Hamiltonian H; =
—hGxeata (b + bT) is non-linear, i.e, the position of the movable mirror, x, couples to the
photon number operator, a'a, of the optical cavity. The origin of this interaction comes
from radiation pressure due to the photon momentum transfer to the movable mirror when
the cavity is excited by a laser at w.. When photons collide with the movable mirror, the
force corresponding to the radiation pressure acting on the mirror is given by the gradient

of the interaction energy:

0H
F= —a—xl = hGa'a (2.45)

From Eq. (2.45), we see that for a fixed cavity pull-in G, as the cavity photon number
changes, the backaction force due to radiation pressure changes, leading to the displacement
of the mirror. The larger the backaction drive, the more the mirror displaces. To model
the movable mirror as a piston, one can imagine the mirror being connected by a spring.
As the mirror compresses the spring, the cavity’s effective resonance frequency decreases
resulting in a situation similar to the expansion stroke of an automobile. The restoring
force due to the spring pushes the piston back, similar to the compression stroke.

To implement such an interaction using superconducting resonators, Johansson et al.,
demonstrated that quantized field amplitude in one resonator can couple to the pho-
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ton number in another resonator using a nonlinear parametric interaction mediated by a
SQUID [52]. This system implements the same interaction Hamiltonian given by Eq. (2.44),
but in an all electrical system. The electrical network composed of the two superconducting
resonators is shown in Fig. 2.17(b). Resonator A is a SQUID-terminated /4 resonator and
resonator B is a A\/2 resonator. The resonators are coupled to the feedlines via coupling
capacitors at their ends. The SQUID is positioned near the current antinode of the \/2
resonator. The nonlinear interaction is mediated by the SQUID due to its sensitivity to
an external magnetic flux @ which has two components: a fixed DC component ®?
applied by an external coil and a small AC component A®?, generated by the zero-point
fluctuations of the current ],ﬁ)f of resonator B near the vicinity of the SQUID. As a result,
the resonance frequency of the A/4 resonator, wa, changes in response to ®ey. In other
words, A®? generated by I %f of resonator B parametrically couples to the resonance fre-

V4

quency wy or the energy of resonator A. By Taylor expanding wa(®ey;) around @Y, and
keeping only the linear term, the Hamiltonian of this circuit can be written as,
0 ,f f p 0wa i f
H = hwja'a + hwgb b+hAq)praq> a'a(b+0"), (2.46)
ext

where, w) is the resonance frequency at ®e = Py, APP = ADZ (b + ') and Gwa /0Py
is the slope of the frequency tuning profile of resonator A at @y, = P ,. The zero point
fluctuations of the current in resonator B, I, generates a flux A®P . = I L which is
proportional to the total loop inductance Ly of the SQUID. Identifying ]Z]f)f = /hwg/Lg,
where Lpg is the total inductance of resonator B, the single-photon coupling strength can
then be written as,
Jgo = aTQXtLtot T (2.47)
Thus, go can be increased by biasing the SQUID near ®/2 where 0wy /0Py is max-
imum, as seen from Fig. 2.10. The SQUID loop inductance Lot = Lgeom + Liin, Where
Lgcom is the geometric inductance and Ly, is the kinetic inductance of the SQUID loop.
Normally for a SQUID, Ly, is negligible. However, by modifying the geometry of the
SQUID, we can boost the kinetic inductance in order to increase go. In order to couple
the SQUID to resonator B, it was proposed that the galvanic coupling scheme will give the
largest go compared to when the SQUID is inductively coupled to resonator B [52]. We
propose to complement the galvanic coupling scheme by further increasing gy by taking
advantage of the kinetic inductance of the SQUID’s coupling arm. Figure. 2.18(a) shows
a proposed design of the coupled resonator system where the SQUID is galvanically cou-
pled to resonator B, i.e, part of the ground plane of resonator B in incorporated into the
geometry of the SQUID. By meandering the SQUID’s coupling arm in the form of a long
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Figure 2.18: Cartoon of a coupled-resonator system where the SQUID of resonator A
is galvanically connected to the ground plane of resonator B to implement the nonlin-
ear optomechanical-like interaction Hamiltonian. (b) Closeup of the coupling arm of the
SQUID, which forms a part of resonator B’s ground plane, is thin and meandered to
increase gg by boosting its kinetic inductance.

thin wire (see Fig. 2.18(b)) we can increase its kinetic inductance which further increases
go- From Fig. 2.18(a), the ground plane of resonator B is intentionally split using the me-
andering wire geometry to ensure that the ground current symmetrically distributes along
the meandering wire on both sides of resonator B.

The galvanic coupling scheme is shown to be a promising architecture to reach the
single-photon strong-coupling regime in this coupled-resonator system [52], a primary re-
quirement for realizing a quantum heat engine with this device.

2.6.2 Otto-cycle using the photonic piston

In this section, we discuss the implementation of an Otto-cycle using the coupled-resonator
system. The resonance frequencies are chosen such that ws > wg. The device is cooled
down to a low temperature Tj using a standard dilution refrigerator, such that hw > kgTy.
Although this condition ensures that both resonators are operating in the quantum regime
where the number of thermal photons is small, due to the difference in the resonance
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frequencies, resonator B has a higher background thermal occupation than resonator A.
For an engine operation, designing its cold and hot bath environment is crucial from an
operation standpoint as the efficiency of the engine depends on the temperature differ-
ence between its hot and cold baths [75]. For the photonic piston engine, the baths are
engineered in the following way.

Bath engineering

To ensure that the average thermal occupation 74 and ng in both resonators is the same,
a continuous quasi-thermal noise drive with appropriately chosen amplitudes is applied
at the input of both resonators. The use of a noise drive to vary the average thermal
population, and hence the effective photon temperature in a superconducting resonator,
has been experimentally demonstrated where effective temperatures of up to 100 K was
achieved [76]. The amplitude of the noise drive determines the photon temperature. The
large internal quality factors of these resonators ensures that the noise does not cause
dissipation, thus allowing for arbitrary large effective photon temperatures. The average
thermal occupation of the photons in the resonators is given by the Plank distribution

formula as,
1

_i — 5 248

"7 exp (hwy JkpT)) — 1 (2.48)
where T; with ¢ = (A, B) represents the effective photon temperature in resonators A and
B. To ensure iy = g when wy > wg, Eq. (2.48) suggests that T4 > Tp which is achieved
by the continuous noise drives. The cold bath, 7., for resonator A and B is thus set by T4

and T respectively when ny = ng = n..

To engineer the hot bath, 7n;,, a second noise drive to simulate ny, is applied at the input
of resonator A whose amplitude is modulated by square pulse [53]. This periodic noise
drive simulates the heating and cooling cycle of an engine, i.e, when the pulse is ON the
steady-state effective thermal occupation 7/, of resonator A is 7'y = (fi. + 71y)/2 and when
the pulse is OFF, 7/y = 7. [53]. Thus, the heating stage raises the photon number which
is equivalent to increasing the effective photon temperature and the cooling stage couples
the resonator A to n. thus reducing the temperature back to its initial value. Resonator B
is always coupled to its cold bath n.. Figure 2.19(a) illustrates the noise driving scheme of
the coupled-resonator system.
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Dynamics using classical Langevin equations

To study the classical dynamics of the system, the Hamiltonian given by Eq. (2.46) can
be treated as a classical model. By replacing the annihilation(creation) operators with
complex amplitudes, i.e, a — a4 and b — ap, the Langevin equations of motion for the
two resonators can then be written as [53],

. . . * K k
g = — (zwA —igo (ap +ap) + él + 7A> aq +&n(t) + €alt),

. . lﬂ; ,
ap = — (WB + 73> ap + 190 !CYA|2 +¢5(1),

(2.49)

where, kp,, k4 and kp set the coupling of the two resonators to their hot and cold baths, &, (t)
is the delta-correlated stochastic noise simulated the hot bath, £4(¢) and {g(t) simulate
the noise from the cold bath drive. Here, we assume that x, = k4 during the heating
stage and k;, = 0 during cooling. By rewriting the complex amplitudes of the resonators
in the form of their quadrature amplitudes, i.e, for i = (A, B), oy = (X; + 1Y;)/v/2 and
writing & = & + zfé for the the bath environments for the resonators, a set of four-coupled
differential equations can be written down as [53],

AXs = |wa¥a = goV2XpYa — Ky Xa] dt + dWE + aw,

AV s = — |waX s — goV2X 4 X5 + FJAYA] dt + AW + aw,
- (2.50)

dXB = -WBYB - HTBXB} dt+ dWa:B7

dYB:— WBXB—FH—BYB—&

2 V2

where, 'y = (ki + ka)/2, AW} = £ dt for k = (x,y) is the Wiener stochastic process of

The coupled equations can be solved numerically using realistic experimental parame-
ters where Gaussian noise is used to simulate the necessary noise drives discussed before.
The parameters used for the simulation are the same as used in [53], i.e, wa/27 = 10 GHz,
wp /21 = 500 MHz, k4 /27 = 2 GHz, kp/2m = 50 MHz, go/2m = 2 GHz, ny = np = n, =
0.01 and 7y, = 0.125. Resonator A’s coupling to the hot bath is modulated at wg /27 such
that each stage of heating and cooling takes a time of (r/wpg) s. The simulation param-
eters are normalized to wy. Figure 2.19(b) shows the modulation of the photon number
in resonator A for many cycles of heating and cooling the resonator due to the periodic,
incoherent noise drive. Due to the nonlinear parametric interaction, we see an emergence of

(X3 + Yj)} dt + dW,
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Figure 2.19: (a) Implementing cold and hot baths for the photonic piston engine using the
coupled-resonator system. The cold baths for both resonators are set by the continuous
noise drives such that n. = nq = ng. The hot bath is implemented by a periodic noise
drive such that n, > n.. (b) The photon number in resonator A, 7y, is modulated as a
result of heating and cooling with the noise drives on resonator A for many cycles. (c¢) The
real part of the complex field amplitude in resonator B showing the build up of a coherence
in time.

a coherent build up of current in resonator B as shown in Fig. 2.19(c), thus demonstrating
the basic nature of a heat engine i.e, conversion of incoherent heat to coherent work.

Otto-cycle using photonic-piston engine

The Otto-cycle, proposed by German engineer Nikolaus Otto, is at the heart of modern
day internal combustion engines [75]. The cycle of the engine can be described by the
illustration shown in Fig. 2.20(a) which is drawn specific to the photonic-piston engine,
but is easily generalized to any system which implements the Otto-cycle.

By heating and cooling the photons of resonator A for many cycles, a limit cycle for the
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Figure 2.20: (a) Different stages of an Otto-cyle using the photonic-piston engine. (b) A
limit cycle is established at steady-state showing resonator A’s internal energy U, as a
function of its effective resonance frequency «'y. Its operation mimics the workings of an
Otto cycle.

system is established at steady state which mimics the Otto-cycle of engine operation [75].
The simulated Otto-cycle is shown in Fig. 2.20(b) where the internal energy of resonator 4,
Ug = wyn/y, is plotted as a function of w/y = wa — 2goRe[ap]. The cycle is typically
represented by four stages: (P-Q) An isochoric heating stage where the effective photon
temperature of resonator A is increased during the raising edge of the noise pulse acting on
resonator A. This process happens at a constant w’y, which simulates an isochoric process
where the work done by the piston is zero. At Q, the temperature of resonator A reaches
thermal equilibrium. (Q-R) In this leg of the cycle, the noise pulse is ON and the piston
adiabatically expands resulting in the increase of the electrical length of resonator A, thus
reducing w’y. There is build up of coherence in resonator B in the form of a current which
translated to the work done by the piston. (R-S) Here, the noise pulse is turned OFF and
the photon temperature in resonator A begins to reduce at constant w’y. The resonator A
attains its equilibrium temperature as it is now coupled to its respective cold bath. No
work is done in this stage. (S-P) This adiabatic compression stage pushes the piston, while
increasing 'y to its initial value and in the process reverses the direction of current in
resonator B.
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Figure 2.21: Illustration showing the circulating current in a SQUID in response to an
applied flux

2.6.3 Dependence of SQUID bias current vs. circulating current

The classical Langevin equations helps to build an intuitive understanding of the dynamics
of the photonic-piston engine. To understand the physical mechanism of the piston action
mediated by the SQUID, it is useful to look at the response of the SQUID when the photon
number of resonator A is modulated. To see this, consider the SQUID with an input current
I and flux-biased at an external DC flux @ as shown in Fig. 2.21. A superconducting
loop, such as the SQUID, generates a circulating current .J in the loop to counter this
applied field. As a result, the currents in the SQUID branches are no longer equal. For a
symmetric SQUID, the input current / can be written as,

I =21 sin (51 ; 52) cos (51 ; 62) , (2.51)

where, I, is the critical current of each junction. The circulating current can be worked

out to be,
J = I.sin (51 ; 62) Ccos <51 ;52> . (2.52)

The fluxoid quantization condition gives d; —ds = 2mn+27(P/Dy), where = Ppyy — LiorJ.
Writing § = (d; + d2)/2 and with some algebraic manipulations, we obtain the following
equation,

o 7 o
J? = I?sin® 7(;—0 vy tan® 7(;—0. (2.53)
By Taylor expanding the trigonometric terms in Eq. (2.53) around @, we can show
that for small values of J, J ~ I?. This suggests that the number of photons which is

proportional to I? also can vary .J. Hence modulating the photons in a SQUID terminated
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A/4 resonator, is equivalent to modulating J. For the case of the coupled-resonator system,
since the coupling arm of the SQUID forms a part of the ground plane of resonator B, the
circulating current J in the SQUID directly couples with the current in resonator B.
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Chapter 3

Design and Simulations

This chapter presents the various design considerations and methodologies that form the
basis for realizing the central ideas presented in this thesis. We begin with the necessary
equations, introduced earlier in Chapter 2, for numerical modeling of the proposed devices.
We do this at the level of choosing the initial parameters to have the devices work in the
right regime of operation. We also perform circuit and electromagnetic simulations using
commercially available simulation packages from Keysight and Ansys. The microwave sim-
ulations help us iterate designs and adds a level of confidence to the overall final design.
In this chapter, we will present simulations which were performed on the measured de-
vices with feedback on how future designs can be improved by considering several design
variations.

3.1 Single-giant transmon

This section discusses the design methodology for two separate devices each with a single-
giant transmon qubit having three (3CP) and six coupling points (6CP) to a one-dimensional
transmission line (TL), which has a characteristic impedance of 50 2. The CPW architec-
ture which is used to fabricate the TL is discussed in Chapter 2. The devices presented
in this section, which will be referred to as 3CP and 6CP hereon, will be the focus of
discussion in Chapter 5.

The goal of these devices is to study the giant atom effects discussed in [27], for in-
stance, the frequency dependence of the qubit’s relaxation (coupling) to its electromagnetic
environment as a function of the number of coupling points. In Chapter 2, we saw that
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the qubit’s coupling to the TL reaches a maximum when its transition frequency corre-
sponds to the inter-coupling distance, wy, where the superscript SGT refers to single-giant
transmon. We also saw that the coupling can also ideally vanish at other frequency points
around w$. From a design standpoint, this translates to having a qubit with wideband
tunability in our measurement bandwidth of 4-8 GHz with appropriately chosen w¥ so that
we can map the frequency-dependent coupling behavior. In this section, we address these
design goals and simulate the device behavior using idealized circuit models and full-chip

electromagnetic simulations of the final device layout.

3.1.1 Qubit parameters

To have a tunable transmon qubit, we need to replace the single Josephson junction (JJ)
with a pair of JJs forming a closed superconducting loop, more popularly known as a
SQUID. The properties of the SQUID are discussed in more detail in Chapter 2. The more
relevant parameters of the tunable transmon qubit, hereafter referred to as transmon, are
its maximum Josephson energy, £7**, and the charging energy, E,, which depends on the
geometry of the shunting capacitor electrodes which also provides the necessary coupling
of the qubit to the TL. The resulting capacitance matrix of the transmon can be simplified
using linear circuit analysis where we will derive expressions for E,. and the voltage-coupling
constant, 3, of the transmon to the TL. E}*** is a parameter that depends on the fabrica-
tion conditions of the JJs whereas E, is controlled solely by design. By targeting a certain
ET* and E,, it is possible to park the maximum frequency of the qubit anywhere in the
measurement band as discussed in Chapter 2. For our purposes, we park it outside the
measurement band for two reasons. Firstly, this allows us to capture a background trace
without the qubit spectrum which is useful for fitting our experimental data. Secondly,
since our qubit is frequency tunable using an external coil, we can study the frequency
dependence of its relaxation rate over the full range of our measurement bandwidth of
4-8 GHz. Choosing the maximum frequency of the qubit inside the measurement band
limits this frequency range.

Calculating the inter-coupling distance from w}

In order to have wavelength-scale spacings between the coupling points of the giant trans-
mon, we have to sufficiently meander the TL. The microwave photons in the TL pick up a
phase as they travel between coupling points which contributes to constructive and destruc-
tive interference of the qubit emission amplitudes as discussed in Chapter 2. The phase
acquired by the photon is given by Eq. (2.41). We will set wyo/2m = w§ /27 = 5.75 GHz as
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the design frequency bias point which corresponds to maximum coupling of the qubit to the
TL when ¢ = 27 (see Chapter 2 for more details). Substituting these in Eq. (2.41) gives
us the required distance between coupling points, (zo — 1) = 20.54 mm using the effective
dielectric constant €. = 6.45 for a CPW on intrinsic silicon substrate with ¢, = 11.9.
In both 3CP and 6CP devices, we consider the symmetric case where all the distances
between the coupling points are fixed at 20.54 mm.

Calculation of E, and j,

Our next design goal is to fix E. which also dictates the anharmonicity of the giant trans-
mon. We use Ansys’s Q3DExtractor to iteratively design the geometry of the transmon’s
capacitor electrodes to achieve the required F.. But before we dive into the actual num-
bers, let us look at the physical layout of a transmon circuit coupled to a CPW TL which
is shown in Fig. 3.1(a). Here we consider a typical transmon qubit but the analysis is
valid for a giant transmon as well. The SQUID (shown in grey) is shunted by two large
inter-digitated electrodes (shown in red and green) which form the self-capacitance of the
transmon qubit. The electrodes are capacitively coupled to the center conductor (blue)
and the ground planes (light blue) of the TL and also serves to provide the necessary cou-
pling of the qubit to its electromagnetic environment. A simplified circuit model can be
written down by considering the capacitances between the different metal islands (nodes)
as shown in Fig. 3.1(b). The nodes are appropriately numbered and colored corresponding
to their respective layout in Fig. 3.1(a). The SQUID is represented by its equivalent junc-
tion capacitance C; and Josephson energy E;. By exciting the circuit with a DC voltage
source, V', between appropriate nodes and solving the resulting set of linear equations as
prescribed in [34], it is possible to extract both E, and f,.

The charging energy E, = €?/2Cy, where ¢ is the electron’s charge and Ck is the total
capacitance of the transmon network. To calculate Cy, we inject a voltage V' across nodes
1 and 2 (see Fig. 3.1(d)) and calculate the total capacitance seen from these nodes. We do
it by writing a set of equations using Kirchhoff’s laws and solving for the different voltages
Vi;, across nodes ¢ and j, and the charges );; = C;;V;; on the capacitors. The capacitance
matrix, typically known as the Maxwell capacitance matrix, for the circuit layout can be
generated using Q3DExtractor which gives us Cj; across the different nodes. Typically,
the value of (34, which is the capacitance between the CPW center conductor and the
ground plane, is orders of magnitude larger than the other capacitances in the circuit.
Hence, solving V;; in the limit of large Cs4 gives us V34 = 0. This simplifies the circuit in
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Figure 3.1: (a) Model of a transmon capacitively coupled to a CPW TL, where all the con-
ductors are appropriately numbered. A voltage source V' is used to excite the transmon.
(b) Equivalent circuit of the model shown in (a) where each color-numbered node repre-
sents a conductor. The nodes are connected by capacitors, each representing the effective
capacitance between the respective conductors. The JJ is shown by its circuit symbol. (c)
Reduced capacitance network of (b). (d) Simplified circuit to extract E.. (e) Circuit same
as (b) where the JJ capacitance C; is added between nodes 1 and 2.
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Fig. 3.1(d) even further which then gives us:

(C13 + C14)(Caz + Coy)
(Ch3+ Cry + Co3 + 024).

Cy =C1a+Cy+ (3.1)
The design choice of E,. in our single-giant transmon devices is related to another novel
feature of the giant transmon which is the ability to tune the relative relaxation rates of
its different transitions, also discussed in Chapter 2. We will focus on the |0) — |1) and the
|1)—|2) transitions which are separated in frequency by the transmon’s anharmonicity. One
of the goals of our work with giant transmons, is to engineer a maximally coupled |1) — |2)
transition at a frequency bias point where the |0) — |1) transition is minimally coupled.
However in order to achieve this, the anharmonicity between the transitions needs to be
very high, roughly on the order of a GHz for both 3CP and 6CP devices from the theoretical
estimates (see Chapter 2). This translates to Cy ~15-20 fF, which is difficult to achieve
considering the physical size of the transmon electrodes. Another design limitation which
arises due to such high F. is the resulting choice of E;. For instance, to design a transmon
qubit with wyo/27 = 6 GHz and an E./h = 1 GHz requires an E;/h ~ 6 GHz using
Eq. (5.2). This gives us an E;/E. = 6 which is not an ideal transmon regime of operation
(see Chapter 2). Considering these limitations, we aim to target E./h ~ 500 MHz for our
giant transmon devices which seems like a reasonable tradeoff between design goals and
practical implementation.

To design the required geometry of the giant transmon electrodes which gives us E./h ~
500 MHz, we use Q3DExtractor to achieve the necessary Cy, ~ 38 fF. Figure 3.2 shows
the final layout of the giant transmon for the 3CP and 6CP devices. The different metal
islands are color coded according to the generalized transmon structure shown in Fig. 3.1.
The center conductor and the ground plane together with the transmon electrodes are all
modelled as perfect electrical conductors. From the simulated Maxwell capacitance matrix,
we estimate E,. to be close to the design value for both devices using Eq. (3.1). As depicted
in Fig. 3.2, one of the capacitor electrodes (red) in both devices extends all the way across
the coupling sites and is designed to ensure equal coupling to the TL at each site. The total
length of this capacitor electrode is still much smaller when compared to the wavelength
of interest.

