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Abstract

Similar to human car drivers, future driverless cars need to sense the condition of road

surfaces so that they can adjust their speed and distance from other cars. This awareness

necessitates the need for a sensing mechanism that enables cars to sense the surface type

(gravel versus asphalt) and condition (dry versus wet) of a road. Unfortunately, existing

road sensing approaches have major limitations. Vision-based approaches do not work in

bad weather conditions and darkness. Mechanical-based approaches are either expensive

or do not have enough resolution and robustness.

In this thesis, we introduce VIVA, which uses mmWave to enable robust and practical

road sensing. Our key insight is that mmWave radar devices enable high resolution rang-

ing, which can be used to scan the roughness of a road surface. Moreover, mmWave radar

devices use high-frequency signals, which are significantly reflected by water, and hence

can be used to sense the moisture level of a road. However, due to the high sensitivity

of mmWave radar devices, other factors such as car vibration also impact their signals,

resulting in noisy measurements. To extract information about road surfaces from noisy

signals, we have developed a cross-modal supervised model that uses mmWave measure-

ments to sense road surfaces. Our prototype of VIVA costs less than $300 and achieves

more than 98% accuracy in classifying road types (gravel versus asphalt) and 99% accuracy

in classifying road conditions (wet versus dry), even in bad weather and darkness.
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Chapter 1

Introduction

Autonomous driving is an active area of research in both academia and industry, with

much investment in large-scale projects by major car manufacturers and technology com-

panies. Although driverless cars are already entering production, ensuring their safety and

reliability remains a challenge. One part of this challenge is the cars’ ability to sense road

conditions. For example, imagine a rainy day. A human will notice that the roads are

wet and drive carefully; a driverless car needs to do the same. Likewise, imagine a road

whose surface changes from asphalt to gravel. The driverless car needs to scan the road,

detect the change in the road’s surface condition, and make important driving decisions

and control strategies based on that.

Although there has been significant progress in building systems that enable cars to

robustly detect surrounding objects [2, 12, 10, 25], there has not been much research

in developing systems that can sense road conditions robustly under different weather

conditions. Ideally, we would like to have a system that enables cars to detect a dry road

from a wet one, and an asphalt road from a gravel one. This capability is important since,

similar to human-driven cars, driverless cars need to adjust their speed and driving styles

depending on changes in road conditions. Past work has tried to solve this problem using

vision-based systems such as Camera, LiDAR, and Infrared. However, these systems suffer
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Figure 1.1: VIVA enables cars to sense the road condition using mmWave signals. VIVA’s

sensor can be installed to the front (as shown here) or the rear side of the car.

from “weather blindness” and fail to function properly to provide robust perception in

snow, rain, fog, darkness, or even direct sunlight since they all rely on light to sense the

road. Another approach to estimate road conditions is to measure the wheel torque and

tire force and use them to estimate the road friction coefficient. Unfortunately, the existing

tire force and moment measurement systems are either very expensive (cost a few tens of

thousands of dollars), or they do not have enough resolution and accuracy to estimate

road conditions [23, 26, 5]. Ideally, we would like to have a sensor that is low-cost, has

high-accuracy, and works robustly in different weather conditions.

mmWave technology has multiple properties that make it ideal for this application.

First, due to a huge unlicensed spectrum available to mmWave technology, this technology

can enable high-resolution ranging capability (i.e., sub-centimeter resolution). Therefore,

it has the potential to measure the roughness of a road. Second, due to its high frequency,

mmWave signals reflect differently from a dry surface than from a wet surface. Third,

mmWave technology works in darkness. Moreover, because its wavelength is larger than

raindrops and snow, it is not impacted by rain, snow, or fog. Finally, mmWave radar chips

cost less than $50, which makes it very cost-effective for automobile applications.

Although mmWave technology has the ability to capture changes in road conditions and

types, realizing the goal of road sensing using mmWave still requires addressing multiple
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challenges. First, the captured reflected signal is a function of three parameters: wetness

of a road, the distance of the sensor from a road, and the height of a car. Second, mmWave

radar has a limited range resolution, and, consequently, a small vibration can move the

reflected signal outside of a radar’s bin. With that being said, a car’s vibration adds a

significant source of noise to the reflected signal. These vibrations are small. However,

they result in a significant change in the measured reflected power. Hence, the effect of

vibration on the signal can be as large as the effect of changes in road roughness. To

overcome these challenges, we propose VIVA, which uses mmWave signals to sense road

conditions. Our key insight is to use a learning model that separates informative signal

features from noise sources (vibration, height, etc.) in order to robustly classify the road

condition and its type.

We have built a prototype of VIVA using off-the-shelf components and devices. Our

sensor costs less than $300 and can be easily installed under a car as shown in Figure 1.1.

This research makes the following contributions:

• We introduce VIVA, an AI-powered mmWave system that enables cars to detect road

conditions and road types.

• We develop a cross-modal supervised learning model that uses noisy signals reflected

from road surfaces to extract informative features and classify road conditions.

• We have implemented and evaluated our system in real-world experiments. Our

results (from more than 80,000 measurements) show that VIVA achieves more than

98% accuracy in detecting road conditions and types.

