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Abstract

The use of numerical methods in loop quantum gravity is still relatively
untapped. Numerical methods are, however, a useful tool, and offer access
to regimes that are as of yet inaccessible by analytical methods. This thesis
offers an example of this utility by presenting numerical methods for
computing the vertex amplitude of a spinfoam model composed of cuboid
intertwiners. The vertex amplitude has a known analytical solution in the
semi-classical regime, but no known analytical solution in the purely
quantum regime. These numerical methods, therefore, allow for an
examination of the transition between the quantum and semi-classical
regimes, and provide a foundation for future numerical methods in loop
quantum gravity.
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1 Introduction

Quantum mechanics and general relativity both offer useful descriptions of
the universe, but they also have mathematical and conceptual physical differ-
ences. General relativity is formulated in terms of geometry, whereas quan-
tum mechanics is formulated in terms of functional analysis. While quantum
mechanics describes interactions on a fixed background spacetime, general
relativity asserts that no such background spacetime exists, and that space-
time is instead dynamical itself. In particular, quantum mechanics necessi-
tates an independent time variable, whereas, in general relativity, the notion
of time is relative or relational, and the physical properties of the clock, such
as its mass, might influence the spacetime geometry. These differences mean
that there are two vastly different ways of describing the universe, depending
on the regime being examined.

Many theories have been proposed to unify these two disparate paradigms,
one of which is loop quantum gravity (LQG). LQG is based solely on the
tenants of quantum mechanics and general relativity, and makes no further
assumptions, such as the extra dimensions and supersymmetry required by
string theory. It uses a straight-forward, nonperturbative, quantization of
general relativity, imagining the spacetime field as loops similar to electro-
magnetic field lines [3]. The basic idea behind LQG will be discussed in
section 2.1, and the more technical aspects of the formulation and discretiza-
tion will be discussed in section 2.2.

While the analytical formulation of LQG is well understood, applying nu-
merical techniques to LQG is a relatively new endeavour. The development
and application of numerical methods to LQG is, however, of great impor-
tance. Numerics allow the exploration of regimes that analytical techniques
alone cannot describe. For example, a numerical approach might be useful
to tackle the difficult task of studying the nonperturbative dynamics of LQG
and of implementing renormalization schemes.

Numerical methods can be used in tandem with analytical methods. In
order to hone numerical tools, one can attempt to solve problems that have
already been solved analytically. Prior knowledge of the solution places the
focus on building an efficient code, and provides a guide line to ensure that
the code does not get spurred by unwanted numerical artefacts. On the
other hand, the numerical approach, while constrained in some regimes by
analytical results, can still provide new, interesting, information on other
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regimes that are difficult to probe at the analytical level. This thesis is
concerned with one such case, computing the vertex amplitude of the ERPL
spinfoam model with cuboid intertwiners, which is presented in section 2.3.

The semi-classical limit of the vertex amplitude for cuboid intertwiners
is well known [4], determined using analytical methods, and is given in by
equation (23). Computing the amplitude in the strictly quantum regime,
however, is analytically complex, and the result is not known. By compari-
son, the computation is relatively straight-forward using numerical methods,
as outlined in section 3. So, using the results of the numerical computation,
presented in section 4, it is possible to analyze the transition from the quan-
tum regime to the semi-classical regime, as is done in section 5. An overview
of this work, and an outlook for the future is then given in section 6.

Numerical methods can therefore be used in tandem with analytical meth-
ods to explore new regimes of LQG that cannot be investigated with analyt-
ical methods alone. To that end, the numerical methods presented in this
thesis demonstrate the utility that numerics offer, and lay the foundation for
the development of future numerical methods in LQG. The results of this
work, then, only offer a glimpse into the possible impact that numerics could
have on the field of loop quantum gravity.
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2 The Model

2.1 Loop Quantum Gravity, Intertwiners, and Spin-
foams

Later sections will introduce the more technical aspects of LQG, but it is
conceptually useful to briefly illustrate the LQG description of spacetime,
beginning with three spatial dimensions and then introducing time. To that
end, imagine a cube, A. This cube represents a region of space, a volume. It
has six faces, each with a given area. Cube A can be connected to another
cube, B, by gluing one of cube A’s faces to a face of cube B. Connecting
cubes describes larger and larger regions of space. Now, since volume and
area are functions of the gravitational field, and the gravitational field is an
operator, volume and area are both operators, with, as it turns out, discrete
spectra [3], thus discretizing space.

Since area and volume have discrete spectra, we define quantum states
of area and volume in terms of the associated quantum numbers. A cube
can be associated to a node, and the face of a cube to a link. See figure 1
for reference. A set of glued cubes, then, gives rise to a graph where each
node is labelled with a quantum number of volume, and each link is labelled
with a quantum number of area. The quantum numbers of volume and area
are referred to as intertwiners and spins, respectively [5]. The graph is then
called a “spin-network”, which labels the quantum states of space.

Of course, we need not divide space into cubes specifically, any type of 3D
polyhedra will do, but using cubes relates directly to the cuboid intertwiner
model, which is discussed in section 2.3, and on which the subsequent code
is built. Different polyhedra have different numbers of faces, and therefore
yield different intertwiners. Cubes yield six-valent intertwiners, octahedra
would yield eight-valent intertwiners, and so on. Furthermore, the polyhedra
also need not be all the same, cubes can connected to any combination of
polyhedra. An octahedron can be attached to a tetrahedron, so long as their
attached faces have the same area encoded in the associated spin. The idea
of connecting these polyhedra is discussed in more detail in section 2.3.

The dynamics of the spin-network states Ψ are given by the Wheeler-
DeWitt equation, which is a specialization of the Schrödinger equation to
the gravitational case, and is given by

ĤΨ = 0, (1)
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Figure 1: Visualizing a node with edges as a cube of space. Black represents
the volume, or intertwiner, while green represents area, or spin. The blue
circle is meant to show that the interior of the cube is black, and that it is
only the faces that are green.

where Ĥ is the Hamiltonian, which we see is set to be zero, hence the name
“Hamiltonian constraint”. There is no time derivative since the time param-
eter used to formulate the general relativity framework is not physical. In
the spin network basis, the Hamiltonian acts only on the nodes of the graph
(intertwiners), so it follows that a loop without nodes would be a solution
of equation (1). Historically, it is these simple loops that give loop quantum
gravity its name [3].

To move from three dimensions to four, i.e. to describe how a quantum
state of space can evolve to another quantum state of space, we extend the
notion of a cube in three dimension to that of a hypercube in four dimensions.
A hypercube can be represented in three dimensions by eight cuboids glued
at their faces. This is analogous to unfolding a 3D cube into a 2D net. Each
cube represents either an initial position, a space step, or a time step. See
figure 2 for more information. So the cuboids show the possible paths of
a three dimensional cube through time, or, in other words, they illustrate
the dynamics of the cube. Extending this notion to that of spin networks,
connecting networks forms a four dimensional picture of spacetime known as
a spinfoam. The spinfoam gets its name from the fact that the connected spin
networks form “bubbles” and look like a “foam”, as illustrated by figure 3.
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Figure 2: A three dimensional representation of a four dimensional hyper-
cube. The green cube is the initial state, the blue cuboids represent possible
space steps, and the purple cube represents a time step.

Section 2.2.3 formalizes the notion of a spinfoam, and section 2.3 formalizes
the notion of a spinfoam defined by a hypercube. The spinfoam is one of the
principle ways of describing the dynamics of LQG.

Loop quantum gravity, therefore, has a relatively simple foundation. It
merely assumes that the fundamental principles of general relativity (back-
ground independence) and quantum mechanics (discretization of dynamical
fields) are correct, and interpolates from there. The results are intertwin-
ers and spins forming a spin network, which describe the quantum states of
space, and spinfoams, which describe the evolution of these quantum states
of space. The remainder of this section describes the relevant spinfoam model
in greater detail and introduces the cuboid model that will be used to obtain
numerical results.

2.2 Formulating LQG: BF theory, intertwiners, and
spinfoams

2.2.1 BF Theory and the Equations of Motion

One method of describing the dynamics of LQG begins with a topological
field theory known as BF theory, which derives its name from the convention
of using a B field and the F curvature of a connection ω. The action of BF
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Figure 3: An illustration of the path from an initial spin-network, σi, to
a final spin-network, σf given by linking spin-networks. This is called a
spinfoam.

theory is

S =

∫
M

BIJ ∧ F (ω)IJ , (2)

whereM is a 4 dimensional manifold, BIJ is a 2-form valued in the Lie algebra
SO(4), ωIJ is the gauge connection, a 1-form valued in the Lie algebra SO((4),
and F (ω)IJ is the curvature of the connection ωIJ .

In order to obtain the equations of motion, it is necessary that the action
be stationary. Or, in other words, it is necessary that the variations of the
action are zero

δωS = 0 , δBS = 0. (3)

Performing the variations, we obtain the equations of motion

F (ω) = 0 , dωB = 0. (4)

Counting the degrees of freedom shows that there are no local degrees of
freedom [6], hence the theory is topological. The former equation states that
the curvature of the connection vanishes, and therefore that the manifold is
locally flat. This property is preserved when discretizing, as shown in section
2.2.3. Equations (2) and (4) describe the basic dynamics of BF theory.
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2.2.2 The path integral

In the the path integral formalism, we first quantize BF theory. Recall that
the partition function is the integral over all possible configurations, in this
case of B and ω, weighted by the exponential eiS, where S is the action. The
partition function Z(M) of the BF action is

Z(M) =

∫
Dω DB eiS[ω,B], (5)

where S is given by (2) and is seen as a function of the B field and the con-
nection ω [7]. We can simplify the partition function formally by integrating
out the B-field, which acts as Lagrange multiplier, enforcing the flatness of
the connection given by (4) [6]. Heuristically, the result is an integral over
the connections given by,

Z(M) =

∫
Dω δ(F (ω)). (6)

The jump from equation (5) to equation (6) makes intuitive sense when
considering the integral definition of the delta function,

δ(x) =
1

2π

∫ ∞
−∞

eikx dk.

The partition function, and the subsequent integration, is, however, ill-
defined. Since M is a continuous manifold, the measures DB and Dω have
no precise meaning as measures over field spaces. To make the integration
over DB well-defined, and to regularize Dω, we can discretize the fields.
In particular the discretization of the connection will be done in terms of
holonomies [7], as outlined in the next section.

2.2.3 Triangulations and 2-complexes

One of the ways to formalize the above approach is to discretize the manifold,
M of dimension d ≤ 4, using a cellular decomposition such as a triangulation,
∆, which is a subdivison of M into d-cells. In the case of a triangulation,
cells are called “simplices”, and a 0-cell is a vertex, a 1-cell is a edge, a 2-cell
is a triangle, a 3-cell is a tetrahedron, and, finally, a 4-cell is a 4-simplex,
i.e. a 4d object made of five tetrahedra glued together. We note that higher
dimensional simplices are made of lower dimensional ones. That is, a triangle
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Figure 4: In the triangulation on the left, six tetrahedra are glued together
by their faces and share a single edge, highlighted in blue. This edge is dual
to the blue face of the 2-complex.

is made of edges, a tetrahedron is made of triangles, and so on. Instead of
using a triangulation, we could use a cubulation, in which case the 2-cell is a
square, the 3-cell is a cube and the 4-cell is a hypercube. In general, we can
deal with cells of any arbitrary shape.

Of special importance is the dual 2-complex to the cellular decomposition.
This dual 2-complex is specified by σ = {f, e, v}, where f is a face of the 2-
complex, e is an edge, and v is a vertex. v is dual to a d-cell, e is dual to a d−1-
cell, and f is dual to a d−2-cell. The above equations are all four dimensional,
however, it is more straightforward to illustrate the triangulation and its dual
2-complex in the analogous three dimensional spacetime, so the following
discussion will be in three dimensions.

In three dimensions, the triangulation of M subdivides the manifold into
tetrahedra. Once again, this is a special feature of the triangulation, and
other choices of cells yield different polyhedra. These tetrahedra are dual
to the vertices of the 2-complex where each vertex is an intersection of four
edges. Each edge of the 2-complex is dual to a face of the tetrahedron,
e∗ = f∆, as in figure 1, and each face of the 2-complex is dual to an edge of
the tetrahedron, f ∗ = e∆. See figure 4 for more information.

When discussing the discretization of the theory, it is common to deal
with both the dual 2-complex, and the triangulation itself. The discretized

8



B field is then given in terms of Lie algebra elements, Bf∗ , assigned to the
edges, e∆ = f ∗, of the triangulation ∆ [8],

Bf∗ =

∫
f∗∈∆

B. (7)

The information contained in the connection can be encoded in a parallel
transport from one point to any other point along a path, which in the dis-
crete case means parallel transport from one tetrahedron to another. When
discretizing, ω is replaced by the associated holonomy along an edge. Since
tetrahedra are connected by their faces, which are dual to the edges, e, of
σ, to discretize the connection, a holonomy is assigned to each edge in σ.
The notion of holonomy is encoded through the path-ordered exponentiation
P exp. The discretized connection can then be given by the path ordered
exponentiation along e,

ge := P exp

(
−
∫
e∈σ

ω

)
. (8)

where ge is the discretized connection, a group element associated to the
edges of the 2-complex [8]. We make a choice that all group elements are
in SU(2), which is a choice frequently made in spinfoams, due to consider-
ations inherent to LQG. Another possible choice is SO(4), and a mapping
between the two is established when implementing simplicity constraints, as
will be discussed in section 2.3. The choice of the group SU(2) leads into the
idea of SU(2) coherent intertwiners, which will be necessary when describing
quantum polyhedra in section 2.3.