Following the discussion from earlier, another key parameter of the transmon which
can be extracted from the Maxwell capacitance matrix is 3, which is used to calculate the
parameter g. To extract /3, we re-write the capacitance network shown in Fig. 3.1(b) into
a simple capacitive voltage divider circuit as shown in Fig. 3.1(c), where Cj is the gate
capacitance which provides the necessary coupling capacitance to the transmon from the
external driving source voltage V. Looking from the SQUID point of view, Cy and Ceq
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Figure 3.2: Q3DExtractor model for the giant transmons in 3CP and 6CP devices. The
coupling sites are numbered and the layout is color-coded following the generalized trans-
mon structure in Fig. 3.1

are in parallel which allows us to write Cy + Ceg = Oy, where we absorb C; into Ceg.
Since we can extract Cy, using Eq. (3.1), the task now is to calculate C, which is achieved
by generating a set of equations using Kirchhoff’s laws for the circuit in Fig. 3.1(e) and
solving for Vj5 which can be written as:

C13 C24 - C23 CI4

Vie=V ) 3.2
2 (C13 + C14)(Caz 4 Cay) + (Cra + Cy)(Ch3 + Cra + Coz + Coy) (3:2)
The parameter 3, is then given by:
_ Vi _ Cg
Bo=~7 = oy (3.3)

The value of g that can be calculated using 3, gives the bare coupling constant of the giant
transmon without including the interference effects.

3.1.2 Chip layout modelling

Once we have the giant transmon layout finalized, we move ahead on designing the 3CP
and 6CP chip layout which involves meandering the TL suitably between the coupling
sites. Care is taken so that the distance between the sites is equal to the designed value
obtained from Eq. (2.41).

We study the chip behavior using both an ideal circuit model and a full-chip electro-
magnetic simulations. The ideal circuit model for the 3CP device is shown in Fig. 3.3(a).
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The transmon structure is replaced by its equivalent capacitance network obtained from
the Maxwell capacitance matrix discussed earlier. The SQUID is represented by a linear
inductor L;. The TL between the connection points is replaced by a CPW component
with length A\ equal to the inter-coupling distance calculated from Eq. (2.41). For the
CPW parameters, we choose width W = 10 um, gap S = 6.5 um and the height of the
substrate H = 530 pm. The circuit is then excited using 50 2 ports at the input and out-
put of the TL. As we will see later, this simple model captures the essential physics of the
frequency-dependent coupling of the giant transmon. However, converting this idealized
circuit model into an equivalent design layout involves full-chip electromagnetic modelling
which brings out several design challenges.

The simulation methodology we adopt for layout simulations follows the central idea
of black-box quantization (BBQ) technique introduced in [77]. The BBQ technique allows
the designer to generate the quantized Hamiltonian of weakly anharmonic superconducting
circuits comprised of Josephson junctions which are coupled to linear lumped-element or
distributed networks. For our purposes, we are only interested in simulating the linear
response of the meandering TL which is coupled to the transmon by treating the SQUID
as a linear inductor. The black box approach we follow is shown pictorially in Fig. 3.3(b-e)
where we use Ansys HFSS to simulate the S-parameters of our linear circuit.

We begin with the situation shown in Fig. 3.3(b), where the giant transmon is ca-
pacitively coupled to a linear microwave electromagnetic environment, such as the TL at
multiple points. Equivalently, in circuit terms, this can be simplified to a situation de-
picted in Fig. 3.3(c), where the transmon is approximated by its equivalent circuit model
(see Fig. 3.1(c)), where L; = (®¢/2m)?(1/Ey) is the linear part of the transmon’s in-
ductance. In order to simulate the overall linear response of this circuit, we break the
problem into two parts. As a first simulation, we simulate the S-parameters from 4-8 GHz
of the full-chip layout which consists of the giant transmon’s capacitance electrode geom-
etry (Cx = Cy + Ce) and the meandering CPW TL. We introduce 50 © lumped ports
at the input and output of the TL and also at the SQUID section (L;) of the transmon.
The simulated S-parameters model the effect of giant transmon’s coupling to the TL and
also includes any parasitic microwave effects, such as slotline modes [78, 79], that could
arise due to the effect of meandering the TL. This completes the characterization of the
microwave environment without the effect of the SQUID inductance.

For the second simulation, we use the S-parameter file (SnP) from the first simulation,
which can be exported to a circuit simulator such as Keysight ADS, where we can now
replace the SQUID excitation port as an inductor with a suitable value. By re-calculating
the S-parameters of the TL with the inductor, we observe the transmon qubit resonance
signature as a dip in the transmission co-efficient of the TL in the 4-8 GHz band. We
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Figure 3.3: (a) Model of a giant transmon capacitively coupled to a CPW TL at three
points. We use this model for the performing ideal circuit simulation by treating the SQUID
as a linear inductor. The values of C; and Ceg are obtained from Maxwell capacitance
matrix simulated in Q3DExtractor. (b) Cartoon of a giant transmon coupled at three
points to a CPW TL. In the actual layout, the electrodes of the transmon capacitance
are included and the TL is meandered between the connection points. (c) The SQUID
of the transmon is replaced by a linear inductor. The layout is comprised of the physical
geometry of the TL and the transmon capacitance. The dashed colored boxes indicate the
consideration for the layout simulations. (d) The pink box takes into account the physical
layout alone and the simulation is done in HFSS. The inductor is replaced by a port along
with the input and output ports of the TL. (e) The S-parameter results of (d) is exported
into ADS, where the SQUID port is now replaced by an inductor and re-simulated to gives
us the desired qubit resonance signature in the band of interest.
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can now parametrically sweep the value of this inductance thereby changing the resonance
frequency wyo of the transmon near w§. The linewidth of the resonance feature can be fit
using Eq. (2.39) to extract the relaxation rate I';gp and wjp. By redoing this at different
wip near wy, we are able to simulate the frequency-dependent coupling I'jo(w) of the giant
transmon.

3.1.3 Microwave simulations

This section discusses the simulation results for the idealized circuit model and the device
layout for both 3CP and 6CP devices. With the device layout simulations, we compare
various scenarios which include the effect of adding wirebonds and airbridges to suppress
spurious modes possibly related to slotline mode propagation in the TL. The results we
extract from these simulations seem to follow the theoretical prediction of the frequency-
dependent coupling of the giant transmon providing useful insights on how future devices
can be designed.

Following the simulation methodology discussed earlier, we extract [';g and wyy by fit-
ting the transmission spectrum for each value of the SQUID inductance L; using Eq. (2.39)
for both circuit and layout simulations. The results for the 3CP and 6CP devices are plot-
ted in Fig. 3.4 and Fig. 3.5 respectively, where each simulation result is appropriately
highlighted by a legend which describes the design variation considered below. Also shown
in the figure is the microwave transmission background for the different design variations.

We begin by simulating the idealized circuit model using CPW TL components in
Keysight ADS. The circuit for the 3CP device is shown in Fig. 3.3(a). For the 6CP
device, we modify this circuit accordingly to include three more connection points. From
Fig. 3.4(d) and Fig. 3.5(d), we see that the circuit simulation results agrees well with
theoretical prediction for both devices [27]. As for the device layout simulations in HFSS,
we present several design variations. As a first baseline simulation, we simulate the exact
layout of the 3CP and 6CP device that was measured in the cryostat. The measurement
results are discussed later in Chapter 5. Apart from validating the device design, one
of the main reasons for undertaking in-depth layout simulations with variations in HFSS
is to try and understand the observed experimental deviation of the frequency-dependent
coupling behavior of the 3CP and 6CP devices from theoretical prediction which we discuss
in Chapter 5. Allowing design variations in layout simulations has helped us identify this
deviation which we mainly attribute to parasitic microwave effects like slotline modes
which could originate due the breaks in the ground planes, meandering of the TL etc. To
address this possible issue, we added aluminum wirebonds wherever possible across the
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ground planes of the chip prior to mounting in the cryostat. The layout of the device
with wirebonds in the same places as the measured chip is shown in Fig. 3.4(a-b) and
Fig. 3.5(a-b) for both 3CP and 6CP devices respectively.

The parasitic modes are more obvious when we simulate the microwave background us-
ing the black box approach discussed earlier. This can be seen in Fig. 3.4(c) and Fig. 3.5(c)
for the 3CP and 6CP devices. In the layout simulations for the measured device and when
we consider the absence of wirebonds, we see the strong presence of spurious modes in the
simulation band. The modes captured by the simulation for the measured device were also
seen in measurements (not shown here) at nearly the same frequencies. To address this
issue, we added more wirebonds in the simulation (layout not shown here) in places that
were not experimentally accessible, i.e, at the meander bends and across the two floating
ground planes in between connection points. We immediately see that this helps suppress
the spurious modes. The ideal layout solution to this problem are airbridges [30]. Due
to their compact size and smaller footprint than a wirebond, airbridges can be placed
near the edges of the ground plane where the ground current is at its maximum. This
helps in having a stricter microwave ground which helps in suppressing slotline modes.
Although airbridges are a routine fabrication step in superconducting circuits [$1], we did
not implement them in our devices which are discussed in this thesis as the recipe was still
under development. Nevertheless, we can simulate their effects by including them in our
simulation models (layout not shown here).

The effect of the wirebonds and airbridges can also be seen on I'jy as shown in Fig. 3.4(d)
and Fig. 3.5(d) for the 3CP and 6CP devices respectively. We normalize 'y to the max-
imum simulated value and w9 to the frequency where maximum I'yy was simulated for
the respective devices. We observe that the frequency where this happens is very close to
the design value w} discussed earlier in this chapter. The results indicate close match to
theory with the simulated airbridges giving the best match. However, when we consider
the layout of the measured device, it clearly deviates from the theoretical profile. We at-
tribute this to spurious modes we saw earlier which modifies the background in a way to
give a sharper I'yy profile as a function of wyy. For future device explorations using giant
transmons, airbridges are the way forward.

3.2 Braided giant transmons

We will now focus on a device which consists of two giant transmons each with two coupling
points to the TL. The transmons are connected in a braided configuration which is discussed
in Chapter 2. The device will be referred to as BGT hereon. The highlight of the braided
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Figure 3.4: (a) HFSS model of the measured 3CP device. (b) Optical micrograph of
the measured 3CP device. (c¢) Simulated ¢ as a function of probe frequency for different
scenarios as explained in the main text. For the device that was measured, we observe
spurious modes in the simulation. Replacing the wirebonds with a high density of airbridges
gave the best microwave background in the simulation. (d) I'yg extracted by fitting the
simulation results using Eq. 2.39, for different values of wyy, which is obtained by varying
L; as shown in Fig. 3.1(e). The extracted I'j is normalized to its maximum simulated
value and wyg is normalized to the frequency where maximum I'yq was simulated for each
simulation variation. The simulation of the measured device shows deviation from the
theoretical prediction.
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Figure 3.5: (a) HFSS model of the measured 6CP device. (b) Optical micrograph of
the measured 6CP device. (c) Simulated t as a function of probe frequency for different
scenarios as explained in the main text. For the device that was measured, we observe
spurious modes in the simulation. Replacing the wirebonds with a high density of airbridges
gave the best microwave background in the simulation. (d) I'jp extracted by fitting the
simulation results using Eq. 2.39, for different values of wyg. The extracted [';( is normalized
to its maximum simulated value and wyg is normalized to the frequency where maximum I';
was simulated for each simulation variation. The simulation of the measured device shows
deviation from the theoretical prediction, consistent with the trend that was observed in
the 3CP device.

53



configuration is the availability of a decoherence-free interaction point, w¥ (superscript
B refers to BGT device), in the frequency domain where the transmon’s individual and
collective decay into the TL is zero but they can still have a finite exchange interaction
between them. We will explore the different design considerations and simulate the final
device layout. Our simulations bring out some subtle effects that must be considered in
order for the device to work in the right regime of operation.

3.2.1 Qubit parameters

For choosing the qubit parameters, a lot of the discussion which was presented earlier
applies here as well. We target an E./h = 500 MHz for both qubits which is achieved
using a similar electrode geometry as was used in the 3CP device. We use a global flux
coil to tune the qubits over a wide range in our measurement bandwidth. Among many
design variations considered, here we discuss a specific case, where qubit A has a separate
voltage excitation line (X gate) and qubit B has a local flux line (Z gate), which is used to
selectively tune the qubits into resonance with each other. Although both qubits have the
same electrode geometry, their SQUID loop areas are designed to be different by a factor
of 1.5. This was done to have the qubit resonance frequencies cross each other near w?
using the global flux alone.

We first fix the inter-coupling distance between the connection points to be 5 mm.
For the decoherence-free interaction between the qubits, the phase acquired by the photon
between successive coupling points should be ¢ = 7/2 [28]. Using Eq. (2.41), this translates
to wP/2r = 5.91 GHz.

3.2.2 Microwave simulations
Circuit simulations

Our first check is to simulate an equivalent circuit model for the BGT device. This is shown
in Fig. 3.6(a) with CPW TL components of length equal to 5 mm between the coupling
points. The giant transmon qubits are replaced by their equivalent circuit deduced using
the Maxwell capacitance matrix simulated in Q3DExtractor. Both qubits have the same
capacitance matrix with the only free parameters in simulation being their SQUID induc-
tance values, L7 and L% for qubit A and B respectively. The results of the L/ parameter
sweeps are shown in Fig. 3.6(b) where we plot the simulated |¢| for different values of L%,
with L¥ chosen such that qubit B is out of the simulation band. The transmission spectra
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Figure 3.6: (a) Model of two giant transmons, each with two coupling points to a TL,
connected in a braided configuration. We use this model for the performing ideal circuit
simulation by treating the SQUID as a linear inductor. The values of C; and Ceq are
obtained from Maxwell capacitance matrix simulated in Q3DExtractor. (b) Simulated ¢
for different values of L4. The results are appended together, such that each dip in t
corresponds to a different L4. The qubit is decoupled from the TL at w®/27 as expected.
(c) Each transmission spectra is fitted using Eq. (2.39) to extract I';p and wyo. At higher
frequencies, the I'1g follows the theoretical prediction but deviates at lower frequencies. We
also extract I'yy for the case of an ordinary transmon coupled to the TL at a single point.
In this case, we see that I';gp oc wf, which is confirmed by the classical model described
in Section. 2.4.1. For the giant transmon, the strong deviation of I'yy at lower frequencies
could stem from this additional dependence on wyg.
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are appended together in the plot for clarity. As qubit A’s resonance frequency is swept
across wy/2m, we see that the dip in the [¢| changes indicating its frequency-dependent
coupling behavior and the envelope of this behavior follows the theoretical prediction [27],
with the minimum corresponding to w¥ /2. The same behavior is expected from qubit B
due to symmetry.

The model described by Eq. (2.39) takes into account dephasing, which is absent in
simulations. Although the envelope in Fig. 3.6(b) follows the theoretical prediction, it
does not explain the changing resonance linewidth as a function of frequency. To under-
stand this, we use Eq. (2.39) and extract I';y by allowing the fit to account for dephasing.
Figure 3.6(c) shows the extracted I'yg for each of the transmission spectrum obtained by
varying L4. At higher frequencies, the 'y follows the theoretical prediction relatively
well. At low frequencies, the values of the extracted I';y deviate from theory. This can
be explained by considering the case of an ordinary transmon qubit coupled to TL at a
single point (circuit not shown here). In doing this simulation, we keep Cy, equal to that
of the BGT device. Re-doing the same simulation by appropriately modifying the circuit,
we see that I'1g for an ordinary transmon shows a quadratic dependence with frequency as
shown in Fig. 3.6(c). This becomes clear when we consider a classical model of an artificial
atom coupled to a TL, which is discussed in Section. 2.4.1. For this case, we show that
PIO X w%o.

In the theory simulations for both single [27] and multiple giant transmons [28], the
intrinsic dependence of 'y with wyg is assumed to be constant and so the frequency de-
pendence for 'y only includes the interference effects. However, this is not true in practice
as we demonstrate from our simulations. The strong deviation we see at low frequencies
can be due to this intrinsic lower coupling. The total frequency dependence of I'y is then
the sum of contributions from the active suppression from interference effects and also the
quadratic dependence, which could explain the asymmetry in I';q we observe for the BGT
device. We also observe this asymmetry in circuit simulations at low frequencies for the
3CP and 6CP devices discussed earlier.

Chip layout simulations

Following the black box approach discussed earlier, we simulate the layout of the device that
was measured which is discussed later in Chapter 6. The HFSS layout and the measured
device is shown in Fig. 3.7(a-b). The simulated transmission coefficient for the measured
device does not show any spurious modes in the background. This is expected as the
layout does not involve extreme meanders like the previous devices discussed earlier. The
inductance Lf} of qubit A is then swept in order to study its frequency-dependent coupling

o6



|I|IIII||||||” ( qmﬂ( E-field distribution at 5.9 GHz
0.8 , ]
=~ 0.6+
a)ABIZ
0.4+
025 J T T 1 QUblt A
4 5 6 7 8
Probe frequency [GHz]

Figure 3.7: (a) HFSS model of the measured BGT device. (b) Optical micrograph of the
measured BGT device. (c) Simulated |t] as a function of probe frequency for different values
of L4 of qubit A, with qubit B parked outside the simulation band. Qubit A decouples
at a frequency much lower than w¥/2m. (d) Electric-field distribution for qubits A and B
at w®/2m = 5.9 GHz. The JJ in both qubits is modelled as a 50  port. As the distance
between the coupling points for each qubit is A\/2 at w¥/27, the braided configuration
ensures that when qubit A is at a voltage node, qubit B is at a voltage antinode. The field
at the coupling points of qubit B is phaseshifted by 7. From the field simulation alone, both
qubits should decouple at w® /27 which contradicts the result obtained in (c). However,
a closer view at the junction site reveals that there is still a finite field gradient across
the junction at w® /27 which causes it to couple to the to TL. This stray field gradient is
generated by the ground currents near the vicinity of the junction. The asymmetry in the
position of the junction could explain this discrepancy.
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around w®/27. The results are plotted in Fig. 3.7(c) which demonstrate a clear deviation
from the expected theoretical behavior. The decoupling frequency is far below w¥ /27 and
understanding this will be the focus of the remaining simulation exercise.

The first check is to plot the magnitude of the electric field across different conducting
surfaces as shown in Fig. 3.7(d) at w®/27. The color indicates the magnitude of the field
in the substrate where blue represents a low magnitude and red corresponds to a high
magnitude. For clarity, only the field under the conductors is shown. The total distance
between the two coupling points for each qubit is A/2 at the designed w¥ /27 = 5.91 GHz
which corresponds to a total phase ¢ = w. Therefore, when the first coupling point of
qubit A is at a node, its second coupling point will still be at a node. However, since the
first coupling point of qubit B is symmetrically located between the two coupling points of
qubit A due to the braided configuration (see Fig. 3.6(a)), the coupling points of qubit B
will then be at antinodes, where the fields at the points are phase shifted by 7. We can
clearly see that this is the case from Fig. 3.7(d) which demonstrates that the layout of the
TL is properly designed at w¥/2m and that both qubits should ideally be decoupled from
an electric-field perspective alone. However, this does not explain the shifted decoupling
frequency point we see in Fig. 3.7(c).

To explore this, we added a high density of airbridges to the device layout to see if this
helps with minimizing ground currents close to the junction and thereby reduce the stray
coupling across it. Fig. 3.8(a) shows the transmission coefficient spectra for the L4 sweep
for qubit A. It is clear from the figure that adding airbridges helps to move the decoupling
frequency closer to w¥/2m. This further strengthens our hypothesis about the junction’s
stray coupling to ground currents which prevents the qubit from decoupling at w¥ /27 as
designed. As a final check, we move the position of the junction to the center of the
transmon structure, symmetrically connecting across the two electrode islands, away from
the ground plane and redo the simulation with the airbridges. The results are shown in
Fig. 3.8(b) which agrees well with theory. The qubit decouples very close to the designed
wP /27 GHz. Bringing the junction to the center of the qubit is not a practical choice
for exploring BGT devices as implementing a local flux line to selectively tune the qubits
becomes difficult. But the simulations do give us valuable inputs on how to carefully design
the position the junction for future designs such that the stray coupling to the junction
can be minimized.

3.2.3 Simulating qubit-qubit resonant interaction

The simulation results of the measured device can also be used to study the scattering
parameters of the TL when the qubits are brought into resonance with each other. These
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Figure 3.8: (a) Layout simulation for the BGT device showing |t| as a function of probe
frequency for a high density of airbridges. We immediately see that the simulated de-
coupling frequency moves closer to w¥/2mw. (b) As a final check, we move the position
of the junction in the simulation to the center of the transmon structure, which connects
to the capacitance electrodes symmetrically. The decoupling frequency is now very close
to w /27, which supports our hypothesis about stray coupling of the junction to ground
currents in its vicinity to be the main cause of the deviation of the simulation decoupling
frequency from theory. (¢) Simulated I'yq/27 as a function of probe frequency for different
L%} extracted using Eq. (2.39). The different curves are labelled according to the nature
of the layout simulation. In all three cases, we see the asymmetric dependence of I';y with
probe frequency, strongly deviating at lower frequencies. The probable cause for this is
explained in the main text.
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Figure 3.9: Simulation results showing magnitude and phase of r and ¢ for the measured
BGT device layout when the giant transmons are brought into resonance with each other.
We do this at two frequencies, i.e, near 6.36 GHz and 7.73 GHz.
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simulations are motivated by experimental results discussed in Chapter 6 where we observe
non-standard resonant behavior of the qubits when measuring the transmission co-efficient
at one of the frequency bias points. In Chapter 6, we compare the qubit-qubit resonant
behavior by measuring the transmission coefficient at two different frequency points. So
our goal here is to simulate both the reflection and the transmission coefficient of the
measured device in HFSS near these points. In the simulations, qubit A has a fixed
resonance frequency by keeping L4 constant and the frequency of qubit B is changed by
varying L% in order to bring both qubits into resonance with each other.