The rest of this thesis is structured as follows. Chapter 2 presents an overview of the

related work in the area of mmWave sensing and road surface condition sensing. Chapter

3 presents background on FMCW, mmWave signals, and multi-layer feed-forward neural

networks. In Chapter 4, the design of the mmWave model and the training network are

elaborated. Implementation details, such as details about hardware and software, are

3



presented in Chapter 5. In Chapter 6, we first introduce our evaluation steps and the

performance metrics for road surface sensing. Then, we show the results of classification

for dry asphalt, wet asphalt, dry gravel, and wet gravel. Finally, in Chapter 7, we conclude

the thesis by summarizing the key advantages of VIVA and suggesting some of the potential

development opportunities.
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Chapter 2

Related Work

Related work can be categorized into two main topics: mmWave sensing and road surface

detection.

2.1 mmWave Sensing

Using mmWave to sense the environment has received significant attention in recent years.

For example, [33] introduces a system that uses mmWave signals and a deep neural network

to sense the environment and reconstruct a high-quality audio signal. The work presented

in [17] introduces a gas sensor that uses a 60 GHz mmWave radar. This sensor enables

real-time gas monitoring in different environments. Additionally, mmWave technology has

been used in gesture recognition and tracking systems. For example, Soli is a low power

mmWave sensor that senses hand gestures [14]. The system presented in [32] detects the

motion of objects and tracks them using a 60 GHz mmWave signal. Furthermore, mmWave

technology has been used to detect and identify multiple people in an environment. For

example, the authors of [8] used the characteristics of mmWave signals to fingerprint an

environment. In their work, measurements from an environment with and without people

are collected. Then, these measurements are fed to an LSTM based classification model
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that identifies the people. The system presented in [7] uses multiple mmWave transmitters

and receivers to provide a real-time high resolution image of the body for security screening.

In addition, mmWave sensors are used in health and agriculture. For example, SleepSense

[15] is an in-home sleep monitoring system that collects respiration data during sleep. The

system introduced in [35] uses mmWave signals to monitor vital signs, including breathing

rate, heart rate, and sleep. In [28], blood glucose levels are measured using the penetration

property of 60 GHz signals. In contrast to these systems, VIVA uses mmWave to enable

robust road surface monitoring for driverless cars.

2.2 Road Surface Condition Detection

Existing approaches for detecting and classifying road surface conditions fall into three

major categories: vision-based (Lidar, Camera, etc), Ultrasonic-based Sensors, and vehicle

dynamic-based (mechanical) methods. Unfortunately, these approaches are either very

expensive or unreliable. For example, the authors of [4] proposed a system that detects

roads based on backscattered ultrasonic signals. They showed that they could classify

five kinds of roads. However, this system achieves only 80% accuracy. In addition, their

system is prone to errors due to environmental conditions, vehicle movement, and air

current fluctuations. The authors of [27] proposed a vision-based system that attains only

68% in detecting road conditions. Furthermore, it does not work robustly in darkness

and bad weather conditions since it uses a camera. The system introduced in [1] uses

Lidar to classify roads. However, the limitation of [1] is that Lidar is an expensive sensor.

Moreover, its performance would be affected on rainy days or in fog. [24] uses IR to detect

different types of roads. Unfortunately, this system cannot detect whether a road is wet

or dry. Also, it has not been tested on practical road surfaces. In contrast to these works,

VIVA works in any weather and darkness and achieves an accuracy of more than 98% in

detecting road conditions and road types.

Finally, the mechanical-based road surface classification methods can be divided into
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two groups: direct tire force/moment measurement systems, and parameter identification

methods (PIMs). The first method is very expensive (more than fifty thousand US dollars).

Also, it requires complex devices that could not be used in most cars [6, 19, 5]. In the second

approach, PIMs use inertial measurement unit (IMU), wheel speed, and vehicle dynamics.

This makes PIMs more cost effective. However, they do not have enough resolution and

accuracy to enable reliable road surface sensing [20, 31, 18, 3, 29]. For example, in [9],

the authors developed a system that uses IMU data to measure car vibrations. Then,

these vibrations are used to detect patches or potholes in the ground. Nevertheless, this

system cannot detect road conditions. In contrast to these works, VIVA costs less than

$300. Furthermore, VIVA achieves more than 98% accuracy in detecting road conditions

and road types. Moreover, VIVA is able to maintain its performance in low-excitation and

low-speed scenarios, where most mechanical approaches fail.
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Chapter 3

Background

VIVA builds on three main technologies: FMCW, mmWave and Artificial Neural Networks.

In this section, we provide background on these technologies.

3.1 FMCW Radio

Frequency Modulated Continuous Wave (FMCW) is a technique used in radar devices to

detect the distance or speed of an object. In this technique, the radar transmits a sine wave

(also called a chirp) whose frequency increases linearly with time, as shown in Figure 3.1.

The transmitted signal reflects from an object, and receiver antennas receive the reflected

signal after some delay. Then, a mixer mixes both the transmitted and received signals and

filters the high-frequency components to produce an intermediate frequency (IF) signal.

