
Join Cardinality Estimation Graphs:
Analyzing Pessimistic and Optimistic
Estimators Through a Common Lens

by

Jeremy Yujui Chen

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2020

c© Jeremy Yujui Chen 2020

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Join cardinality estimation is a fundamental problem that is solved in the query op-
timizers of database management systems when generating efficient query plans. This
problem arises both in systems that manage relational data as well those that manage
graph-structured data where systems need to estimate the cardinalities of subgraphs in
their input graphs. We focus on graph-structured data in this thesis.

A popular class of join cardinality estimators uses statistics about sizes of small size
queries to make estimates for larger queries. Statistics-based estimators can be broadly
divided into two groups: (i) optimistic estimators that use statistics in formulas that make
degree regularity and conditional independence assumptions; and (ii) the recent pessimistic
estimators that estimate the sizes of queries using a set of upper bounds derived from linear
programs, such as the AGM bound, or tighter bounds, such as the MOLP bound that are
based on information theoretic bounds.

In this thesis, we introduce a new framework that we call cardinality estimation graph
(CEG) that can represent the estimates of both optimistic and pessimistic estimators.
We observe that there is generally more than one way to generate optimistic estimates
for a query, and the choice has either been ad-hoc or unspecified in previous work. We
empirically show that choosing the largest candidate yields much higher accuracy than
pessimistic estimators across different datasets and query workloads, and it is an effective
heuristic to combat underestimations, which optimistic estimators are known to suffer
from.

To further improve the accuracy, we demonstrate how hash partitioning, an optimiza-
tion technique designed to improve pessimistic estimators’ accuracy, can be applied to
optimistic estimators, and we evaluate the effectiveness.

CEGs can also be used to obtain insights of pessimistic estimators. We show MOLP
estimator [15] is at least as tight as the pessimistic estimator [6] and are identical on acyclic
queries over binary relations, and the MOLP CEG offers an intuitive combinatorial proof
that the MOLP bound is tighter than the DBPLP bound.

iii

Acknowledgements

I would like to thank the following people, without whom I would not have been able to
complete this research, and without whom I would not have made it through my masters
degree!

I would like to thank my advisor, Dr. Semih Salihoglu. Without his encouragement
and support, I would never reach where I am today. His enthusiasm for research and desire
for knowledge make him a great advisor.

I am very grateful to Dr. Ken Salem for providing technical expertise and inputs,
without which, this research would not have been possible.

I would also like to thank the members of my reading committee, Dr. Ken Salem and
Dr. Yaoliang Yu, for providing very helpful suggestions and insights.

Last but not least, my parents and my wife, whose love and support over the years
always keep me on the right path.

iv

Dedication

I would like to give thanks to God for past, present, and future.

v

Table of Contents

List of Figures viii

List of Tables x

1 Introduction 1

2 Notation and Running Example 4

3 Cardinality Estimation Graphs 7

4 Optimistic Estimators 9

4.1 Overview . 9

4.2 Space of Possible Optimistic Estimators 10

4.3 Combatting Underestimation . 13

5 Pessimistic Estimators 14

5.1 MOLP . 15

5.2 Using Degree Statistics From Results of Small Size Joins in MOLP 20

5.3 CLLP . 20

5.4 WBS Estimator and Hash Partitioning Optimization 20

5.5 Hash Partitioning . 21

5.6 Implementing Hash Partitioning For Optimistic Estimators 22

vi

6 Evaluation 23

6.1 Datasets and Workloads . 23

6.1.1 Datasets . 23

6.1.2 Query Workloads . 24

6.2 Space of Optimistic Estimators . 25

6.3 Optimistic vs. Pessimistic Estimators . 29

6.4 Refinements to Optimistic and Pessimistic Estimators 32

6.4.1 Effects of Hash Partitioning . 33

6.4.2 Effects of Submodularity Constraints 33

7 Related Work 37

8 Conclusions and Future Work 41

References 43

APPENDICES 47

A WBS Estimator’s Connection to MOLP On Acyclic Queries 48

B Counter Example for Using the WBS Estimator on Cyclic Queries 52

C DBPLP 53

vii

List of Figures

1.1 Example subgraph query Q5f . 2

2.1 Example dataset in graph and relational formats. 6

3.1 A CEG for query Q5f from Figure 1.1. Each node is labeled with the
relations involved in its (sub)query. 8

4.1 CEGopt for catalogue h = 3 for query Q5f in Figure 1.1. 11

5.1 CEGM for query Q5f in Figure 1.1. 17

6.1 Our full acyclic query templates. The directions of the edges are neglected
in the figure. 25

6.2 Acyclic workload: comparison between optimistic estimators. Note that
the x-axis labels are shortened using the format of (hop)-(aggr). For ex-
ample, min-hop-max-aggr is shortened to min-max. The red dashed line
indicates the mean of the q-errors, excluding the highest 10% outliers. The
charts, left-to-right and top-to-bottom, correspond to IMDB, DBLP, Het-
ionet, WatDiv, and Epinions. 27

6.3 Cyclic workload: comparison between optimistic estimators. Note that the
x-axis labels are shortened using the format of (hop)-(aggr). For example,
min-hop-max-aggr is shortened to min-max. The red dashed line indicates
the mean of the q-errors, excluding the highest 10% outliers. The charts, left-
to-right and top-to-bottom, correspond to IMDB, DBLP, Hetionet, WatDiv,
and Epinions. 28

viii

6.4 Q-error distribution of max-hop-max optimistic, MOLP, and CLLP on JOB
on IMDb and Acyclic on other datasets. The red dashed line indicates the
mean of the q-errors, excluding the highest 10% outliers. The charts, left-
to-right and top-to-bottom, correspond to IMDB, DBLP, Hetionet, WatDiv,
and Epinions. 30

6.5 Q-error distribution of max-hop-max optimistic, MOLP, and CLLP on Cyclic.
The red dashed line indicates the mean of the q-errors, excluding the high-
est 10% outliers. The charts, left-to-right and top-to-bottom, correspond to
IMDB, DBLP, Hetionet, WatDiv, and Epinions. 31

6.6 Effects of hash partitioning on max-hop-max estimator. The red dashed
line indicates the mean of the q-errors, excluding the highest 10% outliers.
The charts, left-to-right and top-to-bottom, correspond to IMDB, DBLP,
Hetionet, WatDiv, and Epinions. 35

6.7 Effects of hash partitioning on the MOLP estimator. The red dashed line
indicates the mean of the q-errors, excluding the highest 10% outliers. The
charts, left-to-right and top-to-bottom, correspond to IMDB, DBLP, Het-
ionet, WatDiv, and Epinions. 36

ix

List of Tables

4.1 Example Markov Table for h=2. 10

6.1 Dataset descriptions. 24

6.2 Number of over- and under-estimations for Acyclic (or JOB for IMDb) and
Cyclic workload. Note that the x-axis labels are shortened using the format
of (hop)-(aggr). For example, all-hops-max-aggr is shortened to all-max. 32

6.3 Percentage of Acyclic (or JOB) queries are improved/degraded with hash
partitioning. 33

x

Chapter 1

Introduction

The problem of estimating the output size of a natural multi-join query (henceforth join
query for short), is a fundamental problem that is solved in the query optimizers of database
management systems when generating efficient query plans. This problem arises both in
systems that manage relational data as well those that manage graph-structured data
where systems need to estimate the cardinalities of subgraphs in their input graphs. It is
well known that both problems are equivalent, since subgraph queries can equivalently be
written as join queries over binary relations that store the edges of a graph.

A prevalent technique used by existing systems to estimate cardinalities of joins is to
use statistics about the base relations or outputs of small-size joins, combined with inde-
pendence and uniformity assumptions to generate estimates for larger queries. We will refer
to these as optimisitc estimators. In the relational setting, it has been demonstrated that
optimistic estimators tend to underestimate in practice, sometimes severely [20]. Other
recent work - based on worst-case optimal join size bounds [1, 5, 6, 10, 15] - has led to the
development of a class of pessimistic estimators that are guaranteed to avoid underesti-
mation.

In this thesis, we focus on the behavior of optimistic and pessimistic estimators in the
context of graph database systems, where the challenge is to estimate subgraph cardi-
nalities. Our first contribution is an empirical study of both optimisitic and pessimistic
estimators, using both real and synthetic data sets and variety of query workloads. In
this study, we show that optimistic estimators tend to underestimate subgraph cardinal-
ities, as is the case in the relational setting. We also show that the bounding estimates
obtained from pessimistic estimators are typically very loose. That is, they often result in
substantial overestimates, with magnitudes even greater than the magnitude of optimistic

1

Figure 1.1: Example subgraph query Q5f .

underestimates.

With these observations in hand, we revisit use of optimistic estimators for cardinality
estimation. We observe that, in general, there is more than one way to generate optimistic
estimates for a query, given the available statistical information. For example, consider
the subgraph query in Figure 1.1. Given that we have the accurate cardinalities of all
subqueries of size ≤ 2 available, there are 36 unique formulas to estimate the cardinality
of the query. Examples of these formulas are:

• | A−→ B−→ |× |
B−→ C−→|
|
B−→|
× |

C←− D−→|
|
C−→|
× |

D←− E−→|
|
D−→|

• | A−→ B−→ |× |
B−→ D−→|
|
B−→|
× |

C←− D−→|
|
D−→|
× |

B−→ E−→|
|
B−→|

In previous work on graph subgraph cardinality estimation, the choice of which of these
estimates to use has either been ad hoc or has been left unspecified. Relational query
optimizers have a similar problem when faced with queries involving multiple predicates,
including join queries [25].

In this thesis, we consider the space of possible optimistic estimates that an optimizer
could use for a given query. We represent the space as a cardinality estimation graph
(CEG), in which each bottom-to-top path represents a different estimate. Given a CEG,
a heuristic technique for combatting underestimation in optimistic estimators to base the
estimate on the longest path through the CEG. We show empirically that the accuracy of
such estimates is very good. Furthermore, these estimates are simpler to compute than
pessimistic estimates, since they do not involve solving a linear program.

In addition, we review an optimization technique called hash partitioning. Although
originally designed for pessimistic estimators, we show that the technique can also be

2

applied to optimistic estimators. We will show empirically the effects of hash partitioning
on optimistic estimators.

Finally, we use the CEG representation to provide some insight into proposed pes-
simistic estimators. We show that the MOLP estimator of Joglekar and Re [15] is at least
as tight as the pessimistic estimator proposed by Cai et al [6] and are identical on acyclic
queries over binary relations. We also show that the MOLP bound can be interpreted as
the selection of a bottom-to-top path through a CEG, although the MOLP CEG differs
from the CEG used for the optimistic estimators. The MOLP CEG offers an intuitive
combinatorial proof that the MOLP bound is tighter than the DBPLP bound proposed by
the same authors.

The remainder of the thesis is structured as follows. Chapter 2 explains the notations
we use throughout the thesis using our running example. In Chapter 3, we introduce
cardinality estimation graph (CEG) and illustrate how it is used to represent cardinality
estimates. The optimistic and pessimistic estimators are described, with their estimates
represented in CEGs, in Chapter 4 and 5. We evaluate our approach to combat under-
estimation, compare optimistic and pessimistic estimators, and show the effects of the
refinements empirically in Chapter 6. Other related work is reviewed in Chapter 7. Fi-
nally, we review our contributions and describe future directions for this area of research
in Chapter 8.

3

Chapter 2

Notation and Running Example

We consider conjunctive queries of the form

Q(A) = R1(A1), . . . , Rm(Am)

where Ri(Ai) is a relation with attributes Ai and A = ∪iAi. Most of the examples and
used in this thesis involve structural queries that are used frequently in graph database
systems. In that setting, each Ri is a binary relation containing a subset of the edges
in a graph as source/destination pairs. Figure 2.1 presents an example showing a graph
with edge labels A, B, C, D, and E, shown in black, orange, green, red, and blue. This
graph can be represented using five binary relations, one for each of the edge labels. These
relations are also shown in Figure 2.1.