To simulate the response of the measured device we use the layout shown in Fig. 3.7(a).
The simulated magnitude, |r|, and phase, 0(r), of the reflection coefficient (S11) together
with |¢t| and 0(t) of the transmission coefficient (S21) of the TL are shown in Fig. 3.9. This
is done at 6.36 GHz (Fig. 3.9(a-d)) and 7.73 GHz (Fig. 3.9(e-h)). Although we do not
measure r in the experiment, the simulated ¢ qualitatively matches the measured results
discussed in Chapter 6. We do not see an avoided level splitting signature of the qubits on
resonance which is expected if the qubits are interacting through the TL. However from the
transmission spectrum at 6.36 GHz, the qubits on resonance seem to merge as one effective
qubit both in |¢| and 6(¢) showing the strongest extinction in |¢| when compared to their
off-resonant behavior. The interesting behavior is seen near 7.73 GHz where the qubits on-
resonant show the strongest transmission with a disappearing |t| but with a strong phase
signature in 6(t). Understanding this in the context of giant artificial atoms remains an
ongoing effort.

3.3 Parametrically-coupled superconducting cavities

We will now focus on the design aspects of parametrically coupled cavities which implement
an optomechanical-like interaction discussed in Chapter 2. To implement this, we consider
a high frequency quarter-wave (\/4) resonator where one of its end is capacitively coupled
to an input TL and the other end is shorted to ground via a SQUID. This forms a quasi-
short boundary condition due to the low impedance of the SQUID which is ~ 10-20 2 from
4-8 GHz. The length of the A\/4 resonator dictates its resonance frequency which is chosen
to be ~ 5.5 GHz. The SQUID of the A/4 resonator is placed near the current antinode
of a low frequency half-wave (A/2) resonator whose fundamental frequency is chosen to be
~ 250 MHz.

In order to implement a photonic piston engine with this device, the main design
goals are (a) to make the bandwidth of the A/4 resonator to be equal to the fundamental
frequency of the A\/2 resonator; (b) low bandwidth and thus high external @ factor for
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the A/2 resonator as it is used for photon storage; (c) frequency tunability of the \/4
resonator which is achieved by the SQUID which also implements tunable coupling to the
A/2 resonator; and (d) prevent higher-order harmonics of the A/2 resonator to interfere
with the A/4 resonator. The first two requirements are easily achieved by designing the
coupling capacitors for the two resonators appropriately which sets the external Q factor
discussed in Chapter 2. We use Q3DExtractor to design the inter-digitated geometry of the
coupling capacitors. The third requirement is satisfied by fabricating a high-critical current
SQUID which galvanically connects the A/4 resonator to ground thereby implementing a
tunable boundary condition as discussed in Chapter 2. However, achieving the fourth
design goal needed a new approach to designing the low frequency \/2 resonator where we
integrate a band stop filter into the resonator itself.

3.3.1 Integrated microwave bandstop cavity

In Chapter 2, we discussed the A/2 resonator using a TL which is capacitively coupled
to the environment at its ends. By having sections of the TL with alternating low and
high impedances, we can suppress the higher order modes of the cavity where the center
frequency of the stop band is determined by the length of the alternating sections. The
roll-off of the stop band is controlled by the number of sections, which also is bounded by
the total length targeted to achieve the fundamental resonance frequency of the cavity. To
develop these ideas further, we will simulate the cavity using ideal CPW TL components
in ADS and the final layout simulation in HFSS.

Circuit simulation

We model the \/2 resonator by constructing CPW TL components with alternating char-
acteristic impedances. A unit cell comprises of a low impedance section with characteristic
impedance Z; which tapers into a high impedance section with characteristic impedance
Zy. A wide range of impedances can be designed by simply changing the width W and
gap S of the CPW section. Each of these impedance sections is of length A\./4 = 5 mm
where A, is the wavelength corresponding to center frequency f. of the stop band which
is chosen to be 6 GHz in our measurement band of 4-8 GHz. The resonator is coupled to
the external environment using inter-digitated coupling capacitors C.. on either of its ends
thus forming a \/2 cavity. The equivalent circuit used for simulation in ADS is shown in
Fig. 3.10(a). The effect of modulating the characteristic impedance of the cavity is shown
in Fig. 3.10(b-c). Without modulation, i.e, when Z, = Z, = Zy = 50 €0, we see the full
spectrum of modes of the resonator. But when the modulation is turned on by setting
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Figure 3.10: (a) Model of a band stop filter integrated as a A/2 resonator for ideal circuit
simulation. A unit cell consists of a low impedance section of length \./4 and impedance
Z; and a high impedance section of length A./4 and impedance Z,. . is the wavelength
corresponding to the center frequency f. of the stop band where the suppression of modes
must occur. A taper section is added to transition the Z; and Zj sections, for matching
the geometry of the center conductors. The total length of the resonator is divided into
unit cells to achieve the desired total length of the A/2 resonator. The bandstop behavior
arises due to the modulating nature of the characteristic impedance of the A\/2 resonator.
(b) Simulated ¢ in dB units as a function of probe frequency without modulation, i.e, the
characteristic impedance of the resonator is fixed at 50 €2. We can see all the harmonic
modes of the resonator in the simulation band. (¢) When the modulation is applied by
appropriately choosing Z; = 31 Q and Z;, = 90 (), we see a bandstop opening around
fo = 6 GHz, which was chosen for this simulation.
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Z; =31 Q and Z;, =90 2, we see a stop band around the designed frequency f. =6 GHz
with excellent attenuation performance. The choice of Z; and Z;, is determined by the
minimum resolution that can be achieved in lithography during the fabrication process.
The total length of the A/2 resonator [/, = 178 mm which should give us a fundamental
frequency fy/2 = 332 MHz which is achieved when there is no modulation. However the
simulated fundamental frequency when the modulation is turned on is 290 MHz. We at-
tribute this change to mode dispersion arising due to the modulation of the characteristic
impedances as well as the loading from the coupling capacitors. For the simulations, we use
C. = 130 fF, which is simulated for the inter-digitated geometry using Q3DExtractor. Mo-
tivated by these results, we move on to the device layout simulations where a high frequency
A/4 resonator is parametrically coupled to the low frequency A/2 bandstop resonator.

3.3.2 Device layout simulations

For the device layout simulations, we integrate the SQUID terminated A/4 resonator with
the A/2 bandstop resonator. The interdigitated coupling capacitors for both resonators are
included in the HFSS layout. Their geometry was optimized in Q3DExtractor to target
a desired capacitance value. For resonator, we simulate C. = 160 fF and for resonator B,
C. = 130 fF using their respective capacitor geometries. The SQUID is modelled as a
lumped inductor whose value is set based on the target E}"** which is calibrated during
fabrication. A typical inductance value for the SQUID used in our coupled-resonator
devices is ~ 500 pH. The resonators are coupled via coupling capacitors to the input and
output feedlines using lumped 50 €2 excitation ports. The HFSS layout and the measured
device are shown in Fig. 3.11(a-b). The measured device has a local flux line which was
never used in the experiment. The layout simulation does not take this into consideration.

To characterize resonator A, we plot the phase, 0(r) 4, of its reflection coefficient ob-
tained from the single port S-parameter simulation in Fig. 3.11(c). The phase shows a
strong overcoupled behavior, an intentional design choice motivated earlier. The reso-
nance frequency is ~ 5.1 GHz, much lower than its bare frequency which is determined by
its length. This is due to the strong capacitive loading of the resonator from its coupling
capacitor as it is extremely overcoupled. The finite impedance of the SQUID also lowers the
resonance frequency further. Resonator B is characterized by simulating its transmission
coefficient obtained from a two port S-parameter simulation. Figure 3.11(d) shows |t|; as a
function of probe frequency showing the fundamental resonance frequency of resonator B.
The wideband nature of the bandstop behavior, which is seen in Fig. 3.10(c), is difficult
to capture in HFSS as the convergence requirements are difficult to meet and hence is not
shown here.
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Figure 3.11: (a) HFSS model of the measured coupled-resonator device. (b) Optical mi-
crograph of the measured 3CP device. (c) Characterization of resonator A by plotting
its 6(r) 4 as a function of probe frequency. The phase shows an overcoupled behavior of
the resonator, necessary design choice for implementing a photonic piston. (b) |t|; as a
function of probe frequency using the simulated transmission coefficient for resonator B.
The plot shows its fundamental resonance frequency.
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Chapter 4

Device fabrication and Measurement
challenges

This thesis is based on work conducted on four devices which were studied in detail using
simulations in the previous chapter. We now come to the part where these designs are re-
alized into measurable entities using standard micro/nanofabrication techniques borrowed
from the silicon IC manufacturing industry, but adapted to suit our needs. The advantage
of working with superconducting circuits these days is that a lot of the processing involves
fabrication techniques and recipes which are mature. The work presented in this thesis
involved building on existing recipes and some which were newly developed to address
the design challenges. In this chapter, we discuss the most relevant fabrication steps and
the measurement challenges involved in characterizing the fabricated devices. For detailed
fabrication recipes, please see Appendix A.

4.1 Fabrication process overview

Once the designs are validated using simulations, we proceed with transferring the CAD
layout into a mask pattern which is encoded in a GDS file, a commonly used format in
many lithography tools that will be used to transfer the pattern onto a substrate. Our
devices are fabricated on a high-resistivity, intrinsic 4-inch silicon substrate with resistivity
p> 20 kQ-cm and processed in a class 100-1000 cleanroom setting. Aluminum (Al) is our
superconducting metal. We use the standard Dolan-bridge technique [32], to fabricate the
Josephson junctions in an ultra-high vacuum (UHV) evaporator with a dedicated oxida-
tion chamber. A typical fabrication run involves ~ 25 steps and processes, all aimed at
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Figure 4.1: Fabrication process flow for the giant transmon and parametrically-coupled
resonator devices highlighting the crucial steps. We begin fabricating devices once a design
has been finalized and a CAD layout has been generated. The fabrication process typically
starts with cleaning the wafer using a combination of acids to remove organic contaminants
and the native oxide layer. This is followed by series of resist processing for lithography,
metal film deposition, wet and dry processing steps, all aimed at transferring the CAD
patterns into physical metal patterns on the wafer. Once the processing is complement
on the wafer, it is then diced into smaller manageable blocks for ebeam lithography and
Josephson junction fabrication. Once the junctions are successfully fabricated, the blocks
are diced into individual chips, where a likely candidate is selected and wirebonded onto a
PCB for measurements, thus completing its fabrication journey.
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producing a reliable yield of devices based on the set design goals. We begin processing
on a full wafer and then transition to a smaller, more manageable form factor (referred
to as a block). Finally, the blocks are diced into individual chips which serve as poten-
tial candidate devices. Dedicated cleanroom wet-bench glassware are allocated where ever
required to avoid cross-contamination with other cleanroom users. Figure 4.1 shows the
overall process flow we adopt to fabricate devices. The detours in the flow are color coded
separately to delineate between the giant transmon device (green) and the coupled-cavities
device (blue) with the common shared fabrication steps indicated by pink. Fabrication
recipes are prone to process variations that can arise due to changes in the cleanroom en-
vironment such as temperature, humidity, etc or it could originate in the equipment used
to fabricate devices. At every step, careful inspection of the wafer/block/chip was done
using an optical microscope to identify any potential issues with fabrication.

4.2 Wafer-level processing

Here, we will address key fabrication steps carried out at the wafer level. When working
with these processes, we use a p-doped silicon wafer, a conventional, inexpensive wafer,
as a test wafer alongside the high-resistivity process wafer. The fabrication steps are first
performed on a test wafer, carefully inspected and when satisfied with the results, we
repeat them on the process wafer. Over time, process variations on recipes can lead to
variations in the obtained results. Using a test wafer helps to account for these variations
in the actual process wafer.

4.2.1 Substrate preparation

Silicon forms a native oxide (SiOy) on its surface which is detrimental to the devices we
work with as it is a source of loss in the form of two-level systems (TLS) [09]. Several
studies have modelled the various interfaces involved in a typical superconducting device,
i.e, substrate-metal, substrate-vacuum and metal-vacuum interfaces. The results show
that the substrate-metal and substrate-vacuum interfaces play a dominant role in the
activation of TLS which amounts to decoherence [33,581]. Hence, obtaining a clean surface
is the starting point in our fabrication process flow. We use a combination of acid chemical
treatments on the process wafers as a first step. To remove any organic contaminants
residing on the surface of the wafer, we use a piranha acid solution which is a combination of
sulphuric acid (HoSO,4) and hydrogen peroxide (HyO,). The piranha solution aggressively
removes the organic contaminants and the resulting vapor products are highly dangerous
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which demands extreme care in handling them. However, it does not remove the native
oxide on silicon. For this we use diluted Hydrofluoric acid (HF) in a controlled-timed
etch to remove the native oxide. To benchmark the efficacy of the cleaning procedure,
we have separately measured superconducting resonators with low-power internal quality
factor Qine ~ 1 x 10° and Qine > 1 x 10° at high-power. HF is easily the most deadly wet
chemical in the cleanroom. Appropriate handling and disposing the chemical is paramount.

An easy way to find out if the oxide has been removed with HF is the de-ionized (DI)
water test. Silicon oxide is hydrophilic but bare silicon is hydrophobic. When the etch is
complete, it is useful to put droplets of DI water on the surface to see if they easily slide
off. If they leave a trail behind, the etch is not complete. Although there isn’t enough
experimental studies detailing the time it would take the oxide to grow back, care should
be taken to proceed to the next step quickly on a time scale of a couple of minutes. From
the Fig. 4.1, for the giant transmon case, we immediately load the wafer into the loadlock
of the evaporator which pumps down to 5 x 10~7 Torr within 10 min. This helps us to
achieve a clean silicon surface prior to Al deposition. For the coupled-cavities device, we
perform substrate cleaning again with HF eventually prior to Al deposition.

4.2.2 Alignment markers and ground plane crossovers

Alignment markers play an important role as a lithography guide when multiple patterns
have to be written which require good alignment between the layers. They are usually
patterned at the beginning so that all subsequent lithography patterns can be aligned to
these marks. Therefore, a robust alignment mark that adheres well to the silicon substrate
is desirable. Also, when patterns are written using electron-beam (ebeam) lithography,
Josephson junctions for instance, additional requirements must be satisfied. For patterning
the junctions, we use a 100 kV ebeam writer which is discussed later. Although Al works
well for optical lithography, it cannot be used as an ebeam-alignment marker as the metal
is largely transparent to the electron flux. Hence, the typical choice of metals for ebeam
markers are high-Z metals like gold (Au), palladium (Pd) and platinum (Pt), which are
visible under the electron beam due to their high atomic weight which increases their
scattering cross section. However, the contrast of visibility depends on the thickness of the
marker metal and the energy of the electron beam. For our giant transmon devices, we use
alignment marks etched in the silicon substrate using a standard Bosch RIE process. We
find that a 4 pum etched silicon trench works well as an ebeam alignment mark. For the
coupled-cavity device, we developed a trilayer marker recipe consisting of titanium (Ti),
Au and Pd.
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Figure 4.2: Ti/Au/Pd trilayer process for alignment marks and for connecting floating
grounds for the coupled-cavities device

The trilayer process specific to the coupled-cavities device has three advantages. Firstly,
Ti is added to improve adhesion of the metal stack with the substrate. Secondly, it is used
to fabricate the markers required for optical and ebeam lithography which is shown in
Fig. 4.2 as an isolated metal stack. Thirdly, Au has a higher atomic weight than Pd and so
adding it as an intermediate layer reduces the effective metal thickness required to achieve
a good contrast during ebeam lithography. Without Au, the Pd required would be ~ 2
times the thickness of Au. This also helps in bringing down the thickness of the metal
stack to values similar to the Al film, which we do not change in the recipe. The use of a
capping layer of Pd is motivated below.

Finally, in the design of the \/4 cavity, the SQUID galvanically contacts the ground
plane in order to have the strongest coupling with the \/2 cavity. This presents an issue
when we have to electrically connect the different floating ground planes on chip using Al
wirebonds as they would result in superconducting ground loops of which the SQUID is
part of. The circulating currents generated in the ground planes as a result of flux biasing
the SQUID would interact with it resulting in undesired parasitic tuning of the SQUID.
One could use Au wirebonds instead but this would result in the formation of “purple
plaque”, an intermetallic Au-Al compound, resulting in poor-ohmic contacts [25]. In order
to break these prospective superconducting loops, we use the trilayer stack as a normal
metal pad to connect the different floating ground planes for the coupled-cavities device.
The disconnected Al ground planes are shown pictorially in Fig. 4.2 as blue islands which
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are connected together using Al wirebonds. The bonds contact the Pd top layer of the
metal stack through a pocket patterned during Al lithography. The Al film is evaporated
at an angle with rotation which gives a good conformal coverage on the trilayer pad. For
the giant transmon devices, the SQUID is electrically isolated from all the ground planes
and hence Al wirebonds were directly used to connect the floating ground planes.

4.2.3 Choice of optical resists

The choice of resist for optical lithography depends on the how the resist pattern would be
transferred to the metal layer. Typically, this is done using additive or subtractive transfer
techniques. In the additive process, popularly known as the lift-off process, the metal is
deposited on a patterned resist. The metal film adheres to the substrate in places where
the resist has been developed away. The undeveloped resist, which is coated with the metal
film, is then washed off using a suitable solvent, leaving behind a patterned metal layer.
In order to aid this process, a typical choice is to use a bilayer resist stack, which in our
case is formed by S1811 as the top layer and PMGI SF7 as the bottom layer as shown in
Fig. 4.3(a). The top layer is sensitive to light and hence serves as an imaging layer defining
the pattern. The bottom layer, being more sensitive, is overexposed to mainly provide
an undercut which helps the metal film to liftoff easily. Without the undercut, the film
would deposit on the resist sidewall making liftoff difficult. For the subtractive process,
the patterned resist is on top of a metal film. The metal is then etched using wet or dry
processes in places where the resist has been developed away. The remaining resist serves
as a physical mask to prevent the metal underneath it from being etched away. In this
case, a single layer of S1811 is used as an etch mask as shown in Fig. 4.3(b).

For the coupled-cavities device, we use a liftoff-process to pattern the trilayer alignment
markers/crossovers and pattern the Al metal film by wet etching it using Transcene’s Al

Etchant type-A solution. For the giant transmon devices, we use a dry metal RIE technique
to etch the Al film.

4.2.4 Wafer lithography

To pattern the resist for optical lithography we use a maskless aligner (MLA) from Heidel-
berg Instruments which directly writes the desired pattern onto a resist-coated substrate.
In the past, we used mask aligners for fabricating devices but switched to the MLA after
it was commissioned in the cleanroom. The advantage with MLA over traditional mask
aligners is the absence of a physical mask, which needs to be fabricated separately by
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Figure 4.3: Choice of resist for optical lithography for (a) liftoff and (b) wet/dry etch
processes. The illustration is not drawn to scale.

a third party. This helps with iterating designs on the fly. The MLA also offers better
resolution (~ 800 nm) with minimal offsets (~ 500 nm) during overlay exposures using
automated alignment mark detection routines. The machine converts the GDS layout into
a proprietary format which is then written at a dose which was optimized to minimize
over development of the resist after exposure. A typical exposure time on a 4-inch wafer is
18 min. The alignment marks and the Al film for all devices discussed in this thesis were
patterned using the MLA.

4.3 Block-level processing

Once the markers and the Al film are patterned, the wafer is diced into 24x24 mm? blocks.
A process wafer yields a total of 9 blocks and each block has an array of 6 chips. A block
is used to fabricate Josephson junctions for all the 6 chips using ebeam lithography. We
will briefly discuss the details of junction fabrication in this section.

4.3.1 Ebeam-lithography

We use the JEOL JBX-6300FS ebeam lithography system to pattern the Josephson junc-
tions. This is a 100 kV system with capabilities of writing over a full 6-inch wafer or on
arbitrarily small samples using appropriate holders. The block-level GDS pattern file is
converted to job files for the JEOL which has additional information such as ebeam dose,
beam step size during exposure, proximity error-corrected dose factors for the pattern,
coordinates of the global and local alignment marks, etc. Prior to exposing the resist
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with this tool, several calibration routines are manually run in order to account for beam
alignment, drift, electromagnetic interference in the beam deflector coils, alignment mark
detection etc. Once the calibration routines are done for every beam current that will be
used for writing, the exposure is begun by running the appropriate job files. We use a
lower current (~ 2 nA) for writing small features such as the SQUID and a larger current
(~ 4 nA and ~ 20 nA) for the larger features such as the transmon’s capacitance electrodes
and the resonator’s coupling capacitors. Any alignment offset we observe from the MLA
exposure discussed earlier between the marker pattern and the Al film pattern is taken
into account during the ebeam exposure of the junction patterns.

4.3.2 Josephson-junction fabrication

The Josephson junctions are fabricated using a lift-off process. We choose a bilayer resist
stack to aid the lift-off process. We use MMA-MAA EL11 copolymer or PMGI SF11 as
an underlayer resist depending on the device being fabricated. The top layer which is the
imaging resist should offer high resolution to ebeam exposure. PMMA or ZEP (diluted in
Anisol) is used as the imaging layer. For the coupled-cavity device, we use PMGI SF11
and PMMA A3. For the giant transmon devices, we use MMA-MAA EL11 and ZEP. The
resist stack in our devices also benefit from being selective to the developer solution.

Once the pattern is written and the resists developed, the block is loaded to a UHV
Plassys evaporator. This equipment has a separate loadlock, evaporation chamber and an
oxidation chamber. The loadlock is able to pump down from atmosphere to 5 x 10~7 Torr
in 10 min. The base pressure of the evaporation and oxidation chamber is ~ 5 x 10~ Torr
and ~ 6 x 107'° Torr respectively. Robot arms can move the sample between the chambers
without having to break the vacuum. The ultra-high vacuum environment enables us to
make high quality devices and junctions. The loadlock chamber has an ion gun which is
used to etch the native oxide on Al in order to make galvanic contacts. The tiltable sample
holder stage in the evaporation chamber enables double-angle evaporation of Al to make
junctions.