Now to discretize the curvature, F (ω). The edges, e, of σ that share a
face, f , form a closed loop and can be denoted ef . The discretized curvature,
Uf , can then be written as the holonomy around the face, f , [8]

Uf :=
~∏
ef

ge. (9)

Rewriting the partition function (5) in terms of the discrete variables (7),
(8), and (9), the path integral becomes

Zσ =

∫
SU(2)

(∏
e∈σ

dge

)∫ (∏
f∈σ

dBf∗ e
iBf∗Uf

)
,
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where dge is the SU(2) Haar measure. Integrating out the B field gives the
discrete, and well-defined, version of equation (6) [7],

Zσ =

∫
SU(2)

(∏
e

dge

)∏
f

δ

 ~∏
ef

ge

 , (10)

where δ(g) denotes the delta function on SU(2). It states that each holon-
omy, Uf , around the closed loop ef must be equal to the identity, which
corresponds to a locally flat geometry as in continuum BF theory. By defi-
nition, we note that δ(Uf ) is invariant under gauge transformations, due to
the cyclicity of the delta function.

Now it is possible to rewrite the above path integral using the intertwiners
and spins introduced in section 2.1. Peter-Weyl’s theorem implies in partic-
ular that any gauge invariant function can be written in terms of the trace
of irreducible representations,

δ(g) =
∑
j

djTr
[
Dj(g)

]
, (11)

where j ∈ N
2

labels the irreducible representations of SU(2), dj = 2j+1 is the
dimension of the representation vector space labelled by j denoted Vj, and
Dj
mn is the Wigner-D matrix for the irreducible representation j. Returning

to (10), a spin, jf ∈ SU(2) is assigned to each face, f , of the 2-complex σ.
This allows each delta function to be expanded in terms of (11). Performing
this expansion and exploiting the identity

Dj(g1g2) = Dj(g1)Dj(g2)

gives

Zσ =
∑
jf

∫
SU(2)

(∏
e∈σ

dge

)(∏
f∈σ

(2jf + 1) Tr
[
Djf (ge1)...D

jf (geN )
])

.

Grouping the terms that belong to edge e results in the expression

Zσ =
∑
jf

(∏
f∈σ

(2jf + 1)

)(
Tr

[∫
σ

∏
e∈σ

dge
⊗
f⊃e

Djf (ge)

])
, (12)
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Figure 5: In three dimensions, the faces of the tetrahedron are attached to
each other at their edges. The six edges are dual to the spins j1, j2, j3, j4,
j5, and j6; and the four faces are dual to the intertwiners ιj1j2j3 , ιj1j5j6 , ιj2j4j6 ,
and ιj3j4j5 . In the dual 2-complex, four edges meet at a vertex, and each
edge is associated to three faces of the tetrahedron. The is illustrated by the
green edge.

where the term in square brackets is a projector onto the invariant subspace
Inv(

⊗
f

Vjf ) where Vjf is the representation vector space associated to face f .

Inv(
⊗
f

Vjf ) is known as the Haar-projector, PHaar [8]. In a 3D triangulation, e

is three valent, meaning that each edge is associated to three faces, as shown
in figure 5. The Haar-projector is then given by

PHaar =

∫
σ

dg Djf1 (g)⊗Djf2 (g)⊗Djf3 (g) = |ι〉 〈ι| , (13)

where |ι〉 〈ι| is a projector, and ι is an element of Inv(
⊗
f

Vjf ) and represents

the intertwiners mentioned in section 2.1. In the case of a 3D triangulation,
ιe is a normalized unique vector in Inv(j1 ⊗ j2 ⊗ j3). So ιe is a three valent
intertwiner and a projector onto |ιe〉, the half-edge of e.

Looking back at the triangulation, the tetrahedron has four faces and six
edges. The dual 2-complex has four edges all connected at a central vertex,
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v. From figure 5, the whole vertex amplitude can be given by

Av = ιj1j2j3 ι
j1
j5j6

ιj2j4j6 ι
j3j4j5 .

The spins are used to show the pattern of contraction of the entries in the as-
sociated representation vector spaces, sometimes called magnetic indices. In
this way, intertwiners have an orientation, since spins go from one intertwiner
to another, but this orientation has no physical meaning, it is only necessary
for the contraction. Also, the spins must be obey the triangle inequalities,
which will be revisited in section 2.3. In the dual 2-complex, the edges each
correspond to a three valent intertwiner, as illustrated by figure 6. The trace
over the Haar-projector can now be rewritten as a contraction over all of the
edges e meeting at vertex v, and the partition function can be rewritten as
a spinfoam [6]

Zσ =
∑
jf

∏
f⊂σ

(2jf + 1)
∏
v⊂σ

Av, Av = { ⊗
e∈v
ιe}. (14)

The term Av = { ⊗
e∈v
ιe} is known as the vertex amplitude, and, in a three

dimensional triangulation, is given by the 6-j symbol{
j1 j2 j3

j4 j5 j6

}
.

The vertex amplitude is the contraction of all intertwiners sharing vertex
v. In three dimensions this is trivial since the three-valent intertwiner is
uniquely defined. The calculation of the vertex amplitude in four dimensions
is the subject of this thesis.

This derivation has been done in three dimensions using a triangulation,
but these two things were chosen for simplicity. In the remainder of the
thesis, the spinfoam is four dimensional, not three, and the disrectization is
a cubulation, not a triangulation. This means that the intertwiners are six
valent, not three valent, and the spinfoam vertex is dual to a hypercube.
This means that each edge of the dual 2-complex belongs to six faces, while
eight edges meet at each vertex. So while the contraction pattern for the
vertex amplitude is relatively easy to illustrate, as shown in figure 7, the
actual 2-complex and its dual are more difficult to draw, since each edge of
the 2-complex would be connected to six faces. Despite this simplification,
the methods used in this section can be applied to more general discretization
schemes and higher dimensions, or in other words, the actual procedure is
analogous in all cases.
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Figure 6: The above shows how the edges are contracted to find the vertex
amplitude.

2.2.4 From BF-theory to LQG

We intend now to move from BF-theory, which is a topological theory with
no-local degrees of freedom, to general relativity, which is a theory with
local degrees of freedom. As previously mentioned, general relativity has two
degrees of freedom per point in space time. To constrain the BF action (2)
to the Palatini-Holst action of general relativity, we consider the constraint

CIJ = BIJ −
1

2
εIJKLe

K ∧ eL − 1

γ
eI ∧ eJ = 0 (15)

where eI is the tetrad, a set of 1-forms from which the spacetime metric can
be reconstructed, as

gµν = ηIJe
I
µe
J
ν ,

where ηIJ is the Minkowski metric, I and J are internal indices, and µ and ν
are space-time indices. When plugging the constraint BIJ = 1

2
εIJKLe

K ∧ eL
alone in the BF action, we recover the Palatini action,

S =

∫
M

1

2
εIJKLe

K ∧ eL ∧ F IJ , (16)

which is equivalent to the Einstein-Hilbert action. The term 1
γ
eI ∧ eJ ∧ F IJ

is known as the Holst term. It does not affect the equations of motion,
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Figure 7: The above shows how the edges (green) are contracted to find the
vertex amplitude in the case of six-valent intertwiners. The black lines mark
opposite cubes inside the hypercuboid.

and is added to simplify the expression of the constraints to facilitate the
quantization. The parameter γ controls the effect of the Holst term and is
known as the Barbero-Immirzi parameter.

The Peblański action takes the BF action (2) as a starting point and
implements the constraint (15) using the Lagrange multipliers [6],

S =

∫
M

BIJ ∧ F (ω)IJ + λIJC
IJ(B). (17)

By varying with respect to λ one gets CIJ(B) = 0 and this results on-shell
to the same equations of motion as the ones coming from the Palatini-Holst
action (i.e. the Palatini action with the Holst term). The Peblański action is
the starting point of the discretization process to recover the spinfoam form
of the partition function for four dimensional gravity.

2.3 Cuboid intertwiners

It is now necessary to introduce the cuboid model of intertwiners that will
be the focus of the remainder of the thesis. The idea is to not consider
all possible intertwiners, but to restrict ourselves to a special type that is
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Figure 8: Illustration of the closure property of the normal vectors scaled by
their associated areas in the case of a cube. The normal vectors to the cube
on the left are arranged end to end on the right showing that their sum is
zero.

sharply peaked on a cuboid geometry. The geometric interpretation of four-
valent intertwiners as quantum tetrahedra was first introduced in [9] and
generalized to quantum polyhedra with an arbitrary number of faces in [10].
The notion of a quantum polyhedron extends the classical definition of a
convex polyhedron in three dimensional space to describe the intertwiners
introduced in the previous section.

In three dimensional Euclidean space, the convex hull of a finite set of
points is defined as a convex polyhedron [10]. Polyhedra with an immediate
geometric interpretation are given by a set of F faces that have an area,
Ai ∈ R, a normal vector, ni ∈ S2, and satisfy the closure condition

C =
F∑
i=1

Aini = 0. (18)

This closure property is shown graphically in figure 8. The faces of two
polyhedra can also be glued together when their area scaled normal vectors
are equal, which leads into how intertwiners are connected by their spins.

When dealing with SU(2), the Livine-Speziale coherent intertwiners are
designed to be peaked on classical configurations, and are given by the in-
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Figure 9: The blue arrow shows how the two intertwiners are contracted.

variant projection of a tensor product of states peaked on the direction of
the spin

|ι{jf},{n̂f}〉 =

∫
SU(2)

dge
⊗
f⊃e

Djf (ge) |jf , n̂f〉 , (19)

where n̂ is the direction of the spin and 〈j, n| ~J |j, n〉 = jn̂ [10]. Since coherent
intertwiners also obey a closure property,∑

i

jini = 0,

they can be associated to classical polyhedra. The spin, j, is analogous to
the area of a face of a polyhedron, and the direction of the spin, n̂ ∈ S2, is
analogous to the normal vector. Intertwiners are contracted along their spins
similarly to how the faces of polyhedra can be glued together. See figure 9.

The spinfoam model used in this thesis is based on the Riemannian EPRL-
FK model with Barbero-Immirizi parameter γ < 1. The ERPL-FK model
imposes the Peblański constraints on spins and intertwiners. The full 4D
model is defined for intertwiners in SU(2) × SU(2), but the model used in
this thesis uses intertwiners in SU(2) for simplicity. Defining the boost map
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Φ to map the SU(2)-intertwiners, ιe, to the SU(2)×SU(2)-intertwiners, by [2]

Φ : InvSU(2)

⊗
f

Vjf → InvSpin(4)

⊗
f

Vj+f
⊗ Vj−f ,

means that the full vertex amplitude is given by [2]

Av = tr

(⊗
e⊃v

Φ(ιe)

)
. (20)

So, the partition function calculated in this thesis, relying solely on one copy
of SU(2), is essentially only half of the partition function, but, for all intents
and purposes, the partition function is analogous to the three dimensional
partition function described in (14).

To constrain the spinfoam model to something that is relatively easy
to compute, the coherent intertwiners in this thesis are peaked on cuboid
geometry. Cuboids are hexahedrons which have internal angles of π

2
, and as

a consequence of this, opposing sides have the same area and their normals
are opposite to each other. See figure 9 for more information. Extending this
idea to intertwiners, cuboid intertwiners are six-valent. This means that in
the 2-complex described in the previous section, each of the edges is attached
to a face. Spins on opposite faces have the same value, and normal vectors
are either mutually orthogonal to each other or anti-parallel. This means
that, although the intertwiner is six-valent, it can be described by only three
spins. So the state of a cuboid intertwiner, ι, is given by

|ιj1,j2,j3〉 =

∫
SU(2)

dg g .

3⊗
i=1

|ji, ei〉 |ji,−ei〉 . (21)

where the ei are mutually orthogonal unit vectors in R3, the ji are the three
spins describing the cuboid, and g is the group element g ∈ SU(2) acting
on the tensor product. Integrating over g ensures that the intertwiner is
invariant, as discussed in section 2.2.3. In SU(2), this rotation is the same
as having the Wigner matrix Dj

m′m(α, β, γ) act on the vectors |ji,±ei〉 and
integrating over the angles α, β, and γ.

A four dimensional hypercube is bounded by eight cuboids, as shown in
figures 2 and 10. This means that each vertex in the 2-complex is eight valent
and that the vertex amplitude is given in terms of eight intertwiners and six
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Figure 10: Illustrating how there are only six spins in a hypercuboidal lat-
tice. The spins of opposing faces on a cuboid must match, and the spins of
connecting faces must match. The arrows show the direction of the spins

spins, where the small number of spins comes from the fact that faces must
have the same spin to be glued together, and the requirement that spins on
oposite faces of the intertwiner must have the same spin. This is shown in
figure 10.

2.4 The Semi-Classical Limit

The vertex amplitude of such a hypercuboid is only known in the asymptotic,
or large-j, limit that is, it is only know in the case when all spins are very
large. The vertex amplitude for cuboid intertwiners factorizes into two SU(2)
vertex amplitudes, Av = A+

v A−v , and A±v is given by [4]

A±v =

∫
SU(2)8

d8ga
∏
a→b

〈−nab| g−1
a gb |nba〉(1±γ)jab (22)

where the product ranges over links in the boundary graph oriented from
cuboid a to cuboid b, as shown in figure 11. This contraction can be written
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Figure 11: Two cuboid intertwiners, a and b, contracted along their faces by
~nab and ~nba

algebraically as

〈jab,−~nab | g−1
a gb | jba, ~nba〉 = 〈−~nab | g−1

a gb | ~nba〉
2jab ,

where jab = jba is the spin of the glued faces, and the left hand side of the
equation is written in terms of the coherent states. The factor of (1± γ) in
the power in equation (22) comes from the simplicity constraints imposed on
the spins.

