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Abstract

Numerical solution of time dependent Partial Differential Equations plays an important role
in different fluid flow modelling problems. Sometimes a little portion of the computational
domain needs high grid resolution in order to resolve phenomena such as steep fronts or
shocks while use of a very high resolution mesh for the whole computational domain is
a waste of computational resources since they are not required all over the domain. An
Adaptive Mesh Refinement (AMR) procedure is an efficient and practical method for the
numerical solution of Partial Differential Equation problems with regions of large gradients
occupying a small subregion of the domain. An AMR algorithm refines grids by placing
finer and finer subgrids in the different portions of the computational domain where they
are required. For the time dependent problem the refinement is dynamic since the regions
requiring refinement change with time and the AMR algorithm adaptively changes that. In
this thesis we developed an AMR code for the numerical solution of linear, nonlinear and
dispersive wave equations inspired by existing algorithms in the literature. In this work we
kept the implementation simple and we use simple refinement criteria although the code
allows for the use of more complex refinement criteria. In addition the implementation of
the data structure was also kept simple. We have done the refinement in both time and
space. In our code we generate finer grids which can also have finer grids using a recursive
grid generation procedure. We give a review of some existing work along with the necessary
components of our work. Numerical simulations of the linear advection equation, Burger’s
equation and the Regularized Long Wave (RLW) equation have been run with our AMR
code. The results of these simulations are shown to have good agreement with numerical
solutions obtained on fine resolution single grids which signify the success of our code. A
significant time reduction in all the numerical simulations suggests the good performance
of our code.
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Chapter 1

Introduction

Numerical solution of partial differential equations (PDE) is an essential tool in all fields
of science and engineering. It is useful for dealing with problems difficult to solve ana-
lytically. Using a uniform computational grid with any numerical method may become
computationally expensive when high resolution is required to resolve features of interest
that occupy a small part of the domain. An adaptive procedure is one of the best ways to
counter this problem. In this thesis a simple adaptive algorithm will be used for solving
different nonlinear and dispersive wave equations.

1.1 Introduction

The solution accuracy of numerical methods such as finite-difference or finite-volume meth-
ods depends on the mesh resolution. In a fixed domain, the accuracy of the result generally
increases as the mesh size is reduced. However, limited computational resources can be-
come a primary obstacle for highly accurate solutions especially when the solution domain
is too large. In many problems, a high resolution mesh is only really necessary for a small
fraction of the computational domain. In numerical models of the shallow water equations
(where the water depth is very small compare to wave length scale) using fixed resolution
of grids is not a very smart choice if waves occupy only a small portion of the domain which
varies as the waves propagate. Another interesting example is the modelling of problem
such as formation of KH instabilities for a stratified shear layer in which case all the action
occurs in a neighbourhood of the shear layer which evolves with time. Hence it becomes
essential to take special care in a particular region. Using finer grid will help to get accu-
rate numerical results on that specific regions. Unfortunately, this sort of simulation will
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be expensive in terms of computational time and memory. This problem may arise even
for a simple wave propagation problem in a long domain.

Figure 1.1: Solution of advection equation at time (a) t=15 (b) t=50 (c) t=80.

In figure 1.1 the propagation of a wave is shown at different times. This is the analytic
solution of the advection equation. It can be seen that in the long domain only small
portion is occupied by the wave. The solution at time t = 15 is shown in figure 1.1(a).
In figure 1.1(a) large number of grid points are not necessary from x = 25 to x = 100.
Similarly figure 1.1(b) a fine mesh is not necessary for x < 37 and x > 55. Use of a fine
mesh in these regions will unnecessarily increase the cost of the computation. So, high
resolution over the whole solution domain is not a smart choice for these cases. So, one
available way is to change the mesh size. But in case of a uniform mesh the solution in the
whole domain will be affected by the change of the grid size. In figure 1.2 solution curve is
plotted at any arbitrary time. Three solution curves have plotted with different numbers
of grid points and the curev with 1600 points produces an accurate solution curve. On the
other hand the solutions obtained using a lower number of grid points fail to produce a
certain number of characteristics of the solution.
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Figure 1.2: Solution with different number of grid points.

So, in both cases of figure 1.1 and 1.2 we can see using finest resolution over the whole
domain is a waste of computational resources. For the implementation of a higher-order
scheme even for a simple problem these issues become a primary focus to be taken care
of. Adaptive mesh generation algorithms have become a popular way to deal with the
unnecessary use of computational resources that can arise when using a fixed grid. The
primary objective of the adaptive algorithm for the numerical methods is the optimization
of computational effort. In terms of Finite Element terminology, the adaptive procedure
can be classified as three types. The first is h-type, where grids are refined or coarsened
on the region where more or less resolution is needed. It can be a good choice for the
convergence of the problems containing variations on small length scales. If the order of
the accuracy is varied in different regions of the computational domain then it is called
p-type adaption. It increases the order of the polynomial approximation of the solution
locally. In some problem, the combination of p-type and h-type (known as hp-refinement)
are used to increase the efficiency. Finally, r-type is when a mesh is moved to follow with
dynamic phenomena [14]. So, r-type refinement is more suitable for some time-dependent
problems where the grids need to move or relocate to cover some changing characteristics of
the solution. Mesh moving and refinement are designed to capture special situations such

3



as shock waves, boundary layer, shear layer or steep front. Different adaptive algorithms
have been used to solve one-dimensional boundary value problems. Most of the algorithms
involved some similar components such as solving in a fixed grid, re-grid, solve, averaging
etc. At the initial stage of the development of adaptive mesh generation some one dimen-
sional problems were used to build the algorithm. Harten & Hyman (1983) [20] presented a
simple algorithm for grid adjustment for the solution of hyperbolic conservation laws. The
average of the local characteristic velocities with respect to the amplitude of the signal was
taken to determine the grid motion which was an alternative form of Godunov’s method.
Godunov’s and Roe’s scheme for Riemannian problem were compared in both fixed and
self-adjusting mesh. In this approach the number of grid points was fixed and the grids
were moving during the computation. It was found that for both problems the scheme is
CFL dependent ( restricted by the CFL condition) on a fixed grid. On the other hand,
the self-adjusting grid overcomes this issue by adjusting the CFL efficiently. Sanj-Serna &
Christie (1986) [33] proposed an alternative adaptive algorithm for solving nonlinear wave
problems. This work uses a modification of the algorithm of White [37]. The original pro-
cedure is to transform the variable in arclength-like coordinate which introduce a coupling
of the spatial variable x and solution u. The modified algorithm of [33] from that of White
where the variables are not coupled since they did not use the variable transformation and
then grids are created for the adaptive solution of the nonlinear PDE. This work proposed
a decoupled procedure for solving the nonlinear Schrödinger equation where the primary
focus of the algorithm was to compute a solution that is close to the theoretical solution.
Some dedicated work on mesh moving was done by several authors. Huang et al.(1994)
[23] developed several functions using an equidistribution principle for an Adaptive Mesh
Moving procedure which can deal with one-dimensional problems successfully. Huang &
Russell (1998) [24] developed a mesh moving strategy for the higher dimensional case as an
extension of the previous work of Huang et al. (1994) [23]. In their work, they developed
their moving mesh algorithm based on the gradient flow equation. Some moving mesh PDE
functions were derived to solve the interaction of oblique shock problems, boundary layer
problems and moving oblique shock problems. Wouwer et al. (2005) [39] implemented
the Methods of Line (MOL) in a moving mesh algorithm for an upwind finite differencing
scheme and developed a MATLAB library to solve PDE systems using MOL. Arney &
Flaherty (1990) [3] developed an adaptive technique for a two-dimensional time-dependent
problem which was a combination of mesh moving and local mesh refinement. A local dis-
cretization error tracing procedure was used instead of a moving mesh function in the mesh
moving algorithm and Richardson’s extrapolation method was used to find discretization
error which was considered as refinement criteria in the local mesh refinement algorithm.
Biswas et al. (1993) [14] followed the same procedure for a one-dimensional case such
as the Sod shock tube problem which is a popular benchmark problem in gas dynamics.
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It was demonstrated that mesh refinement with or without a moving mesh can produces
reliable results. Use of a moving mesh method reduce the cost of the computation hence
this is a reliable numerical approach. However, implementation of a moving mesh method
in higher dimensions is difficult due to its complexity.

The moving mesh algorithm becomes very complicated for two or three dimensional
problems. So, Structured Adaptive Mesh Refinement(AMR) algorithms have become pop-
ular alternative to the mesh moving algorithm. This algorithm starts with a base coarse
grid. Regions requiring finer grid are determined by some refinement criteria. The addi-
tion of finer subgrids is a recursive procedure which will continue until a maximum level is
reached. Dwyer et al. (1980) [16] came up with the idea of AMR for some fluid mechanics
and heat transfer problems. Finer grids were placed into the solution domain according to
the gradient of the dependent variable. It was demonstrated for both steady and unsteady
problems that the solutions were accurate enough but it also failed to specify the error
control. However, it was a significant method for the earlier stage of the AMR algorithm
development. Berger & Oliger (1984) [13] proposed a standard methodology for mesh re-
finement. The principal idea was to introduce a recursive procedure where nested grids
will be created adaptively in time to reduce the work and achieve more accurate results.
A multi-level data structure was used to implement different levels of refinement and the
ratio of the time and space steps were kept constant. This procedure used a special kind
of multi-component data structure which plays a very important role for the algorithm.
This algorithm involves the local truncation error as the basis of the refinement and ac-
cording to the local truncation error clusters of points are created for the refined solution.
Berger & Jameson (1985) [11] introduced another algorithm which was slight extension
of their previous work. This time the idea was to determine the accuracy level in the
coarse level grid and place a finer grid patch where the solution is not accurate enough.
The solutions were computed using a special steady-state integrator which can be modified
by the user. The overall algorithm worked nicely for the steady-state transonic flow. It
is noticeable that in AMR algorithm data structure and grid clustering play a vital role.
Berger (1986) [9] published a paper on the idea of the data structure used in the algorithm
of adaptive mesh refinement. In this work she gave a wider view of different aspects of
data structures for AMR such as sorting or the manipulation of data. In 1991 Berger &
Rigoutsos published a paper on point clustering and grid generation. Berger & Colella
(1989) [10] update the previous algorithm of Berger & Oliger (1984) [13] using a more
sophisticated data structure to solve time dependent shock hydrodynamics problems. In
this work the main idea of mesh refinement was the same but several things were changed
to make the algorithm more efficient. The primary concern was to maintain global con-
servation to compute time dependent flows with shocks. This work is very difficult due to
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the implementation of the data structures. Berger and LeVeque (1998) [12] applied the
AMR algorithm in a high-resolution wave propagation algorithm in a general framework.
The significant point of this work was the removal of the conservation property restriction.
This work was implemented in the AMRCLAW software package. Fraga & Morris (1992)
[19] proposed a very simple AMR algorithm for nonlinear dispersive wave equations. They
refined the mesh based on different cut-off values of the solution. The Korteweg-de Vries
equation and nonlinear Schrödinger (NLS) equations were used to demonstrate the result
for the soliton solution. The AMR algorithm was faster and produces an accurate solu-
tion with minimal stability effect. Zhang et al. (2012) [40] implemented a higher order
Runge-Kutta method in the AMR algorithm for some simple problems. In 1967 Chorin
[15] introduced projection method for solving time-dependent viscous flow problem. Sev-
eral authors such as [5],[6],[28],[1] developed AMR algorithm for solving fluid flow problem
using the projection algorithm.

(a) (b)

Figure 1.3: Change of velocity magnitude contour and mesh with time in double shear
layer simulation using CHOMBO AMRINS code

The pressure constraint of the Navier-Stokes equation is smoothly managed by the
projection method. So, this method is used in some advanced work on AMR especially
for the Navier-Stokes simulation problem. The important works of Berger and Oliger and
Berger and Colella were used in different AMR software library such as CHOMBO, Boxlib
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etc. Combinations of these works along with the projection algorithm CHOMBO AMRINS
code was introduced by LBNL to deal with different incompressible Navier-Stokes problems
such as vortex simulation, shear layer problems etc. In figure 1.3 and 1.4 results are shown
from a simulation using CHOMBO AMRINS code.

(a) (b)

Figure 1.4: Vorticity formulation contour and change of mesh with time in double shear
layer simulation using CHOMBO AMRINS code

The velocity magnitude and vorticity fields of a shear layer problem are shown in figure
1.3 and 1.4 respectively. Figure 1.3(a) and 1.3(b) represent solution at time t = 0.496134
and t = 0.806637 respectively. Three different grids can be seen. It is evident that the
grid size is changing with time. Similar situations for vorticity fields are shown by figure
1.4(a) at t = 0.496134 and figure 1.4(b) at t = 0.806637. The simulation was done by
CHOMBO AMRINS code and the maximum level of refinement for this simulation is two.
These figures illustrate how the AMR algorithm changes the grid resolution over the whole
domain with time. With the advancement of time the finer grid is changing its position.
The mesh becomes finer where the computation requires finer grid. In the region where
the velocity magnitude is changing (such as blue, red, yellow region) the mesh becomes
finer and in the other parts of the domain lower resolution is used to reduce computational
effort.

The existing codes and algorithms are efficient. However, the existing codes have a lot
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of abstraction which can be very difficult to modify. In this thesis a simplified version of an
AMR algorithm will be used solve one-dimensional nonlinear and dispersive wave equations
numerically. The simplified version of our AMR algorithm is used to numerically solve
three important wave equations. We developed the code from the scratch with the help of
some advanced features of C++ programming language. Abstract classes or methods were
avoided for the implementation of the algorithm. This work is inspired by [10],[13],[19],[14].