We will often represent structural queries over such relations using a graph notation.
For example, consider the relations A and B from Figure 2.1. We will represent the query
Q(a1, a2, a3) = A(a1, a2) ./ B(a2, a3) as

a1
A−→ a2

B−→ a3

Similarly, the query Q(a1, a2, a3) = A(a1, a2) ./ B(a3, a2) will be represented as

a1
A−→ a2

B←− a3

Let X be a subset of the attributes Ai of some relation R, and let v be a possible value
of X . The degree of v in R is the number of times v occurs in R, i.e. deg(X (v), R) =
|{t ∈ R|πX (t) = v}|. For example, in Figure 2.1, deg(s(14), D) = 3 because the outgoing

4

D-degree of vertex 14 is 3. Similarly deg(d(13), A) is also 3 because the incoming A-degree
of vertex 13 is 3. We also define deg(X , R) to be the maximum degree in R of any value v
over X, i.e., deg(X,R) = maxv deg(X (v), R). So, deg(d,A) = 3 because vertex 13 has an
incoming A-degree of 3 and this is the maximum incoming A-degree of any vertex in the
dataset. The notion of degree can be generalized to deg(X(v), Y, R), which refers to the
“degree of a value v over attributes X in πYR”, which counts the number of times v occurs
in πY (R). Similarly, we let deg(X, Y,R) = maxv deg(X(v), Y, R), i.e., deg(X, Y,R) is the
maximum degree of any X value in πYR. We will use the more general degree information
when we describe pessimistic estimators.

5

Figure 2.1: Example dataset in graph and relational formats.

6

Chapter 3

Cardinality Estimation Graphs

We next introduce cardinality estimation graphs (CEGs), which we use throughout the
thesis for describing cardinality estimators. Here, our goal is to give some intuition for
CEGs and to illustrate how they are used to represent cardinality estimates. We will
define two specific types of CEGs more precisely in Sections 4 and 5.

A CEG for a query Q(A) = R1(A1), . . . , Rm(Am) consists of the following:

• Nodes representing sub-queries of Q. For optimistic estimators (Section 4), the sub-
queries will correspond to subsets of the relations involved in Q. For the pessimistic
estimators (Section 5), the sub-queries will correspond to projections of Q onto subsets
of its attributes. Not all possible sub-queries will be represented in a query’s CEG,
although it will always include ∅ and Q.
• Weighted edges from “sub” nodes to “super” nodes, e.g., for optimisitic CEGs the edges

run from a given node to some or all of the nodes representing its super-queries. Edges
are labled with extension rates, which represent the cardinality of the “super” node
relative to that of the “sub” node.

Figure 3.1 illustrates a CEG for the query Q5f shown in Figure 1.1 over the relations
shown in Figure 2.1, assuming that statistics are available for any size-2 subqueries of Q5f .
Each bottom-to-top path, represents a different way of generating a cardinality estimate
for Q5f by combining statistics about its subqueries. For example, the leftmost path starts
with the known cardinality of a1

A−→ a2
B−→ a3. Then, it extends to a1

A−→ a2
B−→ a3

C−→ a4
and then extends to the subquery of 4-fork involving the relations of A, B, C, and D, by
incorporating information about the cardinality of a2

B−→ a3
C−→ a4 and a2

B−→ a3
D−→ a5,

respectively. Finally, it extends to the full query by utilizing the cardinality of a2
B−→ a3

E−→

7

Figure 3.1: A CEG for query Q5f from Figure 1.1. Each node is labeled with the
relations involved in its (sub)query.

a6. In CEGs for optimisitic estimators, the cardinality estimate along each path is the
product of the edge weights along the path.

For optimisitic estimators, we will show in Section 4 that CEGs are a convenient rep-
resentation of a space of candidate cardinality estimates that can be generated for Q given
some summary statistics about Q’s sub-queries. We will also argue that deliberately choos-
ing a pessimistic (i.e., large) candidate from this space is an effective way to combat the
underestimation problem. In Section 5, we will also show that, perhaps surprisingly, the
pessimistic estimator described by Cai et al. [6] can be interpreted in terms of estimates
along paths in a CEG.

8

Chapter 4

Optimistic Estimators

The estimators that we refer to as optimistic in this paper are based on formulas that use
known statistics about the input database and estimate the cardinalities of a sequence of
sub-queries, where the last sub-query is the original query. These formulas often make
uniformity and independence or conditional independence assumptions. The cardinality
estimators of many systems fall under this category. We focus on three estimators: Markov
tables [2] from XML databases, graph summaries [24] from RDF databases, and the graph
catalogue estimator of the Graphflow system [27] for managing property graphs. These
estimators are extensions of each other and use as statistics the cardinalities of small-size
joins. We give an overview of these estimators and then describe their CEGs, which we
will refer to as CEGopt, and then describe a space of possible optimistic estimates that an
optimistic estimator can make. Related work (Section 7) covers other estimators that also
fall under optimistic estimators, such as characteristic sets [29] from the RDF-3X system
or those from some relational systems [38].

4.1 Overview

We begin by giving an overview of the Markov tables estimator [2], which was used to esti-
mate the cardinalities of paths in XML documents. A Markov table of length h ≥ 2 stores
the cardinality of each path in an XML document’s element tree up to length h and uses
these to make predications for the cardinalities of longer paths. Table 4.1 shows a subset of
the entries in an example Markov Table for h = 2 for our running example dataset shown
in Figure 2.1. The formula to estimate a 3-path using a Markov Table with h = 2 is to
multiply the cardinality of the leftmost 2-path with the consecutive 2-path divided by the

9

Path |Path|
... ...
B−→ 2

A−→ B−→ 4
B−→ C−→ 3
... ...

Table 4.1: Example Markov Table for h=2.

cardinality of the common edge. For example, consider the query Q3p =
A−→ B−→ C−→ against the

dataset in Figure 2.1. The formula for Q3p would be: | A−→ B−→ |× |
B−→ C−→|
|
B−→|

. Observe that this

formula is inspired by the Bayesian probability rule that Pr(ABC) = Pr(AB)Pr(C|AB)
but makes a conditional independence assumption between A and C, in which case the
Bayesian formula would simplify to Pr(ABC) = Pr(AB)Pr(C|B). For Pr(AB) the for-
mula uses the true cardinality | A−→ B−→ |. For Pr(C|B) the formula makes a uniformity
assumption that the number of C edges that each B edge extends to is equal for each B

edge and is |
B−→ C−→|
|
B−→|

. The result of this formula is 4 × 3
2

= 6, which is an underestima-

tion of the true cardinality of 7. The graph summaries [24] for RDF databases and the
graph catalogue estimator [27] for property graphs have extended the contents of what’s
stored in Markov tables, respectively, to other acyclic joins, e.g., stars, and cyclic joins,
e.g., triangles, but use the same uniformity and conditional independence assumptions.

4.2 Space of Possible Optimistic Estimators

We next represent the estimates of optimistic estimators in a CEG that we call CEGopt.
This will help us describe the space of possible estimations that can be made with these
optimistic estimators. We assume that the given query Q is connected. CEGopt consists
of the following:

• Vertices: For each connected subset of relations S ⊆ R of Q, we have a node in CEGopt

with label S. This represents the sub-query ./Ri∈S Ri.
• Edges: Consider two nodes with labels S and S ′ s.t., S ⊂ S ′. Let D, for difference be
S ′ \ S, and let E ⊃ D, for extension be a join query in the Markov table, and let I, for

10

Figure 4.1: CEGopt for catalogue h = 3 for query Q5f in Figure 1.1.

intersection, be E ∩ S. Then there is an edge with weight |E||I| from S to S ′ in CEGopt.

In systems that adopt optimistic estimators, the Markov table needs statistics about
joins of size at least 2 to be able to make estimates. Consider the CEGopt constructed for
the path query Q3p from above. There would be only two (∅,R) paths in this CEG. One

path corresponds to the estimate from above: | A−→ B−→ |× |
B−→ C−→|
|
B−→|

. The other path corresponds

to a second formula, | B−→ C−→ |× |
A−→ B−→|
|
B−→|

. This formula represents the estimate that each B−→ C−→

tuple extends, on average, to |
A−→ B−→|
|
B−→|

many A edges, forming another estimate. Observe

that for this query, both of these estimates are identical (the second formula simply swaps
the positions of | A−→ B−→ | and | B−→ C−→ | in the numerator. In fact, when h = 2 and Q is
any path query (irrespective of the directions of the query edges), every (∅,R) path in the
CEGopt leads to exactly the same estimate.

However, when the query is not a path and/or Markov table contains joins of size ≥ 3,
different (∅,R) paths in CEGopt can lead to different estimates. Consider our running
example’s CEG shown in Figure 3.1. There are 36 (∅,R) paths leading to 7 different

11

estimates. An example of these estimates are:

• | A−→ B−→ |× |
B−→ C−→|
|
B−→|
× |

B−→ D−→|
|
B−→|
× |

B−→ E−→|
|
B−→|

= 52.5

• | A−→ B−→ |× |
B−→ C−→|
|
B−→|
× |

C←− D−→|
|
C−→|
× |

D←− E−→|
|
D−→|

= 57.6

Similarly, consider the fork query Q5f in Figure 1.1 and a Markov table that contains
up to 3-size joins. The CEG of Q5f is shown in Figure 4.1. Intuitively using the largest
possible joins is advantageous, so we ignore edges that use 2-size joins in the numerator.
However, there are still multiple paths in the CEG, leading to 2 different estimates:

• | A−→ B−→ C−→ |×
|

C←−
D−−⇒
E

|

|
C−→|

• | A−→ B−→ C−→ |× |
A−→ B−→ D−→|
|
A−→ B−→|

× |
A−→ B−→ E−→|
|
A−→ B−→|

Both formulas start by using | A−→ B−→ C−→ |. Then, the first “short-hop” formula makes
one fewer conditional independence assumption than the “longer-hop” estimate, which is
an advantage. In contrast, the first estimate also makes a uniformity assumption that
conditions on a smaller size join. We can expect this assumption to be less accurate than
the two assumptions made in the longer-hop estimate, which condition on 2-size joins. In
general, these two formulas can lead to very different estimates. For many queries, there
can be many more than 2 different estimates. For example, a star query with 4 edges
using a Markov table of size 2 can have as many as 11 different estimates. For such cases,
it is unclear which of the estimates would lead to more accurate estimates in practice.
Therefore, any optimistic estimator implementation needs to make decisions about which
formulas to use, which corresponds to picking paths in CEGopt.

We identify a space of heuristics that an optimistic estimator can adopt along two
parameters:

• Path length: The estimator can identify a set of paths to consider based on the path
lengths, i.e., number of edges or hops, in CEGopt, which can be: (i) maximum-hop
(max-hop); (ii) minimum-hop (min-hop); or (iii) any number of hops (all-hops).
• Estimate aggregator: Among the set of paths that are considered, each path gives

an estimate. The estimator then has to aggregate these estimates to derive a final
estimate, for which we identify three heuristics: (i) the largest estimated cardinality
path (max-aggr); (ii) the lowest estimated cardinality path (min-aggr); or (iii) the
average of the estimates among all paths (avg-aggr).

12

Any combination of these two heuristics can be used to design an optimistic estimator. In
prior optimistic estimators, this decision has been either unspecified or chosen in an ad-hoc
manner. Specifically, the original Markov tables [2] chose the max-hop heuristic. In this
work, each query was a path, so when the first heuristic is fixed any path in CEGopt leads
to the same estimate. Therefore an aggregator is not needed. Graph summaries [24] uses
the min-hop heuristic and leaves the aggregator unspecified. Finally, graph catalogue [27]
picks the max-hop and min-aggr aggregator.

