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Abstract

The widespread benefits of classical machine learning along with promised speedups
by quantum algorithms over their best performing classical counterparts have motivated
development of quantum machine learning algorithms that combine these two approaches.
Quantum Kernel Methods (QKMs) [22, 49] describe one such combination, which seeks to
leverage the high dimensional Hilbert space over quantum states to perform classification
on encoded classical data. In this work I present an analysis of QKM algorithms used
to encode and classify real data using a quantum processor, aided by a suite of custom
noise models and hardware optimizations. I introduce and validate techniques for error
mitigation and readout error correction designed specifically for this algorithm/hardware
combination. Though I do not achieve high accuracy with one type of QKM-based classifier,
I provide evidence for possible fundamental limitations to the QKM as well as hardware
limitations that are unaccounted for by a reasonable Markovian noise model.
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Chapter 1

Introduction

1.1 Overview of quantum computing

Quantum computing broadly refers to the use of quantum states (as opposed to classical,
binary bits) to perform some computational task, and quantum computers are the hardware
purposed to do these tasks. Typically an algorithm on a universal quantum computer (that
is, a quantum computer that is at least as powerful as any other quantum computer) is
described in terms of operations (or “gates”) applied to the underlying quantum state and
implemented with some very small amount of error, and the quantum state itself does not
decohere due to interactions with the ambient environment. In this case, each step in the
evolution of a quantum state |ψ〉 can be described exactly by applying a unitary operator
U to a vector representation of the state.

In the gate model for quantum computing [36] a quantum algorithm is represented as
a circuit diagram with the component qubits of |ψ〉 represented as lines moving forwards
(to the right) through time and being acted on by unitaries represented by closed boxes
(see Figure 1.1). This representation is useful for connecting the mathematical description
of unitary operators acting on complex Hilbert space with the physical evolution of a state
|ψ〉 in time and the classical notion of bits being acted on by local logic gates.

There are many proposed physical implementations for near-term quantum computers,
and all of them are susceptible to physical defects, environmental noise, and control errors
that interfere with the device’s ability to perfectly execute the operations depicted in a
quantum circuit. When quantum algorithms are studied theoretically, the specific nature
of these errors arising from any given device is typically abstracted away, and only the

1



qubit 0

U
qubit 1

qubit 2

qubit 3


|ψ〉

Figure 1.1: A generic quantum circuit for evolving an initial state |ψ〉 ∈ C16 via operator
U .

intended evolution of the system’s wave function (such as the representation in Figure
1.1) is considered. The goal of quantum error correction is to achieve this idealization by
introducing additional operations that prevent the effects of noise that would otherwise
ruin the computation; a quantum system that can carry out computation even in the
presence of imperfect gates and noise is said to be fault tolerant [40].

To date, the most promising quantum algorithms are those designed to run on fault
tolerant, universal quantum computers and which solve a problem in fewer steps than the
best-performing, currently known classical method. A quintessential example is Shor’s
algorithm for factoring integers [51], which can find prime factors of an integer N in an
amount of time that scales like O(log(N)3) (the big “O” describes asymptotic time cost
with respect to a very large N); meanwhile, to date the best classical algorithm takes almost
exponentially longer time (with respect to N) to perform the same task. Another famous
example is Grover’s search algorithm [19], which, given a suitable quantum implementation
of a binary function f : {0, 1}n, determines if the function outputs “1” with a worst case
performance of O(2n/2) queries. This is a quadratic speedup over the worst case classical
performance of O(2n), which arises as a result of guessing the input that yields “1” last.
Beyond solving classical problems, quantum computers are expected to be able to simulate
the dynamics of quantum systems much more efficiently than computing the exact evolution
of such states on a classical computer [17].

Though certain quantum algorithms achieve speedups over their classical counterparts,
a fault tolerant device capable of executing such algorithms doesn’t exist yet. Instead,
practical quantum computation is currently only available in a very limited form.

NISQ devices

Implementing unitaries with very low error (and therefore achieving state evolution that
can be represented in a form like Figure 1.1) typically requires error correction that is too
resource intensive to accomplish on current “Noisy Intermediate Scale Quantum” (NISQ)

2



defect

idle decoherence

crosstalk
frequency-dependent 

coupling

time correlation

unitary control error

purity error

qubit reset

Figure 1.2: (right) A more realistic model for what actually occurs when the quantum
circuit on the (left) runs on a NISQ device. Round-edged shapes denote non-unitary
effects that are generally neither local in time nor space.

hardware [42] – instead, algorithms implemented on NISQ hardware are limited to tens to
hundreds of qubits which steadily decohere due to interactions with the environment and
are subjected to unpredictably imperfect evolution.