1.1.1 Simple advection equation

It is very important to determine the accuracy of any numerical algorithm. So, it is a very
good idea to apply the algorithm to a very simple model. The advection equation

ut + cux = 0 (1.1)

is used for this purpose. In (1.1) c is the advection velocity. The study of advection
equation is very important for different numerical scheme for its simple nature and easy
implementation. For example, Molenkamp (1968) [29] compared different finite difference
solutions of the advection equation with the analytic solution.

1.1.2 Burger’s equation

The one-dimensional viscous Burger’s equation is

ut + uux = νuxx (1.2)

here ν is viscosity. If ν=0 the equation will become

ut + uux = 0 (1.3)

and (1.3) is called inviscid Burger’s equation. In the study of fluid flow modelling the
Navier-Stokes equation is the key equation and Burgers’ equation is a simplified form of
the complex and sophisticated form of Navier-Stokes equations. Burger introduce this
equation for one dimension with a hope to contribute in the study of turbulence. This
equation has a wide range of application including the field of gas dynamics, turbulent
flow in a channel or the traffic flow problem. The physical application is not the only
reason for the interest Burger’s equation. Since this equation is combination of convection
and diffusion transport mechanisms the numerical treatment for the solution of Burger’s
equation is widely used for the study of the behavior and comparison of different numerical
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schemes. Different researchers have used different numerical schemes for the solution of
Burger’s equation. Schofield & Hammerton (2014) [34] showed the asymptotic behavior
of nonlinear Burger’s equation. The prediction of different asymptotic shock structures
were compared with numerical schemes. Zhanlav et al. (2015) [41] proposed higher order
finite-difference methods for the numerical solution of Burger’s equation for highly accurate
solutions. The prime objective of the different numerical schemes is to capture phenomena
such as shocks with high accuracy.

1.1.3 Regularized Long Wave (RLW) equation

In 1844 naval architect John Scott Russell made a wonderful observation while he was
following a wave formed under the middle of the boat and which then took off past the
boat entirely. He noticed that the wave was propagating without changing its shape. He
named it ”the wave of translation” which is known as solitary wave today. However the
theory of solitary waves was not established at that time. It was proved that solitary waves
can be theoretically possible by the independent research of Boussinesq and Lord Rayleigh
[26]. In 1895 Korteweg and Varies made some significant extension of Boussinesq theory
and introduced the solitary water wave equation named Kortweg-de Varies(KdV) equation
[27]. The KdV equation is

ut + ux + uux + uxxx = 0 (1.4)

It is noticeable that in the KdV equation dissipiation is absent which allows the solitary
wave to propagate a long distance without changing shape. This equation has some other
properties mentioned in [25]. The properties are given below.

• Solitary waves can travel very large distance without changing their shape, their
amplitude remain same during the propagation. Solitary waves are stable and do not
break.

• The propagation speed of the solitary wave increases with its amplitude.

• Solitary waves do not obey the superposition principle.

This equation was derived for the propagation of shallow water waves. However, it has some
other fields of application such as magnetohydrodynamic waves in plasma, an harmonic
lattice, longitudinal dispersive waves in elastic rods etc. [17]. Benjamin, Bona and Mahony
(1972) proposed an alternative to the KdV equation named the Regularized Long Wave
(RLW) equation. The RLW equation is

ut + ux + uux − utxx = 0 (1.5)
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with the the physical boundary condition u → 0 at x → ±∞. Equation (1.5) is also
known as BBM equation. In 1966 Pregrine also derived equation (1.5) and used it to study
the development of undular bores (in water). For the wave motion he used same order of
approximation as the KdV equation [17]. For infinitesimally small waves the KdV equation
reduces to the linearized KdV equation

ut + ux + uxxx = 0

which has dispersion relation ω = k−k3 = k(1−k2). The phase speed c and group velocity
cg are

c =
ω

k
= 1− k2

cg =
dω

dk
= 1− 3k2

Both c and cg go to −∞ like k2 as k → ∞. This behaviour is completely unphysical
for systems that are modelled with the KdV equation. Numerically it causes considerable
difficulty because as the grid spacing ∆x is reduced the phase speed and group velocity
of the shortest resolved waves goes to infinity like 1

∆x2 . The CFL condition then requires
the time step to go to zero like ∆x3. Thus the number of time steps is proportional to N3

where N is the number of grid points. The linearized RLW equation is

ut + ux − uxxt = 0

with dispersion relation ω = k
1+k2

.The phase speed c and group velocity cg are

c =
ω

k
=

1

1 + k2

cg =
dω

dk
=

1− k2

(1 + k2)2

These are now bounded.The phase speed c has a maximum value of 1 and decreases mono-
tonically to 0 as k →∞. The group velocity has a maximum value of 1. It decreases to 0 at
k = 1, has a minimum value of -0.125 before increasing, going to zero like − 1

k2
as k →∞.

The CFL condition now gives a time step proportional to N . As the KdV equation is a
model for long waves it is only valid for small k in which case the KdV and RLW equations
have the same behaviour. Benjamin et al. (1972) [7] discussed some problems with the
KdV equation and argued that the RLW is equivalent to the KdV equation. However, the
RLW equation has the same wide range of application as the KdV equation. The numer-
ical solution of KdV equation is much more difficult to achieve since if the resolution is
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increased the time step must rapidly decreased. The RLW equation overcomes this prob-
lem. Moreover the dispersion relation of RLW equation is more physical than that of the
KdV equation. Many solutions of the KdV equation reported in the literature are actually
solutions of the RLW equation. The KdV and RLW equation share the same properties
for long waves hence for long waves their solutions are very similar. The stability of the
solution for different initial conditions and forcings was derived by Benjamin et al. [7]. In
this thesis we choose RLW equation for the simulation of dispersive equation.

1.2 Thesis overview

The linear, nonlinear and the dispersive wave equations that are considered in this thesis
introduced in this chapter. These equations will be used for the simulation using our
algorithm. The remainder of this thesis is divided into two major components. In the first
portion of chapter 2 numerical methods, data structures, boundary conditions and other
requirements for developing AMR algorithm are presented. In the last portion the details
of AMR algorithm is discussed. A brief overview is represented. The discretization of
different wave equations are given in the same chapter. The AMR code we developed is a
simplified version. This code used for the simulations of the equations discussed in chapter
1. The results of the numerical simulation of different wave equations are presented in
chapter 3. Comparisons using uniform and AMR grids are discussed which demonstrated
the efficiency of the current algorithm and code.

Finally, different aspects of AMR algorithm and the future extensions of the current
work are discussed at the end of the thesis.
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Chapter 2

Methodology

Different computational tools and components are involved in the development process
of AMR algorithms for different systems. Block Structured AMR is chosen for this
thesis. The work of Berger & Oliger (1984) [13] and Berger & Colella (1989) [10] will be
discussed as the basic building block of this current research work. We will use the idea
of AMR from these significant works but we will use a different implementation of the
algorithm. Berger & Oliger (1984) [13] and Berger & Colella (1989)[10] implemented their
algorithm in Fortran. However, modern AMR toolboxes are not written only in Fortran.
C++ is a modern high level language with a lot of features which are very helpful for
AMR computation. Some existing software framework for solving PDE with AMR such
as CHOMBO, GERRIS, BOXLIB use C++ for its advanced features. The LBNL used
mixed source programming language with C++ and Fortran for CHOMBO. We have used
only C++ for the developement of our AMR code. The ancillary components such as
discretization scheme, grid description along with AMR algorithm will be discussed in this
chapter.

2.1 Discretization scheme

Discretization is a process by which a closed-form mathematical expression such as a func-
tion or differential equation or integral equation involving functions, all having a continuum
of values throughout some domain, is approximated by an analogous (but different) expres-
sion which prescribe values at a finite number of discrete points or volumes in the domain.
In other words, the analytic solution of a PDE expresses the variation of the dependent
variables continuously throughout the domain where numerical solutions do that only for
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a number of discrete points known as grid points [2]. In CFD computation three widely
employed discretization techniques are used. They are known as finite volume, finite dif-
ference and finite element method. In this thesis the finite difference and the finite volume
method will be used.

2.1.1 Finite Difference Method

The Finite Difference Method (FDM) is one of oldest and most straightforward discretiza-
tion techniques in the literature of CFD. The application of FDM is very simple for the
uniform mesh problem. FDM uses the basic properties of the Taylor series expansion. The
key idea is to approximate the partial derivatives of the governing equation by the ratio of
algebraic differences at two or more grid points. There are several methods available for
the derivation of finite difference approximation. However, for the simplicity we will use
the Taylor series expansion for the derivation of the finite difference expression. Let f(x)
be a function. Then f(x+ ∆x) can be expanded in a Taylor series about x as,

f(x+ ∆x) = f(x) + ∆x
∂f

∂x
+

(∆x)2

2!

∂2f

∂x2
+

(∆x)3

3!

∂3f

∂x3
+ . . .

Solving for ∂f
∂x

we get

∂f

∂x
=
f(x+ ∆x)− f(x)

∆x
− ∆x

2!

∂2f

∂x2
− (∆x)2

3!

∂3f

∂x3
+ . . .

summing all the term having ∆x and higher and expressing them as O(∆x) gives

∂f

∂x
=
f(x+ ∆x)− f(x)

∆x
+O(∆x)

This is a first order approximation of the partial derivative of f with respect to x. This is
the forward difference approximation. Similarly, using f(x−∆x) and f(x) we can get the
backward approximation. Now consider f(x+ ∆x) and f(x+ 2∆x) as

f(x+ ∆x) = f(x) + ∆x
∂f

∂x
+

(∆x)2

2!

∂2f

∂x2
+

(∆x)3

3!

∂3f

∂x3
+ . . . (2.1)

and

f(x+ 2∆x) = f(x) + (2∆x)
∂f

∂x
+

(2∆x)2

2!

∂2f

∂x2
+

(2∆x)3

3!

∂3f

∂x3
+ . . . (2.2)
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Multiply equation (2.1) by 2 and subtract equation (2.2) then rearrange the results we get

∂2f

∂x2
=
f(x+ 2∆x)− 2f(x+ ∆x) + f(x)

(∆x)2
+O(∆x)

Similarly the other expression can be derived which we applied for the discretization of the
RLW equation.

2.1.2 Finite Volume Method

In the study of numerical solutions of conservation laws one of the popular and widely
used schemes is the finite volume method. It has an extensive use in fluid flow modelling
problems or for system of partial differential equations where a balance of one or more
quantities is involved. The finite volume method uses the integral form of a conservation
law. The principal idea of this scheme is to introduce the idea of control volume for each
computational grid. The computational domain is divided into a finite number of grid
points called nodes in the finite volume sense. The control volume will be set up in a way
that the node can be considered as the center of the control volume.

In the figure 2.1 the control volume set up in one-dimension is shown based on the
control volume concept of [36]. Here 5 nodal points between A and B, which are considered
as the physical boundaries of the solution domain are shown. If P is any present node then
the left neighbouring node is W while E is right neighbouring node. The boundaries of
the control volume of the nodal point P are positioned mid-way between the neighbouring
nodes. The edge of the domain is positioned such that physical boundaries coincide with
it. A general one-dimensional conservation law is

∂u

∂t
+
∂f

∂x
= S (2.3)

where f is the component of the flux vector and S represents a source term. Now we can
introduce a finite volume mesh set up for equation (2.3) by assigning a finite cell for each
of the node or mesh point. As mentioned before the ’cell faces’ will be taken as the mid
points between two adjacent nodes. In figure 2.2 node i has the ’cell faces’ at the mid
points between two neighbouring node. So, (i− 1

2
) is the left face and (i + 1

2
) is the right

face for node i. The conservation equation (2.3) can be discretized via

∂ui
∂t

+
fi+ 1

2
− fi− 1

2

∆x
= Si (2.4)
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Figure 2.1: Control volume

assuming that the cell size is constant that is ∆xi = ∆xi+ 1
2

= ∆xi− 1
2

= ∆x. Different
schemes will be used for the approximation of the flux fi+ 1

2
and fi− 1

2
. Next this finite

volume scheme will be used for the discretization of the advection equation and the Burger’s
equation.

2.2 Finite volume discretization of advection equation

The advection equation is
ut + cux = 0 (2.5)

If we integrate (2.5) from xi− 1
2

to xi+ 1
2

we will get

d

dt

∫ xi+ 1
2

xi− 1
2

udx+ c[u]
xi+ 1

2
xi− 1

2
= 0 (2.6)
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Figure 2.2: Finite volume grid setup

Now define the average value of u in control volume i as

ui =
1

∆x

∫ xi+ 1
2

xi− 1
2

udx

Here ∆x = xi+ 1
2
− xi− 1

2
.

So equation (2.6) can be written as

∆x
dui
dt

+ c[u(xi+ 1
2
)− u(xi− 1

2
)] = 0 (2.7)

For simple implementation we are going to use first-order time stepping and get

∆x
un+1
i − uni
dt

+ c[u(xi+ 1
2
)− u(xi− 1

2
)] = 0 (2.8)

Finally the full discrete form can be written as

un+1
i = uni − (

c∆t

∆x
)[u(xi+ 1

2
)− u(xi− 1

2
)] (2.9)

Using the first order upwind scheme we have

u(xi+ 1
2
) =

{
uni if c > 0
uni+1

if c < 0
(2.10)

u(xi− 1
2
) =

{
uni+1

if c > 0

uni if c < 0
(2.11)

Here ( c∆t
∆x

) is called Courant-Friedrichs-Lewy (CFL) number which is very important for
the stability condition of the advection equation. There are many higher-order schemes
available for time discretization but for AMR this is the simplest to implement.
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2.3 Finite volume discretaization of Burger’s Equa-

tion

We can write Burger’s equation (1.2) as

ut + [f(u)]x = νuxx (2.12)

where f(u) = 1
2
u2. If we integrate (2.12) from xi− 1

2
to xi+ 1

2
we will get

d

dt

∫ xi+ 1
2

xi− 1
2

udx+ [f(u)]
xi+

1
2

xi− 1
2

= ν[ux]
xi+ 1

2
xi− 1

2
(2.13)

Again define the average value of u in control volume i as

ui =
1

∆x

∫ xi+ 1
2

xi− 1
2

udx

Here ∆x = xi+ 1
2
− xi− 1

2
.

