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Abstract 

In several countries around the world, including Canada, government incentives have been put in place 

to improve the fuel efficiency of vehicles and reduce CO2 emissions. Improvements in composites 

manufacturing technology, such as high-pressure resin transfer molding and quick curing resins, makes it 

practical to lightweight through the incorporation of carbon fiber reinforced polymer (CFRP) parts into the 

body-in-white structure of vehicles. However, the technology has only been realized for small production 

rates and is currently in the developmental phase towards full automation for high-volume production. 

Hence, there is a need to developed and calibrate fabric draping simulations models to support this effort 

and enable the design of CFRP production processes that incorporate cost-effective fabric reinforcement 

material, such as heavy tow unidirectional non-crimp fabric (UD-NCF). This work aimed to expand the 

understanding of the forming behaviour of UD-NCFs, within the context of the development of automation 

capabilities for fabric preforming. The investigation focused on the characterization of the macroscale 

response of a UD-NCF, including an investigating of associated local deformation mechanisms, to calibrate 

a macroscale constitutive model and support the development of a computational fabric draping simulation 

model.  

The fabric characterization consisted of a series of experimental tests that measured the fabric in-plane 

and out-of-plane deformation responses reminiscent of draping operations. The tests were conducted with 

respect to the carbon fiber (CF) tow longitudinal and transverse directions. The experimental tests 

conducted were the longitudinal, transverse, and off-axis extension tests; the picture frame test (PFT); the 

cantilever; and friction sliding test in both material directions. The longitudinal extension and bending 

stiffness were found to be significantly higher than the respective transverse extension and bending 

stiffnesses. Also, at low strains, the fabric transverse extension stiffness was found to be negligible until 

crimping in the transverse glass fibers was removed. Regarding the fabric friction response, the coefficients 

of friction were higher on the stitching fabric side and when sliding occurred in the longitudinal fabric 

direction. Also, an investigation of the fabric mesoscale deformation mechanisms revealed the generation 

of CF tow undulations and intertow gapping, mainly generated by deformation of the stitching, when the 

fabric was subjected to transverse extension and shear deformations. To address difficulties associated with 

sliding of the glass fibers at the clamps during extension and PFT testing a clamping design was proposed 

that fully restrained the glass fibers, while at the same time preventing specimen damage at the grips. 2D 

DIC was used to study the development of strains in the fabric during all in-plane experimental tests. 

Challenges associated with fabric surface texturization and strain measurements through digital image 
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correlation were investigated and addressed to improve the optical strain analysis. A surface texturization 

technique with an oil-based paint was implemented in all tests as it created high contrast speckle patterns 

on the fabric surface and the least amount of fabric deformation interference when compared with two other 

surface texturization techniques.  

Using the experimental results, a macroscale material model, chosen from the existing material model 

library available in the commercial finite element software LS-DYNA® was calibrated to simulate forming 

operations. The material model was calibrated for in-plane and out-of-plane deformation modes in 

accordance with the experimental tests conducted. The material model parameters were identified by 

simulating the experimental tests conducted during the fabric characterization process and an iterative 

inverse parameter identification approach until a good correlation was obtained between the numerical 

simulations and the corresponding physical tests. In most cases, piecewise linear functions were used to 

approximate the experimental test data before entering into the material model. 

Finally, to validate the calibration of the material model, a single-layer 100-mm diameter hemispherical 

test with a displacement controlled punch was performed and simulated using the calibrated material model. 

In addition to the calibrated material model, results from the friction tests were used to define contact 

boundary conditions in the draping simulation model. A good agreement was obtained between the 

simulation predictions of macroscopic deformations observed in the fabric, including contour shape and 

wrinkling, and the experimental results. 
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Chapter 1: Introduction 

1.1 Research motivation 

Recent legislation in the United States, Canada, and Europe [1–4] to economize vehicle fuel 

consumption and reduce CO2 emissions have been established for various classes of vehicles, including 

light duty vehicles (LDV). In response to this initiative, the automotive sector has focused its development 

efforts for LDVs on improving aerodynamic efficiency, developing new efficient powertrain designs, and 

optimizing vehicle body-in-white (BIW) structure for weight reduction [5]. Reduction of the vehicle weight, 

including the BIW structures, is regarded as one of the key factors to improving vehicle fuel economy [6]. 

An effective approach to vehicle lightweighting is to incorporate high-performance fiber-reinforced plastic 

(FRP) composite materials into BIW structures [7]. Advantages of FRP materials compared to conventional 

vehicle BIW structure materials, such as high strength steel and aluminum, include superior specific 

mechanical properties and improved energy absorbing capabilities [8,9], as shown in Figure 1.1.  

 

Figure 1.1. Crash energy absorption of CF composites (far right) compared with common engineering materials and 

structures [10]. 
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Figure 1.2. Carbon fiber reinforced composites integrated in the chassis of the BMW series 7 [4]. 

Owing to its superior performance when compared to conventional vehicle BIW structure materials, 

carbon fiber-reinforced plastic (CFRP) composites have been used in the BIW structures of vehicles. 

Examples in the marketplace include the BMW 7 Series [4] (Figure 1.2) and the Audi A8 [10]. Despite the 

advantages of CFRP materials, their adoption in vehicle BIW structures has been limited to luxury vehicles 

and so-called supercars [11], where the increased material and production costs, and longer processing 

cycle times typical of CFRP materials can be tolerated. Traditional CFRP composite manufacturing 

processes such as autoclave curing of prepreg laminates, resin transfer molding (RTM) and compression 

molding are not conducive to a high-volume production environment. Recent development of new rapid 

curing resins and low-cost carbon fiber fabrics (e.g., heavy-tow non-crimp fabric (NCFs)), along with 

processing technologies such as high-pressure RTM (HP-RTM) [12], offer a strong potential for integrating 

CFRP materials into the BIW structures of high-volume production vehicles by allowing for reductions in 

cost and time required to fabricate CFRP parts.  

Similar to other RTM processes, HP-RTM offers excellent manufacturing benefits such as great 

impregnation quality and low geometric tolerances [13], while rapid automated fabric handling and pre-

forming may enable high-volume manufacturing for composites. Preforming is the first main step in a 

typical HP-RTM process and consists of placing a stack of reinforcing fabric layers inside a preheated mold 

where it is formed before resin is injected into the closed mold. During the preforming step a stack of fabric 

layers may exhibit a variety of defects which can be detrimental to the performance of the CFRP part [14]. 

These defects are dependent on many factors including the specific architecture of the fabric. Unidirectional 

CFRP Wet Compression 
Molding CFRP-Steel Hybrid

CF Sheet Molding 
Compound

CFRP Resin Transfer 
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non-crimp fabrics (UD-NCFs) which do not contain weaving or knitting patterns, are more susceptible to 

exhibiting defects during preforming [15]. Although the deformation of reinforcing fabrics have been 

widely studied to better understand the mechanisms that cause preforming defects, studies of UD-NCF has 

been limited [14,16]. Characterization of these defects would otherwise be useful for calibration of 

corresponding computational models that aim to simulate the fabric preforming process. As such, there 

exists a need to develop a robust computational approach to predict defects associated with the preforming 

of heavy-tow UD-NCFs, and subsequently map these to computational performance simulation models for 

improved prediction fidelity. 

1.2 Research objectives 

Originating from the increasing interest to incorporate CFRPs into LDVs, and to enhance the process 

capabilities of HP-RTM, the overarching research goal of this project was to develop a robust high fidelity 

computational approach to predict defects associated with the preforming of heavy-tow UD-NCFs. The 

main research objectives are summarized as follows: 

 Characterize the macroscale response of a heavy-tow UD-NCF when subjected to multiple 

deformation modes and investigate the corresponding local fabric deformation mechanisms; 

 Calibrate a continuum-based material constitutive model using experimental data generated for the 

UD-NCF;   

 Develop and validate a computational fabric draping simulation model. 

1.3 Thesis outline 

In Chapter 2, a theoretical background and literature review of characterization and modelling of the 

UD-NCF fabric reinforcement is presented to contextualize this research and to explain existing research 

limitations and gaps. In Chapter 3, the methods used to test the mechanical response of the fabric are 

described. In Chapter 4, the numerical methods used to model the fabric material are presented. In Chapter 

5, the results of the experimental and computational studies are presented and compared. In Chapter 6, 

relevant results and findings are discussed. Lastly, conclusions and recommendations are presented in 

Chapter 8. 



 4 

Chapter 2: Background and Literature review 

In this chapter, the characteristics of fiber-reinforced plastic (FRP) composites, with an emphasis on the 

reinforcement phase, are reviewed (Section 2.1). Next, an overview of FRP composites manufacturing 

process methods is presented with an emphasis on HP-RTM and automated fabric preforming (Section 2.2), 

followed by an introduction of the deformation mechanism present during fabric preforming (Section 2.3). 

Finally, a literature survey on characterization of fabric reinforcements and numerical draping simulation 

models is presented in Sections 2.4 and 2.5, respectively. 

2.1. Overview of fiber-reinforced plastic composites 

FRP composites are heterogeneous materials composed of two distinct phases. High strength and high 

stiffness fibers constitute the reinforcement phase, while the polymer matrix phase fills the volume around 

and bonds to the fibers. Designing a high-performance composite part requires an effective combination of 

the mechanical and chemical properties of the fiber and the matrix to form the most efficient material for 

its intended application. An optimal fiber/matrix combination with a strong bond between the phases 

produces an FRP material with enhanced properties compared to the individual constituents; this ability to 

tailor the composite material is a key advantage compared to homogeneous materials [17]. 

For FRPs the matrix phase has several roles, including transferring load to the fibers through the 

fiber/matrix interface, maintaining fibers in their required orientation, protecting the fibers from 

environmental degradation, and defining the part geometry [18]. The matrix phase is typically either a 

thermosetting or thermoplastic polymer, with the former more widely used for structural applications. On 

the other hand, the main role of the reinforcing fibers in structural FRP composites is to support the majority 

of the load carried by the material. Common fiber types used in structural FRP composites include glass, 

boron, carbon, and aramid [19]. Several key characteristics of fibers are known to affect mechanical 

properties and processability of FRPs [18]. For instance, the small diameter of fibers, which contain fewer 

material microstructural units (graphite crystal sheets) and thus a lower probability of defects when 

compared to a bulk material, allows for a high fraction of the theoretical strength to be attained. 

Furthermore, the high aspect ratio (i.e., length/diameter) of fibers results in an increased fiber surface area 

and bonding interface with the matrix in the FRP material, allowing applied loads to be transferred more 

effectively to the fibers from the matrix. Finally, a high degree of flexibility (due to the small fiber diameter) 
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and the ability of fibers to withstand bending without fracture increases the capability of handling and 

forming of a corresponding fabric. 

Carbon fibers, which are the focus of this study, are made from one of two precursor materials, namely 

polyacrylonitrile (PAN) or pitch which is a petroleum by-product [20]. PAN precursors are prefabricated 

polymer filaments supplied in tow form on a spool and are more cost effective than pitch precursors. As a 

result, PAN precursors are more widely used to manufacture high-performance carbon fibers. A typical 

carbon fiber manufacturing process using a PAN precursor is depicted in Figure 2.1. During the first step 

the precursor filaments are stretched to promote alignment of the polymer molecules along the filament 

axes prior to heat exposure. The second step (i.e., oxidization) involves heating the filaments to a relatively 

low temperature in an inert environment to allow for chemical crosslinking between the molecules, while 

tension is maintained to further improve molecular alignment. The carbonization step exposes the 

crosslinked filaments to a higher temperature to drive out non-carbon atoms, thus creating carbon fibers 

with ~92 wt% of carbon. Tension is maintained on the filaments during carbonization to allow the formed 

graphitic planes to align along the carbon fiber axes. The carbon fibers are then heated to higher 

temperatures during the graphitization step under tension to further improve the purity of the fibers (~99 

wt% of carbon) and graphitic plane alignment, resulting in carbon fibers with high strength and modulus. 

Sizing is then applied to the 4-7 µm diameter carbon fibers before a group of fibers, called a bundle or tow, 

is wrapped on a spool. Tows typically consist of 1,000 to 50,000 filaments [18]. 

 
Figure 2.1. Schematic of a typical carbon fiber manufacturing process with a PAN precursor [18]. 

The reinforcement fibers may be classified as either discontinuous or continuous. Discontinuous fibers 

can be either short (< 10 mm) or long (> 50 mm) and are often used in FRPs for secondary structural 

applications. In this case, fiber tows are cut to the desired length for subsequent FRP processing. 

Composites containing continuous fibers have higher load-bearing capacity than those with discontinuous 

fibers [21], while also offering improved impact resistance, lower shrinkage, improved surfaced finish, and 
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enhanced dimensional stability [22]. Continuous fibers are also easy to orient during processing, while the 

orientation of short fibers cannot typically be fully controlled. In most applications, the continuous fibers 

are oriented along multiple directions (i.e., laminates) to provide improved multidirectional material 

properties. Continuous fiber tows may be used directly to manufacture composite parts (e.g., wet filament 

winding or pultrusion processes), to fabricate semi-finished composite materials such as unidirectional tape 

prepregs, or to create reinforcement fabrics. Fabrics can also be used to fabricate prepregs or used with 

many different liquid composite molding manufacturing processes to directly fabricate FRP parts (see 

Section 2.2). There are many types of fabrics used to manufacture FRPs, including woven, multi-axial 

braided, knitted, and stitched non-crimp fabrics (NCF). Woven fabrics have been used most extensively in 

industrial applications, however, NCFs have been increasingly used in recent years [23]. 

Woven fabrics are composed of interlaced fiber tows or yarns that are aligned along two orthogonal 

directions denoted as warp and weft. Several types of 2D woven fabrics can be produced by weaving the 

warp and the weft yarns in different patterns. The most common 2D woven fabrics are plain, twill, and satin 

weave (Figure 2.2). Plain woven fabrics are produced by interlacing the warp and weft threads every time 

they cross during the weaving process. In twill woven fabrics warp-weft interlacing is shifted based on a 

specific pattern; for example, a 2x1 twill interlaces every second thread on one side on the fabric and every 

thread on the other, producing a diagonal mark on the fabric surface [24]. Additionally, 3D woven fabrics 

are produced by interlacing several layers of 2D woven fabrics with through-thickness fiber yarns. A 

combination of the properties of the yarns, the weave pattern, and the friction between filaments make such 

3D fabrics robust materials [24].

 

Figure 2.2. Most common woven reinforcement fabrics [24]. 

Plain Twill Twill 2x2 Satin 5HS 
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Figure 2.3. Schematic of a unidirectional non-crimp fabric. 

Unlike woven fabrics, NCFs do not have interlacing fiber bundles or tows and ideally have no out-of-

plane crimping. Instead, fiber tows within a layer of the fabric are evenly spaced and aligned along a single 

direction, and multiple layers are combined by a stitching process to form a multidirectional NCF. More 

specifically, unidirectional non-crimp fabrics (UD-NCFs) are comprised of a single layer of aligned fiber 

tows that are stitched to one another (Figure 2.3). The pattern of the stitching used to connect the fiber tows 

significantly influences the response of the fabric during FRP part fabrication. Common stitching patterns 

include pillar, cord, satin, and tricot stitching, shown in Figure 2.3. The tricot stitching pattern follows the 

direction of the CF tows, crossing the tow twice on every pitch to attach to the previous layer of stitching 

forming a triangular shape on one face of the fabric. As shown in Figure 2.3, supporting fibers extend 

transverse to the CF tows lying between the tows and the stitching on the opposite face of the fabric. 

UD-NCFs offer several advantages when compared to woven fabrics. Owing to the aligned fiber tows, 

when subjected to tensile loading UD-NCFs undergo a high stiffness response and do not exhibit the initial 

low de-crimping stiffness that is characteristic of woven fabrics [25]. Consequently, corresponding 

composite laminates have improved mechanical properties and energy absorption capabilities [26,27]. 

Additionally, the simplicity of the architecture of UD-NCFs yields a relatively low fabric manufacturing 

cost [28]. An important characteristic that impacts the cost of the fabric is the number of filaments per tow, 

where the cost reduces with increasing number of filaments at the expense of reduced fabric quality. For 

example, in the aerospace sector where the aim is to fabricate the highest quality structures, tows with 1,000 

– 6,000 filaments are generally used while fabrics with 12,000 filaments have also become common [24]. 

More recently, fabrics with 50,000 filaments per tow, which are known as heavy-tow fabrics, have been 

used for automotive applications where cost is more critical. For example, heavy-tow UD-NCFs have been 

used for structural and energy-absorbing components in vehicles [9,29–31]. 

Despite their excellent mechanical properties and relatively low cost, heavy-tow UD-NCFs may be 

difficult to handle during processing of FRP components, where the integrity of the fabric architecture can 
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be impacted [32]. Another challenge is the ability to drape the fabric into complex shapes while conserving 

the fabric architecture and desired fiber orientation. Forming of the fabric is an important step for liquid 

molding FRP fabrication processes (see Section 2.2). Furthermore, heavy-tow UD-NCFs are composed of 

multiple discrete constituents which undergo complex interactions when the fabric is deformed, thus 

characterizing and modeling their response is challenging. Many factors influence the mechanical response 

of fabrics, such as the fiber properties and the characteristics of the fabric architecture at multiple relevant 

length scales. Fabrics can be analyzed at three length scales, namely macro, meso, and micro-scale [33], as 

shown in Figure 2.4 for a UD-NCF containing carbon fiber tows and stitching threads. At the micro-scale, 

individual carbon fiber filaments in the tows as well as stitching filaments are visible. At the meso-scale, 

the carbon fiber tows and stitching threads comprise the observed discrete fabric architecture, where 

deformation of the fabric involves contact and friction forces between the fabric tows and the stitching 

threads. At the macro-scale, the fabric is perceived as a continuum and homogeneous material where only 

distinctions in directional properties are considered. These properties are typically incorporated through 

constitutive relations [34].  

 

Figure 2.4. Multi-scale nature of a unidirectional non-crimp fabric. 

2.2. Manufacturing methods for continuous FRP composites 

Manufacturing methods for FRPs can be classified based on the mold type: open, closed and other 

processes, as shown in Figure 2.5. In open-mold processes the fabric and resin are placed on a single-sided 

mold before resin curing starts, while in close-mold processes raw materials are placed in a double-sided 

mold and resin curing takes place under pressure. 
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Figure 2.5. Classification of continuous FRP composite manufacturing processes. 

Continuous FRP composite manufacturing processes that use liquid resin to impregnate a fabric preform 

stack in a closed mold are called Liquid Composite Molding (LCM) processes[35]. LCM processes can be 

used to produce high-quality parts with complex shapes, thus, have become popular in the aerospace and 

automotive industries. Common LCM processes include resin transfer molding (RTM), resin infusion 

molding and wet compression molding (Figure 2.5). RTM has become a widely used FRP composite 

manufacturing process during the past two decades [13,36]. During a typical RTM process, the dry fabric 

preform is placed in the cavity of a closed mold where premixed molten resin is injected under pressure 

allowing for wetting of the fabric layers prior to curing and hardening of the near net shape composite part 

(Figure 2.6). Resin injection typically takes place under low pressures, allowing the displaced air to escape 

the mold cavity through vents to avoid dry spots and to minimize void formation [37]. RTM cycle times 

vary from several minutes to hours [38],  mainly dependent on part thickness, resin type and processing 

temperature. Despite the inherently long cycles times, the benefits of the RTM process include the ability 

to produce high quality geometrically complex parts with tight tolerances and high repeatability. Thus, 

RTM is regarded as a cost-effective process and has attracted the interest of the automotive industry [18]. 

However, although the manufacturing process is relatively simple and fabrication is cost-effective, the 

initial setup cost may be high and parts are limited to small or medium sizes [39]. 

 

 
Figure 2.6. Main processing steps during RTM composites manufacturing [40]. 
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To address the limitations of the RTM process, a process variant known as high pressure resin transfer 

molding (HP-RTM) was recently developed [41]. The main differences with respect to conventional RTM 

are that highly reactive resin and hardener components are rapidly mixed immediately prior to being 

injected into the closed mold at high pressures and flow rates using a costly metering unit with a mix head. 

The resulting high mold cavity pressures require large presses to maintain the tool in a shut and sealed 

position during resin injection. Notwithstanding, due to rapid resin injection rates and the development of 

highly reactive fast-curing resins, HP-RTM cycle times are reduced to minutes [12,42], while higher 

injection pressures lead to improved part surface finish and higher attainable fiber volume fractions.  

Despite the feasibility of HP-RTM technology for high volume production applications, further 

advances must be made to reduce production costs. Automation of the HP-RTM process offers the best 

opportunity to reduce production costs and further reduce cycle times for high-performance composite parts 

[43]. Opportunities for automation lie in operations such as dry fabric preforming and handling, as well as 

demolding and trimming of the cured part (see Figure 2.7 for automated HP-RTM process).. Automation 

of the fabric preforming process may cause defects that can lead to further problems during the resin 

infiltration process and ultimately reduced part performance [44]. Common defects observed during fabric 

preforming are fiber misalignment, out-of-plane wrinkling, and fiber and tow gapping [16]. Owing to the 

importance of the HP-RTM process fabric preforming step on the quality of an FRP composite part, there 

is a need to account for the potential defects associated with this process when designing FRP parts for high 

volume production applications. In particular, fabric draping simulations can be used to predict potential 

fabric preforming defects or to optimize the preforming process [13]. 

 

Figure 2.7. Step-by-step sequence of an automated HP-RTM manufacturing process from dry fabric to finish part 

[13]. 
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2.3. Fabric reinforcement deformation modes during preforming 

Characterization of fabric reinforcements is typically performed to calibrate constitutive models 

required for numerical draping simulations at the macro- [45], meso- [46], and micro- [47] scales, with 

macroscale material models being favoured for component-level draping simulations. The main goal of the 

characterization process is to understand the underlying deformation mechanisms that occur during fabric 

deformation and the effects of individual and combined deformation modes. Incorporating the deformation 

behaviour of fabrics into numerical draping simulation models requires a detailed characterization of the 

different fabric deformation modes as well as the interaction between these modes. The macroscopic 

deformation behaviour of fabrics is dependent on the fabric architecture and the interaction between the 

corresponding fabric components. During a preforming process, fabrics are primarily subjected to tensile, 

shear, and bending deformations (see Figure 2.8).  