A more realistic view of dynamics on a NISQ device is presented in Figure 1.2, which
depicts many potential non-unitary effects that might influence a quantum state’s evolu-
tion. Some of these effects can be approximated using a gate model for state evolution,
and many can be probed by comparing the results of hardware experiments to the perfect
evolution predicted by a corresponding noiseless gate model circuit. Chapters 2-3 are de-
voted to understanding these underlying dynamics that drive the evolution of a state on a
NISQ device.

Unlike algorithms that will eventually be executed on fault tolerant quantum comput-
ers, it is unclear whether algorithms executed on NISQ devices will be able to reliably
produce speedups over useful classical algorithms. One recent demonstration of this kind
of ”quantum supremacy” reported successful sampling from a distribution that is ineffi-
cient to sample from classically, at a rate much faster than very large classical computers
could [3]. At the same time, the distribution that was sampled was only marginally similar
to the intended distribution (i.e. the distribution achievable with error correction), which
highlights one difficulty of assessing the performance of algorithms on NISQ devices and
foreshadows similar difficulties in assessing the algorithm that is the topic of this work (see
Section 4.3.3: “On quantum advantage”).

Despite the difficulties of demonstrating clear-cut quantum speedup, the increasing
availability of NISQ hardware motivates a broader search for algorithms capable of running

3



on near-term devices. The next section will discuss a surprising contender: a class of
algorithms that utilize quantum computers to process classical data.

1.2 Motivations for quantum machine learning

Machine learning (ML) can be broadly described as the use of algorithms that can classify,
predict, or interact with data in a generalizable way using large amounts of input data and
optimization. ML has gained popularity for its impressive performance in a wide range of
fields, from facial/image recognition to high energy physics to natural language processing.
This performance comes at a cost, however, as training ML models can consume thousands
or even millions of desktop computers worth of processing power.

Given the successes of classical machine learning, a natural extension is to try to com-
bine its advantages with quantum computing. Recently, “Quantum Machine Learning”
(QML) has become an umbrella term describing the use of a quantum computer to enhance
the performance of a classical ML model or the application of classical ML to improve the
performance of quantum circuits. Some examples include the Variational Quantum Eigen-
solver [30] which uses classical optimization to prepare the ground state of Hamiltonian,
the Quantum Approximate Optimization Algorithm [15] which uses classical optimiza-
tion of parameters in a quantum circuit to solve graph problems, and quantum circuit
architectures loosely modelled after popular classical machine learning algorithms like the
Quantum Neural Network [16] which uses a quantum circuit to classify input classical data
via manipulations in Hilbert space and Quantum Convolutional Neural Network [13] which
classifies input quantum states according to their entanglement properties.

The Quantum Kernel Method (QKM) [49, 22], the topic of this thesis, attempts to find
clean separations in classical data encoded into a quantum state by taking advantage of
the exponentially large size of Hilbert space that governs states over even a few qubits.
As shown in Figure 1.3, data that is difficult to linearly separate in low dimensions can
become trivial to separate using a ML model such as the Support Vector Machine (SVM)
when a specific projection is used to map the data points into higher dimensional space.

Each of these QML algorithms attempts to solve a problem that is difficult to do
with classical resources alone, but they all share some degree of difficulty in proving that
they offer any scaling or resource advantage over the use of classical algorithms alone.
The difficulty of demonstrating such a result for a QML algorithm is compounded by the
fact that the field of classical ML algorithms often fails to provide any rigorous proof of
performance for its most popular algorithms, instead resorting to comparisons to accepted

4



Figure 1.3: The task of finding a simple, generalizable function that separates blue dots
from red dots is nontrivial and highly susceptible to overfitting. Conceptually, the power of
kernel methods comes from their ability to project these kind of data that are not linearly
separable in their original form (image A) into higher dimensional space (for example, image
B) which allows for a simple and generally accurate dividing hyperplane to be drawn.

benchmarks or empirical scaling trends to evaluate a model. Chapter 4 is devoted to
addressing simulated performance and discusses the issue of “quantum advantage” for
QML algorithms and the QKM/SVM combination specifically.