4.3 Combatting Underestimation

Given the well known problem that using independence and uniformity assumptions often
lead to severe under-estimations, intuitively, the most effective way to combat under-
estimations would be to use the all-hops-max-aggr heuristic in the space we described.
This estimator considers all possible estimates that can be made in CEGopt and picks the
one that gives the largest estimate. Therefore it is the most pessimistic of the optimistic
estimators. We will test this hypothesis empirically in Section 6.

13

Chapter 5

Pessimistic Estimators

Join cardinality estimation is directly related to the following fundamental question: Given
a query Q and set of statistics over the relations Ri, such as their cardinalities or degree
information about values in different columns, what is the worst-case output size of Q?
Starting from the seminal result by Atserias, Grohe, and Marx in 2008 [5], several upper
bounds have been provided to this question under different known statistics. For example
the initial upper bound from reference [5], now called the AGM bound, used only the
cardinalities of each relation, while the DBP [15], MO [15] and CLLP bounds [1]1 also used
maximum degrees of the values in the columns. As an example, if R1(a1, a2) is one of the
input relations, an example degree constraint could be that any a1 value in R1 appears
in at most 10 tuples in R1, so each a1 value matches with at most 10 a2 values2. Instead
of asking for an estimate on the size of Q on the actual input relations R1, ..., Rm, the
above question asks for the maximum possible size of Q across all possible input relations
that are consistent with the known statistics. Therefore, any of these bounds can be used
as pessimistic estimators. In particular, this was done in a recent work [6] in an actual
estimator implementation. We refer to this as the WBS estimator, after the names of the
authors.

All of these bounds use numerical solutions to linear programs (LPs) that consist of
inequalities that use the known cardinality and degree statistics. We ignore the AGM
bound, which is the loosest of all these bounds and refer to the other LPs as DBPLP,
MOLP, and CLLP. In this section, we review these bounds and the WBS estimator and

1CLLP bound is a generalization of the GLVV bound [10], which focused only on functional dependen-
cies, i.e., where degree constraints are 1, to general degrees.

2Note that degree constraints generalize functional dependencies, which can be seen as degree con-
straints of 1.

14

derive insights into these bounds using our CEG framework. Here is the outline of this
section:

• Section 5.1 reviews the MOLP bound and shows that similar to optimistic estimators,
MOLP can be represented as finding a path in a particular CEG. This shows that,
surprisingly, the MOLP bound has a combinatorial solution. Using our CEG framework,
we provide an alternative proof that MOLP is an upper bound to the actual output
size. Our proof is combinatorial and significantly simpler than the numerical proof from
reference [15].
• Section 5.2 describes how MOLP can utilize the known cardianlity and degree statistics

from the results of small-size joins.
• Section 5.3 briefly reviews the CLLP bound.
• Section 5.4 reviews the WBS estimator, which was originally described as using a subset

of the inequalities of the CLLP inequalities. Using our CEG framework, we show that
in fact the WBS estimator is equivalent to the MOLP bound on acyclic queries on
which it was evaluated in reference [6]. We also review a hash partitioning refinement
of the WBS estimator from reference [6]. In our evaluations, we will show that this
refinement step can also be applied to optimistic estimators.

To demonstrate another application of CEGs, Appendix C reviews the DBPLP bound
provides alternative proofs that MOLP is tighter than DBPLP. Specifically, we show that
while MOLP bound is equal to the length of shortest (∅,A) path in a CEG, we call CEGM ,
DBPLP bound is at least the length of the longest path in CEGM . Due to space constraints,
some of our proofs are provided in the appendix. It is known CLLP ≤MOLP ≤ DBPLP .
We will use tightest of these two bounds, MOLP and CLLP, in our evaluations in Section 6.

5.1 MOLP

MOLP was defined in reference [15] as a worst-case bound on join sizes that is tighter than
the AGM bound. As we will show, the WBS estimator is in fact based on this bound.
Suppose a system has stored deg(X, Y,Ri) statistics, for each pair of attribute subsets
X ⊆ Y ⊆ Ai in a relation Ri. MOLP is:

15

Maximize sA
s∅ = 0

sX ≤ sY , ∀X ⊆ Y

sY ∪E ≤ sX∪E+ log(deg(X, Y,R)),∀X, Y,E ⊆ A, X ⊆ Y ⊆ Ai

Although the base of the logarithm was taken to be the total number of tuples across all
relations in reference [15], this is not necessary and we will take it as 2. Let mA be the
optimal value of MOLP. Reference [15] has shown that 2mA is an upper bound on the
size of Q. An exponent over 2 is taken because the inequalities use the logarithms of the
known degree constraints, so the optimal value mA is the logarithm of the upper bound.
For example, in our running example, the optimal value of these inequalities is 96, which
is an overestimate of the true cardinality of 78. It is not easy to directly see the solution
of the MOLP on our running example. However, we will next show that we can represent
the MOLP bound as the cost of shortest (∅,R) path in a CEG, we call CEGM .

MOLP CEG (CEGM): Let QZ be the projection of Q onto attributes Z, so QZ = ΠZQ.
Each variable sZ in MOLP represents the maximum size of QZ , i.e., the tuples in the
projection of QZ that contribute to the final output. We next interpret the two sets of
inequalities in MOLP:

• Extension Inequalities sY ∪E ≤ sX∪E + log(deg(X, Y,R)): These inequalities intuitively
indicate the following: each tuple tX∪E ∈ QX∪E can extend to at most deg(X, Y,R)
QY ∪E tuples. For example, in our running example, let X={a2}, Y={a2a3} and
E={a1}. So both X and Y are subsets of B(a2, a3). The inequality indicates that each
a1a2 tuple, so anRA tuple, can extend to at most deg({a2}, {a2, a3}, B(a2, a3))=deg(a2, B)
a1a2a3 tuples. This is true, because deg(a2, B) is the maximum degree of any a2 value
in B (in graph terms the maximum degree of any vertex with an outgoing B edge).
• Projection Inequalities sX ≤ sY (∀X ⊆ Y): These indicate that the number of tuples in
QX is at most the number of QY , if Y is a larger sub-query.

With these interpretations we can now construct CEGM .

• Vertices: For each X ⊆ A have a node. This represents the sub-query ΠXQ.
• Extension Edges: Add an edge with cost log(deg(X, Y,R)) between any W1 = X ∪ E

and W2 = Y ∪ E, for which there is sY ∪E ≤ sX∪E + log(deg(X, Y,R)) inequality. Note
that there can be multiple edges between X and Y corresponding to multiple degree
constraints of X and Y in different relations.
• Projection Edges: ∀X ⊆ Y , add an edge with cost 0 from Y to X. These edges

16

Figure 5.1: CEGM for query Q5f in Figure 1.1.

correspond to projection inequalities and intuitively indicate that, in the worst-case
instances, ΠYQ is always as large as ΠXQ.

Figure 5.1 shows the CEGM of our running example. We omit the projection edges for
simplicity.

Theorem 5.1.1. Let Q be a query whose degree statistics deg(X, Y,Ri) for each X ⊆ Y ⊆
Ai is known. Let mA be the optimal solution to the MOLP of Q. Then mA is equal to the
length of the shortest (∅,A) path in CEGM , where length of paths is the sum of the weights
on the edges.

Proof. Our proof consists of two steps. First we show that any feasible solution v to MOLP
has a value at most the length of any (∅,A) path. Then we show that a particular feasible
solution, which we call vCEG, is exactly the length of the shortest (∅,A) path. Let v be
a feasible solution to the MOLPQ. We refer to the value of v, so the value sA takes
in v, simply as sA. Let P be any (∅,A) path in CEGM . Let |P | be the length of P .
Suppose w.l.o.g. that P=(∅) e0−→(E1)...(Ek)

ek−→(A) and for the purpose of contradiction that
|P |= w(e0)+....+w(ek)<sA. LetA be Ek+1. If this is the case, using induction from i=k+1

17

down to 0, we can show that w(e0) + + w(ei−1) < sEi
and arrive at a contradiction.

The base case for sEk+1
holds by our assumption. Suppose w(e0) + + w(ei) < sEi+1

by
induction hypothesis. Then consider the inequality in MOLPQ that corresponds to the
(Ei)

ei−→(Ei+1) edge ei. There are two possible cases for this inequality:

Case 1: ei is a projection edge, so w(ei) = 0 and we have an inequality of sEi+1
≤sEi

, so
w(e0) ++ w(ei) < sEi+1 ≤ sEi

, so w(e0) ++ w(ei−1) < sEi
.

Case 2: ei is an extension edge, so we have an inequality of sEi+1
≤sEi

+ w(ei), so w(e0) +
.... + w(ei) < sEi+1 ≤ sEi

+ w(ei), so w(e0) + + w(ei) < sEi
, completing the inductive

proof. However this implies that 0 < s∅, which contradicts the first inequality of MOLP,
completing the proof that any feasible solution v to the MOLP is at most the length of
any (∅,A) path in CEGM .

Next, let vCEG be an assignment of variables that sets each sX to the length of the
shortest (∅, X) path in CEGM . Let vX be the value of sX in vCEG. We show that
vCEG is a feasible solution to MOLPQ. First, note that in vCEG s∅ is assigned a value
of 0, so the first inequality of MOLP holds. Second, consider any extension inequality
sY ∪E ≤ sX∪E + log(deg(X, Y,R)), so CEGM contains edge from X ∪ E to Y ∪ E with
length log(deg(X, Y,R)). By definition of shortest paths, vY ∪E ≤ vX∪E+log(deg(X, Y,R)).
Therefore, in vCEG all of the extension inequalities hold. Finally, consider a projection
inequality sX ≤ sY , where X ⊆ Y , so CEGM contains an edge from node Y to X with
weight 0. By definition of shortest paths, vX ≤ vY +0, so all of these inequalities also hold.
Therefore, vCEG is indeed a feasible solution to MOLPQ. Since any solution to MOLP has
a weight smaller than the length of any path, vA in vCEG, which is the shortest (∅,A) path
in CEGM is the optimal solution to MOLP.

With this connection, readers can verify that the MOLP bound in our running example
is 96 by inspecting the paths in Figure 5.1. As we will justify momentarily, the CEGM ’s we
use in our figures do not include the projection edges. In this CEG, the shortest (∅,A) path
has a length of 96 (specifically log2(96)), corresponding to the (∅) 4−→(a1a2)

1−→(a1a2a3)
2−→

(a1a2a3a4)
3−→(a1a2a3a4a5)

4−→(a1a2a3a4a5a6) path (i.e. the leftmost path). Recall that in
Figure 5.1 we put as edge weights the degrees of values, instead of their logarithms, so
when inspecting shortest paths, readers should multiply the weights on the edges instead
of summing them. We make three observations.

Observation 1: Similar to the CEGs for optimistic estimators, each (∅,A) path in CEGM

corresponds to a sequence of extensions fromQ∅ toQ and is an estimate of the cardinality of
Q. For example, the rightmost path (∅) 7−→(a3a6)

3−→(a3a5a6)
2−→(a3a4a5a6)

1−→ (a2a3a4a5a6)
3−→

(a1a2a3a4a5a6) in Figure 5.1 indicates that there are 7 a3a6’s, each of which extends to

18

at most 3 many a3a5a6’s, each of which extends to at most 2 many a3a4a5a6’s, each of
which extends to at most 1 a2a3a4a5a6’s, and finally each of which extends to at most
3 many a1a2a3a4a5a6. This yields 7x3x2x1x3=126 many possible outputs. Since we are
using maximum degrees on the edge costs, each (∅,A) path is by construction an upper
bound on Q. So any path in CEGM is a pessimistic estimator. This observation is
an alternative proof that MOLP is an upper bound on the actual output size, i.e., is a
pessimistic estimator:

Proposition 5.1.1 (Prop. 2 [15]). Let Q be a join query and OUT be the output size of
Q, then OUT≤2mA.3

Proof. As argued above, for any (∅, A) path P in CEGM , OUT ≤ 2|P |. By Theorem 5.1.1,
mA is equal to the length of the shortest (∅, A) path in CEGM , so OUT ≤ 2mA .