The viscous term can be written as

ν[ux]
xi+

1
2

xi− 1
2

= ν[ux(xi+ 1
2
, t)− ux(xi− 1

2
, t)] ≈ ν[

u(xi+1, t)− u(xi, t)

∆x
− u(xi, t)− u(xi−1, t)

∆x
]

(2.14)
or

ν[ux]
xi+

1
2

xi− 1
2

≈ ν[
u(xi+1, t)− 2u(xi, t) + u(xi−1, t)

∆x
] (2.15)

Next,

[f(u)]
xi+

1
2

xi− 1
2

= f(u(xi+ 1
2
, t))− f(u(xi− 1

2
, t)) (2.16)

Finally, if we put all together and divided by ∆x we obtain a system of ordinary differential
equation.

dui
dt

+
f(ui+ 1

2
)− f(ui− 1

2
)

∆x
= ν[

ui+1 − 2ui + ui−1

∆x2 ] (2.17)

If a first-order forward difference formulation is used for the time derivative for simplicity
we have the final explicit discretization of Burger’s equation is

un+1
i = uni −∆t

(f(uni+ 1
2

)− f(uni− 1
2

)

∆x
− ν

∆x2 [uni+1
− 2uni + uni−1

]
)

(2.18)
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Equation (2.18) will be used for both coarse and fine grid integration. For simplicity we
can estimate the cell edges as

u(xi+ 1
2
, t) =

uni + uni+1

2
(2.19)

and

u(xi− 1
2
, t) =

uni−1
+ uni
2

(2.20)

We can define the dimensionless parameter Péclet number Pe as the relative measurement
of convection and diffusion strength as

Pe =
Lu

D
(2.21)

Where L is characteristic length and D is diffusion coefficient. For each cell the Péclet
number for equation 2.12 is

Pe =
u

ν/∆x

If the ν is very small (weak diffusion problem) then the convection will be strong and for
large ∆x the solution using (2.19) and (2.20) might produce some oscillations where the
Pe > 2. An upwind scheme can resolve this issue nicely. If we consider

a =
uni + uni+1

2
(2.22)

and

b =
uni−1

+ uni
2

(2.23)

then we have by first order upwind scheme for the values at the cell edges as

u(xi+ 1
2
) =

{
uni if a > 0
uni+1

if a < 0
(2.24)

and

u(xi− 1
2
) =

{
uni−1

if b > 0

uni if b < 0
(2.25)

However, in this thesis the simplest estimation using (2.19) and (2.20) will be used to show
how AMR algorithm can resolve the problems arising from numerical scheme.
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2.4 Finite difference discretization of RLW-equation

The regularized Long Wave (RLW) equation is

ut + ux + uux − uxxt = 0 (2.26)

which can be written as

(u− uxx)t + (1 + u)ux = 0 (2.27)

Finite difference technique will be used to discretized equation (2.27). We chose finite
difference scheme for two reasons. The first reason is we want to demonstrate our code
in a simple scheme. The second reason is we want to use an existing scheme with detail
stability analysis. We followed the scheme proposed by [17] where the stability analysis
of the scheme have described briefly. If the first and second spatial derivatives and the
time derivative at time step n are denoted by Dxui

n, Dx
2ui

n and ∆tui
n respectively. These

differencing operator can be defined as

Dx
2ui

n =
uni+1 − 2uni + uni−1

dx2

Dxui
n =

uni+1 − uni−1

2dx

and finally

∆tui
n =

un+1
i − uni
dt

So equation (2.27) can be written as

∆t(1−Dx
2)ui

n + (1 + ui
n)Dxui

n = 0 (2.28)

=⇒ ∆tui
n −∆tDx

2ui
n = −(1 + ui

n)Dxui
n

which can be written as

un+1
i − uni
dt

−∆t(
uni+1 − 2uni + uni−1

dx2 ) = −(1 + ui
n)
uni+1 − uni−1

2dx

=⇒ un+1
i − uni
dt

− 1

dt dx2 (un+1
i+1 −uni+1−2un+1

i +2uni +un+1
i−1 −uni−1) = −(1+ui

n)
uni+1 − uni−1

2dx
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after some rearrangement we can write

− 1

dt dx2u
n+1
i−1 + (

1

dt
+

2

dt dx2 )un+1
i − 1

dt dx2u
n+1
i−1 = − 1

dt dx2u
n
i−1

+(
1

dt
+

2

dt dx2 )uni −
1

dt dx2u
n
i−1 − (1 + ui

n)
uni+1 − uni−1

2dx

(2.29)

Multiplying equation(2.29) by dt dx2 we get,

un+1
i−1 − (2 + dx2)un+1

i + un+1
i+1 = uni−1− (2 + dx2)uni + uni+1 +

1

2
(1 + ui

n)(uni+1− uni−1) (2.30)

Equation (2.30) is the final discretized version of RLW equation. This is an implicit
equation and can be written as a tridiagonal system of equations.

2.5 Tridiagonal system solver

A n× n tridiagonal system can be written as
b1 c1 0 0 · · · 0
a2 b2 c2 0 · · · 0
0 a3 b3 c3 · · · 0
...

...
. . .

... · · · ...
0 0 · · · 0 an bn




x1

x2

x3
...
xn

 =


d1

d2

d3
...
dn


which can also be written as

aixi−1 + bixi + cixi+1 = di (2.31)

for i = 1...., n and a1 = 0 & cn = 0. This system can be solved using different algorithms
such as Gaussian elemination or LU factorization. However, a tridiagonal system solver is
the best solution method due to its computational simplicity. In this work the algorithm
described in [17] is followed.

The algorithm is equivalent to the LU factorization method. However, it is a bit more
efficient. In this algorithm Pi and qi are independent of the right hand side vector di. So,
for the single grid computation they can be computed and stored at the beginning for later
use at each time step.
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Algorithm 1: Tridiagonal System Ax = b Solver for

Result: Solution vector x1, x2, ......, xn;
1 set P1 = b1;

2 set g1 = d1
P1

;

3 set q1 = − c1
P1

;

4 set i = 2;
5 while i ≤ n do
6 Pi = bi + aiqi−1;
7 qi = − ci

Pi
;

8 gi = di−aigi−1

Pi
;

9 i← i+ 1

10 end
11 set xn = gn;
12 set j = n;
13 while j > 1 do
14 xj = gj−1 + xjqj−1;
15 j ← j − 1

16 end

2.6 AMR algorithm

In the computation of the numerical solution of PDEs some phenomena such as steep
shocks or discontinuities are often arise which are difficult to capture numerically. So,
very high resolution is required for the numerical computation. Implementation of some
higher order scheme may not be convenient all the time due to extra constraints. We have
seen that high resolution of a mesh over the whole domain can make the computation
unnecessarily expensive. Improvements can be made by increasing the resolution on some
subregions of the computational domain. This is not only reduces the cost of the compu-
tation, but also is smart memory management process. In our work we used the Block
Structured Adaptive Mesh Refinement (AMR) method which is popular and con-
venient to modify. This algorithm allows the computation to change the resolution over
time in different subregions (blocks) of the domain and manage the memory efficiently.

Different types of mesh refinement algorithms are available in the literature. We will
focus on the Block Structured Adaptive Mesh Refinement approaches inspired by
previous work [13],[10],[19],[14]. In this section the AMR algorithm based on the work of
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Berger & Oliger (1984) [13] and Berger& Colella (1989) [10] will be discussed since these
works give a core framework of the block structured AMR algorithm. These works have
been extensively used to develop powerful AMR solvers. However the algorithm of Fraga &
Morris (1992) [19] is also very important. This work presented a simplified implementation
of one-dimensional problems with simple refinement criteria for the numerical solution.

2.6.1 Grid Description

We begin with a brief overview of the grid generation which is an essential component of
the AMR algorithm. The computation of AMR will start from a user specified level 0 base
grid denoted as D0. The mesh spacing of the base grid is ∆x0. This base grid will be fixed
during the computation. Successively refined grids D1, D2 are generated automatically in

Figure 2.3: Nesting property of AMR grid in 2 dimensional space [10]

an adaptive fashion. The grid spacing at level 1 and level 2 are ∆x1 and ∆x2 respectively.
In addition ∆t1 and ∆t2 are the time step size of the level 1 and level 2 grid respectively.
The adaptive algorithm creates a time-varying sequence of nested and logically rectangular
meshes on which the discretized PDE is solved. In this set up a finer subgrid may contain
even finer subgrid within their boundaries since subgrid generation is a recursive procedure.
Grid D1 is the level 1 refined grid which contains the subgrids of D0. This will be applicable
for the other levels. In addition each grid level Di can be composed of several components
Dij. Denoting the different levels of refinement by l = 1, 2, 3..lmax, grid Dl,k has mesh
width ∆xl. Ultimately the grid can be defined as

Dl = ∪
k
Dl,k
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The components may overlap that is Dl,j ∩Dl,k 6= 0 for j 6= k though for one dimensional
case they will not overlap. So, any point in this grid set up can be contained in different
components of one level grids. Finally, the grid must be nested which is described in the
figure 2.3 which was taken from [10]. Figure 2.3 shows a sample snapshot of an evolving
grid in two spatial dimensions. Initially the base grid D0 is at level 0 grid in the described
grid hierarchy. After any time t a level 1 grid D1 is created and in the next step the grid is
further refined. D2 is the refined grids of level 1. There is only one grid component in D2

which is D2,1 and every point in D2,1 is contained in one of the level 1 grid components.

In AMR, grid refinement is needed in time and space and the refinement ratio should
be same. The grid spacing and time step at any level l are ∆xl and ∆tl respectively. Then
the refinement ratio r can be defined as

r =
∆xl−1

∆xl
=

∆tl−1

∆tl

This ratio r is same for all level l and hence

∆tl
∆xl

=
∆tl−1

∆xl−1

=
∆tl−2

∆xl−2

= ....... =
∆t0
∆x0

2.6.2 Grid Generation

For the generation of a higher level grid a refinement criterion has to be introduced. Berger
& Oliger (1984) [13] and Berger & Colella (1989) [10] used error estimation to determine
the region where the refinement is needed. They estimated the error at all grid points in
a grid level and flagged the grid points where refinement is necessary. The new level grid
is created in such a way that the flagged points will be the interior of the finer grid. So,
the grid generation procedure follows a series of steps. First, based on the error estimation
( the refinement criteria) the grid points at level l will be identified where the finer grid
will be placed in the next level l + 1 and those points will be flagged. The next and most
difficult step is separating the flagged points. The separated flagged points will be used
to make clusters. A buffer zone is added around the flagged grid points to prevent the
propagation of discontinuities or high error from the finer region to coarser region at the
next regridding time. In our case we keep the 1 buffer point at the leftmost and rightmost
point of a cluster. Adding a buffer zone may increase the integration cost but this cost is
small because of the small number of extra grid points. If flagged points are separated by
a good number unflagged points then two or more clusters at level l + 1 may be formed.
In our code we considered that two clusters will be separated by at least 3 unrefined cells.
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So, in this way two or more subgrids can be found. The number of minimum unflagged
points is predefined. Berger & Oliger (1984) [13] considered flagged points which are closer
together than twice the size of the buffer zone should be in same grid refinement. The
work of this thesis followed the same grid generation procedure.

Figure 2.4: 1-D grid generation [13]

Figure 2.4 from [13] describes the regridding procedure. In the left side the old grid
structure is shown and on the right side the new grid is shown. Here × indicates the
flagged points. Here the grid structures are shown step-wise and Figure 2.5 shows the
superimposed grid structure.
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Figure 2.5: Composite grid Structure [13]

2.6.3 Refinement criteria

One of the crucial point of the AMR algorithm is to locate the regions where refinement is
needed and to cover them a finer mesh which is a recursive procedure. Refinement criteria
can vary for different types of problems, e.g. a refinement criterion based on gradient can
be a good refinement criterion where steep shocks can be found. It also should be noted
that in some cases the refinement criteria can increase the cost of the computation. How-
ever, several factors can be related to the cost estimation of this such as solution algorithm
or norm of the solution error (in case where error estimation uses as refinement criteria).
In the algorithm of Berger & Oliger (1984) [13] and Berger & Colella (1989) [10] error
estimation was the basis of their refinement criteria. Fraga & Morris (1992) [19] used the
geometrical property that is the solution cut-off value for the AMR computation for single
and double soliton problems. They predefined a minimum cut-off value which helped the
algorithm to find the solitons in the domain. Even in the case of a moving grid algorithm
an equidistribution principle is used as a parameter where the grid will be concentrated
since in a moving mesh algorithm the grid concentration changes over the domain dynam-
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ically over time.
However, in this work different kinds of refinement criteria are used for different problems.
First of all, for a very simple advection type problem a combination of gradient and cur-
vature is set for locating the area where the refinement is required. So, any specific part
of the computational domain having value greater than or equal to that minimum sum-
mation value of gradient and curvature will be considered for the refinement at any level.
However, this changes for Burger’s equation a little where steep shock formed over time.
Now grid refinement must be based in part on the gradients of the solution. Different types
of refinement criteria were selected for different levels. Higher level grids were put at the
region of steep shock. If the gradient at level l is defined by Gx

(l). If any level l has flux
ψi

(l) and ψi+1
(l) at i and i+ 1 respectively then we have

Gx
(l)ψi =

ψi+1
(l) − ψi

(l)

∆x(l)

For Burger’s equation a combination of a cut-off value and gradient was used as the refine-
ment criteria. Finally, for the nonlinear and dispersive equation we set several refinement
criteria for two different problems. In the first level we use cut-off value for the refinement
while at the next level the combination of the cut-off value, gradient and second derivative
was used. In all the simulation of this work the refinement criteria are kept simple. The
main goal was to demonstrate that the code worked with simple refinement criteria.