In [2], (22) is evaluated in the large j limit via a stationary phase ap-
proximation of the 21-dimensional integral over seven copies of SU(2). The
formula is reported in [4] as

A±v =

(
1± γ

2

) 21
2

Bv (23)

with

Bv(j1, ..., j6) =
1√
−detH

+ c.c. (24)
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where H is the Hessian matrix of the action S and is given by

detH = (((2(j2
1(j2 + j4) + j2j4(j2 + j4) + j1(j2

2(1 + I)j2j4 + j2
4)))

(j2
1(j3 + j5) + j3j5(j3 + j5) + j1(j2

3 + (1 + I)j3j5 + j2
5))

(j3j4j5 + j2(j4j5 + j3(j4 + j5)))(j2
2(j3 + j6)+

j3j6(j3 + j6) + j2(j2
3 + (1 + I)j3j6 + j2

6))(j2
4(j5 + j6)

+ j5j6(j5 + j6) + j4(j2
5 + (1 + I)j5j6 + j2

6))(j3j4j6 + j1

(j4j6 + j3(j4 + j6)))j2j5j6 + j1(j5j6 + j2(j5 + j6))).

(25)

Equation (23) is not, however, what is being calculated in this thesis.
Due to the choice of convention for Euler angles discussed in 3.1.1, there
is an additional factor of 1

8π2 in the measure for each of the seven group
integrations, a factor of 27 due to the discrete symmetries of the critical
and stationary points [2, 4] and a factor of (2π)

21
2 from the stationary phase

approximation of the 21-dimensional integral, which results in a factor of(
2

8π2

)7

(2π)
21
2 =

√
2

16π
7
2

in the final function. So the code discussed in the next section is expected
to conform to,

Bv(j1, ..., j6) =

√
2

16
√
−π7detH

+ c.c. (26)

in the large j limit.
The strategy to the large j vertex amplitude put forth by equation (22)

is to first contract the intertwiners and then integrating via the station-
ary phase approximation. This was also the strategy used by Klöser in his
masters thesis [11], where he attempted to compute the group integrations
numerically. However this method proved to not be numerically convergent,
even for small spins, because equation (22) is a 21 dimensional, highly oscil-
latory, integral. The opposite strategy, to first compute the integration on
the individual intertwiners and then to contract them is used this thesis, and
discussed in section 3.
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3 Numerical Work

The code to compute the spinfoam vertex amplitude is adapted from code
written by Sebastian Steinhaus to compute the amplitude in the case that
all spins are (j = 1

2
). Steinhaus’ code was written in Mathematica, but the

code was translated to Julia to compute the vertex amplitudes for general
configurations, in particular for j > 1

2
. Julia was chosen as the coding lan-

guage for ease of use and efficiency. For instance, on a consumer laptop, in
the (j = 1

2
) case without any optimizations, the contraction took 6 minutes

and 47 seconds to compute in Mathematica, while it took 4 minutes and 34
seconds to compute in Julia.

The code to compute the spinfoam amplitude is split into two parts. The
first part computes the eight intertwiners as arrays, and saves them to a
text file, as discussed in section 3.3. The next part converts the text file to
an array in Julia and then contracts the intertwiners, thus computing the
spinfoam amplitude. The first part of the code is discussed in sections 3.1.1-
3.1.3, and the second part is discussed in section 3.1.4. The code is split in
this way to reduce the number of times an intertwiner needs to be computed,
since computing intertwiners is computationally expensive, the ability to
save them for later use reduces computation time. Creating intertwiners is
so computationally expensive because, for each of the components, which
grow in number as we increase the spins j, we need to integrate over a
product of Wigner matrix elements. These integrals contain powers of sin
and cos and are thus highly oscillatory, as will be discussed in subsection
3.1.3. Section 3.1 discusses the basic structure of the code. The optimizations
made to this basic structure are then discussed in section 3.2, and the use
of high-performance computing (HPC), on the Perimeter Institute’s HPC,
Symmetry, is discussed in section 3.4.

3.1 The Code

The code for the intertwiner has three main functions, one to create a Wigner
matrix, called G(); one to create a tensor that represents the integrand of
the intertwiner at a specific global rotation angle, called Tensor(); and one
that integrates the tensor, thus performing the group averaging over SU(2),
and outputs the desired intertwiner, called Intertwiner().
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3.1.1 The Wigner Matrix Function: G()

G() computes the Wigner matrix using the equation [12]

Dj
m′m(α, β, γ) = e−im

′αdjm′m(β)e−imγ, (27)

where α, β, and γ are the Euler angles and djm′m is the Wigner small d-matrix
given by

djm′m = [(j +m′)!(j −m′)!(j +m)!(j −m)!]
1
2∑

s

[
(−1)m

′−m+s
(
cos β

2

)2j+m−m′−2s (
sin β

2

)m′−m+2s

(j +m− s)!s!(m′ −m+ s)!(j −m′ − s)!

]
,

(28)

where the sum runs over all integers, s, such that the factorials are non-
negative.

The function G() takes five arguments: alpha, beta, gamma, J, MM, and
DD. The inputs alpha, beta, and gamma are the Euler angles, α ∈ [−π, π], β ∈
[−π

2
, π

2
], and γ ∈ [−π, π]. The z-x-z convention for Euler angles, illustrated in

figure 12, is chosen [12]. J is an integer that describes the spin j, the two are
related by by j = J

2
. MM is a matrix that contains the magnetic indices, m and

m′, for each entry in the Wigner matrix, and is given by MM
j
mm′ = (m,m′).

So, for instance, in the j = 1
2

case,

MM
1
2 =

[ (
1
2
, 1

2

) (
1
2
, −1

2

)(−1
2
, 1

2

) (−1
2
, −1

2

) ] .
Finally, DD is the term [(j+m′)!(j−m′)!(j+m)!(j−m)!] in the Wigner small
d-matrix. It is necessary to convert the inputs of the factorial terms to type
BigInt, otherwise the output for large spins would be zero1. The optimized
code for the G() function is given in C.1.

3.1.2 Tensor Function

This code is designed to model cuboid intertwiners, which are defined to
have three in-going faces, and three out-going faces, as discussed in section
2.3. We can define an x − y − z axis that points in the direction of the
faces of the cuboid, as shown in figure 13. If we define the outgoing faces to

1The mazimum integer in Int64 is 9 223 372 036 854 775 807, or approximately 9×1018.
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Figure 12: Illustration of z-x-z Euler angle. Beginning on the blue axis, α is
a rotation about the z-axis, β is a rotation about the new N -axis (in green),
and γ is a rotation about the new Z-axis (in red). Source: [1]

be kets and the ingoing faces to be bras, then in figure 14, intertwiner 1 has
orientation (|x〉 , |y〉 , |z〉 , 〈−x| , 〈−y| , 〈−z|), and intertwiner 7 has orientation
(|x〉 , 〈y| , |z〉 , 〈−x| , |−y〉 , 〈−z|).

Cuboid intertwiners can be modelled by six dimensional arrays, I
m′4,m

′
5,m
′
6

m1,m2,m3 ,
where each magnetic index m1, m2, ... corresponds to a face of the cuboid.
The first step in creating an intertwiner is creating this array. The function
Tensor() creates the integrand of the intertwiner with a specific rotation
angle. It takes the arguments alpha, beta, gamma, v, J, MM, and DD, and
outputs a six dimensional array. v is a 3x1 array of strings that indicates
the orientation of the intertwiner. The first element in the array gives the x-
direction, the second gives the y-direction, and the third gives the z-direction,
while the remaining three components refer to the opposite faces and are thus
fixed to be antiparallel. The possible input strings are "x", "minusx", "y",
"minusy", "z", and "minusz". So a possible input is

v =

 "x"

"minusy"

"z"


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Figure 13: Intertwiner with arrows
showing orientation

Figure 14: Model of spinfoam with
cuboid intertwiners. Source: [2]

which corresponds to intertwiner 7 in Figure 14. This allows the code to be
generalized to different coherent states, as different v inputs specify differ-
ent states. The other inputs correspond to the same inputs for the Wigner
matrix, where alpha, beta, and gamma are the Euler angles and give the
rotation angle of the intertwiner.

Tensor() takes the input v and creates six vectors, vi that describe the
orientation of each of the cuboid’s six faces. For example, in the j = 1

2
case,

intertwiner 1 has: v1 = [ 1√
2
, 1√

2
], v2 = [−1√

2
, 1√

2
], v3 = [ 1√

2
, i], v4 = [i, 1√

2
],

v5 = [1, 0], v6 = [0, 1], which are the eigenvectors of the Pauli matrices. So x

corresponds to v1, minusx corresponds to v2, y corresponds to v3, and so on.
DefineDi = Di(α, β, γ) as the Wigner matrices for each face of the cuboid.

Each Wigner matrix is a function of the Euler angles α, β, and γ. The code
then computes the following multiplication:

I = D1 |v1〉 ⊗D2 |v2〉 ⊗D3 |v3〉 ⊗ 〈v4|D†1 ⊗ 〈v5|D†2 ⊗ 〈v6|D†3 (29)

where I is the resulting integrand with a specific rotation angle given by
alpha, beta, and gamma. The optimized code for the tensor() function is
given in appendix C.2.
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3.1.3 Intertwiner function

The Intertwiner() function takes the Tensor() function, and uses it to
create an intertwiner with a group averaging over SU(2). It does this by
taking equation (29), which is a function of α, β, and γ through the Wigner
matrices Di, and integrating over α, β, and γ to remove the dependence on
those variables. So

Iind =
1

8π2

∫ π

−π
dα

∫ π
2

−π
2

dβ sin(β)

∫ π

−π
dγ I(α, β, γ) (30)

where sin(β)
8π2 is the measure and I(α, β, γ) is given by Equation (29). Here

we integrate over SU(2) in a specific parametrization, which is also called
group averaging. Thus, Iind is an SU(2) invariant tensor, i.e. it is invariant
under the action of any SU(2) element defined as in (29). This integration is
computed using the cuhre() function in Julia.

The cuhre() function is part of the Cuba.jl package, which is a “Julia
wrapper around the C Cuba library, version 4.2, by Thomas Hahn.” [13]
cuhre() is a deterministic algorithm that employs a cubature rule to estimate
the value of an integral. Of the algorithms offered in the Cuba package,
most of which employ Monte Carlo integration, it is the most efficient at
performing integrations that are highly oscilliatory. [14]

To create the intertwiners, cuhre() was run with 100 as the minimum
number of evaluations, and 104 as the maximum number of evaluations. This
gave a relative accuracy of 99.99860730065676% in the j = 1

2
case. As pre-

viously discussed, computing all of these integrations is the most computa-
tionally expensive process in the code, one integration takes approximately
0.03 seconds in the j = 1

2
case and 6 seconds for j = 5.

After the intertwiner is created, the entries need to be sorted to ensure
that the intertwiner has the appropriate orientation, this is accomplished
with the srt() function. Every intertwiner is created so that the entries in
the array are arranged as if the intertwiner has the (|x〉 , |y〉 , |z〉) orientation,
but if the intertwiner has a different orientation, say (|x〉 , 〈y| , |z〉), then the
entries must be rearranged. In this case the intertwiner would be created
with the orientation (|x〉 , |−y〉 , |z〉) and then the array entries would have
their second and fifth indices swapped, so if the intertwiner is created as

I
m′4,m

′
5,m
′
6

m1,m2,m3 , it becomes I
m′4,m2,m′6
m1,m′5,m3

.

The optimized code for the Intertwiner() and srt() functions is given
in Appendix C.3.
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Figure 15: Model of spinfoam with cuboid intertwiners. Source: [2]

3.1.4 Performing the Contraction

To compute the spinfoam amplitude, eight intertwiners must be created, as
shown in Figure 15. Once all of the intertwiners are created, they are con-
tracted over all indices in a particular pattern, as described in section 2.2.3.
This is where the orientation defined in section 3.1.3 become important, be-
cause it determines which edges are contracted together, and therefore which
edges are bras and which are kets. For instance, if we label intertwiner 1 in
Figure 15 as Aa4,a5,a6a1,a2,a3

and intertwiner 2 as Bb4,b5,b6
b1,b2,b3

, then contracting the two
intertwiners requires setting a1 = b4, since the |x〉 component of intertwiner
1 connects to the 〈−x| component of intertwiner 2, so the orientation defines
the inner product. There are 24 independent indices in the spinfoam, so to
compute the contraction näıvely, it is necessary to loop over each index. The
code to perform the contraction näıvely is give in Appendix D.3.
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3.2 Optimizing the code

Since, in the code, there are several instance of nested loops that are per-
forming operations independently of each other, there are two primary ways
to optimize the code. The first is to employ parallel computing so that op-
erations can be performed simultaneously, and the second is to ensure that
the time spent in each step of the loop is as short as possible. The former
will be discussed in section 3.2.1, and the latter can be accomplished in part
by declaring input variable types when defining function, but must otherwise
be addressed on a case by case basis, as seen in sections 3.2.2-3.2.5.