 

Figure 2.8. Primary modes of deformation of fabric reinforcement during preforming: (a) in-plane tension, (b) in-

plane shear, (c) out-of-plane bending. 

When modeling biaxial fabrics (fabrics with fibers oriented along the two material directions), the strains 

in the fiber directions may be considered low given the high stiffness of the fibers [48]. Although this 

approximation could be challenged for woven fabrics being draped around corners with small radii [24], in 

most cases strains in the fiber directions can be considered negligible. In contrast, the shear deformation 

response of fabrics is regarded as the most critical during draping [49–51] (see Figure 2.9). The lower the 

shear stiffness of a fabric, the more readily the fabric will conform to mold curvatures. If the shear rigidity 

is not low enough, the fabric will not conform to the mold, and distortion will easily occur. On the other 

hand, a shear rigidity that is too high could prevent the fabric from forming [52]. In the case of unidirectional 

fabrics, a low stiffness knitted stitching is the main load-bearing component in the direction orthogonal to 

the fiber direction, hence, large transverse strains can be reached during draping [48]. Thus, contrary to 

biaxial fabrics the in-plane deformation modes of UD-NCFs are dominated by transverse extension and 

shear (Figure 2.9) [48]. 
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Figure 2.9. Comparison of in-plane deformation modes for bi-axial fabrics and unidirectional fabrics under the 

assumption of inextensible fibers [48]. 

The second most relevant deformation mode for woven fabrics is bending. On the positive side, bending 

enables contouring the fabric around curvatures, however, it could also cause undesirable wrinkling. Fabric 

fibers are thin structures with extremely small thickness to length ratios; consequently, they are prone to 

wrinkling. Additionally, the tendency to wrinkle is exacerbated by their fibrous nature, which causes inter-

ply sliding and reduces their through-thickness transverse shear stiffness [53,54]. A peculiar characteristic 

of UD-NCF is the tendency to generate two types of wrinkling modes during forming: macroscopic and 

mesoscopic wrinkling. Macroscopic wrinkling is primarily instigated by negligible bending stiffness in the 

transverse direction, creating wrinkles that run parallel to the carbon fiber direction. On the contrary, 

mesoscopic buckling is induced by tension in the stitching web that creates crimping or undulations in the 

CF tows [16]. Generally, out-of-plane and in-plane wrinkles are common and undesirable in forming 

processes. Thus, the identification of forming parameters to prevent wrinkles and preserve the mechanical 

performance of the reinforcement is critical in composites design [55]. 

Friction also plays an important role in fabric forming modelling. Inter-tow friction behaviour is of 

interest in mesoscale models, while inter-ply and ply-tool friction are relevant for macroscale models [56]. 

For woven fabrics, yarn friction at cross-over point locations is observed during draping, while for UD-

NCFs inter-tow and stitching-tow friction is prevalent (Figure 2.10). Even micro-scale kinematic factors, 

such as fiber rotation during shear deformation, play an important role in fabric deformation behaviour [57]. 
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Figure 2.10. (a) Woven fabric cross-over point contact [58] and (b) UD-NCF inter-tow and tow-stitching contact [48]. 

Although necessary for draping, tensile, shear, and bending deformations may cause defects in the fabric 

that can be detrimental to the mechanical performance of the final FRP composite part [43,59]. For example, 

excessive in-plane shear can cause the fabric tows to compact or crimp, introducing local variations in tow 

orientation or fiber volume fraction [16]. Likewise, in-plane tension deformation of the fabric can cause 

tow gapping, while out-of-plane bending can cause wrinkling [60]. These defects can also influence the 

resin infiltration process [43]. In particular, tow gapping can cause variations in local fiber volume fraction 

which varies the fabric permeability. Fabric regions with a low fiber volume fraction can lead to race 

tracking during resin infiltration, which in turn could cause voids in the composite part [43,61]. On the 

other hand, regions with a high fiber volume fraction can limit fiber wetting and reduce fabric permeability, 

potentially causing dry regions in the composite part. 

Although the generation of fabric alterations or defects is practically unavoidable during the preforming 

process, it is crucial to develop digital tools with defect prediction capabilities that can incorporate 

distortions generated during the preforming process [43]. An effective draping numerical model would 

enable the design of preforming processes that control defect generation, fiber volume fraction, and 

orientation, as well as the final geometric shape of the preform [62]. Therefore, the importance to 

mechanically characterize fabric reinforcement materials, and friction properties with respect to molds and 

other fabric layers, to enhance the predictive capabilities of draping defects associated with the preforming 

processes. 

Contact zone

Inter-tow and stitch-tow 

contact
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2.4. Characterization of fabric reinforcements 

2.4.1. Common fabric characterization tests 

There exist no test standards for characterizing reinforcement fabrics; however, a number of tests have 

been commonly employed to characterize the fabric deformation modes discussed in Section 2.3. For 

woven fabrics, characterization of the longitudinal and transverse tensile behaviour is conducted by 

measuring the load response along the direction of the two orthotropic warp and weft axes, as shown in 

Figure 2.11. Similarly, for UD-NCFs extension tests along or perpendicular to the fabric tow direction have 

been employed (see Figure 2.3) [16,48]. 

 
Figure 2.11. Schematic of the warp (longitudinal) and weft (transverse) orthotropic axes of woven fabrics [63]. 

Two common tests have emerged for characterizing the in-plane shear response of fabrics, namely the 

picture frame test (PFT) [49–51] and the bias extension test (BET) [16,51,64]. When applied to UD-NCFs, 

the BET is referred to as the 45⁰ off-axis extension test [16,65]. During the PFT, a tensile force is applied 

to opposite corners of an initially square frame, causing the frame to deform from a square into a rhomboid, 

ideally imposing a pure shear stress state on the fabric specimen (Figure 2.12). On the other hand, the 45⁰ 

off-axis extension test consists of pulling a rectangular piece of fabric, arranged such that the primary fabric 

axes are initially oriented at a 45° bias from the loading direction. Woven fabrics are known to develop 

three distinct shear strain regions during a BET, A, B, and C, as seen in Figure 2.13a. Theoretically, if there 

is no slip between warp and weft yarn, and assuming yarns are inextensible, the deformation in regions A, 

B, and C, correspond to full, half, and no shear deformations, respectively [51,66]. For UD-NCFs, the fabric 

is oriented at a 45⁰ bias from the loading direction, producing two shear regions in the fabric: regions D and 

E, as shown in Figure 2.13 [65]. 

(a) (b)
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Figure 2.12. Schematic of the deformation kinematics of a fabric specimen during the picture frame test (PFT)[67] 

and a PFT fixture [68]. 

 

Figure 2.13. Schematics of the (a) bias extension test for woven fabric and (b) the 45° off-axis extension test for UD-

NCFs [65]. 

There are advantages and disadvantages to both the PFT and the 45⁰ off-axis extension test. While the 

PFT is aimed at subjecting the fabric specimen to a pure shear deformation, it is difficult to impose this 

condition in a repeatable manner. Hypothetically, the PFT applies homogenous shear deformation 

throughout the specimen; however, certain assumptions must be met for this hypothesis to be true. First, 

clamping of the specimen must hold the fabric in a way that prevents slippage and does not introduce pre-

tensioning during installation on the test frame. This boundary condition is difficult to achieve, as 

recognized by Harrison et al. 2004 [51] and Cao et al. [68], and can introduce anomalies in the shear force 

response since the test setup is highly sensitive to the pre-conditioning or misalignment of the specimen in 

the frame. Also, overtightening or non-uniform clamping conditions on the PFT specimen can lead to 

spurious tensile loads within the fabric [69]. Another requirement for a valid PFT is that the specimen must 

stay aligned with the plane of the frame, i.e. there cannot be out-of-plane deformation [68]. This requirement 

can be challenging to meet due to the reduction of specimen surface area experienced during the PFT. 

(a)
(b)

w0

(b)(a)
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Despite the challenges associated with the implementation of the PFT, one advantage is that the deformation 

imposed on the specimen is similar to that seen during actual fabric forming [51]. However, due to the 

challenges associated with the PFT, the BET and 45⁰ off-axis extension tests are preferred for the 

characterization of the shear response of woven and UD-NCFs [16,68,70].  

Akin to characterizing the shear response of reinforcement fabrics, characterization of the bending 

response of fabrics is equally challenging. The bending stiffness of orthotropic fabrics cannot be deduced 

from the Young’s modulus, as is done for isotropic materials, thus, dedicated tests are required to 

characterize the macroscopic bending response of fabrics. The cantilever test (Figure 2.14a) has been 

typically used for capturing the linear bending behaviour of fabrics [60], while the Kawabata bending test 

(Figure 2.14b) has been used to characterize the nonlinear (or inelastic) bending response of fabrics [29,71]. 

Non-linearities have been identified in the bending stiffness of reinforcement fabrics, with a tendency for 

decreased stiffness with increased curvature [71,72]. However, the simplicity of implementation and data 

interpretation are the main advantages of the cantilever test, and in many cases, an elastic approximation of 

bending is sufficient for numerical model calibration [16]. 

 
Figure 2.14. (a) Images of a cantilever test used to characterize the bending behaviour of a woven glass fiber fabric 

[73] and (b) a Kawabata bending test fixture [71]. 

Characterization of the friction properties of fabrics is also important when for defining the boundary 

conditions in draping simulation models. The Kawabata surface tester (Figures 2.15a and 2.15b), which 

was originally developed to measure the surface properties of fabric garment, has been implemented for 

reinforcement fabrics [74]. In other studies, custom testing apparatus were developed to replicate the fabric 

forming process conditions [75]. These test apparatuses typically consist of one or two contact surfaces, 

with a known normal contact force, sliding relative to each other (Figures 2.15c-e). 

(b)(a)
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Figure 2.15. (a and b) Kawabata surface tester (KES-FB4) machine [76]. (c) Custom fabric holder and schematics of 

the custom friction test module with a (d) single and (e) double contact surfaces [75]. 

2.4.2. Fabric characterization studies 

A number of researchers have reported the results of studies focused on characterizing the tensile 

properties of woven fabrics [55,68,77–82]. Jearanaisilawong [79] characterized the tensile properties of a 

plain woven aramid fabric as well as the fabric constituents (i.e., fibers and yarns). Although Young’s 

modulus remained constant for the fiber, yarn and fabric, the ultimate tensile strength decreased and the 

strain to failure increased with increasing scale and complexity (i.e., fiber to a fabric) (see Figure 2.16). The 

different stress-strain behaviours correspond to variations in the deformation mechanisms. For the fabric 

the most complex tensile response was governed by yarn decrimping, followed by stretching of yarns in 

the loading direction. Similar findings were reported in References [46,83]. In general, the tensile properties 

of woven fabrics are governed by the number of yarn crossover points and the associated fiber undulation 

which are influenced by the weave pattern. For instance, satin woven fabrics exhibit superior tensile 

properties compared to equivalent plain weave fabrics due to notably fewer yarn crossover points [84]. 

(a) 

(b) 

(c) 

(d) (e) 
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Figure 2.16. Tensile test (a) stress-strain response of a woven fabric, yarn and fiber, and (b) tensile test fixture [85]. 

Characterization of the in-plane shear response of woven fabrics has been the focus of many studies 

since shear deformation is the primary forming mechanism for draping woven fabrics over double-curved 

geometries [49,77,80,86–91]. To overcome some of the challenges with the PFT (see Section 2.4.1), some 

studies considered different configurations of boundary conditions applied to woven fabric specimens. [82] 

and [92] experimented with removing the weft yarns in the specimen that were adjacent to the clamps, 

relaxing any pre-tensioning that may have been introduced by the clamping process (see Figure 2.17a). 

Another PFT variation was introduced by Nosrat-Nezami et al. [93] where needles were used instead of 

grips to permit yarns to rotate freely during the test (see Figure 2.17b), hence avoiding yarn bending nearby 

the clamped boundaries. In general, these considerations provided a means to accurately capture the pure 

shear response of woven fabrics. 

When woven fabrics are draped over a double-curved surface, variations in the angle between adjacent 

perpendicular yarns are a measure of shear deformation or shear angle [93]. The typical macroscale force 

response of woven fabrics with increasing shear angle is characterized by an s-shape profile with four 

distinct regions: static friction, dynamic friction, locking and wrinkling, as illustrated in Figure 2.19. When 

a plain-weave fabric is subjected to large shear angles, the associated macroscopic force response comes 

from the friction occurring at the crossover points between the warp and the weft yarns, and compression 

of the yarns, as seen in Figure 2.18. If the shear angle increases further, the compression of the yarns reaches 

a peak angle that marks the onset of wrinkling; this is called the critical locking angle [84]. In the case that 

shear deformation is exerted to a pre-tensioned fabric, the material shear stiffness increases as a result of 

the increased friction dissipation energy at crossover points, prompted by the increased tension in the yarns 

(see Figure 2. 19) [77]. 

(b) 
(a) 
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Figure 2.17. PFT boundary conditions: (a) Bolted clamp with removed transverse yarns [82] and (b) needle bar clamp 

with linear bearing and tensioner [93]. 

 

Figure 2.18. Images of a woven fabric under pure shear at a shear angle of (a) 32⁰ and (b) 50⁰ [82]. 

Removed fabric yarns 

(a) (b) 

(a) 
(b) 
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Figure 2.19. Typical shear response of a woven fabric with and without pre-tension identifying the four loading stages. 

(1) static friction, (2) dynamic friction, (3) locking, and (4) wrinkling [77]. 

Owing to the fibrous nature and relative motion of fiber yarns during bending, the bending rigidity of 

woven fabrics is relatively low [54].  Lin et al. [88] studied a four harness satin woven fabric and found 

that, at least from a mesoscale level point of view, the primary shear deformation mechanism during fabric 

forming was coupled to bending of yarns [88]. When draping woven fabrics around tight radii, large shear 

angles tend to increase shear stiffness and decrease bending stiffness, triggering the formation and 

increasing the size of wrinkles [53,71,72]. Additionally, Bilisik [94] found that the bending rigidity of a 

single fabric layer depends on linear yarn density, fabric density, and the direction of bending with respect 

to the warp and weft directions [94]. 

A number of studies have also investigated the friction properties of woven fabrics [56,87,95], where 

both inter-yarn (and yarn-surface) friction and inter-ply (and ply-tool) friction have been considered since 

they are important for calibrating mesoscale and macroscale draping simulation models, respectively. 

Chakladar et al. [56] investigated the friction reaction of a single tow for different inter-tow angles, 

reporting a negative correlation between tow angle and friction response. In other words, at a 0⁰ relative 

orientation between contacting tows, the friction coefficient is maximum, dropping by half as the 

orientation increases to 90⁰. Interactions such as fiber bending, migration, and entanglement are responsible 

for the increase in friction coefficient between parallel tows. Also, the effect of tow size on friction response 

was found to be marginal [56]. Regarding fabric friction, other factors such as relative fiber orientation, 

shear angle, and fabric architecture influence the friction response [95]. Nosrat et al. [95] studied woven 

fabric-fabric and aluminum-fabric friction interaction during forming and found that the friction response 

increases with shear strain, effectively increasing the friction resistance between layers as shear deformation 

increases. Allaoui et al. [87] studied the effect of fabric architecture on friction, testing four different types 

of woven fabrics at varying orientation angles (see Figure 2.20). Consistent with the mesoscale or yarn-
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level findings by Chakladar et al. [56], Allaoui et al. [87] reported a significant decrease in the average 

coefficient of friction of plain-weave fabrics when the angle between ply yarns increases. Interestingly, 

they noticed that on balanced fabrics (such as plain weave), the friction coefficient on fabric-fabric contact 

is lower for the 0°/90° than for the 0°/0° relative orientation. This finding suggests a level of imbalance in 

the configuration of the warp and weft yarns during manufacturing of plain weave fabrics. This research 

also studied two CF unbalanced fabrics with resin powdering, a twill weave and an interlock weave fabric, 

and found remarkable differences in their kinetic friction responses. During fabric-fabric friction test with 

0°/0° relative orientation, the friction coefficients almost double from the twill to the interlock fabric 

architecture. Friction is sensitive to the fabric architecture, as well as the relative positioning and orientation 

of fabric/fabric samples. This ultimately reveals that multiple varying friction coefficients, in lieu of a single 

friction coefficient, are required to accurately simulate a fabric forming operation [56,95]. 

 

Figure 2.20. (a) Custom friction test module with a displacement controlled sliding surface. (b) Representative plain 

weave glass fiber sample and corresponding (c) friction coefficient data [87]. 

More recently, investigations characterizing the behaviour of UD-NCFs have been reported, where the 

same experimental tests commonly used for woven fabrics have been adopted [16,29]. The longitudinal 

tensile response of UD-NCFs has been reported to follow a similar trend as observed with woven fabrics 

(see Figure 2.16a), despite the assumption that tows are ideally non-crimped. This response is characterized 

by an initial low stiffness behaviour caused by tow decrimping followed by a linear response once the tows 

are stretched along the loading direction [30]. On the other hand, the transverse tensile response of UD-

NCFs is distinct since there are no fiber tows oriented along the fabric transverse direction, and thus the 

effective fabric stiffness is relatively low in magnitude [16]. Therefore, the transverse response of UD-

NCFs, which is dependent on the stitching architecture and the existence of low areal weight transverse 

supporting fiber yarns, is easily influenced by the specific testing conditions [48]. Senner et al. [48] used a 

(a) 

(b) 
(c) 
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coil specimen (see Figure 2.21) to capture the transverse tensile response of two UD-NCFs by minimizing 

the specimen edge effects. The normalized force-stretch response is characterized by an initial linear region 

caused by stretching of the transverse reinforcing yarns and stitching web, followed by a nonlinear response 

of decreasing stiffness due to successive failure of these components (Figure 2.22) [48]. 

 

Figure 2.21. UD-NCF transverse tensile characterization test using a coiled specimen [48]. 

 

Figure 2.22. Normalized experimental and simulation results of a transverse tensile test for two UD-NCFs. The weight 

per unit area of T1 is twice that of T2 [48]. 

The shear response of UD-NCFs has been reported by few researchers to date. In their study, Schirmaier 

et al. [16] reported that the PFT is not suitable to characterize UD-NCFs because it induces out-of-plane 

deformations or wrinkling that invalidates the measurement of in-plane shear fabric response. In lieu, it was 

recommended that a combination of uniaxial off-axis extension tests with multiple biased angles are 

employed to characterize the shear behaviour of UD-NCFs . The reported shear response from the 45° off-

axis extension test gathered by capturing the strain deformation in a region of interest (ROI)  in the centre 

of the specimen, as shown in Figure 2.23a. The resulting deformation within the ROI was a combination of 

shear, transverse extension and longitudinal compression (see Figure 2.23b). The longitudinal compression 
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was reported to have been caused by undulations in the CF tows. A unique characteristic of UD-NCFs is 

that the transverse in-plane tension and shear deformation are triggered at low applied force levels, 

presenting a forming challenge for UD-NCFs because, although shear deformation is desired for draping, 

transverse tensile strains produce undesirable gaps between the fabric tows [16]. More recently, Pourtier et 

al. [96] studied the characterization of shear behaviour on fabrics using the 45⁰ off-axis extension test and 

postulated an alternative simple shear approach for the analysis of NCFs. This research was motivated by 

the inadequacy of the pure shear deformation analysis to characterize UD-NCFs, as illustrated in Figure 

2.24 [97]. The shear angle displacement data for UD-NCF show the 45⁰ off-axis extension test prediction 

of theoretical shear angle using a pure shear deformation analysis do not correlated with measured 

experimental values, see Figure 2.24. 

 

Figure 2.23. (a) 45⁰ off-axis extension test undeformed and deformed shape of the region of interest of a UD-NCF 

and corresponding homogenized shear (Green-Lagrange) strain level, and (b) homogenized Green-Lagrange material 

strain components versus global sample displacement [16]. 

(a) (b)
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Figure 2.24. Comparison of the 45° off-axis extension test measured and theoretical shear angle calculated using a 

pure shear approximation approach for four different fabric architectures: plain weave, biaxial NCF, UD-NCF and 

twill weave [97]. 

The bending stiffness of UD-NCF is mainly determined by the fabric structure and fiber-fiber, fiber-

stitching, and even fiber-binder interactions [98]. The most relevant study characterizing the bending 

behaviour of UD-NCFs was conducted by [29], where a modified version of the Kawabata bending test 

was implemented (see Figure 2.25). Timoshenko Beam Theory (TBT) was implemented to predict the 

bending behaviour in the direction of the fiber tows, obtaining an acceptable agreement with the 

experimentally measured deflection angles. TBT has the ability to capture transverse shear deformation by 

allowing independent rotation of the cross-section superimposed with the flexural deformation, as seen in 

Figure 2.26. In the same study it was found that a UD-NCF with stitched CF tows and transverse supporting 

GF yarns have a high level of bending anisotropy, with the transverse bending stiffness orders of magnitude 

lower than the longitudinal bending stiffness. The low magnitude transverse stiffness is attributed to the 

fact that there are no fiber tows oriented along the transverse direction, as well as the loose nature of the 

stitching structure and transverse supporting GFs, which are the main load-bearing components in the 

direction transverse to the carbon fiber tows. In the longitudinal direction, the stitching architecture was 

also reported to play a crucial role in the bending behaviour of UD-NCF [29]. In general, due to the high 

level of bending anisotropy draping UD-NCFs over double-curved geometries is difficult to obtain without 

the potential for generating defects [14]. Galkin et al. [14] found that due to the discrete nature of the UD-

NCFs, the bending response in the longitudinal direction is strongly nonlinear and dominated by the 

through-thickness transverse shear modulus. Likewise, they reported that bending in the longitudinal 

direction is dominated by through-thickness fiber sliding, and that pre-shearing of the fabric has a negligible 

influence on bending stiffness. 