2.6.4 Data structure and implementation

The data structure used by AMR algorithms can be sophisticated and sometimes the im-
plementation becomes very difficult for the general users. In this section the data structure
for one dimensional case will be discussed. This is going to be an extension of the discus-
sions about the grid in the grid description section where a level l+ 1 grid must be entirely
contained within the level l grid which we defined as the nesting property. In the AMR
algorithm of Bereger & Oliger (1984) [13] and Berger & Colella (1989) [10] a special kind
of tree data structure known as right child left sibling tree data structure was used. To
represent this as a tree data structure every grid is considered as a node. So the coarser
parent grid will act as a parent of higher level grid. Subgrids can be considered as a child
of its parent grid. Siblings are subgrids within the same grid level. Figure 2.6 taken from
[13] demonstrates this structure. In this figure the bidirectional arrows indicates the con-
nection between parent and their child grid. On the other hand the unidirectional arrows
symbolises the one way connection between the siblings in the same grid level. Two levels
of refinement are represented by figure 2.6. The base grid is denoted by D0,1. The base
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grid has three children which are denoted by D1,1, D1,2 and D1,3 respectively and they are
the subgrids of level 1 grid. Similarly, D2,1 is the children of D1,1 and D2,2 is the children
of D1,2. Finally, D1,1, D1,2 , D1,3 are siblings of each other in the level 1 grid and D2,1

and D2,2 are siblings of each other in the level 2 grid.

Figure 2.6: 1-D grid Data Structure

So, there is a sequential order where each node can have multiple childs. The represen-
tation clearly allows us to have multiple finer subgrids of any grid. The internal operation
for the implementation of AMR such as fine grid boundary value set up, updating the
value from fine to coarse grid have an information flow which follows path links in the
tree. The algorithm has a one way link between subgrids at the same level which are called
neighbours and this simplifies the implementation of operations. Figure 2.7 illustrates the
AMR grid structure described by 2.6 for a one-dimensional grid.
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Figure 2.7: 1-D grid Data Structure (linear view) [13]

In figure (2.7) D0,1 is the base grid. The base grid contain D1,1, D1,2, D1,3 level 1
subgrids. Similarly, D1,1 is containing level 2 grid D2,1 and D1,2 is containing level 2 grid
D2,2.

Now in the algorithm of Berger & Oliger (1984) [13] it is evident that the tree structure
can grow or shrink dynamically which needs storage allocation to be dynamic. The actual
code was written in Fortran where external memory allocation provided by the linked list
of free nodes. These were assigned to new grids and recovered when the subgrid is not
necessary and removed.

In our work the implementation of the data structure and the storage allocation is
different. We choose C++ programming language. C++ is an object oriented language.
Primarily we used the object oriented feature to create the same operational flow in a
tree data structure used in the AMR algorithm. It is very convenient to create a class for
the grids. We consider the user defined base grid as an object. This object is considered
as parent for the other object. We can either derive the finer level grids from the base
class object by restricting the access of the base grid integration algorithm or we can also
handle this using the array of the grid object. In the second case we need two different
integration algorithm under the same class. This is a simple approach and we implemented
this approach for our code.

Two kinds of memory management systems are available. One of them is stack another
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one is heap. Usually stack is a special kind of memory where the temporary variables
are created by the functions. When variables are stored in the stack the compiler knows
their size and the allocation is automatic. So, allocation and deallocation of variables in
stack memory is automatic. When the size of the variables is unknown or the storage is
dynamic it is not useful to use stack memory and also due to the size limitation it is not
always a convenient choice. On the other hand heap memory is a place where we don’t
have to think about the size of the memory. The allocation happens on contiguous blocks
of memory in stack where it is totally different in case of the allocation in heap. C++
allows us to allocate and deallocate memory as necessary. The only issue we need to take
care of is that we have deallocate properly after allocation. If we fail to do so it will create
memory leakage. However, memory leakage can be traced during the debugging stage.
This advanced feature of C++ allow us to use a simple implementation of our AMR code.
The memory allocation of heap and stack are shown in figure 2.8. On the left side of figure
2.8 the contiguous arrangement of the memory in stack is shown by the same rectangular
boxes and the right side is demonstrating the variable size memory allocation for different
variable. So, in case of the usage of the heap memory the allocation and deallocation
should be handled carefully for the successful computational step.

Figure 2.8: Memory allocation in Stack and Heap
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2.6.5 Time integration

For the computation we need a time integration scheme. We derived an explicit integration
scheme using a finite volume method for the advection equation and Burger’s equation.
For the RLW equation an implicit finite difference scheme was used. In the discretized
equations (2.9) and (2.18) we denoted the cell average quantity in cell i at time step n by
uni . In equation (2.30) the cell value at cell i at time step n defined by uni . The solution
on each grid is advanced using supplied boundary conditions. The integration algorithm is
the same for all grid levels. So, the solution vector for each grid level is independent and
they will advance with their own time step. However, boundary conditions are required
and these conditions may vary from grid to grid. In [10] the cell values were modified in
two cases, the first case is when the coarse grid is covered by a finer grid. The values for the
coarse grid will be modified by using the conservative average of the solution on the next
finest level grid. This is a simple strategy to save memory space, because extra storage
will be required if coarse fluxes need to be redefined around overlayed coarse grid. In this
thesis explicit and implicit schemes are used. For both cases, the solution on a single grid
is advanced from time t to t + ∆t with the supplied physical boundary conditions. After
the base grid integration all the finer level grids advance sequentially by the order of level
with their own time steps to reach t + ∆t. This is very helpful for the implicit scheme
which is used for the RLW equation. In the case of an implicit integration step the value
from the coarse level data at the advanced time is needed for the boundary conditions.
In our code the single grid advance from t to t + ∆t but the finer grids need more steps
to reach from t to t + ∆t. So if the single grid time step is ∆t then for level 1 finer grid
the time step size would be ∆t

r
similarly for the level 2 the time step would be ∆t

r2
and

finally the time step for level l grid would be ∆t
rl

. So, it can be seen that single grid need
just one time integration where level 1, level 2 need integration for r and r2 times. If the
maximum level is l then the number would be rl. In [10] and [13] the finer level solution
synchronized with the coarse solution. The synchronization is demonstrated by figure 2.9
which is created based on [13]. The refinement ratio in this case is 2. The level 2 solution
synchronized twice and the level 1 solution is synchronized with level 0 solution just once.
In our work the synchronization is done by averaging. If the solution at any level can be
defined by ψ then the average can be written as

ψCoarse
i ← 1

r

r−1∑
p=0

ψfine
i+p (2.32)

This is a very important part of the algorithm which keeps the solution stable at the coarse
level at different times.
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Figure 2.9: Berger-Oliger time stepping

2.6.6 Boundary conditions

The boundary conditions are an essential part of the integration algorithm. The boundary
values for the finer level grid can be obtained form the coarse level grid. Usually different
interpolation methods are applied to get the boundary values. In [10] a bilinear interpo-
lation technique was used to find the boundary values at any grid level l from the level
l− 1 solution if those boundary values are not available from the adjacent level. However,
the interpolation was linear in space and time (if that is required). The steps followed in
[13] and [10] are slightly complicated. At any level l they divided the border cells into one
or more rectangular patches and then for each rectangular patch they followed the steps
given below

i. Solution values will be found from a level l − 1 grids on a slightly larger
rectangular region including border cells.

ii. get the border cell values using linear interpolation.

iii. at any level l the linearly interpolated value will be overwritten if the border
cell values can be obtained from the same level grid.
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Figure 2.10: Coarse fine grid interpolation

In this work we have used the coarse-fine interpolation procedure for the boundary values
but for our one dimensional case the implementation was not similar to [13] and [10].
The level 0 grid boundary values are supplied by the users. The boundary conditions for
the higher level grids are supplied from coarse grid by the predefined code. In the explicit
solver polynomial fitting is used for the coarse-fine interpolation. Our code interpolates the
boundary values from the previous level grid. So, for the integration on level l boundary
conditions will be obtained from the coarse grid level l−1. The idea of getting the boundary
values is shown in figure 2.10. Here the black dots are coarse grid values and the white
dots are the values of the finer grid. The finer grid fluxes for any point are obtained by
interpolation from the neighbouring coarse grid value. In figure 2.10 the first plot shows
the linear interpolation of a cell from two points. The next plot shows the finer level value
obtained using the 3 points of the coarse grid level. In the case of implicit solver the code
is similar for the space interpolation. However, boundary conditions are also required at
the advanced time steps. In the previous section it was mentioned that the integration is
done in the different levels sequentially. So, the boundary fluxs at time t and time t+ ∆t
are available. Simple linear interpolation is used to obtain boundary conditions at the
intermediate times on the finer level grids.

2.6.7 Grid creation operations and regridding

With all the components the AMR algorithm needs to create a grid hierarchy and also
maintain the regridding procedure. The base grid will remain fixed all the time during the
computation. The operation starts with the refinement criteria. For creating each grid
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structure for the upper level the algorithm calls the user specified refinement criteria. If
the algorithm starts with the base grid it will call the refinement criteria ( such as cut
off value or gradient). The next thing it will do is to flag the points where refinement
criteria is met. The algorithm will flag the points where refinement criteria are met. These
flagged points are used to create the clusters in the upper grid level. A minimum distance
is maintained between the clusters of the same level grid. We used a minimum two points
distance between two clusters. The procedure of determination of the minimum distance
is different in [13] and [10]. Finer grid will be added to all the clusters. In our work after
every integration step we go through the regridding step. This regridding is a recursive
procedure. In the regridding step we again look for new flagged points and make necessary
adjustment to the upper level clusters. In our algorithm, the computational cost for this
is little even regridding has done after every step. We minimize the cost by tracking the
previous steps information. Our code perform the regridding only in a very small portion
of a domain every step if that is required. It should also be noted that that regridding
procedure will continue only if it is necessary. This recursive procedure will continue until
the maximum level is reached. Once max level is reached the finer grid will be put in the
the flagged regions. After the integration steps the setting might get changed. New grid
points or cluster might be added or removed.

2.6.8 Combination of all algorithm

All the components and strategies were discussed in the previous sections for the better rep-
resentation of our algorithm. All the components are connected sequentially. However, one
point should me mentioned that the descritization schemes are different but the procedure
is similar. It is also should be noted that the algorithm the RLW solver is an implicit solver.
So, some components are different here also. All the required algorithms are presented here.
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Algorithm 2: Main function ( common for all solvers)

1 Build initial grids;
2 Compute the initial profile u0 at t = 0;
3 for l← 1 to lmax do
4 for i← 1 to rl−1 ∗ n do
5 flli =flag(uli−1

,uli,u
l
i+1

,∆x
rl

,l);

6 i← i+ 1;

7 end
8 cldata=cluster(fll,∆x/rl,∆t/rl,p ∗ n);
9 initialize(l,ul−1,cldata);

10 l← l + 1;

11 end
12 while t ≤ tf inal do
13 advancebase(u0,up,n,∆x,∆t);
14 for l← 1 to lmax do
15 for j ← 1 to Number of cluster in level l do
16 for k ← 0 to rl − 1 do
17 integratec(cldata,∆x/rl,∆t/rl,r);
18 end

19 end

20 end
21 set l = lmax;
22 while l ≥ 1 do
23 averageandupdate(ul,ul−1,r);
24 l← l − 1;

25 end
26 for l← 1 to lmax do
27 for i← 1 to rl−1 ∗ n do
28 flli =flag(uli−1

,uli,u
l
i+1

,∆x
rl

,l);

29 i← i+ 1;

30 end
31 cldata=updatecluster(fll,∆x/rl,∆t/rl);
32 regrid(cldata,ul,ul−1);
33 l← l + 1;

34 end
35 t← t+ ∆t;

36 end
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Algorithm 3: Flag function

1 function flag(uli−1
,uli,u

l
i+1

,∆x
rl

,l);

2 calculate refval1 and refval2 using uli−1
,uli,u

l
i+1

;

3 if l = 1 then
4 if refval1 ≥ level 1 refinement criterion then
5 return 1 ;
6 else
7 return 0 ;
8 end

9 else
10 if refval2 ≥ level 2 refinement criterion then
11 return 1 ;
12 else
13 return 0 ;
14 end

15 end

Algorithm 4: Clustering

1 function cluster(fll,∆x/rl,∆t/rl,p ∗ n);
2 set tempcount=0;
3 set clustercount=0;
4 for i← 0 to p ∗ n do
5 if flli = 1 and tempcount=0 then
6 tempcount = i;
7 if flli = 0 at neighbouring and tempcount 6= 0 then
8 if minimum cell distance between cluster > 2 then
9 clustercount← clustercount+ 1;

10 setval(∆x/rl,∆t/rl,tempcount-1,i+1);

11 else
12 continue;
13 end
14 tempcount=0;

15 end
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Algorithm 5: Initialization on higher level grid

1 function initialize(l,ul−1,cldata,r);
2 set k = 1;
3 while k ≤ number of clusters in level l do
4 for i=cluster starting point to i≤ cluster ending point do
5 for j=1 to j ≤r do

6 u
r∗(i−1)+j
l =polynomial interpolation from level (l − 1) using points
i, i− 1, i+ 1;

7 j ← j + 1;

8 end
9 i← i+ 1;

10 end
11 k ← k + 1;

12 end

Algorithm 6: Integration on base grid ( for advection and Burger’s equation)

1 function advancebase(u0,n,∆x,∆t);
2 set the boundary conditions;
3 set i = 1;
4 while i < n do
5 compute u0

i using 2.9 or 2.18 with u0;
6 u0

i = u0,i;
7 i← i+ 1;

8 end
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Algorithm 7: Integration on base grid ( for RLW equation)

1 function advancebase(u0,n,∆x,∆t);
2 crate vector s for right hand side of Ax = b;
3 create vector p for the solution vector of Ax = b;
4 set the boundary conditions;