Just as classical neural networks (universal function approximators capable of learning
arbitrary classification boundaries in data) have largely eclipsed SVMs due to the former’s
greater expressiveness over input data (as Chapter 4 will describe, SVMs are limited to
classifying data based strictly on inner products between mapped data points), more com-
plex QML algorithms may turn out to be more powerful than the SVM/QKM combination
described in this work. To that end, in addition to the work presented here I helped de-
velop a quantum machine learning library called Tensorflow Quantum [11] designed to
assist with prototyping and implementation of quantum machine learning algorithms on
quantum hardware. With this software and its connections to a massive ecosystem of tools
for classical machine learning and optimization, the historically rapid development of ML
may yet repeat itself in the quantum domain.

5



1.3 Overview of this work

This thesis is structured to provide the background and results for noise models for hard-
ware, quantum processor performance using the Rainbow-23 Google superconducting qubit
chip, and finally performance of an ML model trained using results from Rainbow-23. How-
ever, for the purpose of this work these separate of a single QML model will be addressed
and validated separately. Therefore the goals of this project fall into three distinct cate-
gories:

1. (Chapter 2) Develop a noise model that is predictive of hardware outcomes.

2. (Chapter 3) Verify and optimize the outputs of quantum hardware.

3. (Chapter 4-5) Maximize the accuracy of an SVM model that employs QKM.

In the spirit of rigorous verification, the outcomes associated with each goal will be
addressed separately. To understand why performance in one category doesn’t necessarily
transfer to another, consider the following examples:

• A circuit-based noise model might accurately predict outcomes from quantum cir-
cuits run on quantum hardware even if the degree of decoherence means that the
hardware outcomes are sampled from a provably classically tractable distribution,
and a detailed understanding of noise processes on hardware won’t necessarily assist
in developing a robust ML model.

• Results from quantum hardware might be sampled from a coherent state vector in
Hilbert space despite a noise model’s failure to reconstruct the distribution or despite
bad performance of ML models employing this distribution.

• A classical ML model might perform well using results sampled from decohered states
on quantum hardware that were essentially acting as a biased random number gen-
erator (See Section 4.3.2 for example) or without any prior knowledge of the target
distribution provided by a detailed noise model.

Because each of these goals is distinct, the performance of a predictive noise model
isn’t necessarily correlated with quantum behavior of the Rainbow-23 processor, and the
performance of a quantum-assisted ML model. As such, successes (or failures!) in any
given category should be viewed in a standalone manner.

6



Chapter 2

Markovian noise and gate errors in
quantum hardware

The goal of this project is to train a machine learning model using the quantum kernel
method on the Rainbow-23 superconducting qubit hardware. Before presenting results re-
lated to hardware, its important to develop and understanding of noise in superconducting
qubit systems and establish a simulated noise model that can closely predict the outputs
any given circuit executed on real hardware. Understanding the noise characteristics of a
quantum system is essential to this work for the following reasons:

• Making robust predictions about the performance of quantum kernel circuits in the
design process.

• Validating optimizations and postprocessing steps meant to undo error introduced
by real hardware.

• Determining how well the hardware performance conforms to expectations, and iden-
tifying sources of hardware errors that are unaccounted for in a gate-model represen-
tation of quantum computing (see Figure 1.2).

This chapter focuses on Markovian noise, which roughly describes the class of physical
processes for which a single time step of evolution depends only on the current state of the
system1. This class of noise is both easier to describe (Section 2.1) and more convenient

1In a rigorous treatment the term “Markovian” is typically reserved for describing processes that can be
modeled using stochastic matrices (as opposed to unitary processes that use unitary matrices, for example).
Here the term will be used more loosely.
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to simulate in a quantum circuit simulator setting (Section 2.3) than the alternative class
of non-Markovian noise, and the phenomenological nature of the noisy simulation allows
for implementation and tuning based on empirical results from the hardware.

2.1 Noise processes

The following sections introduce some conventions for modeling noise processes and de-
scribing the performance of imperfect quantum gates, as well as example sources of noise
and diagnostics for superconducting quantum hardware. Finally, Section 2.3 presents a
full noise model that can be implemented in a gate based quantum circuit simulator.