Observation 2: Theorem 5.1.1 implies that MOLP can be solved using a combinatorial
algorithm, e.g., Dijkstra’s algorithm, instead of a numeric LP solver.

Observation 3: Theorem 5.1.1 implies that we can simplify MOLP by removing the pro-
jection inequalities, which correspond to the edges with weight 0 in CEGM . To observe
this, consider any (∅,A) path P=(∅) e0−→(E1)...(Ek)

ek−→(A) and consider its first projection
edge, say ei. We can remove ei and replace the rest of the edges ei+1 to ek with (possibly)
new edges e′i+1 to e′k with exactly the same weights and construct P ′=(∅) e0−→(E1)...

ei−1−−→

(Ei)
e′i+1−−→(E ′i+2)....(E ′k)

e′k−→(A), where E ′i+2 ⊇ Ei+2, ..., E ′k ⊇ Ek. This can be seen in-
ductively as follows. We know Ei ⊇ Ei+1 because ei is a projection edge. Then if
(Ei+1)

ei+1−−→(Ei+2) edge was an extension edge that extended Ei+1 to Ni+1 = Ei+2 \ Ei+1

attributes, then by construction, there is another edge (Ei)
e′i+1−−→(E ′i+2 = Ei∪Ni) in CEGM

with the same weight as ei+1. If instead ei+1 was a projection edge that removed a set of
attributes from Ei+1, similarly there is another projection edge e′i+1 that removes the same
set of attributes from Ei. So inductively, we can find an alternative sub-path from Ei+1

to A, (Ei+1)
e′i+1−−→...

e′k−→(A) with the same length as the sub-path (Ei+1)
ei+1−−→... ek−→(A). This

justifies, why we do not draw the projection edges in our CEGM figures.
3This is a slight variant of Prop. 2 from reference [15], which state that another bound, called the MO

bound, which adds a preprocessing step to MOLP, is an upper bound of OUT .

19

5.2 Using Degree Statistics From Results of Small Size
Joins in MOLP

MOLP can directly integrate the degree statistics from results of joins. For example, if
a system knows the size of the join QRS = R(a1, a2) ./ S(a2, a3), then the MOLP can
include the inequality that sa1a2a3 ≤ log|QRS|. Similarly the extension inequalities can use
the degree information from QRS simply by taking the output of QRS as an additional
relation in the query with three attributes a1, a2, and a3. For example, one would add
sY ∪E ≤ sX∪E+ log(deg(X, Y,QRS)) extension inequalities.When comparing the accuracy of
the MOLP bound with optimistic estimators, we will ensure that MOLP uses the known
cardinalities of the same small-size joins and the degree information from the results of
these joins. This ensures that the statistics used by MOLP is a strict superset of the
statistics used by optimistic estimators.

5.3 CLLP

CLLP bound extends MOLP with entropic sub-modularity inequalities (also known as the
Shannon inequalities):

sX∪Y + sX∩Y ≤ sX + sY , ∀X, Y

With the addition of sub-modularity inequalities, we cannot map the solution of CLLP to
a path in the CEG framework. In Section 6, we will empirically evaluate how much extra
accuracy the refinement of sub-modularity constraints give on top of the MOLP using
numerical solvers.

5.4 WBS Estimator and Hash Partitioning Optimiza-
tion

We review the WBS estimator very briefly and refer the reader to reference [6] for details.
WBS estimator has two subroutines Bound Formula Generator (BFG) and Feasible Cov-
erage Generator (FCG) (Algorithms 1 and 2 in reference [6]) that given a query Q and the
degree statistics about Q generate a subset of the CLLP bounding formulas. A coverage

20

is a mapping (Rj, Aj) of a subset of the relations in the query to attributes such that each
Aj ∈ A appears in the mapping. A bounding formula is a multiplication of the known
degree statistics that can be used as an upper bound on the size of a query. In Appendix A,
we show using our CEG framework that in fact, that the MOLP bound is at least as tight
as the WBS estimator on general acyclic queries and is exactly equal to the WBS estimator
over acyclic queries over binary relations, which are the queries we focus on in this paper.
Therefore BFG and FCG can be seen as a method for solving the MOLP linear program
on acyclic queries over binary relations, albeit in a brute force manner by enumerating
all paths in CEGM . We do this by showing that each path in CEGM corresponds to a
bounding formula and vice versa.These observations allow us to connect two worst-case
upper bounds from literature using CEGs: the WBS estimator’s bound and the earlier
MOLP bound by Joglekar and Ré.4

5.5 Hash Partitioning

We next review an optimization that was described in reference [6] that is guaranteed to im-
prove the MOLP buond. We refer to this optimization as hash partitioning of queries. We
give an overview of the steps of the hash partitioning optimization using CEG terminology.
For details, we refer the reader to reference [6]. Below, let B be the partitioning budget
for the entire query. We also divide the edges in CEGM into two. Recall that each edge
W1

ej−→ W2 in CEGM is constructed from an inequality of sY ∪E ≤ sX∪E +log(deg(X, Y,Ri))
in MOLP. We call ej (i) an unbound edge if X = ∅, i.e., the weight of ej is |Ri|; (ii) a
bound edge if X 6= ∅, i.e., the weight of ej is actually the degree of some value in a column
of Ri. Note that unbound edge extends W1 exactly with attributes Ai, i.e., W2 \W1 = Ai

and a bound edge with attributes Y , i.e., W2 \W1 = Y . Below, we refer to these attributes
as “extension” attributes.

Step1: For each p = (∅,A) path in CEGM (so a bounding formula in the terminol-
ogy used in reference [6]), let S be the join attributes that are not extension attributes
through a bounded edge. For each attribute in S, allocate B1/|S| partitions. For example,
consider the path P1 = (∅) |B|−→ (a2a3)

deg(a3,C)−−−−−→ (a2a3a4)
deg(a2,A)−−−−−→ (a1a2a3a4)

deg(a3,E)−−−−−→
(a1a2a3a4a6)

deg(a3,D−−−−−→ (a1a2a3a4a5a6) in the CEGM of Q5f from Figure 5.1. Then both a2
4Although not explicitly mentioned in reference [6], on cyclic queries, the covers that FCG generates

may not be safe, i.e., the output of BFG may not be a pessimistic output. We show an example in
Appendix B.

21

and a3 would be in S. However for path P2 = (∅) |A|−→ (a1a2)
deg(a2,B)−−−−−→ (a1a2a3)

deg(a3,C)−−−−−→
(a1a2a3a4)

deg(a3,D)−−−−−→ (a1a2a3a4a5)
deg(a3,E)−−−−−→ (a1a2a3a4a5a6), only a2 would be in in S.

Step2: Partition each relation Ri as follows. Let PAi, for partition attributes, be PAi =
S ∩ Ai and z be |PAi|. Then partition Ri into Bz/|S| pieces using z hash functions, each
hashing a tuple t ∈ Ri based on one of the attributes in PAi into {0, ..., B1/|S| − 1}. For
example, the relation B in our example path P1 would be partitioned into 4, B00, B01, B10,
and B11.

Step3: Then divide Q into B components Q0...0, to QB1/|S|−1,...,B1/|S|−1, such that Qj1,...,jz

contains only the partitions of each relation Ri that matches the {j1, ..., jz} indices. For
example, in our example, Q0...0 is the join of A0 ./ B0,0 ./ C0 ./ D0 ./ E0.

The WBS estimator assumes that for each relation Ri, statistics about partitioning Ri

into a set of possible partition sizes (e.g., 2, 4, 8, 16, ...) have been computed. Then, for
different paths in the CEGM ’s of different queries, the estimator looks up at the necessary
statistics for the pre-partitioned version of Ri.

5.6 Implementing Hash Partitioning For Optimistic Es-
timators

Hash partitioning can also be used to refine optimistic estimators and we will evaluate its
benefits in Section 6.4.1. Intuitively, one advantage of partitioning is that the tuples that
hash to different buckets of the join attributes are guaranteed to not produce outputs and
they never appear in the same sub-query. This can make the uniformity assumptions in
the optimistic estimators more accurate because two tuples that hashed to the same bucket
of the an attribute are more likely to join. However, unlike pessimistic estimators, there is
no guarantee that accuracy will always improve.

In order to test whether hash partitioning helps optimistic estimators, we implemented
hash partitioning for optimistic estimators as follows. Given a partitioning budget B
and a set of queries in a workload, we worked backwards from the queries to find the
necessary subqueries, and for each sub-query the necessary statistics that would be needed
and stored them in the Markov table. For example, for the query Q5f in our running
example, one of the formulas that will be needed is this (using h = 2 Markov table):

|(a1)
A0−→ (a2)

B00−−→ (a3)| |(a2)
B00−−→(a3)

C0−→(a4)|

|(a2)
B00−−→(a3)|

|(a4)
C0←−(a3)

D0−→(a5)|

|(a3)
C0−→(a4)|

|(a5)
D0←−(a3)

E0−→(a6)|

(a3)
D0−→(a5)

, so we ensure

that our Markov Table has these necessary statistics.

22

Chapter 6

Evaluation

6.1 Datasets and Workloads

We represent our datasets as labeled graphs and queries as subgraph queries. As discussed
in Section 2, this is simply a modeling choice that makes our presentation simpler. Our
datasets and queries can equivalently be represented as relational tables and SQL queries.
Several prior work [18, 20] on cardinality estimation, including reference [6] has focused
primarily on the IMDb dataset and the Join Order Benchmark (JOB) query workload (both
reviewed momentarily). We used a more comprehensive suite of datasets and workloads,
subsuming the IMDb dataset and join queries in the JOB workload.

6.1.1 Datasets

We used 5 real world datasets: (i) IMDb: a movie dataset; (ii) Hetionet: a biological
network; (iii) DBLP a real knowledge graph; (iv) WatDiv: a synthetic knowlege graph; and
(v) Epinions, a real-world social network graph. Except for IMDb, all of our datasets are by
default in graph formats. IMDb is a relational database, which we converted into a property
graph. Epinions by default does not have any edge labels. We added a random set of 50
edge labels to Epinions. Our goal in using Epinions was to test whether our experimental
observations also hold on a graph that is guranteed to not have any correlations between
edge labels. For reference our datasets are summarized in Table 6.1. We next describe how
we converted the IMDb dataset into property graph.
IMDb: IMDb contains three groups of tables: (i) entity tables representing entities, such
as actors (e.g., name table), movies, and companies; (ii) relationship tables representing

23

Dataset Domain |V| |E| |Edge Labels|
IMDb Movie 27,495,959 64,617,375 127
DBLP Knowledge 23,312,916 55,586,971 27

Hetionet Biology 45,158 2,250,197 24
WatDiv Knowledge 1,052,571 10,916,457 86
Epinions Social Network 75,879 508,837 50

Table 6.1: Dataset descriptions.

many to many relationships between the entities (e.g., movie_companies table represents
relationships between movies and companies); and (iii) type tables that denormalize the
entity or relationship tables to indicate the types of entities or relationships. We converted
each row of an entity table to a vertex. We ignored vertex types because many queries in
the JOB workload have no predicates on entity types. Let u and v be vertices representing,
respectively, rows ru and rv from tables Tu an Tv. We added two sets of edges between u
and v: (i) a foreign key edge from u to v if the primary key of row ru (that u represents) is
a foreign key in row rv; (ii) a relationship edge between u to v if a row r` in a relationship
table T` connects row ru and rv. The edge label was taken from the type attribute in r`.
We picked the edge direction based on the meaning of the type. For example, if r` is a
row in movie_link with type follows connecting a movie u to movie v, then we add a
follows edge from u to v.