5 s0 = u0,0−(2 + ∆x2)u0,0 +u0,1 +(1 + u0,0 )(u0,1−u0,0 )∆x∆t;
6 for i = 1 to i ≤ n− 1 do
7 si = u0,i −1 − (2 + ∆x2)u0,i +u0,i +1 + 1

2
(1 + u0,i )(u0,i +1 − u0,i +1)∆x∆t;

8 i← i+ 1;

9 end
10 call tridiagonalsolver(s,p,n,∆x);
11 for i = 0 to i ≤ n− 1 do
12 ui = pi;
13 i← i+ 1;

14 end
15 for i = 0 to i ≤ n− 1 do
16 u0,i = ui;
17 end

Algorithm 8: Integration on higher level grid ( for advection and Burger’s equa-
tion)

1 function integratec (cldata,∆x/Rl,∆t/rl,r);
2 set a = starting point of the cluster;
3 set b = ending point of the cluster;
4 boundary value at a= polynomial interpolation from a− 1,a− 1,a from coarse grid

value;
5 boundary value at b= polynomial interpolation from b,b+ 1,b+ 2 from coarse grid

value;
6 set i = a;
7 while i < b do
8 compute uli using 2.9 or 2.18 with ul0;
9 ul0,i = uli;

10 i← i+ 1;

11 end
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Algorithm 9: Integration on higher level grid(For RLW equation)

1 function integratec(cldata,∆x/Rl,∆t/rl,r);
2 set a = r*starting point of the cluster;
3 set b = r*ending point of the cluster;
4 set n = (b− a);
5 a1= linear time interpolation from t and t+ ∆t at right boundary of cluster;
6 a2= linear time interpolation from t and t+ ∆t at left boundary of cluster;
7 crate vector s for right hand side of Ax = b;
8 create vector p for the solution vector of Ax = b;
9 set the boundary conditions;

10 s0 = u0,a−(2 + ∆x2)u0,a +u0,a +1 + (1 + u0,a )(u0,a +1 − u0,a )∆x∆t-a1;
11 for i = 1 to i ≤ n− 1 do
12 si =

u0,a +i−1−(2+∆x2)u0,a +i+u0,a +i+1+ 1
2
(1+u0,a +i)(u0,a +i+1−u0,a +i+1)∆x∆t;

13 i← i+ 1;

14 end
15 sn−1 =

u0,a +n−2−(2+∆x2)u0,a +n−1+u0,a +n+ 1
2
(1+u0,a +n−1)(u0,a +n−u0,a +n−2)∆x∆t-

a2;

16 call tridiagonalsolver(s,p,n,∆x);
17 for i = 0 to i ≤ n− 1 do
18 uli = pi;
19 i← i+ 1;

20 end
21 ula+n

=polynomial interpolation from previous neighbouing points at same level;

22 for i = 0 to i ≤ n− 1 do
23 u0,i = uli
24 end
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Algorithm 10: Synchronization (average and update the coarse grid value)

1 function averageandupdate(ul,ul−1,r);
2 set l = lmax;
3 while l > 0 do
4 for cl = 1 to cl ≤ number of cluster in that level do
5 for i = start point of the cluster+1 to i ≤ endpoint of the cluster−1 do
6 set sum = 0.0;
7 for k = 0 to k < r do
8 sum← sum+ulr∗i+k

;

9 k ← k + 1;

10 end

11 u
(l−1)
i = sum/r;

12 i← i+ 1;

13 end
14 cl← cl + 1;

15 end
16 l← l − 1;

17 end
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Algorithm 11: Regridding procedure

1 function regrid(cldata,ul,u(l−1));
2 set l = 1;
3 while l ≤ lmax do
4 call flag(uli−1

,uli,u
l
i+1

,∆x
rl

,l);

5 call cluster(fll,∆x/rl,∆t/rl,p ∗ n);
6 set k = 1;
7 while k ≤ number of cluster in level l do
8 for i= first point of the domain where data is not available to i≤ new

cluster ending point do
9 for j=1 to j ≤r do

10 u
r∗(i−1)+j
l =polynomial interpolation from level (l − 1) using points
i, i− 1, i+ 1;

11 j ← j + 1;

12 end
13 i← i+ 1;

14 end
15 k ← k + 1;

16 end
17 l← l + 1

18 end

40



Chapter 3

Results and Discussion

In the previous chapter, the details of different components of the AMR algorithm have
been discussed briefly. We developed our code based on those algorithms. For the imple-
mentation of the algorithm C++ was used. A mixed source code is not used for simplicity.
Code written in FORTRAN can be added easily to the current thesis work. For all the
numerical computation we used an Intel core-i3 processor with 8 gigabytes of RAM. It
is essential to validate the computational results by making comparisons with the exact
solution. So, to validate the code we started with a very simple linear problem. In this
work some simple discretization schemes are used from different works in the literature
such as [17] for the RLW solver to make the comparisons easier. In this chapter results
from a couple of numerical experiments will be presented to provide a clear view of how
our algorithm works. The numerical simulations were done on a uniform grid the results
of which were used for the comparison to test the performance of AMR code.

3.1 Advection equation solver

In this section, we are going to start with a simple problem as mentioned earlier. This
is a simple demonstration of the efficacy of the AMR algorithm and we do not strive for
a highly accurate solution. The advection equation will be solved using (2.9). A simple
Gaussian curve is taken as the initial condition. So the problem is

ut + ux = 0

where 0 ≤ x ≤ 2.0 and 0 ≤ t ≤ 1.0 and the initial condition is

u(x, 0) = e−100.0(x−0.3)2
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The analytic solution is
u(x, t) = e−100.0(x−0.3−t)2

The solution is a wave of permanent form propagating rightward with speed 1. The exact
solution is shown in figure 3.1 at time t = 0.10, t = 0.30 and t = 0.90. The solution wave

Figure 3.1: Advection equation exact solution

propagates without changing shape.
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3.1.1 Solution of advection equation on uniform grid

The behavior of the numerical solution using 200 grid cells and 1000 time steps is shown
in figure 3.2. The solution demonstrates a visible deviation from the analytic solution.
The wave gets smaller and wider. We used (2.9) for the simulation which is first order
approximation in both space and time. There is dissipation but no evidence of dispersion.
Numerical dissipation is expected for the numerical solution of this hyperbolic type PDE
when only 200 grid cells. Initially the maximum is 1 at x = 0.3 but by t = 0.90 the
maximum has reduced to 0.6. The wave form has also increased in width.

Figure 3.2: Single grid solution of advection equation with 200 grid cells

For any simple straightforward numerical scheme increasing the resolution can reduce
the numerical dissipation. So, in the next step we ran the simulation on a uniform grid with
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an increased resolution with more time steps. The space interval ∆x and time interval ∆t
are taken in a specific way for the solution such that their ratio between two consecutive
grids can be a constant. In this case, the ratio is 4. For the first simulation, we took 200
grid cells and 1000 time steps. To ensure numerical stability we take 1000 time steps to
make the time interval ∆t sufficiently small. Increase the number of grid cells and times
steps by a factor of 4 we will take 800 grid cells and 4000 time steps for the next simulation.
In figure 3.3 and 3.4 the simulations are shown with 800 and 3200 grid cells respectively. In
figure 3.3 the numerical solution with 800 grid cells produces better results but dissipation
is still significant. In the following figure 3.4 the behaviour of the solution is even better
since the numerical dissipation has reduced significantly.

Figure 3.3: Single grid solution of advection equation with 800 grid cells
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Figure 3.4: Single grid solution of advection equation with 3200 grid cell

In figure 3.5 the error at time t = 1.0 is shown. The error is calculate via

error = |uapproximate − uanalytic| (3.1)

The error of the solution with 200, 800 and 3200 grid points are shown at the final time
t = 1.0. We can see from figure 3.5 that the error has reduced significantly with increased
resolution. If we define the error norm by

||Error||∞ = max
i
|ei| (3.2)

In (3.2) ei is the error at each grid point xi. The error norms for different uniform grid
solution approximated by the above formula at time t = 1.0 are given in table 3.1. From
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this table it can be seen that the error norm reduced more than 2 times with 800 grid
points and with 3200 grid points the value reduced more than 7.5 times than the error
norm with 200 grid points.

Solution Level Number of grid points (n) ||Error||∞
0 200 0.400574
1 800 0.169467
2 3200 0.051905

Table 3.1: Advection equation error norm for different uniform grid solution

Figure 3.5: Advection equation solution error at time t = 1.0 for different uniform grid
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Figure 3.6 plots the absolute value of the gradient (|ux|) of the solutions with 800 grid
cells. From figure 3.6 we can see that the gradient decreases with time. It is zero at the
wave crest. At time t = 0.1 the maximum gradient is around 7.0 while the maximum
gradients at time t = 0.30 and t = 0.90 are around 6.0 and 5.0 respectively. However,
the pattern of the gradient curves is similar. We want to see the change of the absolute
value of the curvature (|uxx|) for the solution where the second derivative corresponds to
the curvature. In Figure 3.7 the curvature changing is shown by the values of the second
derivative. In figure 3.7 the value is large at the peak.

Figure 3.6: Absolute value of the gradient of the solution of advection equation

The maximum values are also decreasing like the gradient. At time t = 0.1 the maxi-
mum value of the second derivative is around 174 and over time the maximum value of the
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second derivative decreased. Finally at time t = 0.90 the maximum value of the second
derivative was less than 125. Here we can see two inflection points at each time step. It
also can be noticed that the gradient is very large when the curvature is very close to zero.
On the other hand the curvature reaches its peak when the gradient is very close to zero.

Figure 3.7: Advection equation solution curvature

As the numerical scheme for the simulation is of first-order it is expected that the
solution accuracy will be improved by the increased resolution. From figures 3.2 and 3.4
the improvement can be seen.

However, the required time for the computation also increases. The required time for
computation increased not only due to the higher resolution but also for the increased
number of time steps. Figure 3.8 plots the required time for different numbers of grid
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Number of grid Points Time steps ∆x ∆t Required time(s)
200 1000 0.01 .001 0.033
800 4000 0.0025 0.00025 0.241
3200 16000 0.000625 0.0000625 3.44

Table 3.2: Required computational time for different grid resolution for advection equation

cells. The computational time is getting significantly large for the highest resolution for
our problem. Table 3.2 represents the similar information for three specific computation
of the figure 3.8 in tabular form.

Figure 3.8: Computational time for different single grid solution (Advection equation)

From table 3.2 we can see that the second simulation with 800 grid cells and 4000 time
steps has taken 7 times more computational time and the scenario is worse using 3200
grid cells with 16000 time steps where the computation is 104 times slower than the first
computation.

3.1.2 Solution of advection equation with AMR

For the AMR computation we are going to use 200 grid cells as our level 0 grid which is
also called the single grid. 1000 time steps have taken for this single grid. The maximum
level of refinement is fixed at 2 and the refinement ratio between levels is fixed at 4. In
figure 3.9 the AMR result is shown at time t = 0.10, t = 0.30 and t = 0.90. We choose
summation of |ux| and |uxx| as the refinement criterion for both level 1 and level 2. The
level 1 refinement criterion uses a very small value since we want to cover the wave in
the computational domain. The algorithm does not cover the parts of the domain where
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the solution characteristics (such as gradient or curvature) are close to zero. For level 2
we increase the value of the refinement criterion. Figure 3.9 is shows the solution with
|ux|+ |uxx| ≥ 1.0 (level 1 criterion) and |ux|+ |uxx| ≥ 5.2 (level 2 criterion) and figure
3.10 shows the solution with |ux|+ |uxx| ≥ 1.0 (level 1 criterion) and |ux|+ |uxx| ≥ 85.0
(level 2 criterion). The location of the different level grids is also indicated. The summary
of the AMR computations of the simulations is shown in table 3.3 and table 3.4.

Number of grid points in Level 0 200
Number of time steps in Level 0 1000
Refinement ratio 4
Level 0 grid space width 0.01
Level 0 grid time interval 0.001
Maximum level of refinement 2

Table 3.3: Summary of AMR computation of advection equation

Level 1 refinement criterion Level 2 refinement criterion Required time(s)

|ux|+ |uxx| ≥ 1.0 |ux|+ |uxx| ≥ 5.2 0.239
|ux|+ |uxx| ≥ 1.0 |ux|+ |uxx| ≥ 85.0 0.1095

Table 3.4: Advection equation AMR solutions required time

So, the computation starts with 200 grid cells and 1000 time steps and it refines portion
of the domain in time and space with the factor of 4 where the level 1 refinement criteria
are fulfilled. So, again if the level 2 refinement criteria is met then the algorithm computes
the solution with ∆x = 0.000625 and ∆t = .0000625 for that region. In figure 3.9 the black
curve is the initial profile. The red curve is the solution at time t = 0.10. The horizontal
red line is indicating the location of level 0, level 1, and level 2 solution exactly at that
time. It can be seen that at time t = 0.10 from x = 0 to x = 0.25 (approximately) and
from x = 0.78 (approximately) to x = 2.0 level 0 region exists. Then the level 1 solution
exists from approximately x = 0.25 to x = 0.77. In figure 3.9 at time t = 0.10 the level
2 region exists around x = 0.3 to x = 0.73 while in figure 3.10 the level 2 region exists
around x = 0.55 to x = 0.65 at time t = 0.10. Also the grid hierarchy can be seen from
the AMR solution according to our algorithm. In figure 3.9 and 3.10 it can be seen that
level 1 grid is contained by the level 0 grid and level 2 grid is contained by level 1 grid.
The solution behaves like the high resolution single grid solution. In figure 3.13 and 3.14
both the AMR and highest resolution solutions are shown and a good agreement can be
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observed. However, at time t = 0.30 and t = 0.90 a little bit difference can be found at
the bottom of the solution in figure 3.14. The principal reason behind this is that those
portion of the solution is computed with the level 1 solution.