UD-NCF 

Measured

UD-NCF 

Theoretical
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Figure 2.25. Modified version of the Kawabata bending test applied to the parallel (longitudinal) and orthogonal 

(transverse) direction of UD-NCFs [29]. 

 

Figure 2.26. Schematic of Timoshenko beam theory superimposition of flexural and transverse shear deformation 

modes [29]. 

An important distinction in the shear response of UD-NCFs compared to woven fabric is that a shear 

angle cannot be defined for UD-NCFs, thus, local fiber volume fraction cannot be estimated based on the 

shear angle [43]. Also, sliding between UD-NCF layers is another important aspect to consider during 

multilayer forming. Relative sliding between the layers has an impact on preformed properties such as 

permeability and handling [59]. More recently, Galkin et al. [14] studied the impact of forming on the local 

fiber volume fraction of UD-NCFs. They reported that waviness, gapping, and transverse compression of 

tows due to shearing, are the main reasons for variations in the fiber volume fraction, where the important 

role of imposed transverse strains was also highlighted. Finally, they pointed out that tow waviness or fiber 

crimping increases friction during fabric forming [14]. 

2.4.3. Digital image correlation 

Digital image correlation (DIC) is a non-contact optical method used to measure surface deformations. 

Two-dimensional DIC measures the full-field displacement of a planar surface by capturing variations in a 

speckle pattern or surface texturization applied on the surface. A high-resolution camera is typically used 

to capture a series of chronological digital images of the deforming surface [99]. Subsequently, the images 

are processed by a DIC software that converts them from RGB colour to a greyscale space format [99]. For 
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this reason, it is important to capture clear and highly contrasted images with speckle markings that can be 

distinctly identified by the system [100]. DIC analysis is initiated by defining a region of interest (ROI) and 

a subset size. The ROI is divided by the software into a computational grid that is tracked against a reference 

image. The reference image is by default the first image of the sequence and represents the surface in the 

un-deformed state. The subset size is user-defined and must be large enough to ensure that it contains a 

sufficiently distinctive pattern for correlation. A suitable subset size is dependent on the image information 

content produced by the surface texturization [99]. 

DIC has been widely adopted for material characterization, including for composite materials [8,101]. 

However, dry fabrics such as UD-NCF, are challenging materials to study using DIC due to several reasons. 

First, UD-NCFs may be susceptible to large shear deformations, complicating deformation tracking. 

Second, the DIC algorithm approximates the heterogeneous surface of the fabric as a continuum. This 

approximation may introduce uncertainties caused by surface shifting. For example, a particular fiber 

filament initially on the surface of the fabric may relocate under the fabric surface during deformation, 

disappearing from the DIC image [102]. The combination of these factors can lead to pattern breakdown 

and loss of correlation for fabrics during DIC analysis [102]. For these reasons, DIC has not been widely 

used to characterize reinforcement fabrics. Dridi et al. [103] was able to capture shear strain deformation 

on plain-woven cotton fabric, obtaining a positive correlation between experimental and theoretical data. 

Vanclooster et al. [50] used 3D DIC to track deformations during a double dome forming operation applied 

to a GF woven fabric and reported having image correlation challenges. First, contact of the tool with the 

fabric damaged the painted surface pattern. Also, around areas of double curvature, DIC analysis failed due 

to excessive light reflections from the fabric. More recently, Harrison et al. [60] investigated the out-of-

plane deformation of a 2x2 twill-weave CF using 3D DIC. They also encountered experimental challenges 

related to the high reflectivity, as well as a stiffening effect resulting from surface texturization of the fabric. 

Application of surface patterns to reinforcement fabrics in preparations for DIC analysis is a challenging 

task [50,60,84,104] that requires the consideration of the fabric material, architecture, surface reflection, 

and previous surface treatments. 

2.4.4. Summary 

A review of the current literature has revealed that in general few studies have characterized the 

deformation response of stitched UD-NCFs. These fabrics have been characterized as having distinct 

macroscopic and local deformation modes compared to more widely studied woven fabrics, which stems 

from the distinct fabric architecture in particular the absence of tow crossover points in UD-NCFs. More 

in-depth characterization is necessary to improve the quality of the calibration data that is used for material 
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constitutive models, and ultimately to increase the fidelity of corresponding fabric draping simulation 

models. Additionally, there is a requirement to develop standardized testing techniques for UD-NCFs. The 

same characterization techniques that have been widely used for woven fabrics are not necessarily 

applicable for UD-NCFs due to the distinct fabric deformation characteristics. Specifically, there is an 

absence of friction characterization data for UD-NCFs in the literature, while there are also discrepancies 

regarding the best approach to characterize the fabric shear response. Moreover, few studies have been 

conducted to characterize the forming behaviour of UD-NCFs for parts with three-dimensional geometries. 

This would otherwise be critical for developing an improved understanding of the fabric response during 

preforming, and to provide a means to validate draping simulations. Finally, there is no widely accepted 

approach for measuring strain in deformed fabrics. DIC has been considered in few studies to date, with no 

consensus on the best approach for accurately capturing strains in UD-NCFs. 

2.5. Simulating draping of fabric reinforcement 

The use of simulation tools to predict the deformability of fabric preforms during forming operations is 

essential for optimizing the manufacturing processes for CFRPs [71]. Modelling the deformability of 

reinforcement fabrics is challenging due to complex interactions between the fabric components and the 

multiple length scales in which these components deform (see Section 2.4.2). As discussed in Section 2.1, 

fabric reinforcements can be analyzed at the micro, meso, and macroscale discretization levels. The 

approach chosen to model the forming of fabric reinforcements depends on the scale at which the analysis 

is made. Independent of the modelling approach, the main challenges are to simulate large strains and high 

levels of anisotropy accurately [59]. 

Computational predictions of woven cloth deformations were first reported by Mack and Taylor [105] 

where so-called pin-joint-net models were developed. This modelling approach, also termed the kinematic 

approach, did not provide any physically meaningful data, such as the deformation loads, and instead was 

used to approximate the deformed shape of draped fabrics [106]. Although this modeling approach was 

computationally inexpensive, it neglected the mechanical properties of the fabric material. Mechanical 

models that use continuum-based finite element methods to capture fabric behaviour have also been 

developed [107,108]. Among other advantages, mechanical models allow for simulation of the interactions 

between the fabric and the tooling, significantly increasing the fidelity of models. In recent years, most of 

the research on fabric draping has focused on mechanics-based simulations rather than on kinematic 

approaches [59]. Until recently, much of the research efforts had been directed to improving computational 

speed for solutions, rather than improving the fidelity of draping models [109–111]. More recently, due to 

the advances in computational processing speeds, the emphasis has shifted towards improving the fidelity 
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of mechanics-based simulations for predicting the onset of defects to assist in the design of semi-automated 

manufacturing processes [112]. 

Draping simulation models can be classified as either mesoscale or macroscale numerical models. In 

mesoscale models the homogenized tows/yarns and the other fabric components are discretized. A suitable 

mesoscale model must be able to numerically predict the equivalent material behaviour at the macroscale 

[64,73,113–117]. Alternatively, in macroscale models fabrics are treated as effective continuum materials 

and the complex internal mechanical behaviours are implicitly captured [29,54,60,62,70,108,113,118–131]. 

One of the main advantages of mesoscale models is their ability to capture interactions between the 

tows/yarns, such as transverse yarn compression and crimping, which are difficult to obtain with semi-

discrete and continuous models. Also, these models are particularly useful in the study of fabric properties 

such as permeability and shear behaviour [59]. On the other hand, it is difficult to correctly model out-of-

plane bending stiffness and friction interactions with mesoscale models. Also, complexity of mesoscale 

models is high due to the large number of elements and  interactions being simulated. Thus, macroscale 

models tend to be more computationally efficient and the preferred choice for many applications. 

The current state of the art predictive technology for reinforcing fabric aims at predicting not only the 

deformed net shape, but also the local fiber volume fraction and fiber orientation of a formed shape, to 

transfer these predictions from draping simulations into resin infiltration simulations [43]. 

2.5.1. Mesoscale fabric draping simulation models 

Lin et al. [114] developed a mesoscale model for a woven fabric, where the homogenized yarns were 

treated as transversely isotropic materials with non-linear mechanical properties. The model incorporated 

normal stiffness definitions parallel to the fabric and shear was determined by the interaction between the 

warp and the weft yarns. The model failed to accurately predict the shear strain of the continuum element 

in relation to the strains applied to individual yarns. They noted that regardless of how accurately yarn 

sliding was modelled, the internal stress of the yarn could not be accurately estimated [114]. 

Another study conducted by Jauffres et al. [46] proposed a mesoscopic material model for forming 

simulations of woven fabrics. The model implemented truss and beam elements to represent the 

homogenized yarns, and shell and membrane elements to represent the shearing behaviour. The material 

model was implemented in two numerical solvers: Abaqus and LS-DYNA, and compared through a 

hemispherical test simulation. Abaqus shell elements exhibited higher stiffness than LS-DYNA shell 

elements. Consequently, the simulation punch force response was also higher for Abaqus compared to the 

LS-DYNA simulation due to the inability of Abaqus to decouple bending and transverse shear from in-

plane stiffness [46]. Results from the two software predictions are shown in Figure 2.27b. 
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Figure 2.27. Comparison of (a) shear angle distribution and (b) punch force response from Abaqus and LS-DYNA 

hemispherical test simulations [46]. 

Likewise, Cherouat et al., 2013 [115] developed semi-discrete models for woven fabrics using mutually 

constrained truss, representing the tensile behaviour, and shell elements, representing the shear behaviour 

of the reinforcement. The mutually constrained elements had their nodes permanently attached to fixed 

material points. The model was validated using a hemispherical test and was able to predict shear angles 

(see Figure 2.28), and load-displacement data. The model was not calibrated for bending stiffness, and the 

impact of the truss and shell elements contribution to the overall mechanical behaviour was not assessed. 

 

 

Figure 2.28. Hemispherical test experimental and predicted shape and shear angle data from a model with mutually 

constrained truss and shell elements published in [115]. 

LS-DYNA ABAQUS
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Li et al. [64] investigated the in-plane shear behaviour of biaxial carbon non-crimp fabric using biaxial 

extension and picture frame tests. The study focused on the role that the stitching plays in the overall fabric 

deformation. The model was implemented in Abaqus explicit, and was discretized with the CF tows 

represented by rectangular solid elements, while beam elements were used to represent the tricot stitching 

pattern. A clear advantage of this approach was the ability to predict inter-tow interactions such as fiber 

slippage, as shown in Figure 2.29. The study found that even though the material tested was a biaxial fabric, 

which in principle is a balanced fabric, the strained condition of the stitching had a significant influence on 

the in-plane behaviour of the fabric, resulting in an apparent asymmetrical shear behaviour.  Harrison et al. 

[73] expanded the capability of mesoscale models for NCFs by incorporating independent deformation 

modes to the stitching. The proposed model discretized the fabric with truss, beam, and membrane elements 

allowing independent control of axial fiber stiffness, in-plane shear compliance as well as in-plane and out-

of-plane flexural moduli (see Figure 2.30). Erol et al. [116] developed and implemented a mesoscale unit 

cell model for a woven fabric in LS-DYNA® using truss elements. In the model, the tensile and shear 

behaviours were decoupled. The tensile response was incorporated in the model by aligning the truss 

elements in the warp and weft directions. In contrast, the shear response, which depends on yarn-to-yarn 

contact, rotation, sliding and compression, was modelled using a rotational spring location at the cross-over 

points (see Figure 2.31). Dörr et al., 2017 [117] developed a user-defined model in Abaqus that fully 

decoupled membrane and bending behaviour of UD-prepreg materials using a combination of membrane 

and shell elements. The membrane and bending behaviours were both modelled according to Voigt-Kelvin 

viscoelastic formulation, taking into account the rate dependency of prepregs at process conditions. 

 

 

Figure 2.29. Image of (a) a mesoscale model prediction of inter-tow slippage seen in (b) physical experiments [64]. 

(a) (b)
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Figure 2.30. Unit cell of (a) a mutually constrained truss and membrane elements and (b) a mutually constrained 

pantographic beam and membrane mesh proposed by P. Harrison et al., 2016 [73]. 

 

Figure 2.31. Mesoscale representation of a woven fabric using truss elements and rotational springs at cross-over 

points [116]. 

2.5.2. Macroscale fabric draping simulation models 

Although mesoscale level models are valuable for research purposes, their complexity and high demand 

for computational resources make them of limited commercial value [129]. This has motivated the 

development of more computationally efficient macroscale or continuum models for simulating fabric 

draping. Developing suitable constitutive models for reinforcement fabrics is challenging at best. The first 

point to consider is that homogenization strategies must be implemented to represent the discrete 

reinforcement fabric as an effectively homogeneous material at the macroscale, where effective properties 

are used (see Figure 2.32). The underlying goal of the homogenization process is to postulate a macroscopic 

constitutive formulation that incorporates details of the fabric constituents at the lower length scales. In 

some applications, these techniques have proven to be appropriate methods to analyze the behaviour of 

discrete materials [70,130,132]. In general, there are two methods to develop homogenized constitutive 

formulations for fabrics. The material may be characterized at the macroscale level and experimentally 

obtained material properties assigned directly to the constitutive model [60,131]. Alternatively, a mesoscale 

model may be used to predict the effective material behaviour and then those properties assigned to the 

(b)(a)
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constitutive model [113]. Figure 2.33 shows an example of a macroscale draping simulation prediction for 

a woven fabric. 

Furthermore, reinforcement fabrics are orthotropic materials. Many material models have been 

developed for homogeneous isotropic materials where the Young’s and shear moduli are coupled through 

the Poisson’s ratio, as illustrated by Hooke’s law in Equation 2.1. This approach is not suitable for 

reinforcement fabrics [54], where the coupling parameters in the constitutive equation for plane stresses are 

fabric specific and difficult to ascertain (see Equation 2.2). Also, fabrics exhibit both material and geometric 

nonlinearities [118,119] as a result of the large deformations that are attainable. The inelastic response of 

reinforcement fabrics has been represented using numerous types of constitutive models, including 

hyperelastic [122,123,133], elastoplastic [62,108], and viscoelastic [117,133]. The development of 

continuum non-orthogonal constitutive models has enabled the representation of the non-linear behaviour 

of fabrics, while accounting for yarn/tow reorientation during large shear deformations [120]. 
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Figure 2.32. Schematic of the continuum equivalent of discrete fabric material [134]. 
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Figure 2.33. (a) Image of a complex part numerical simulation output and corresponding (b) real preformed part [59]. 

For performing fabric forming simulations, hyperelastic and hypoelastic constitutive models have been 

the most widely used. In a hyper-elastic model of a woven fabric, the strain energy is decomposed into the 

tensile energy in the yarns and the shear energy at crossover points, each of which is determined using 

curve fitting with uniaxial tensile and shear frame tests [123,126]. Hyperelastic material models have 

intrinsic material objectivity, making possible the tracking of individual fibers via intrinsic covariant 

modelling [127]. By contrast, in hypoelastic models, deformation objectivity must be incorporated by 

application of suitable material frames and transformation laws between a prescribed material frame (e.g., 

Green-Naghdi’s frame) and a fiber parallel frame [108,117,124].  Peng et al. [128] compared a non-

orthogonal to an orthogonal hypoelastic constitutive material model, showing that the accuracy of the non-

orthogonal model was substantially higher in predicting the boundary profile for a hemispherical test 

specimen (see Figure 2.34). 

 

Figure 2.34. Hemispherical test comparison of a deformed blank between (a) experiment and (b) non-orthogonal and 

(c) orthogonal simulations [128]. 

(a) (b)
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Chen et al. [70] developed a hypo-elastic macroscale model that implemented the non-orthogonal 

material constitutive equations proposed by Yu [120]. The model was developed as a custom material 

subroutine to predict the forming behaviour of biaxial fabrics with the aim of tracking the warp and weft 

yarn direction at the macroscale level. They reported the predicted shear angle distribution to be within 5% 

of the experimental data from a hemispherical draping test (see Figure 2.35). This study used membrane 

elements, neglecting the out-of-plane bending deformation of the material. 

 
Figure 2.35. Image of (a) a hemispherical test, and (b) experimental shear angle distribution extracted using a grid 

strain analysis system, and (c) shear angle distributions from a macroscale numerical simulation [70]. 

 Boisse et al. [132] highlighted some of the shortcomings of fabric models developed within the 

framework of Cauchy continuum mechanics. They pointed out that this framework is not able to capture 

fiber slippage and fiber bending stiffness accurately (Figure 2.36).  To accommodate deformation 

discontinuities, they proposed a generalized second gradient theory to complement an orthotropic 

hyperelastic model, where the strain energy density function was assumed to depend not only on the 

deformation tensor but also on its gradient [132]. The model was validated with a hemispherical test. 

 
Figure 2.36. Pictures of (a) a hemispherical test with lines showing material continuity and (b) preforming test with 

interruptions in fabric continuity [132]. 

Draping studies of UN-NCFs have received much less attention in the literature compared with woven 

fabrics and biaxial NCFs [29,62]. Senner 2015 [29] focused on characterizing the bending behaviour of 

UD-NCF to predict the onset of wrinkle formation during forming using a transversely isotropic 

(a) (b) (c)

(a) (b)
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hyperelastic constitutive model. The study compared Euler-Bernoulli and Timoshenko beam theories 

(TBT), adjusting the magnitude of the transverse shear to match experimental results. The model was 

validated by conducting a draping forming process of a single curvature part (see Figure 2.37). They found 

the bending stiffness in the transverse direction is negligible and assigned a low value to it in the simulation 

for numerical stability. Figure 2.37a shows the results of a draping test with the fiber direction aligned with 

the plane of the page, while in Figure 2.37b, the fibers are aligned perpendicular to the plane of the page. 

This study demonstrated that the bending behaviour of UD-NCF differs significantly from that of 

continuous materials. 

 
Figure 2.37. Experimental and simulation results of unidirectional non-crimp fabric forming operation over a single 

curvature shape with the fibers aligned (a) parallel and (b) perpendicular to the plane of the page [29]. 

A more comprehensive study of the deformation mechanism of UD-NCF for draping modelling was 

conducted by Schirmaier et al., 2017 [62]. They implemented a hypoelastic material constitutive model that 

superimposed longitudinal tensile and shear deformation with transverse in-plane deformation. In addition 

to non-orthogonal and nonlinear in-plane strains (ε1 and ε2), this model incorporated a third measurement 

of plane strain perpendicular to the carbon fiber tows (ε⟂), as seen in Figure 2.38 In-plane behaviour was 

assumed to be elasto-plastic while bending behaviour was assumed to be elastic with distinct definitions in 

the longitudinal and transverse material directions. Their proposed model was parametrized via simulations 

of off-axis extension tests, and validated with preforming simulations of a hemispherical test and typical 

automotive component (light pod), shown in Figure 2.39. The model was able to make estimations of fiber 

orientation, tow gapping, macroscopic wrinkling and contour shape. However, it was unable to predict 

discrete localized features, such as fiber and tow undulations and bending of individual carbon fiber tows. 

 
Figure 2.38. Linear non-orthogonal strain definitions used by the macroscale model developed by Schirmaier [62]. 

(a)

(b)
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Figure 2.39. Comparison of (a) experimental and (b) numerical forming simulation results presented by Schirmaier 

et al. 2017 [62]. 

There are several commercially available finite element codes with available material constitutive 

models that have been also used for developing macroscale fabric draping simulation models. PAM-

FORM® utilizes explicit time integration and includes MAT140 for draping of woven or unidirectional 

prepregs and is normally used to represent the constitutive behaviour of each separately discretized fabric 

layer [135]. The material model represents the fabric layers as a superposition of an elastic fiber phase, and 

a viscous matrix phase used for prepreg materials [31]. Another commercial software for simulating draping 

of fabrics is AniForm®. Currently, the code is capable of predicting forming behaviour for UD-tapes, woven 

and NCF dry-fabrics with either a thermoplastic, thermoset, or no matrix constituent, employing an implicit 

time integration scheme and a combination of elastic and viscoelastic material formulations to represent an 

arbitrary number of fiber families [135,136].  

Other multi-purpose FE-solvers that have been used for conducting fabric draping simulations are 

Abaqus and LS-DYNA. Abaqus is a multi-purpose FE-solver with limited capability to execute macroscale 

forming simulations. Abaqus only offers one suitable built-in fabric material model (*Fabric) that was 

developed for a woven fabric. To enhance the capabilities of Abaqus, and taking advantage of its ability to 

define custom-made elastoplastic and viscoelastic material models, some researchers have developed user-

defined material definitions for specific fabric draping simulations [98]. LS-DYNA includes two relevant 

macroscale material models for fabrics, MAT 234 and MAT 235, that incorporated crimping of fibers, shear 

locking, and contact force at the fiber cross-over points [137]. These material models require the input of 

mesoscale material parameters such as the yarn moduli and yarn-yarn interaction coefficient, which in 

practice require complex direct experimental characterization, and difficult and time-consuming reverse 

calculations [138,139]. LS-DYNA developed a thermoplastic prepreg composite material model, MAT 

249, with an explicit time integration scheme that allows the definition of UD-NCF, as well as woven 

fabrics or NCFs. The fiber behaviour is defined by an anisotropic hyperelastic material formulation with 

temperature-dependent properties capabilities [135,137,140].  Dorr [135] simulated a thermoforming 
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operation of pre-consolidated blanks of thermoplastic UD-tape using LS-DYNA MAT 249 and compared 

the output to experimental results. They found that LS-DYNA lacks some general features typically 

available in forming simulations, such as decoupled bending behaviour from in-plane deformations. 