This process can be shown using Equation 3.1,

ft = sin(ωtt+ φt)

fr = sin(ωrt+ φr)

fIF = sin((ωt − ωr)t+ (φt − φr)),

(3.1)
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Figure 3.1: FMCW radar transmits a sine wave (chirp) whose frequency increases linearly

with time. The received signal is a delayed version of the transmitted one.

where ft and fr are transmitted and received signals respectively, and fIF is the signal at

the output of the mixer.

The IF’s frequency is the frequency difference between the transmitted and received

signals (∆f) at any point in time. This frequency difference is measured by calculating

the Fast Fourier Transform (FFT) of the IF signal. Since the received signal is just a

delayed version of the transmitted signal, the time of flight of the transmitted signal (τ) is

calculated as follows:

τ =
∆f

S
, (3.2)

where S is the slope of the chirp, and it is known. The distance between the radar and the

object, i.e. d, is calculated using the measured time of flight as follows:

d =
1

2
× C × τ, (3.3)

where C is the speed of light. Note that the range resolution of the FMCW is a function

of the total bandwidth that the transmitted signal sweeps. The resolution, R, can be
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formulated as follows:

R =
C

2B
, (3.4)

where C is the speed of light and B is the total bandwidth of the frequency sweep. Thus,

larger bandwidths enable higher resolutions in ranging.

3.2 mmWave Signal

mmWave signals are RF signals that operate at frequencies ranging from 30GHz to 300GHz.

At this frequency range, a huge unlicensed spectrum is available. For example, there

is a 4GHz bandwidth available at 77GHz. As mentioned earlier, this huge bandwidth

enables high-resolution (sub-centimeter) ranging using FMCW. Furthermore, mmWave

signals have a small wavelength. Therefore, antennas at these frequencies are tiny (a

few millimeters). Hence, an array of antennas can be packed into a small area to form

an antenna array. This type of array enables FMCW radios to focus their signal to a

very narrow beam which can be steered electronically to scan in different directions. The

beam allows them to achieve long-range sensing. Moreover, mmWave signals can penetrate

through certain materials like plastic and operate in a wide range of weather conditions

such as rain, fog, dust, or snow. Finally, due to the high frequency of mmWave signals,

their reflection coefficient is very sensitive to minor changes in the surface of a reflector

and its moisture level. VIVA exploits these properties of mmWave signals to detect road

conditions and types.
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3.3 Multi-Layer Feed-Forward Neural Network

A neural network is a combination of small processing units, called neurons. Each neuron

receives data, processes it, and communicates the result with other neurons. The impor-

tance of a connection between two neurons is measured by a real number, called a weight.

The Multi-Layer Feed-Forward (MLF) neural network is a classic structure widely used in

many applications. An MLF neural network consists of three types of layers: one input

layer, one or several hidden layers, and one output layer.

Each neuron in a layer is connected to all the neurons in the next layer. Figure 3.2

shows how the neuron j in a layer is connected to the neuron i in the next layer. A neuron

has three inputs: the outputs of the neurons in the previous layer, the weight coefficients,

and a threshold (or bias). A neuron combines these inputs to output a value. The inner

structure of a neuron is shown in Figure 3.3. The output of a neuron can be formulated

as follows:
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Figure 3.4: A feed-forward neural network with one input layer, one hidden layer, and one

output layer

Xi = f(
J∑

j=1

ωjiXj + β), (3.5)

Here, f and β represent the activation function and bias, respectively. A bias is a

neuron with a constant value that shifts the activation function to the left or right. In

Figure 3.3, a sign function is considered for the activation function. However, this could

be replaced with any function, such as a Sigmoid, rectified linear unit (ReLu [22]), or other

functions.

The numbers of neurons in input and output layers are decided based on the dimension

of inputs and the number of labels. However, the number of hidden layers and the number

of neurons used in each hidden layer depend on the application. Figure 3.4 represents a

simple MLF neural network with one hidden layer. This architecture is also known as a

fully connected neural network since each neuron is connected to all the neurons in the

next layer.

The outputs of the last layer are scores for each output class. These non-normalized
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Algorithm 1 Training Procedure for MLF Neural Network

Input: Data, Labels, Epoch, MLF Neural Network

X ← Data

Y ← Labels

ω ← random Initialization

epoch← Epoch

i← 1

while i ≤ epoch do

for all x ∈ D, y ∈ Y do

Forward pass data to compute scores for each class

Use Softmax to computeP (ŷ|ω,w)

Backpropagate the error through the network

Update parameters

end for

i← i+ 1

end while

scores must be converted to a probability distribution over predicted output classes. Soft-

max is a function that takes a vector of K real numbers as input. Then, it normalizes the

vector into a probability distribution consisting of K probabilities. That is, prior to apply-

ing Softmax, some vector components could be negative or greater than one, and might not

sum to 1. However, after applying Softmax, each component will be between zero and one,

and the components will add up to 1. Hence, they can be interpreted as probabilities. In

addition, the larger input components will correspond to larger probabilities. The Softmax

functionality is as follows:

σ(z)i =
e

zi
T∑K

j=1 e
zj
T

(3.6)

Training a neural network follows a simple procedure. First, all the weights are initial-
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Algorithm 2 Deployment Procedure for MLF Neural Network

Input: Data, Label, MLF Neural Network

Output: Predicted Label

x← Data

y ← Label

Forward pass data to compute scores for each class

Use Softmax to compute P (ŷ|x,w)

ŷ = argmax
ŷ
P

ized to a random number between zero and one. Afterward, each example in a dataset is

passed to the input layer of the network. Then the scores for all output classes will be cal-

culated and given to the Softmax function to convert them to probabilities. The class with

the highest probability is considered as the predicted class. By comparing the predicted

and actual classes, an error is calculated. This error is back-propagated through the entire

network to update the parameters of the MLF neural network. This procedure should be

repeated more than once to ensure parameters are converged to an optimal value. The

training procedure for an MLF is shown in Algorithm 1.

Deploying a neural network to make a prediction is quite straightforward. First, an

example is fed to the first level, thereby generating the scores in the output layer. Using

the Softmax function, the probability of each class is calculated, and the predicted class

is the one with the largest probability. The deployment procedure for an MLF neural

network is shown in Algorithm 2.
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Chapter 4

VIVA

VIVA is an AI-powered mmWave system that enables driverless cars to sense road con-

ditions (dry, wet, asphalt, gravel). VIVA has three main components: a mmWave radio,

which transmits and receives FMCW signals, a low-cost camera, and a processor, which

runs VIVA’s algorithm and software. VIVA can be easily attached to a car, as shown in

Figure 1.1. It relies on the key insight that the type and the condition of a road impact

the reflection coefficient of roads’ surfaces. Therefore, by using mmWave radar, we can

measure the signal reflected from the road and use it to detect the road type and condition.

However, noise from various sources, such as car vibration, impact the measurement

of reflected signals. Therefore, detecting the road condition using reflected signals is very

challenging. To solve this problem, VIVA uses mmWave signal measurements and feeds

them into a multi-layer feed-forward neural network. Our model takes advantage of cross-

modal supervision to improve the accuracy of the system. The next few sections present the

components that contribute to the design of VIVA. In this chapter, we first investigate the

feasibility of using mmWave for road condition and type detection. We, then discuss the

challenges of robust road sensing using mmWave. Finally, we explain how VIVA overcomes

those challenges to ensure robust road sensing.
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4.1 Challenges in using mmWave for road sensing

mmWave signals reflect differently over different road types and conditions. The differences

in the reflected signals are due to multiple reasons: (i) the reflection coefficient of mmWave

signals is very high for water; hence, the amplitude of the reflected signal from a wet road

is much higher than the one from a dry road; (ii) the surface of a wet road is flatter and

has less scatter effect compared to a dry road; thus, the signals reflected from a wet surface

experiences less multipath effect compared to ones from a dry road; (iii) for a similar reason,

the signal reflected from an asphalt road experiences less multipath effect than ones from

a gravel road do.

Next, we run experiments to observe the impact of road type and road conditions on

mmWave signals. In these experiments, we install an FMCW mmWave radar device under

a car. The radar transmits a signal and measures the amplitude of the signal reflected

from a road to the sensor. We first drive on a dry road, then repeat this experiment on a

wet one. For both experiments, we make sure the speed of the car and other parameters

are the same. Figure 4.1 shows the results of these experiments, with three consecutive

output frames from the mmWave radar. The x-axis is the distance of the reflector from

the sensor, and the y-axis is the amount of reflection at that specific distance. The peak

shows the power reflected from the surface of the road since the road surface is the main

source of reflection. Contrary to our expectations, the signal reflected from the wet road

does not always have a higher amplitude than the one from the dry road. Although the

average amount of signal intensity reflected by the wet surfaces is higher, we cannot simply

rely on the main peak in the spectrum to detect the road condition. Therefore, we need

to take more factors into account when distinguishing a wet surface from a dry one.
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Figure 4.1: The relative power intensity of mmWave signal reflected by dry and wet surfaces

for three different frames. Although a wet surface is a better reflector (and scatters less)

than a dry surface, the signal peak in the reflection of a wet surface is not always greater

than the one from a dry surface.
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4.2 Feature Extraction

Although a wet road reflects more signals than a dry road, the amplitude of the reflected

signal at the output of the mmWave radar is sometimes lower for a wet road compared

to a dry road. Our hypothesis is that car vibrations and the limited range resolution of

the mmWave radar cause this outcome. Specifically, when the car vibrates, the distance

of the sensor from the road slightly changes, as a consequence slightly shifting the peak’s

location in the output of the radar. Since the radar has a limited resolution, the peak

will fall between two radar bins, resulting in a spectrum leakage problem and a smaller

peak amplitude. In this situation, the power of the reflected signal is not changed in

reality. However, it might vary in the output of the radar since it moves outside of a

radar bin. Figure 4.2 demonstrates this problem. In Figure 4.2(top), the signal falls on a

radar bin, whereas in Figure 4.2(bottom), the signal experiences a slight shift, and hence,

falls between two bins. In this case, the amplitude of the peak has decreased, and the

signal has generated leakage in the other bins. Therefore, to detect the road condition

from the mmWave signal, we need to consider both the amplitude of the main peak and

other bins caused by the radar’s range leakage as the input features. Furthermore, when

the roughness of road changes, the signal experiences different multipath. Therefore, the

other bins of the radar will have a higher amplitude. Thus, we need to develop a method

that considers both the amplitude of the peak and the amplitude of the other bins in the

output of the radar in order to classify the road type (gravel and asphalt) and condition

(wet and dry).