Figure 3.9: AMR solution for the advection equation with refinement criteria |ux|+ |uxx| ≥
1.0 for level 1 and |ux|+ |uxx| ≥ 5.2 for level 2. The step functions indicate the locations
of the different level grids with matching colours
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Figure 3.10: AMR solution for the advection equation with refinement criteria
|ux|+ |uxx| ≥ 1.0 for level 1 and |ux|+ |uxx| ≥ 85 for level 2. The step functions indi-
cate the locations of the different level grids with matching colours

In figure 3.11 the error of the AMR solution at different levels is shown at the final
time t = 1.0. In figure 3.11 the refinement criterion for level 1 is |ux|+ |uxx| ≥ 1.0 and
|ux|+ |uxx| ≥ 5.2 is the level 2 criterion. In figure 3.12 level 1 criterion is the same but the
level 2 refinement criterion is |ux|+ |uxx| ≥ 85.0. The summary of these figures is shown
in tables 3.5 and 3.6 respectively. From these tables we can see that the maximum error at
time t = 1.0 at level 1 and level 2 is different. In figure 3.12 the level 2 refinement criterion
is very high so the scenario is different here. The level 1 grid covers a significant portion
of the wave so the values of the maximum error have changed for both level 1 and level 2
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grid. In figure 3.14 we can see that at time t = .90 the AMR solution at the bottom does
not match exactly with the finest resolution solution since the level 2 grid exits only for a
small region which results in the error increment in the other parts of the solution.

Figure 3.11: Error at different levels of the AMR solution at time t = 1.0 for the advection
equation with |ux|+ |uxx| ≥ 1.0 as the level 1 refinement criterion and |ux|+ |uxx| ≥ 5.2
as the level 2 refinement criterion. The horizontal step function indicate the locations of
the different level grids
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Level ∆x ∆t Refinement criterion ||Error||∞
0 0.01 0.001 0.00119917
1 0.0025 0.00025 |ux|+ |uxx| ≥ 1.0 0.00382384
2 0.000025 0.0000625 |ux|+ |uxx| ≥ 5.2 0.0662431

Table 3.5: Summary of error of the AMR solution of advection equation in figure 3.11

Figure 3.12: Error at different levels of the AMR solution same as figure 3.12 with level 2
refinement criterion changed to |ux|+ |uxx| ≥ 85
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Level ∆x ∆t Refinement criterion ||Error||∞
0 0.01 0.001 0.00119917
1 0.0025 0.00025 |ux|+ |uxx| ≥ 1.0 0.103968
2 0.000025 0.0000625 |ux|+ |uxx| ≥ 85 0.121839

Table 3.6: Summary of error of the AMR solution of advection equation in figure 3.12

It is noticeable from table 3.4 that the computational time for AMR solution is only
0.239 second and 0.1095 second for the solution shown in figure 3.9 and 3.10 respectively.
This is very good compared to the single grid solutions. The first solution is slightly
faster than the level 1 solution (800 grid cells and 4000 time steps) but the second one
is almost 2 times faster than the level 1 single grid solution the numerical dissipation is
reduced significantly. The first AMR solution in figure 3.9 is more than 14 times faster
than the level 2 single grid solution with 1600 grid cells and 16000 time steps and the
second solution of figure 3.10 is 31 times faster than level 2 solution. In figure 3.13 and
3.14 both the solutions are compared with the highest resolution single grid solution. The
AMR solutions agree with the highest resolution single grid solutions. Although a little
bit difference can be found from the highest resolution solution if the refinement criterion
is very high (|ux| + |uxx| ≥ 85.0 for level 2) but the overall performance is satisfactory.
We will apply similar procedure to the other nonlinear and dispersive wave problems with
different refinement criteria.

55



Figure 3.13: AMR solution (level 1 |ux|+ |uxx| ≥ 1.0 and level 2 |ux|+ |uxx| ≥ 5.2)
comparison for advection equation with highest resolution solution
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Figure 3.14: AMR solution (level 1 |ux|+ |uxx| ≥ 1.0 and level 2 |ux|+ |uxx| ≥ 85) com-
parison for advection equation with highest resolution solution
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3.2 Burger’s equation solver

In the previous section, the performance of our AMR code was shown for a simple linear
problem and it worked well. In this section we are going to consider Burger’s equation.
This problem is more difficult because it includes nonlinear steeping and shock formation
making it more difficult to implement AMR clustering. Burger’s equation is

ut + uux = νuxx

with the initial condition
u(x, 0) = u0(x)

and boundary conditions are
u(0, t) = a

u(l, t) = b

where 0 ≤ x ≤ l and 0 ≤ t ≤ tf inal. We will consider two cases using our code. The first
problem will be a single crest problem and the second problem is a double crest problem.

3.2.1 Single crest problem

For this problem the initial condition is

u(x, 0) = e−100.0(x−0.3)2

where 0 ≤ x ≤ 1.0 and 0 ≤ t ≤ 1.0 and the boundary conditions are u(0, t) = 0 = u(1, t)
and ν = 0.001.

3.2.1.1 Burger’s equation (single crest problem) solution on uniform grid

With the initial setup described above the numerical solution of Burger’s equation with
100 grid cells and 1000 time steps is shown in figure 3.15. We have used finite volume
discretization which we derived in the previous chapter. Strong dispersion and damping
can be observed in the solution. It can be observed that the grid resolution should be small
enough to maintain smooth and accurate results. From figure 3.15 we can see that the
solution is not smooth and breaks down shortly after t = 0.125. It starts to break down at
the top where large gradients form. Small ν results in the formation of a shock. The steep
shock encountered by the solutions can not be resolved with the coarse grid. It also should
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Figure 3.15: Burger’s equation single grid solution with 100 grid cells (single crest problem)

be noted that we have used 2.19t and ?? for the scheme 2.18. This problem is a convection
dominant problem since the diffusion is very weak. So, for our scheme the Péclet number
(Pe) should be less than 2. However, with only 100 grid points the Pe reaches up to 10
which is far away from 2 and this results in the overshooting and undershooting in the
figure 3.15. In figure 3.16 this problem was resolved by using the upwind scheme. In our
case we will stick on scheme 2.18 to show that our AMR algorithm can deal with the
limitations of the scheme. In figure 3.16 we can see that there is no breaking down of the
solution at the top although the solution is not accurate enough.
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Figure 3.16: Burger’s equation single grid upwind solution with 100 grid cells (single crest
problem)

In figure 3.17 the evolution of the absolute value of the gradient over time can be
found. After starting the computation the gradient rapidly becomes very large at the front
of the wave which fills a small portion of the computational domain. At time t = 0.125
the magnitude of the absolute value of the gradient is close to 50 around x = 0.45. At
time t = 0.250 the value reaches to its peak which close to 100 around x = 0.55. In later
times this value declines. It has reduced to below 40 near x = 0.75 at t = 0.875 and
t = 0.985. The gradient evolves in time and large gradients occur at different portions of
the computational spaces. It is evident that the region of high gradient requires special
attention during the computation to ensure solution accuracy. So, the idea of putting
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the finest grid over the high gradient region to achieve an accurate and smooth solution
suggests using the gradient as our refinement criterion.

Figure 3.17: Absolute value of the solution gradient at different time (Burger’s equation
single crest problem)

The numerical solution with 400 grid cells using 4000 time steps is plotted in figure
3.18. The solution is better in these figures. In figure 3.18 a little bit noise can be found
at the top at time t = 0.250 and t = 0.325 where we have seen the high gradient values
in figure 3.17. So, the highest level of accuracy has not yet been achieved. However, the
solution at the later times remains smooth since the gradient is not that high for a large
portion of the domain.
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Figure 3.18: Burger’s equation single grid solution with 400 grid cells (single crest problem)

In figure 3.19 the solution obtained using 1600 spatial grid cells and 16000 time steps
is shown. The problems arising in the previous simulations due to the strong non-linearity
and week diffusion have been resolved by the high resolution grid. The solution is smooth
and is not breaking due to the steep gradient.
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Figure 3.19: Burger’s equation single grid solution with 1600 grid cells (single crest prob-
lem)

In figure 3.20 shows how the computational time varies with the number of grid points
for the uniform grid cases. It is expected that the computational time will increase by
the factor we multiply the grid. However, it can be seen from the figure that the time
increment is agreed with our expectation initially but with large number of grids the
increment is much higher than the expected value. One of the probable reason might be
memory management during the computation which also consumes some time. Table 3.7
shows the detailed time information required for three of the numerical solutions.
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Figure 3.20: Required time for different grid cells ( Burger’s equation single crest problem)

Number of grid Points Time steps ∆x ∆t Required time(s)
100 1000 0.01 0.001 0.016
400 4000 0.0025 0.00025 0.068
1600 16000 0.000625 6.25× 10−5 0.701

Table 3.7: Required computational time for different grid resolution for Burger’s equation
(single crest problem)

3.2.1.2 Burger’s equation (single crest problem) solution with AMR

We now present numerical solutions of Burger’s equation obtained with the AMR code.
We use 100 grid cells in our level 0 grid with the step size is ∆t = 0.001. For the first
level the refinement we choose the geometric property of the solution which is the cut-off
value of the solution in this case. By taking the cut-off value small (such as |u| ≥ .001)
we cover the wave in the computational domain. We will not include the cells in level 1
which are very close to zero. For level 2 refinement we have taken the absolute value of
the gradient as the refinement criterion. From figure 3.17 we can see the change of the
value of the absolute values of the gradient and we consider the value greater than or equal
0.50 as our starting point for level 2 refinement criterion. Next we have run a couple of
simulations with different values of refinement criteria. A summary of the simulations is
shown in table 3.8.

Figure 3.21 shows the AMR solution for two different level 1 refinement criterion (|u| ≥
0.001 and |u| ≥ 0.007) with the level 2 refinement criterion being |ux| ≥ 0.50 in both
cases. Again we have kept the level 1 refinement criterion constant at |u| ≥ 0.007 and run
the simulations with |ux| ≥ 2.5 and |ux| ≥ 4.5 as the level 2 refinement criterion which
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Level 1 refinement criterion Level 2 refinement criterion Required time(s)

|u| ≥ 0.001 |ux| ≥ 0.50 0.376
|u| ≥ 0.007 |ux| ≥ 0.50 0.361
|u| ≥ 0.007 |ux| ≥ 2.5 0.140
|u| ≥ 0.007 |ux| ≥ 4.5 0.093

Table 3.8: Required time for different refinement criteria (Burger’s equation single crest
problem)

are shown by figure 3.22. However, reducing the level 1 criterion does not make a great
difference. On the other hand, changing the gradient value from 0.5 to 2.5 reduces the time
remarkably but when the gradient value is 4.5 the time reduction is also noticeable but the
solution remains similar as expected. So, we choose the simulation with |u| ≥ 0.007 as the
level 1 and |ux| ≥ 5.0 as the level 2 refinement criteria for the discussion and the results
are shown in figure 3.23 . The summary of AMR computations of Burger’s equation for
the single crest case is given in table 3.9.
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(a)

(b)

Figure 3.21: AMR solution for Burger’s equation(single crest problem) with level 1 refine-
ment criterion (a) |u| ≥ 0.001 and (b) |u| ≥ 0.007 and |ux| ≥ 0.5 as the level 2 refinement
criterion for both cases. The step functions indicate the locations of the different level
grids with matching colours
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(a)

(b)

Figure 3.22: AMR solution for Burger’s equation(single crest problem) with level 2 refine-
ment criterion (a) |ux| ≥ 2.5 and (b) |ux| ≥ 4.5 and |u| ≥ 0.007 as the level 1 refinement
criterion for both cases. The step functions indicate the locations of the different level
grids with matching colours
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Figure 3.23: Burger’s equation (single crest problem) AMR solution with |ux| ≥ .007 for
level 1 and |ux| ≥ 5.0 for level 2 refinement criteria. The step functions indicate the
locations of the different level grids with matching colours
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Number of grid points in level 0 grid 100
Number of time steps in level 0 1000
Refinement ratio 4
Level 0 grid space width .01
Level 0 grid time interval 0.001
Maximum level of refinement 2
Level 1 refinement criteria |u| ≥ 0.007
Level 2 refinement criteria |ux| ≥ 5.0
Required computational time 0.078s

Table 3.9: Summary of AMR computation for Burger’s equation (single crest problem)

At the time t = 0.125 a small level 2 clusters can be seen covering the high gradient area
of the solution. The scenario is similar at t = 0.25, t = 0.50 and t = 0.975. However, the
level 2 refinement area is very small at time t = 0.25, t = 0.50 and t = 0.975 because high
gradient regions are very small at these times which are also shown by figure 3.17. In figure
3.22(a) two level two clusters can be found for small level 2 refinement criterion. The level
1 and level 2 grids are changing dynamically with respect to time over the computational
domain and these dynamic changes of the different level grid make the code performance
faster and efficient than the uniform grid solution.

In figure 3.24 the AMR solution is compared with the highest resolution single grid
solution. In this figure both the highest resolution solution and the solutions achieved by
AMR code are plotted at the same time. The highest resolution solution matches with
the AMR solution nicely. This validates the claim that AMR solution can produce high
resolution solution.
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Figure 3.24: AMR solution comparison with highest resolution single grid solution(
Burger’s equation single crest problem)

It can be seen from table 3.9 that the required time for the AMR computation is 0.078
second which is the average time obtained from 10 simulations. The required time for the
highest resolution solution is 0.701 second. So, AMR computation is not as costly as the
highest resolution solution. In this case the AMR solution is not faster than the level 0
grid solution or even the level 1 single grid solution (400 grid cells and 4000 time steps).
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The solution is more than 8 times faster than the highest resolution single grid solution
and produces the finest resolution (1600 grid cells and 16000 time steps) solution. So, still
the performance of the AMR code is satisfactory. Finally, the AMR code performance is
satisfactory since it is producing highly accurate numerical results with less computational
effort. One more point should be noted that the solution will perform better in case of
long domain problems. In this experimental case the computational domain is not very
long. However, still optimization can be possible to reduce the computational cost. The
refinement ratio can be taken small or the value taken as refinement indicator for each
level can be increased to get more time efficient solution.