However, one strength of MAT 249 is the ability to parametrize specific deformation mechanisms by means 

of characteristic curves [135]. Comparing the simulation to experimental results, they found that LS-DYNA 

was able to successfully predict wrinkling and the outer contour of a deformed surface, as shown in Figure 

2.40. 

 

Figure 2.40. Comparison of a quasi-isotropic layup (a) experimental forming test and (b) corresponding LS-DYNA® 

simulation prediction [135]. 

2.5.3. Summary 

A review of the macro and mesoscale numerical draping simulation models reported in the literature has 

shown the current limitations. While mesoscale models are attractive for their capacity to discretize yarn 

interactions, the need for high computational resources makes them unpractical for component level 

simulations, particularly for multi-layer fabric forming. Development efforts of the more practical 

macroscale models, on the other hand, have focused on woven or biaxial NCFs and few studies have been 

published for UD-NCFs. Additionally, macroscale fabric modelling presents important challenges, such as 

the ability to incorporate the potential of fabric discontinuities and coupling of the different deformation 

modes during draping. Although there are few commercial finite element software available for the 

simulation of UD-NCFs, most of these were developed and adapted from other material systems and lacked 

the ability to model the unique deformation characteristics of UD-NCFs. 
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Chapter 3: UD-NCF Material and Experimental 

Techniques 

     Details of the UD-NCF reinforcement material investigated in this study, including the fabric 

composition and microstructure, are first discussed (Section 3.1). The experimental techniques used to 

characterize the fabric deformation modes that are relevant to the fabric preforming process and required 

to calibrate the material constitutive model are also presented (Section 3.2). The performed draping tests 

that were used to validate the numerical draping simulation model are also presented (Section 3.3). 

3.1. UD-NCF material 

A commercially available UD-NCF, namely ZoltekTM PX35-UD300, was characterized in this study 

(Figure 3.1). The heavy-tow fabric is comprised of 5 mm wide tows each containing 50,000 PX35 carbon 

fiber (CF) filaments. The tows are aligned parallel to each other and are stitched together with polyester 

yarn in a tricot pattern (Figure 3.2). The supporting glass fiber (GF) yarns are aligned perpendicular to the 

CF tows, positioned between the CFs and the polyester stitching (Figure 3.2). A light thermosetting binder 

powder, that is intended to cure during fabric forming, is uniformly distributed on the stitching side of the 

fabric. The total fabric areal density is 333 g/m2 with the carbon fiber tows accounting for 92.8% of the 

total weight. A summary of the fabric characteristics measured directly from the fabric or taken from the 

manufacturer data sheet is presented in Table 3.1. 
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Figure 3.1. Image of ZoltekTM PX35-UD300 unidirectional non-crimp fabric with glass fiber and stitching sides 

indicated. 

Table 3.1. ZoltekTM PX35-UD300 unidirectional non-crimp fabric characteristics [141]. 

Parameter Value 

Total fabric areal density 333 g/m2 

Carbon fiber tow weight fraction 92.8% 

Glass fiber yarn weight fraction 3.0% 

Glass fiber yarn linear density 34 dtex 

Polyester stitch weight fraction 1.8% 

Polyester stitch linear density 76 dtex 

Binder resin powder weight fraction 2.4% 

Nominal Carbon fiber diameter 7.2 µm 

Carbon fiber tow width (measured) 5 mm 

Dry fabric thickness (measured) 0.49 ± 0.02 

Stitching pattern side

Glass fiber side

Longitudinal 

material direction

Transverse material 

direction

Glass fiber yarns

Tricot stitching

Carbon fiber tows

1

2
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Figure 3.2. Images of ZoltekTM PX35-UD300 unidirectional non-crimp fabric illustrating the architecture of fabric 

components. 

3.2. Characterization of UD-NCF material 

    A series of tests were performed on the UD-NCF to characterize in-plane extension, shear, and out-

of-plane bending deformation modes (see Chapter 2), while fabric friction testing was also conducted. A 

summary of the performed tests is presented in Table 3.2.  

Table 3.2. Summary of performed characterization tests for single layer of UD-NCF. 

Test type  Specimen shape and 

dimensions (mm) 

 Measured Material Property 

Longitudinal extension 

test 
 Rectangular 

42 x 320 and 11 x 270 

 Longitudinal tensile stress-strain 

response 

Transverse extension test  Rectangular 

160 x 320 

 Transverse tensile stress-strain 

response 

45° off-axis extension 

test 
 Rectangular 

160 x 320 

 Shear stress-strain response 

Picture frame test (PFT)  Square cruciform 

309 x 309 overall dimensions 

 Shear stress-strain response 

Cantilever test  Rectangular 

32 x 350 

 Bending moduli 

Friction test  Square 

63.5 x 63.5 

 Fabric-mold friction coefficients 

 

GF separation = 

3.6 mm ± 0.7

CF Tow width 

= 5 mm

Tricot stitching 

pattern width = 

7 mm

Fabric thickness = 

0.49 ± 0.02 mm Stitching sideGlass fiber side

Profile view

Glass Fiber (GF) yarns
Carbon Fiber (CF) Tow 

Polyester stitching yarns
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A small MTS servo-hydraulic test frame with a 2.22 kN (500 lbf) capacity OMEGA LC412-500 load 

cell, an MTS FlexTest SE controller, and custom fixtures were used for all performed tests, with the 

exception of the cantilever bending test, where a custom testing module was used (Section 3.2.4). All tests 

were conducted at room temperature under displacement control with a constant quasi-static rate of 1 mm/s. 

The test frame controller used a closed-loop configuration (using LabVIEW) that continuously monitored 

the load cell output and actuator displacement, recording data at a frequency rate of 120 Hz. Furthermore, 

all fabric test specimens were carefully cut using transparent acrylic templates to ensure correct fiber 

orientation, consistent specimen geometry, and to avoid distortion of the fabric prior to testing (Figure 3.3). 

A utility knife was used to cut all the fabric specimens, and a new blade was used for each specimen to 

provide consistent high-quality specimen edges.  

 
Figure 3.3. UD-NCF specimen preparation: (a) using square rulers for alignment, and (b) acrylic templates and a 

utility knife for cutting. 

3.2.1. Longitudinal and transverse extension tests 

     The UD-NCF was subjected to tensile forces in the directions parallel and perpendicular to the CF 

tows to extract the material response along the longitudinal and transverse directions, respectively. The 

dimensions of the transverse extension test specimens were chosen to ensure that there were at least 40 

glass fiber yarns across their width (Figure 3.4c). The longitudinal extension test specimens were narrower 

due to the limited capacity of the test frame load cell, where it was ensured that there were at least 8 CF 

tows across their width (Figure 3.4a). A second set of test specimens were also used for the longitudinal 

tests to capture local deformation mechanisms (Figure 3.4b).  

(a) (b)
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Figure 3.4. Test specimen dimensions: (a) longitudinal extension test for capturing macroscopic response, (b) 

longitudinal extension test for capturing deformation mechanisms, and (c) transverse extension test. 

A custom set of clamping fixtures, each comprised of two bolted steel plates (Figure 3.5a), was designed 

to hold the fabric test specimens for the extension tests. First, an alignment fixture was used during to attach 

the top and bottom fabric clamps to the specimen at the right distance and orientation from each other (see 

Figure 3.5a). The specimen with the fabric clamps were then installed in the frame by attaching the top and 

bottom fabric clamps to the respective top and bottom clamping fixtures (see Figure 3.5b). During the 

installation of the specimen in the clamping fixture, spacers were installed in the back face of the top and 

bottom clamping fixtures to ensure alignment of the specimen plane with the centre of the tensile frame 

actuator. These spacers and clamps were secured in place using the attachment bolts shown in Figure 3.5a. 

Also, bolts in the front face of the top and bottom clamping fixtures (identified as clamping bolts in Figure 

3.5a) were used to increase the clamping force in the middle of the specimen; these bolts were tightened to 

approximately 0.212 Nm. 

When performing preliminary extension tests with the clamping fixture it was observed that the fixture 

was not able to effectively grip the fabric specimen. Specifically, the GF yarns tended to slip from the 

fixture when insufficient clamping force was applied to the fabric specimen or break at the clamping zone 

when a high clamping force was applied [65] (see Figure 3.6). A similar observation was also reported by 

[16] for a UD-NCF under extension loading. An investigation of the original clamp design revealed that 

GF breakage within the clamped area was promoted by the sharp bend in the fixture when high clamping 

forces were applied (Figure 3.7a). A redesigned clamp consisted of two steel plates and a PVC cylindrical 

rod insert with an oval cross-section, around which the fabric specimen was wrapped before placing it in a 

cavity formed between the two steel clamps halves (Figure 3.7b). This design eliminated GF breakage and 

ensured that there was no GF slippage when the steel plates were bolted together using a bolting torque of 
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approximately 0.212 Nm. An image of a test specimen gripped in the optimized clamp within the testing 

frame is shown in Figure 3.5b.  

For each test, the engineering stress and strain for the longitudinal and transverse fabric directions were 

calculated based on the initial cross-sectional area and length of the specimen. 

 

Figure 3.5. (a) The alignment fixtures used to install the fabric clamps to the UD-NCF specimens. (b) Images of the 

extension test setup showing details of the top and bottom clamping fixtures. 

 
Figure 3.6. Images of the clamped region of UD-NCF extension test specimens after test completion: (a) Glass fiber 

yarn migration caused by low clamping force and (b) glass fiber yarn breakage caused by high clamping forces and 

fabric folding. 
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Figure 3.7. UD-NCF extension test fabric clamps: (a) original clamp design, and (b) redesigned clamping fixture with 

a PVC insert. 

3.2.2. Picture frame test (PFT) 

PFTs were performed to capture the shear stress-strain response of the fabric, under the assumption that 

a test specimen is subjected to a pure shear deformation. The dimensions of the PFT specimens used in this 

study comprised of a 170 mm by 170 mm gauge section area (Figure 3.8a).   

The dimensions of the designed custom PFT fixture are shown in Figure 3.8b. The fixture consists of 

two parts, including a hinged square frame with four rigid arms of equal length, as well as a set of clamping 

mechanisms on each arm. The square frame was mounted to the test frame from the hinge points, while the 

clamping mechanisms were used to clamp the fabric test specimen ends and secure the specimen to the 

square frame. The aluminum PFT fixture was designed to fit the limited space available in the test frame 

and to allow for an application of a maximum shear angle of 50° on the test specimen. To eliminate 

undesirable GF sliding inside the clamps of the fixture, the clamping mechanisms were designed to be 

similar in nature to that of the extension test fixture. The fabric test specimen ends were wrapped around 

acrylic rods that were installed inside machined cavities within the support tabs of the clamping fixture 

(Figure 3.9). The surfaces of the acrylic rods were sanded with 80 grit sandpaper to increase the friction 

between the rod and the GF yarns.  

(a) (b)
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Figure 3.8. (a) PFT specimen geometry, and (b) testing fixture dimensions. 

 

Figure 3.9. Images of the custom PFT fixture clamping mechanism illustrating the wrapped fabric specimen ends 

around an acrylic rod inserted into the cavity of the support tabs. 

A specimen clamping process was devised to prevent fabric misalignment and pre-tensioning, both of 

which have been reported in the literature as common issues for PFT [51,68]. First, the four support tabs of 

the clamping mechanism were positioned on an aluminum alignment plate using precisely located bolt 

holes, and the test specimen ends were clamped (see Figure 3.10a). Then, an installation plate was bolted 

to the specimen-support tab assembly to allow for transport of the assembly to the testing machine (see 

Figure 3.10b). The specimen-support tab assembly was then installed inside precision-machined pocket 

cut-outs in the hinged square frame of the PFT fixture, which was pre-mounted to the test machine (Figure 

3.11a). Once the assembly was accurately positioned in the fixture, toggle clamps were closed to hold down 

the support tabs (see Figure 3.11b). Finally, the installation plate was removed from the fixture to complete 

the installation process.  

(a) (b)
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Figure 3.10. PFT specimen clamping process: (a) Image of the specimen-support tab assembly in an alignment plate, 

and (b) image of the installation plate bolted to the support tabs. 

 
Figure 3.11. (a) Image of a PFT specimen during installation on the testing machine, and (b) a deformed specimen 

during execution of a PFT. 

 

 
Figure 3.12. Schematic of the pure shear deformation for a PFT specimen: (a) prior to loading, and (b) after loading. 
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During a PFT, a vertical displacement was applied to the lower hinge of the fixture while the upper 

hinge remained fixed, causing the initially square frame to deform into a rhomboid shape (Figure 3.12). 

Due to the pure shear assumption, the shear strain induced by the frame (γ) can be calculated from the frame 

arm length (Lframe) and frame displacement (d) or the change in the frame angle (θ) according to [49,51,142]: 

 𝛾 = 90° − 𝜃 = 90° − 2 × cos−1 (
√2×𝐿𝑓𝑟𝑎𝑚𝑒+𝑑

2×𝐿𝑓𝑟𝑎𝑚𝑒
) (3.1)  

The corresponding shear force can be calculated as, 

 𝐹𝑆 =
𝐹𝑓

2 cos(
𝜃

2
)⁡
 (3.2) 

where Ff is the applied axial load. Based on an energy method originally proposed by Peng et al. [49] and 

widely adopted for the characterization of textiles [16,49,68], the normalized shear force can be defined 

using:  

 𝐹𝑁 = 𝐹𝑆
𝐿𝑓𝑟𝑎𝑚𝑒

𝐿𝑓𝑎𝑏𝑟𝑖𝑐
2  (3.3) 

where Lfabric is the fabric side length and Lframe  is the side length of the fixture frame. From the normalized 

shear force, an equivalent engineering shear stress was computed based on the cross-sectional area formed 

by the measured fabric thickness (0.49 mm) and the specimen side length (Lfabric) of 170 mm. 

3.2.3. Off-axis extension test 

In this study, 45° off-axis extension tests were conducted as an alternative approach to the PFTs to 

characterize the shear deformation of the UD-NCF material. Previous studies reported use of this test for 

characterizing shear deformation of UD-NCFs [96]. Also, both 30° and 60° off-axis extension tests were 

conducted to subject the fabric to distinct deformation modes compared to the 45° off-axis extension tests. 

This allowed for in-plane verification of the fabric material model.  

All specimens were 160 mm in width and 410 mm in length to accommodate clamping and provide a 

gauge section with an area of 160x320 mm2, shown in Figure 3.13b. For each fabric test specimen, the CF 

tows were aligned biased to the loading direction by either 30°, 45° or 60°. The same fixtures used for the 

longitudinal and transverse extension tests were used to clamp the two short sides of the specimen. In this 

case the specimen was only wrapped around half of the PVC rod, as illustrated in Figure 3.14.  
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Figure 3.13. Images of (a) 30⁰, (b) 45⁰, and (c) 60⁰ off-axis extension test specimens captured prior to load application. 

 
Figure 3.14. Images of the fabric clamp installation process for 30°, 45°, and 60° off-axis extension tests: (a) placing 

of PVC rod on top of the fabric specimen and half of the fabric clamp, (b) placing of the second half of the fabric 

clamp on top of the PVC rod, and (c) bolting of the complete fabric clamp assembly. 

Poutier et al., 2019 [96] proposed a correlation of the linear displacement imposed on a 45° biased 

specimen and the shear deformation experienced by the specimen. By assuming simple shear deformation 

of the fabric specimen (Figure 3.15), with the longitudinal fabric direction oriented along the line OP, a 

correlation between an imposed displacement D with the angle w can be made per:  

 𝑤 = sin−1 (
√2

2

1

1+
𝐷

𝐿0−𝑙𝑜

) (3.4) 
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Figure 3.15. 45° off-axis extension test simple shear deformation approximation [96]. 

Subsequently, the shear angle can be computed as a function of the angle between the longitudinal fabric 

direction and the loading direction as, 

 𝛾𝑠𝑠(𝑤) =
𝜋

2
− 𝑤 − sin−1 (

sin(𝑤)

√1+
1

sin(𝑤)2
−

2

tan(𝑤)

).  (3.5) 

To compute the shear stress, the uniaxial stress generated by the imposed displacement was transformed 

to the material coordinate system, aligned with the direction of the CFs, from which the shear stress 

component of the transformed stress was extracted. The CF rotation was extracted through visual 

examination of the test images.  

3.2.4. Bending characterization 

     In this investigation, the cantilever test was used to characterize the bending stiffness of the fabric in 

the longitudinal and transverse material directions. A linear approximation of bending stiffness was 

required for the calibration of the numerical material model (Chapter 4). Different variations of the 

cantilever test applied to fabric reinforcements have been reported in the literature [71,73,74]. Three 

methods were considered in this investigation: one based on ASTM standard D1388, a second one based 

on British standard BS EN ISO 9073, and a modified version of the British standard proposed by [73]. All 

three approaches were based on the cantilever test setup shown in Figure 3.16. The three considered tests 

variations share the same methodology, which consists of sliding a rectangular fabric specimen over a 

cantilever test module, effectively increasing the overhang length until the edge of the bent specimen 

touches a sloped surface with a constant angle of 41.5° (Figure 3.16). 

Carbon fiber 

tow direction
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Figure 3.16. Schematic of a cantilever test setup. 

In the first method considered based on ASTM D1388, the bending length (Lb) is calculated from the 

overhang length (LC) per Equation 3.6, and the bending stiffness (G) is calculated from the bending length 

(Lb), and areal density (W), per Equation 3.7. 

 𝐿𝑏 =⁡
𝐿𝑐

2
 (3.6) 

 𝐺𝐴𝑆𝑇𝑀 = ⁡0.1421 × 𝑊 × 𝐿𝑏
3 (3.7) 

The second method employed which is based on the British standard BS EN ISO 9073-7:1998 proposes 

Equation 3.8 for the calculation of bending stiffness, where LC is calculated from: 

 𝐺𝐵𝑆(𝜑) =
cos(

𝜑

2
)

tan𝜑
× 𝑊 × 𝐿𝑏

3 (3.8) 

with a surface incline angle of 41.5⁰; Equation 3.8 reduces to: 

 𝐺𝐵𝑆(𝜑 = 41.5⁰) = 0.1321 × 𝑊 × 𝐿𝑏
3. (3.9) 

Harrison et al. [73] proposed an empirical correction to Equation 3.8, with an extra correcting factor 

calculated as a function of the bending angle: 

 𝐺𝐶 = 𝐺𝐵𝑆 × 𝑓(𝜑) =
cos(

𝜑

2
)

tan𝜑
× 𝑊 × 𝐿𝑏

3 × 𝑓(𝜑) (3.10) 

Where: 

𝑓(𝜑) = ⁡ (−3.2434387343 × 10−5)𝜑2 + (3.8717591439 × 10−6)𝜑 + 0.9988589066(3.11) 

with a surface incline angle of 41.5⁰; Equation 3.11 reduces to: 

 𝐺𝐶 = 0.1319 × 𝑊 × 𝐿𝑏
3 (3.12) 

Although all methods were considered in this study, the method proposed by [73] was chosen (Equation 

3.12) since it has been previously applied to estimate the bending stiffness of fabric reinforcements.  

= ϕ

= LC
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Fabric test specimens were cut according to dimensions specified in Table 3.2. For longitudinal bending 

characterization the CF tows were aligned with the bending direction, while for transverse bending 

characterization the CF tows were aligned perpendicular to the bending direction. The test module was 

fabricated from machined aluminum plate and consisted of a horizontal and an inclined surface at a 41.5⁰ 

angle from horizontal, as shown in Figure 3.17. A Nikon D3200 camera fitted with a Nikon DX Zoom 

Nikkor 28-55 MM lens was employed to capture images of the profile view of the fabric specimen. 

 

Figure 3.17. Experimental setup of the performed cantilever test. 

3.2.5. Friction characterization 

     Friction characterization tests were performed to measure the static and dynamic friction coefficients 

of the UD-NCF on a steel substrate material that is representative of a preform mold surface. Currently, 

there is no standardized test to measure the coefficient of friction for fabrics. Nevertheless, in this study the 

test protocol defined in ASTM D1894 was used. This standard was originally developed to measure the 

static and dynamic coefficients of friction of thin plastic sheets. Five different test configurations are 

proposed in the standard; option C was adopted in this study (Figure 3.18). 
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Figure 3.18. Schematic of the friction test setup presented in ASTM standard D1894 as option C and implemented in 

this study [143]. 

The contacting surface of the test specimen is indicated in Table 3.2. The specimen was wrapped around 

a 63.5x63.5 mm2 steel sled and fixed in place using double-sided tape (see Figure 3.19). The bottom carbon 

steel plate surface was sanded with 150 grit sandpaper to achieve a surface roughness of 1 µm RA and 

replicate a typical steel forming tool. It should be noted that tooling provided for this project by industrial 

partner Laval Tool & Mould Ltd. Laval were finished by sanding with 150-grit sandpaper. A custom 

apparatus was designed and built to fit the same tensile frame used in previous tests, which comprised of a 

supporting base, pulley and upper attachment (Figure 3.19). During the test, the sled carrying the fabric 

specimen was pulled by a nylon wire at a displacement rate of 1 mm/s. The UD-NCF was tested on both 

the stitching and glass fiber sides and in the longitudinal and perpendicular material directions (see Figure 

3.20). In the longitudinal direction, the CFs were aligned with the loading direction, while in the transverse 

direction, the CFs were aligned transverse to the loading direction. 

 

Figure 3.19. Image of the (a) friction test apparatus used to measure the static and dynamic friction coefficients of 

UD-NCF. (b) Image of the friction test showing the UD-NCF in contact with a steel plate surface representative of 

the forming tool surface. 
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Figure 3.20. Schematic of the friction test configuration for the UD-NCF (a) longitudinal and (b) transverse directions. 

The ASTM D1894 standard specifies that the coefficient of friction is defined as the ratio of the normal 

force applied on a surface to the pulling force required to overcome sliding resistance. The data collected 

was the pull force required to overcome friction and displacement of the sled. The initial force necessary to 

initiate sliding was denoted the peak force, Fpeak, and was used to calculate the static friction coefficient. 