6.1.2 Query Workloads

We picked a set of acyclic queries that subsumes those used in reference [6] and a set of
cyclic queries. We used three workloads:

JOB: We transformed the JOB query workload from reference [20] into equivalent sub-
graph queries on our transformed graph. We removed non-join predicates in the queries,
since we are focusing on join cardinality estimations and encoded the equality predicates
on types directly on edge labels. We obtained 33 join query templates, whose subgraph
versions included four 3-edge, four 4-edge, two 5-edge, one 6-edge query templates (we re-
moved 2-edge query templates). Each of these queries was acyclic. We generated up to 100
query instances from each template by putting one edge label uniformly at random on each
edge, ensuring that the output of the query was non-zero. The final workload contained
609 specific query instances. We use this workload only on the IMDb dataset [6].

Acyclic: Because the queries in JOB were limited to up to 6-size joins, we created a

24

Figure 6.1: Our full acyclic query templates. The directions of the edges are neglected in
the figure.

separate workload of acyclic queries containing 6-, 7-, or 8-edge templates. We ensured
that for each query size k, we had patterns of every possible depth. Specifically for any k,
the minimum depth of any query is 2 (stars) and the maximum is k (paths). For the set
of experiments that evaluate the space of optimistic estimators, we excluded the 2- and
3-depth of the 8-edge query templates, which were quite slow to evaluate. For each depth d
in between, we picked a specific pattern. Our full patterns are shown in Figure 6.1. Then,
we generated 20 non-empty instances of each template by putting one edge label uniformly
at random on each edge, which yielded 360 queries in total.

Cyclic: We generated a workload of cyclic queries from templates used in prior work: a
5-edge diamond with a crossing edge [27], 6-edge two triangles [27], and a 5-edge lollipop
query [31]. We generated 20 instances of each template.

6.2 Space of Optimistic Estimators

In our first set of experiments, we answer the question: Which optimistic estimator in the
space we defined leads to more accurate estimates? We ran two sets of experiments. First,

25

we used the JOB workload on the IMDb dataset and the Acyclic workload on the rest of
our datasets. Then we used the Cyclic workload on each of our datasets. This was to
ensure that our observations are not affected by the cyclicity of queries. In order to set
up an experiment in which we could test all of the 9 possible optimistic estimators, we
used a Markov Table that contained up to 3-size joins (i.e., h=3), which also contained all
the necesssary triangle sub-queries. The default Markov Table that contains up to 2-size
joins does not allow us to test different estimators based on different path-length heuristics
as each path in CEGopt has the same length, which is equal to the number of edges in
the query minus 1. Also observe that when h = 2, we also cannot estimate cyclic queries
because each entry in the Markov table is a path, so an optimistic estimator can only
estimate acyclic queries.

In order to compare different estimators, for each query Q in our workloads we make
an estimate using each estimator and compute its q-error. If the true cardinality of Q is
c and the estimate is e, then the q-error is max{ c

e
, e
c
} ≥ 1. For each workload, this gives

us a distribution of q-errors, which we compare as follows. First we take the logs of the
q-errors so they are now ≥ 0. If a q-error was an underestimate, we put a negative sign to
it. This allows us to order the estimates from the least accurate under-estimation to the
least accurate over-estimation. We then generate a box plot where the box represents the
25th and 75th percentile cut offs marks. We also compute the mean of this distribution,
excluding the top 10% of the distribution (ignoring under/over estimations) and draw it
with a red dashed line in box plots.

Our results are shown in Figures 6.2 and 6.3. We make several observations. First
regardless of the path-length heuristic chosen, the max aggregator (the last 3 box plots in
the figures) makes significantly more accurate estimates (note that the y-axis on the plots
are in log scale) than avg, which is further more accurate than min. This is true across all
acyclic and cyclic experiments and all datasets. For example, on IMDb and JOB workload,
the all-hops-min, all-hops-avg, and all-hops-max estimators have mean q-errors (after
removing top 10 percent outliers), respectively, of 6.49, 1.65, and 1.01. The differences is
larger on the Cyclic workload, where their q-errors, respectively, are 1967.62, 5.54, and
2.36. Therefore, using the pessimistic of the optimistic estimates leads to significantly
more accurate estimations in our evaluations. Reference [27] had provided an intuition
for using the min aggregator in their optimistic estimator. The intuition was based on an
extreme example, where if one possible extension, i.e. path in CEGO, gives an estimate
of 0 (i.e., when one sub-query has empty output), then the full query is guaranteed to
be empty. Although this is certainly true in this extreme case, in our evaluations which
contains queries with outputs, this intuition does not hold.

We next analyze the path-length heuristics. Observe that across all experiments, if

26

Figure 6.2: Acyclic workload: comparison between optimistic estimators. Note that the
x-axis labels are shortened using the format of (hop)-(aggr). For example,

min-hop-max-aggr is shortened to min-max. The red dashed line indicates the mean of
the q-errors, excluding the highest 10% outliers. The charts, left-to-right and
top-to-bottom, correspond to IMDB, DBLP, Hetionet, WatDiv, and Epinions.

27

Figure 6.3: Cyclic workload: comparison between optimistic estimators. Note that the
x-axis labels are shortened using the format of (hop)-(aggr). For example,

min-hop-max-aggr is shortened to min-max. The red dashed line indicates the mean of
the q-errors, excluding the highest 10% outliers. The charts, left-to-right and
top-to-bottom, correspond to IMDB, DBLP, Hetionet, WatDiv, and Epinions.

28

we ignore the outliers and focus on the 25-75 percentile boxes, max-hop and all-hops
do at least as good as min-hop. Further observe that on IMDb, Hetionet, and on the
Acyclic workload on Epinions, max-hop and all-hops lead to significantly more accurate
estimates. Finally, the performance of max-hop and all-hops are comparable across our
experiments. We verified that this is because all-hops effectively picks one of the max-hop
paths in majority of the queries in our workloads. Since max-hop considers fewer paths,
it is more efficient to implement than all-hop. We conclude that systems implementing
optimistic estimators we consider should use the max-hop-max estimator.

Finally, Table 6.2 reports the number of over- and under-estimations that max-hop-max,
all-hops-max, all-hops-avg, and all-hops-min estimators make on the Acyclic and
Cyclic workloads. all-hops-max and all-hops-min are, respectively, the most pes-
simistic and optimistic of the optimistic estimators. Observe that not only does using
the max aggregator yield more accurate results, it also underestimates significantly fewer
number of queries on our datasets. As we hypothesized in Section 4.3, using max aggrega-
tor can be effective in combatting underestimation. For example, on DBLP and Acyclic
workload, all-hops-max overestimates on 75% of the queries while all-hops-min overes-
timates on only 8% (and is significantly less accurate overall).

6.3 Optimistic vs. Pessimistic Estimators

Our second set of experiments aim to answer: How do the accuracies of max-hop-max
optimistic and the MOLP pessimistic estimators compare? To answer this question, we
compared the q-errors of max-hop-max and MOLP on JOB workload on IMDb, the Acyclic
workload on the rest of our datasets, and Cyclic on all of our datasets. Our results are
shown in Figures 6.4 and 6.5 (ignore the CLLP boxes for now). First, these results confirm
the results from reference [33] that the accuracy of the estimates of MOLP estimator is
very loose. In addition to the estimators studied in reference [33], these estimates are also
several magnitudes worse than the optimistic estimators we consider. For example, on the
Hetionet dataset and Acyclic workload, the mean q-error of max-hop-max and MOLP,
are 1.45 and 7987, respectively.

29

Figure 6.4: Q-error distribution of max-hop-max optimistic, MOLP, and CLLP on JOB on
IMDb and Acyclic on other datasets. The red dashed line indicates the mean of the

q-errors, excluding the highest 10% outliers. The charts, left-to-right and top-to-bottom,
correspond to IMDB, DBLP, Hetionet, WatDiv, and Epinions.

30

Figure 6.5: Q-error distribution of max-hop-max optimistic, MOLP, and CLLP on
Cyclic. The red dashed line indicates the mean of the q-errors, excluding the highest
10% outliers. The charts, left-to-right and top-to-bottom, correspond to IMDB, DBLP,

Hetionet, WatDiv, and Epinions.

31

Acyclic
Dataset # Over/Underestimates max-max all-max all-avg all-min
IMDb # Overestimates 156 156 1 0
IMDb # Underestimates 213 213 368 369
DBLP # Overestimates 211 233 88 26
DBLP # Underestimates 98 76 231 293

Hetionet # Overestimates 137 148 32 10
Hetionet # Underestimates 183 172 288 310
WatDiv # Overestimates 212 236 96 42
WatDiv # Underestimates 104 80 224 275
Epinions # Overestimates 29 47 1 0
Epinions # Underestimates 291 273 319 320

Cyclic
Dataset # Over/Underestimates max-max all-max all-avg all-min
IMDb # Overestimates 12 12 8 0
IMDb # Underestimates 48 48 52 60
DBLP # Overestimates 17 18 12 8
DBLP # Underestimates 41 40 46 50

Hetionet # Overestimates 25 28 9 3
Hetionet # Underestimates 35 32 51 57
WatDiv # Overestimates 22 22 13 11
WatDiv # Underestimates 38 38 47 49
Epinions # Overestimates 0 0 0 0
Epinions # Underestimates 60 60 60 60

Table 6.2: Number of over- and under-estimations for Acyclic (or JOB for IMDb)
and Cyclic workload. Note that the x-axis labels are shortened using the format of
(hop)-(aggr). For example, all-hops-max-aggr is shortened to all-max.

6.4 Refinements to Optimistic and Pessimistic Estima-
tors

We next study the effects of the hash partitioning refinement to optimistic estimators. We
also study the effect of adding the sub-modularity constraints to the MOLP estimator.

32

Dataset % Improved % Degraded
IMDb 92.94% 7.06%
DBLP 54.17% 45.55%

Hetionet 67.5% 32.5%
WatDiv 44.44% 55.28%
Epinions 92.5% 7.5%

Table 6.3: Percentage of Acyclic (or JOB) queries are improved/degraded with hash par-
titioning.

6.4.1 Effects of Hash Partitioning

Our next set of experiments aim to answer: How much do the optimistic (and pessimistic)
estimators benefits from the hash partitioning optimization? To answer this question, we
tested the effects of hash partitioning on the JOB workload on IMDb and Acyclic work-
load on our other datasets. Then we applied the hash partitioning optimization to both
max-hop-max and MOLP estimators and measured the q-errors of the estimators under
partitioning budgets of 1 (no partitioning), 4, 16, 64, and 128. Our results are shown
in Figures 6.6 and 6.7. As demonstrated in reference [6], our results confirm that parti-
tioning improves the accuracy of MOLP. The mean accuracy of MOLP increases between
15% and 89% across our datasets when moving between 1 and 128 partitions. The results
for max-hop-max are data dependent. On DBLP and WatDiv, we cannot expect visible
improvements because the estimates of max-hop-max on these datasets are very close to
perfect and there is no room for significant improvement. On two of the remaining three
datasets, Hetionet and Epinions, partitioning improves the mean accuracy significantly by
25% and 89%, respectively. On IMDb, we see little improvements.