3.2.2 Double crest problem

In this section we are going to demonstrate the performance of our code for double crest
problem. This problem is slightly different than the previous problem since the starts with
two crests one of them is large and another is small. Steep shock can be seen for both
the crest but with time the solution behaves like single crest problem. We are going to
investigate these characteristics with our AMR code. For this problem the initial condition
is

u(x, 0) = e−120.0(x−0.3)2 + 0.3e−50.0(x−0.6)2

where 0 ≤ x ≤ 1 and 0 ≤ t ≤ 1 and the single grid boundary conditions are u(0, t) = 0 =
u(1, t) and ν = 0.001 as before.

3.2.2.1 Double crest problem solution on uniform grid

Now our computation starts with two crests. The problem is not too much different than
the previous single crest problem. In figure 3.25 the numerical solution with 100 grid
cells and 1000 time steps is shown. The discretization scheme is similar to the previous
problem. Some expected behaviour of the solution can be observed which we have seen in
the previous problem also. From figure 3.25 we can see that the solution is not smooth
and it is breaking at the top shortly after time t = 0.125. The magnitude of ν is small
similar to the previous problem. So, strong nonlinear effects can be visible in the solution.
The solution contains steep shocks that can not be resolved by the coarse grid.
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Figure 3.25: Burger’s equation single grid solution with n=100 (double crest problem)

The gradient at different portion at different time is shown in figure 3.26. From this
figure it can be observed that the maximum magnitude of the absolute value of the gradient
is not static. At time t = 0.125 the magnitude was around 50 which becomes greater than
60 at time t = 0.3 which again reduces around 30 at t = 0.625. However, at t = 0.975
it rises again. So, to cover the area where the gradient is changing over time in different
portions of the computational space we are going to put the finest resolution in the high
gradient areas.
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Figure 3.26: Gradient at different time ( Burger’s equation double crest problem)

We also ran our code with 400 grid cells with 4000 time steps and 1600 grid cells with
16000 time steps. The solutions have plotted in the figure 3.27 and figure 3.28 respectively.
The accuracy of the solution increased a lot. The solution with the finest resolution is very
smooth as expected.
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Figure 3.27: Burger’s equation single grid solution with n=400 (double crest problem)

Figure 3.28: Burger’s equation single grid solution with n=1600 (double crest problem)
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The highly accurate solution is costly. The time changing is shown in figure 3.29. We
can see that it follows a similar pattern as for the single crest problem. The details of three
of the simulations are given on table 3.10.

Figure 3.29: Required time for different single grid solution (Burger’s equation double crest
problem)

Number of grid Points Time steps ∆x ∆t Required time(s)
100 1000 0.01 .001 0.017
400 4000 0.0025 0.00025 0.087
1600 16000 0.000625 6.25× 10−5 0.708

Table 3.10: Required computational time for different grid resolution for Burger’s equa-
tion(double crest problem)

3.2.2.2 Burger’s equation (double crest) solution with AMR

Figure 3.32 depicts the AMR solution for the double crest problem. The solution is smooth
and visually accurate. We take 100 grid cells and 1000 time steps for the level 0 computa-
tion. The refinement ratio is 4. The refinement criteria for level 1 is the same as the single
crest problem. We have done some similar analysis to choose the refinement criteria. The
idea for level 1 refinement criterion is similar to the other problems. The gradient is also
very high for this problem and we have two crests in this case. So for getting the desired
results we need to consider the change for both the crests. By observing figure 3.26 we
choose to keep the gradient value greater than 0.5 for level 2 refinement criterion to start
our simulations. The summary of the simulation run with different refinement criteria is
shown in table 3.11.
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Level 1 refinement criterion Level 2 refinement criterion Required time(s)

|u| ≥ 0.001 |ux| ≥ 0.5 0.472
|u| ≥ 0.005 |ux| ≥ 0.5 0.460
|u| ≥ 0.005 |ux| ≥ 3.5 0.125
|u| ≥ 0.005 |ux| ≥ 4.5 0.111

Table 3.11: Required time for different refinement criteria (Burger’s equation double crest
problem)

From table 3.11 it can be seen that the slight increase of level 1 refinement is not
very time effective while increasing the value of the gradient criterion makes a noticeable
difference in the required time. The solution with |u| ≥ 0.001 as the level 1 refinement
criterion and |u| ≥ 0.005 as the level 1 refinement criterion are shown in figure 3.30(a) and
figure 3.30(b) respectively where the level 2 gradient refinement criterion (|ux| ≥ 0.5) is
same for both figures. Figure 3.31 shows the AMR solution for two different level 2 criterion
( |ux| ≥ 3.5 and |ux| ≥ 4.5 ) with the level 1 refinement criterion fixed at |u| ≥ 0.005. The
results are similar and for the comparison and further discussion we choose |u| ≥ 0.005 and
|ux| ≥ 5.0 as our level 1 and level 2 refinement criterion respectively for further discussion
and comparison and the AMR solution with this set up is shown in figure 3.32. The
summary of the AMR solution is given in table 3.12. It can be seen from figure 3.32 that
at time t = 0.125 there is only 1 cluster in level 2 contained in level 1. The number of
cluster is remain same at time t = 0.30 and t = 0.975. It is also noticeable that the size
of the level 2 cluster is very small compared to the solution with large level 2 refinement
criterion. At time t = 0.625 we can see two level 2 cluster. The AMR solutions with
different values of refinement criteria are shown in figure 3.30 and 3.31 where we can see
multiple large level 2 clusters at different times. In the end the two crests disappear and
we get a similar shape which we achieved for the single crest problem and it can be seen
that a very small portion of the solution is covered by the level 2 computation while the
level 1 grid covers a large portion of the computational domain.
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(a)

(b)

Figure 3.30: AMR solution for Burger’s equation(double crest problem) with (a) |u| ≥
0.001 and (b) |u| ≥ 0.005 as the level 1 refinement criterion and |ux| ≥ 0.5 as the level
2 refinement criterion for both cases. The step functions indicate the locations of the
different level grids with matching colours
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(a)

(b)

Figure 3.31: AMR solution for Burger’s equation(double crest problem) with (a) |ux| ≥ 3.5
and (b) |u| ≥ 4.5 as the level 2 refinement criterion and |u| ≥ 0.005 as the level 1 refinement
criterion for both cases. The step functions indicate the locations of the different level grids
with matching colours
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Figure 3.32: AMR solution for Burger’s equation (double crest problem) and with |u| ≥
0.005 as the level 1 and |ux| ≥ 5.0 as the level 2 refinement criterion. The step functions
indicate the locations of the different level grids with matching colours
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Number of grid cells in level 0 grid 100
Number of time steps in level 0 1000
Refinement ratio 4
Level 0 grid space width .01
Level 0 grid time interval 0.001
Maximum level of refinement 2
Level 1 refinement criteria |u| ≥ 0.005
Level 2 refinement criteria |ux| ≥ 5.0
Required computational time 0.109s

Table 3.12: Summary of AMR computation for burger’s Equation (double crest problem)

The highest resolution uniform grid and AMR solution (with |u| ≥ 0.005 as the level 1
and |ux| ≥ 5.0 as the level 2 refinement criteria) are compared in figure 3.33. The highest
resolution solutions agrees with the AMR solution. We can see that the computational cost
reduced a lot here since the required time 6 times faster than the highest resolution single
grid solution. The performance of the AMR code for this problem is similar to the single
crest problem. The performance here can also be increased by modifying the refinement
criteria or the refinement ratio. But the overall performance of the code is satisfactory for
solving Burger’s equation.
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Figure 3.33: AMR solution comparison with highest resolution solution (Burger’s equation
double crest problem)
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3.3 Solution of Regularized Long Wave (RLW) equa-

tion

In this section numerical simulations of the interesting Regularized Long Wave (RLW)
equation using AMR code will be discussed. The RLW equation is an alternative form of
the KdV equation. In the study of nonlinear and dispersive wave equation it is used to
describe some important phenomena such as shallow water waves or ion-acoustic plasma
waves. However, an analytic solution of the RLW equation can be achieved only for
restricted initial and boundary conditions. So, numerical solutions are often required. The
RLW equation is

ut + ux + uux − utxx = 0

If x is the spatial variable then the for xa ≤ x ≤ xb the boundary conditions are

u(xa, t) = 0

u(xb, t) = 0

for 0 ≤ t ≤ Tf inal. So, we will get some solitary wave solutions and the AMR code will be
used for the simulation of RLW equation. Two cases will be investigated in this section.
For the first case we will simulate the propagation of the solitary wave.

3.3.1 Propagation of single solitary wave

The theoretical solitary wave solutions of the RLW equation have the form

u(x, t) = 3C sech2
(
k(x− x0 − vt)

)
(3.3)

where v = 1 +C is the propagation speed of the solitary wave, 3C is its amplitude and

x0 is the location of the peak at t = 0. The width of the wave is determined by k =
1

2

√
C

1+C
.

We use this as our initial wave at t = 0. As we mentioned earlier about the properties
of the solitary-wave and this wave will propagate from left to right with a constant phase
speed over time in the solution interval [xa, xb]. For this problem the solution domain is
−30.0 ≤ x ≤ 100.0 for the time period 0 ≤ t ≤ 40 with parameter C = 1

3
. In figure 3.34

the theoretical solitary wave solution is shown.
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Figure 3.34: Theoretical solution of solitary wave solution

3.3.1.1 Solitary wave solution on uniform grid

In figure 3.34 the solutions are plotted at several times. It can be seen that the wave is
propagating without changing shape or amplitude over time. The amplitude is 1.0 for all
time. This property was observed in the case advection equation however in this case the
propagation speed v depends on the wave amplitude. The balance between the nonlinearity
and dispersion makes it possible for the wave to maintain its shape. Similar behaviour is
expected from the numerical solution of the RLW equation with our initial condition.
The discretization scheme derived earlier is used for all the numerical simulations with or
without AMR. It was similar to the approach of [17].

In figure 3.35 the solution with 200 grid points and 2000 time steps is shown. The
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Figure 3.35: Numerical solution of RLW equation (solitary wave propagation) with n=200

amplitude increases with time and to the left of the wave the values of u become negative
as can be seen at times t = 30 and t = 38. In figure 3.36 the error plot is shown. The
formula mentioned below is used for the calculation of the errors.

error =| uanalytic − uapproximate |
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Figure 3.36: RLW equation (solitary wave propagation) solution error in single grid with
n=200

From figure 3.36 an error pattern can be seen. The error increases with time and the
pattern does not remain exactly the same for all the time. The error pattern at t = 10 and
t = 38 are different. In the next two simulations the resolution is refined. In figure 3.37
the solution and error with 800 grid points and 8000 time steps are shown. Similarly, in
figure 3.38 the solution and error with 3200 grid points and 32000 time steps are shown.
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(a)

(b)

Figure 3.37: Numerical solution of RLW equation (solitary wave propagation) with (a) 800
grid points (b) Solution error in single grid with n=800
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(a)

(b)

Figure 3.38: Numerical solution of RLW equation (solitary wave propagation) with (a)
3200 grid points (b) Solution error in single grid with n=3200
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In figure 3.37 it can be clearly observed the improvement of the quality of solution
due to the error reduction. The error pattern remain the same. However, the maximum
magnitude of error at time t = 38 is below 0.02 (the scale is different in error plots 3.36-
3.38). The solution has improved significantly with 3200 grid points and 32000 time steps.
The maximum error at time t = 38 is below 0.005 so the numerical solution is very close
to the theoretical solution. In figure 3.35 the amplitude has crossed the line y = 1 at
time t = 38 and this scenario has improved with high resolution solution. So, we have
a good improvement with increased resolution. This solution improvement has increased
computational time. The required time as a function of the number of grid shown in
figure 3.39. However, required times have increased significantly with finer resolution and
the increment is expected with little bit fluctuation. The time is increasing between two
consecutive grid is proportional to their ratio. Detailed information is presented for three
simulations in table 3.13.

Figure 3.39: Required time for the different single grid solution ( solitary wave propagation)

Number of grid Points Time steps ∆x ∆t Required time(s)
200 2000 0.65 0.02 0.368
800 8000 0.1625 0.005 0.930
3200 32000 0.040625 0.00125 6.117

Table 3.13: Required computational time for different grid resolution for RLW equation
(solitary wave propagation)
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3.3.1.2 Single solitary wave solution with AMR

In this section we will present the AMR solutions. 200 grid points and 2000 time steps
were used on the level 0 grid. The refinement ratio is 4 and as before the refinement is
done for both time and space. The geometric property (solution cut-off value) is taken
as refinement criteria. Some computations were run using different values of refinement
criteria. In figure 3.40 the AMR solution with |u| ≥ 0.005 as the level 1 refinement criterion
and |u| ≥ 0.40 as the level 2 refinement criterion is shown. The results with the same level
2 refinement criterion but increasing the level 1 refinement criterion to |u| ≥ 0.01 is shown
in figure 3.43. The results are similar and the time reduction is not very significant. Now
keeping level 1 refinement criterion |u| ≥ 0.01 the AMR solutions using |u| ≥ 0.45 and
|u| ≥ 0.50 as the level 2 refinement criteria are shown in figures 3.41 and 3.42 respectively.
However, the required time has not been reduced significantly. So, for this problem taking
|u| ≥ 0.01 for level 1 refinement criterion and |u| ≥ 0.4 for level 2 refinement criterion for
further discussion and comparison since we have obtained better performance than on the
level 1 and level 2 single grids with this setup. Table 3.14 represents the summary of the
computations with different criteria.