Following the onset of sliding, the force necessary to maintain sliding, Fsteady, was used to calculate the 

dynamic friction coefficient. The static and dynamic friction coefficients were respectively calculated 

according to: 

 𝜇𝑠 =
𝐹𝑝𝑒𝑎𝑘

𝑊𝑠𝑙𝑒𝑑
 (3.13) 

 𝜇𝑑 =
𝐹𝑠𝑡𝑒𝑎𝑑𝑦

𝑊𝑠𝑙𝑒𝑑
 (3.14) 

3.2.6. Measuring fabric strains using DIC 

     The two-dimensional digital image correlation (2D-DIC) software VIC-2D 2009 (Correlated 

Solutions Inc.) was used to process images captured during the fabric characterization tests described in 

Sections 3.2.1 through 3.2.3. A single Nikon D3200 camera fitted with a Nikon DX Zoom Nikkor 28-55 

MM lens positioned perpendicular to the surface of the specimen was used to capture deformations 

throughout the full specimen surface area at 30 frames per second. It should be noted that for all the fabric 

characterization tests performed in this study image capturing was limited to when the test specimen 

deformations remained relatively planar, thus enabling the use of 2D DIC.  

DIC analysis was performed on complete test specimen areas to generate strain contour plots, and in 

50×50 mm2 (200×200 pixel2) ROIs to record average strain magnitudes. For all strain computations, a subset 

size of 55 pixels, a step size of 5 pixels, a decay filter size 17, and a typical resolution of 0.2646 mm/pixel 

(a) (b)
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were used. Also, the Gaussian weights method option was implemented for strain calculations. To increase 

the correlation capacity of the system given the large deformations expected, the incremental correlation 

option was activated. 

Some challenges were encountered when texturizing the surface of the fabric. A study was conducted 

to evaluate the impact that surface texturization for DIC has on the response of the fabric, and also the 

impact of the quality of the speckle pattern for extracting strain contours. In this study, three different paint 

application techniques were considered: spray paint, latex paint, and oil paint (see Figure 3.21) [65]. The 

spray paint consisted of a base layer of white paint on the fabric specimens with black speckles on top 

applied from spray cans. The latex and oil paint trials consisted of applying white speckles directly to the 

fabric specimens using a hard bristle brush to spread the paint in small droplets. One advantage of using 

latex and oil paints was that a thinning agent could be used to adjust the viscosity as required. The paint 

viscosity was adjusted through a trial and error approach until a consistency that produced paint speckles 

that were small enough to minimize their influence on the mechanical properties of the fabric was achieved, 

were not absorbed by the fabric, and produced high contrast with the fabric background. The most effective 

surface texturization was achieved with a 16:1 mixture of oil-based paint to mineral spirits thinning agent 

ratio (see Figure 3.21c). 

 

Figure 3.21. 45⁰ off-axis extension test specimens texturized with (a) spray paint, (b) latex paint, and (c) oil paint 

[65]. 

(b) (c)(a)
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3.3. Hemispherical draping tests 

     Hemispherical draping tests were performed to investigate the deformation of a single layer of the 

UD-NCF during a forming operation and to validate the developed draping simulation model (Section 4.3). 

Fabric specimens with dimensions of 200 mm by 200 mm were positioned with the CF tows oriented along 

the vertical axis of the top view (Figure 3.22a). The draping test was conducted using a servo-hydraulic 

MTS formability press, fitted with an MTS 407 controller and a piezoelectric 600 KN Kistler load cell 

(Figure 3.23). A 50 mm radius hemispherical punch was used along with a steel ring binder (125 mm inside 

diameter, 20 mm wide and 4 mm thick) to hold the fabric onto the die during draping (Figure 3.22b). Tests 

were performed at room temperature and under quasi-static conditions with a vertical punch speed of 0.25 

mm/s. Initially, a 3D DIC system was used to capture and analyze deformation images of the fabric and 

determine the corresponding strain contours. A pair of 17 mm focal length lenses operated at a frame rate 

of 30 frames per second were used to capture the deformation images and Vic 3D 8 software using a step 

size of 5 to 11 pixels, and a subset size of 31 to 55 pixels was employed for analysis.  However, due to 

calibration issues with the system, the captured images were not processed for this study. Instead, a Nikon 

D3200 camera fitted with a Nikon DX Zoom Nikkor 28-55 MM lens was used to capture the overall 

deformed shape of the fabric specimen at the end of the test once the fabric was fully formed. 

 
Figure 3.22. Hemispherical draping test schematic: (a) top and (b) side view. 
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Figure 3.23. Image of the MTS formability press used for the hemispherical draping tests. 
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Chapter 4: UD-NCF macroscale numerical simulation 

models 

     This Chapter begins with an evaluation of relevant material models currently available in LS-DYNA 

(Section 4.1). The simulation models developed for the calibration of the chosen material model MAT249 

(Section 4.2) and those for simulating fabric draping are also presented (Section 4.3). 

4.1. Macroscopic material models – LS-DYNA®  

     For the purposes of the numerical simulation models developed in this study, a single layer of the 

UD-NCF material was treated as an effectively homogeneous continuum without regard for the discrete 

fabric components (Figure 4.1). Thus, a macroscale constitutive model was used to represent the response 

of the UD-NCF reinforcement. 

 

 
Figure 4.1. Schematic of UD-NCF fabric illustrating discrete components and equivalent homogeneous 

representation. 

There are several material models available in the LS-DYNA material library that are compatible with 

shell elements and can be used for fabric reinforcements [137] (Table 4.1). A suitable material model must 

capture the inherent characteristics of the fabric reinforcement, including the orthotropic material 

characteristics and large shear strains exhibited during typical draping operations. Additionally, the material 

model must be able to predict local fiber orientation and fiber volume fraction for mapping to either resin 

infiltration models or performance models. A comparison of the available material models and the relevant 

selection criteria used in this study is provided in Table 4.1. Based on the assessment, MAT249 was found 

to be the most suitable for the UD-NCF material, providing the best combination of desirable attributes for 

material calibration and simulation output. 
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Table 4.1. Comparison of fabric reinforcement material models available in LS-DYNA® and selection criteria for 

UD-NCF. 

Material model 

identifier 

MAT034 MAT214 MAT235 MAT249 MAT249 - UD 

Material model 

name 

Fabric Dry fabric Micromechanics 

dry fabric 

Reinforced 

thermoplastic 

Reinforced 

thermoplastic UD 

fiber 

Main application Modelling 

of airbags 

and seatbelts 

Propulsion 

engine 

containment 

systems 

Inflatable 

structures, 

parachutes, body 

armour, blade 

containment 

Reinforced 

thermoplastic 

composites 

Unidirectional 

fiber-reinforced 

thermoplastic 

composites 

Material 

constitutive 

behaviour 

Macroscopic

, orthotropic 

Macroscopic, 

transverse 

orthotropic 

Viscoelastic, 

micromechanical 

with 

homogenization 

Macroscopic, 

hyperelastic, 

and 

anisotropic 

Macroscopic, 

Transversely 

isotropic neo-

Hookean 

Large 

deformation 

capability 

No No No Yes Yes 

Input nonlinear 

material 

behaviour 

Yes No No Yes No 

Output fiber 

orientation 

Yes No Yes Yes Yes 

Output fiber 

volume fraction 

No No No No Yes 

Recommended 

for forming of 

unidirectional 

fabrics 

Yes No No Yes Yes 

4.1.1. Material model MAT249 

MAT 249 was originally developed for simulating draping of fiber-reinforced thermoplastic composite 

materials, with the ability to consider a matrix phase and up to three different fiber phases. The matrix phase 

is represented as an isotropic hyperelastic material with temperature dependent elastic properties. Similarly, 

the fiber reinforcement is treated as a hyperelastic material with a predefined preferential direction based 

on the user-defined fiber families. Hyperelastic material formulations are suitable for fabrics because they 

fulfill the requirement of frame-invariance for an anisotropic material response and can be used to capture 
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large deformations [29]. Additionally, the LS-DYNA user manual indicates that MAT249 is suitable to 

model woven and unidirectional dry fabrics [137]. 

MAT249 uses vectors stored at element integration points to represent the fiber families [137]. Every 

time step, an initial fiber configuration represented by m0, is updated using the deformation gradient tensor, 

F, resulting in the current configuration mi. based on the following: 

 𝑚𝑖
⃗⃗ ⃗⃗⃗⃗  ⃗ = 𝑭𝑚𝑖

0⃗⃗ ⃗⃗  ⃗ (4.1) 

Elongations are computed using the fiber length from the current configuration, λi. The fiber strain is 

then computed using λi, from which the total Cauchy stresses are obtained from the sum of individual fiber 

families according to Equation 4.2 [137], where J is the determinant of the deformation gradient tensor. 

 𝝈 = ∑
1

𝐽
𝑛
𝑖−1 𝑓(𝜆𝑖)(𝑚𝑖

⃗⃗ ⃗⃗⃗⃗  ⃗⨂𝑚𝑖
⃗⃗ ⃗⃗⃗⃗  ⃗) (4.2) 

The relative rotation between fiber families (i.e., the fabric shear strain) can either be defined using a 

constant scalar value or determined as a function of the relative angle between fibers (i.e., the shear angle). 

The latter was used in this study with a shear stress-strain relation, g, describing the interaction between the 

two fiber families. Similar to normal stresses, the shear stress can then be computed as the sum of the 

interaction between different fiber families as specified by [137]:. 

 𝝉 = ∑
1

𝐽
2
𝑖−1 𝑔𝑖,𝑖+𝑖(𝑚𝑖

⃗⃗ ⃗⃗⃗⃗  ⃗⨂𝑚𝑖+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) (4.3) 

Ultimately, the material behaviour is determined by the superposition of the deformation of the isotropic 

matrix phase and transversely isotropic fiber families. 

The parameters necessary for the calibration of material card MAT249 are described in Table 4.2. A 

representation of the MAT249 card input from the LS-DYNA user interface, colour coded for matrix, fiber 

and material coordinate parameter definitions, is shown in Figure 4.2. 

Table 4.2. Material parameters for LS-DYNA® material model MAT249. 

Matrix Parameter Description 

EM Young’s modulus 

LCEM Young’s versus temperature data (if active, EM is ignored) 

PRM Poisson’s ratio  

LCPRM Poisson’s ratio versus temperature data (if active, PRM is ignored) 

LCSIGY Yield stress curve 
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BETA Hardening parameter 

Fiber Parameter Description 

NFIB Number of fiber families 

THICK Thickness change option 

IDFx Fiber family ID 

ALPHx Orientation of fiber family x 

G13_x, G23_x Through-thickness transverse shear 

EFx Young’s modulus of fiber x 

LCFx Stress-strain data for fiber family x 

Gxy Shear modulus between fiber families x and y 

LCGxy Shear stress-strain data for fiber families x an y (if active, Gxy is 

ignored) METHxy Method for shear stress calculation 

ALOCKxy Locking angle between fiber x and y  

GLOCKxy Linear shear modulus after locking angle is reached 

  

 
Figure 4.2. MAT 249 material model parameters classified for matrix, material coordinates and fiber definitions. 

4.2. Material calibration simulation models 

     First, single element simulations were used to evaluate the applicability of MAT249 as a material 

model for the studied UD-NCF material, where a series of parametric studies were performed. 

Subsequently, simulations of the physical characterization tests for a single layer of UD-NCF (see Chapter 

3) were reproduced numerically to calibrate the material model MAT249.  

A common set of material card and FE model options were retained for all simulation models developed 

in this study. Fully integrated shell elements, LS-DYNA type 16, with three integration points through the 
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thickness were implemented. The double-precision explicit solver available in LS-DYNA version R10.1 

was used. Two fiber families were specified to represent the behaviour of the fabric in the longitudinal and 

transverse directions, respectively representing the carbon fiber tows and glass fiber yarns, while the matrix 

phase was disregarded. The shear option METH 11, available in MAT249 to define elasto-plastic and 

decoupled shear behaviour between fiber families, was used to represent the shear interaction between the 

warp and weft fabric directions. 

4.2.1. Single shell element simulation models 

Three single shell element simulation models were developed for the fabric material, where deformation 

along the longitudinal and transverse directions, as well as in shear was considered. For each distinct 

simulation, the boundary conditions at the nodes of the single shell elements were adjusted accordingly to 

achieve the desired deformation (Figure 4.3). All four nodes were constrained from out-of-plane 

displacements in all simulations. For the transverse extension test, the material coordinate system was 

rotated to align the direction representing the CF tows perpendicular to the displacement direction (Figure 

4.3b). 

 
Figure 4.3. Single shell element simulation models with boundary conditions and material coordinate directions 

specified: (a) longitudinal extension, (b) transverse extension, and (c) shear. 

4.2.2. Picture frame test simulation model 

To simulate the PFT the fixture was not explicitly considered, instead, the appropriate boundary 

conditions were applied directly to the test specimen gauge section (see Chapter 3 for dimensions). A 

displacement was applied to the lower specimen corner at a rate of 10 mm/s, while the upper specimen 

corner was fully constrained from displacements (Figure 4.4a). To approximate the kinematics of the PFT, 

four rows of rigid shell elements were located around the perimeter of the fabric to represent the rigid frame 

of the testing fixture. All rigid element nodes were constrained from out-of-plane displacements and 

rotations. Additionally, the nodes around the fabric perimeter were locally constrained from displacements 

(a) (b) (c)
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with the contacting nodes in the rigid frame. A mesh sensitivity study was conducted with three element 

sizes considered (Figure 4.4). 

 
Figure 4.4. PFT simulation FE model with square element sizes of (a) 20, (b) 10, and (c) 5 mm. 

4.2.3. Extension test simulation model 

     The extension test simulation models were developed to simulate the longitudinal, transverse, and 

off-axis extension tests by setting the appropriate bias angle through rotation of the local material coordinate 

system (Figure 4.5). The structured shell element mesh consisted of 4 mm square elements. The test clamps 

used were not explicitly accounted for in the FE model. One extra row of elements was added to the two 

short sides of the specimen to directly apply boundary conditions. The top element row had all nodes 

constrained from all rotations and displacements, while a vertical displacement of 10 mm/s was assigned 

to all the nodes in the bottom element row. 

(a) (b) (c)
10 mm/s

Fabric perimeterFabric specimen

Rigid elements
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Figure 4.5. Extension test simulation configuration for (a) 30°, 45°, 60° and transverse (90°) material orientations, as 

well as (b) longitudinal (0°) orientation. (c) Element orientations for all off-axis extension tests, including longitudinal 

(0°) and transverse (90°) orientations. 

4.2.4. Bending simulation model 

     The fabric bending simulation models consisted of two components: an inclined rigid surface 

representing the test module and a 32 mm wide fabric specimen. Three element sizes were considered for 

the fabric, as shown in Figure 4.7. Four-millimeter shell elements were used for the longitudinal cantilever 

bending test simulation, and 2 mm shell elements were used for the transverse cantilever test. The rigid 

surface was fully constrained from displacement and rotations. For the fabric specimen, the nodes that 

contacted the horizontal rigid surface were fully constrained while the remaining nodes were unconstrained. 

A constant gravitational body force was applied to the fabric component to induce bending. 
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Element 

direction

Displacement 

direction(a) (b)
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Figure 4.6. Longitudinal cantilever tests performed with 2 mm, 4 mm and 8 mm shell elements. 

4.3. Hemispherical draping simulation model 

     A hemispherical draping simulation model was developed for a single layer of UD-NCF to replicate 

the physical validation tests (Section 3.3). The same physical test configuration, including specimen and 

tool dimensions (Figure 3.22) was used in the numerical model. Fully integrated shell elements, LS-DYNA 

type 16, with three integration points through the thickness were also used. The tooling and fabric specimen 

were meshed with 4 mm and 2 mm shell elements, respectively. The calibrated fabric material model 

MAT249 was used for all simulations. Similar to the calibration tests, two fiber families were specified to 

represent the carbon fiber tows and glass fiber yarns. MAT249, option METH11 was used to model the 

shear behaviour between the two fiber families. Each of the parts shown in Figure 4.7 had a unique boundary 

condition. The die was fully constrained, the binder and the fabric were subjected to a downward 

gravitational load, while the punch had a vertical upward displacement with a constant velocity of 1 mm/s. 

A penalty contact algorithm was used to define the contact behaviour at all contact interfaces. Friction was 

modelled as isotropic Coulomb friction with static and dynamic friction coefficients defined through the 

experimental friction tests. The simulation was explicitly solved in LS-DYNA using the double-precision 

option.  

2 and 4 mm elements 

8 mm elements
Rigid Surface at 41.5⁰ 

from the horizontal

Fabric component under gravitational loading
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Figure 4.7. Cut-out view of the hemispherical test numerical model. 
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Chapter 5: Experimental and numerical results 

In this chapter the results from an extensive characterization test program for the studied UD-NCF are 

presented (Section 5.1). The mechanical tests performed on the fabric were chosen to resemble the type of 

loading that a single layer of fabric may undergo during a typical draping process, namely, in-plane 

elongation, in-plane shear, and out-of-plane bending [31]. The details and outcomes of the calibration of 

the material constitutive model, Material Reinforced Thermoplastic (MAT249), in LS-DYNA are also 

presented (Section 5.2). Each characterized fabric deformation mode was independently calibrated and a 

summary of all parameters required for calibration of MAT249 is presented. Moreover, independent 

experiments were performed to verify the accuracy of the in-plane shear calibration for the UD-NCF, and 

the results are compared with corresponding simulations using the calibrated MAT249 parameters (Section 

5.3). Finally, the results of a draping simulation are also presented and the model predictions are evaluated 

with results from independent draping tests (Section 5.3.3). 

5.1. UD-NCF characterization 

The fabric characterization experiments aimed to provide an understanding of the deformation response 

of the UD-NCF at the macroscopic level, as well as the underlying local deformation mechanisms. 

Extension tests along the main fabric directions, as well as along biased directions, were performed. A PFT 

was also utilized to capture the shear response of the fabric, while cantilever and friction tests were 

performed to respectively capture the bending behaviour and measure the friction coefficients of the fabric. 

The experimental study did not consider the effects of temperature or strain rate on the fabric deformation 

response; thus, all tests were performed at room temperature conditions under quasi-static loading rates. 

Note, all extension tests were conducted until specimens failed, while PFT were conducted until a 

predetermined shear angle of 35° was achieved. Given that fabric test results are highly sensitive to the 

imposed boundary conditions [24,55], extra care was exercised not to introduce pre-tensioning in the fabric 

and to prevent sliding of the CF tows, GFs and polyester yarns prior to load application. The results from 

the corresponding tests are presented in the following sub-sections. 

5.1.1. Longitudinal and transverse extension experiments 

The fabric stress-strain response along the longitudinal and transverse directions were obtained by 

performing corresponding quasi-static uniaxial extension tests (see section 3.3.3). A minimum of seven 
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repetitions were performed for each test, from which data from specimen that failed prematurely or were 

outliers was not considered, and for each material direction to compute the average stress-strain response. 

It should be noted that results from a number of the initial tests performed were discarded due to specimen 

misalignment, premature fiber failure, or sliding at the clamps. 

Figure 5.1 presents the force-displacement results of three longitudinal extension tests, as well as the 

average force profile with its corresponding standard deviation representing the variation in the force 

response. The tests were zeroed at the point during a test where a noticeable increase in the force response 

was observed. As seen in Figure 5.1, the results from the three specimens are similar, falling within one 

standard deviation from the average data plot. The initial flat portion of the force-displacement plot (prior 

to 0.1 mm displacement) reveals that the fabric exhibited negligible stiffness as a result of straightening of 

CF tows. After approximately 0.1 mm displacement the stiffness suddenly increased as the CF tows became 

engaged and remained almost constant until failure occurred at approximately 1.3 mm.  

Forming of two-dimensional reinforcement into complexly shaped geometries is a critical process steps 

in manufacturing of continuously fiber-reinforced composites. 

 
Figure 5.1. UD-NCF force-displacement response for longitudinal extension test. 

A slightly different configuration of the longitudinal extension test was devised to study the 

corresponding local deformation mechanisms of the fabric (Figure 5.2). As seen in Figure 5.2b, which 

depicts the fabric at the brink of failure, there was no significant relative displacement between the fabric 

components. This indicates that the CF tows carried the applied load until specimen failure, and thus, the 

linear region observed in the force-displacement response (Figure 5.1) corresponds to the longitudinal 

stiffness of the CF tows. 
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Figure 5.2. Images of a UD-NCF longitudinal tensile test specimen captured at different displacements during 

loading: (a) beginning of the test (0 mm), immediately prior to failure (3.75 mm), and (c) after failure (3.83 mm).  

The uniaxial force-displacement response shown in Figure 5.1 was used to calculate the fabric stress-

strain data, which was necessary for the calibration of the material constitutive model MAT249. Stress was 

calculated by dividing the applied force by the cross-sectional area of the fabric specimen, which had a 

thickness of 0.49 mm. Engineering strain was computed using the initial specimen length of 320 mm and 

the measured specimen displacement. The fabric stress-strain behaviour along the longitudinal direction 

(Figure 5.3) was analogous to the force-displacement response, where an initial region of very low stiffness 

until 0.05% strain was followed by a region of higher stiffness (21.8 GPa) that started at approximately 

0.1% strain. At the end of the response, at approximately 0.4% strains, the CF tows suddenly failed at 

maximum stress of approximately 75 MPa. Although the distinct longitudinal response is nonlinear, for 

numerical simulation purposes, it can be reasonably described with a piecewise linear function (see Figure 

5.3). This data was used to calibrate the longitudinal response of the fabric in the FE simulation model. 

(a) (b) (c)
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Figure 5.3. Experimental UD-NCF longitudinal extension stress-strain response and the associated piecewise linear 

model. 