2.1.1 Noise Channel representations

Noise channels can be represented as completely positive (positive over all possible exten-
sions of the relevant Hilbert space) trace preserving, or CPTP, maps on the space of density
matrices. The CPTP restriction enforces that the result of applying a noise channel to a
density matrix is itself a valid density matrix. As such, the action of a noise channel is
denoted D : L(H) → L(H) since the channel is a mapping between linear operators in
a given Hilbert space. This mapping admits many possible representations, two of which
will be introduced in the following sections.

Kraus (operator sum) representation

The first is the Kraus operator sum representation, in which the action of a noise channel
D[p] (square brackets denote parametrization by p) is characterized by a set of operators
{Mi ∈ L(H)} acting on a density matrix ρ ∈ L(H) in the following way:

D[p](ρ) =
∑
i

Mi(p)ρM
†
i (p) (2.1)

This picture of noisy evolution is convenient because it describes evolution of a quan-
tum state as a mixture unitary evolutions, weighted by probabilities contained in the Mi

operators. However, just as density matrix representations of a state are not uniquely
defined by summations of pure states, the Kraus representation does not provide a unique
way of representing the action of a channel D.
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Choi matrix representation

The Choi matrix is a unique way of capturing the dynamics of a process, D. To do so, the
action of the process is extended to a larger Hilbert space and computed on a maximally
entangled state. To prevent ambiguity that arises from this extension, enforce that D ∈ Cd.
Then the Choi matrix J(D) is defined by the action of the channel in extended Hilbert
space on a maximally entangled state [57]:

J(D) = (D ⊗ I)|Ω〉〈Ω| (2.2)

where |Ω〉〈Ω| is the maximally entangled state over Cd ⊗ Cd:

|Ω〉 ≡
d∑
i

|ii〉 (2.3)

For example, if D acts on two-qubit density matrices ρ ∈ C4×4 then d = 4, and i to
iterates on 0, 1, 2, 3. If i instead iterates over the binary representation i = 00, 01, 10, 11,
then |Ω〉 ∈ C4 evaluates to

|Ω〉 = |0000〉+ |0101〉+ |1010〉+ |1111〉

The Choi matrix can be computed from the more familiar Kraus-sum form over the
Kraus operator set {Am}Mm=1. That is, if D(ρ) =

∑M
m AmρA

†
m, then the Choi representation

is equivalently [54]:

J(D) =
M∑
m

(Am ⊗ I)|Ω〉〈Ω|(A†m ⊗ I) (2.4)

2.1.2 Measurement error

Section 4.3 will introduce quantum circuits capable of computing quantities from sampled
outcome distributions via projective measurement. Experiments in this project were sub-
mitted and run on Google hardware remotely and then the sampled distributions were
returned, but the presence of errors in the measurement process means that these distri-
butions will contain incorrect entries according to the degree and type of errors. Later
sections will develop methods for correcting measurement error described here, and vali-
date these methods by applying them to noisy simulations containing the same types of
measurement errors as the hardware experiments.
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Measurement in the Rainbow-23 superconducting qubit system involves applying a
pulse to a readout resonator at its resonant frequency and determining the qubit state via
transmittance [5]. In practice, this is prone to the following errors (and more) [24]:

1. Separation fidelity: Measurement requires a calibration in which the microwave signal
phases and amplitudes corresponding to the presence of |0〉 or |1〉 are determined.
Imperfect identification of points in phase/amplitude space due to finite statistics
predisposes the measurement to false negatives and false positives.

2. Relaxation: Measurement occurs over a finite timespan, during which qubits are
prone to decay due to the ambient noise conditions in the system (namely T1, T2

decay). This has the tendency of driving a qubit state towards the maximally mixed
state.

3. Transitions toward equilibrium: At finite temperature T , the number of lower en-
ergy states N0 of a system (i.e. |0〉) will trend towards an equilibrium distribution
described by the Boltzmann ratio

N0

N1

= exp(~ω01/kT ) (2.5)

where ω01 is the transition frequency between states |0〉 and |1〉. As a result, the
probability of a state |0〉 being measured as such is suppressed by the possibility of
thermal excitation towards equilibrium during the measurement period.