3.2.1 Parallel Computing in Julia

Parallel computing is a method of optimizing a computation that involves
many calculations that are independent of each other. For instance, when
finding the sums of the rows of a matrix, the result of summing one row does
not affect the sums of the others. If a person was performing this compu-
tation manually, they could assign one row to each of their friends, and end
up with the same result much faster than if they had summed each row, one
after another, as an individual. This is the manner in which parallel com-
puting works. Instead of performing the calculations in order on one core,
the task is divided among several cores. Julia offers three different levels
of parallelism [15]: Julia Coroutines, which allows the user to suspend and
resume computations by manually interfacing with the operating system;
Multi-Threading, which allows parallel threads to execute tasks simultane-
ously; and Distributed Processing, which is provided by the Distributed

module and is the subject of the remainder of this section.
The Distributed package is part of the main Julia library, and is the

most straight forward method to employ parallel computing in Julia. Once
the package is loaded, addproc(n) is called where n is the number of cores
that are available. One of the cores is then assigned to process 1, which does
not perform work unless it is the only available core, the remaining n-1 cores
are assigned as workers.

Now, the computation that is going to be parallelized is written as a single
loop and the calculation to be performed is written as a function, kernel(v),
outside of the loop. In the example of summing the rows of a matrix, the
rows would be the variable v and would be looped over, and the kernel

function would be the operation of summing a row. Before entering the loop,
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an empty Nx1 array of Futures2, is declared as arr, where N is the number
of steps in the loop. Inside of the loop, a number from 2 to n is assigned
to a variable, say p. The function remotecall(kernel,p,v) is then called
and assigned to an entry i of arr. The function remotecall(kernel,p,v)

assigns the calculation of kernel(v) to the worker p. Each worker begins
their assigned tasks, and the loop is exited. An empty array arrFinal is
declared to hold the results of the computation, and a new loop over the
entries of arr is entered. Inside this loop, the function fetch(arr[i]) is
called and assigned to arrFinal[i]. Once a computation is complete, fetch
retrieves its result and assigns that result to arrFinal[i]. Once all of the
calculations are complete, the loop is exited and arrFinal holds the results
of the computation.

3.2.2 Optimizing the Wigner Matrix

Since integrating the tensor requires the Wigner matrix to be computed
many, many times, it is important that it be computed as quickly as possible.
To achieve this, the processes that were taking the longest were found using
the @profile command in the Profile package in Julia, which is run with
the function to be profiled. As the function runs, @profile regularly makes
note of what line of code a function is on. Using Profile.print() shows
haw many times the @profile found the function on each line of code, the
lines that have the highest number of times are the lines that the function is
spending the longest time on.

The lines that were found to be taking the longest time were the lines com-
puting the factorials in (28). Since this function is called multiple times, often
repeating the same inputs, these lines were rewritten as functions preceded
by @memoize from the Memoize package. @memoize remembers the inputs of
a function and their results, so if that input is used again, it quickly returns
the results so that time is not wasted recalculating results that have already
been found. This increased the speed of calculating the intertwiner in the
j = 1

2
case by a factor of approximately 1.8.

2A Future is the place holder that Julia uses for a single computation of unknown
status and time.
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3.2.3 Optimizing the Tensor

In the original code for the Tensor() function, the vectors vi in equation (29)
were computed inside the loop that computed the tensor product. This meant
that they were computed each time they were used, but these vectors are con-
stant for any given J and v, and therefore don’t need to be computed inside
the Tensor() function at all. A new function, PreTensor(j,v,MM,DD), was
written to compute these vectors before the Tensor() function is called. It
returns a 2D array, A, that contains the vectors as columns of the array.
Tensor() was then rewritten to take A as an input. This reduces the number
of calculations that need to occur when Tensor() is called, and increased
the speed of calculating the intertwiner in the j = 1

2
case by a factor of

approximately 1.7.

3.2.4 Optimizing the Intertwiner

Cuboid intertwiners are a subspace of a larger vector space. They have a
high degree of symmetry and contain many zero elements. To minimize the
computation time, the integration was only done on those elements of the
array that are non-zero. These elements are found by employing a rule for
the intertwiner’s magnetic indices. This rule defines the subspace in which

the cuboid intertwiners live. For an intertwiner I
m′4,m

′
5,m
′
6

m1,m2,m3 , if

m1 +m2 +m3 −m′4 −m′5 −m′6 = 0 (31)

then that entry in the array may be non-zero, otherwise the entry vanishes.
This is analogous to the 3-valent intertwiners, whose entries are specified by
the Clebsch-Gordon coeffients. This rule was employed by creating an array
containing the result of the left hand side of equation (31) and then using
the Julia command findall() to find the indices of all of the entries that
equal zero, and then running the integration over those indices. This inte-
gration was parallelized using the Distributed module, which implements
distributed memory computing to spilt a loop between multiple CPUs. An-
other method of finding the zeros is to express one magnetic index in terms
of the other five, and then running a for loop over the other five indices,
but this method is more difficult to parallelize. When the two methods are
not parallelized, they both take approximately the same time to run in the
j = 1

2
case, taking approximately 39 seconds for the findall() method as
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opposed to 41 seconds for the other method. For this reason, the findall()

method was chosen.
To parallelize the code, the inside of the loop that computes the integra-

tion using cuhre() was rewritten as a function outside of intertwiner()

and the loop was parallelized as detailed in 3.2.1. This resulted in a speed
increase that was approximately equal to the number of workers, so two
workers makes the code twice as fast, three works makes it three times as
fast, etc.

3.2.5 Optimizing the Contraction

As with creating the intertwiners, computing the contraction is very compu-
tationally expensive. So, similarly to the function Intertwiner(), the code
to contract the intertwiners, contract(), employs rules to find zero entries
in the intertwiners, reducing the number of computations. It sets the value
of seven of the magnetic indices in terms of the other 17 indices3. For in-
stance, if intertwiner 2 is labelled as Bb4,b5,b6

b1,b2,b3
, set b1 = −b2− b3 + b4 + b5 + b6.

These seven magnetic indices are then converted to code notation. In this
way, seven for loops are omitted. This increases the speed of the code by a
factor of 1000 in the j = 1

2
case. Since there are (2j + 1)17 contractions (in

the case that all spins are equal to j), this is saving exponentially more time
as j increases. See the code for the contract() function in Appendix D.1
for more details.

Another method for reducing the computation time is to compute the
contractions in steps. For instance, contract intertwiners 1 and 2, 3 and
4, 5 and 6, and 7 and 8 separately, and then contract the resulting four
contracted intertwiners. The code for this method is given in appendix D.2.
Contracting in steps requires more memory than both of the aforementioned
methods, since the results of the first round of contractions need to be stored,
and this method is not fully optimized. The resulting four tensors could be
contracted in pairs, and then the two new tensors could be contracted to
achieve a final result, which would use even more memory. The partially
optimized method only decreases the computational time by a factor of 100
in the j = 1

2
case, and, since optimizing further would use even more memory,

the method given in Appendix D.1 was ultimately chosen.

3Note that after this condition has been implemented for seven intertwiners, the con-
dition for the last remaining intertwiner is automatically satisfied.
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3.3 toText() and fromTxt() Functions

Since computing intertwiners is very computationally expensive, it makes
sense to have a method for saving the intertwiners for later use. Since the
same intertwiner can be needed for multiple contractions / vertex amplitudes,
it is more efficient to compute it once and then read it in from a file for all
subsequent uses than it is to compute it every time. The functions toTxt()
and fromTxt() are used to save the intertwiners to .txt files, and then
convert the .txt files back into arrays in Julia. These functions use the base
Julia input and output functions open(), read(), and write().

The function toTxt() simply runs over all of the elements of the array and
writes them to a .txt file. The function fromTxt() reads the .txt file in as
a string. It then splits the string into a vector containing smaller strings, for
instance, the string ”1.0 + 2.0im” would become the strings ”1.0”, ”+”, and
”2.0im”. Since all of the numbers in the array that were originally written
to the .txt file are complex numbers, each number now corresponds to three
strings. The vector of strings is then reshaped into a 3xn array, n being
the length of the original vector divided by 3. The rows of strings are then
concatenated and the resulting vector of strings is then converted to a vector
of complex numbers. This vector is then rearranged into a six dimensional
array which corresponds to an intertwiner. So using these functions, each
intertwiner only needs to be computed once. These functions are given in
appendix E.

3.4 Running the Code on an HPC (Symmetry)

Once the code was fully optimized for the j = 1
2

case, the code was then
run on the Perimeter Institutes’s high performance computer, Symmetry.
Symmetry uses the resourse manager Slurm and has two head nodes that are
used to interact with the system and 76 compute nodes to run applications.
Each of the compute nodes contains 40 Intel Xeon Gold (Skylake) cores and
200 GB of memory (RAM). Symmetry uses a high-performance InfiniBand
network to connect the nodes to a file server that hosts a 233 TB GPFS file
system and Julia 1.3.0 is pre-installed. [16]

Symmetry was accessed via ssh using PuTTY, and the code for computing
the intertwiners and their contraction was run using a .batch script that was
submitted to Slurm using the sbatch command. An example .batch script
is included in Appendix F. The script runs a Julia code, test.jl, which
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computes the intertwiners and their contraction in the j = 1
2

case. test.jl

also saves the intertwiners to .txt files and outputs information about the
code’s performance. The .batch script specifies that any output will be
saved in test.out, error messages are saved in test.err, and all files are
saved in the /home/callen/Testing directory. Saved files were accessed via
ssh using WinSCP.
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4 Results

The hypercuboid vertex amplitude was computed and studied in four differ-
ent cases. To easily differentiate these cases, in this following sections the six
spins associated with the hypercuboid are denoted j = [j1, j2, j3, j4, j5, j6].

� In the first case, presented in section 4.1, all six spins were increased
at the same time. So beginning from all spins j = 1

2
, the contraction is

then computed for all spins j = 1, then all spins j = 3
2
, and so on. This

case is denoted j = [x, x, x, x, x, x], where x is the variable representing
the spin, and corresponds to hypercubes of different sizes.

� In the second case, presented in section 4.2 three of the spins were
held constant while the remaining three spins were increased at the
same rate, denoted j = [c, c, c, x, x, x] where c represents the spins that
remain constant. This example can be understood as having one initial
and final cube of fixed size connected by “stretched” hypercuboids of
varying size.

� In the third case, presented in section 4.3, four spins were held constant
while the remaining two were increased. This case is denoted j =
[x, c, c, x, c, c], and corresponds to a hypercuboid with two faces that
vary in size. Note that these configurations in general do not correspond
to hypercubes, i.e. cannot be understood as a polyhedron prescribed
by four edge lengths.

� In the final case, presented in section 4.4, five spins were held constant
while one was varied, denoted j = [x, c, c, c, c, c]. As for the previous
case, these configurations in general do not correspond to hypercuboids.

This section presents the computed results of these cases graphically, for the
straight numerical results of these cases, see appendix A.

These cases were chosen to get a sense of how the numerically computed
amplitude behaves. The case where all of the spins are increased at the same
rate is the case that best exemplifies the large-j limit (for sufficiently large j),
and should therefore converge to the formula computed for the asymptotic
vertex amplitude, equation (26). It is however, the most computationally
expensive, since the number of entries in the arrays grows exponentially.
The cases where fewer spins are varied are less representative of the idea of
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the large-j limit, since some spins remain small. Conversely, these cases thus
require fewer entries to be computed, and are therefore less computationally
expensive. Selected computation times are given in appendix B.

Each of the above cases allows the equation for the semi-classical vertex
amplitude, (26), to be written as a function of a single variable, f(x), and
to be plotted along with the computed values. All of the plots were created
using Maple. The function f(x) is approximately of the form,

f(x) ' a√
p(x)

, (32)

where a is some constant and p(x) is a polynomial. The degree of the poly-
nomial p(x) depends on which case is being looked at. For instance, in
the j = [x, x, x, x, x, x] case, the polynomial is of degree 57, whereas in the
j = [c, c, c, x, x, x] case the polynomial is of degree 17.

For all of the data, the percent difference between the computed values
and the semi-classical formula, (26), was found using the formula

% difference =
|f(X[i])− Y[i]|

Y[i]
(33)

where f(x) is the semi-classical formula for the vertex amplitude, and Y[i]

is the computed entry i, X[i] is the value of x for entry i.
For selected cases, a curve was fitted to the computed values of the ver-

tex amplitude. This was done using the NonlinearFit() function in Maple’s
statistics package. The NonlinearFit() function fits a specified model func-
tion to the data by minimizing the least-squares error. The NonlinearFit()
function requires at least four parameters as input. These parameters are f,
a model function that the data will be fit to; X, a vector containing the data
corresponding to the independent variable; Y a vector containing the data
corresponding to the dependent variable; and x, the name of the indepen-
dent variable in the model function. In addition the model function chosen
for the fit was

g(x) =
a

bxA + cxB + dxC
, (34)

where a, b, c, and d are the parameters chosen by the fit and A, B, and C were
chosen manually to create a curve that best reflects the data. An optional
fifth parameter, initialvalues, was also used as an input in NonlinearFit

to specify initial values for the parameters to be fit, a, b, c, and d. This model
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was chosen since it closely resembles the form of the vertex amplitude, (32),
but omits the square root, since the square root introduces complex numbers
into the least squares regression which the NonlinearFit() function is not
made to handle.

The results for the hypercuboid vertex amplitude are presented in the
following sections and compared it to the asymptotic formula. Where possible
intersection points between the asymptotic formula and curve fit are found,
and compiled in a table in section 4.5. These results are discussed in section
4.