A similar process was performed for the transverse tensile response. Ten repeated transverse extension 

test were performed, however, data from many of the initial tests performed prior to the optimization of the 

original clamp were discarded due to the GFs sliding out of the clamps or failing prematurely. An average 

force-displacement response and corresponding standard deviation was extracted from valid test repetitions, 

as shown in Figure 5.4. During the first 8 mm of extension, the specimen had a negligible force due to the 

relaxed state of the stitching web and straightening of the initially crimped GFs (see Figure 5.5a). Beyond 

8 mm of displacement, the GFs were fully straightened and carried the applied load which increased the 

force linearly from approximately 10 mm to 14.5 mm. After 14.5 mm of displacement, the GF began to fail 

progressively leading to a nonlinear response. The peak force was attained at approximately 16 mm of 

displacement when the GFs were fully extended (see Figure 5.5b). A complete stiffness loss occurred at 

approximately 20 mm when many of the GFs in the specimen had failed and could no longer hold any load 

(Figure 5.5c). It is important to note that the stitching appeared to remain undeformed during the execution 

of the test, as observed in Figures 5.5d, e and f. 
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Figure 5.4. UD-NCF force-displacement response for transverse extension test, with images of overall specimen 

deformation captured at indicated displacements. 
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Figure 5.5. Sequential images of glass fiber and stitching sides of a UD-NCF specimen during a transverse tensile 

test specimen at different displacement intervals: (a and d) 0 mm, (b and e) immediately prior to failure (16 mm), and 

(c and f) after failure (20 mm). 

Similar to the longitudinal extension tests, the fabric stress-strain response along the transverse direction 

was calculated using the force-displacement data in Figure 5.4. The stress-strain response was analogous 

to the force-displacement response with an initial region of very low stiffness that extended to 

approximately 2.4% engineering strain, after which the stiffness gradually increased until it reached a 

constant value of approximately 330 MPa (see Figure 5.6). In contrast to the sudden failure observed in the 

longitudinal direction, in the transverse direction, the region of constant stiffness was followed by gradual 

stiffness degradation starting at approximately 15 mm or 5% engineering strain. A piecewise linear function 

was also used to represent the transverse response of the fabric (see Figure 5.6) for implementation and 

calibration of the constitutive model, MAT249. 
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Figure 5.6. Experimental UD-NCF transverse extension stress-strain response and the associated piecewise linear 

model. 

From the experimental results of the extension tests along the longitudinal and transverse directions, it 

was observed that the mechanical behaviour was remarkably different. The material stiffness during the 

linear portion of the response along the longitudinal direction, 21,800 MPa, is two orders of magnitude 

greater than that along the transverse direction, which was merely 330 MPa. This is not surprising since the 

carbon fiber tows, which comprise over 92% of the fabric total areal weight and have a high stiffness along 

their axis, carry the applied load when the fabric is extended along the CF tows. In contrast, along the 

transverse direction the glass fibers, which only comprise 3% of the fabric total areal weight and have a 

lower modulus, cannot carry significant load thus resulting in a low transverse modulus for the fabric. A 

similar response was observed in the study by Schirmaier et al. [16] for a different NCF. 

5.1.2. Shear experiments 

Next, the characterization of the fabric in-plane shear behaviour using both the PFT and the 45⁰ off-axis 

extension test was performed. Since these tests subject the fabric to distinct shear response, i.e., pure shear 

or simple shear, they were both considered to determine which test is most appropriate to characterize the 

behaviour of the UD-NCF. 

5.1.2.1. Picture Frame Test – Pure shear 

Initially, the shear stress-strain response of the fabric was obtained under the assumption of ideal and 

homogeneous pure shear deformation through the PFT (see section 3.3.1). From the seven tests performed, 

four test results were discarded due to sliding of the glass fibers in the clamp. Figure 5.7 shows the applied 

axial force-displacement response for the three remaining tests, the average response and the corresponding 

0

1

2

3

4

5

6

7

8

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

S
tr

e
s
s 

(M
P

a
)

Strain (-)

Experimental

Piecewise linear model



 73 

standard deviation representing the variation in the data, as well as the applied shear angle from the test 

fixture kinematics. Good repeatability of the fabric force-displacement response was achieved for these 

tests. The force-displacement response has three distinct regions (Figure 5.7). The first region of high force 

resistance resulted from friction between the GFs, CFs and stitching components that restricted shear 

deformation. This was followed by a sharp drop in the shear stiffness resulting from sliding between the 

fabric components. Finally, after a displacement of approximately 80 mm, the force-displacement response 

increased as the area between the testing frame arms decreased, and the specimens were compressed. 

Images of the overall specimen deformation for successive shear angles during the initial portion of loading, 

where the pure shear approximation is valid, are shown in Figure 5.8. When the shear angle reached 5° 

during the test, corresponding to 13 mm of displacement, the slope of the force-displacement response 

began decreasing until it remained constant at a force of approximately 29 N up to a shear angle of 28°, or 

63 mm displacement. 

 
Figure 5.7. Force- and shear angle-displacement response obtained from the picture frame test. 
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Figure 5.8. Macroscopic deformation of texturized UD-NCF picture frame test specimen indicated shear angles. 

 
Figure 5.9. Images of the glass fiber side of a UD-NCF picture frame test specimen: (a) initial state, and (b) once a 

shear angle of 16⁰ was attained. The glass fiber yarns remained crimped throughout the duration of the test, and thus 

were loosely engaged. 

When the PFT specimens were subjected to increasing load, the GFs were virtually free of loading for 

the duration of the test, as observed the crimped GFs at different applied displacements in Figure 5.9. Most 

of the resulting shear force was carried by the CF tows and the polyester tricot stitching. The stitching was 

severely deformed (Figure 5.10), where one segment of the tricot stitching crossing the CF tows was 

extended while the other adjacent segment was compressed. The tensioning of the stitching yarn segments 

from the onset of shear deformation explains the steep increase in force during the initial stage of loading. 

The compression and crimping of the CF tows caused by the stitching (see Figure 5.10), as well as the 
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formation of gaps between the tows, which was evidenced after a shear angle of 5° was attained, explains 

the rapid decline in the fabric shear resistance during the second stage of loading (Figure 5.7). Once a shear 

angle of 35° was achieved, the rapid increase in the shear stiffness coincided with observed compression of 

the specimen, which began to hinder the shear deformation in the fabric. In the study by Cao et al. [68] on 

a plain-woven fabric, it was concluded that estimation of the shear angle from the crosshead displacement 

is only reasonable for shear angles below 35° when the fabric exhibits pure shear. Thus, the measured fabric 

response beyond a shear angle of 35° cannot be considered to be representative of the shear behaviour of 

the fabric [68].  

 
Figure 5.10. Sequential images of the stitching side of a UD-NCF picture frame test specimen at various attained 

shear angles (γ). 
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Figure 5.11. Picture frame test specimen strain contour maps captured using DIC at the indicated shear angles: (a) 

normal strain εx and (b) shear strain εxy. 
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DIC was used to capture strain contours for the PFT specimens. Contours of the normal strain (εx) along 

the loading direction were extracted since a positive and increasing value could be easily predicted from 

the motion of the frame (Figure 5.11a). On the other hand, when extracting the shear strain in a large area, 

close to the whole specimen surface, meaningful and consistent strain readings were not obtained. While 

zero shear strain was expected in the global coordinate system, the DIC system measured shear strains from 

-2.9% to 3.5%, as seen in Figure 5.11b. In an effort to obtain more consistent results that could be used in 

the calibration of the material model, a smaller region of interest was defined for DIC analysis. 

Strains in the global coordinate system XY were measured in a small area (50mm x 50mm) at the centre 

of the specimen, minimizing the impact of undesirable edge effects, and compared to the theoretical strain 

values. As seen in Figure 5.12, the experimental strain closely followed the theoretical data calculated from 

the kinematics of the PFT fixture. The average strains were then transformed into the local coordinate 

system which was oriented by progressively measuring the direction of the CFs during the test (see Figure 

5.13). As seen in Figure 5.13, in the material coordinates, initially, the shear strain (ε12)-shear angle 

relationship was quasi-linear, reaching a maximum value of -22% at a shear angle of 32°, confirming that 

the centre of the fabric specimen was subjected to a deformation close to pure shear. However, transverse 

and longitudinal strains also developed in the material. For example, normal compressive strains transverse 

to the CFs were initially negligible and slowly developed after 10° shear angle up to a compressive strain 

of 14% at 32° shear angle. The transverse compressive strain of individual CF tows can be explained by 

the effect of the stitching compacting the CF tows as the test progressed (as evidenced in Figure 5.10). 

Similarly, linear development of normal tensile strains longitudinal to the CF tows were seen starting from 

a shear angle of 4° and reaching a maximum value of 15% at a shear angle of 32°. Although the CFs were 

not expected to elongate, the positive strain could be the result of stretching of the stitching in the 

longitudinal direction, as seen in Figure 5.10. 
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Figure 5.12. Average strain-shear angle response for three picture frame test specimens, with indicated strain 

components measured in the global coordinate system. Note that average strain values were extracted by DIC from a 

32 mm x 32 mm area in the middle of the specimen. 

 
Figure 5.13. Material coordinate strain values extracted by DIC from a 50 x 50 mm2 area in the middle of the specimen 

during the picture frame test. 
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response, a shear stress-strain relation was determined under the assumption that the specimen was 

subjected to pure shear strain and that the strain was uniformly applied. The stress values were computed 

based on the measured fabric thickness of 0.49 mm. Figure 5.15 presents the average experimental data and 

the piece-wise linear approximation that was used to calibrate the fabric shear response for the constitutive 

model. 

 
Figure 5.14. Normalized shear force-shear angle response for a picture frame test. 

 

Figure 5.15. Experimental shear stress-strain response from picture frame test and associated piecewise linear model. 
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that UD-NCFs subjected to 45⁰ off-axis extension loads tend to deform under simple shear, and that under 

this assumption the rotating fiber direction could be predicted from the applied displacement per Equation 

3.4. This assumption was verified by comparing the theoretical fiber direction variation with experimental 

measurements for one preliminary test specimen (Figure 5.16). The close correlation between the 

theoretical and experimental fiber angle profile reveals that the simple shear deformation assumption is 

valid for the 45⁰ off-axis extension test. 

 

 
Figure 5.16. Experimental and theoretically predicted carbon fiber angle (w) during the 45° off-axis extension test. 

Seven repeated off-axis extension tests were conducted, where data from four tests were discarded due 

to specimen misalignment, premature fiber failure or GF sliding at the clamps. Data from three tests were 

chosen as representative of the macroscale force-displacement response of the fabric (see Figure 5.17). The 

applied force increased sharply at the beginning of the test with a gradual decrease in slope for the full 

displacement range. The maximum force was of 16 N at the maximum applied displacement of 50 mm. 
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Figure 5.17. UD-NCF force-displacement response for 45⁰ off-axis extension test, with images of overall specimen 

deformation captured at indicated displacements. 

Figures 5.18 and Figure 5.19 show images of a 32x32 mm2 window at the centre of a specimen at 

progressive displacements, respectively, for the stitching and GF sides of the fabric. Magnified images for 

both fabric sides of the test specimen are also presented in Figures 5.20 and 5.21. A progressive increase in 

the shear deformation of the fabric with increasing displacement was observed. During the initial stage of 

the test the stitching segments were extended (Figure 5.20) as was also observed during the PFT, which 

caused the initial sharp increase in the force response of the fabric. Rotation of the fabric was observed to 

initiate thereafter since the CF tows tended to align with the loading axis (Figures 5.20 and 5.21), which 

decreased the rate at which forced increased with increasing displacement. As the tension in the stitching 

continued to increase, at approximately 6 mm displacement, the width of the individual CF tows began 

decreasing due to the compression induced by the stitching. This caused gaps to form between the tows 

(Figure 5.20) which promoted intertow sliding at displacements beyond 10 mm (Figure 5.18), and also 

contributed to reducing the fabric resistance to shear deformation. Thus, the combined effect of CF tow 
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rotation and compression, as well as intertow sliding, governed the macroscopic shear response of the 

fabric. Moreover, on the GF side, yarn markings reveal that the GFs do not move relative to the CF tows as 

the displacement increased. Also, the stretched GFs push against the compressed CF tows inducing out-of-

plane deformation in the tows in the form of micro-wrinkling. 

 
Figure 5.18. Images of the stitching side of UD-NCF fabric during the 45⁰ off-axis extension test at different 

displacements: 0, 6, 15, 20, 27 and 37 mm. 
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Figure 5.19. Images of the glass fiber side of UD-NCF during the 45⁰ off-axis extension test at different displacements: 

0, 6, 15, 20, 27 and 37 mm. 

 
Figure 5.20. Images of the stitching side of a UD-NCF specimen during the 45⁰ off-axis extension test captured at 

different displacements loading: 0 mm, 6 mm, 15 mm, 20 mm, 27 mm and 37 mm displacements. 
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Figure 5.21. Images of the glass fiber side of a UD-NCF specimen during the 45⁰ off-axis extension test captured at 

different loading displacements: 0 mm, 6 mm, 15 mm, 20 mm, 27 mm and 37 mm displacements. 

To further highlight the observed deformation mechanisms, CF tow separation was investigated from 

another perspective. When CF tows separated, open spaces or “voids” were observed in the fabric as the 

displacement increased during loading. An estimate of the ratio of void area to the total surface area was 

calculated by post-processing the captured images from the same 32 mm by 32 mm area at the centre of a 

specimen. Figure 5.22 shows the original and corresponding image processing output (in black and white), 

where the void areas in the specimen are indicated in white. 
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Figure 5.22. Images from a 32 mm by 32 mm area in the middle of a UD-NCF specimen, with corresponding void 

area represented in white in the black and white images, during the 45 off-axis extension test at different displacements 

during loading: 0 mm, 7 mm, 19 mm, 29 mm, 39 mm and 45 mm displacements. 
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Figure 5.23 presents the results of the void area content in relation to applied displacement. It is worth 

noting that in a relaxed state, 0 mm displacement, the fabric contained 1.6% void area which gradually 

increased until a displacement of around 10 mm, at which point the rate of change increased to a peak of 

0.2% per mm.  This displacement coincides with the loss of material stiffness previously seen in the force-

displacement profile, at also approximately 10 mm, and with the tow compression seen in the mesoscale 

images in Figures 5.20 and 5.21. Extending the fabric in an off-axis direction applies tension to the stitching. 

As a result of this, the stitching web compresses the CF tows creating gaps between them that increase the 

void area on the fabric. The highest void content recorded was approximately 4.8% at a displacement of 30 

mm, after which it decreased to 4% at complete fabric failure at 45 mm displacement. The reduction in void 

content before failure was most likely due to relaxation of the compression applied by the stitching on the 

CF tows, as the stitching progressively failed after 30 mm of applied displacement. 

 
Figure 5.23. Void content in a single layer of UD-NCF during the 45⁰ off-axis extension test. 

Finally, a shear stress-strain relation was calculated from the force-displacement response of the 45⁰ off-

axis extension tests through the implementation of Equation 3.5 and CF direction data (see Figure 5.24). 

Due to specimen breakdown after a displacement of 35 mm, the CF direction data could not be clearly 

extracted from the specimen, limiting the calculated stress-strain relation used to calibrate MAT249 to a 

maximum shear strain of 46%.  
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Figure 5.24. UD-NCF experimental shear stress-strain response calculated using force-displacement data gathered 

through the 45° off-axis extension test. 

5.1.3. Cantilever bending experiments 

Cantilever tests were performed to characterize the bending stiffness of the fabric along with the 

longitudinal and transverse directions. Representative tests along the longitudinal and transverse fabric 

directions are shown in Figures 5.25a and 5.25b, which define the bend length parameter. Six repeated 

cantilever tests were performed along each material direction and for both up-facing fabric configurations 

(i.e., GF side facing up and stitching side facing up). 

 
Figure 5.25. Cantilever test bending response in the (a) longitudinal and (b) transverse direction. 

The test results for bending along the longitudinal direction are shown in Figures 5.26 and 5.27 for both 

configurations. The average bend length in the longitudinal direction was 145.2±3.6 mm (see Figure 5.26) 
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standard deviation representing the data scatter of < 5%. The 2.9% decrease in bending length for the 

stitching side down configuration was likely due to the inadequacy of the stitching web to provide any 

compression resistance. In contrast, for the stitching side convex configuration, the stitching is placed in 

tension which increased the fabric bending stiffness. Furthermore, the resin binder present on the stitching 

side of the fabric may have also contributed to the increase in apparent stiffness. It should be noted that 

bending the fabric in the longitudinal direction completely disengaged the GFs that run perpendicular to 

the bending direction, leaving the bending resistance of the fabric dependent on the inter-tow sliding and 

the stitching web resistance to tension. 

The resulting average bending stiffness in the longitudinal direction were computed according to 

Equation 3.12 as 0.0014 Nm and 0.0013 Nm for the stitching side convex and concave (facing down), 

respectively. 

 
Figure 5.26. Cantilever test bend length measurements and average value with the fabric stitching side convex and 

oriented in the longitudinal direction. 
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Figure 5.27. Cantilever test bend length measurements and average value with the fabric stitching side concave and 

oriented in the longitudinal direction. 

The average bend lengths for cantilever tests performed along the transverse direction were 17.1±1.1 

mm and 11.2±1.3 mm for the stitching side convex and stitching side down configurations, respectively 

(Figures 5.27 and 5.28). These bend lengths were significantly lower than those in the longitudinal direction 

as expected since the fabric stiffness along the transverse direction is much lower. Contrary to the 

longitudinal direction, the variations in the bend length measurements were more severe in the transverse 

direction for both fabric side convex configurations. With the stitching convex, the variation was 6.4%, 

whereas it reached 11.6% when the stitching faced down. The lack of material continuity along the 

transverse direction decreased the consistency of the test specimens due to variations in the stitching from 

specimen to specimen, potentially increasing the variability of the bending response. Additionally, the drop 

in bending stiffness when turning the stitching side downwards was 34.5%. Similar to the longitudinal 

direction, turning the stitching downward to the compression side of the bend, disengaged the stitching 

yarns cancelling its contribution to the bending stiffness. 

The average transverse bending stiffnesses of the fabric were calculated to be 2.3E-6 Nm, and 0.65E-6 

Nm for the stitching side convex and down configurations, respectively. As seen in Figure 5.30, bending 

stiffness in the longitudinal direction is substantially higher than in the transverse direction. 
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Figure 5.28. Cantilever test bend length measurements and average value with the fabric stitching side convex and 

oriented in the transverse direction. 

 

 
Figure 5.29. UD-NCF cantilever test bend length measurements and average value with the fabric stitching side 

concave and oriented in the transverse direction. 
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Figure 5.30. UD-NCF cantilever bend test length measurements in the longitudinal and transverse directions. 

5.1.4. Fabric-tooling friction experiments 

The friction response of the fabric when in contact with a steel surface, which resembles the tooling 

surface used for a preforming operation, was investigated. The friction coefficients of the fabric along the 

two principal directions and both fabric sides were determined per the procedure explained in section 3.25. 

The steel surface was sanded with 150 grit sandpaper to simulate the surface condition of the forming tool 

that would be used to preform the fabric, with an approximated average surface roughness of 1 µm. 

Figures 5.31 and 5.32 illustrate the average sliding force response of the fabric along the longitudinal 

direction when the GF side and stitching side were in contact with the steel substrate surface, respectively. 

The average responses and scatter were calculated from at least three test repeats for each configuration. 

Note that the resistance friction forces determining the static and dynamic friction coefficient are specified 

on the graph by the two horizontal lines.  
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Figure 5.31. UD-NCF friction force response of the fabric glass fiber side oriented in the longitudinal direction when 

contacting a steel surface conditioned to simulate a forming tool. 

 
Figure 5.32. UD-NCF friction force response of the fabric stitching side oriented in the longitudinal direction when 

contacting a steel surface conditioned to simulate a forming tool. 

Figures 5.33 and 5.34 respectively illustrate the average sliding force response of the fabric along the 

transverse direction when the GF and stitching side and in contact with the steel surface. At least three 

repeats were conducted for each test and the corresponding standard deviation error bars are shown.  
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Figure 5.33. UD-NCF friction force response of the fabric glass fiber side oriented in the transverse direction when 

contacting a steel surface conditioned to simulate a forming tool. 

 
Figure 5.34. UD-NCF friction force response of the fabric stitching side oriented in the transverse direction when 

contacting a steel surface conditioned to simulate a forming tool. 
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Table 5.1. UD-NCF static and dynamic friction coefficients. 

Bending Direction Fabric side 
Static friction 

coefficient 

Dynamic friction 

coefficient 

Longitudinal Glass fiber 0.23±0.03 0.21±0.02 

Stitching 0.35±0.02 0.32±0.01 

Transverse Glass fiber 0.21±0.02 0.18±0.02 

Stitching 0.31±0.04 0.27±0.01 

In the longitudinal direction, the static and dynamic friction coefficients of the stitching side were 39% 

and 52% higher than the GF side correspondingly. Likewise, in the transverse direction, the stitching side 

static and dynamic friction coefficients were 48% and 50% higher than the GF side. A possible cause of 

the higher friction response of the stitching side is that more fabric components are present on this surface 

than on the GF side. In other words, the stitching segments that connect tows and the binding agent are both 

on the stitching side of the fabric. Consequently, contact with the stitching surface generates more 

interactions between the fabric components and the contacting surface, resulting in higher coefficients of 

friction. 

It is also important to note that turning the fabric from the longitudinal to the transverse orientation 

decreases the static and dynamic friction coefficients. On the GF side, the static and dynamic friction 

coefficients decrease by approximately 9% and 14%, respectively. On the other hand, a decrease of 

approximately 11% and 16% was recorded for the stitching side of the fabric. This decline in friction 

coefficient in relation to orientation may be owing to the oval cross-sectional shape of the CF tows, which 

reduces the amount of contact points interaction when the sliding occurs in the direction perpendicular to 

the CF tows. 

The calculated friction coefficients reported in this section were implemented as input parameters in the 

material model. Since only one static and one dynamic coefficient of friction were needed in the numerical 

material model, an average value from the two fabric surfaces was calculated. 