Recall that unlike the MOLP estimator, this optimization is not guaranteed to improve
the accuracy of the optimistic estimators. We show in Table 6.3 the percentage of queries
whose accuracy improved and degraded. Note that on IMDb and Epinions almost all of
the queries in our workload improved. This percentage of queries that improved varies
between 44% and 67% on the remaining datasets.

6.4.2 Effects of Submodularity Constraints

Recall that reference [6]’s pessimistic estimator enumerates a subset of the CLLP bounds,
which we showed were equal to MOLP on binary acyclic queries. CLLP is the tightest of the

33

known worst-case optimal bounds and extends MOLP with sub-modularity constraints. In
our next set of experiments, we addressed the question of: How much do the submodularity
constraints improve the accuracy of the MOLP estimator? Since with the sub-modularity
constraints, we cannot use a CEG, we implemented the CLLP estimator with a numerical
solver. We ran CLLP on the same workloads we had used to compare the max-hop-max and
MOLP. Our results are shown in Figures 6.4 and 6.5. Overall, we see negligible improve-
ment in accuracy except in Hetionet on Acyclic, where the improvement is 36%. This
observation is important as it provides that systems using a strictly pessimistic estimator
might prefer using a fast combintorial solver for MOLP (using CEGM) instead of using a
slow numerical solver for CLLP, which is a more complex linear program, as they should
not expect significant improvements from the addition of sub-modularity constraints.

34

Figure 6.6: Effects of hash partitioning on max-hop-max estimator. The red dashed line
indicates the mean of the q-errors, excluding the highest 10% outliers. The charts,
left-to-right and top-to-bottom, correspond to IMDB, DBLP, Hetionet, WatDiv, and

Epinions.

35

Figure 6.7: Effects of hash partitioning on the MOLP estimator. The red dashed line
indicates the mean of the q-errors, excluding the highest 10% outliers. The charts,
left-to-right and top-to-bottom, correspond to IMDB, DBLP, Hetionet, WatDiv, and

Epinions.

36

Chapter 7

Related Work

There is decades of research on cardinality estimation of queries in the context of different
database management systems. We cover a part of this literature focusing on work on
graph-based database management systems, specifically XML and RDF and on relational
systems. We also cover another technique, based on maximum entropy that can be used
with any estimator that can return estimates for base tables and or small-size joins. We
do not cover more work that uses machine learning techniques to estimate cardinalities
and refer the reader to several recent work in this space [17, 23, 43] for details of these
techniques.

Other Summary-based Estimators: The estimators we studied in this paper fall under
the category of summary-based estimators. Many relational systems, including commercial
ones such as PostgreSQL, use summary-based estimators. We do not provide an extensive
review of this work and refer the reader to several references for details. Example sum-
maries include the cardinalities of relations, which is also used by all of the estimators we
evaluate the number of distinct values in columns, or histograms [3, 37, 28], wavelets [26],
or probabilistic and statistical models [8, 40] that capture the distribution of values in
columns. These statistics are used to estimate the selectivities of each join predicate,
which are put together using several approaches, such as independence assumptions.

We studied three summary-based estimators that have been introduced in the context of
managing graph-structured data. All of these three estimators use as statistics cardinalities
of small-size queries. Several estimators from literature have proposed summary-based
cardinality estimators for subgraph queries that compute a sketch of an input graph. We
refer to these as sketch-based techniques though in the common use of the term, these
can be considered summary-based techniques as well. In the context of estimating the

37

selectivities of path expressions, XSeed [47] and XSketch [34] build sketch S of the input
XML Document. The sketch of the graph effectively collapses multiple nodes and edges
into supernodes and edges with metatadata on the nodes and edges. The metadata contain
statistics, such as the number of nodes that was collapsed into a supernode. Then given
a query Q, Q is matched on S and using the metadata an estimate is made. Because
these techniques do not decompose a query into smaller sub-queries, the question of which
decomposition to use does not arise for these estimators.

Several work in the context of XML databases have used data structures that are adap-
tations of histograms from relational systems to store selectivities of path or tree queries in
XML documents. Examples include, positional histograms [45] and Bloom histogram [42].
These techniques do not consecutively make estimates for larger paths and have not been
adopted to general subgraph queries. For example, Instead of storing small-size paths in
a data structure as in Markov Tables, Bloom histograms stores all paths but hashed in a
bloom filter. Other work used similar summaries of XML documents (or its precursor the
object exchange model [32] databases) data for purposes other than cardinality estimation.
For example, DataGuides [9] was used in the Lore system to summarize object exchange
model databases to be used by users to browse the database and formulate queries. Simi-
larly, TreeSketch [35] produces a summary of large XML documents to provide approximate
answers to queries.

In the context of RDF graphs, SumRDF is similar to XSeed and others and builds
a summary graph S of an RDF graph. SumRDF adopts a holistic approach to making
estimates. Given the summary S, SumRDF considers all possible RDF graphs G that
could have the same summary S. Then they return the average cardinality of Q across all
possible instances. This is effectively another form of uniformity assumption: each possible
world has the same probability of representing the actual graph on which the estimate is
being made. Similar to the sketch Note that the pessimistic estimators can also be seen as
doing something similar, except they consider the most pessimistic of the possible worlds
and return the cardinality of Q on that instance.

Characteristic sets [29] is another summary-based cardinality estimator that was used
in the RDF-3X [30] system. Characteristic sets is primarily designed to estimate the
cardinalities of stars in an RDF graph. As statistics it uses the characteristic set of each
vertex v in an RDF graph, which is the set of distinct outgoing labels v has. Then statistics
about all nodes with the same characteristic set are stored. These include the number of
nodes that belong to a characteristic set and the total number of edges with a particular
label. Then using these statistics the estimator makes estimates for the number of distinct
matches of stars. For example, a star query with three labels A, B, C would be estimated
by using the statistics from each characteristic set that contains these three labels and

38

summing the estimates from each. For example, the estimate from the characteristic set
{A,B,C} is the number of distinct nodes with this set multiplied by the average A, B, and
C edges of these nodes. Therefore this formula uses a uniformity assumption. For non-star
queries, a query is decomposed into multiple stars s1, ..., sk, then the estimate for each si
is multiplied, which corresponds to an independence assumption. Similar to the problem
we focused on in this paper, for many queries, there can be multiple ways to decompose
a query into multiple stars, and the question of which decomposition to pick can also be
modeled as picking a path in a CEG. The CEG for characteristic sets would consists of
unions of stars of a query as nodes as a set of edges. Then there would be an edges from
a node W1 to W2 with a weight of the estimate for the star represented by W2 \W1, using
the estimation technique described above. In our preliminary experiments for non-star
queries, characteristic sets did not perform as well as the optimistic estimators we covered
in this work for query patterns other than stars. As a result, we omitted an evaluation of
characteristic sets in our work.

Sampling-based Estimators: Another class of important estimators that have been used
in relational systems are based on sampling tuples [12, 19, 22, 41, 44]. These estimators
either sample input records from base tables offline or during query optimization, and they
evaluate queries on these samples to make estimates. Research has focused on different
ways samples can be generated, such as independent or correlated sampling, or sampling
through existing indexes. In the context of estimating subgraph queries, a recent work [33]
has shown that some sampling based estimators designed for relational systems, can return
highly accurate estimates compared to two summary-based ones (this work however has not
considered the Markov Table-based estimators we studied in this paper). One advantage
of sampling-based estimators is that they are often unbiased estimators, so by increasing
the sizes of the samples, one can always make highly accurate estimate. In the context of
graph data, sampling-based estimators have been used to estimate frequencies of subgraphs
relative to each other to discover motifs, i.e. infrequently appearing subgrahs, [16] and
lately also estimate the cardinalities of subgraph queries [7, 33].

Across relational systems, sampling based estimators have seen adoption in systems to
estimate the selectivities of predicates in base tables but not on multiway joins. For example
they HyPer system uses samples for predicates on base tables and uses independence
assumptions. A study by the authors of the Hyper system observed that none of the 4
commercial database management systems, one of which is Postgres (the names of others
are not provided) use sampling and instead resort to independence assumptions to calculate
estimates for join queries. One shortcoming of sampling-based estimators is that they are
often less efficient than summary-based estimators, even those that compute samples offline,
as they effectively perform the actual join on the samples, and possibly each sub-query of

39

a given query as well, during query optimization. This is a slower process than making an
estimate based on small size joins.

The Maximum Entropy Estimator: Markl et al. [25] has proposed another approach
to making estimates for conjunctive predicates, say p1 ∧ ... ∧ pk given a set of ` selectivity
estimates si11,...,i1k , si`1,...,i`k , where sij1,...,ijk is the selectivity estimate for predicate pij1 ∧
... ∧ pijk . Markl et. al.’s maximum entropy approach take these known selectivities and
using a constraint optimization problem, compute the distributions that maximizes the
entropy of the joint distribution of the 2k possible predicate space. Reference [25] has
only evaluated the accuracy of this approach for estimating conjunctive predicates on base
tables and not on joins. But they have briefly described how the same approach can be
used to estimate the cardinalities of join queries. Multiway join queries can be modeled as
estimating the selectivity of the full join predicate that contains the equality constraint of
all attributes with the same name. The statistics that we considered in this paper can be
translated to selectivities of each predicate. For example the size of |(a1)

A−→ (a2)
B−→ (a3)|

can be modeled as si = |(a1)
A−→(a2)

B−→(a3)|
|A||B| , as the join of A and B is by definition applying

the predicate A.src = B.dst predicate on the Cartesian product of relations A and B. This
way, one can construct another optimistic estimator using the same statistics. We have
not investigated the accuracy of this approach within the scope of this work and leave this
to future work.

40

Chapter 8

Conclusions and Future Work

We showed that we can represent both LP-based pessimistic estimators and the seemingly
unrelated optimistic bounds that use multiplications of formulas as instances of CEGs with
different edge weights. We can directly represent the estimations made by MOLP-based
estimators and the optimistic bounds as instances of finding paths in their corresponding
CEGs. We showed that we can also use CEGs to understand several properties of the
DBPLP, e.g., why DBPLP is more pessimistic than MOLP and why these bounds are
pessimistic. We believe the alternative combinatorial proofs of the LP-based pessimistic
bounds we provided using CEGs are simpler and more direct than the original proofs
provided in prior literature. We then showed that while it is clear which path MOLP uses
to make an estimation (i.e., the shortest (∅,A) one, in its CEG, in the optimistic bounds
it is often not clear which paths to use. We then empirically studied which paths in the
CEGs of optimistic bounds lead to better estimates. Finally we compared the accuracies
of both the pessimistic and optimistic bounds using exactly the same statistics and same
preprocessing techniques that have been described for pessimistic estimators.

Our work opens up a new set of interesting questions, which instructs venues for future
works:

• Other CEGs: Pessimistic estimators use maximum degrees as weights, while optimistic
ones use estimates of average degrees. The weights one can put on CEGs, e.g., are not
limited to these. For example, one can put in the entropies of different extensions as
weights. Future work can introduce and study different classes of estimators that put
different weights on the edges of CEGs.
• We did not focus on the speed with which estimations can be made. Future work can

study the speed with which these estimations can be made. A possible approach to

41

speed up estimation is to sparsify the number of edges in CEGs, which correspond
to removing some of the constraints in pessimistic estimators, or some pattern-based
formulas in optimistic estimators.
• Finally, our work focused primarily on acyclic queries (with only a few cyclic query

templates), which are known to be the predominant class of queries in practice. Future
work can study the performance of pessimistic and optimistic estimators on larger
classes of queries.

42

References

[1] Mahmoud Abo Khamis, Hung Q. Ngo, and Dan Suciu. Computing join queries with
functional dependencies. In PODS, 2016.