4.3 Two-label Classification

We first develop a model to distinguish a dry road from a wet road. Due to the nature

of our dataset and the fact that the number of our features is not very large, we design

a multi-layer feed-forward (MLF) neural network, shown in Figure 4.3, for distinguishing

a dry road from a wet road. This model consists of eight layers: the input layer, three
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Figure 4.2: The output of a radar for an object located 10 cm and 10.1 cm away from

the sensor with a range resolution of 1 cm. The figure shows that when the signal peak

is outside of a radar bin, it causes spectrum leakage and, therefore, the amplitude of the

main peak decreases.

dense layers each followed by a dropout layer, and the output layer. The dropout layers

will prevent our model from overfitting during the training process. However, they are not

used during testing and deployment. Our data is the whole radar’s range, and it consists

of 256 bins. Therefore, the input layer has 256 units. We designed the model such that

the size of the first hidden layer is larger than the input layer’s size. By doing this, we

are mapping input features into a higher dimension where all the subtle changes and the

correlations between the features can be captured. This level of detail allows the model

to extract useful information, like the leakages on other bins from the main peak, from

all of the features. Then, we gradually reduce the size of hidden layers, so that we focus

on important information, such as the largest peak of the signal. We choose ReLu as our
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Figure 4.3: The architecture used in VIVA for detecting dry versus wet roads

activation function in all the dense layers. The output of this function is equal to its input,

x, if x is positive and 0 otherwise. This function enables the neural network to avoid the

vanishing gradient problem. Since we are doing a binary classification task, the last layer

must have two units. Each unit represents a number that shows a score for each predicted

class. We use Softmax as the activation function for the output layer. This function

normalizes the output vector of the output layer to a probability distribution. Since the

ranges of features in the dataset differ, and the features have a large magnitude, the data

cannot be directly fed to the model. Therefore, we have to pre-process our mmWave

dataset. For the dry versus wet classification, we treated each example in the dataset as a

vector and divided it by its norm to make it a unit vector. This normalization scales down

the magnitude (which was over 1012) of all the features while preserving the shape of the

spectrum, resulting in faster computation.
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Figure 4.4: The architecture used in VIVA for detecting dry versus wet, and gravel versus

asphalt roads

4.4 Four-label Classification

Next, we design a model that not only distinguishes dry roads from wet ones but also

asphalt from gravel. To do so, we design a more sophisticated multi-layer feed-forward

neural network. As shown in Figure 4.4, it has six layers: the input layer, four dense

layers and the output layer. We do not have any dropout layers for this model since the

model does not overfit. We choose the same activation functions as the two-label model

for the dense layers and the output layer. Note that the size of the first hidden layer in

the four-label classification is larger than the first hidden layer in two-label classification.

This difference arises since the difference between a gravel road and an asphalt road is

much more tenuous than that between a dry road and a wet road. Thus, mapping features

to a higher dimension gives the model more detailed information about the relationship

between features.
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For data pre-processing, the normalization, as in the two-label classification, does not

work since the amplitude of the peaks in the reflections of gravel and asphalt might not

be significantly different. Thus, giving higher weights to stronger features is not sufficient,

and we need to focus on the changes in each feature. We use MinMax scaler on the

features, transforming them such that the maximum and minimum values of the feature

are mapped to one and zero respectively. This transformation allows our neural network

to observe changes in all the features with equal emphasis. In other words, the model takes

small changes in the signal into account when making predictions.

4.5 Cross-modal Supervision

So far, we have designed a model that can classify the road condition using mmWave

radar measurements. Although our empirical results show that the model performs very

well once it is trained, it has one limitation; changing the orientation or position of the

sensor can affect the measurements, and hence the mmWave model requires to be re-

trained. Unfortunately, re-training of a neural network is costly due to two main reasons:

(i) training procedure requires expensive computational resources; (ii) providing labelled

data requires a tremendous effort and manpower.

To solve this problem, we design a teacher-student network that uses both image data

and mmWave measurements. Note, although the camera does not work well during the

night and foggy weather, it does not require re-training if its position changes. Hence the

image model can be trained once and used as a teacher to train the mmWave model if

the position of sensor changes. Our teacher-student network is illustrated in Figure 4.5.

The top pipeline in the figure illustrates the teacher model, which provides cross-modal

supervision; the bottom pipeline shows the student model, which performs mmWave-based

road surface sensing. In the following, we explain the model in detail.