5.2. Calibration of material constitutive model - MAT249 

The purpose of the experimental tests presented in Section 5.1 was to capture the stress-strain response 

of the fabric material in the warp and weft directions, the in-plane shear response, as well as to estimate 
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transverse shear and the friction response of the fabric. The experimental data was subsequently used to 

calibrate the material constitutive model MAT249 (see section 4.1.1 for more details). 

Some simplifying assumptions were made during the model calibration to isolate and fully capture the 

stress-strain behaviour in the principal material directions. The fabric was assumed to have negligible 

stiffness in the thickness direction; hence corresponding material properties were set to zero or negligible 

values. Also, the fabric characterization was performed under the assumption that the fabric behaves as a 

continuum. Once the extracted fabric material properties were implemented in the numerical model, the 

experimental tests were simulated and the results compared to confirm the proper calibration of the material 

model. The corresponding details are provided in the following sub-sections for each deformation mode 

studied. 

5.2.1. Longitudinal and transverse extension response calibration 

Single shell element simulations were initially performed to verify the predicted response of the fabric 

along with the longitudinal and transverse directions. See section 4.2.1 for model details. The stress-strain 

relations from Section 5.1 (see Figures 5.3 and 5.6) were used as input for MAT249. The predicted stress-

strain response was compared to experimental data. Also, the experimental extension tests were also 

simulated by considering the full test specimen geometry as per the model described in section 4.2.3. These 

predicted results were also compared to experimental data.  

 
Figure 5.35. Stress-strain data of the UD-NCF longitudinal extension experimental test and a single shell element 

simulation with material model MAT249 subjected to tensile loading in the longitudinal direction. 
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experimental longitudinal extension test, the predictions of force-displacement (Figure 5.36) and stress-

strain response (Figure 5.37) were also in very good agreement with the experimentally obtained data. 

 
Figure 5.36. Longitudinal extension test force-displacement experimental data and corresponding output data from 

numerical simulation employing material model MAT249. 

 
Figure 5.37. Longitudinal extension test stress-strain experimental data and corresponding output data from numerical 

simulation employing material model MAT249. 

For the UD-NCF transverse extension response, the stress-strain response predicted using a single shell 

element simulation correlated well with the experimental values (Figure 5.38). When simulating the 

experimental transverse extension test, the predictions of force-displacement (Figure 5.39) and stress-strain 

response (Figure 5.40) also agreed well with experimental data.  
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Figure 5.38. Stress-strain data of the UD-NCF transverse extension experimental test and a single shell element 

simulation with material model MAT249 subjected to tensile loading in the transverse direction. 

 
Figure 5.39. Transverse extension test force-displacement experimental data and corresponding output data from 

numerical simulation employing material model MAT249. 
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Figure 5.40. Transverse extension test stress-strain experimental data and corresponding output data from numerical 

simulation employing material model MAT249. 
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Figure 5.41. Shear stress-strain data resulting from a single element parametric study of MAT249 parameter Em. Em 

is used to represent the resin phase when modelling fiber-reinforced composites. 

Next, the effect of material model MAT249 parameters E1 (longitudinal modulus) and E2 (transverse 

modulus) on the fabric shear response were examined. In MAT249, E1 and E2 can be specified as stiffness 

constants or stress-strain data points. As seen in Figure 5.42, E1 was introduced as a constant elastic value 

and had no impact on the shear response of the shell element over a wide range of values. Likewise, the 

stress data of the transverse normal stiffness input, depicted in Figure 5.6, were scaled by factors of 2, 10, 

20 and 100 (see Figure 5.43) showing no influence on the predicted shear response of the material model.  

 
Figure 5.42. Shear stress-strain data resulting from a single element parametric study of MAT249 parameter E1, 

which represents the Young’s Modulus of the fabric in the carbon fiber direction. 
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Figure 5.43. Shear stress-strain data resulting from a single element parametric study of MAT249 parameter E2, 

which represents the fabric stiffness transverse to the carbon fiber direction. A non-linear shear stress-strain data set 

was implemented as E2, which was scaled by factors of 2, 10, 20 and 100. 

As seen in Figure from 5.41 to 5.43 a discontinuity is seen in the predicted shear stress-strain profile at 

approximately a shear strain of 62%. The discontinuity is suspected to be caused by the fact that the applied 

boundary condition only provides a state of pure shear at relatively low shear strains. At larger shear strains, 

the shell element deformation lost symmetry with respect to the direction of loading (45° diagonal) required 

to maintain a state of pure shear, entering a state of combined shear and tension that likely produced the 

observed discontinuities. Having determined that the shear response of MAT249 is not influenced by the 

in-plane material stiffness, calibration of the shear behaviour of MAT249 was first performed through the 

PFT. 
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corresponding simulation at the start of the test and at a shear angle of 38° are shown in Figure 5.45. As 

observed in this Figure, the model was also able to accurately capture the overall deformation of the 

specimen. 

 
Figure 5.44. Picture frame test stress-strain data and corresponding data from numerical simulation employing 

material model MAT249 with different shell element sizes: 5mm, 10 mm and 20 mm. 

DIC was used to compute local strain measurements, from a 32 mm by 32 mm region at the centre of 

the specimen, that were transformed to the material coordinates using CF orientations manually measured 

from test images. For all specimens, the DIC system was able to compute strains up to a shear angle of 38°. 

Thereafter, correlation was lost in part due to fibers originally on the fabric surface moving under the 

surface, effectively disappearing from the digital images. Another possible explanation is that the large 

deformation induced during the test could have exceeded the computational capacity of the system. 

 
Figure 5.45. Images of the PFT specimen and the corresponding FE simulation: (a) prior to loading, and (b) once a 

shear angle of 38° is achieved. 
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As seen in Figure 5.46, the numerical model was able to accurately predict the shear and transverse 

strains up to a shear angle of 15°, after which the simulation underpredicted the transverse strain and 

overpredicted the shear strain. Interestingly, in the case of the longitudinal strain, no correlation was 

obtained between the experimental and predicted data. The DIC system consistently produced a positive 

normal strain reading in the longitudinal direction; this was somewhat counterintuitive since no fiber 

extension was seen during the tests. However, this may be explained by the fact that the PFT fixture applies 

a bending moment to the fabric at the boundaries, as seen in Figure 5.47a, potentially stretching the CF 

tows. This has also been reported in prior studies on fabric shear deformation [86,93,145]. On the other 

hand, in the numerical simulation, the boundary of the specimen was defined by rotational friction-free 

nodes that apply no bending on the specimen, aligning with the theoretical pure shear deformation 

assumptions underlining the analysis of the PFT. Another possible explanation is that some of the local 

fabric deformations generated during the test, as seen in Figure 5.47b, were not taken into consideration in 

the computation of deformation by the 2D DIC system. The mathematical algorithm used by the 2D DIC 

system assumes no out-of-plane deformation takes place, and that surface continuity is maintained 

throughout the deformation [99]. 

 
Figure 5.46: Experimental and simulation strain versus shear angle data of the PFT. The strains are reported in the 

material coordinates with ε11, ε22, and ε12 representing the longitudinal, transverse and shear strains, respectively. 
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Figure 5.47. (a) Local bending of carbon fiber tows close to the clamped boundaries. (b) UD-NCF deformations seen 

during the PFT not considered in the numerical simulation. (c) Friction-free nodes defined at the boundary of the PFT 

numerical simulation. 

As shown in Figure 5.48, the numerical model overpredicted the fabric force-displacement response. 

The weak correlation motivated the search for an alternative approach. Thus, the 45⁰ off-axis test was 

subsequently considered to model the fabric shear response. 

 
Figure 5.48. Experimental and simulation prediction of the force response during the picture frame test. 
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5.2.2.2. Simple shear calibration approach – 45°-off-axis extension test 

The simulation results using the simple shear approach introduced by Pourtier et al. [96] and the 45⁰ off-

axis extension test data for calibration are presented here. The model described in section 4.2.3 was used. 

First, a mesh sensitivity analysis was conducted to examine the most efficient shell element size for the 

simulation. As seen in Figure 5.49, up to 6 mm of applied displacement, there were no significant 

differences between the force predictions for element sizes in the range of 3 to 6 mm, with all the predictions 

falling within the scatter of the experimental data. Beyond 6 mm of applied displacement, the predictions 

began to diverge with a tendency of the simulations with larger elements to over predict the force-

displacement response the most. The 5 mm and 6 mm shell elements originally became unstable as the 

displacement approached 32 mm displacement. After incorporating mass damping, with a Rayleigh 

damping coefficient of 0.03, the simulation was stabilized. The 4 mm element size was chosen for all 

subsequent simulations since it yielded an appropriate force prediction with reasonable processing time and 

a stable simulation. The tendency of the simulation model to overpredict the force-displacement response 

could be explained, among other factors, by the inability of the model to account for sliding of the GFs that 

are clamped at one end of the specimen and free at the other end. 

 
Figure 5.49. Experimental and simulation force-displacement results and mesh sensitivity analysis of 45⁰ off-axis 

extension test simulation using 3 mm, 4 mm, 5 mm, and 6 mm mesh sizes. 
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of the experimental value. The normal strain predictions were slightly better with the numerical model 

predicting 35% of the experimental normal strain parallel (εxx) and perpendicular (εyy) to the loading 

direction. The reasons for the variations between the experimental and simulation strain maps may be 

similar to the ones examined in the study of the PFT. As shown in Figure 5.20, there were local deformation 

modes, such as stitching distortions and intertow gapping that were observed during the 45° off-axis 

extension test and were not considered in the numerical simulation, while the same local deformation modes 

increased the amount of decorrelation in the DIC images potentially causing errors in measuring strain 

during the tests. Nonetheless, as observed in Figure 5.50, the model was able to predict the different strain 

zones along the length of the specimen, as well as the overall deformation of the specimen. 
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Figure 5.50. Experimental and simulation strain contour plots of the 45⁰ off-axis extension test at a displacement of 

20 mm, where (a and d) show the shear strain (εxy), (b and e) the normal strain in the loading direction (εxx) and (c and 

f) the normal strain transverse to the loading direction (εyy). 
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specimen it was found that the numerical simulation was able to more accurately predict the normal strain 
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seen in Figure 5.52. Regarding the shear behaviour, shown in Figure 5.53, a good correlation was observed 

up to approximately 10 mm, after which the simulation largely underpredicted the shear behaviour of the 

fabric. This finding was unexpected since the previous force-displacement prediction matched rather well 

with the experimental data over the same applied displacement range. This reveals that the calibrated model 

is able to predict macroscale in-plane fabric deformation; however, it has limitations when predicting the 

local deformation of the fabric. Also, as previously indicated the accuracy of the measured strains using 

DIC during the tests should be considered. 

 
Figure 5.51. Strain εxx-displacement response for 45° off-axis extension tests and corresponding simulation 

prediction. Note that εxx corresponds to the normal strain in the direction of loading. 

 
Figure 5.52. Strain εyy-displacement response for 45° off-axis extension tests and corresponding simulation 

prediction. Note that εyy corresponds to the normal strain parallel to the direction of loading. 
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Figure 5.53. Strain εxy-displacement response for 45° off-axis extension tests and corresponding simulation 

prediction. Note that εxy corresponds to the shear strain in the global coordinate system. 

According to the LS-DYNA manual [137], the material properties of each fiber family are defined 

independently, and the interaction between the fiber families is defined through the shear input properties. 

To confirm the ability of the model to predict the interaction between the CF and GF fiber families, the 

predicted shear angle and shear stress were compared to experimental results, as seen in Figure 5.54 and 

5.55. Although the simulation was able to accurately predict the shear angle between the two fiber families, 

thus adequately capturing the fabric shear deformation response, it overpredicted shear stress. Similar to 

the force response prediction shown in Figure 5.48, the higher stress prediction could be the result of the 

inability of the material model to account for localized fabric component interactions observed during the 

physical testing, such as sliding of GFs that are unclamped at one of their ends. It should be noted that 

previous studies typically report calibration of constitutive models based on the fabric macroscopic 

deformations and do not report local strains [16,51,73]. 

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 4 8 12 16 20 24 28 32

ε x
y

S
tr

a
in

 (
-)

Displacement (mm)

Experimental εxy

Simulation εxy



 109 

 
Figure 5.54. 45° off-axis extension test relationship between shear angle, between the fiber families 1 and 2, and 

displacement for an experimental test and corresponding simulation prediction. 

 
Figure 5.55.  Shear stress-strain response for a 45° off-axis extension test and corresponding simulation prediction. 
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to 93.9 MPa. As seen in Figure 5.56, using the shell element default configuration with three integration 

points across the thickness and even weight distribution (1/3, 1/3 and 1/3) among the integration points 

resulted in an overprediction of the bending stiffness in the longitudinal direction.  It was evidenced that as 

the weight distribution shifted towards the middle, the bending stiffness decreased. The weight balance of 

the three through-thickness integration points was modified to 2/9, 5/9 and 2/9 each to adjust the stiffness 

of the predicted bending behaviour to match experimental results. Additionally, to the weight distribution, 

varying the location of the integration points through the shell element thickness also altered the bending 

response of the material model. In LS-DYNA, the integration point location is based on a local coordinate 

system where the bottom and top surfaces have respective coordinates of -1 and +1, and the element 

centreline is the reference location. Figure 5.57 shows the effect that varying the location of the integration 

points with respect to the centreline, using variables y1, y2 and y3 to adjust the bending response of the 

material. Finally, regarding computational times, the 2 mm element size simulation took 108 minutes to 

complete, while the 4 mm and 8 mm element size simulations were processed in 14 and 2 minutes, 

respectively. An element size of 4 mm was chosen as a good compromise between accuracy and 

computational speed for the cantilever test. 

 

Figure 5.56. Prediction of the cantilever test simulation in the longitudinal fabric direction showing the effect of 

changing the weight distribution of the through-thickness integration points on the bending response of the fabric 

material model. 
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Figure 5.57. Prediction of the cantilever test simulation in the longitudinal direction showing the effect of changing 

the location of the through-thickness integration points on the bending response of the fabric material model. 

Balancing the integration point weight distribution and location to find a suitable combination that 

matches the physical cantilever experiments is an approach for calibration of out-of-plane deformation 

recommended in [146]. Some advantages of this approach include the ability to define a fixed ratio between 

and in-plane and out-or plane stiffness, as well as ease of implementation [146]. A satisfactory correlation 

between the cantilever test and simulation result was found using an integration point weight distribution 

of [21/50, 8/50, 21/50] and integration point local coordinates of [-0.2, 0, 0.2] (Figure 5.58). Figure 5.59c 

compares images of the experimental and numerical results of the cantilever tests in the longitudinal 

direction. Overlaying their corresponding images shows a close match between the experimental and 

numerical responses. 

 

Figure 5.58. Bending stiffness calibration results by modifying the through-thickness properties of shell element 

integration points using LS-DYNA ‘integration shell’ function. 
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Figure 5.59. Images of (a) experimental and (b) numerical simulation results of the cantilever test in the longitudinal 

fabric direction. Image (c) shows an overlay of both images for visual comparison. 

Similar to the longitudinal direction, the bending stiffness in the transverse direction was adjusted by 

setting the through-thickness transverse shear modulus, G23, to a suitable value to achieve a good correlation 

with the experimental behaviour. The most suitable value of G23 was 1.0 MPa, which produced the 

behaviour observed in Figure 5.60b while keeping the same configuration of integration points previously 

achieved through the calibration of the longitudinal bending behaviour. As shown in Figure 5.60c, a good 

agreement was obtained between the experimental and simulation response. 
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Figure 5.60. Images of (a) experimental and (b) numerical simulation results of the cantilever test in the transverse 

fabric direction. Image (c) shows an overlay of both images for visual comparison. 

5.2.4. Summary of calibration parameters 

The calibration verification presented in the previous sub-sections led to the final calibration parameters 

required for MAT249, which were based on experimental data used in the predictions presented in Figures 

5.37, 5.40, 5.44, 5.55, and 5.58. A summary of the material model parameters used for subsequent 

simulations is presented in Tables 2 – 6. It should be noted that the shear response of the fabric was 

calibrated using the 45° off-axis extension test since it produced force-displacement predictions closer to 

experimental values than the PFT calibration. 
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Table 5.2. Longitudinal normal tensile stress-strain data implemented in the calibration of MAT249. 

Strain (-) Stress (MPa) 

0 0 

0.0005 1.61 

0.001 9.60 

0.004 75.00 

0.104 620.00 

Table 5.3. Transverse normal tensile stress-strain data implemented in the calibration of MAT249. 

Strain (-) Stress (MPa) 

0 0 

0.02 0.039 

0.02341 0.06707 

0.02738 0.21873 

0.02977 0.4977 

0.04565 5.5858 

0.04962 6.27361 

0.14962 23.6 

In-plane shear behaviour was modeled using option METH11 in MAT249. This option requires to set 

an initial linear shear stiffness, followed by a data-defined non-linear region and a final linear response 

specified after a certain locking angle. Tables 4, 5 and 6 present the calibrated values implemented to 

describe shear behaviour of the material model. 
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Table 5.4. In-plane shear parameters used in the calibration of MAT249, METH11 formulation. 

In-plane shear properties 

Initial linear 

stiffness: 

4.82 MPa 

Non-linear region 

initial stress: 

0.064328 MPa 

Locking angle: 1 rad 

Locking stiffness: 0.232 Mpa 

Table 5.5. Shear stress-strain data implemented to describe the non-linear region required in MAT249 option 

METH11. 

Non-linear Shear Response 

Normalized 

Strain (-) 

Shear Stress 

(MPa) 

0 0.064328 

0.031285 0.092892 

0.095783 0.112095 

0.189673 0.127294 

0.287926 0.140337 

0.401932 0.153712 

0.460073 0.167044 

1 0.290851 

Table 5.6. Transverse shear stiffness implemented in MAT249. 

Transverse shear 

stiffness 

G13 93.9 MPa 

G23 1.0 MPa 
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5.3. Evaluation of the Constitutive Model  

The ability of the calibrated material model MAT249 to predict the behaviour of the UD-NCF was 

investigated. Two independent off-axis extension tests with 30° and 60° fabric biases were conducted and 

simulated (Sections 5.3.1 and 5.3.2). As a final step, hemispherical tests were performed on the fabric and 

used to validate the corresponding draping simulation FE model (Section 5.3.3). 

5.3.1. 30° off-axis extension test and numerical simulation results 

The simulation model developed for the 30° off-axis extension test was the same as the one used for the 

45° off-axis-extension test with an adjusted bias fabric angle (see model details in section 4.2.3). The 

experimental and predicted force-displacement response are shown in Figure 5.61. One simulation 

prediction corresponds to the material model whose shear response was calibrated using the 45° off-axis-

extension test data and the other using the PFT test. Both predictions overestimated the force magnitude 

when compared to experimental force values. Also, as seen in Figure 5.61b, the fabric wrinkled significantly 

in the out-of-plane direction producing non-physical instabilities in the simulation that manifested in the 

force-displacement data as noise.  

 
Figure 5.61. (a) 30° off-axis extension test force-displacement experimental data and corresponding output data from 

numerical simulation employing two different shear behaviour calibration methods: the 45 off-axis extension test and 

the PFT shear calibration. (b) Wrinkling observed in the simulation specimen at 20 mm displacement. 

As revealed by the deformation of the square geometry printed on the fabric shown in Figure 5.62, 

during the 30⁰ off-axis extension test, the fabric endured a combination of macroscopic transverse 

compressive and shear deformations. It was also observed that decreasing the biased angle from 45° to 30° 

increased the extent of intertow sliding and compression. Figure 5.63 provides a closer look into the 
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deformation of the stitching, revealing that similar to the 45⁰ off-axis extension test, intertow sliding 

stretches the stitching inducing individual CF tow compression that results in intertow gapping. Figure 5.64 

and Figure 5.65 show the GF side of the fabric during the 30⁰ off-axis extension test, showing a similar 

macroscopic deformation as seen on the 45⁰ off-axis extension test, except with more intertow sliding. 

Examining the GF side more closely in Figure 5.65 shows that the CFs on the surface of the fabric tended 

to bulge and crimp out-of-plane more than on the stitching surface of the fabric. The main reason for this 

seems to be the compression force applied by the stitching combined with a lack of tension on the transverse 

GFs. These local deformations were more severe than in 45⁰ off-axis extension tests due to more 

pronounced intertow sliding, especially in the middle of the specimen or area demarked by the white square. 

These local deformation modes were not accounted for in the macroscopic material model, therefore, 

generating the discrepancies between the experimental results and the numerical predictions. 

 
Figure 5.62. 30⁰ off-axis extension test images of the fabric stitching side at progressive displacements: 0, 3, 5, 11, 

20 and 27 mm. 

0 mm 3 mm 5 mm

11 mm 20 mm 27 mm

8 mm 8 mm 8 mm

8 mm

8 mm
8 mm



 118 

 
Figure 5.63. 30⁰ off-axis extension test close-up images of the fabric stitching side at progressive displacements: 0, 

3, 5, 11, 20 and 27 mm. 

 
Figure 5.64. 30⁰ off-axis extension test images of the fabric glass fiber side at progressive displacements: 0, 2, 5, 12, 

20 and 27 mm. 
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Figure 5.65. 30⁰ off-axis extension test close-up images of the fabric glass fiber side at progressive displacements: 0, 

2, 5, 12, 20 and 27 mm. 