Level 1 refinement criterion Level 2 refinement criterion Required time(s)

|u| ≥ 0.005 |u| ≥ 0.40 0.786
|u| ≥ 0.01 |u| ≥ 0.40 0.769
|u| ≥ 0.01 |u| ≥ 0.45 0.713
|u| ≥ 0.01 |u| ≥ 0.50 0.688

Table 3.14: Required time for different refinement criteria (RLW equation solitary wave
propagation problem )
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Figure 3.40: AMR solution for RLW equation for the propagation of a single solitary wave
with |u| ≥ .005 as the level 1 refinement criterion and |u| ≥ 0.40 as the level 2 refinement
criterion. The step functions indicate the locations of the different level grids with matching
colours
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Figure 3.41: AMR solution for RLW equation for the propagation of a single solitary wave
with |u| ≥ .01 as the level 1 refinement criterion and |u| ≥ 0.45 as the level 2 refinement
criterion. The step functions indicate the locations of the different level grids with matching
colours
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Figure 3.42: AMR solution for RLW equation for the propagation of a single solitary wave
with |u| ≥ .01 as the level 1 refinement criterion and |u| ≥ 0.5 as the level 2 refinement
criterion. The step functions indicate the locations of the different level grids with matching
colours

The summary of the AMR computation is shown in table 3.15.
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Number of grid points in Level 0 200
Number of time steps in Level 0 2000
Refinement ratio 4
Level 0 grid space width 0.45
Level 0 grid time interval 0.02
Maximum level of refinement 2
Level 1 refinement criteria |u| ≥ 0.01
Level 2 refinement criteria |u| ≥ 0.40
Required computational time 0.769s

Table 3.15: Summary of AMR computation for RLW equation (solitary wave propagation
problem)

In figure 3.43 the AMR solutions are plotted at times t = 10, t = 20, t = 30 and t = 38
as we did for the single grid solution. The level 1 refinement criterion is taken very small
(|u| ≥ 0.01). So, the computation starts with 200 grids and 2000 time steps and refinement
is made in time and space with a factor of 4 where the level 1 refinement criterion is met.
So, where the level 1 refinement criterion is met the algorithm computes the solution with
∆x = 0.1125 and ∆t = 0.005 for that region. After completing the computation in level 1
the solution algorithm moves to level 2 and again if the refinement criteria is met then the
algorithm computes the solution with ∆x = 0.028125 and ∆t = 0.00125 for that region.
The grid hierarchy can be found in the AMR solution described in the algorithm. In figure
3.43 it has shown that the level 0 grid solution contains level 1 grid solution and similarly
all level 2 solution is contained by the level 1 solution. So, the grid hierarchy maintained
properly.
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Figure 3.43: AMR solution for RLW equation for the propagation of a single solitary wave
with |u| ≥ .01 as the level 1 refinement criterion and |u| ≥ 0.4 as the level 2 refinement
criterion. The step functions indicate the locations of the different level grids with matching
colours

There is no significant change of amplitude in the propagation of the solitary wave
solution. In figure 3.44 it can be seen that both the AMR solution and the theoretical
solution have agrees. So, the desired level of accuracy has been obtained by the AMR
code.
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Figure 3.44: RLW single solitary wave propagation problem AMR and finest resolution
solution comparison

In table 3.15 it is mentioned that the computational time for AMR solution is only
0.769 second which is very good compared to the highest resolution single grid solutions.
The AMR solution is more than 7 times faster than the single grid solution with 3200 grid
points and 32000 time steps indicating that the highest level of accuracy was obtained
with less computational effort. The most interesting fact that the solution is faster than
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the level 1 single grid solution. The Level 1 single grid AMR solution took 0.930 seconds
which slightly higher than the time required for AMR solution. So, for the solitary wave
problem the AMR code produces faster and better solution which is significant success of
the work of this thesis.

3.3.2 Solitary wave fissioning problem

In this section a different behaviour of a single solitary wave solution will be demonstrated.
In the previous section the propagation of the solitary wave is shown and we have seen that
the solitary wave propagates without changing its shape. However, this situation changes
under some minor changes in the parameters of the initial profile. First of all, consider the
modified initial profile for the RLW equation is

u(x, t) = 20C sech2
(
k(x− x0)

)
(3.4)

where the definitions of v,k are the same. 20C is the amplitude of the wave. Now, for this
test case we take the solution domain to be 0 ≤ x ≤ 250 for the time period 0 ≤ t ≤ 80
with parameter C = 1

30
which is now smaller than the previous example. This initial profile

is a little bit different than the initial condition (3.3). The initial amplitude is less than 1
here but the main difference is that the initial profile is wider than a solitary wave of the
specified amplitude.

3.3.2.1 Solution using uniform grid

Figure 3.45, 3.46 and 3.47 show the numerical solutions with 200 grid points and 2000
time steps, 800 grid points and 8000 time steps and 3200 grid points and 32000 time steps
respectively. It is a little bit difficult to differentiate the solution behaviour at a later
time. So, The solutions at t = 76 with 200,800, 3200 grid points are shown in figure 3.48.
The difference between the solution with 200 grid points and other solution curve is quite
noticeable. The difference between the solution with 800 grid points and 3200 grid points
is not that distinguishable but this difference is very important especially the solution
difference near x = 140.
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Figure 3.45: RLW equation ( wave fissioning problem ) solution with 200 grid points

Figure 3.46: RLW equation ( wave fissioning problem ) solution with 800 grid points
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From these figures it can be seen that the wave front steepens at shortly after t = 24
another wave starts to emerge. In figure 3.47 at t = 76 a second solitary wave is emerging.

Figure 3.47: RLW equation ( wave fissioning problem ) solution with 3200 grid points
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Figure 3.48: RLW equation ( wave fissioning problem ) solution with different grid points
at time t = 76

The behaviour is similar in figure 3.46 and 3.45. However, the solution with 3200 grid
points with 32000 time steps produces more accurate results due to the numerical scheme
which relies on the space and time width. Over time the increment of the magnitude of the
amplitude is a little bit high for the low resolution solution. It can also be noted that after
a long time the solution requires finer resolution since in the low resolution solution the
amplitude becomes too large. The solution gets steep when the gradient is a little bit high
and dispersive characteristic responsible for splitting up the solution. Figure 3.49 shows
the change of gradient and second derivative at different points in the solution domain.
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Figure 3.49: Gradient and second derivative at different points (wave fissioning problem )

In figure 3.49 it is evident that both the magnitude of the gradient and second derivative
increase with time. However, at the point where the gradient is high, the magnitude of the
second derivative is low and vice versa. So, for this problem we will use a combination of
the gradient and second derivative for the level 2 refinement criterion. The required time
for the different single grid solutions is plotted in figure 3.50. Details of the three different
solutions is provided in table 3.16.
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Figure 3.50: Required time for different single grid solution ( wave fissioning problem)

Number of grid Points Time steps ∆x ∆t Required time(s)
200 2000 1.25 0.04 0.366
800 8000 0.3125 0.01 1.285
3200 32000 0.078125 0.0025 5.053

Table 3.16: Required computational time for different grid resolution for RLW equation(
solitary wave fissioning problem ) solution

3.3.2.2 Solution with AMR

For this problem AMR simulation was run with taking 200 grid points as level 0 grid.
Small solution cut-off value is set for the level 1 refinement criterion. Level 2 refinement
criterion selection is challenging and work on finding the appropriate refinement criterion is
underway. However In figure 3.49 we can see the change of gradient and second derivative
at different points. We set the combination of gradient, second derivative, and cut-off
values as the refinement criterion. If the square root of the sum of the square of these
three quantities is greater than or equal 0.1 at any region than the point will be marked
for the level 2 refinement. However, this is not the best refinement criterion for this type
of problem. This criterion is chosen by the observation of some numerical experiments.
The summary of 4 simulations are shown in table 3.17. From this table it can be seen
that the level 1 cut-off value increment reduced the required computational time a little.
Similarly, this trend is also applicable for level 2 refinement criterion value increment.
Figure 3.51 and 3.52 demonstrate the AMR solution with level 1 refinement criterion
|u| ≥ .001 and |u| ≥ 0.01 respectively. For both the case the level 2 refinement criterion
was
√
u2 + ux2 + uxx2 ≥ 0.05. In Figure 3.53 and 3.54 are shown the AMR results with level
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2 refinement criterion
√
u2 + ux2 + uxx2 ≥ 0.07 and

√
u2 + ux2 + uxx2 ≥ 0.1 respectively

and level 1 refinement criterion is |u| ≥ .01 for both cases. For the further comparison
and discussion We choose |u| ≥ .01 and

√
u2 + ux2 + uxx2 ≥ 0.1 as our level 1 and level

2 refinement criterion respectively. The summary of AMR computation is given in table
3.18.

Level 1 refinement criterion Level 2 refinement criterion Required time(s)

|u| ≥ 0.001
√
u2 + ux2 + uxx2 ≥ 0.05 1.152

|u| ≥ 0.01
√
u2 + ux2 + uxx2 ≥ 0.05 1.095

|u| ≥ 0.01
√
u2 + ux2 + uxx2 ≥ 0.07 0.991

|u| ≥ 0.01
√
u2 + ux2 + uxx2 ≥ 0.1 0.898

Table 3.17: Required time for different refinement criteria (RLW equation wave fissioning
problem )
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Figure 3.51: AMR solution for RLW equation (solitary wave fissioning problem ) with
|u| ≥ .001 as the level 1 refinement criterion and

√
u2 + ux2 + uxx2 ≥ 0.05 as the level 2

refinement criterion. The step functions indicate the locations of the different level grids
with matching colours

103



Figure 3.52: AMR solution for RLW equation (solitary wave fissioning problem ) with
|u| ≥ .01 as the level 1 refinement criterion and

√
u2 + ux2 + uxx2 ≥ 0.05 as the level 2

refinement criterion. The step functions indicate the locations of the different level grids
with matching colours
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Figure 3.53: AMR solution for RLW equation (solitary wave fissioning problem ) with
u ≥ .01 as the level 1 refinement criterion and

√
u2 + ux2 + uxx2 ≥ 0.07 as the level 2

refinement criterion. The step functions indicate the locations of the different level grids
with matching colours
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Number of grid points in Level 0 200
Number of time steps in Level 0 2000
Refinement ratio 4
Level 0 grid space width 0.45
Level 0 grid time interval 0.02
Maximum level of refinement 2
Level 1 refinement u ≥ 0.01
Level 2 refinement

√
u2 + ux2 + uxx2 ≥ 0.1

Required computational time 0.898s

Table 3.18: Summary of AMR computation for RLW equation ( wave fissioning problem )

Form the AMR solutions the grid hierarchy can be observed. We can found one level 2
cluster is contained by the level 1 grid which is also contained by level 0 grid.
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Figure 3.54: AMR solution for RLW equation (solitary wave fissioning problem ) with
|u| ≥ .01 as the level 1 refinement criterion and

√
u2 + ux2 + uxx2 ≥ 0.1 as the level 2

refinement criterion. The step functions indicate the locations of the different level grids
with matching colours

From figure 3.55 the agreement between the AMR and highest resolution uniform grid
solution can be seen. So, we achieved the desired results from this.
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Figure 3.55: AMR solution ( with |u| ≥ .01 as the level 1 refinement criterion and√
u2 + ux2 + uxx2 ≥ 0.1 as the level 2 refinement criterion) comparison with finest res-

olution single grid solution

The required computational time for the AMR solution is 0.898 second which is better
than the level 1 (800 grid points and 8000 time steps) uniform grid solution. However,
the AMR code performs more than 5.5 times faster than the level 2 (3200 grid points
and 32000 time steps) uniform grid solution. The objective was to capture the scenario of
nonlinearity and dispersion imbalance using multiple refinement levels which is successfully
demonstrated. In spite of having some restriction in refinement criteria the performance
of the code in this case was satisfactory.
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Chapter 4

Conclusions

A finite volume based explicit AMR code has been developed for the numerical computation
of the linear advection equation and Burger’s equation. Using a similar approach a finite
difference based implicit AMR code has also been implemented for the numerical solution
of the RLW equation. We demonstrated the ability of our code to numerically solve the
wave equations using AMR. The implementation of the data structure is very simple in
our code which worked nicely. We have done several numerical experiments to analyze the
performance of the code which demonstrated that our AMR code produces results with
desired accuracy equivalent to the conventional highest resolution uniform grid solution
with a less computational cost.

In the case of linear advection equation or RLW equation we used very simple refine-
ment criteria for the simplification of our implementation. More sophisticated refinement
criteria can be used. The performance of AMR code for all the simulations including
Burger’s equation is satisfactory. A good agreement can be observed between AMR solu-
tion and the finest resolution single grid solutions. In addition, a significant time reduction
compared to the single grid solutions proves that the code is time efficient. However, the
performance will be much more noticeable in the case of longer domain. Simulation of the
RLW equation is such a case where the domain was longer than the other problems. The
performance was much better than the level 1 uniform grid. Our code successfully imple-
mented the multi level block structured refinement algorithm. We demonstrated that our
code can use multiple levels of refinement with any appropriate refinement criteria during
the computation. Finally, both explicit and implicit solver has met our expectation.

There are several important extensions of this research that need to be mentioned. We
have implemented our code for the one-dimensional case only which can be extended to
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two or three dimensions. However, the higher dimensional extension of this code might be
a bit challenging. The clustering algorithm might need some modification for the higher
dimension. The memory allocation and deallocation should also be taken care of carefully.
The refinement criteria we used are very simple and a more complete investigation of
possible refinement criteria is needed. Using the error extrapolation from different level grid
solutions might be an excellent choice and that work is currently underway. Implementation
of higher order Finite Volume Method or Finite Difference Method can possibly be an
extension for more accuracy. The interaction of two or more solitary waves is also a great
extension to be explored. Finally, this code can be used for some important physical models
such as the simulations of undular bores which are quite dispersive in nature.
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