Neural networks usually use a Softmax, illustrated in Equation 3.6, in the output layer

to convert the computed logit, i.e. zi, for each class into a probability, i.e. qi. In Equation

22



RF Signal
Tx

Rx

Image Data

Layer 1
Wet Gravel

Layer 2 Layer n...

Teacher Model

Layer 1 Layer 2 Layer m...

Student Model

Hard Target

Softmax (T=t)

Softmax (T=1)

Softmax (T=t)

Loss
Function

Error

Figure 4.5: Training overview of the VIVA system. VIVA combines the signal measure-

ments captured by a mmWave FMCW radar with the images captured by a camera to

train a robust mmWave-based road type and condition sensing system.

3.6, T represents a temperature, and it is usually set to one. For high temperatures

(T →∞), all classes have nearly the same probabilities. On the other hand, at the lower

the temperatures (T → 0), the probability of the most probable class tends to 1.

Now, consider a pair of image and RF signals (I, R), where R and I denote the mmWave

measurement and the synchronized frame, respectively. The teacher model takes frame I

as input and generates two sets of targets: a hard and a soft target. A hard target is the

predicted class for an example, whereas a soft target represents the likelihood of each class

for a given example at temperature T . Soft targets provide much more information per

training case than hard targets, while both provide cross-modal supervision for training

the mmWave model. Hence, the mmWave model learns to predict road surface condition

and type using mmWave signals. We use the Resnet50 network, proposed in [11], as the

teacher model. The training objective function is to minimize the difference between the

predictions of mmWave and the image network. Equation 4.1 shows the loss function

where x is the input, W is the student model’s parameters, y is the hard labels generated
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by the teacher model, H is the cross-entropy loss function, σ is the Softmax function

parameterized by the temperature T , and α and β are coefficients. Additionally, zs and

zt are the logits of the student and teacher respectively. The first term of Equation 4.1

is computed using the hard targets of the image model and soft targets of the mmWave

model at T = 1, while the second term is the cross-entropy of soft targets at T = τ .

L(x;W ) = α×H(y, σ(zs;T = 1)) + β ×H(σ(zt;T = τ), σ(zs;T = τ)) (4.1)

After training the model using Algorithm 3, the mmWave model is deployed using

Algorithm 4 for road surface sensing.
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Algorithm 3 Training Procedure for Teacher-Student Network

Inputs: Image Data, mmWave Data, Epoch, Image model

Output: mmWave model(ω)

Xt ← Image Data

Xs ← mmWave Data

α← 1

β ← 0.07

T1 ← 1

T2 ← 5

N ← Number of Examples

ω ← random Initialization

for all i ∈ [1, Epoch] do

for all j ∈ [1, N ] do

Forward pass Xt(j) to image model to compute hard target(y) and logits(zt)

Use Softmax to compute soft targets at T1 and T2

Forward pass Xs(j) to mmWave model to compute logits(zs)

Use Softmax to compute soft targets at T1 and T2

Calculate the loss based on equation 4.1

Backpropagate the error and update ω

end for

end for

25



Algorithm 4 Deployment Procedure for mmWave model

Inputs: mmWave Data, mmWave model

Output: ŷ

D ← mmWave Data

M ← mmWave model

N ← Number of Examples

if n = 2 then

for x ∈ D do

Normalize(x)

end for

else

MinMaxScale(D)

end if

for all j ∈ [1, N ] do

Pj ← σ(M(D), T = 1)

ŷj = argmaxPj

end for
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Chapter 5

VIVA Implementation

5.1 Hardware

VIVA consists of a mmWave radar device and a low-cost camera, as shown in Figure 5.1.

For the radar, we use the AWR1642 device from Texas Instruments (TI). The sensor has

a UART port that allows one to store data on a laptop. For the camera, we use the

ELP 2.8-12mm Varifocal Lens 2.0 megapixel, whose resolution is 1920 x 1080 pixels. The

camera is connected to the same laptop through a USB cable and is installed right beside

the sensor so that the image data and the sensor data can represent the same time frame.

We use a ThinkPad T580 with an Intel CORE i7(8th Gen) to collect the data. Both the

camera and the sensor operate at the frame rate of 30 fps, and we assemble them in a box

as shown in Figure 5.1. For image classification, we use a GPU (TITAN RTX with 24GB

memory) to speed up the training process. The GPU is installed on a desktop with an

AMD R© Fx(TM)-6300 six-core processor and 500GB SSD. All the images are stored on the

SSD so that they can be accessed faster and then send to the GPU.
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Figure 5.1: The prototype of VIVA’s sensor (inside and outside). The sensor includes a

low-cost camera and a mmWave radar module placed in a waterproof box. The sensor is

small (11× 8× 4 cm) and can be easily installed on a car.

5.2 Software

We use Windows 10 for data collection and Ubuntu 16.04 for the data programming tasks.