4.1 All spins the same (j = [x, x, x, x, x, x])

The following plots are for the case that j = [x, x, x, x, x, x]. They contain
the least number of data points because, as seen in appendix B, the compu-
tational times grow in this case grow the most rapidly as x increases. This is
because there are (2x+1)6 entries in each array, more than in any other case.
For example, the intertwiners in the j = [0.5, 0.5, 0.5, 0.5, 0.5, 0.5] case can be
computed in approximately 0.06 seconds, and their contraction can be com-
puted in 0.557978 seconds, meanwhile, it takes aproximately 220 seconds to
compute intertwiners in the j = [2, 2, 2, 2, 2, 2] case, and approximately 3.3
hours to contract them. In the curve fit, the parameters A, B, C in the
model function (34) were chosen to be 17, 9, and 8.
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Figure 16: Log plot compar-
ing the computed amplitudes to
the formula for the amplitude in
the semi-classical limit for j =
[x, x, x, x, x, x].

Figure 17: Plot showing the per-
cent difference between the com-
puted and semi-classical formula
values for j = [x, x, x, x, x, x].

Figure 18: Log plot showing the curve fit for j = [x, x, x, x, x, x]. The pa-
rameters A, B, C in the model function (34) were chosen to be 17, 9, and
8.
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4.2 Three spins varied (j = [c, c, c, x, x, x])

In this section, three cases are studied, where c = 0.5, c = 1, and c = 1.5

4.2.1 j = [0.5, 0.5, 0.5, x, x, x]

The following plots are for the case that j = [0.5, 0.5, 0.5, x, x, x]. In the curve
fit, the parameters A, B, and C in the model function (34) were chosen to
be 8, 6, and 5.

Figure 19: Log plot compar-
ing the computed amplitudes to
the formula for the amplitude in
the semi-classical limit for j =
[0.5, 0.5, 0.5, x, x, x].

Figure 20: Plot showing the per-
cent difference between the com-
puted and semi-classical formula
values for j = [0.5, 0.5, 0.5, x, x, x].
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Figure 21: Log plot showing the curve fit for j = [0.5, 0.5, 0.5, x, x, x]. The
parameters A, B, C in the model function (34) were chosen to be 8, 6, and
5.

4.2.2 j = [1, 1, 1, x, x, x]

The following plots are for the case that j = [1, 1, 1, x, x, x]. In the curve fit,
the parameters A, B, and C in the model function (34) were chosen to be 6,
5, and 4, and figure 25 shows where the curve fit intersects with the formula
for the semi-classical limit, this intersection point could not be found using
Maple’s fsolve() function. This could potentially be because the x-value of
the intersection point is too large (x ≈ 107).
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Figure 22: Log plot compar-
ing the computed amplitudes to
the formula for the amplitude in
the semi-classical limit for j =
[1, 1, 1, x, x, x].

Figure 23: Plot showing the per-
cent difference between the com-
puted and semi-classical formula
values for j = [1, 1, 1, x, x, x].
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Figure 24: Log plot showing the
curve fit for j = [1, 1, 1, x, x, x].
The parameters A, B, C in the
model function (34) were chosen to
be 6, 5, and 4.

Figure 25: Log plot showing where
the curve fit intersects with the
formula for the semi-classical limit
for j = [1, 1, 1, x, x, x].

4.2.3 j = [1.5, 1.5, 1.5, x, x, x]

The following plots are for the case that j = [1.5, 1.5, 1.5, x, x, x].
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Figure 26: Log plot compar-
ing the computed amplitudes to
the formula for the amplitude in
the semi-classical limit for j =
[1.5, 1.5, 1.5, x, x, x].

Figure 27: Plot showing the per-
cent difference between the com-
puted and semi-classical formula
values for j = [1.5, 1.5, 1.5, x, x, x].

4.3 Two spins varied

4.3.1 j = [x, 0.5, 0.5, x, 0.5, 0.5]

The following plots are for the case that j = [x, 0.5, 0.5, x, 0.5, 0.5]. In the
curve fit, the parameters A, B, and C in the model function (34) were chosen
to be 5, 4, and 2, and figure 25 shows where the curve fit intersects with the
formula for the semi-classical limit. The intersection point for the curve fit
and the semi-classical limit was found to be x = 131.9609642 using Maple’s
fsolve() function.
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Figure 28: Log plot compar-
ing the computed amplitudes to
the formula for the amplitude in
the semi-classical limit for j =
[x, 0.5, 0.5, x, 0.5, 0.5].

Figure 29: Plot showing the
percent difference between
the computed and semi-
classical formula values for
j = [x, 0.5, 0.5, x, 0.5, 0.5].

Figure 30: Log plot showing the curve fit for j = [x, 0.5, 0.5, x, 0.5, 0.5]. The
parameters A, B, C in the model function (34) were chosen to be 5, 4, and
2.
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4.3.2 j = [x, 1, 1, x, 1, 1]

The following plots are for the case that j = [x, 1, 1, x, 1, 1]. In the curve
fit, the parameters A, B, and C in the model function (34) were chosen to
be 5, 4, and 2, and figure 25 shows where the curve fit intersects with the
formula for the semi-classical limit. The intersection point for the curve fit
and the semi-classical limit was found to be x = 1865.559744 using Maple’s
fsolve() function.

Figure 31: Log plot compar-
ing the computed amplitudes to
the formula for the amplitude in
the semi-classical limit for j =
[x, 1, 1, x, 1, 1].

Figure 32: Plot showing the per-
cent difference between the com-
puted and semi-classical formula
values for j = [x, 1, 1, x, 1, 1].
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Figure 33: Log plot showing the curve fit for j = [x, 1, 1, x, 1, 1]. The pa-
rameters A, B, C in the model function (34) were chosen to be 5, 4, and
2.

4.4 One spin varied

In this section, the model function for the curve fit was changed to

g(x) =
a

|b|xA + |c|xB + |d|xC
, (35)

because, using the model function given by (34) on the data in this section,
minimizing the least-squares error resulted in at least one of the parameters
b, c, and d being negative, which fit the initial data well, but did not give an
accurate idea of what the function will do long term, as shown in figure 34.
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Figure 34: Plot showing what occurs when a = 1, b = −1, c = 1, and d = 1
in (34). When one of the parameters b, c, or d is negative, the resulting
function does not look as expected.

4.4.1 j = [x, 0.5, 0.5, 0.5, 0.5, 0.5]

The following plots are for the case that j = [x, 0.5, 0.5, 0.5, 0.5, 0.5]. In the
curve fit, the parameters A, B, and C in the model function (35) were chosen
to be 6, 3, and 0.
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Figure 35: Log plot compar-
ing the computed amplitudes to
the formula for the amplitude in
the semi-classical limit for j =
[x, 0.5, 0.5, 0.5, 0.5, 0.5].

Figure 36: Plot showing the
percent difference between
the computed and semi-
classical formula values for
j = [x, 0.5, 0.5, 0.5, 0.5, 0.5].

Figure 37: Log plot showing the curve fit for j = [x, 0.5, 0.5, 0.5, 0.5, 0.5].
The parameters A, B, C in the model function (35) were chosen to be 6, 3,
and 0.
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4.4.2 j = [x, 1, 1, 1, 1, 1]

The following plots are for the case that j = [x, 1, 1, 1, 1, 1]. In the curve fit,
the parameters A, B, and C in the model function (35) were chosen to be 3,
2, and 1.7.

Figure 38: Log plot compar-
ing the computed amplitudes to
the formula for the amplitude in
the semi-classical limit for j =
[x, 1, 1, 1, 1, 1].

Figure 39: Plot showing the per-
cent difference between the com-
puted and semi-classical formula
values for j = [x, 1, 1, 1, 1, 1].
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Figure 40: Log plot showing the curve fit for j = [x, 1, 1, 1, 1, 1]. The pa-
rameters A, B, C in the model function (35) were chosen to be 3, 2, and
1.7.

4.4.3 j = [x, 1.5, 1.5, 1.5, 1.5, 1.5]

The following plots are for the case that j = [x, 1.5, 1.5, 1.5, 1.5, 1.5]. In the
curve fit, the parameters A, B, and C in the model function (35) were chosen
to be 3, 2, and 1.7.
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Figure 41: Log plot compar-
ing the computed amplitudes to
the formula for the amplitude in
the semi-classical limit for j =
[x, 1.5, 1.5, 1.5, 1.5, 1.5].

Figure 42: Plot showing the
percent difference between
the computed and semi-
classical formula values for
j = [x, 1.5, 1.5, 1.5, 1.5, 1.5].

Figure 43: Log plot showing the curve fit for j = [x, 1.5, 1.5, 1.5, 1.5, 1.5].
The parameters A, B, C in the model function (35) were chosen to be 3, 2,
and 1.7.
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4.5 Intersection points

All of the intersection points found in the prior sections are compiled in the
table below.

Spins intersection
j = x ≈

[1, 1, 1, x, x, x] 2.4× 107

[x, 0.5, 0.5, x, 0.5, 0.5] 1.4× 102

[x, 1, 1, x, 1, 1] 1.9× 103

Table 1: Table of known intersection points

5 Discussion

From [17] and [18], it is expected that the semi-classical formula should
become a good approximation to the vertex amplitude around j ∼ 10. These
results were obtained for a vertex amplitude dual to a 4-simplex, where five
4-valent intertwiners are contracted, which is a significantly simpler case
compared to the one studied here. Due to time constraints as well as the
scaling of computational cost as the spins are increased, it was not possible
to achieve computational results for spins this large. Thus it is not surprising
that we do not observe a convergence of the vertex amplitudes and its semi-
classical approximation, since we did not reach the anticipated semi-classical
regime. However, the curve fits for the cases where j = [1, 1, 1, x, x, x], j =
[x, 0.5, 0.5, x, 0.5, 0.5], and j = [x, 1, 1, x, 1, 1] do provide evidence that the
semi-classical formula does begin to approach the computed amplitudes. The
other cases, however, do not show this convergence.

Why the discrepancy? The first thing to note is that the plots presented
in section 4 are log plots, and that while the percent difference between the
computed and semi-classical formula values increases, the absolute difference
is actually decreasing, since the values are very small. The curve fit itself
is also a factor. Since the model function used for the curve fit is a rough
guess at what the curve should look like, and necessarily omits the square
root seen in the semi-classical formula, it could be that the computational
results would quickly diverge from their predicted values.

This flaw with the curve fit could explain a few features seen in section 4.
Such as why, in the j = [x, 0.5, 0.5, 0.5, 0.5, 0.5] and j = [x, 1, 1, 1, 1, 1] cases,
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the percent error decreases, but no intersection point is observed. Or why,
when looking at the intersection points in table 1, it does appear that the
intersection is occurring later for higher values of c, which is the opposite of
what is expected. The poor model function combined with the relatively few
converging cases, means that an accurate idea of when intersection occurs
cannot be ascertained. It only suggests that intersection does occur.

There is another possibility worth considering, namely that the transition
to the asymptotic formula occurs for j > 10 in the hypercuboid model.
While the construction is analogous to the triangulation case, the different
combinatorics may be one explanation. Moreover, it has been shown that
the hypercuboid models, as well as higher valent spin foam vertices, miss an
implementation of the so-called volume simplicity constraint and thus allow
for more general configurations even in the semi-classical limit [18], [19].

Taking the results at face value, however, is still useful since there is
a clear difference in convergence rate between the different cases. These
differences suggest that the transition to the semi-classical amplitude is not
uniform, and may depend on the choice of spins. In the cases where two
and three spins are varied and the rest remain constant, the constant terms
remain Planckian, and therefore are expected to prevent the amplitude from
becoming semi-classical as quickly. In fact, they appear to have the opposite
effect. This suggests that the smaller spins in the amplitude have a larger
effect on the path integral than anticipated, and that there is no straight-
forward transition to the semi-classical regime.

Moving away from the question of convergence for a moment, the results
at least qualitatively confirm a feature of the cuboid intertwiner model: that
the semi-classical amplitude of the cuboid intertwiner model does not show
any oscillatory behaviour, as can be seen in equation (23). The reason for
this is that the associated discrete gravity action of the hypercuboid vanishes.
In the case of several semi-classical hypercuboids, this implies that they are
glued in a flat way [2, 4]. The exact calculations of the vertex amplitudes
also do not show any oscillatory behaviour, and thus confirm this feature far
beyond the viability of the semi-classical regime. Hence, it is reasonable to
assume that these quantum cuboids give rise to flat geometries in the deep
quantum regime as well.
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6 Conclusion

The objective of the work has been to design and implement algorithms to
compute the spin foam vertex amplitude for cuboid intertwiners. Once the
results were obtained, the goal was to investigate whether, and in which
regime, the semi-classical formula for the vertex amplitude becomes a good
approximation to the exactly computed vertex amplitude. Working in that
direction, code was written to compute cuboid intertwiners of arbitrary spin,
and to then contract those intertwiners, thus computing the vertex ampli-
tude. A few preliminary cases were then examined, and while these cases do
not prove convergence, they do show promising evidence that convergence
may occur. This work also demonstrates differences between spinfoam mod-
els based on cubulations and spinfoam models based on triangulations, and
shows that the smaller spin building blocks do have an effect on the ver-
tex amplitude. Nevertheless, the exact calculations confirm a feature of the
quantum cuboid vertex amplitude in the semi-classical regime, namely the
absence of an oscillatory behaviour. This suggests that several of the quan-
tum hypercuboids give rise to a flat space-time even in the deep quantum
regime.