The shadow evaporation technique, also known as the Dolan-bridge technique, is used
to fabricate the Al Josephson junctions in our devices [$2]. The technique is illustrated
in Fig. 4.4(a-b). The resist stack is patterned in a way such that a part of the top layer
is suspended, forming a shadow mask. When evaporating Al at two angles as shown, an
overlap, o, between the metal layers is formed which to first order can be written as:

o = 2ttan(d) — w, (4.1)
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Figure 4.4: (a) and (b) showing the double angle evaporation for fabricating Josephson
junctions using the Dolan-bridge technique. (¢) A cartoon of a typical SQUID showing the
overlapping metal layer which form the junctions. (d) A scanning electron micrograph of
a SQUID fabricating using the Dolan bridge technique. (e) False-colored close up of the
SQUID showing the junction with typical dimensions for fabricating qubits.
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where ¢ is the thickness of the bottom resist, 6 is the tilt angle of the substrate holder with
respect to the horizontal and w is the width of the suspended resist. This expression is
true when the thickness of two metal layers is small when compared to t.

When a controlled oxidation step is introduced between the two evaporation steps,
we get a Josephson junction. The rate of oxide growth on the Al film depends on the
oxidation pressure and the oxidation time [36]. This is done by moving the sample from
the evaporation chamber to the oxidation chamber after the first angle evaporation. We
use static and dynamic oxidation depending on the device being fabricated. For static
oxidation, oxygen is bled into the chamber up to a certain target pressure. In the dynamic
case, the flow is continuously monitored to maintain a fixed pressure in the chamber while it
is also continuously pumped. Dynamic oxidation is more reproducible when lower pressures
are desired, thus helps with achieving a thinner oxide for making high critical current
junctions. The sample continues to stay in the oxygen environment for a calibrated time
before it is brought back to the evaporation chamber for the second angle evaporation.
Typically the thickness of Al for making our junction is 40460 nm from the two evaporation
steps. Once the oxide barrier is capped by the second evaporation, we transfer the sample
back to the oxidation chamber where a final high pressure oxidation forms a self-limiting
oxide layer on Al. We believe that creating this oxide in a clean environment is better than
having it form in ambient conditions when the device is removed from the evaporator.
Finally, the evaporated block is left overnight (10-12 hours) in solvent for lift-off under
cleanroom ambient temperature conditions. We find that this process gives us better lift-
off than doing it in a hot solvent for a few hours. Fig. 4.4(c) shows a illustration of a
SQUID pattern that is obtained following double-angle evaporation. A scanning electron
microscope (SEM) image of a fabricated SQUID device with a false-colored close up of the
Josephson junction is shown in Fig. 4.4(d-e).

4.3.3 Measuring junction resistance

Once the lift-off is complete, we probe test junctions by measuring their room-temperature
resistance. The test junctions are exact copies of the device junctions in the chip designs.
These are placed across the chip and measuring the resistance of all of the test junctions in
the block helps us to benchmark the process variation in the junction fab. We observe that
our junctions are quite uniform with about 2 — 5 % variation in the measured resistances.
The room-temperature resistance gives us an estimate of the critical current of the junction,
as discussed in chapter 2. After the resistance checks, we spin-coat the block with 3—4 pym
of SPR, a UV resist which is used to protect the block when dicing.
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4.4 Chip-level processing

After the block has been diced into individual chips, we remove the protective resist from
them using Acetone and IPA. During the spin coating step of SPR, we bake the block at
110° C for 90 s. We noticed that the resistance of our junctions increased during this step
by ~ 8 — 10 %. We can factor this change by modifying the junction geometry accordingly.
However, for the devices discussed in this thesis, this change is insignificant. Finally, the
chips are inspected in an optical microscope and the best candidate is selected for cooldown.

4.4.1 Sample preparation and wire-bonding

To prepare the sample for cooldown, first it has to be wirebonded to the PCB which is
housed in a sample box made out of Au-plated oxygen-free copper (Cu). A pocket is milled
in the PCB such that the sample is flush to the top of the board. To glue the sample in
place, we use a dab of Apiezon N-grease, which is cryogenic and vacuum compatible and
thermally conducting. Once this has dried, we proceed to wirebonding the sample. We
use a semi-automatic bonder with calibrated bond settings to place a high density of Al
wirebonds across the chip and the PCB. Optical micrographs of the wirebonded devices
are shown in chapter 3. The sample is now ready for low-temperature characterization.

4.5 Challenges with low temperature measurements

In this section, we present the details of the measurement setup implemented to charac-
terize the devices presented in this thesis. The challenges associated with probing super-
conducting devices are plenty. These mainly fall under the category of device operating
temperature, employing better thermal and noise filtering techniques, routing signals to
and from the cryostat, shielding from electromagnetic interferences (EMI), protecting the
device from stray magnetic fields, among many others. We discuss some of these issues
and the measures taken to improve the general microwave hygiene of our setup.

4.5.1 Printed circuit board (PCB)

We work with Rogers 3010 laminate as our PCB material, which has a dielectric constant of
10.2 and a low dissipation factor in our measurement band. The high dielectric constant of
the PCB, ensures close matching of phase velocity of microwaves with the silicon substrate.
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The ground planes on the front and back of the PCB are connected using copper-plated
through holes. The PCB is coated with a soft gold finish without a nickel (Ni) intermediate
layer during the electroplating process. This ensures the absence of magnetic impurities
that could have been present if Ni was used. The soft gold also improves the adhesion of
the wirebonds on the surface of the PCB. The CPW launches on the PCB are geometrically
matched to those on the chip to ensure a smooth 50 2 transition. To minimize reflections
due to the wirebonds connecting the two CPW center conductors on the PCB and the chip,
its length is kept as short as possible. A general rule of thumb for wirebond inductance is
1 nH/mm, and typical wirebond length in our devices is ~ 0.5 — 1 mm. In preparation for
the measurements that follow, we highlight some of the main challenges of low-temperature
characterization and the steps taken to address them.

4.5.2 Operating temperature and device thermalization

The devices must be cooled down to temperatures below the critical temperature T, of
the metal for superconductivity to persist. Aluminum, which is the choice of metal in
our devices, has a T, = 1.2 K. However, to operate devices in the quantum regime, the
average thermal energy kgT', where kg is the Boltzmann constant and 7' is the tempera-
ture, has to be much lower than the energy of the photons Aw used to probe the devices,
typically in the 4 — 8 GHz band. To achieve kT < hw, we use a commercially available
dilution refrigerator from Bluefors, capable of achieving a base temperature of ~ 8 mK.
The wirebonded device encapsulated in a sample box, made out of gold-plated oxygen-free
high-conductivity copper (OFHC), is then mounted onto the base plate of the dilution
refrigerator using an OFHC mounting bracket as illustrated in Fig. 4.5(a). Operating
devices at such low temperatures ensures that the residual thermal excitations from the
background are suppressed, leading to a lower probability of quasi particle formation, a
known source of loss in superconducting circuits [37].

Achieving a low operating temperature with the dilution refrigerator does not guarantee
that the sample is also thermalized to the same temperature. The efficiency of cooling the
sample depends on many factors. The bulk of the cooling comes from the wirebonds that
connect the sample and the PCB. Apiezon N-grease, which glues the sample to the PCB,
also aids in this cooling. The PCB gets cooled by the sample box and the edge-mounted
SMA connectors, which is discussed later when reviewing the sample-box design. As the
sample box is directly mounted onto the OFHC bracket of the base plate, the contact areas
of the two surfaces needs to be well-polished. To further improve the thermal conductivity
across these areas, a dab of N-grease is applied to fill out any gaps created by micro ridges
in the surface profile.
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4.5.3 Sample box design

The first level of electromagnetic shielding for the device is provided by the sample box,
which acts as a Faraday cage. For the devices studied in this thesis, a new sample box
was designed, combining the simplicity of machining and assembly while providing efficient
thermalization of the sample. The CAD layout, together with the machined sample box
prior to gold plating, is shown in Fig. 4.5(b-e). The box has access to six ports, which
are connectorized using edge-mountable female SMA bulkhead connectors from Fairview
Microwave, which are rated from DC-18 GHz. The connector dimensions are chosen such
that the diameter of its center pin matches the PCB center trace width with the edge-
mount gap allowing the PCB to fit snuggly with the connectors, as shown in Fig. 4.5(e). A
small pedestal, separately machined, holds the PCB in place while providing the necessary
thermalization with the rest of the sample box. Once the parts are assembled, the center
pin and the ground prongs of the connectors are soldered to the PCB. The lid of the box
is machined with lips to ensure that the volume of the hollow cavity inside the box is
mostly set by the PCB’s lateral dimensions and the height controlled by the gap between
the lip and the PCB. The Eigenmode simulation in HFSS (not shown here) of the inner
rectangular cavity confirms that the lowest TE101 mode is outside the measurement band.
The simulation also includes the effect of the PCB, which tends to bring down the mode
frequency resulting from dielectric loading.

Finally, to generate an external magnetic field, the sample box is mounted with a
custom made solenoid coil which helps in tuning the resonance frequency of the qubits and
the A/4 cavity in our experiments. The leads of the coil extend up to room temperature,
properly thermalized at each temperature stage of the dilution refrigerator, in a twisted-pair
configuration to minimize the pickup of flux noise. At room temperature, we current-bias
the coil using a suitable series resistor (1 — 10 kQ2) at the output of a voltage source. The
series resistor is housed in a metal box with capacitors (10 pF) connected across the coil
leads in a 7 network to implement a low pass filter which results in a cut-off frequency of
a few Hz. This further helps in reducing noise riding on the coil leads, for instance digital
noise emanating from the voltage source.

4.5.4 Thermal, superconducting and Mu-metal shielding
The microwave frequency range used in superconducting circuit experiments (4 — 8 GHz)
also supports other communication channel bandwidths, mobile phones for instance. Hence,

shielding from these signals is important. The sample box does well protecting the device
as the first level of defense against unwanted EMI in a practical experimental setting.
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Figure 4.5: (a) CAD drawing of the sample box used in this thesis. The box is mounted to
a cold finger which in turn is attached to the base plate of the dilution refrigerator. (b) and
(c) shows the sample box design with assembles parts. The SMA edge-mountable female
connectors for the box are shown for illustration purposes. (d) Parts of the sample box
after machining. (e) The PCB is edge mounted and sits on top of a pedestal which cools
the PCB from the bottom. The bottom image shows the cross-section of the box without
the right bottom part.

79



Objects also emanate thermal black-body radiation given their physical temperature, a
detrimental effect to superconductivity. The higher the temperature, greater is the prob-
ability of breaking Cooper pairs, thus creating quasi particles in the device. The sample
box also protects the device from black-body radiation emanating from higher temperature
stages in the dilution refrigerator. The fridge also comes with its own set of shielding cans
which are attached to different temperature stages at the time of a cooldown which helps
in minimizing the level of thermal radiation reaching the base temperature stage. Also,
care is taken to cover up any line of sight ports, holes in the different stages with copper
tape to prevent radiation from seeping into the sample box. In the next, section we will
see how thermal management is performed on the coaxial cables used to route signals to
and from the device.

We will now discuss another shielding issue especially when dealing with superconduct-
ing devices. The Meissner effect (see Chapter 2), can be used to shield devices against
external magnetic fields by surrounding them with a superconducting material. We use a
cylindrical can made of Al, mounted directly to the base plate or through the OFHC cop-
per bracket, surrounding the sample box. The devices presented in this thesis all contain a
SQUID, which is extremely sensitive to magnetic fields. We use an external coil mounted
to the sample box to flux bias the SQUID which ideally should only be sensitive to the field
generated by the coil. Without proper magnetic shielding, the SQUID becomes sensitive
to spurious fields generated by everyday metal objects, magnetic components inside the
dilution refrigerator, nearby lab infrastructure or even the earth’s magnetic field. When
the Al can goes superconducting, it expels any magnetic field lines external to it thus
preventing them from reaching the device. Since the coil is inside the shield, its field lines
are minimally distorted and the SQUID is now only sensitive to the coil as preferred.

A caveat to using superconductors as magnetic shields is related to their thermal con-
ductivity. Superconductors are perfect electrical conductors but poor conductors of heat.
The situation is better understood by considering the moment when the Al shield goes su-
perconducting. The part of the shield which goes superconducting first, usually the surface
contacting the OFHC copper bracket, now becomes a bad thermal conductor effectively
decoupling the rest of the shield from the cryostat. We address this issue by fitting a
copper mesh around the Al can with copper braids which connect to the base plate. These
help cool down the Al shield evenly. Once the can is fully superconducting, any stray fields
penetrating the can will be frozen. However, if the fields are non-uniform, this can result
in a field gradient inside the can which the SQUID can be sensitive to. A complementary
solution to this problem is to allow the superconducting can to cool down in a low-magnetic
background in the first place. This is achieved by a mu-metal shield.

A mu-metal is a soft ferromagnetic alloy composed of nickel and iron, usually known
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Figure 4.6: Details of magnetic shielding at the base temperature using superconducting
Al and cryoperm cans
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for its very high permeability often in the range of 50,000 — 100, 000, thereby providing
an extremely low reluctance path for magnetic field lines. Unlike the superconducting
shield which works by expelling the field lines around the sample box, mu-metal shields
work by drawing the field lines into them. We use a Cryoperm shield, custom designed
and fabricated by the company MuShield. Cryoperm offers the highest permeability at
cryogenic temperatures. The shield is designed in the shape of a cylinder, with one of
its ends opened, designed to fit around the superconducting Al shield by mounting it to
the OFHC copper bracket. The Cryoperm shield drastically reduces any background field
present near the Al can, allowing it to transition into the superconducting state in a low-
field environment. Figure 4.6 illustrates the mounting of the superconducting and the
Cryoperm shields. An additional mu-metal shield was provided by Bluefors which is snug
fitted to the vacuum can of the dilution refrigerator. Adding the Cryoperm can around
the Al shield improved the dephasing time of our qubits.

4.5.5 Wiring the dilution refrigerator

The situation gets even more challenging when the different stages are connected by coax-
ial cables which bring signals to and from the device. There are two main issues with
coaxial cables. Firstly, each cable forms a direct thermal link between the stages due
to the material’s finite thermal conductivity. Hence, choosing the appropriate cable ma-
terial for the different temperature stages is important to prevent heat leakage between
the stages. Secondly, the black-body radiation of the different temperature stages of the
dilution refrigerator making its way down through the cables into the device.

To promote thermal isolation between the stages, we use beryllium copper (BeCu)
cables between room temperature and 50 K stage and subsequently between 50 K stage
and 3 K stage for both input and output lines. BeCu has a lower thermal and electrical
conductivity than copper. For the stages below 3 K, we use niobium (Nb) cables everywhere
on the output line. Nb is superconducting below ~ 7 K which offers the best thermal
isolation while maintaining perfect electrical conductivity. For the input lines, we use
stainless steel (SS) cables between the 800 mK and 100 mK stages and Nb cables for the
rest. SS offers higher attenuation and better thermal isolation. Copper (Cu) cables are
used for connecting components within the same stage. The SMA connectors on the SS
and Nb cables are crimped while the rest are hand soldered. EZ form flexible cables with
nonmagnetic SMA connectors are used to connect to the sample box.

To attenuate the black-body radiation from room temperature and the subsequent
stages from reaching the device through the cables, cryo-compatible microwave attenuators
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from XMA Corporation are installed at every stage for all the input cables. The choice
of attenuation between the different temperature stages depends on the ratio of their
respective thermal photon occupancies and the cooling power of each stage. This can be
understood by considering the average thermal photon occupation (n),, for each stage,
which is given by the Plank distribution as,

1
()en = exp(hw/kpgT) — 1’

(4.2)

For a given frequency, when hiw < kgT', (n),, ~ T. The attenuation required between each
stage would then be proportional to the ratio of the stage temperatures. However, when
hw ~ kT which for a 20 GHz photon is ~ 1 K, below this temperature the attenuation
required depends exponentially on the ratio of the stage temperatures. Although, it is
not possible to fully attenuate the thermal photons using attenuators alone, additional
microwave filters (low-pass and band-pass filters) from RLC Electronics were used on the
input and output lines to filter out the stray thermal photons outside the measurement
band. The combination of attenuators and filters reduce the overall background radiation
to acceptable levels so that the device operates in the quantum regime. The attenuators also
aid in thermalizing the center conductor of the cable to the respective stage temperatures.

Typically, the device operating power is at the level of an average single photon which
is ~ —140 to —160 dBm. The total attenuation required to achieve such low power is
distributed at room temperature and across the different stages inside the refrigerator.
Typically, we have 70 dB of attenuation at room temperature. The remaining attenuation
is distributed accordingly between the stages as discussed earlier. Figure 4.7 shows the
attenuation between different stages inside the refrigerator.

4.5.6 Measurement setup

A detailed description of the wiring scheme for the dilution refrigerator is shown in Fig. 4.7.
The setup on the left is for the coupled-cavities device with the right used for the single
and braided giant transmon devices. Devices are typically characterized by measuring the
reflection or the transmission coefficient.

Since the output signal at the device is extremely low, typically at single-photon power
levels, it is amplified to levels which can be measured at room temperature (~ —30 to
—60 dBm). The first stage of amplification is done using a cryogenic high electron mobility
transistor (HEMT) obtained from Low Noise Factory. The HEMT has a high gain (~
40 dB) and a low noise temperature (~ 1.5 — 3 K). Subsequent amplification is done
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at room temperature. For the coupled-cavities device, the \/4 cavity was measured in
reflection. Circulators were used in this case to separate the input and the reflected fields.
They also help with absorbing thermal radiation emanating from the HEMT. To measure
the higher harmonic modes of the A\/2 cavity simultaneously using the same amplifier, a
microwave switch from Radiall was installed at the base plate to shift between the outputs
of the two cavities.

Input LF Input HF Output
py npu uﬂpu Coil flux bias Coil flux bias
___________________ 2 _ .
50K 50K
3K T 3K
______________ ) 800mK __
800mK
______________ 100mK 100mK
______________ _ —_— - —_— -
8mK 8mK

D — Cryo attenuator
A — HEMT amplifier
@ — Circulator

\ — Low pass filter

— Band pass filter

/| — Microwave switch

>o< — Twisted pair cable

— Carbon nanotube based filter
T

Figure 4.7: The wiring diagram inside the fridge used for the characterization of the
coupled-resonator device (left) and the giant transmon devices (right).

For the giant transmon devices, the circulators are on the output side as they are
characterized by measuring the transmission coefficient. To block high-frequency thermal
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radiation (which are several tens of GHz to THz) on the input line, we use a carbon
nanotube-based filter described in more detail in [38]. In the setup shown on the right,
the X (voltage) and Z (flux) lines were used for the braided giant transmon device and are
wired appropriately during the experiment.

For measuring the reflection and the transmission coefficient, we use a vector network
analyzer (VNA) E5071C from Agilent at room temperature. Additional microwave sources
from PhaseMatrix were used for performing two-tone spectroscopy.
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Chapter 5

Level structure of a single-giant
artificial atom

In this chapter, we will focus on the characterization of our single-giant transmon devices
using continuous frequency-domain techniques. We present experimental data of two giant
transmon devices, each with three (3CP) and six coupling points (6CP) to a 1D open TL.
We will compare our experimental data to electromagnetic simulations presented earlier
which brings out several different insights on how future devices can be designed.

5.1 Scattering from an artificial atom

Consider an illustration of an artificial atom coupled to a TL as shown in Fig. 5.1(a).
When the atom is probed by injecting a weak probe field, Vp, into the TL as shown, the
excited atom emits field in both directions, V= and V', into the TL. The left-propagating
emitted field of the qubit, V', constructively interferes with Vp, resulting in full reflection
on resonance, whereas, the right-propagating emitted field destructively interferes with Vp

resulting in zero transmission [13]. The reflection and the transmission coefficient can be
written as,
V- y Vv
r=— t=—.
Vp Vp

For an artificial atom coupled to 1D TL, ¢ for the |0) — |1) transition is given by
Eq. (2.39). In the absence of dephasing, for a weak probe (£, < 719) of frequency w, on
resonance with the |0) — |1) transition of the atom, i.e, dw, = 0, the scattering from the
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Figure 5.1: (a) Model of a an artificial atom coupled to a TL. The atom when excited by
a weak resonant probe Vp will emit fields in both directions. V'~ constructively interferes
with Vp leading to full reflection of the probe field whereas V' destructively interferes
with Vp leading to full extinction of the probe field. (b) Transmission spectrum showing
|t| as a function of probe frequency for the 3CP device and (c) for the 6CP device. We see
extinction in |¢| (symbols) when a weak probe field is resonant with the |0) — |1) transition
frequency. The solid lines are fits using Eq. 2.39 under weak probing conditions.

atom will lead to full extinction i.e, |[t| = 0. However, experimentally there is always a finite
dephasing of the atom. The residual transmission at resonance is then, t = I'y/(T's+1'10/2),
such that strong extinction implies I'jg > I'y and, conversely, weak extinction implies
I'yo < T'y. The strength of extinction hence quantifies the coupling strength of the |0) — |1)
transition.

Figure 5.1(b-c) shows the magnitude of the measured transmission co-efficient, |¢|, for
the 3CP and 6CP devices at a flux bias point when the |0) — [1) transition is near w§ (see
section 3.1.1). We use Eq. (2.39) to fit the measured transmission spectrum and extract
the various rates. From the measured transmittance, T = |t|*, at the qubit’s resonance
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frequency, we obtain a maximum extinction of 98.45% and 98.69% for the 3CP and 6CP
devices respectively.