Figure 5.64 shows the strain contour plots during the 30⁰ off-axis extension test, gathered through DIC, 

and their corresponding simulation predictions. The numerical model was able to predict the different strain 

zones seen in the experimental results, including the concentration of deformations in the diagonal parallel 

to the CF fibers. However, significant differences were found between the strains reported by the DIC 

system and the predictions of the simulation. The simulation underpredicted the two normal strains, with 

respective values of, 52% and 63% of the experimental results for εxx and εyy. In contrast, 20% of the 

magnitude of shear strain, εxy, was predicted by the model. The underprediction was caused by the inability 

of the simulation to represent intertow sliding and compression of the CF tows by the stitching, as evidenced 

in Figure 5.20 and 5.21. As shown in Figure 5.62, wrinkling transverse to the CFs was present during the 

experimental test, however, to a lower degree than in the simulations. This may be due to the bending 

stiffening effect that in-plane tensile strains had in the real fabric and was not incorporated into the material 

model. It is important to note that in the 30⁰ off-axis extension test the magnitude of shear strains increased 

compared to the 45⁰ off-axis extension test, suggesting that fabric shear response directly correlates with 

intertow sliding in the fabric. The inability to account for this interaction between shear and extensional 

strains is another limitation of the numerical model. One potential reason for the strain underprediction by 

the model is its inability to represent inter-tow sliding, which was observed during physical experiments 

(Figure 5.18). 
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Figure 5.66. Experimental and simulation strain contour plots of the 30⁰ off-axis extension test at a displacement of 

20 mm, where (a and d) shows the shear strain (εxy), (b and e) the normal strain in the loading direction (εxx) and (c 

and f) the normal strain perpendicular to the loading direction (εyy). 

5.3.2. 60° off-axis extension test and numerical simulation results 

The simulation model developed for the 60° off-axis extension test was the same as the one used for the 

45° off-axis-extension test with an adjusted bias fabric angle. The experimental and predicted force-

displacement response are presented in Figure 5.67. The two predicted profiles correspond to the material 
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off-axis extension test was able to accurately predict the force-displacement response up to a displacement 

of approximately 12 mm. In contrast, the PFT calibrated model satisfactorily predicted force-displacement 

up to an imposed displacement of 5 mm. Afterwards, the response was largely overestimated by both 

simulations compared to the experimental data.  

 
Figure 5.67. Average experimental results of 60⁰ off-axis extension test and simulation prediction. 
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shear superimposed deformation modes. Compared to the local deformations seen in the 45° off-axis 
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Figure 5.68. 60⁰ off-axis extension test images of the fabric stitching side at progressive displacements: 0, 9, 14, 17, 

20 and 35 mm. 

 

 
Figure 5.69. 60⁰ off-axis extension test close-up images of the fabric stitching side at progressive displacements: 0, 

9, 14, 17, 20 and 35 mm. 
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Figure 5.70 shows the fabric normal and shear strains during the 60⁰ off-axis extension test extracted 

with DIC at a displacement of 20 mm and the corresponding simulation predictions. Once more, the 

numerical model underpredicted all strains; however, this time, the predictions were closer to the 

experimental values. Focusing on the centre of the specimen, the simulation predicted 90%, 65% and 87% 

of the experimental strains εxx, εyy, and εxy, respectively. Likewise, the numerical model accurately predicted 

the different strain zones, including the location and orientation of the regions of large strains, which was 

not found the 30° off-axis extension tests. The improved prediction ability of the numerical model, 

compared to the previous two off-axis extension tests with distinct fabric biased angles, may be explained 

by the fact that intertow sliding was less pronounced in the 60° off-axis extension angle since the specimen 

deformation was more closely associated with the transverse tensile deformation, which was independently 

calibrated. In contrast to the 30⁰ off-axis extension test, the magnitude of shear strain decreased compared 

to the 45⁰ off-axis extension test, representing further evidence that the shear response of UD-NCFs is 

coupled to extensional deformation. 



 124 

 
Figure 5.70. Experimental and simulation strain contour plots of the 60⁰ off-axis extension test at a displacement of 

20 mm, where (a and d) shows the shear strain (εxy), (b and e) the normal strain in the loading direction (εxx) and (c 

and f) the normal strain perpendicular to the loading direction (εyy). 
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ends. The sliding of unclamped GFs reduces the force response of the fabric, and therefore, the stress 

response of the material model. The inability to account for GF sliding is another critical limitation of 

MAT249. 

5.3.3. Hemispherical test results and draping simulation validation 

Data from a hemispherical test (see Section 3.3.7) was compared to the numerical simulation of the test, 

described in section 4.2.5, that implemented the calibrated material model MAT249. The intention of the 

hemispherical preforming test was to extract strain measurements using 3D DIC; however, due to 

decorrelation issues, it was not possible to extract consistent strain maps from multiple test repeats. The 

problems were mainly associated with the coarse speckle pattern applied on the specimen surfaces and the 

large deformation experienced by the material during the test. Also, due to the meagre punch forces needed 

to deform the fabric, the load cell installed in the testing machine was oversized and was not able to record 

punch loads. Nonetheless, validation of the model was performed by comparing overall fabric 

deformations, i.e. specimen contour shape and specimen macroscale wrinkling, as seen in Figure 5.71 and 

Figure 5.72. Figure 5.71 show images of the experimental hemispherical test at 10 mm, 20 mm and 30 mm 

punch displacements captured by the VIC-3D® system camera, and the corresponding simulation 

predictions. From the experimental images, it was difficult to visually extract relevant information 

regarding local and global deformation modes during preforming. As an alternative, a picture of one of the 

hemispherical tests was taken with a DSLR digital camera at a 30 mm punch displacement to compare the 

macroscopic and local deformation seen in the experimental data to the simulation predictions. As seen in 

Figure 5.72, local stretching of the fabric test specimens along the longitudinal and transverse directions 

was observed in regions A and B. The draping simulation model, as shown in the contour plots in Figure 

5.73, also predicted this behaviour. In regions C and D, indicated in Figure 5.72, local compression along 

the transverse direction and associated wrinkling were observed in the experimental results and predicted 

by the numerical model. In terms of macroscopic deformations, the model was able to accurately predict 

overall fabric deformation, as evidenced by the resemblance between the fabric specimen contour of the 

experimental and numerical simulation. 
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Figure 5.71. Experimental images (capture with VIC-3D DIC system camera) and simulation predictions of the 

hemispherical test at punch displacements of (a) 10 mm, (b) 20 mm and (c) 30 mm. 
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Figure 5.72. Hemispherical test (a) experimental specimen image (capture with DSLR camera), and (b) numerical 

simulation prediction at a punch displacement of 30 mm. 

From the strain contour plots presented in Figure 5.73, it is observed that the largest values of normal 

strains were seen at the top of the punch, i.e. in the centre of the specimen. In this location, the longitudinal 

strain, ε11, remained relatively low until reaching approximately 1% at 30 mm punch displacement. In the 

transverse direction, tensile strains of approximately 2% were observed near the apex of the punch, 

remaining relatively constant with displacement. The shear strain developed steadily with punch 

displacement in different quadrants of the specimen. In two diagonally opposite quadrants, positive shear 

strain increased from approximately 1% to 14%, while in the other two quadrants, it decreased from 

approximately -1% to -15 from 10 to 30 mm punch displacement. 
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Figure 5.73. Contour plots of simulation predictions of in-plane strains for the hemispherical test at punch 

displacements of 10 mm, 20 mm, and 30 mm. Note that the carbon fiber tows are aligned with the Z direction. 

Finally, Figure 5.74 shows the punch force-displacement relation predicted by the numerical model. The 

punch forced increased unevenly from the beginning of the test to approximately 1.1 N at 12 mm punch 

displacement. From 12 mm to 30 mm punch displacement the punch force varied unsteadily from 0.7 N to 

1.3 N. The variations in force may be associated with the development of wrinkles in the specimen from 

10 mm to 30 mm punch displacement, as evidenced in Figures 5.71 and 5.72. 
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Figure 5.74. Numerical simulation punch force versus displacement prediction for the hemispherical test. 
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Chapter 6: Discussion 

In-plane deformation mechanisms observed in UD-NCFs when subjected to off-axis loading were found 

not to correspond with the modes of deformation associated with woven and biaxial fabrics, as reported in 

the literature [16]. When loaded at an angle biased to the fiber tow axes, biaxial fabrics tend to deform 

predominantly in shear [77,147], while UD-NCFs undergo a combination of shear and transverse extension 

deformation activated at low force magnitudes [16,73], as seen in Figures 5.49, 5.61 and 5.67. The 

resistance of the studied UD-NCF to in-plane extension was found to be lowest at a biased loading angle 

of 45⁰ (see Figures 5.1, 5.4, 5.61 and 5.67). The relation between shear and transverse deformation of the 

fabric was mainly influenced by the interactions between the stitching and the CF tows, as well as the 

direction of applied loading.  

The shear resistance of the fabric was weak, highly sensitive to boundary conditions, and dependent on 

the stitching kinematics. The shear stress required to overcome friction among the fabric components during 

the picture frame test was approximately four times greater than that during the 45⁰ off-axis extension test 

(see Figures 5.15 and 5.24). Such a difference was presumed to be caused by greater than expected pre-

tensioning of the fabric specimen during the PFT as well as normal strains along and transverse to the CF 

tows, revealing that the macroscopic shear response of the fabric was coupled to the amount of deformation 

present in the fabric. The main factor influencing the shear response of the fabric was observed to be the 

deformation and changing geometry of the polyester stitching, as well as the interaction between the 

stitching and the CF tows. A key interaction was the lateral compression of the tows by the stitching as the 

imposed shear deformation increased. As shown in Figure 5.20 and 5.21, this shear-induced compression 

introduced inter-tow gapping (revealed by increasing surface area void content; see Figure 5.23) and out-

of-plane tow undulations. Also, as evidenced by the development of shear during the 30⁰, 45⁰ and 60⁰ off-

axis extension tests, the macroscopic shear response of the fabric was coupled to the amount of extension 

in the fabric. During the 30⁰ and 45⁰ off-axis extension tests, shear deformation was triggered first and 

dominated the macroscopic fabric deformation as the fabric rotated to align itself with the loading direction. 

On the contrary, during the 60⁰ off-axis extension test, transverse extension dominated as the carbon fiber 

tows rotated in the opposite direction to align themselves perpendicular to the direction of loading (see 

Figure 6.1). As the biased angle increased from 30⁰ to 60⁰ the balance between shear and transverse 

macroscale deformations transferred from the former to the latter. Common between the three loading cases 

was the generation of gaps between the CF tows, with the 60⁰ CF tow orientation generating the most severe 

gapping. 
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Although UD-NCFs have been reported not to exhibit tow crimping [148], a small degree of negligible 

stiffness that is characteristic of tow decrimping was observed during longitudinal testing (see Figure 5.1). 

The longitudinal tensile stiffness of the fabric was negligible up to a tensile strain of approximately 0.05% 

(see Figure 5.3). On the other hand, transverse extension was observed to be highly dependent on the state 

of the transversely oriented supporting GFs. In unloaded conditions, the GFs were relaxed and tended to 

exhibit a noticeable level of crimping (Figure 5.5). The transverse extension stress-strain response of the 

fabric showed two distinct stages prior to specimen failure, an initially negligible stiffness stage 

characterized by GF decrimping, which extended until approximately 2.5%, and a constant stiffness stage 

that extended until the GFs began to fail progressively. Beyond the GF failure stage, out-of-plane CF tow 

undulations and inter-tow gapping developed as the stitching began to support the load. Shortly after the 

load was completely transferred to the stitching, and the fabric structure deteriorated as the stitching rapidly 

failed. 

 

Figure 6.1. Deformation of the stitching web during the 30⁰, 45⁰ and 60⁰ off-axis extension tests captured at an applied 

displacement of 20 mm. 
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it was found difficult to clamp UD-NCF specimens to the PFT fixture without introducing pre-tensioning 

that inevitable affects the shear response of the fabric. This is especially true for UD-NCFs given their low 

shear stiffness compared to, for example, woven fabrics [16]. Due to this difference, the 45⁰ off-axis 

extension test, analyzed under the approximation of simple shear [96], was found to be most appropriate to 

study the shear response of the UD-NCF.  

In terms of out-of-plane deformations, the bending stiffness response of the fabric was remarkably 

distinct for bending along the longitudinal and transverse directions, as revealed by the cantilever test results 

shown in Figures 5.26-5.30. While the longitudinal direction exhibited a moderate level of bending 

stiffness, in the transverse direction, the bending stiffness was found to be negligible. This explains the 

proliferation of transverse wrinkling observed during the hemispherical draping test. Given this negligible 

transverse bending stiffness, the fabric was expected to wrinkle during off-axis extension testing, however, 

this was not the case. As a result, the bending response of the fabric is anticipated to be coupled to the 

magnitude of in-plane normal strain present in the fabric.  

Similar to the bending response, the friction response of the fabric varied with fabric orientation, with 

slightly higher static and dynamic friction coefficients obtained in the longitudinal direction. This may be 

attributed to the topography of the fabric having the highest points aligned in the direction of the CF tows, 

increasing the number of surface interactions between the fabric and the rough surface when the sliding 

was parallel to the carbon fiber tows. Out-of-plane CF tow undulation caused by compression forces applied 

by the stitching were observed on the fabric with the application of transverse and shear deformations [14], 

as seen in Figure 5.20. These deformations altered the surface conditions of the fabric and are anticipated 

to cause changes in the friction response. 

A high level of variability was observed in the force response data from the different extension tests. 

Possible sources of scatter include fabric-manufacturing defects such as tow misalignment or slight 

variability in the stitching pattern, and inconsistent pre-tensioning of the fabric test specimens.  

Some challenges were encountered with the application of DIC to characterize surface deformations. 

The discrete nature of the fabric made it difficult to apply a speckle pattern on the fabric surface without 

affecting the mechanical properties of the material [65,102]. In addition to the mechanical sensitivity of the 

fabric to any surface treatment, the fabric surface was rough and highly reflective, thus a significant amount 

of diffused reflections affected the quality of the images captured for DIC analysis. Also, as previously 

discussed, the fabric developed out-plane undulations in individual CF tows, challenging the assumption of 

material continuity required for DIC analysis, potentially affecting the accuracy of the DIC results. 
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Moreover, the predictive capabilities of the material model MAT249 was evaluated through single 

element analyses and simulations of the characterization tests. These revealed that the material model was 

able to successfully predict all individual deformation modes, i.e., tensile, shear, and bending, as 

demonstrated by the data presented in Figures 5.35-5.44 and 5.59. However, limitations were encountered 

when the model was used to predict fabric deformation under multiaxial loading conditions, such as for the 

simulation of the 45° off-axis extension test. Specifically, the model was not able to accurately predict the 

development of combined normal and shear deformations and their inter-dependency, as evidenced in 

Figure 5.49. The inability of the model to accurately predict this coupled behaviour was also demonstrated 

by the overprediction of the force response seen in Figures 5.61 and 5.67 for the 30⁰ and 60⁰ off-axis 

extension test, respectively. This is clearly shown in Figures 5.42 and 5.43, where changes in the fabric in-

plane moduli did not impact the shear response. It should be noted that this limitation may partially stem 

from the fact that the material model did not account for potential normal and shear stiffness losses during 

the multi-axial loading, which is a characteristic of the fabric. A distinct approach to characterize and model 

this complex characteristic may be required for UD-NCFs. Also, the method by which the out-of-plane 

shear moduli, G13 and G23, were calculated and the scheme used to calibrate the bending response of the 

fabric may have led to inaccurate predictions of wrinkling during the 30° off-axis extension test simulation. 

This supports the likelihood that the bending deformation of the fabric is coupled to the degree of fabric 

extension. In addition, use of a macroscopic constitutive model did not allow capturing of the observed 

local deformation mechanisms, which were dependent on the off-axis angle of the fabric. Notwithstanding, 

simulations of the 30⁰ and 60⁰ off-axis extension tests revealed that calibration of the material model using 

the 45° off-axis extension test data led to improved force-displacement response predictions compared to 

when the PFT data was used (Figures 5.61 and 5.67). This further supports the fact that calibration of the 

UD-NCF shear response should be performed using the 45° off-axis extension test data.. Despite the 

limitations of MAT249, during the hemispherical draping simulation, the material model was able to 

accurately capture the overall deformation of the fabric and the macroscopic wrinkling observed during the 

hemispherical draping test. 
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Chapter 7: Conclusions 

The overall goal of this investigation was to develop a computational approach for predicting defects 

associated with preforming of heavy-tow unidirectional non-crimp fabrics (UD-NCFs). The main research 

objectives comprised of characterizing the deformation behaviour of the carbon fiber UD-NCF PX35-

UD300 (Zoltek Corporation), calibrating an available macroscale material constitutive model, and 

developing a computational fabric draping simulation model using the commercial finite element software 

LS-DYNA.  

Longitudinal and transverse extension tests as well as off-axis extension tests and a picture frame test 

were conducted to characterize the different membrane deformation modes of the UD-NCF, and the results 

were used to calibrate the material constitutive model MAT249 in LS-DYNA. Also, cantilever tests were 

performed to capture the bending deformation modes of the fabric along both the longitudinal and 

transverse material directions. The interaction between the fabric and a surface representative of a typical 

steel forming tool was also captured through friction characterization tests, ultimately providing required 

boundary conditions for the developed computational draping simulation model. All custom fixtures used 

to perform the characterization tests were designed and procured through this study. Two-dimensional 

digital image correlation (DIC) was also used to capture fabric strains during fabric membrane 

characterization tests. To prepare the experiments for DIC analysis three paint techniques were evaluated 

for optimal texturization of speckle pattern application. The fabric characterization tests captured the 

macroscopic response as well as the associated local deformation mechanisms, providing an improved 

understanding of the complex behaviour of the UD-NCF. 

One of the main findings of this work was that the behaviour of the investigated UD-NCF was notably 

different from that of more widely studied woven fabrics or biaxial NCFs reported in the literature. First, 

woven fabrics or biaxial NCFs are typically tested using the picture frame test to impose pure shear 

deformation on the test specimen. For UD-NCFs, it was found that the picture frame test did not strictly 

impose a pure shear deformation state on the fabric specimens, where instead combined shear and extension 

were observed which may be due to pretensioning of the specimen and/or the characteristic response of the 

fabric. The 45⁰ off-axis extension test was also used to characterize the UD-NCF where the expected shear-

extension coupling was observed. The coupling between shear and extension deformation modes was 

highly influenced by the complex interactions between the stitching and the carbon fiber tows, and was 

dependent on the degree of tension acting on the fabric. Furthermore, the bending properties of the fabric 
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exhibited a high level of anisotropy with negligible bending stiffness in the direction transverse to the 

carbon fiber tows. This behaviour is distinct from woven fabrics where the fabric bending stiffness would 

be notable along the primary material directions. 

In addition, the calibrated material constitutive model (MAT249) was first used to simulate the 

conducted characterization tests. It was found that the model was able to predict the response of the fabric 

for cases when individual modes of deformation were imposed. However, predictions were less accurate 

when combined shear and extension were imposed on 

the fabric, which revealed that the model was unable to accurately capture the variability in the shear 

extension coupling of the fabric. Nonetheless, simulation of the hemispherical draping test revealed that the 

draping simulation model was able to accurately capture the overall deformed shape of the fabric and the 

wrinkling observed during the experiments. 

7.1. Recommendations for Experimental Characterization of Mechanical Properties 

The outcomes of the investigation provided relevant data for understanding the behaviour of the UD-

NCF and for developing a computational draping simulation model. However, there are some 

recommendations related to the performed characterization tests which are detailed here.  

 Minor fluctuations were observed in the force data captured using the 2.2 kN load cell for the off-

axis extension tests. To further improve the quality of the experimental data it is recommended that 

a load cell with a smaller capacity, on the order of 500 N, is used for off-axis extension tests.  

 Also, some difficulties were encountered when capturing close-up images of the fabric caused by 

light reflections and low camera resolution. As such, a diffuse light source is recommended when 

filming or photographing the fabric, especially at close proximity, as well as a video camera with a 

resolution of at least 10 megapixels on video mode.  

 As an improvement for the picture frame tests, it is recommended to bond the fabric outside of the 

gauge area of the specimen using a resin or an adhesive. This is expected to eliminate pre-tensioning 

that may have been introduced at the boundaries when clamping the fabric.  

 For DIC surface texturization, application of a non-binding ink is recommended to further minimize 

the effect it has on the response of the fabric response. Alternatively, texturizing the fabric can be 

eliminated and the features of the fabric, such as the stitching locations, can be used to track 

deformation; albeit this may require the development of a custom algorithm. 

 To capture macroscopic deformations during the hemispherical test, it is recommended to use a 

square grid applied with white or silver marker instead of DIC analysis. Also, for the hemispherical 

test it is recommended to use a smaller load cell in order to gather force-displacement data. 
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7.2. Recommendations for Future Work 

There are several recommendations for future studies to build on the results from the current study.  

 Due to the complex shear-extension coupling exhibited by the UD-NCF, a more in-depth 

characterization of the fabric can be conducted through additional experiments. For example, to 

better understand the dependency of shear deformation on extension, the fabric can be subjected to a 

pretension prior to conducting an off-axis extension test. Similarly, to characterize the dependency 

of bending on extension, the fabric can be subjected to a pretension prior to conducting a cantilever 

test. This may lead to an improved calibration of the material model MAT249 or the identification 

of the need to develop a custom user-defined material model for the UD-NCF. Furthermore, meso-

scale computational models can be used in conjunction with tests to better inform the macroscale 

constitutive model for the fabric. 

 In general, fabric preforming operations are conducted at various pressing rates. Therefore, it is 

assumed that the deformation rate may have an effect on the deformation response of the fabric. As 

such, it is advised to conduct the characterization tests on the fabric at higher deformation rates.  

 Fabric preforming operations are conducted in preheated tools to activate the binder and allow the 

preform to retain shape. The binder on the stitching side of the fabric may alter the friction response 

at elevated temperatures. Therefore, it is recommended to investigate the impact that temperature has 

on the friction response of the fabric.  

 Fabric forming is normally performed using multiple layers of fabric where inter-ply friction may 

play an important role in the deformation behaviour. Therefore, to inform future multi-layered 

draping simulations, it is recommended to conduct fabric-fabric friction characterization tests along 

different fabric directions.  

 Finally, the draping simulation model can be expanded and used to conduct multi-layer draping 

simulations for the hemispherical and other part geometries. Corresponding validation tests can also 

be conducted.  
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