We collect the data using the version 2.0.0 of mmwave demo visualizer, developed by

mmwavebeta group [21]. We set the frame rate to 30 and use 4 RX and 2 TX as the

antenna configuration of the sensor. We run the software on Windows 10 and collect

the binary data exported by the visualizer. This binary file contains the FFT results for

each frame. We reconstruct the data structure from documentation provided by TI in

the mmwave-SDK and decode the binary data back into the C++ structure so we can

parse them. Finally, we store all the data as a CSV file. To prepare the dataset, we use

Python 3.6, Pandas, Scikit-Learn, and Imblearn to transform data into an appropriate

form. Finally, we use Google Colaboratory to train the mmWave models and a local GPU

for training the image classifier. The framework we use to train our models is Tensorflow

2.0, and we specifically use Keras to build and train the models. For image data, we store

the video data and then extract frames from the videos using OpenCV 4.2. We then use

ResNet50 as the image classification model.
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Chapter 6

Evaluation

In this chapter, we evaluate the performance of VIVA in sensing road condition and type.

To do so, we place our device in a waterproof box and attach it to a car, as shown in

Figure 6.1. We installed VIVA in the rear side of the car since it is easier for cabling.

However, a car manufacturer can easily install it in front of the car. Our device is powered

through a power cable with 5V working voltage and has a USB port connected to the

laptop.

6.1 Data Collection

We collected around 50000 samples from several asphalt and gravel roads, for speeds rang-

ing from 10km/h to 60km/h, and across different weather conditions including rainy, cloudy

and sunny days. For each example, we captured the whole frequency spectrum of the re-

ceived signal, which consists of 256 features. Since the goal is to first distinguish between

dry and wet roads and then detect asphalt versus gravel, we labeled our dataset in two

ways. First, we used zero and one as the labels, respectively representing a dry and wet

road. In the other scenario, we used four consecutive numbers, from 0 to 3, representing

respectively dry asphalt, wet asphalt, dry gravel, and wet gravel. The number of examples
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Figure 6.1: VIVA’s sensor attached to a car.

in each class for 2 labels and 4 labels are shown in Table 6.1 and 6.2 respectively. Further-

more, we used the camera to collect the same amount of data with the same distribution

for the image classification task.

6.2 Data Preparation

As illustrated in Tables 6.1 and 6.2, the populations of classes are highly imbalanced.

Feeding this data into the model directly causes problems. For example, if we train the

model using the imbalanced data, the model’s accuracy might be high, even though most

of the examples in class wet are mispredicted. There are multiple ways to solve this issue,

including collecting more examples or using re-sampling techniques. Since collecting, pro-

cessing, and labeling more data is an expensive process, we use over-sampling techniques.

Specifically, we randomly over-sample examples from classes with less population to make

the size of classes equal.

Next, we need to feed the data to the models. For measuring how well the models

perform, we need a set of data that is not seen by the models. To do so, we split our

dataset into two subsets: a training set and a test set. The training set consists of eighty
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Classes Percentage

Dry 72.6%

Wet 27.4%

Table 6.1: Distribution of instances in dry road and wet road classes

Classes Percentage

Dry Asphalt 56.8%

Wet Asphalt 21.5%

Dry Gravel 15.8%

Wet Gravel 5.9%

Table 6.2: Distribution of instances in dry asphalt road, wet asphalt road, dry gravel road,

and wet gravel road classes

percent of the original dataset, each example having been randomly drawn from the original

dataset. Then, we use the training set to train the models. We use the remaining twenty

percent of the original dataset as the test set.

6.3 Training Procedure

We adopted ResNet50 as the base model for building our image classifier (teacher model).

We use the pre-trained weights on the ImageNet dataset as the initialization for the model.

Also, at the beginning of each epoch, We shuffle the training examples, set the batch size

to 64, and use Adagrad as the optimization function. Then, we train the model for 100

epochs.

To train the mmWave model for detecting dry road versus wet road, similar to the

teacher model, we set the batch size to 64 and shuffle the data at the beginning of each

epoch. However, we train the model for 100 epochs and use Adam as the optimizer. Since
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Precision Recall F1-score

Dry 100% 99.99% 100%

Wet 99.94% 100% 99.97%

Table 6.3: Results of classification in detecting wet versus dry road.

we are predicting two situations using this model, we use binary cross-entropy as the loss

function. Training the mmWave model for detecting dry road versus wet road and gravel

road versus asphalt road includes the same batch size and shuffling procedure. In addition,

we choose T = 5, α = 1, and β = 0.07 as the hyperparameters for the teacher-student

network. Finally, we use Adam as the optimizer, and we train the model for 125 epochs.

6.4 Performance Metrics

To evaluate the performance of VIVA, we use multiple metrics: Accuracy, Recall, Precision

and F1 score. Accuracy is defined as the total number of correct hits over all the examples,

and can be calculated using Equation 6.1

Accuracy =
TP + TN

TP + TN + FP + FN
(6.1)

where TP, TN, FP and FN stand for true positive, true negative, false positive, and false

negative, respectively. However, since in this work the classes are not balanced, accuracy

is not enough to judge the performance of our system. Specifically, we need other metrics

to measure the amount of relevance in classified examples. To solve this issue, we also

look at recall and precision as complementary metrics. Recall, also known as sensitivity, is

defined as the fraction of the total amount of relevant instances that were retrieved, and

can be calculated as follow:

Recall =
TP

TP + FN
(6.2)

Precision is about finding how many of the returned hits were correct and belonged to
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Precision Recall F1-score

Dry Asphalt 100% 100% 100%

Wet Asphalt 100% 99% 100%

Dry Gravel 99% 100% 99%

Wet Gravel 99% 100% 99%

Table 6.4: Results of image classification, on four kinds of roads using the ResNet50 model.