Therefore, there are several avenues for future work. Work can be done
on obtaining results for higher spins and more cases to see how relevant the
small spins are to the path integral. Since the code runs more efficiently
for smaller spins, and therefore the small spin regime is readily accessible,
using this code to examine the effect of smaller spins would be of particular
interest. It would also be worthwhile to parallelize the contract() function,
so that an examination of the higher spin cases can be done more efficiently.
The hope would be to determine whether the semi-classical amplitude in
the cuboid case is a good approximation around j ∼ 10, similar to the
triangulation case, or whether this formula is valid for spins larger than
that. The code presented in this thesis can be adapted for other uses as well.
The intertwiner() function can be generalized to create different six-valent
intertwiners by adapting the coherent states, and the contract() function
can be used to contract arbitrary six-valent intertwiners, e.g. corresponding
to more general shapes or expressed in an orthonormal basis, which could
help to better understand the properties of the vertex amplitude. Note that
these intertwiners must be correctly configured in terms of their orientation
and spins of the contracted components.
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The purpose of this work, to prove the convergence of the semi-classical
formula and the vertex amplitude, has not yet been met. However, this work
has provided first evidence of convergence, and it has opened new avenues
of inquiry. Over all, it is one step in proving convergence, and in employing
numerical methods in loop quantum gravity, but more work must be done in
this area.
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A Numerical Results

The following are the numerical results for selected cases. Looking at equa-
tion (26), all of the Bv comps should be real. In actuality, however, they all
have non-zero complex components. The complex components are the result
of a build-up of error when summing over the entries in the arrays. Since
the numerically computed values are not exact, the cancellation between the
complex conjugates is not perfect. The build-up of error is always at least 2
orders of magnitude less than the desired computed value. If the errors were
to become too large, they could be decreased by increasing the number of
evaluations when using cuhre() to compute the intertwiners.

Spins Result of the contraction
j Bv comp

[0.5, 0.5, 0.5, 0.5, 0.5, 0.5] 6.316 181× 10−6 + 1.125 655× 10−22 i
[1, 1, 1, 1, 1, 1] 7.900 011× 10−9 + 3.158 255× 10−24 i

[1.5, 1.5, 1.5, 1.5, 1.5, 1.5] 6.782 086× 10−11− 8.310 682× 10−19 i
[2, 2, 2, 2, 2, 2] 2.350 234× 10−13 + 8.465 403× 10−16 i

Table 2: Results of the contraction when j = [x, x, x, x, x, x]

Spins Result of the contraction
j Bv comp

[0.5, 0.5, 0.5, 1, 1, 1] 9.428 128× 10−8 + 1.841 245× 10−10 i
[0.5, 0.5, 0.5, 1.5, 1.5, 1.5] 7.192 854× 10−9 + 1.430 109× 10−11 i

[0.5, 0.5, 0.5, 2, 2, 2] 9.815 433× 10−10− 1.765 282× 10−12 i
[0.5, 0.5, 0.5, 2.5, 2.5, 2.5] 1.931 391× 10−10 + 3.047 332× 10−13 i

Table 3: Results of the contraction when j = [0.5, 0.5, 0.5, x, x, x]
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Spins Result of the contraction
j Bv comp

[1, 1, 1, 0.5, 0.5, 0.5] 1.594 082× 10−7 + 1.934 362× 10−16 i
[1, 1, 1, 1.5, 1.5, 1.5] 3.231 313× 10−10− 9.703 623× 10−17 i

[1, 1, 1, 2, 2, 2] 4.467 575× 10−11 + 1.811 313× 10−17 i
[1, 1, 1, 2.5, 2.5, 2.5] 8.912 041× 10−12 + 1.656 311× 10−17 i

Table 4: Results of the contraction when j = [1, 1, 1, x, x, x]

Spins Result of the contraction
j Bv comp

[1.5, 1.5, 1.5, 0.5, 0.5, 0.5] 1.627 547× 10−8 − 1.256 032× 10−15 i
[1.5, 1.5, 1.5, 1, 1, 1] 4.291 545× 10−10− 7.518 624× 10−17 i
[1.5, 1.5, 1.5, 2, 2, 2] 4.718 185× 10−12− 2.182 834× 10−18 i

[1.5, 1.5, 1.5, 2.5, 2.5, 2.5] 9.613 562× 10−13− 2.727 459× 10−18 i

Table 5: Results of the contraction when j = [1.5, 1.5, 1.5, x, x, x]

Spins Result of the contraction
j Bv comp

[1, 0.5, 0.5, 1, 0.5, 0.5] 3.076 342× 10−7 + 5.612 957× 10−10 i
[1.5, 0.5, 0.5, 1.5, 0.5, 0.5] 5.418 473× 10−8 + 1.178 762× 10−10 i

[2, 0.5, 0.5, 2, 0.5, 0.5] 1.416 473× 10−8 + 3.348 647× 10−11 i
[2.5, 0.5, 0.5, 2.5, 0.5, 0.5] 4.750 232× 10−9 + 1.178 557× 10−11 i

Table 6: Results of the contraction when j = [x, 0.5, 0.5, x, 0.5, 0.5]

Spins Result of the contraction
j Bv comp

[0.5, 1, 1, 0.5, 1, 1] 2.638 464× 10−8 + 9.378 343× 10−10 i
[1.5, 1, 1, 1.5, 1, 1] 3.849 538× 10−10− 2.007 330× 10−12 i

[2, 1, 1, 2, 1, 1] 1.002 670× 10−10 + 5.062 184× 10−13 i
[2.5, 1, 1, 2.5, 1, 1] 3.356 026× 10−11 + 1.625 479× 10−13 i

Table 7: Results of the contraction when j = [x, 1, 1, x, 1, 1]
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Spins Result of the contraction
j Bv comp

[1, 0.5, 0.5, 0.5, 0.5, 0.5] 1.036 231× 10−6 + 1.526 222× 10−9 i
[1.5, 0.5, 0.5, 0.5, 0.5, 0.5] 4.292 017× 10−7 + 7.064 235× 10−10 i
[2, 0.5, 0.5, 0.5, 0.5, 0.5] 2.170 337× 10−7 − 3.767 604× 10−10 i

[2.5, 0.5, 0.5, 0.5, 0.5, 0.5] 1.244 728× 10−7 + 2.224 834× 10−10 i

Table 8: Results of the contraction when j = [x, 0.5, 0.5, 0.5, 0.5, 0.5]

Spins Result of the contraction
j Bv comp

[0.5, 1, 1, 1, 1, 1] 1.987 901× 10−8 − 2.697 334× 10−15 i
[1.5, 1, 1, 1, 1, 1] 2.431 433× 10−9 − 1.187 490× 10−15 i
[2, 1, 1, 1, 1, 1] 1.238 886× 10−9 + 3.581 121× 10−16 i

[2.5, 1, 1, 1, 1, 1] 7.149 931× 10−10 + 1.799 593× 10−15 i

Table 9: Results of the contraction when j = [x, 1, 1, 1, 1, 1]

Spins Result of the contraction
j Bv comp

[0.5, 1.5, 1.5, 1.5, 1.5, 1.5] 1.085 763× 10−10− 6.077 692× 10−13 i
[1, 1.5, 1.5, 1.5, 1.5, 1.5] 3.000 928× 10−11− 1.768 437× 10−13 i
[2, 1.5, 1.5, 1.5, 1.5, 1.5] 6.092 347× 10−12− 3.084 264× 10−14 i

[2.5, 1.5, 1.5, 1.5, 1.5, 1.5] 3.470 428× 10−12− 1.627 477× 10−14 i

Table 10: Results of the contraction when j = [x, 1.5, 1.5, 1.5, 1.5, 1.5]
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B Computational Times

The following are the computational times for creating intertwiners with
selected spins and for selected contractions.

Spins Creation Time (s))
j = t ≈

[0.5, 0.5, 0.5] 0.050
[1, 0.5, 0.5] 0.38

[1, 1, 1] 4.9
[1, 1.5, 1.5] 10

[1.5, 1.5, 1.5] 71
[2, 2, 2] 340

[2.5, 2.5, 2.5] 1200

Table 11: Time to create one intertwiner with the given spins

Spins Contraction Time (s)
j = t ≈

[0.5, 0.5, 0.5, 0.5, 0.5, 0.5] 0.0035
[1, 1, 1, 1, 1, 1] 2.5

[1.5, 1.5, 1.5, 1.5, 1.5, 1.5] 290
[2, 2, 2, 2, 2, 2] 12000

Table 12: Time to compute the contraction when j = [x, x, x, x, x, x]

Spins Contraction Time (s)
j = t ≈

[0.5, 0.5, 0.5, 1, 1, 1] 0.90
[0.5, 0.5, 0.5, 1.5, 1.5, 1.5] 2.9

[0.5, 0.5, 0.5, 2, 2, 2] 20
[0.5, 0.5, 0.5, 2.5, 2.5, 2.5] 100

Table 13: Time to compute the contraction when j = [0.5, 0.5, 0.5, x, x, x]
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Spins Contraction Time (s)
j = t ≈

[1, 1, 1, 0.5, 0.5, 0.5] 1.5
[1, 1, 1, 1.5, 1.5, 1.5] 72

[1, 1, 1, 2, 2, 2] 500
[1, 1, 1, 2.5, 2.5, 2.5] 2500

Table 14: Time to compute the contraction when j = [1, 1, 1, x, x, x]

Spins Contraction Time (s)
j = t ≈

[1.5, 1.5, 1.5, 0.5, 0.5, 0.5] 2.4
[1.5, 1.5, 1.5, 1, 1, 1] 64
[1.5, 1.5, 1.5, 2, 2, 2] 5500

[1.5, 1.5, 1.5, 2.5, 2.5, 2.5] 27000

Table 15: Time to compute the contraction when j = [1.5, 1.5, 1.5, x, x, x]

Spins Contraction Time (s)
j = t ≈

[1, 0.5, 0.5, 1, 0.5, 0.5] 0.19
[1.5, 0.5, 0.5, 1.5, 0.5, 0.5] 0.51

[2, 0.5, 0.5, 2, 0.5, 0.5] 1.2
[2.5, 0.5, 0.5, 2.5, 0.5, 0.5] 2.4

Table 16: Time to compute the contraction when j = [x, 0.5, 0.5, x, 0.5, 0.5]

Spins Contraction Time (s)
j = t ≈

[1.5, 1, 1, 1.5, 1, 1] 24
[2, 1, 1, 2, 1, 1] 68

[2.5, 1, 1, 2.5, 1, 1] 160
[3, 1, 1, 3, 1, 1] 330

Table 17: Time to compute the contraction when j = [x, 1, 1, x, 1, 1]
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Spins Contraction Time (s)
j = t ≈

[1.5, 0.5, 0.5, 0.5, 0.5, 0.5] 0.027
[2, 0.5, 0.5, 0.5, 0.5, 0.5] 0.038

[2.5, 0.5, 0.5, 0.5, 0.5, 0.5] 0.055
[3, 0.5, 0.5, 0.5, 0.5, 0.5] 0.072

Table 18: Time to compute the contraction when j = [x, 0.5, 0.5, 0.5, 0.5, 0.5]

Spins Contraction Time (s)
j = t ≈

[0.5, 1, 1, 1, 1, 1] 1.3
[1.5, 1, 1, 1, 1, 1] 5.1
[2, 1, 1, 1, 1, 1] 8.8

[2.5, 1, 1, 1, 1, 1] 14

Table 19: Time to compute the contraction when j = [x, 1, 1, 1, 1, 1]

Spins Contraction Time (s)
j = t ≈

[0.5, 1.5, 1.5, 1.5, 1.5, 1.5] 45
[1, 1.5, 1.5, 1.5, 1.5, 1.5] 130
[2, 1.5, 1.5, 1.5, 1.5, 1.5] 520

[2.5, 1.5, 1.5, 1.5, 1.5, 1.5] 820

Table 20: Time to compute the contraction when j = [x, 1.5, 1.5, 1.5, 1.5, 1.5]
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C Code for createIntertwiner

C.1 Code for G()

@memoize function fact(j::Int,s::Int,M1::Float64,M2::Float64)

return Float64(factorial(BigInt((j/2)+M1-s))*

factorial(BigInt(s))*factorial(BigInt(M2-M1+s))*

factorial(BigInt((j/2)-M2-s)))

end

@memoize function factCosSin(j::Int,s::Int,M1::Float64,M2::

Float64,beta::Float64,dfact::Float64)

return ((-1.0)^(s)*(1.0*im)^(M1-M2))*(dfact)^(-1)*

cos(beta/2)^(j+M1-M2-2*s)*sin(beta/2)^(M2-M1+2*s)

end

function G(alpha::Float64,beta::Float64,gamma::Float64,j::Int,M

::Array{Any,2},d::Array{Complex{Float64},2})

# Initialize matrices

length = j+1 # size of matrix

D = zeros(Complex{Float64},length,length)

# Create Large D matrix

Dtemp = zeros(Complex{Float64},length,length)

for I = 1:length, J= 1:length

Dtemp[I,J] = cis(-M[I,J][2]*alpha-M[I,J][1]*gamma)

end

dee = zeros(Complex{Float64},length,length)

dee[:,:] = d

for I = 1:length, J = 1:length

62



SUM = 0

for s = 0:trunc(Int,j)

if ((j/2)+M[I,J][1]-s)>=0 && (M[I,J][2]-M[I,J][1]+s)

>=0 && ((j/2)-M[I,J][2]-s)>=0

# find the factorial separately

dfact = fact(j,s,M[I,J][1],M[I,J][2])

# If the value of s does not cause the

factorials to be negative, add the

# value to the sum

SUM += factCosSin(j,s,M[I,J][1],M[I,J][2],beta,

dfact)

end

end

# Multiply the sum by the square root

dee[I,J] = dee[I,J]*SUM

# Multiply the sum by the square root

end

# Combine the small d and large D matrices

for I = 1:length, J = 1:length

D[I,J] = Dtemp[I,J]*dee[I,J]

end

return D

end
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C.2 Code for Tensor()

