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Abstract

Liquid metal embrittlement (LME) has been reported in many structural materials,

including steel, aluminum, nickel during hot-working processes e.g. welding, brazing, heat-

treatment, leading to abrupt failure. In many of the applications, such as automotive,

aerospace, nuclear industries, LME failure is considered as a serious safety concern. Over

the last decades, research activities have grown considerably striving to understand the

LME phenomenon. However, to date a fundamental understanding of the metallurgical

and mechanical micro-events of LME has remained unclear. Moreover, the LME mecha-

nism has been concealed behind the diverse, contradicting propositions without any robust

experimental support. Hence, a comprehensive understanding of micro-events of LME calls

for in-depth crack-path analysis from macroscopic, microscopic, and atomic viewpoints.

The aim of this research is to explore the role of grain boundary type, and charac-

teristics such as grain boundary misorientation angle, crystallographic plane, and grain

boundary microchemistry in LME. Restrained laser beam welding was used to induce

LME-cracks in various Zn-coated steels. The crack-path has been characterized to identify

types and geometrical characteristics of LME-sensitive grain boundaries. It was found that

LME crack-path is a function of misorientation angle and stress component perpendicu-

lar to grain boundary plane, where high-angle random (non-ordered) grain boundaries are

more LME-sensitive than highly coherent low-Σ coincidence site lattice (CSL) boundaries.

At higher misorientation angles, lower tensile stresses trigger grain boundary decohesion.

Moreover, liquid metal selectively penetrated the grain boundaries with high-index planes

due to their relatively high excess volume. The atomic-scale analysis of LME crack-path

provided new insights to the inter-relation between the geometrical configuration and grain

boundary chemistry. This validated the grain boundary-based LME mechanism, and re-

vealed the micro-events leading to the embrittler-induced grain boundary decohesion. It

was found that grain-boundary-engineering techniques can be employed to manipulate fre-

quency of random and CSL boundaries, which resulted in significantly improved resistance

against LME.

Keywords: Advance High Strength Steels; Liquid Metal Embrittlement (LME); Fe-Zn

LME Couple; Grain Boundary; Fracture; Microstructure; Welding.
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Chapter 1

Introduction

1.1 Background

Liquid metal embrittlement (LME) was �rst documented in 1874 [1], where a galvanized

iron wire exhibited a sharp break at an elevated temperature. Since then, LME started to

be recognized as an abnormal phenomenon in certain solid-liquid metallic couples, where

intimate contact of the solid-liquid pairs induced penetration of liquid into the metal,

causing abrupt rupture. LME is reported in various liquid/solid metal couples, including

the most frequently used engineering metals such as Al, Cu, Ni, and steels [2{14] (Figure

1.1). Since 2000, advanced high strength steels (AHSS) started to be extensively used in

automotive industries, however, due to their higher strength and alloying elements, AHSS

were seen to be LME-susceptible. Therefore, progress has been made toward understanding

the mechanisms controlling LME in Fe-Zn couple [12{20]. The undisputable technological

signi�cance of AHSSs, therefore, necessitates study of LME to fundamentally understand:

the underlying micro-mechanisms, the role of grain boundaries, and potential metallurgical

mitigation methods.
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Figure 1.1: The frequency of major reported LME couples in the recent literature including
Al-Ga, Cu-Pb. Cu-Bi, Fe-Pb, Fe-Ga, Fe-Zn [2{85].

1.2 Objectives

This study aims to understand LME behavior of Fe-Zn couple and the role of grain bound-

aries in this phenomenon. The main objectives are:

1. Characterization of Zn-induced LME during laser beam welding (LBW) of di�er-

ent representative AHSS grades: 22MnB5 press-hardening steel (PHS), medium-

Mn transformation induced plasticity (MMn-TRIP), and twinning induced plasticity

(TWIP),

2. Investigate the e�ects of applied external loading on LME-cracking, and mechanism

2



of LME-cracking during the processing.

3. Study the role of grain-boundary geometrical characteristics such as grain boundary

type, misorientation angle, and grain boundary crystallographic plane in LME.

4. Investigate atomic-scale mechanism of grain boundary decohesion in LME, and the

interrelation between the grain boundary geometrical con�guration and its chemistry.

5. Explore the feasibility of grain-boundary-engineering as an approach to manipulate

grain boundary character distribution, and suppress LME.

1.3 Thesis outline

This thesis consists of eight chapters. An overview of the research carried out for this thesis

is presented in Figure 1.2. The �rst chapter is an introduction presenting the motivation

and the main objectives of this research. Chapter two provides an overview of the present

understanding of LME phenomenon, focusing on the systematical summary of the proposed

LME mechanisms. The details of the stress-assisted grain boundary di�usion model, as a

viable LME mechanism, is reviewed in this chapter. Furthermore, Chapter two discusses

the di�erent grain boundary decohesion hypotheses, and reviews the details of the recently

proposed electronic e�ect of embrittler atoms on grain boundary cohesive strength. The

majority of chapter one and two content represent the submitted review paper.