5.1.1 Background subtraction for qubit measurements

The transmission coefficient t,,0.s of a qubit coupled to a TL, measured by the VNA| is in
the form of |tyeas| (AB) and Opeas (degrees) with a background level as set by the physical
attenuation in our input line and the output gain of our amplifiers (see Chapter 4). This
background also contains ripples due to reflections which might arise due to impedance
mismatches from cables, connectors etc. In order to normalize this background level in our
qubit measurements, we bias the qubit frequency away from the measurement band and
obtain a background transmission coefficient trace, tyg, using |the| (dB) and 6y, (degrees).
The normalized transmission coefficient, ¢, is then obtained by dividing the complex (linear)
coeflicients, i.e, t = tieas/trg. In dB units, this is equivalent to,

|t| (dB) - |tmeaS| - |tbg|~
6 (degrees) = Omeas — Ohyg-

To convert |¢| (dB) into linear units,

It| = 10t (dB)/20)

We use this background subtraction method for normalized data presented in this thesis.
We also note that the quality of fit generally improved after subtracting the background
in our qubit experiments.

5.1.2 Considerations for fitting data

When dealing with resonance features studied using spectroscopy techniques, it is impor-
tant to note that the resonance lineshape can sometimes be distorted. This asymmetric
lineshape, often a result of a Fano resonance, has its origin resulting from an interference
between the feature under study and its electromagnetic environment [39]. In typical se-
tups such as ours, Fano resonances can also occur due to spurious microwave modes. In
an experiment, we measure the transmission coefficient ¢, which can be written in complex
form as t = a + ib, where a and b represent the real and imaginary parts. To account
for the asymmetric lineshape due to Fano resonance, we add a rotation term as a fitting
parameter to the data by rewriting ¢ as,

t = (a +ib)e'® = (acos ¢ — bsin ¢) + i(asin ¢ + bcos ).
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Figure 5.2: Probe-power dependent saturation of a giant transmon in our 3CP device. (a)
2D color plot showing |¢| for different room temperature (RT) probe powers as a function
of probe frequency. As the probe power increases, due to the nonlinearity of the qubit,
we see strong saturation. (b) We plot the measured transmittance (symbols) of the probe
field, T' = |t|2, extracted on resonance with the qubit as a function of RT probe power.
The solid line is a fit using Eq. 2.39 by substituting €2, = V2ki07/Prr. The plot shows
almost zero transmission at low probe powers and full transmission at high powers.

where ¢ is the rotation angle. Near resonance we can rewrite ¢ = @ofiset + (W — w10)tdelay,
where @omer fixes the asymmetry and fgeay accounts for the slope in the transmission
response which arises due to electrical delay. We use these additional two parameters in
the fitting function for ¢ given by Eq. (2.39).

5.2 Saturation of an artificial atom

An interesting physical effect is the strong saturation of the qubit as a function of probe
amplitude. In the section above, we analyzed the qubit’s transmission properties using a
weak probe field, i.e, the Rabi frequency induced by the probe, €2, is weak, thus neglecting
its effect. When €2, > 7,0, the nonlinearity of the qubit saturates due to the large influx
of the probe photons. Since the qubit can only absorb or emit a single photon at a time,
a majority of the probe photons will be transmitted without interacting with the qubit
where |t| = 1 at higher probe amplitudes. Figure 5.2(a) shows a 2D color plot of |t| for
different probe powers as a function of w, for the 3CP device. Specifically, we control the
probe power by varying the power of the VNA source, Prr, at room temperature (RT).
We can see strong nonlinear saturation of the atom at higher powers. From this, we can
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then extract 7" measured on resonance with the |0) — |1) transition for the different probe
powers and is plotted it in Fig. 5.2(b).

For an artificial atom coupled to 1D vacuum, such as the case studied here, the Rabi
frequency €2;; of any atomic transition, |i) — |7), is given by [21]:

jS - ﬁkji\/Pji (51)

where, k;; is the atom-field coupling constant for the |i) —|j) transition, Pj; is the absolute
probe power as seen by the atom which includes the attenuation in the input line. The
solid line in Fig. 5.2(b) is a fit using Eq. (2.39) by substituting Q, = Q19 = v2kiov/Prr
and using ki as the fitting parameter. It is important to note here that the value of k;; we
extract using this method, here and in our later measurements, combines the fundamental
coupling constant along with experimental effects such as loss in the TL. We instead use
(;; as an absolute self-calibrated measure of our probe power as seen by the atom.

5.3 |0) — |1) transition spectroscopy

In this section, we will first characterize the frequency tunability of the |0) —|1) transition
of our giant transmon devices. Following this, we will extract the coupling rate of the
|0) — |1) transition as a function of the transmon resonance frequency.

5.3.1 Frequency-dependent coupling of |0) — |1) transition

As discussed in Chapter 2, one of the major advantages of using artificial atoms over
natural atoms is that, their transition frequencies can be tuned over a wide range in the
measurement bandwidth. The |0) — |1) transition frequency of the transmon qubit, fig, is
given by [34]:
8E;(P)E. — E.
h Y
where E;(®) is the flux dependent Josephson energy of the SQUID and E, = ¢*/2C% is
the charging energy of the transmon with Cy representing the total capacitance of the
transmon structure. We use a small coil which is attached to the sample box in order to
generate an external flux, ®. The coil is excited using a voltage source with a bias resistor
at room temperature with integrated low pass filters.

(5.2)

fio =

90



a
1.0 1.0
0.45 05 05
0.0 0.40 0.0
6.95 i 70
0.40 & D &
T 2 l 0.35 T
0.35
1.0} 1.0
05 : 0.3005 i
0.30 - \ \
0 e I et 13 0.0 1

,/27 [GHz]

Figure 5.3: Transmission spectroscopy of the giant transmon for the (a) 3CP and (b) 6CP
devices for a weak probe at w,. We tune the transition frequency of the giant transmon
by changing the external magnetic flux, ®. The color scale indicates the magnitude of
the transmission coefficient, . When the transmon is biased close to w3 (indicated by
red arrows), we see strong extinction of the probe, suggesting that the qubit is strongly
coupled to the TL. We also observe frequency regions where the probe’s extinction is
weak (indicated by blue arrows), implying that the coupling of the transmon to the TL is
suppressed. The insets in (a) and (b) are linecuts taken at the flux bias points indicated
by the corresponding colored arrows. The background has been subtracted for clarity in
both figures.

By using transmission spectroscopy data as discussed above, we probe our giant trans-
mon for different flux bias conditions under weak probing conditions. Figure 5.3 shows a
2D color plot of || as a function of probe frequency for various flux biases for both 3CP and
6CP devices. We calibrate the flux quantum, ®,, by measuring many periods of this flux
bias curve (not shown here). As we tune the frequency of the giant transmon, we observe
that the on-resonant extinction of the qubit is strongly modulated. We show this at two
flux bias points, where we observe maximum and minimum coupling of the |0) — |1) transi-
tion of the giant transmon to the TL as indicated by the red and blue arrows respectively.
The maximum coupling happens near w} as predicted by theory [27] (see section 3.1.1)

whereas the minimum coupling frequency disagrees with the theoretical prediction.

A key feature of the giant artificial atom is the predicted frequency dependence of its
coupling to its electromagnetic environment. Here, we will use high resolution transmission
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Figure 5.4: By fitting transmission spectroscopy data similar to Fig. 5.3 using Eq. (2.39),
we can extract the relevant rates for different qubit frequencies. The rates are normalized to
the maximum '™ (see Table 5.1). The transmon frequency wy is normalized to the center
frequency ween of the rate profiles (extracted from a Lorentzian fit to the profiles). The 6CP
device has a sharper relaxation-rate profile, consistent with the theoretical prediction of
stronger interference resulting from the larger number of coupling points. The profiles that
we extract for the two devices are narrower than the theoretical prediction [27] by a factor
of approximately 2. However, we see that the FWHM of the 6CP device is approximately
half that of the 3CP device, which agrees with the predicted scaling.

spectroscopy data, similar to Fig. 5.3, and extract the various rates, I'p, I'y and vy for
both 3CP and 6CP devices as a function of the |0) — |1) transition frequency. We use
Eq. (2.39) to fit the transmission spectrum for every frequency bias point of the |0) — |1)
transition. We do this under weak probing conditions as mentioned above. Figure 5.4
shows the extracted rates, I'yg and I'y, as a function of wyy. The rates are normalized to
the maximum relaxation rate, I'[i™*, and wy is normalized to the center frequency, ween of
the rate profile for the respective device. We obtain wee, from a Lorentzian fit to the rate
profiles (not shown here).

The 6CP device shows a stronger modulation of the coupling rate when compared to
the 3CP device as expected due to the higher number of coupling points which results
in stronger interference effects as discussed in Chapter 2. A typical figure of merit which
characterizes the maximum and the minimum coupling of the |0) — |1) transition is the on-
off ratio, « = I /T where T'™ is measured at wy,. We measure o > 300 for the 6CP
device. To our knowledge, this is a record high on-off ratio measured for a superconducting
waveguide QED device at the time of writing this thesis. Table 5.1 summarizes the various
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] Device \ Emax [p, \ E./h \ Winax /27T \ Winin /27 \ rmax /o \ rmin /2 \ a \ Brmax \ Brnin \
3CP 32.13 ]0.460 | 5.734 6936 |25 x103[1.1x103] 23 ] 13 [0.26
6CP 32.13 | 0429 | 6.036 6.827 | 17x1073 | 44x107% | 380 | 62 | 0.29

Table 5.1: Parameters for the 3CP and 6CP devices. All values are expressed in GHz
except for a, Fmax, and Buin, which are dimensionless. The quantity « is the ratio of the
maximum to the minimum coupling strength of the |0) — |1) transition. The quantity 5 is
the ratio of the |1) — |2) to the |0) — |1) coupling strength. The ratios fpax and B, are
measured at two different flux biases, one which maximizes and one which minimizes 3.

parameters extracted using this method for both devices.

A key point to note here is that although the maximum coupling of the |[0) — |1)
transition occurs at ~ w§, we observe that our minimal-coupling points occur at frequencies
different from those predicted by theory [27]. Generally, we find that the experimental
curves are narrower when compared to the theoretical predictions. However, we observe
that the full width at half maximum (FWHM) of the 6CP device, FWHMgcp = 377 MHz
is narrower than that of the 3CP device, FWHM3cp = 687 MHz, by approximately a factor
of 2, which is consistent with the scaling predicted by theory [27]. The theoretical FWHM

of the 3CP and 6CP devices are 1.78 GHz and 853 MHz, respectively.

To study the cause of this discrepancy in the absolute FWHM, we simulate the mi-
crowave transmission of the full-chip layout of the 3CP and 6CP devices using HFSS by
Ansys. The results of the simulations are discussed in Chapter 3. The results of the sim-
ulation show a qualitatively similar deviation from theory, but the narrowing is not as
large as in our experimental results. If we add more wirebonds to the simulation (beyond
what is possible to replicate in experiment), we do, however, find a good agreement with
theory. Based on these simulation results, and others discussed in Chapter 3, we attribute
the experimental deviation to parasitic microwave effects such as slot-line modes, radiation
effects, etc. We expect that future device designs, for instance, incorporating air bridges
between the ground planes, would eliminate these effects.

5.4 |1) — |2) transition spectroscopy

So far, we looked at single-tone spectroscopy characterization of the |0) — |1) transition
and convincingly demonstrated its frequency-dependent coupling. The transmon also has
higher transitions due to the weakly-anharmonic behavior of its ladder structure. We
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Figure 5.5: Two-tone spectroscopy measurements for the 3CP device to measure the anhar-
monicity of the giant transmon. (a) To find the |1) — |2) spectroscopy line, we resonantly
pump the |0) — |1) transition and weakly probe around the expected frequency for the
|1) — |2) transition. The 2D plot shown here shows |¢| for different pump powers of a room
temperature microwave source. At low pump powers, we see strong scattering from the
|0) — |1) transition as expected. As the pump power increases, the |0) — |1) transition
saturates and we now see scattering from the |1) — |2) transition, which becomes stronger
with pump power. (b) Linecuts from (a) for different pump powers which are color coded
corresponding to the position of the colored arrows in (a).

expect these higher levels to also have a frequency-dependent coupling. In this section
we will explore on how to extract the coupling strength for the |1) — |2) transition. The
frequency-dependent coupling of the |1) — |2) transition also gives us the ability to tune its
behavior relative to that of the |0) —|1) transition. This novel feature of the giant transmon
will be explored later to demonstrate an effective lambda system, something which is not
possible with an ordinary transmon.

5.4.1 Two-tone spectroscopy

In order to observe the |1) —|2) transition, we use a two-tone spectroscopy technique where
we strongly pump the |0) —|1) transition on resonance and weakly probe around the |1) —|2)
transition which is at wo; ~ wig— E./k [34]. The pump tone transfers population to the |1)
level and by probing the |1) —|2) transition we see coherent scattering from this transition,
which appears as a dip in |t| near w;. As the pump power increases, the dip in || increases
up to a point when the |0) — |1) transition is fully saturated by the pump. Figure 5.5(a)
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shows a 2D color plot of |¢| for various pump powers as a function of the probe frequency
for our 3CP device. Although, this technique helps us identify wo;, extracting I's; is not
straightforward. Alternatively, the relaxation rate of higher transitions of the transmon
can be measured using time-domain techniques [90].

5.4.2 Mollow triplet and Autler-Townes Splitting

We saw earlier in Section. 5.2 that we can use single-tone spectroscopy of the probe-power
dependent saturation of the |0) — |1) transition in order to calibrate ;¢ for the giant
transmon. In this section, we will look at two more physical effects which can be observed
using two-tone spectroscopy techniques which will help us to calibrate €219 and §25;. The
Mollow triplet [91] and the Autler-Townes Splitting (ATS) [92] are two popular effects in
quantum optics which were also demonstrated in superconducting circuits [93, 91]. We
observe these effects in both 3CP and 6CP devices. Here, we present the results using the
6CP giant transmon device.

Mollow triplet

As an alternative method to calibrate €219, we use the Mollow Triplet. To observe this
effect, we use a pump-probe spectroscopy technique where we strongly pump the |0) — |1)
transition on resonance and weakly probe around wig. As the pump power increases, this
begins to dress the |0) — |1) transition resulting in the splitting of the |0) and |1) levels
by an amount equal to €19 as shown in Fig. 5.6(a). When probing around wjg, we then
observe three different spectroscopic lines as shown in Fig. 5.6(b), corresponding to the
four transitions out of which two are degenerate (see Fig. 5.6(a)). The data shown in the
figure comes from the 6CP device at a certain flux bias point.

Autler-Townes Splitting

The Autler-Townes Splitting is another spectroscopic signature which depends on the dress-
ing of the |1) — |2) transition. We will use it to calibrate §2y;. In order to observe this
feature, we strongly pump the |1) — |2) transition on resonance and weakly probe around
the |0) — |1) transition as depicted in the driving scheme in Fig. 5.6(c). The pump tone
dresses the |1) and |2) levels causing them to spilt by €23;. When probing around wy, as
a function of power, we see this splitting as a doublet in the spectroscopic signature, as
shown in Fig. 5.6(d).
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Figure 5.6: Observation of the Mollow triplet and Autler-Townes Splitting (ATS) in the
6CP device. (a) Driving scheme for observing the Mollow triplet. The |0) — |1) transition
is resonantly driven by a strong pump tone which dresses the |0) and |1) levels. The levels
split where the frequency of the separation is given by the Rabi frequency §2;9. On probing
the |0) — |1) transition weakly, we observe three spectroscopic lines, corresponding to the
four lines shown, two of which are degenerate. (b) Experimental signatures of the Mollow
triplet. The 2D plot shows t as a function of the probe frequency for different pump powers,
clearly showing the Mollow triplet. (c¢) Driving scheme for observing ATS. A strong pump
tone which is on resonant with the |1) — |2) transition, dresses the |1) and |2) levels, where
the splitting is given by €29;. Upon weakly probing the |0) — |1) transition, we observe a
doublet in the spectroscopy signature. (d) Experimental signature of ATS showing ¢ as a
function of probe frequency for different pump powers.
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5.4.3 Frequency-dependent coupling of |1) — |2) transition

The two-tone spectroscopy technique discussed above helps us identify we; but does not
give us I'y; directly. In order to characterize the frequency-dependent coupling, 'y (w), we
will make use of the probe-power dependent saturation of the |0) — 1) transition and the
ATS, both of which are discussed earlier.

General procedure to extract I's;(w)

To extract I's; (w) for our giant transmon, we start by observing that the relaxation rate of
the |i) — |j) transition, I'j;(w), depends on two quantities: the spectral density of environ-
mental fluctuations, S(w), and the atom-field coupling constant, kj;(w) [95]. The specific
relation is:

Lji(w) = kji(w)S(w). (5-3)

Here we make the implicit choice to absorb the effects of interference into kj;. Since we can
directly measure I';o(w) (see Section. 5.3), we see that we can infer I'y; (w) by only further
measuring the ratio kg (w)/k1o(w). This gives us:

D1 (w) = [k3) (w)/Kfp(w) T1o(w) (5.4)

In section 5.2, we saw that the Rabi frequency €2;; for a given transition i) — |j) relates
to the same atom-field coupling constant kj; as shown in Eq. 5.2. Measuring 2;; for the
two transitions at the same frequency and drive power allows us to immediately calculate
k21 (w)/kio(w) = Qo1 (w)/Q10(w). Note that to measure Qs and Qo at the same frequency
implies measuring them at two different flux bias points, since wy; ~ wig — E./h.

Experimental details

Figure 5.7 shows the ATS and probe-power dependent saturation measurements for the
3CP device. To measure {2y, we use ATS by manually extracting the splitting in the
spectroscopic doublet signature. To measure 219, we use the probe-power saturation of
the |0) — [1) transition of the transmon. The effect is fully described by the presence of the
probe Rabi frequency 2, = Q4 in Eq. 2.39. As described in Fig. 5.7, we measure both (29
and €2y at many values of the pump and probe power respectively, and use the ratios of the
slopes to give a more accurate value of ko (w)/k19(w). We convert the room temperature
pump and probe power [dBm] of the microwave source into an effective amplitude [V] by
assuming a 50 2 load at its output. In both measurements, we see that the extracted 2;;
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Figure 5.7: Extracting I'y;(w) by measuring the atom-field coupling constants. (a) To
calibrate the coupling constant ko;, we use the Autler-Townes splitting (ATS) by pumping
the |1) — |2) transition on resonance and probing the |0) — |1) transition. The pump tone
dresses the [1) — |2) transition and we observe the familiar spectroscopic doublet with a
splitting given by ;. The color scale indicates |¢t| in dB. (b) We manually extract g,
at each power and plot the extracted values (symbols) as a function of pump amplitude.
Recalling that Q;; = v/2k;;v/P (see text), we extract ky;(w) from a straight line fit (solid
line). (c) To calibrate kyo, we use the strong saturation of the transmon’s |0) —|1) transition
as a function of probe power. This is described by the presence of the probe Rabi frequency
Q, = Q0 in Eq. (2.39). After changing the flux bias such that the |0) — |1) transition is at
the same frequency as the |1) —|2) transition above, we measure ¢ as a function of the probe
power. To characterize the saturation, we plot the transmittance 7" = |t]2 on resonance,
i.e., w, = wio (symbols). We fit T using Eq. (2.39) (solid line), substituting €, = v/2k1ov/P
and then extract k1o as a fitting parameter (solid line). (d) As a second method to extract
k1o, we fit the full transmission curve at each power and extract an independent value of
59. The extracted values are plotted versus probe amplitude (symbols). We then extract
k1o from a straight-line fit to this data (red, solid line). For reference, we also plot the
line (blue, dash line) corresponding to the value of kjq extracted in panel (c¢). There is an
obvious agreement between the two values of kyg. (For subsequent calculations, we use the
value of kjg extracted from panel (d).) By using ksy, k10, and 'y (measured independently
from low-power spectroscopy), we can infer I'y; (w) as described in the main text.
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for both transitions is directly proportional to the pump/probe amplitude as validated by a
straight line fit to the data where the constant of proportionality quantifies k;; as given by
Eq. 5.2. Since the measurements are done at the same bias frequency for both the |0) — |1)
and |1) — |2) transitions and knowing I'jy at this bias frequency, we can calculate 'y (w)
by substituting the extracted ratio ks (w)/k10(w) and I'jp(w) in Eq. 5.4 directly giving us
our answer.

Quantifying modulation of I'y; relative to I'yg

In order to quantify the relative modulation of I'y; and I'jg, we define a relaxation-rate

ratio,

- le(wzl)
Tio(wio)

Our results clearly demonstrate that we can modulate 8 by either enhancing or suppressing
['9; relative to I'1g depending on the chosen operating flux bias point. Table 5.1 shows both
the maximum and minimum values of 3, which strongly deviate from 2. We also see that
increasing the number of connection points can result in stronger modulation of S. For
the 6CP device in particular, we achieve a maximum £ of 62 and a minimum of 0.29, a
modulation by more than a factor of 200. An alternative approach to modulating g in
an ordinary transmon is by making use of impedance-mismatching elements to alter the
density of states seen by the qubit, resulting in a frequency-dependent Purcell decay [96].
The frequency-dependent relaxation rates of the giant transmon, complemented by the
freedom in engineering the rates relative to each other, adds a new flavor to the existing
waveguide-QED toolbox.

p (5.5)

5.5 Giant transmon as a Lambda system

A Lambda system, more popularly known as A system, belongs to a class of optical three-
level systems where one of the level is metastable. Due to this metastability, coherence
can be built under external driving conditions, enabling a variety of quantum interference.
These effects include electromagnetically induced transparency (EIT), coherent population
trapping (CPT), dark state, lasing without inversion, optical memories and slow light [9].