# function to make a tensor with given parameters takes global

rotation angles, and

# an array of strings that indicate direction and an array of j

export PreTensor

function PreTensor(j::Vector{Int},v::Vector{String},MM::Array{

Any,1},DD::Array{Any,1})

# Create a array that contains the length of each index

L = Array{Int,1}(undef,3)

for i = 1:3

L[i] = trunc(Int,(j[i])+1)

end

# Find the longest length in L

long = L[1]

for i = 2:3

if L[i] > long

long = L[i]

end

end

# Initialize and array that will store the parameters and

an array that will hold

# the initial z vector for each rotation

A = zeros(Complex{Float64},long,3)

z = zeros(Complex{Float64},long,3)

for i = 1:3

z[1,i] = 1.0 + 0*im

end

# Rotate the z vectors to match the input v and store in A.
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for i = 1:3

if v[i] == "x"

A[1:L[i],i] = G(-pi/2,pi/2,pi/2,j[i],MM[i],DD[i]) *

z[1:L[i],i]

elseif v[i] == "minusx"

A[1:L[i],i] = G(-pi/2,-pi/2,pi/2,j[i],MM[i],DD[i]) *

z[1:L[i],i]

elseif v[i] == "y"

A[1:L[i],i] = G(0.0,-pi/2,0.0,j[i],MM[i],DD[i]) * z

[1:L[i],i]

elseif v[i] =="minusy"

A[1:L[i],i] = G(0.0,pi/2,0.0,j[i],MM[i],DD[i]) * z

[1:L[i],i]

elseif v[i] == "z"

A[1:L[i],i] = z[1:L[i],i]

elseif v[i] == "minusz"

A[1:L[i],i] = G(0.0,pi*1.0,pi*1.0,j[i],MM[i],DD[i])

* z[1:L[i],i]

else

return error("InputError: Incorrect input, input

must be x, y, z, minusx, minusy, or minusz")

end

end

return A

end

export Tensor

function Tensor(alpha::Float64,beta::Float64,gamma::Float64,j::

Vector{Int},

MM::Array{Any,1},DD::Array{Any,1},A::Array{Complex{

Float64},2})

# Create a array that contains the length of each index

L = Array{Int,1}(undef,3)

for i = 1:3

L[i] = trunc(Int,(j[i])+1)
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end

# Create a table that will store the tensor values

tbl = zeros(Complex{Float64},L[1],L[2],L[3],L[1],L[2],L

[3]) # store the tensor as a 6D matrix

# Calculate each of the wigner matrices

G1 = G(alpha,beta,gamma,j[1],MM[1],DD[1])

G1con = conj(transpose(G1))

G2 = G(alpha,beta,gamma,j[2],MM[2],DD[2])

G2con = conj(transpose(G2))

G3 = G(alpha,beta,gamma,j[3],MM[3],DD[3])

G3con = conj(transpose(G3))

# pre-calculate the vectors

v1 = (G1*A[1:L[1],1])

v2 = (G2*A[1:L[2],2])

v3 = (G3*A[1:L[3],3])

v4 = ((A[1:L[1],1]’)*G1con)

v5 = (((A[1:L[2],2])’)*G2con)

v6 = ((A[1:L[3],3]’)*G3con)

for i = 1:L[1], J = 1:L[2], k = 1:L[3], l = 1:L[1], m =

1:L[2], n = 1:L[3]

# Create the tensor by taking the product of g and a

given column of A

tbl[i,J,k,l,m,n] = v1[i]*v2[J]*v3[k]*v4[l]*v5[m]*v6[

n]

end

return tbl

end
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C.3 Code for Intertwiner() and srt()

# Kernel for parallelization

function kernel(L1::Int,Inds1::Array{CartesianIndex{6},1},jay::

Array{Int,1},MM::Array{Any,1},DD::Array{Any,1},A::Array{

Complex{Float64},2})

i = Inds1[L1][1]

j = Inds1[L1][2]

k = Inds1[L1][3]

l = Inds1[L1][4]

m = Inds1[L1][5]

n = Inds1[L1][6]

# integrate the integrand function and store in tbl

result,err = cuhre((x, f) -> (f[1],f[2]) = reim((1/(8*(pi

^2)))*sin(pi*x[2])*4*(pi^3)*

Tensor((2*pi*x[1]),(pi*x[2]),(2*pi*x[3]),jay,MM,DD,A)[i

,j,k,l,m,n]),3,2,minevals = 1e2,maxevals=1e4)

return result[1]+result[2]*im

end

# Intertwiner() takes vectors as input and skips zeros and is

parallelized

function Intertwiner(V::Array{String,1},Jay::Array{Int,1},MM::

Array{Any,1},DD::Array{Any,1})

# Create array of lengths of each index

lngth = Array{Int,1}(undef,3)

for i = 1:3

lngth[i] = trunc(Int,(Jay[i])+1)

end

tbl1 = zeros(lngth[1],lngth[2],lngth[3],lngth[1],lngth[2],

lngth[3])
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# store parameters as global variables so they can be

called by the integrand function

v = V

jay = Jay

A = PreTensor(jay,v,MM,DD)

for i = 1:lngth[1], j = 1:lngth[2], k = 1:lngth[3], l = 1:

lngth[1], m = 1:lngth[2]

for n = 1:lngth[3]

tbl1[i,j,k,l,m,n] = -(MM[1][i][1]+MM[2][j][1]+MM[3][

k][1])+MM[1][l][1]+MM[2][m][1]+MM[3][n][1]

end

end

Inds1 = findall(x->x==0,tbl1)

tbl = zeros(Complex{Float64},lngth[1],lngth[2],lngth[3],

lngth[1],lngth[2],lngth[3]) # Store the intertwiner in a

6D matrix

ftbl = Array{Future}(undef, size(tbl))

for L1 = 1:length(Inds1)

i = Inds1[L1][1]

j = Inds1[L1][2]

k = Inds1[L1][3]

l = Inds1[L1][4]

m = Inds1[L1][5]

n = Inds1[L1][6]

p = workers()[mod1(L1, nworkers())]

ftbl[i,j,k,l,m,n] = remotecall(kernel, p, L1,Inds1,

jay,MM,DD,A) # remember to use @everywhere before

include
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end

for L1 = 1:length(Inds1)

i = Inds1[L1][1]

j = Inds1[L1][2]

k = Inds1[L1][3]

l = Inds1[L1][4]

m = Inds1[L1][5]

n = Inds1[L1][6]

tbl[i,j,k,l,m,n] = fetch(ftbl[i,j,k,l,m,n])

end

return tbl

end

function srt(arr::Array{Complex{Float64},6},i1::Int,i2::Int,i3

::Int)

dim = size(arr)

newArr = zeros(Complex{Float64}, dim[1],dim[2],dim[3],dim

[4],dim[5],dim[6])

for i = 1:dim[1], j = 1:dim[2], k = 1:dim[3], l = 1:dim[4],

m = 1:dim[5], n = 1:dim[6]

if i1==1 && i2==1 && i3==1

newArr[i,j,k,l,m,n] = arr[i,j,k,l,m,n]

elseif i1==2 && i2==1 && i3==1

newArr[i,j,k,l,m,n] = arr[l,j,k,i,m,n]

elseif i1==2 && i2==2 && i3==1

newArr[i,j,k,l,m,n] = arr[l,m,k,i,j,n]

elseif i1==2 && i2==2 && i3==2

newArr[i,j,k,l,m,n] = arr[l,m,n,i,j,k]

elseif i1==1 && i2==2 && i3==2

newArr[i,j,k,l,m,n] = arr[i,j,k,l,m,n]

elseif i1==1 && i2==1 && i3==2
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newArr[i,j,k,l,m,n] = arr[i,j,n,l,m,k]

elseif i1==2 && i2==1 && i3==2

newArr[i,j,k,l,m,n] = arr[l,j,n,i,m,k]

elseif i1==1 && i2==2 && i3==1

newArr[i,j,k,l,m,n] = arr[i,m,k,l,j,n]

else

return print("error")

end

end

return newArr

end
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D Code for Contraction

D.1 Code for contracting using the rule for finding ze-
ros

function Contraction(Int1::Array{Complex{Float64}},Int2::Array{

Complex{Float64}},Int3::Array{Complex{Float64}},Int4::Array

{Complex{Float64}},Int5::Array{Complex{Float64}},Int6::

Array{Complex{Float64}},Int7::Array{Complex{Float64}},int8

::Array{Complex{Float64}})

SUM = 0 # Initialize the result

# Find the dimensions of each of the intertwiners

dim1 = size(Int1)

dim2 = size(Int2)

dim3 = size(Int3)

dim4 = size(Int4)

dim5 = size(Int5)

dim6 = size(Int6)

dim7 = size(Int7)

Mmg1 = magIndices(dim1[2])

Mmg2 = magIndices(dim1[3])

Mmg3 = magIndices(dim1[1])

Mmg4 = magIndices(dim3[2])

Mmg5 = magIndices(dim2[2])

Mmg6 = magIndices(dim3[1])

# Loop over the given indices (all indices except a3, b2,

and c1)

for c4 = 1:dim7[4],c2 = 1:dim5[3],c1 = 1:dim5[2],b6 = 1:

dim4[6],b5 = 1:dim4[4],

b3 = 1:dim3[5],b2 = 1:dim3[1],b1 = 1:dim3[3],a10 = 1:
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dim2[6],a9 = 1:dim2[5],

a8 = 1:dim2[3],a7 = 1:dim2[2],a5 = 1:dim1[6],a4 = 1:

dim1[5],a3 = 1:dim1[4],

a2 = 1:dim1[3],a1 = 1:dim1[2] # last index should be

first called and vice versa

Con1 = -Mmg1[a1] - Mmg2[a2] + Mmg3[a3] + Mmg1[a4] +

Mmg2[a5]

Jay = ((dim1[1]-1)/2) # Value of j at index

corresponging to A3

# If the value of A3 is allowed, convert to index

notation and find B2

if abs(Con1) <= Jay && abs(Con1-floor(Con1)) == Jay-

floor(Jay)

y0 = 1+Jay

con1 = Int(-Con1+y0)

# a6 = a7 - a8 + con1 - a9 + a10

A6 = Mmg5[a7] - Mmg6[a8] + Mmg3[con1] - Mmg5[a9] +

Mmg6[a10]

Jay = ((dim2[1]-1)/2)

# If the value of A6 is allowed, convert to index

notation and find Con2

if abs(A6) <= Jay && abs(A6-floor(A6)) == Jay-floor(

Jay)

y0 = 1+Jay

a6 = Int(-A6+y0)

# con2 = a8 - b1 - b2 + b3 + a2
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Con2 = Mmg6[a8] - Mmg2[b1] - Mmg6[b2] + Mmg4[b3]

+ Mmg2[a2]

Jay = ((dim3[2]-1)/2)

# If the value of Con2 is allowed, convert to

index notation and find B4

if abs(Con2) <= Jay && abs(Con2-floor(Con2)) ==

Jay-floor(Jay)

y0 = 1+Jay

con2 = Int(-Con2+y0)

# b4 = -a7 - b6 + b5 + a1 - con2

B4 = -Mmg5[a7] - Mmg4[b6] + Mmg5[b5] + Mmg1[

a1] + Mmg4[con2]

Jay = ((dim4[2]-1)/2)

# If the value of B4 is allowed, convert to

index notation and find Con3

if abs(B4) <= Jay && abs(B4-floor(B4)) == Jay

-floor(Jay)

y0 = 1+Jay

b4 = Int(-B4+y0)

# con3 = -c1 - c2 + a6 + b4 + b1

Con3 = -Mmg1[c1] - Mmg2[c2] + Mmg3[a6] +

Mmg1[b4] + Mmg2[b1]

Jay = ((dim5[1]-1)/2)

73



# If the value of Con3 is allowed,

convert to index notation and find C4

if abs(Con3) <= Jay && abs(Con3-floor(

Con3)) == Jay-floor(Jay)

y0 = 1+Jay

con3 = Int(-Con3+y0)

# c3 = a3 + b5 + c4 - con3 - b2

C3 = Mmg3[a3] + Mmg5[b5] + Mmg6[c4] -

Mmg3[con3] - Mmg6[b2]

Jay = ((dim6[5]-1)/2)

# If the value of C3 is allowed,

convert to index notation and find

Con4

if abs(C3) <= Jay && abs(C3-floor(C3)

) == Jay-floor(Jay)

y0 = 1+Jay

c3 = Int(-C3+y0)

# con4 = -a10 - a5 + c4 + b6 + c2

Con4 = -Mmg6[a10] - Mmg2[a5] +

Mmg6[c4] + Mmg4[b6] + Mmg2[c2]

Jay = ((dim7[2]-1)/2)

# If the value of C3 is allowed,

convert to index notation and

contract

if abs(Con4) <= Jay && abs(Con4-

floor(Con4)) == Jay-floor(Jay)
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y0 = 1+Jay

con4 = Int(-Con4+y0)

SUM += Int1[con1,a1,a2,a3,a4,

a5]*Int2[a6,a7,a8,con1,a9,

a10]*

Int3[a8,con2,b1,b2,b3,a2]*

Int4[a7,b4,con2,b5,a1,

b6]*Int5[a6,c1,b1,con3,

b4,c2]*

Int6[a3,b5,b2,con3,c3,c4]*

Int7[a10,b6,a5,c4,con4,

c2]*int8[a9,a4,b3,c3,c1

,con4]

end

end

end

end

end

end

end

end

return(SUM)

end
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D.2 Code for contracting in steps

module performContraction

using LinearAlgebra

export zr

function zr(num::Float64)

if abs(num) < 2*(10^-7)

return 0

else

return num

end

end

export magIndices

function magIndices(dim::Int)