[2] Ashraf Aboulnaga, Alaa R. Alameldeen, and Jeffrey F. Naughton. Estimating the
selectivity of xml path expressions for internet scale applications. In VLDB, 2001.

[3] Ashraf Aboulnaga and Surajit Chaudhuri. Self-Tuning Histograms: Building His-
tograms without Looking at Data. In SIGMOD, 1999.

[4] Güneş Aluç, Olaf Hartig, M. Tamer Özsu, and Khuzaima Daudjee. Diversified stress
testing of rdf data management systems. In The Semantic Web – ISWC 2014, 2014.

[5] A. Atserias, M. Grohe, and D. Marx. Size Bounds and Query Plans for Relational
Joins. SICOMP, 42(4), 2013.

[6] Walter Cai, Magdalena Balazinska, and Dan Suciu. Pessimistic cardinality estimation:
Tighter upper bounds for intermediate join cardinalities. In SIGMOD, 2019.

[7] Xiaowei Chen and John C. S. Lui. Mining Graphlet Counts in Online Social Networks.
ACM TKDD, April 2018.

[8] Lise Getoor, Benjamin Taskar, and Daphne Koller. Selectivity estimation using prob-
abilistic models. In SIGMOD, 2001.

[9] Roy Goldman and Jennifer Widom. DataGuides: Enabling Query Formulation and
Optimization in Semistructured Databases. In VLDB, 1997.

[10] Georg Gottlob, Stephanie Tien Lee, Gregory Valiant, and Paul Valiant. Size and
treewidth bounds for conjunctive queries. JACM, 59(3), 2012.

43

[11] Marc Graham. On the universal relation. Technical report, University of Toronto,
September 1979.

[12] Haas, Peter J. and Naughton, Jeffrey F. and Seshadri, S. and Swami, Arun N. Selectiv-
ity and Cost Estimation for Joins Based on Random Sampling. Journal of Computer
and System Sciences, 52(3), 1996.

[13] Hetionet. https://het.io/, 2020.

[14] Yannis Ioannidis. The history of histograms (abridged). In VLDB, 2003.

[15] Manas R. Joglekar and Christopher M. Ré. It’s all a matter of degree: Using degree
information to optimize multiway joins. In ICDT, 2016.

[16] Nadav Kashtan, Shalev Itzkovitz, Ron Milo, and Uri Alon. Efficient sampling algo-
rithm for estimating subgraph concentrations and detecting network motifs. Bioin-
formatics (Oxford, England), 20, 08 2004.

[17] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A. Boncz, and Alfons
Kemper. Learned Cardinalities: Estimating Correlated Joins with Deep Learning. In
CIDR, 2019.

[18] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and
Thomas Neumann. How good are query optimizers, really? Proc. VLDB Endow.,
9(3):204–215, November 2015.

[19] Viktor Leis, Bernhard Radke, Andrey Gubichev, Alfons Kemper, and Thomas Neu-
mann. Cardinality Estimation Done Right: Index-Based Join Sampling. In CIDR,
2017.

[20] Viktor Leis, Bernhard Radke, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons
Kemper, and Thomas Neumann. Query optimization through the looking glass, and
what we found running the join order benchmark. In The VLDB Journal, 2018.

[21] Leis, Viktor and Radke, Bernhard and Gubichev, Andrey and Mirchev, Atanas and
Boncz, Peter and Kemper, Alfons and Neumann, Thomas. Query Optimization
through the Looking Glass, and What We Found Running the Join Order Bench-
mark. VLDBJ, 27(5), October 2018.

[22] Feifei Li, Bin Wu, Ke Yi, and Zhuoyue Zhao. Wander Join: Online Aggregation via
Random Walks. In SIGMOD, 2016.

44

https://het.io/

[23] Henry Liu, Mingbin Xu, Ziting Yu, Vincent Corvinelli, and Calisto Zuzarte. Cardi-
nality Estimation Using Neural Networks. In CASCON, 2015.

[24] Angela Maduko, Kemafor Anyanwu, Amit Sheth, and Paul Schliekelman. Graph
Summaries for Subgraph Frequency Estimation. In The Semantic Web: Research and
Applications, 2008.

[25] V. Markl, P. J. Haas, M. Kutsch, N. Megiddo, U. Srivastava, and T. M. Tam. Con-
sistent selectivity estimation via maximum entropy. VLDBJ, 16, 2007.

[26] Yossi Matias, Jeffrey Scott Vitter, and Min Wang. Wavelet-based histograms for
selectivity estimation. In SIGMOD, 1998.

[27] Amine Mhedhbi and Semih Salihoglu. Optimizing subgraph queries by combining
binary and worst-case optimal joins. PVLDB, 12(11), 2019.

[28] M. Muralikrishna and David J. DeWitt. Equi-depth histograms for estimating selec-
tivity factors for multi-dimensional queries. In SIGMOD, 1988.

[29] Thomas Neumann and Guido Moerkotte. Characteristic Sets: Accurate Cardinality
Estimation for RDF Queries with Multiple Joins. In ICDE, 2011.

[30] Thomas Neumann and Gerhard Weikum. Rdf-3x: A risc-style engine for rdf. In
VLDB, 2008.

[31] Dung Nguyen, Molham Aref, Martin Bravenboer, George Kollias, Hung Q. Ngo,
Christopher Ré, and Atri Rudra. Join Processing for Graph Patterns: An Old Dog
with New Tricks. In GRADES, 2015.

[32] Yannis Papakonstantinou, Hector Garcia-Molina, and Jennifer Widom. Object Ex-
change Across Heterogeneous Information Sources. In ICDE, 1995.

[33] Yeonsu Park, Seongyun Ko, Sourav S. Bhowmick, Kyoungmin Kim, Kijae Hong, and
Wook-Shin Han. G-CARE: A Framework for Performance Benchmarking of Cardi-
nality Estimation Techniques for Subgraph Matching. In SIGMOD, 2020.

[34] Neoklis Polyzotis and Minos Garofalakis. Statistical Synopses for Graph-Structured
XML Databases. In SIGMOD, 2002.

[35] Neoklis Polyzotis, Minos Garofalakis, and Yannis Ioannidis. Approximate xml query
answers. In Proceedings of the 2004 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’04, page 263–274, New York, NY, USA, 2004. Association
for Computing Machinery.

45

[36] Neoklis Polyzotis, Minos Garofalakis, and Yannis Ioannidis. Approximate xml query
answers. In SIGMOD, 2004.

[37] Viswanath Poosala and Yannis E. Ioannidis. Selectivity Estimation Without the At-
tribute Value Independence Assumption. In VLDB, 1997.

[38] PostgreSQL. https://www.postgresql.org/, 2020.

[39] Giorgio Stefanoni, Boris Motik, and Egor V. Kostylev. Estimating the Cardinality of
Conjunctive Queries over RDF Data Using Graph Summarisation. In WWW, 2018.

[40] Wei Sun, Yibei Ling, Naphtali Rishe, and Yi Deng. An Instant and Accurate Size
Estimation Method for Joins and Selections in a Retrieval-Intensive Environment. In
SIGMOD, 1993.

[41] David Vengerov, Andre Cavalheiro Menck, Mohamed Zait, and Sunil P. Chakkappen.
Join Size Estimation Subject to Filter Conditions. 2015.

[42] Wei Wang, Haifeng Jiang, Hongjun Lu, and Jeffrey Xu Yu. Bloom Histogram: Path
Selectivity Estimation for XML Data with Updates. In VLDB, 2004.

[43] Lucas Woltmann, Claudio Hartmann, Maik Thiele, Dirk Habich, and Wolfgang
Lehner. Cardinality Estimation with Local Deep Learning Models. In aiDM, 2019.

[44] Wentao Wu, Jeffrey F. Naughton, and Harneet Singh. Sampling-Based Query Re-
Optimization. In SIGMOD, 2016.

[45] Yuqing Wu, Jignesh M. Patel, and H. V. Jagadish. Estimating answer sizes for xml
queries. In EDBT, 2002.

[46] Clement Yu and M. Z. Ozsoyoglu. An algorithm for tree-query membership of a
distributed query. In COMPSAC, 1979.

[47] Ning Zhang, M. Tamer Ozsu, Ashraf Aboulnaga, and Ihab F. Ilyas. Xseed: Accurate
and fast cardinality estimation for xpath queries. In ICDE, 2006.

46

https://www.postgresql.org/

APPENDICES

47

Appendix A

WBS Estimator’s Connection to MOLP
On Acyclic Queries

We first show that on acyclic queries MOLP is at least as tight as the WBS estimator.
Our proof is based on showing that for each bounding formula generated by BFG and
FCG (respectively, Algorithms 1 and 2 in reference [6]), there is a path in MOLPC . For a
detailed overview of these algorithms, we refer the reader to reference [6]. We then show
that if the queries are further on binary relations, then the standard MOLP bound, which
only contains degree statistics about subsets of attributes in each relation, is exactly equal
to the WBS estimator.

For each bounding formula generated by BFG and FCG, there is a path in CEGM : Let
C be a coverage combination enumerated by FCG. Consider a bounding formula FC . We
can represent FC as a set of (Ri, Xi) triples, where Xi ⊆ Ai is the set of attributes that
Ri covers and is of size either 0, |Ai|−1, or |Ai|. Let Yi = Ai \ Xi. Then the bounding
formula generated for FC can be seen exactly as

∑
i log deg(Yi, Ri) (recall that deg(Yi, Ri) =

deg(Yi,Ai, Ri). This is because there are 3 cases: (i) if |Xi|= 0, then the BFG ignores Ri

and deg(Yi, Ri) = 0; (ii) if |Xi|= |Ai − 1|, then BFG uses in its formula the degree of the
single uncovered attribute a in Ai, which is equal to deg(Yi, Ri) as Yi only contains a; and
(iii) if |Xi|= |Ai|, then BFG uses |Ri| in its formula, and since Yi = ∅, deg(Yi, Ri) = |Ri.

We next show that CEGM contains an (∅,A) path with exactly the same weight. We
first argue that if Q is acyclic, then there must always be at least one relation Ri in the
coverage C, that covers all of its attributes. Assume for the purpose of contradiction that
each relation Ri(Ai) ∈ Q either covers 0 attributes or |Ai|−1 attributes. Then start with
any Ri1(Ai1) that covers |Ai1|−1 attributes. Let ai1 ∈ Ai1 be the attribute not covered

48

by Ri1. Then another relation Ri2(Ai2) must be covering ai1 but not covering exactly one
attribute ai2 ∈ Ai2. Similarly a third relation Ri3 must be covering ai2 but not covering
another attribute ai3 ∈ Ai3, etc. Since the query is finite, there must be a relation Rj

that covers an aj−1 and whose other attributes are covered by some relation Rk, where
k < j, which forms a cycle, contradicting our assumption that Q is acyclic. We can finally
construct our path in CEGM . Let’s divide the relations into RC , which cover all of their
attributes, i.e., RC = {Ri(Ai)|Ri covers |Ai| attributes}, and RE, which cover all but one
of their attributes, RE = {Ri(Ai)|Ri covers |Ai|−1 attributes}. We ignore the relations
that do not cover any attributes.