The success of the transmon qubit in the quantum computing industry has largely
been attributed to its robust design complemented by its frequency-tunability, freedom
to engineer anharmonicity between its levels, low susceptibility to charge and flux noise,
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Figure 5.8: Ladder vs. Lambda system. (a) An ordinary transmon qubit has a ladder
configuration of its multiple levels which ensure that the relaxation rate of its many tran-
sitions are on the same order of magnitude indicating the absence of a metastable state.
(b) By appropriately flux biasing the giant transmon, it can be used as an effective lambda
systems where I'y; > T'jg thus making the |1) level metastable. In this configuration, we
use the giant transmon qubit to demonstrate EIT.

and long coherence times. However, the transmon has a ladder configuration of its many
levels [72], irrespective of the operating bias frequency. For the |0) — |1) and the |1) — |2)
transitions, 8 = 2 (see Fig. 5.8(a)). Due to this, there is an absence of a metastable state
in the inherent transmon design which limits its versatility.

With our giant transmon device, due to its tunable relaxation rates and large modula-
tion of 3, we can engineer a metastable state thereby turning it into an effective lambda
system where I'y; > T’y (see Fig. 5.8(b)). We do this simply by biasing the transmon at
the flux that maximizes § (see Table. 5.1). As a benchmark demonstration of A system
physics, we demonstrate EIT in our giant transmon.

5.5.1 Electromagnetically Induced Transparency (EIT)

EIT is a process in which absorption at a given atomic transition is suppressed due to
destructive interference between two different excitation pathways enabled by the presence
of a metastable state in a three-level system [97]. Our claim to demonstrate EIT, as opposed
to ATS, is supported by a detailed master-equation calculation as well as an analysis based
on Akaike’s information criterion, as suggested in Ref. [98].
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EIT-Theory

The theory presented in this section, has been worked out by our collaborators Andreas Ask
and Anton Frisk Kockum.

We consider a three-level system with energy levels |0),|1) and |2), where I'y; > T’y
such that a A system is formed with level |1) being metastable. The system is driven by
a control field at the |0) — |2) transition with amplitude 2, and frequency w,., and a weak
probe field is applied to the |1) —|2) transition with amplitude €2, and frequency w,. Note
that we model the |0) —|2) transition as a single-photon process in our theory calculations,
although the transition is induced via a two-photon process experimentally. The system is
described by the following Hamiltonian:

Q. . .
H = wy099 + w1011 + 27 (6 wet 4 ewct) (0'02 — 0'20)
0 ‘ ' (5.6)
+ 271) (672wpt + €prt) (0'12 — 0'21> s
where we have set the |0) state to have zero energy, and we have defined o;; = |i)(j|. The
time dependence can be removed by going into a rotating frame by applying the unitary

transformation,
U(t) _ eit(WCUQQ"F(Wc_wp)Ull)‘ (57)

The rotated Hamiltonian is then given by

. dU
H=UHU'+ iEUT. (5.8)

We perform a rotating-wave approximation (RWA) and neglect terms that oscillate at the
frequencies 2w, and 2(w. — wy), which gives us the time-independent Hamiltonian

Q2
H = Ao + (A1 — Ag)oqy + 17 (002 — 020)
(5.9)

+i7p (012 — 012) ,

where we introduced the two detunings Ay = wy —w,, and Ay = (w2 —w;) — w,. Note that
we drop the tilde on the rotated Hamiltonian in Eq. (5.11).

We calculate the system dynamics by solving the master equation,

p=—i[H,p|+T2%D [oo] p+ D [o12] p+ 10D [001] p

(5.10)
+ 209D [022] p + 2I'14D [o11]
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where I'j; is the decay rate from state |j) to |i), I';, is the pure dephasing rate of state
i), 055 = |i){j|, and we used the notation D[X]p = XpXT — IXTXp — LpXTX for the
Lindblad superoperator [99]. Translating the generalized Hamiltonian given by Eq. (5.9)
for the giant transmon, we get,

H = Ao+ (Ar — Ap)oyy + Z% (002 — 020) + i% (012 — 012) , (5.11)
where A, = wyy — w, is the detuning of the pump field, A, = ws; — w,, is the detuning of
the probe field, and €./, is the drive strength of the pump and probe field respectively.
To obtain a transmission coefficient, we consider an incoming probe field containing an
average number of photons per unit time of |a|?, and use the input-output relation ¢ =
1+ +/I'21/2 (012) /a. To fit the experimental data, ¢ was multiplied by an additional real
scale factor to account for amplification and attenuation along the signal line.

There has been discussion in recent literature about how best to distinguish EIT from
other phenomena, in particular, the Autler-Townes splitting (ATS) mentioned above [95].
The question of whether the pump and probe conditions put the system in the ATS or EIT
regime can be addressed in a number of ways. From a purely theoretical point of view,
the two can be distinguished by examining the poles of the transmission coefficient [100]: ¢
has one pole in the EIT regime and two poles in the ATS regime. The transition between
the two regimes can then be parametrized by a threshold pump power, €2;, where the
number of poles change. By expanding the transmission coefficient to first order in the
small parameter €2,/I's1, we can derive 0 = y91 — 710 = I'a1/2 +T'90/2 + 'y For Q. <,
the system is in the EIT regime, and for €2, > €2; the system is in the ATS regime.

EIT-Experiment

We can transition between the EIT and ATS regime by tuning the pump power. We,
therefore, present two sets of transmission measurements for both the 3CP and 6CP device,
one with low and one with high pump power. The strength of the pump at the device was
extracted from the fits to the master equation calculation, as were the decoherence rates
that were not measured independently. We present calculated and measured EIT curves
as a function of A, and A, for both 3CP and 6CP devices in Figure 5.9 and Fig. 5.10
respectively. The theory and experiment are both in good agreement and the extracted
parameters are presented in Table 5.2.

From the decoherence rates in Table 5.2, we can calculate the threshold drive-strength
), and compare it to the extracted drive strength €). used in the experiment. This suggests
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Figure 5.9: EIT vs. ATS in the 3CP device. We study the response of the device in a
pump-probe experiment designed to reveal EIT. (a) Shows the three levels of the giant
transmon together with the strong pump (control) tone at w, and a weak probe tone at w,,
with detunings A, and A, respectively. (b) and (e) show the numerical calculations for low
and high control power, respectively, for the 3CP device. The corresponding experimental
data are shown in (¢) and (f). The zero-detuning points are indicated by grey arrows on
the theory plot axes. The color scale is the magnitude of the transmission coefficient in
linear units. The line cuts shown in (d) and (g) are taken at A, = 0 for the two pump
power conditions. Where possible, we use independently measured parameters, but the fits
also allow us to extract additional parameters (see Table 5.1). For the low control power,
we are in the EIT regime, while for the high pump power, we are in the ATS regime.
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Figure 5.10: EIT in the 6CP device. (a) and (d) show the numerical calculations for low
and high control power, respectively. The corresponding experimental data are shown in
(b) and (e). The zero-detuning points are indicated by grey arrows on the theory plot axes.
The color scale is the magnitude of the transmission coefficient in linear units. The line
cuts shown in (c) and (f) are taken at A, = 0 for the two pump power conditions. For the
low control power, we are in the EIT regime while for the high pump power, we are in the

border between EIT and ATS regime.
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Device ‘ 'y ‘ Iy ‘ I'o ‘ Iy ‘ I ‘ Q ‘ B ‘Regime (Qt)‘

3CP Low power | 13.6 | 0* 1.07] | 0.94* | [0.35] | 3.59 | 12.7 | EIT (7.72)
3CP High power | 8.92 | 0* 0.94 | [0.35] | 16.6 | 8.34 | ATS (5.40)
6CP Low power | 2.50 | 0.95 0.67 | 0.11 | 1.03 | 56.8 | EIT (2.40)
6CP High power | 3.93 | 0.06 0.48 | 0.047 | 2.50 | 89.3 | ATS (2.48)

Sli=
o
3

.04
.04

=

@)
>~

Table 5.2: Parameters extracted from fitting the transmission coefficient, obtained from
the master equation in Eq. (5.10), to the measured data in Fig. 5.9. All values are in
units of MHz. Values in squares were extracted independently from other measurements.
Parameters marked by an asterisk were not varied during the fitting procedure.

that the two low-power measurements for both devices are in the EIT regime, the high-
power measurement for the 6CP device is just at the border between the two regimes, and
the high-power measurement for the 3CP device is in the ATS regime.

Akaike’s Infomation Criteria for distinguishability

Anisimov et al. proposed using information-based model selection techniques to distinguish
EIT and ATS based on the different predicted absorption profiles for the two processes [93].
The original proposal was to fit two functions: Agir = C% /(73 + 6%) — C2 /(72 + 6*) and
Aars = C* (1/(v* = (6 — 80))* + 1/(7* — (6 + d0)?)), to the measured absorption spectrum,
which is proportional to the real part of the reflection coefficient in our system. We
see that the EIT model is formed by the difference of a broad and a narrow Lorentzian
centered at the same frequency, whereas the ATS model is the sum of two otherwise
identical Lorentzians centered at different frequencies. From the results of the two fits,
we then calculate the Akaike information criterion (AIC) for the two models. The AIC
is an unbiased estimator of the Kullback-Leibler distance between the proposed model
distribution and an (unknown) “true” model distribution [101].

For a least-squares fit, the AIC is defined as I = Nlog(6?) + 2K where K is the
number of fit parameters, N is the number of data points, and 6% = > €?/N with ¢
being the residuals of the fit. While I for a single model compares it to an unknown true
distribution and therefore does not have an easy interpretation, the difference of I for two
models has the straightforward meaning of the relative distance of the two models from
the true one. In particular, the relative likelihood (probability) of two models is simply
given by exp(—A,;;/2) where we define the (positive) Akaike difference A;; = I; — I, with
I; the AIC of the i-th model. This relative likelihood is often expressed in a normalized
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Figure 5.11: Model selection based on Akaike’s information criterion. We compare the
best fits of an EIT and ATS model to the measured absorption profile, Real(t). In the
low-power regime of both (a) the 3CP and (c) the 6CP device, the ATS model does not
capture the narrow transparency window which is observed, while the EIT model does.
The same is true, although to a lesser extent, for the high-power measurement of the 6CP
device shown in (d). This failure is captured in the very small relative likelihood of the
ATS model, < 1077 in all three of these cases. The ATS model better captures the broad
transparency feature observed in the high-power measurement of the 3CP device shown
in (b), with a relative likelihood of 1073 for the EIT model. The data in these figures is
unsmoothed, in contrast to Figs. 5.9 and 5.10 above, because the correlations introduced
by smoothing violate the assumptions made to derive the maximum-likelihood estimator
used in the AIC analysis.
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form known as Akaike weights, w;, such that the ratio of the weights w;/w; = exp(—A;;/2)
gives the relative likelihood of the two models.

In the original proposal to use Akaike’s information criterion to distinguish between
EIT and ATS [98], the fitting functions described the absorption spectrum. Here, the
equivalent quantity is the real part of the reflection coefficient. We are not, however,
measuring the reflection coefficient directly, but we can still follow the original proposal by
using the relation ¢t = 1+r. Before we fit Agir and Aatg, mentioned above, to the measured
spectra, we do two things: we apply a rotation of the data in order to account for phase
shifts induced by propagation delays, and we normalize the data using the amplitude that
was extracted from the master-equation simulation. We use the transmission co-efficient
data in the linecuts presented in Fig. 5.9 and Fig. 5.10 to calculate the Akaike weights for
each measurement. The data and the fits can be seen in Fig. 5.11.

For the two low-power measurements, Fig. 5.11 (a) and (c), we find that the EIT model
clearly fits better with the relative likelihood of the ATS model being wars/wgrr = 1077
and wars/wgrr = 1078, respectively. For the high-power measurement of the 3CP device
in Fig. 5.11(b), with an extracted drive strength well into the ATS regime, the AT'S model
was strongly favored with the relative likelihood of the EIT model being wgir/wats =
10737, For the high-power measurement on the 6CP device in Fig. 5.11(d), which had an
extracted drive strength near the threshold, the EIT model was also strongly favored with
wars/wgrr = 1073°. We note that this relative likelihood more strongly favors the EIT
model than in the low-power measurements, even though it is near the threshold. Despite
this, we can see that the best-fit EIT and ATS curves look qualitatively very similar for
this case. The fact that the relative likelihoods are much smaller for the two high-power
cases may simply be due to the lower signal-to-noise ratio of the low-power measurements.

5.6 Chapter conclusions

In conclusion, we have demonstrated giant artificial atoms in a superconducting waveguide-
QED setting. We demonstrated that the giant-atom effects allowed us to modulate the
coupling strength of the |0) — |1) transition with an on-off ratio as high as 380. We also
showed that we can enhance or suppress the coupling of the |1) —|2) transition relative to
the |0) —|1) transition, with a modulation range greater than a factor of 200. This allowed
us to engineer the giant transmon into an effective lambda system with a metastable excited
state. To further validate this, we clearly demonstrated EIT in our giant transmon, thus
benchmarking the quality of our lambda system. The presence of EIT in our system
was verified both by detailed fitting to a master-equation model and by model-selection
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techniques based on the Akaike information criterion. Our work helps establish giant
artificial atoms as a new paradigm in waveguide QED and microwave quantum optics.
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Chapter 6

Two-giant artificial atoms in a
braided configuration

In the previous chapter, we saw the characterization of our single-giant transmon qubit
with three and six coupling points to a 1D open TL. In this chapter, we will look at some
initial first results on characterizing a device with two-giant transmon qubits which are
configured in a braided configuration as discussed in Chapter 2. This work, still ongoing at
the time of writing this thesis, demonstrates some striking new signatures which are very
different from the case of having just two simple artificial atoms coupled to a 1D TL.

So far, majority of the experiments conducted using multiple artificial atoms in waveg-
uide QED have focused on using simple atoms [9]. Among the many interesting effects,
these systems have been successful in demonstrating waveguide-mediated interactions be-
tween two spatially separated simple qubits coupled to a TL [22]. With the spatial distance,
Ao, between the qubits fixed by design, the authors show that by bringing the qubits into
resonance at two specific frequencies corresponding to 3A¢/4 and g, they could demon-
strate two situations where the exchange interaction between the qubits is enhanced while
their correlated decay into the TL was suppressed and vice versa. This led to the growing
interest of exploring similar multi-qubit waveguide-QED setups [23, 102].

Although, engineering photon mediated interactions between spatially separated simple
qubits is interesting from a perspective of quantum optics and quantum communication,
the qubits still interact in a decoherence-limited subspace, i.e, while their collective decay
can be made zero, their individual decay into the TL is still finite. As we saw earlier in
Chapter 2, the braided configuration of giant artificial atoms allows the qubits to interact
in a complete decoherence-free space wherein both the individual and collective decay can
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be engineered to be zero. Motivated by this, we consider the case of two braided-giant
transmon qubits each with two coupling points to a TL, as discussed in Chapter 3. We
characterize the qubits using continuous frequency domain techniques, similar to those
employed in Chapter 5.

6.1 Scattering properties of two braided-giant trans-
mons

We begin characterizing the braided giant transmons by bringing them into resonance with
each other and measuring the transmission coefficient ¢ of a weak probe field propagating
along the TL. If the qubits are interacting, we expect to see an avoided-level crossing in the
spectroscopy data. In our measurement setup, we have a single coil which is mounted to
the sample box. Using this global field, we can tune both our qubits in our measurement
band. However, in order to selectively tune one of the qubits into resonance with the
other, we make use of an additional on-chip flux bias line. The local field from the flux line
together with a global field allows us to resonantly operate the qubits at different frequency
bias points.

6.1.1 Effect of screening currents on flux tuning of qubits

In this section, we will explore some possible causes of experimental deviation that we
observe in the tuning behavior of the qubits which can be linked to the nature of screening
currents generated in the superconducting aluminum film of the CPW ground planes when
an external field is generated by the global flux coil. We will compare two design scenarios
in two separately measured braided giant transmon devices.

Device 1: Similar £} and E., different SQUID loop areas

As discussed in Chapter 3, qubit B has a SQUID loop area which is 1.5 times that of
qubit A but the Josephson junctions and the capacitance electrodes for both qubits are
nominally identical. The areas were designed this way in order to have their resonance
frequencies cross each other near w? using the global field alone, where the superscript
BGT refers to the braided-giant transmon (see Chapter 2). Ideally, if the flux offsets in
both qubits is zero, then the crossing would happen near w?. However, in the experiment

we observe different flux offsets for both qubits with the maximum frequencies at zero flux

110



a) Device 1 b) Device 2

[GHZz]

0.0 0.5 1.0 1.5 2.0 25 3.0 3.5 0 1 2 3 4

Coil voltage [V]

Figure 6.1: Global flux tuning of braided giant transmons in two measured devices. (a)
Transmission spectroscopy for device 1, showing |¢| of the TL as a function of probe fre-
quency for different coil voltages. Both qubits have similar £, and E}** and tune over
a wide range of frequency. The SQUID area of qubit B is 1.5 times larger than that of
qubit A. (b) In device 2, the SQUID in both qubits has a lower E7** than device 1. Both
qubits have similar £, and E}'** and the SQUID area in both qubits is the same.

bias being roughly the same. Figure 6.1(a) shows the tuning curve for both qubits using
the global field coil with different flux offsets for device 1. It is clear from the figure that
our qubits tune with external flux.

The sensitivity of each qubit to the external magnetic flux applied by the global coil
depends on the mutual inductance between the coil and the SQUID loop. In order to
characterize this, we can write the external flux ®; for qubit ¢ € (A, B) in terms of the
coupling matrix K;; for coil j (j = 1 as we have a single global coil), the coil voltage V;

and the flux offset @Y as:
o4\ (K )
(o) = (i) 00+ ) 61

The dash-color lines for the two qubits in Fig. 6.1 are calculated tuning curves by substitut-
ing Eq. (6.1) in the Josephson energy term in Eq. (2.12). The theory curves are appended
onto the experimental plot using E./h = 540 MHz which was separately measured using
the two-tone spectroscopy technique as discussed in the previous chapter. The values of
E7** coupling constants and the flux offsets have been chosen to properly align the theory
curves with the experimental data in order to get the best visual match.

We can also define a relative-flux sensitivity for the two qubits as k = Kpi /K ;. Ideally,
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k = 1.5 as the sensitivity of the two qubits A and B to the global coil flux is given by the
ratio of their respective SQUID loop areas. But experimentally we find that kK = 4.2, a
clear deviation from the factor 1.5. In order to see why this could possibly be the case,
let us look at the surrounding geometry of the CPW ground planes near the two qubits
which is shown in Fig. 6.2 where (a) shows the fabricated design of qubit A and (b) refers
to qubit B. The SQUID arm of the qubit is shown in red and the capacitance electrode of
the transmon is shown in green.

Consider an external field B (out of the plane of paper) which is applied by the coil as
shown in Fig. 6.2. This results in screening currents that are generated in the CPW ground
plane as shown by the circular arrows in order to counter B. Therefore, the net flux seen
by the SQUID loop is diluted by these currents. However, the empty pocket seen in the
ground plane surrounding qubit B reduces the effect of the screening current by moving it
away from the SQUID, thereby making qubit B much more sensitive to flux than qubit A.
We believe, this asymmetric geometry of the ground plane around the SQUID loop gives
qubit B additional sensitivity to flux which could explain why x = 4.2.

Device 2: Similar E7* and E., same SQUID loop areas

Now, let us consider another device that was measured after the one discussed in the
previous section. Both qubits in this device have the same SQUID loop area with identical
Josephson junctions designed to give us a lower E/** than device 1. Although, the junction
geometry is different than device 1, the SQUID areas for both qubits in device 2 are the
same as qubit A of device 1. Figure 6.1(b) shows the experimental data and the calculated
tuning curves which are appended onto the plot for the best visual match for device 2.
Since the zero-bias frequency for both qubits is below 8.5 GHz, we were able to measure
it directly. The capacitance electrodes for the qubits and the ground plane geometry are
the same as device 1 (see Fig. 6.2) which gives us the same anharmonicity as before. We
independently verify this using two-tone spectroscopy discussed in Chapter 5. The flux
offsets and the coupling constants are calculated in the same way as discussed before.
Since this device was measured in a similar experimental setup with a different global coil,
the absolute value of the coupling constant K 4; for qubit A differs from that of device 1.
We see from the extracted flux coupling constants that x = 2 which can be understood in
the same way as presented in the previous section. Although, ideally this factor should be
1 as the SQUID loop areas for both the qubits are the same, the deviation we see can be
attributed to the effect of the screening currents in the vicinity of the SQUID for qubit B.

The tuning profile of the qubits from this device further strengthens our hypothesis
about the effect of screening currents. It also points towards careful layout choices that
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Figure 6.2: Effect of screening currents on flux tuning of the giant transmon qubits. (a)
Close up CAD layout of qubit A showing its coupling sites to the TL and a dedicated
voltage line (although not used in the measurements). When an external field Bis applied
using the coil, screening currents flow in the superconducting ground planes to counter
the applied field. The sensitivity of the SQUID to the applied flux is reduced due to the
screening currents in the ground plane near its vicinity. (b) Qubit B has a dedicated flux
line, which is used to tune its frequency by applying a local DC field. A pocket is opened in
the ground plane of the flux line to ensure that the DC current flows uniformly through the
flux branch. Due to the pocket, the screening current in the ground plane flows away from
the SQUID. This ensures a larger effective field near the vicinity of the SQUID, making it
more sensitive to the applied field. If the SQUID area of both qubits is the same, qubit A
has a lower sensitivity to the applied field than qubit B, due to the effect of screening
currents.

one must consider to implement whenever global flux biasing using an external coil is
required for such experiments. For all subsequent measurements discussed in this chapter,
we will be using the data from device 1.

6.1.2 Qubit-qubit spectroscopy using the TL

In Section 3.2.1, we discussed the design parameters for the braided-giant transmon device.
To recall, the decoupling-frequency bias point for the qubits is at w¥/27 ~ 5.91 GHz. In
this section we will look at spectroscopy of the two qubits near 6.3 GHz and 7.7 GHz
using device 1 from the previous section. The choice of these frequencies was made by the
crossing points of the qubits using the global coil. The local flux line gives us a tuning of
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~ 500 MHz for qubit B at which point the DC current in the line begins to heat up the
mixing chamber of our fridge. For the frequency bias points considered, we operate the
local flux current well below this threshold.