Chapter three through chapter six represent the content in the published or under-

review research manuscripts. Chapter three discusses Zn-induced LME in LBW of AHSS.

This chapter discusses the Zn-induced LME in 3 di�erent AHSS grades: 22MnB5 PHS,

medium-Mn TRIP, and TWIP steels. Chapter four describes how grain-boundary geo-

metrical characteristics e.g. type, misorientation angle, and crystallographic plane a�ects
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Figure 1.2: Flow chart illustrating the di�erent sections of the present thesis.

LME-sensitivity of a grain boundary. Chapter �ve presents atomic-scale investigation of

LME crack-path. The investigations validate the recently proposed embrittler-induced

alteration of electronic con�guration as grain boundary decohesion mechanism in LME.

Moreover, the interrelation between the grain boundary geometrical con�guration and its

chemistry are covered. Based on the �ndings of Chapters four and �ve regarding high

LME-resistivity of special boundaries compared to random grain boundaries, chapter six

proposes grain-boundary-engineering as a viable approach to manipulate grain boundary

characteristics to suppress LME. The mechanisms of the crack arrest are discussed based
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on the random-grain boundary network continuity, and the grain boundary triple junc-

tion types and distributions. Chapter seven provides a comprehensive discussion to review

Chapters three through six as a whole, and to understand micro-mechanisms leading to

LME. Lastly, Chapter eight summarizes the main �ndings of the present research and

proposes the future research opportunities.
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Chapter 2

Literature Review 1

2.1 Overview

LME a�ects various industrially important materials, including steels, brasses, aluminum,

nickel, over a wide range of scenarios [2{14]. These scenarios can be classi�ed as: (a)

processing failures: hot-dip galvanizing and hot-stamping [12,13,86]; (b) fabrication fail-

ures: soldering, brazing, and welding [87{90]; (c) operation failures: nuclear industries

[53,58,69]; and (d) secondary failures, in which LME occurs after initial bolt, bearing, or

pressure vessel failures [91{93]. Due to the broad range of failure risks, LME is recognized

as a serious safety issue in many applications across aerospace, nuclear, and automotive

industries. This phenomenon is characterized by the concurrent action of 3 factors (Figure

2.1): (a) the presence of an aggressive liquid metal (hereafter called embrittler) such as

Bi, Ga, Zn; where all the embrittlers have relatively low melting points (room temperature

to 419� C), (b) a susceptible polycrystalline material with a grain boundary network into

1This chapter consists of a submitted review paper in Progress in Materials Science, MH Razmpoosh,
C DiGiovanni, E Biro, Y Zhou, 2020.

6




	List of Figures
	List of Tables
	Introduction
	Background
	Objectives
	Thesis outline

	Literature Review
	Overview
	Proposed LME Mechanisms
	Ductile-Fracture Models
	Brittle-Fracture Mechanisms
	Grain Boundary-based Models

	LME Micro-Events: Crack Initiation and Progression
	Wetting-Crack Initiation
	Rapid Crack-Progression

	Grain Boundary Decohesion Mechanism
	Effect of Atomic Size Difference on Grain Boundary Cohesion
	Electronic Effect of Embrittler Atoms on Grain Boundary Cohesion

	Effect of Grain Boundary Solute (co-dopant) on LME

	LME-cracking in externally loaded laser welding of AHSS
	Overview
	Background
	LME in 22MnB5 Press-hardening Steel
	LME in TWIP and TRIP Steels

	Experimental procedure
	Results and discussion
	LME in 22MnB5 Press-Hardening Steel
	LME in TWIP and MMn-TRIP steels

	Summary

	Investigation of Grain Boundaries Role in LME: Geometrical Characteristics
	Overview
	Background
	Experimental Procedure
	Results and discussion
	Role of grain boundary misorientation angle in LME
	Role of Grain Boundary Plane in LME

	Summary

	Investigation of Grain Boundaries Role in LME: Micro-Chemistry
	Overview
	Background
	Experimental Procedure
	Experiments
	Molecular Dynamics Simulation

	Results and Discussion
	APT Analysis of Liquid-Metal-Embrittled Grain Boundary
	APT Analysis of Random and CSL Grain Boundaries: Solute Effect

	Summary

	Grain Boundary Engineering: LME-crack Suppression
	Overview
	Background
	Experimental procedure
	Results and discussion
	Special Grain Boundary Frequency
	LME Suppression and Triple Junction Distribution

	Summary

	Comprehensive Discussion on Micro-mechanism of LME and Role of Grain Boundaries
	Experimental Evidence of Stress-assisted Grain Boundary Diffusion Model
	Grain Boundary Characteristics Role in Determination of LME crack-path
	Grain Boundary Decohesion Mechanism
	Grain Boundary Segregation Effect

	Conclusions and Opportunities for Future Research
	Conclusions
	Recommendations and opportunities for future research

	References
	References
	APPENDICES
	Letters of Copyright permission