Let relation in RC = RC1(AC1), ..., RCk(ACk) and those in RE = RE1(AE1), ...,
REk′(AEk′). Then we can construct the following path. The first of the path uses the car-
dinalities or relations in RC , in an arbitrary order, to extend (∅) to U = (∪i=1,...kACi). For

example this path can be: P1 = (∅) log(|RC1|−−−−−→ (AC1)
log(|RC2|−−−−−→ (AC1 ∪ AC2)...

log(|RCk|−−−−−→ (U).
Now to extend U to A, observe that for each uncovered attribute T = A\U , there must be
some relation REj(AEj) ∈ RE, such that all of the |AEj|−1 attributes are already bound
in U . This is because |T |= k′ and if each REj has at least 2 attributes in T , then Q
must be cyclic. Note that this is true because by definition of acyclicity [11][46] any “ear”
that we remove can be iteratively covered by at most one relation, which means by the
time we remove the last ear, we must be left with a relation REj and one attribute, which
contradicts that REj had at least 2 uncovered attributes in T . So we can iteratively extend
the path P1 with one attribute at a time with an edge of weight log deg(YEj, REj) until
we reach A. Note that this path’s length would be exactly the same as the cost of the
bounding formula generated by BFG and FCG for the coverage C.

When relations of an acyclic query are binary the WBS estimator is equal to MOLP. Ide-
ally we would want to prove that when relations are binary that any path in CEGM

corresponds to a bounding formula. However this is not true. Consider the simple join
R(A,B) ./ S(B,C). CEGM contains the following path, P = (∅) log deg({B},{B},R−−−−−−−−−−→ ({B})
log deg(C,{B,C},S)−−−−−−−−−−→ ({B,C}) log deg(A,{A,B},R)−−−−−−−−−−−→ ({A,B,C}). There is no bounding formula
corresponding to this path in the WBS estimator because the first edge with weight
log deg({B}, {B}, R) uses the cardinality of projection of R. However, the WBS esti-
mator does not use cardinalities of projections in its bounding formulas and only uses the
cardinalities of relations. Instead, what can be shown is that if a path P in CEGM uses the
cardinalities of projections, then there is another path P ′ with at most the same length,
for which the WBS estimator has a bounding formula.

First we show that given an acyclic query over binary relations, if a path P in CEGM

contains cardinalities of projections, then there is an alternative path P ′ that has at most

49

the length of P and that contains at least one more edge that uses the cardinality of a
full relation. We assume w.l.o.g. that Q is connected. Note that in P any edge from (∅)
in CEGM must be using the cardinality of a relation or a projection of a relation (the
only outgoing edges from (∅) are these edges). Let us divide the edge in P into multiple
groups: (i) Card are those edge that extend a sub-query with two attributes and use the
cardinality of a relation; (ii) Ext − Card are those edges that bound an attribute in a
relation Ri in Card and extend a sub-query to one new attribute a using the degree of a
in Ri; (iii) Proj are those edges that extend a sub-query by a single attribute a, without
bounding any attributes in the sub-query, i.e., using the cardinality of the projection of
a relation Ri onto a (so the weight of these edges look like log deg({a}, {a}, Ri); and (iv)
Rem are the remaining edges that extend a sub-query by one attribute either bounding
another attribute in Proj or some other attribute in Rem.

We first note that we can assume w.l.o.g., that if any relationRi(a1, a2) is used in an edge
ep Proj to extend to, say, a2, then a1 cannot be an attribute covered by the edges in Card or
Ext. Otherwise we can always replace ep, which has weight logPia2Ri with an edge we can
classify as Ext with weight log deg(a2, {a1, a2}, Ri) because |Pia2Ri|≥ deg(a2, {a1, a2}, Ri).
Next, we argue that we can iteratively remove two edges from Proj and possibly Rem and
instead add one edge to Card without increasing the length of P . First observe that if Rem
is empty, otherwise we must have a relation Ri(a1, a2) whose both attributes are in set Proj,
in which case, we can remove these two edges and replace with a single Card edge that
simply has weight log(∅, {a1, a2}, Ri) and reduce P ’s length because |Ri|≤ Πa1Ri ×Πa2Ri.
Note that if Rem is not empty, then at least one of the edges er must be bounding an
attribute a1 and extending to a2 using a relation Rp, where a1 must be extended by an
edge ep in Proj using the same relation Rp. Otherwise there would be some edge e in
Rem that extended a sub-query W1 to W1 ∪ {aj} without bounding the attribute that
appears in the weight of e. This is because note that if we remove the relations that
were used in the edges in Card and Ext then we would be left with an acyclic query,
so have t relations and t + 1 attributes that need to be covered by Proj and Rem. If
no edge er is bounding an attribute ai in Proj, then one of the t relations must appear
twice in the edges in Rem, which cannot happen because the relations are binary (i.e.,
this would imply that the attributes of a relation Rx(ax1, ax2) were covered with two edges
with weights log deg({ax1}, {ax1, ax2}, Rx) and log deg({ax2}, {ax1, ax2}, Rx), which cannot
happen). Therefore such an er and ep must exist and we can again remove them add one
edge to Card with weight log(∅, {a1, a2}, Rp) and decrease the weight of P . Therefore from
any P we can construct a P ′ whose length is at most P and that only consist of edges Card
and Ext. Readers can verify that each such path P ′ directly corresponds to a bounding
formula generated by BFG and FCG (each relation Ri used by an edge in Card and Ext,

50

respectively corresponds to a relation covering exactly |Ai| and |Ai|−1 attributes).

51

Appendix B

Counter Example for Using the WBS
Estimator on Cyclic Queries

Consider the triangle query R(a, b) ./ S(b, c) ./ T (c, a). FCG would generate the cover
a → R, b → S, and c → T . For this cover, BFG would generate the bounding formula:
h(a, b, c) ≤ h(a|b)+h(b|c)+h(c|a), which may not be a pessimistic bound. As an example,
suppose each relation R, S, and T contains n tuples of the form (1, 1)...(n, n). Then this
formula would generate a bound of 0, whereas the actual number of triangles in this input
is n.

52

Appendix C

DBPLP

We end this section by demonstrating another application of CEGs and provide alternative
combinatorial proofs to some properties of DBPLP, which is another worst-case output size
bound from reference [15]. DBPLP is not as tight as MOLP (or CLLP) (which our proofs
demonstrate through a path-analysis of CEGs). Therefore, we will not use DBPLP in our
evaluations. Readers interested in our evaluations can skip over this section. We begin by
reviewing the notion of a cover of a query.

Definition 1. A cover C is a set of (Rj, Aj) pairs where Rj ∈ R and Aj ∈ Aj, such that
the union of Aj in C “cover” all of A, i.e., ∪(Rj ,Aj)∈CAj = A.

DBPLP of a query is defined for a given cover C as follows:

Minimize Σa∈Ava

Σa∈Aj\A′jva ≥ log(deg(A′j,ΠAj
Rj)), ∀(Rj, Aj) ∈ C,A′j ⊆ Aj

Note that unlike MOLP and CLLP, DBPLP is a maximization problem and has one variable
for each attribute a ∈ A (instead of each subset of A). Similar to the MOLP constraints,
we can also provide an intuitive interpretation of the DBPLP constraints. For any (Rj, Aj)
and A′j ⊆ Aj, let B = Aj \ A′j. Each constraint of the DBPLP indicates that the number
of B’s that any tuple that contains A′j can extend to is deg(Aj,ΠAj

Rj), which is the
maximum degree of any A′j value in ΠAj

Rj. Each constraint is therefore effectively an
extension inequality using a maximum degree constraint. Based on this interpretation, we
next define the DBPLP CEG, CEGD, to provide insights into DBPLP:

DBPLP CEG (CEGD):

53

• Vertices: For each X ⊆ A we have a node.
• Extension Edges: Add an edge with cost deg(A′j,ΠAj

Rj) between any W1 and W2, such
that A′j ⊆ W1 and W2 = W1 ∪ (Aj \ A′j).

Observe that DBPLP and MOLP use the same degree information and the condition for an
extension edge is the same. Therefore CEGD contains the same set of vertices as CEGM

but a subset of the edges of CEGM . For example CEGD does not contain any of the
projection edges of CEGM . Similarly, CEGD does not contain any edges that contain
degree constraints that cannot be expressed in the cover C, because in the (Rj, Aj) pairs
in C, Aj may not contain every attribute in Aj. Consider our running example and the
cover C={({a1, a2}, RA), ({a3, a4}, RC)}. The DBPLP would contain, 6 constraints, 3 for
({a1, a2}, RA) and 3 for ({a3, a4}, RC). For example one constraint would be that va1+va2 ≥
log(deg(∅,
Π{a1,a2}RA

) = log(|RA|) = log(4).

The following theorem provides insight into why DBPLP is looser than MOLP using
CEGD.

Theorem C.0.1. Let P be any (∅,A) path in CEGD of a query Q and cover C of Q. Let
dA be the solution to the DBPLP of Q. Then dA ≥ |P |.

Proof. We first need to show that there is always an (∅,A) path in CEGD. We can
see the existence of such a path as follows. Start with an arbitrary (Rj, Aj) pair in C,
which has an inequality for A′j = Aj which leads to an ∅ → Aj edge. Let X = Aj.
Then take an arbitrary (Ri, Ai) such that Z = Ai \ X 6= ∅, which must exist because
C is a cover. Then we can extend X to Y = X ∪ Z, because by construction we added
an X → Y edge for the constraint where A′i = Ai \ Z in DBPLP (so the constraint is
Σa∈Zva ≥ log(deg(Ai \ Z,ΠAi

(Ri)))).

Now consider any (∅,A) path P = ∅ e0−→ X0
e1−→ ...

ek−→ A. Observe that by construction
of CEGD each edge ei extends an X to Y = X ∪ Z and the weight of ei comes from a
constraint Σa∈Zva ≥ log(deg(Aj \ Z,ΠAj

Rj)) for some (Rj, Aj). Therefore the variables
that are summed over each edge is disjoint and contain every variable. So we can conclude
that

∑
a∈A ≥ |P |. In other words, each (∅,A) path identifies a subset of the constraints

c1, ..., ck that do not share the same variable va twice, so summing these constraints yields
the constraint

∑
a∈A ≥ |P |. Therefore, any feasible solution v∗ to DBPLP, in particular

dA, has to have a value greater than |P |.

Corollary C.0.1. Let mA and dA be the solutions to MOLP and DBPLP, respectively.
Then mA ≤ dA for any cover C used in DBPLP.

54

Proof. Directly follows from Theorems 5.1.1 and C.0.1 and the observation that CEGD

contains the same vertices and a subset of the edges in CEGM .

Corollary C.0.1 is a variant of Theorem 2 from reference [15], which compares refine-
ments of MOLP and DBPLP. Our proof serves as an alternative combinatorial proof to
the inductive proof in reference [15] that compares the LPs of the bounds. Specifically,
by representing MOLP and DBPLP bounds as CEGs and relating them, respectively, to
the lengths of shortest and longest (∅,A) paths, one can directly observe that MOLP is a
tighter than DBPLP.

55

	List of Figures
	List of Tables
	1 Introduction
	2 Notation and Running Example
	3 Cardinality Estimation Graphs
	4 Optimistic Estimators
	4.1 Overview
	4.2 Space of Possible Optimistic Estimators
	4.3 Combatting Underestimation

	5 Pessimistic Estimators
	5.1 MOLP
	5.2 Using Degree Statistics From Results of Small Size Joins in MOLP
	5.3 CLLP
	5.4 WBS Estimator and Hash Partitioning Optimization
	5.5 Hash Partitioning
	5.6 Implementing Hash Partitioning For Optimistic Estimators

	6 Evaluation
	6.1 Datasets and Workloads
	6.1.1 Datasets
	6.1.2 Query Workloads

	6.2 Space of Optimistic Estimators
	6.3 Optimistic vs. Pessimistic Estimators
	6.4 Refinements to Optimistic and Pessimistic Estimators
	6.4.1 Effects of Hash Partitioning
	6.4.2 Effects of Submodularity Constraints

	7 Related Work
	8 Conclusions and Future Work
	References
	APPENDICES
	A WBS Estimator's Connection to MOLP On Acyclic Queries
	B Counter Example for Using the WBS Estimator on Cyclic Queries
	C DBPLP