Qubits near 6.3 GHz

We begin by weakly probing the qubits using single-tone transmission spectroscopy after
bringing them close enough using a static global flux. The probe excites both qubits
through the TL. Figure 6.3(a-d) shows the simulated and the measured magnitude (|¢|)
and phase (6;) of ¢ as qubit B is brought into resonance with qubit A near 6.3 GHz, which
is the closest crossing point to w¥/27 in this device. The phase acquired between the
coupling points is ¢ = 0.547. The simulated plots (top row) are added here for clarity and
are discussed in Chapter 3 where the resonance frequency of qubit B is varied by sweeping
its inductance L7 in HFSS. In the measurement, we use the local flux line to tune the
frequency of qubit B. We see good qualitative agreement between the simulated and the
measured results.

When the qubits are off-resonant as shown by the linecut from the 2D plot (black
arrow) in Fig. 6.3(e-f), they behave as individual qubits which are coupled to the TL, each
showing extinction in |¢| and separate phase signatures. Using Eq. (2.39), we extract the
individual relaxation rates I'{/2m = 3.42 MHz and ', /27 = 3.62 MHz for qubit A and B
respectively from the off-resonant linecut data. The extracted dephasing rates for the two
qubits are F£/27T = 821 kHz and Ff/277 = 719 kHz respectively.

For the resonant case, we do not observe an avoided-level crossing in the spectroscopy
data as shown by the linecut from the 2D plot (pink arrow) in Fig. 6.3(e-f). Instead, we
observe a single resonance feature both in |¢| and ; which suggests that the resonant qubit-
qubit system now behaves like a single qubit. We also observe that the resonant feature
exhibits stronger extinction in |¢| as compared to when the qubits are off-resonant with
a collective relaxation rate, I'S3! = 7.2 MHz. The phase signature also shows a strongly-
coupled behavior when compared to the off-resonant case. It is interesting to note here
that TS is twice that of the off-resonant relaxation rate of the two qubits. This behavior
was also seen in [22], where their qubit-qubit system was in a superradiant (bright) state,

|B) = (lge) + leg))/ V2.

Qubits near 7.7 GHz

The situation gets more interesting when the qubits are biased ~ 7.7 GHz where the
phase acquired between the coupling points is ¢ = 0.657. We perform similar single-tone
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Figure 6.3: (a) |t| and (b) 6; obtained using an HFSS simulation of the measured device
near 6.3 GHz, as discussed in Chapter 3. The plots are added here for clarity. (c¢) and (d)
are the measured |t| and 6, where qubit B is brought into resonance with qubit A using
the local flux line. (e) and (f) are the corresponding linecuts from the measured data at
the flux bias locations indicated by the arrows.
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Figure 6.4: (a) |t| and (b) 6, obtained using an HFSS simulation of the measured device
near 7.7 GHz, as discussed in Chapter 3. The plots are added here for clarity. (c) and (d)
are the measured |t| and 6, where qubit B is brought into resonance with qubit A using
the local flux line. (e) and (f) are the corresponding linecuts from the measured data at
the flux bias locations indicated by the arrows.
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spectroscopy measurements as described before using a static global flux to bias the qubits
~ 7.7 GHz and sweeping the local flux on qubit B to bring them into resonance with each
other. The simulated and the measured results qualitatively agree well and are shown in
Fig. 6.4.

When the qubits are off-resonant, we see a similar behavior as before. But when they
are brought into resonance with each other, we observe an interesting effect. From the
resonant line cuts in Fig. 6.4(c-d), we observe full transmission in the magnitude response
with a single strongly-coupled phase signature. This happens for a range of flux bias values,
a situation quite different from when the qubits were biased ~ 6.3 GHz. We extract the
individual relaxation rates, I'{h/2m = 10.15 MHz and '} /2r = 13.32 MHz for qubit A
and B respectively using Eq. (2.39). The dephasing rates are F£/27r = 635 kHz and
Ff/Zﬂ' = 234 kHz.

We believe this could be indicating novel physics in the system at this frequency bias
point. To explore further, we will have to measure the reflection coefficient, r, along with
t. The simulated r is shown in Chapter 3.

6.1.3 Multiple resonances in Autler-Townes Splitting

In Section 5.4.2, we looked at how to observe the Mollow triplet and the ATS, in the context
of a single artificial atom coupled to a TL. We recall that, the qualitative signatures are
a triplet in the Mollow spectrum and a doublet in the ATS spectrum. In this section, we
will explore the same with our braided giant transmons by looking at how these signatures
differ for both the resonant and the off-resonant cases. We find some surprising additional
resonances in the ATS and not the Mollow triplet, which is interesting and hence we will
be focussing on the former.

For the off-resonant case, we bias qubit B near the frequency point of interest and tune
qubit A roughly a GHz away from qubit B. For the resonant case, we bias both qubits at
the same frequency and perform ATS. To observe ATS, we use the same driving scheme
discussed in Section 5.4.2 but instead of pumping the |1) —|2) transition on resonance, we
sweep the pump tone near wy; /27 for a fixed pump power and probe the |0) — |1) transition
weakly. The pump power chosen is ~ 20 dB stronger than the probe power.

ATS near 6.3 GHz

Similar to the previous section where we compared transmission spectroscopy of the qubits
near 6.3 GHz and 7.7 GHz, here we compare the nature of ATS near these frequency
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Figure 6.5: ATS for off- and on-resonant cases for the braided giant transmons near
6.3 GHz. (a) ATS for the off-resonant case performed on qubit B when qubit A was
biased outside the measurement band. The color in the 2D plot indicates |t| measured as
a function of probe frequency. The pump which excites the |1) — |2) transition is held at a
fixed power and its frequency is swept on the Y-axis. When the pump tone is on resonant
with the |1) — |2) transition (indicated by the black arrow), we see a four resonance feature
instead of the familiar doublet. (b) The corresponding 6, for the off-resonant case. (c) and
(d) shows |t| and 6, for the on-resonant case, where both qubits were biased at the same
frequency. The ATS in this case reveals more than four resonance features when the pump
tone is at the |1) — |2) transition for both qubits.
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bias points. Figure 6.5 shows |t| and 6, characterizing ATS observed for the off-resonant
(Fig. 6.5(a-b)) and the resonant case (Fig. 6.5(c-d)). This frequency bias point, which is
closer to w¥ /2w, shows some surprising spectroscopic features for ATS. For the off-resonant
case, i.e, characterizing ATS for qubit B alone, one would expect to see a familiar doublet
feature which corresponds to the dressing of the |1) level by the pump tone. However,
when the pump frequency is resonant with wq; /27, we clearly see four resonance features
instead of the typical two (doublet).

For the resonant case, i.e, when both qubits A and B are at resonance with each other,
performing a similar measurement reveals even more resonance features. At first sight, this
might seem to be due to differences in the anharmonicity of the two qubits, which when on
resonance, could give rise to additional couplings between the levels. However, in a series
of separate measurements (not discussed here), we verified that the anharmonicity of the
two qubits at different frequency bias points is nearly the same. This is expected as both
qubits have the same capacitor design.

ATS near 7.1 GHz

We now compare the ATS measurements for the resonant and off-resonant cases near
7.1 GHz. Figure 6.6 shows |t| and 6; for both the off-resonant and the resonant case.
In the off-resonant case, we see a familiar doublet. When the qubits are on resonance
with each other (see Fig. 6.6(c-d)), we see four-resonance features in the spectroscopy
signatures. Although, the anharmonicity of the two qubits were measured to be nearly
the same, the origin of these multiple resonances here and in the previous resonant case
needs to be understood further. Perhaps, in the theoretical model we could consider the
anharmonicity to be unequal to rule out the possibility.

6.2 Chapter conclusions

To summarize, we have presented preliminary results of the scattering properties of the
braided giant transmons using single-tone transmission spectroscopy. Our results show

interesting qubit-qubit resonant behavior at two different frequency bias points, 6.3 GHz
and 7.7 GHz.

When the qubits are off-resonant with each other, we observe the typical scattering from
a qubit coupled to a TL showing extinction in the magnitude of the transmission coefficient
irrespective of the frequency bias point. However, the resonant response shows distinct
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Figure 6.6: ATS for off- and on-resonant cases for the braided giant transmons near
7.7 GHz. (a) ATS for the off-resonant case performed on qubit B when qubit A was
biased outside the measurement band. The color in the 2D plot indicates |t| measured as
a function of probe frequency. The pump which excites the |1) —|2) transition is held at a
fixed power and its frequency is swept on the Y-axis. When the pump tone is on resonant
with the |1) — |2) transition (indicated by the black arrow), we see a familiar doublet in
ATS measurement, unlike the four resonance features seen before. (b) The corresponding
0, for the off-resonant case. (c) and (d) shows |t| and 6, for the on-resonant case, where
both qubits were biased at the same frequency. The ATS in this case reveals four resonance
features when the pump tone is at the |1) — |2) transition for both qubits.

120



features, i.e, we observe strong extinction near 6.3 GHz and full transmission near 7.7 GHz.
Although, we do not observe resonant scattering from the qubits near 7.7 GHz, we see a
distinct signature of the qubit-qubit joint state in the phase response of the transmission
coefficient. Our HF'SS simulation of the measured device successfully captures the features
we observe in the transmission spectroscopy. We also observe additional resonance features
when characterizing the ATS for the off-resonant qubit near 6.3 GHz which we don’t see
near 7.7 GHz for the same qubit. For the resonant case, we again see multiple resonances
in the ATS at both the frequency bias points.

Going forward, we plan to simultaneously measure both the reflection and the transmis-
sion coefficient for the device which will help us better understand the observed features.
Ongoing theoretical investigation with our collaborators also indicate the possibility of the
existence of exceptional points in this system. Exceptional points are singularity points in
the system Hamiltonian with degenerate Eigenstates where the system is critically damped.

The challenges we faced due to flux biasing of qubits can also be solved by making
the CPW ground plane topology identical for both qubits. In hindsight, we feel that it is
easier to access more frequency crossing points by simply making the qubits degenerate
and using the local flux line on one of the qubits to tune them into resonance with each
other. Incorporating dedicated readout resonators for the qubits also provides a way to
characterize them in the time domain.
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Chapter 7

Parametrically-coupled
superconducting cavities

We summarize the main results of the experiment involving two parametrically-coupled
superconducting cavities in this chapter. The device is composed of a high frequency \/4
resonator whose frequency can be tuned using a SQUID. The SQUID magnetically cou-
ples to a low-frequency A/2 resonator, which has a fundamental frequency of ~ 280 MHz.
The A/2 resonator is implemented as a novel band-stop filter, where its higher-harmonic
resonant modes are suppressed in the 4-8 GHz measurement band. The interaction Hamil-
tonian, discussed in Chapter 2, is that of an optomechanical-like coupling where the current
in the A/2 resonator couples to the energy of the A/4 resonator. We demonstrate signa-
tures of this coupling behavior, where we indirectly read out the \/2 cavity using the \/4
resonator.

7.1 High-frequency SQUID-terminated \/4 resonator

We begin by characterizing the A/4 resonator by measuring its single-port reflection co-
efficient 7 using a VNA at room temperature. The circulators used in the setup, shown
on the left in Fig. 4.7, separates the input and the reflected fields of the A/4 resonator,
which can then be used to measure r. The resonator’s bare resonance frequency calculated
from its CPW length alone is 7.875 GHz. In our experiment, the resonance frequency is
affected by the input coupling capacitor C, and the finite inductance Ly, of the SQUID. If
the SQUID inductance is not taken into consideration, the large coupling capacitor loads
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Figure 7.1: Frequency tunability of the \/4 resonator, which is terminated by a SQUID.
(a) Phase, 6, of the reflection coefficient r as a function of probe frequency (Y-axis) for
every external flux bias ®/®, (X-axis). The value of ® is changed using an external coil
attached to the sample box. @ is calibrated in terms of coil voltage from multiple multiple
periods of the tuning curve (not shown here). There is a background flux offset which is
not accounted for. The dashed line is a numerically calculated using Eq. (2.34) and is
added on top of the 2D plot. (b) A line cut at the indicated flux bias point (arrow) shows
an over-coupled phase response of the resonator.

the resonator, bringing its resonance frequency further down to 6.4 GHz, which is observed
in both numerical and HFSS simulation. If the SQUID inductance is considered, the res-
onator has an even lower resonance frequency of ~ 5.1 GHz. Using the coil attached to the
sample box, we can tune the resonance frequency of the A/4 resonator in our measurement
band.

Figure 7.1(a) shows the frequency tuning characteristics of the resonator for every
normalized flux bias ®/®y with a maximum frequency of ~ 5.1 GHz. The color indicates
the phase of the reflection coefficient 6(r). We use multiple periods of the tuning curve
to characterize @y with a flux offset (~ 0.25®) at zero bias condition. The solid dashed-
line is a manual fit using Eq. (2.34), which considers the effect of both the inductive and
capacitive loading from the SQUID and the coupling capacitor, respectively. For the fit, we
use C, = 160 fF (obtained from Q3DExtractor), resonator length /5,4 = 3.75 mm (obtained
from CAD layout), the maximum SQUID inductance Lg™ = 507 pH (obtained from room
temperature resistance of the SQUID) and Z;, = 50 Q. Figure 7.1(b) shows the linecut
at the flux bias condition, which corresponds to the maximum resonance frequency as
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Figure 7.2: Mode characterization of A/2 resonator. (a) |t| of the transmission coefficient of
the /2 resonator showing the higher harmonics of its fundamental mode. The separation
between the modes is ~ 250 MHz. (b) Due to the bandstop nature of the resonator, we
see active mode suppression in the ~ 4-8 GHz as designed.

indicated by an arrow in Fig. 7.1. The solid line is the result of the HFSS simulation of the
A/4 resonator using the same parameters discussed above, showing good agreement with
the measured data. Both data and simulation results show the unwrapped phase with a
swing of 360° at resonance, a typical signature for an over-coupled \/4 resonator measured
in reflection. We choose to show the phase response in Fig. 7.1 as we do not observe a signal
in the magnitude response due to this over-coupled behavior. The simulated loaded quality
factor, ), = 17.6, is obtained from the frequency points corresponding to the £90° of the
phase response giving us a bandwidth Af = 290 MHz. Our results satisfy the design goals
for the bandwidth requirement of the A/4 resonator and its frequency-tunability, intended
for its role as a photonic piston described in Chapter 2.

7.2 Low-frequency bandstop \/2 resonator

To characterize the low-frequency bandstop A/2 resonator, we measure its two-port trans-
mission coefficient ¢ using a VNA. We employ a microwave switch at the base temperature
stage to share the output line of our measurement chain with both the A/2 and \/4
resonator, as shown in Fig. 4.7. The HEMT amplifier used in this measurement has a
bandwidth of 4-8 GHz. Due to this constraint, we were able to directly measure the higher
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harmonics of the A\/2 resonator from 2-8 GHz. Although this is outside the lower-cutoff
frequency of the amplifier, the finite roll-off of its gain is still sufficient to see the modes
below 4 GHz up to a frequency where the signal is visible.

Figure 7.2(a) shows the measured ¢ (dB) of the higher harmonic modes of the \/2
resonator from 2-3 GHz. The spacing between the modes is ~ 250 MHz, which gives us
an approximate likelihood of its fundamental resonance frequency. Due to the stepped-
impedance design of the A\/2 resonator (see Chapter 3), the modes are not equally sepa-
rated, an attractive feature to implement multi-mode anharmonic circuits. Another strik-
ing feature of this design, which is more relevant to our design goal, is the active suppression
of the modes in the 4-8 GHz band. This is shown in Fig. 7.2(b), where the modes are absent
to a large extent. The center frequency for the bandstop filter action was designed to be
at 6 GHz. The bandstop nature of the \/2 resonator ensures that its higher-order modes
in the vicinity of the A/4 resonator are actively suppressed. The experimental data clearly
validates our design methodology. By exploring different design variations, the bandstop
A/2 resonator has the potential for complementing other multi-mode cavity experiments,
where both anharmonicity and filtering is desired. Our simulations (not discussed in this
thesis) also suggests that the same bandstop action is apparent even when the resonator
is replaced by a transmission line with the appropriate length.

7.3 )\/2resonator readout using parametric swap drive

The amplifiers in our measurement chain cannot be used to directly measure the fundamen-
tal frequency wy o of the A/2 resonator. For this, we make use of the parametric coupling
between the A\/2 and the /4 resonators. To implement this coupling scheme, the SQUID
is galvanically connected to the ground plane, which is shared by both resonators. The
nonlinear nature of this coupling, discussed in Chapter 2, allows an indirect readout of wy o
using the A/4 resonator. We achieve this by applying a strong swap drive, w, = wy /s —wy /2,
at the red-detuned frequency between the two modes, injected directly at the input of \/4
resonator. In the rotating frame of the drive field, the interaction Hamiltonian, described
by Eq. (2.44), takes the form of the standard Jaynes-Cummings model,

Hin/h = g(a'b + ab") (7.1)

where af(b') and a(b) represents the creation and annihilation operators of the \/4(\/2)
resonator, g = gocs is the enhanced coupling strength due to the swap drive amplitude
and a = a — «; is the field operator describing the fluctuations of the coherent swap drive
field such that (a) = «,. The amplitude of the swap drive, oy = /n5, where n, is the
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Figure 7.3: Readout of \/2 resonator using parametric swap. (a) Two tone spectroscopy
showing a weak probe tone w, (bottom axis) applied to the input of the A\/2 resonator and
a strong parametric swap drive tone wy (top axis) applied to the input of the A/4 resonator.
The frequencies are chosen such that w, = wy/4 — w,. Due to the nonlinear interaction
between the resonators, when the probe photon is resonant with the A/2 resonator, it
absorb a swap photon and is upconverted to a high frequency photon in the /4 resonator.
The plot shows this upconversion where the Y axis is the digitizer power level at wy /4. (b)
Same measurement as above, but for a wider range of probe frequency. The SQUID is
sensitive to the current antinode of the A/2 resonator. Therefore, we observe the A/2 and
the 3A/2 modes of the resonator and not the A mode. This also verfies the physical nature
of the coupling between the two resonators.

number of drive photons. In the rotating frame of the swap drive, Eq. (7.1) suggests that
the two resonators are coupled resonantly. Therefore, a low-frequency photon in the A/2
resonator can be up-converted to the high-frequency /4 resonator by absorbing a drive
photon. Similarly, a high frequency photon can be down-converted to a low frequency
photon by emitting a drive photon. This forms the basis of our readout strategy for
measuring wy /z.

The measurement involves sweeping a probe tone w, sent to the \/2 resonator near its
expected resonance frequency. The swap tone at w, is swept simultaneously at the input
of the \/4 resonator such that wy = wy/4 — wp, where wy/4/2m = 4.8 GHz is set by the flux
bias on the coil. The output of the \/4 resonator is sent directly to an Aeroflex 3035C
digitizer to monitor the power level of the received signal at wy/4. Figure 7.3(a) shows
the power level of the digitizer as the two tones are swept. When w, = wy/2, the swap
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Figure 7.4: CAD layout of the SQUID design for parametric coupling.

tone w, mediates frequency conversion resulting in a strong up-conversion of photons at
wy/4 which appears as a peak in the measured power of the resonator. We show this for
a varying probe power (in steps of 5 dBm) but keeping the swap power constant. For the
measurement shown in Fig. 7.3(a), we use strong excitation powers for both the drives to
obtain a good signal to noise ratio. Using this method, we measure wy /27 = 280.7 MHz.
After converting the digitizer power level from dBm to V, we extract a full width at half
maximum (FWHM) of 131 kHz from a Lorentzian fit to the amplitude data (not shown
here).

Another check that was performed to validate the measurement was to measure the
SQUID’s sensitivity to higher modes of the A/2 resonator. As the SQUID is galvanically
connected to ground at the current anti-node of the \/2 resonator, it is sensitive to n\/2
modes of this resonator, where n is an odd integer. Repeating the same measurement
over a wide band, Fig. 7.3(b) captures the SQUID’s sensitivity to the odd modes while
being insensitive to the even mode A. The choice of the powers for the two tones for this
measurement was significantly lower than the one shown in Fig. 7.3(a).

7.4 Effect of flux bias on coupling strength

To understand the mechanism of parametric coupling, consider the Fig. 7.4, which shows
the CAD layout of the SQUID and its physical connections to the two resonators as in
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the measured device. The coupling arm of the SQUID of length [. shares the microwave
ground of the A\/2 resonator. As a result, the current flowing in the \/2 resonator gener-
ates a dynamic flux A® = Ly [;ms which couples to the SQUID thereby causing a small
change in wy/4. Here, Ly is the total inductance of the SQUID’s coupling arm, which is
a combination of the geometric and kinetic inductance and I, is the root-mean-square
of the current in the A/2 resonator. The total flux that the SQUID is now sensitive to
is Py = © + AP, where ® is the static flux from the coil. To measure an observable
frequency change in w),4 due to A®, the resonator needs to be biased at a point where
Owy/s/0® is large. By differentiating the theoretical tuning curve from Fig. 7.1(a) with
respect to /Py, we can calculate the expected flux sensitivity for the A/4 resonator in
the measured device. We plot this in Fig. 7.5(a). By biasing the SQUID further down the
tuning curve, we can enhance the coupling strength.

As discussed in Chapter 2, the single-photon coupling strength between the two res-
onators, gy = (Owx/a/0P) AP, ¢, where Ad, ¢ is the flux due to the zero-point-fluctuations
of the current in the A/2 resonator. For this device, we estimate go/2m = 82 kHz at
wx/a/2m = 4 GHz, where 0w/0® = (27)10 GHz/®o. We use Lyoy = Lol. = 10 pH, where
Ly is the geometric inductance/length of the A/2 resonator. The value of L can be in-
creased by many orders of magnitude by engineering the kinetic inductance of the coupling
arm. An alternative way to enhance the coupling strength is by using a strong swap drive
as discussed earlier. The modified coupling strength g = go./ns depends on the number of
swap drive photons. The parametric coupling we see in the measurements is due to g.