J = (dim-1)/2

m = -J:J

return -m

end

export contract1

function contract1(inter1,inter2)

# Find size dimensions of the intertwiners and create a new

array to hold the contraction

dim1 = size(inter1)

dim2 = size(inter2)

arr = complex(zeros(dim1[2],dim1[3],dim1[4],dim1[5],dim1

[6],

dim2[1],dim2[2],dim2[3],dim2[5],dim2[6]))

# Contract over the index "con"
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Mm3 = magIndices(dim1[3])

Mm4 = magIndices(dim1[4])

Mm5 = magIndices(dim1[5])

Mm6 = magIndices(dim1[6])

Mm7 = magIndices(dim2[1])

Mm8 = magIndices(dim2[2])

Mm9 = magIndices(dim2[3])

Mm11 = magIndices(dim2[5])

Mm12 = magIndices(dim2[6])

for i3 = 1:dim1[3], i4 = 1:dim1[4], i5 = 1:dim1[5], i6 = 1:

dim1[6],

i7 = 1:dim2[1], i8 = 1:dim2[2], i9 = 1:dim2[3], i11 =

1:dim2[5], i12 = 1:dim2[6]

# Set the index I2 (a2 in working by hand) equal to the

sum of the other magnetic indices

I2 = -(Mm3[i3]-(Mm4[i4]+Mm5[i5]+Mm6[i6])+Mm7[i7]+Mm11[

i11]+

Mm9[i9]-(Mm8[i8]+Mm12[i12]))

# Set the the index i2 equal to the correct value in

code notation and perform contraction over the index

con

Jay = ((dim1[2]-1)/2)

if abs(I2) <= Jay && abs(I2-floor(I2))== Jay-floor(Jay)

y0 = 1+Jay

i2 = Int(-I2+y0)

for con = 1:dim1[1]

arr[i2,i3,i4,i5,i6,i7,i8,i9,i11,i12] += (inter1[

con,i2,i3,i4,i5,i6]*inter2[i7,i8,i9,con,i11,
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i12])

end

end

end

return arr

end

export contract2

function contract2(inter3,inter4)

# Find size dimensions of the intertwiners and create a new

array to hold the contraction

dim1 = size(inter3)

dim2 = size(inter4)

arr = complex(zeros(dim1[2],dim1[3],dim1[4],dim1[5],dim1

[6],

dim2[1],dim2[2],dim2[3],dim2[5],dim2[6]))

# Contract over the index "con"

Mmc3 = magIndices(dim1[3])

Mmc4 = magIndices(dim1[4])

Mmc5 = magIndices(dim1[5])

Mmc6 = magIndices(dim1[6])

Mmd1 = magIndices(dim2[1])

Mmd2 = magIndices(dim2[2])

Mmd4 = magIndices(dim2[4])

Mmd5 = magIndices(dim2[5])

Mmd6 = magIndices(dim2[6])

for c3=1:dim1[3], c4 = 1:dim1[4], c5 = 1:dim1[5], c6 = 1:

dim1[6],
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d1 = 1:dim2[1], d2 = 1:dim2[2], d4 = 1:dim2[4], d5 = 1:

dim2[5], d6 = 1:dim2[6]

# Set the index I2 (a2 in working by hand) equal to the

sum of the other magnetic indices

C1 = Mmc3[c3]+(Mmc4[c4]-Mmc5[c5]-Mmc6[c6])+Mmd1[d1]+

Mmd2[d2]+

Mmd6[d6]-Mmd4[d4]-Mmd5[d5]

# Set the the index i2 equal to the correct value in

code notation and perform contraction over the index

con

Jay = ((dim1[1]-1)/2)

if abs(C1) <= Jay && abs(C1-floor(C1))== Jay-floor(Jay)

y0 = 1+Jay

c1 = Int(-C1+y0)

for con = 1:dim1[2]

arr[c1,c3,c4,c5,c6,d1,d2,d4,d5,d6] += (inter3[c1

,con,c3,c4,c5,c6]*inter4[d1,d2,con,d4,d5,d6])

end

end

end

return arr

end

export contract3

function contract3(inter5,inter6)
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# Find size dimensions of the intertwiners and create a new

array to hold the contraction

dim1 = size(inter5)

dim2 = size(inter6)

arr = complex(zeros(dim1[2],dim1[3],dim1[4],dim1[5],dim1

[6],

dim2[1],dim2[2],dim2[3],dim2[5],dim2[6]))

# Contract over the index "con"

Mme2 = magIndices(dim1[2])

Mme3 = magIndices(dim1[3])

Mme5 = magIndices(dim1[5])

Mme6 = magIndices(dim1[6])

Mmf1 = magIndices(dim2[1])

Mmf2 = magIndices(dim2[2])

Mmf3 = magIndices(dim2[3])

Mmf5 = magIndices(dim2[5])

Mmf6 = magIndices(dim2[6])

for e2 = 1:dim1[2], e3 = 1:dim1[3], e5 = 1:dim1[5], e6 = 1:

dim1[6], f1 = 1:dim2[1],

f2 = 1:dim2[2], f3 = 1:dim2[3], f5 = 1:dim2[5], f6 = 1:

dim2[6]

# Set the index I2 (a2 in working by hand) equal to the

sum of the other magnetic indices

E1 = Mme2[e2]-Mme3[e3]-Mme5[e5]+Mme6[e6]+

Mmf1[f1]+Mmf2[f2]-Mmf3[f3]-Mmf5[f5]+Mmf6[f6]

# Set the the index i2 equal to the correct value in

code notation and perform contraction over the index

con
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Jay = ((dim1[1]-1)/2)

if abs(E1) <= Jay && abs(E1-floor(E1))== Jay-floor(Jay)

y0 = 1+Jay

e1 = Int(-E1+y0)

for con = 1:dim1[4]

arr[e1,e2,e3,e5,e6,f1,f2,f3,f5,f6] += (inter5[e1,e2,

e3,con,e5,e6]*inter6[f1,f2,f3,con,f5,f6])

end

end

end

return arr

end

export contract4

function contract4(inter7,inter8)

# Find size dimensions of the intertwiners and create a new

array to hold the contraction

dim1 = size(inter7)

dim2 = size(inter8)

arr = complex(zeros(dim1[2],dim1[3],dim1[4],dim1[5],dim1

[6],

dim2[1],dim2[2],dim2[3],dim2[5],dim2[6]))

# Contract over the index "con"

Mmg2 = magIndices(dim1[2])
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Mmg3 = magIndices(dim1[3])

Mmg4 = magIndices(dim1[4])

Mmg6 = magIndices(dim1[6])

Mmh1 = magIndices(dim2[1])

Mmh2 = magIndices(dim2[2])

Mmh3 = magIndices(dim2[3])

Mmh4 = magIndices(dim2[4])

Mmh5 = magIndices(dim2[5])

for g2 = 1:dim1[2], g3 = 1:dim1[3], g4 = 1:dim1[4], g6 = 1:

dim1[6], h1 = 1:dim2[1],

h2 = 1:dim2[2], h3 = 1:dim2[3], h4 = 1:dim2[4], h5 = 1:

dim2[5]

# Set the index I2 (a2 in working by hand) equal to the

sum of the other magnetic indices

G1 = Mmg2[g2]-Mmg3[g3]+Mmg4[g4]+Mmg6[g6]+

Mmh1[h1]-Mmh2[h2]-Mmh3[h3]-Mmh4[h4]+Mmh5[h5]

# Set the the index i2 equal to the correct value in

code notation and perform contraction over the index

con

Jay = ((dim1[1]-1)/2)

if abs(G1) <= Jay && abs(G1-floor(G1))== Jay-floor(Jay)

y0 = 1+Jay

g1 = Int(-G1+y0)

for con = 1:dim1[4]

arr[g1,g2,g3,g4,g6,h1,h2,h3,h4,h5] += (inter7[g1,g2,

g3,g4,con,g6]*inter8[h1,h2,h3,h4,h5,con])

end
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end

end

return arr

end

function stepContract(Int1::Array{Complex{Float64}},Int2::Array

{Complex{Float64}},Int3::Array{Complex{Float64}},Int4::

Array{Complex{Float64}},Int5::Array{Complex{Float64}},Int6

::Array{Complex{Float64}},Int7::Array{Complex{Float64}},

int8::Array{Complex{Float64}})

# Round the intertwiners to remove entries that are close

to zero.

Int1new = zr.(real.(Int1))+zr.(imag(Int1))*im

Int2new = zr.(real.(Int2))+zr.(imag(Int2))*im

Int3new = zr.(real.(Int3))+zr.(imag(Int3))*im

Int4new = zr.(real.(Int4))+zr.(imag(Int4))*im

Int5new = zr.(real.(Int5))+zr.(imag(Int5))*im

Int6new = zr.(real.(Int6))+zr.(imag(Int6))*im

Int7new = zr.(real.(Int7))+zr.(imag(Int7))*im

Int8new = zr.(real.(int8))+zr.(imag(int8))*im

# Perform the contraction between each pair of intertwiners

Int12 = contract1(Int1new,Int2new)

Int34 = contract2(Int3new,Int4new)

Int56 = contract3(Int5new,Int6new)

Int78 = contract4(Int7new,Int8new)

# Find size dimensions of the intertwiners and create

variable "sum" to hold the contraction

dim1 = size(Int12)

dim2 = size(Int34)
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dim3 = size(Int56)

dim4 = size(Int78)

SUM = 0

# Perform the contraction over all remaining indices

for a1 = 1:dim1[1],a2 = 1:dim1[2],a3 = 1:dim1[3],a4 = 1:

dim1[4],a5 = 1:dim1[5],a6 = 1:dim1[6],a7 = 1:dim1[7],

a8 = 1:dim1[8],a9 = 1:dim1[9],a10 = 1:dim1[10],b1 = 1:

dim2[2],b2 = 1:dim2[3],b3 = 1:dim2[4],b4=1:dim2[7],

b5 = 1:dim2[8],b6 = 1:dim2[10],c1 = 1:dim3[2],c2 = 1:

dim3[5],c3 = 1:dim3[9],c4 = 1:dim3[10]

SUM += Int12[a1,a2,a3,a4,a5,a6,a7,a8,a9,a10]*Int34[a8,

b1,b2,b3,a2,a7,b4,b5,a1,b6]*

Int56[a6,c1,b1,b4,c2,a3,b5,b2,c3,c4]*Int78[a10,b6,a5

,c4,c2,a9,a4,b3,c3,c1]

end

return SUM

end
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D.3 Unoptimized code for performing contraction

function contractOld()

sum = 0

for i1 = 1:2, i2 = 1:2, i3 = 1:2, i4 = 1:2, i5 = 1:2, i6 =

1:2, i7 = 1:2, i8 = 1:2, i9 = 1:2,

i10 = 1:2, i11 = 1:2, i12 = 1:2, i13 = 1:2, i14 = 1:2,

i15 = 1:2, i16 = 1:2, i17 = 1:2,

i18 = 1:2, i19 = 1:2, i20 = 1:2, i21 = 1:2, i22 = 1:2,

i23 = 1:2, i24 = 1:2

sum += (Int1[i1,i2,i3,i4,i5,i6]*Int2[i7,i8,i9,i1,i10,

i11]*Int3[i11,i12,i6,i13,i14,i15]*

Int4[i8,i16,i17,i18,i2,i12]*Int5[i19,i16,i20,i7,

i21,i15]*Int6[i4,i18,i22,i19,i23,i13]*

Int7[i9,i17,i20,i22,i24,i3]*Int8[i10,i5,i24,i23,

i21,i14])

end

return sum

end
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E Code for toTxt() and fromTxt()

function toTxt(inter::Array{Complex{Float64},6},name::String)

dims = size(inter)

inter = string.(inter)

io = open(name,"w") # open file named "name"

# write entries of intertwiner to the file

for i = 1:dims[1],j = 1:dims[2],k = 1:dims[3],l=1:dims[4],m

=1:dims[5],n=1:dims[6]

write(io,inter[i,j,k,l,m,n])

write(io, " ")

end

close(io) # close the file

end

function fromTxt(name::String,j::Array{Int})

io = open(name,"r") # open file named "name"

s = read(io,String) # save file contents as string s

close(io) # close the file

# split the string into a vector of strings of

individual numbers

s = split(s)

s = String.(s)

sz = Int(size(s)[1]/3)

s = reshape(s,3,sz)

s = s[1,:].*s[2,:].*s[3,:]

# convert the strings to complex numbers
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vec = [parse(Complex{Float64},ss) for ss in s]

# arrange the vector into an array of the appropriate

shape given by j

arr = permutedims(reshape(vec,j[3],j[2],j[1],j[3],j[2],j

[1]),[6,5,4,3,2,1])

return arr

end
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F Sample Batch File

#!/bin/bash

#SBATCH -p debugq # Indicate the partition the job should run

on

#SBATCH --time=1:00:00 # Approximate time the job will take

#SBATCH --nodes=1 # Number of compute nodes the job will

require

#SBATCH --job-name=test # Name of the job

#SBATCH --output=/home/callen/test.out # Outputs will be saved

to this file

#SBATCH --error=/home/callen/Trials1Same/test.err # Errors will

be saved to this file

# Output to indicate the job has started

echo "Starting"

hostname

date

module load julia

# The running the job

echo "Starting Simulation"

time julia test.jl

# Output to indicate the job has stopped

echo "Stopping"

# Output to indicate all jobs are done

echo "Done."

date
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