Precision Recall F1-score

Dry Asphalt 98.90% 98.84% 98.87%

Wet Asphalt 98.58% 98.34% 98.46%

Dry Gravel 96.26% 96.10% 96.18%

Wet Gravel 94.35% 95.53% 94.95%

Table 6.5: Results of classification, on four kinds of roads, using a cross-modal supervised

model that relies only on mmWave measurements.

our desired class. Precision can be calculated using the following equation:

Precision =
TP

TP + FP
(6.3)

Ideally, we would like to consider both precision and recall. Therefore, we also use

F1 score as an additional metric to evaluate our system. F1score is defined as the harmonic

mean of precision and recall, and can be calculated as follows

F1score =
Precision ·Recall
Precision+Recall

(6.4)

6.5 Classification Results

We evaluated all the models on a test dataset. We first evaluated the image model, which

provides supervision in training other models. Table 6.4 shows the precision, recall, and F1-
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Figure 6.2: Results of classifying dry versus wet road using mmWave signals.

score for this classification task, while the overall accuracy of the model is almost 100%.

Figure 6.3 shows the confusion matrix where rows present the true labels and columns

present the predicted labels. These results show that the image model can supervise the

training of the mmWave model and decrease the labeling costs by providing a perfect set

of training targets.

We then evaluated the model that predicts a wet road versus a dry road. Table 6.3

shows the performance results of this classification. The results show that the model

classifies the examples with 99.82% accuracy. In addition, recall for the wet class is almost

100% and no wet example is labeled as dry. Figure 6.2 shows the confusion matrix of the

two label classification.

Once we had confirmed that our model can distinguish a dry road from a wet road with

100% accuracy, we examined whether it was also capable of detecting a gravel road from an

asphalt road. Table 6.5 shows the results for this classification; VIVA is able to distinguish

all four road conditions with 98% accuracy. Note that the recall for all of them is more

than 95%. As shown in Equation 6.2, this means that we have very few false negatives.

Figure 6.4 shows the confusion matrix of the four label classification.
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Chapter 7

Conclusion and Discussion

This thesis has introduced VIVA, a low-cost and accurate road sensing system that uses

mmWave technology. In particular, VIVA overcomes the reliability and cost limitations

of existing road sensing systems (such as vision-based and mechanical sensing approaches)

to enable robust road sensing for driverless cars. VIVA achieves this robustness by tak-

ing advantage of the high-sensitivity of mmWave signals. However, the main challenge is

that since mmWave signals are very sensitive, not only do changes in road surface impact

mmWave signals but also other factors such as car vibration affect the measurements. To

solve this problem and extract information from noisy measurements, we have designed a

cross-modal supervised model to sense a road surface using a mmWave radar device. We

have developed a prototype of VIVA and evaluated its performance in real-world exper-

iments. Our results show that VIVA achieves more than 98% accuracy in detecting the

road types and road conditions, even in scenarios in which existing vision-based systems

fail (such as darkness and adverse weather conditions). Moreover, VIVA’s sensor proto-

type costs less than $3001, which is significantly cheaper than the cost of mechanical-based

systems that achieve reasonable accuracy and robustness. Another advantage of VIVA

compared to mechanical-based systems is that it can classify road surfaces not only in nor-

1We believe this cost will be significantly reduced in mass production.
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mal driving scenarios but also in stationary or very low-speed scenarios. These scenarios

are very challenging for the existing vehicle dynamic-based classification methods since

they cannot capture enough measurements. Finally, although in this thesis we focus on

road condition sensing, we believe VIVA can also make a significant contribution to the

reliability and performance of vehicle stabilization, path planning, and guidance control

systems. Below, we highlight some of the VIVA’s limitations and potential development

opportunities:

• Unseen Classes: VIVA can only detect four scenarios. However, there are more

diverse situations to consider, including snowy or icy surfaces. One direction for

future research is to improve the system by doing more measurements and building

a more complex system.

• Surface Roughness level: Roads with the same kind of pavement might have a differ-

ent level of roughness. For instance, the roughness of gravel sites are not the same,

and the driving behavior must be adjusted based on the roughness. Otherwise, the

car might experience serious damages. In future work, we plan to estimate the rough-

ness level of surfaces based on mmWave measurements. This enables us to find a

lower and upper bound for the roughness of different surfaces and build a more robust

road sensing system.

• Surface Moisture level: Although VIVA can distinguish a dry surface from wet one,

a reliable driving system requires a more comprehensive understanding of the road

condition. Thus, in future work, we will scan a surface to estimate the moisture level

of the surface with higher resolution.

• Real-time Processing: Our results show that VIVA is capable of real-time processing

on a Raspberry Pi. However, due to the limitations of the developed software for the

TI mmWave board, we were not able to capture mmWave measurements in real-time.
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