The effect of g on the A/4 resonator bias frequency is shown in Fig. 7.5(b). We perform
the same measurement discussed before to read out the A/2 resonator using a swap drive
for different flux bias conditions. As we go down the bias curve, we see a stronger signal
amplitude at the digitizer from the up-converted photons in the resonator. We plot the
maximum amplitude as a function of the flux bias corresponding to the measured reso-
nance frequency in Fig. 7.5(c). We see a qualitative agreement of the profile with that of
Fig. 7.5(a).

7.5 Chapter conclusions

Our results demonstrate the essential elements required for exploring the ideas of a quantum
heat engine discussed in Chapter 2. We present a large bandwidth, frequency-tunable \/4
resonator parametrically coupled to a high quality factor A/2 resonator. The nature of
this parametric coupling allowed us to measure wyy using the A/4 resonator by employing
a swap drive. To prevent the higher harmonic modes of the A/2 resonator from interacting
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Figure 7.5: Effect of flux bias on coupling strength. (a) Theoretical flux sensitivity,
Owy/4/0®P, in units of GHz/®, as a function of normalized external flux, calculated us-
ing Eq. (2.34) for the experimental tuning curve in shown in Fig. 7.1. We achieve high
single photon coupling strength when working near flux bias points where the slope is large.
(b) We use the swap drive technique to readout out the A/2 resonator. The Y-axis shows
the digitizer amplitude level at wy/4/27. The curves are for different wy/4/27 obtained by
changing ®/®,. For a fixed swap photon and probe photon powers, we see that by biasing
the A\/4 resonator at different frequencies along the tuning curve, the coupling strength
increases, evident from the higher digitizer amplitude levels from the upconverted photons
in the A/4 resonator. (¢) The maximum digitizer power level from (b) is plotted against
the corresponding flux bias operating points. We observe a similar qualitative trend in the
coupling strength as expected from theory, shown in (a).
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with the other resonator, we implemented a novel stepped impedance based band stop
filter as an intrinsic feature. We also show that the coupling strength can be enhanced
by flux biasing the SQUID. The large bandwidth of the \/4 resonator made it difficult to
directly quantify g in our device. By using a suitable low frequency amplifier to measure the
A/2 resonator directly, signatures of resonant interaction such as an avoided level crossing
due would be easier to observe which would help in directly quantifying g. Future device
designs can improve gy by enhancing the kinetic inductance of the coupling arm of the
SQUID. By using suitable time-domain pulsing techniques, the action of the heat engine
can be studied.
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Chapter 8

Conclusions

8.1 Summary

This thesis is a result of work that studies: a) giant artificial atoms, formed from a trans-
mon qubit, in superconducting waveguide-QED architecture and b) parametrically-coupled
superconducting resonators which implements an optomechanical-like interaction. At the
heart of these devices is a SQUID, formed using Josephson junctions, which provides the
essential nonlinearity to explore the rich physics that describes these devices.

We developed a theoretical framework based on existing original results, which imple-
ments the necessary interaction in our devices. We then derived the necessary equations
from microwave transmission-line theory to help us model their behavior and numerically
calculate the response. We used a classical model to study the scattering of a artificial
atom coupled to a transmission line. We then discussed a theoretical proposal to build
a heat engine using the coupled resonator system, where the dynamics is simulated using
classical Langevin equations. The framework that we developed, provided valuable input
to the design methodology for implementing the devices under study.

Building on the theoretical models, we designed the chip layouts using circuit and elec-
tromagnetic simulations on commercially available simulation packages. In depth simula-
tions were performed, involving design variations, to feedback on the measured results and
to explain observed experimental signatures and features that deviated from theoretical
predictions. During this process, several observations were made, which provides valuable
input for designing future devices. The finalized layouts were then translated to physical
devices using micro/nano fabrication techniques. Proceeding to their characterization, low
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temperature measurements presents several challenges which are discussed in the context
of our measurement setup. Steps taken to improve the general microwave health of our
setup is also discussed. The importance of shielding and thermal management is impressed
upon.

An artificial atom coupled to 1D vacuum is one of the most basic prototype systems in
superconducting-waveguide QED. We have added another important addition to the ex-
isting waveguide-QED toolbox, a giant artificial atom. Due to its multipoint coupling na-
ture, the qubit’s absorption/emission amplitudes interfere, resulting is a strong frequency-
dependent coupling rates of its multiple transition levels, which is clearly demonstrated
by our results. We observed large on/off ratios, as high as 380, for the |0) — |1) transi-
tion. The giant transmon also has higher transition levels. We show that we can tune
the coupling rate of the |1) — |2) transition relative to the |0) — |1) transition by a factor
greater than 200. To our knowledge, these numbers are a record high for a superconduct-
ing waveguide-QED setup. The relative modulation of the coupling rates allowed us to
engineer the giant transmon as a lambda system with a metastable state, one of the most
commonly studied three-level systems in quantum optics. To validate this, we demonstrate
electromagnetically-induced transparency (EIT), a typical signature for a lambda system.
Unlike other EIT demonstrations using superconducting circuits, we achieved this in a
cavity-free setup. Our claim to observing EIT is confirmed by a master equation solution,
with excellent agreement between theory and experiment.

We also studied a device with two giant artificial atoms, connected in a braided config-
uration. The nature of braided topology allows an existence of a special frequency point
where the qubits are theoretically shown to interact in a decoherence-free environment.
Although, we were not able to operate the qubits at this special frequency bias point, we
observed interesting resonant behavior of the qubits at two other frequency bias points,
one closer to the special point and one away. Near these frequency points, when the
qubits are resonant and off-resonant, we also observed multiple resonances when probing
for Autler-Townes splitting (ATS), which is surprising as the qubits are nominally identi-
cal. We believe our experimental signatures could be an indication of novel physics, which
is currently being understood theoretically.

The quest for a quantum heat engine to test the ideas of quantum thermodynamics is
an ongoing one. The problem is being tackled using different implementations. The “pho-
tonic piston” engine we propose to build, is a system with two coupled-superconducting
resonators. The nonlinear interaction between the resonators, mediated by a SQUID, cou-
ples the current in one resonator to the photon number in the other, thus implementing an
optomechanical-like interaction. Upon suitably driving the system with noise, a limit cycle
is established, which results in the build up of a coherence in the system. We fabricated
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such a device in a regime that is suitable for its operation. We demonstrated the crucial
nonlinear coupling which is essential to its working as a heat engine. We also showed
that we can modulate the coupling between the resonators depending on the flux biasing
condition of the SQUID.

8.2 Future work

As suggested in Chapter 3, the use of airbridges in experiments involving giant transmons
is crucial, as was implemented by a competing group [73]. They help in producing a cleaner
microwave environment, suppressing the spurious modes that could be a result of slotline
mode propagation, especially when the transmission line involves extreme meandering. In
general, care should also be taken while positioning the SQUID. From our simulations
of the braided giant transmons, we observe that stray coupling of the SQUID to ground
currents can result in behavior which deviates from theory. Incorporating dedicated read-
out resonators for the giant transmons provides an alternative way to characterize the
qubits [73]. In this case, the transmission line can be terminated by 50  ports which
prevent unwanted reflections at the plane of the connectors on the sample box. This also
ensures that the qubits are coupled a strict 50 €2 environment [73].

To demonstrate a heat engine with our coupled-resonator device, it is important to
quantify the actual coupling strength that can be obtained. The SQUID-terminated \/4
resonator, which is also our readout resonator, is strongly overcoupled and hence quan-
tifying the coupling strength between the resonators is challenging. The fundamental
frequency of the A\/2 resonator is outside the measurement band making it difficult to di-
rectly measure it. Having a dedicated low frequency cryogenic amplifier to measure the
frequency directly is useful. The coupling strength in this case can be directly observed
by probing the A/2 resonator as it’s linewidth is smaller or comparable to the expected
coupling strength. For the engine to operate, the single photon coupling strength should be
quite high. This can be achieved by fabricating a device with a thin meandering coupling
arm, as discussed in Chapter 2. The kinetic inductance of the arm can be used to boost
the coupling strength further. Once this is achieved, careful calibration of noise drives at
room temperature is required to drive the system for showing the Otto-cycle operation.
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Appendix A

Fabrication recipes

A.1 Giant transmon

1. Bare subtrate cleaning:

e Piranha acid clean:

— Prepare, 600 ml of H,SO, 4+ 150 ml of H50s.
— Clean for 15 min.

e HF acid clean

— Prepare 960 ml of DI water + 40 ml of HF (49%). The combination is 1

part of HF (49%) in 24 parts of DI water, so that you end up with a 2%
HF solution.

— Clean for 90 s. To check if the oxide is removed, the surface should be
hydrophobic. After this, sequentially transfer the substrate to a set of
beakers with DI water to remove any traces of HF.

2. Metal depostion: Al

e Load the wafer immediately into the Plassys loadlock after HF clean. Pump
overnight

e Deposit 80 nm, with 5 rpm planary rotation.

3. Marker lithography:
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e Resist spin coating:
— Spin: S1811:
* Step 1: 500 rpm, 100 rpm/s, 5 s
% Step 2: 5000 rpm, 500 rpm/s, 60 s
— Bake: at 120° C for 90 s
e Optical lithography:
— Using MaskLess Aligner,
x Laser: 405 nm
* Dose: 130 mJ/cm”2
x Defocus: 2

e Development: 2 min in MF319 solution, followed by DI water for 30 s.
4. Descumm:

e Procedure: Load wafers in the YES ASH tool and run recipe 6 — 2 times
e Recipe 6: 50 W, 120 s, 25° C

5. Si RIE:

e Load cleaning wafer
e Run recipe “OPT Oy/SFg clean” for 15 min

Load wafer

e Run recipe “OPT Bosch;2um” with loop count step=9

Load cleaning wafer
e Run recipe “OPT Oy/SFi clean” for 15 min

6. Solvent cleaning;:

e Clean wafers in a bath of hot PG Remover (1 hr) followed by a cold PG remover
(5 min), IPA (10 min) and DI water (10 min). Transfer to quick dump rinse

(QDR).
7. Substrate bake: at 110° C for 2 min.
8. Descumm

e Procedure: Load wafers in the YES ASH tool and run recipe 11 — 1 time
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9. Al lithography

e Resist spin coating:
— Prebake: at 120° C for 90 s
— Spin: S1811:
* Step 1: 500 rpm, 100 rpm/s, 5 s
% Step 2: 5000 rpm, 500 rpm/s, 60 s
— Bake: at 120° C for 90 s
e Optical lithography:
— Using MaskLess Aligner,
x Laser: 405 nm
* Dose: 130 mJ/cm"2
x Defocus: 2
x Use rotation correction only

e Development: 60 s in AZ developer (1:1), followed by DI water for 30 s. Blow
dry.

10. Descumm:

e Procedure: Load wafers in the YES ASH tool and run recipe 6 — 3 times
e Recipe 6: 50 W, 120 s, 25° C

11. Aluminum RIE

e Load cleaning wafer

e Run recipe “OPT Oy/SFg clean” for 10 min

e Load wafer

e Run recipe “OPT Al ICP new”. Modify this recipe with Ny = 50 scem.

e Immediately put wafer in DI water for 10 min
12. Solvent cleaning

e Clean wafer in cold PG Remover (overnight) followed by IPA (15 min) and DI
water (10 min). Transfer to quick dump rinse (QDR).

13. Descumm
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14.

15.

16.

17.

18.

e Procedure: Load wafers in the YES ASH tool and run recipe 11 — 1 time
Dicing resist coating

e Spin coating:
— Spin SPR4.5:
* Stepl: 500 rpm, 100 rpm/s, 5 s
% Step2: 3000 rpm, 500 rpm/s, 60 s
— Bake: at 110° C for 90 s

Block clean

e Acetone (5 min) + sonication (2 mins)
e IPA (5 min) + sonication (2 mins)
e DI water (2 min) + sonication (2 mins)

e Blow dry
Block bake

e Bake block at 170° C for 2 min.’
Descumm

e Procedure: Load wafers in the YES ASH tool and run recipe 11 — 1 time
Ebeam lithography

e Spin coating:
— Bake: at 170° C for 2 min. Cool.
— Spin MMA-MAA ELI11:
% Step 1: 500 rpm, 100 rpm/s, 5 s.
% Step: 4000 rpm, 1000 rpm/s, 60 s. This gives 450 nm
— Bake: at 170° C for 8 min. Cool.
— Spin 1:2::Zep:Anisol:
* Step 1: 500 rpm, 100 rpm/s, 5 s.
% Step: 6000 rpm, 1000 rpm/s, 60 s. This gives ~60 nm
— Bake: at 170° C for 5 min. Cool.
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e Ebeam writing:

— JEOL:
% @ 100 kV: I use the top loading holder (2B)
- Dose: 350 uC/cm "2 with PEC. The PEC file is simulated in Beamer.
- Shot pitch: 8 nm
- Condition files: 2nA_APG60 (for the junction patterns) and 4nA_AP130
(for the capacitor electrode patterns)

e Development:
— 1:2::Zep:Anisol: 2 min in N-Amyacetate (ZED-N50) and 30 s in IPA; blow
dry
— MMA-MAA EL11: 8 min in IPA:DI water::4:1 solution, i.e, 25 ml of TPA
in 100 ml of DI water. 30 s in IPA, blow dry

19. Al deposition- junction fabrication

e Procedure: Load the block into the Plassys loadlock. Pump the LL for 1.5 hours
before loading it into the evaporation chamber.

Deposition angle: £18°

Ton milling: 1min at each angle

Deposition thickness: 40 nm + 60 nm

Oxidation parameters: 10Torr, 35 mins (static oxidation)

20. Liftoff of junctions

e Hot PG Remover@ 70 deg (2-3 hrs) followed by cold PG remover (5 min), I[PA
(5 min) and DI water (5 min). Blow dry. I use a pipette to gently squish liquid
to aid liftoff. Also, use pipette to suck the film residues. Sonicate for 1 min in
both solvents.

e Or one can use cold liftoff in PG Remover. Keep the sample overnight. I
found that doing cold liftoff gives me the best results. The film releases better.
Sonicate for 1 min in cold PG remover. Transfer to IPA (5 min) and DI water
(5 min). Blow dry.

21. Dicing resist coating: same as before

22. Dice block
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e Dice block into chips using the Disco Dicer tool. Make sure the blade is the
right one for Silicon. ALso check the dimensions of the chip beforehand

23. Chip clean

e Acetone (5 min) + sonication (2 mins)
e IPA (5 min) + sonication (2 mins)
e DI water (2 min) + sonication (2 mins)

e Blow dry
24. Wire bonding

e Use semi-automatic wire bonder to bond the chip to a PCB.

A.2 Coupled resonators

1. Bare subtrate cleaning

e Piranha acid clean:

— Prepare, 600 ml of H,SO4 4+ 150 ml of HyOs.
— Clean for 15 min.

e HF acid clean

— Prepare 960 ml of DI water 4+ 40 ml of HF (49%). The combination is 1

part of HF (49%) in 24 parts of DI water, so that you end up with a 2%
HF solution.

— Clean for 90 s. To check if the oxide is removed, the surface should be
hydrophobic. After this, sequentially transfer the substrate to a set of
beakers with DI water to remove any traces of HF.

2. HMDS depositon. Use the standard cleanroom recipe.
3. Marker Lithography
e Resist spin coating:

— Spin: PMGI SF7:
% Step 1: 500 rpm, 100 rpm/s, 5 s
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% Step 2: 5000 rpm, 500 rpm/s, 60 s
— Bake: at 150° C for 5 mins
— Spin: S1811:
% Step 1: 500 rpm, 100 rpm/s, 5 s
% Step 2: 5000 rpm, 500 rpm/s, 60 s
— Bake: at 120° C for 90 s
e Optical lithography:

— Using Mask aligner: Vac contact, 4.2s exposure, 30um Alignment gap, 5 s
for all vacuum parameters

— Using MaskLess Aligner,
* Dose: 130 mJ/cm”"2
x Defocus: 2

e Development: 47 s in MF319 solution, followed by DI water for 30 s.
4. Descumm

e Procedure: Load wafers in the YES ASH tool and run recipe 6 — 6 times
e Recipe 6: 50 W, 120 s, 25° C
5. Metal depositon: Ti/Au/Pd

e Procedure: Load wafer in the INTLVAC evaporator. Make sure the crucibles
are loaded with the right material. Pump overnight

— Ti: 3nm @ 0.5 A/s
— Aw 80 nm @2 A/s
— Pd: 5nm @ 0.5 A/s

6. Liftoff

e Cold PG remover overnight for atleast 12 hours. Alternatively, hot bath of PG
remover at 70° C for atleast 3 hours. After liftoff, rinse with IPA for 60s and
DI water for 30s.

7. Substrate cleaning with Ti/Au/Pd
e RCAT1 clean:
— Prepare 750 ml of DI water + 150 ml of NH4OH. Heat solution to 70° C.
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— Prepare 150 ml of H202. Add this to the above solution. Stop heating.
— Clean subtrate in this solution for 20 min.

e HF acid clean: As before.
8. Metal depostion: Al
e Load the wafer immediately into the Plassys loadlock after HF clean. Pump

overnight

e Deposit 80 nm at 12° deg tilt angle, 5 rpm planary rotation.
9. Al lithography

e Resist spin coating:
— Spin: PMGI SF7:
% Step 1: 500 rpm, 100 rpm/s, 5 s
% Step 2: 5000 rpm, 500 rpm/s, 60 s
— Bake: at 150° C for 5 mins
— Spin: S1811:
% Step 1: 500 rpm, 100 rpm/s, 5 s
% Step 2: 5000 rpm, 500 rpm/s, 60 s
— Bake: at 120° C for 90 s
e Optical lithography:
— Using Mask aligner: Vac contact, 4.2s exposure, 30um Alignment gap, 5 s
for all vacuum parameters
— Using MaskLess Aligner,
* Dose: 130 mJ/cm”2
x Defocus: 2

e Development: 47 s in MF319 solution, followed by DI water for 30 s.
10. Descumm

e Procedure: Load wafers in the YES ASH tool and run recipe 6 — 6 times
e Recipe 6: 50 W, 120 s, 25° C

11. Aluminum wet etching
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e Use Aluminum Etchant A solution. Dip the wafer into this solution and slightly
agitate. You will start to notice the Al etch in about 1min 30s. Rinse with DI
water afterwards in two separate containers. Overetch to make sure all the Al
is gone. Also, the time of etch depends on the temperature of the etch solution.
Before beginning, wait for "10 min for the etch solution to thermalize to the
ambient temperature.

12. Solvent cleaning

e Clean wafers in a bath of PG Remover (20 mins) followed by a cold PG remover
(5 mins) and IPA (5mins). I use the wafer cassette with wafers face down.

13. Dicing resist coating

e Spin coating: Spin coat twice to get a thick resist layer. Make sure to bake
them at each step

— Spin S1811:

% Stepl: 500 rpm, 100 rpm/s, 5 s

% Step2: 5000 rpm, 500 rpm/s, 60 s
— Bake: at 120° C for 90 s

e Alternatively, it is advisable to use SPR photoresist as a dicing resist as this
gives a thicker film. The resist also easily strips down with Acetone and IPA.

14. Dicing

e Dice wafer into blocks using the Disco Dicer tool. Make sure the blade is the
right one for Silicon.

15. Block clean

e Clean blocks in a bath of PG Remover (20 mins) followed by a cold PG remover
(5 mins) and IPA (5mins).

16. Descumm

e Procedure: Load wafers in the YES ASH tool and run recipe 6 — 6 times
e Recipe 6: 50 W, 120 s, 25° C

17. Ebeam lithography
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e Spin coating:
— Spin PMGI SF11:
% Step: 4000 rpm, 1000 rpm/s, 60 s. This gives “1200 nm
— Bake: at 200° C for 10 min
— Spin PMMA A3:
* Stepl: 5000 rpm, 1000 rpm/s, 60 s. This gives "120 nm
— Bake: at 180° C for 5 min

e Ebeam writing:

— RAITH:

x @ 25KV: Smaller SQUID sections written with 10 um aperture @~33
pA, dose factor (in CAD)=1.2. Larger SQUID sections written with
20um aperture @~ 139 pA, dose factor (in CAD)=1. The dose factor in
the position list is 1.05.

* @15 KV The contact pads (big features) were written with 15um aper-
ture @"275 pA. The dose factor for both cad and position list is set to
1

— JEOL:
% @ 100 kV: I use the top loading holder (2B)
- Dose: 900 uC/cm”2 with PEC. The PEC file is simulated in Beamer.

- Condition files: 2nA_AP60 (for the fine patterns) and 20nA_AP130
(for the coarse patterns)

e Development:

— PMMA: 455 in MIBK:IPA (1:3) and 20 s in IPA, blow dry
— PMGI: 25 s in developer concentrate, 30 s in DI water, 5 s in IPA, blow dry

18. Descumm
e Procedure: Load wafers in the YES ASH tool and run recipe 8 — 1 time
19. Al deposition- SQUID fabrication

e Procedure: Load the block into the Plassys loadlock. Pump the LL for 1.5 hours
before loading it into the evaporation chamber.

e Deposition angle: 100

e [on milling: 1min at each angle
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20.

21.
22.

23.

24.

e Deposition thickness: 40 nm + 60 nm

e Oxidation parameters: 1Torr, 10 mins (Dynamic oxidation)
Liftoff of junctions

e Hot PG Remover@ 70 deg (2-3 hrs) followed by cold PG remover (5 mins) and
IPA (5mins). I use a pipette to gently squish liquid to aid liftoff. Also, use
pipette to suck the film residues. Sonicate for 1 min in both solvents.

Dicing resist coating: same as before

Dice block
e Dice block into chips using the Disco Dicer tool. Make sure the blade is the
right one for Silicon. ALso check the dimensions of the chip beforehand
Chip clean
e Clean chips in a bath of hot PG Remover (20 mins) followed by a cold PG
remover (5 mins) and TPA (5mins). This step generally increases the junction
resistance due to the hot PG remover. If cold PG remover is used, leave the
chip for an hour.
Wire bonding

e Use semi-automatic wire bonder to bond the chip to a PCB.
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