In practice, relaxation is the dominant error affecting readout [24] so that the probability
p1 to observe a ’0’ readout given the state |1〉 tends to be larger than the probability p0

to observe a ’1’ readout given the state |0〉. Furthermore, the relaxation effect and the
equilibration effect are both decohering processes, and do not cancel eachother out in any
way. Rather, the “visibility” 1 − (p0 + p1) of the system is used to describes the overall
readout accuracy.

2.1.3 T1/T2 decay

T1 and T2 times refer to the longitudinal and transverse relaxation times for a qubit state [6].
In a Bloch sphere picture, T1 describes relaxation of the Bloch vector towards the positive
Z axis, while T2 describes relaxation towards the Z axis (shrinking the XY -component of
a Bloch vector).
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Figure 2.1: Gate sequences for (a) Ramsey T2 experiment (b) Hahn echo T2 experiment
and (c) CPMG T2 experiment with ∆t = 25 ns (the time required to implement a Y gate
on the Rainbow-23 processor).

The T2 of a system is typically probed by performing a “Ramsey experiment”, wherein
the state |0〉 is rotated into |+〉, allowed to idle for some amount of time t, and then rotated
into |1〉 and measured [46]. By repeating this process over many different values of t, there
will be exponential decay (with slope given by T2) in the probability p(1) of measuring |1〉
with respect to time.

If low frequency noise (f < 1/t) is present in the system, then its contribution to the
decoherence of |+〉 can be reversed by applying a single Y pulse (sometimes referred to a
“Hahn echo” [21]) after a duration of t/2. The decay in p(1) will then correspond strictly
to noise effects originating from physical processes of frequency (f > 1/t), and the state is
said to have been “refocused”.

The logical extension of a Hahn echo experiment is the CPMG [12, 31] pulse sequence,
wherein the evolution of the |+〉 state is interrupted by n refocusing pulses spaced evenly at
time intervals of ∆t = t/n, and therefore including noise effects originating from physical
processes of frequency (f > n/t) in the calculation of T2.

Figure 2.1 provides a summary of the gate sequences used to implement each of these
T2 diagnostics in the context of a gate-based quantum computer.
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2.2 Gate fidelity diagnostics

2.2.1 Process tomography

Given an extensive set of input states and measurement bases, standard QPT can be
used to experimentally determine the form of a noise channel D. Section 2.1.1 showed
an explicit conversion from Kraus operators to Choi matrix for a channel, and converting
between forms is possible in general [54]. So once a full characterization of a noise process
has been determined by some method, the Choi representation or one of its possible Kraus
operator representations can be recovered without loss of information.

A standard method for determining the form of a noisy quantum process is Quantum
Process Tomography (QPT). In standard applications, QPT is used to determine the fi-
delity of an experimental quantum gate by treating the application of the gate as a noisy
channel, and then computing its difference (“fidelity”) compared to the noiseless version
of the quantum gate.

Let DU be the channel representation of a unitary U plus some coherent and decoherent
noise. The fidelity of this gate-as-channel is the quantity as [35]:

F (DU , U) =

∫
d(|ψ〉〈ψ|) Tr

[
U †DU(|ψ〉〈ψ|)U |ψ〉〈ψ|

]
(2.6)

where the integral is with respect to the Haar measure d(|ψ〉〈ψ|), which just enables
integrals over dense subsets (i.e. sets of states ρ) in Hilbert space. Note that F (DU , U) = 1
is satisfied if DU(ρ) = UρU †. On the other hand, if DU represents a maximally decohering
channel (DU(ρ) = 1

d
I) then the fidelity is 1

d
.

[23] provided a simplified form of Equation 2.6 for the fidelity of a channel provided in
Kraus form. This result was then recast for Choi matrix representations in [25], resulting
in the formula:

FU†◦DU
=

1 + d 〈Ω| (I ⊗ U †)J(DU)(I ⊗ U) |Ω〉
d(d+ 1)

(2.7)

where (U † ◦ DU)(ρ) = U †DU(ρ)U .

In contrast to the methods outlined in the following sections, process tomography pro-
vides a complete description of the noise channel that was enacted on a gate during its
execution, in its Choi representation or any other representation via a conversion like
Equation 2.4. I will take advantage of the thoroughness of this diagnostic in implementing
optimization procedures (see Section 3.2.3).
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2.2.2 Cross entropy benchmarking

Cross Entropy Benchmarking (XEB) [7] determines gate error by comparing a circuit out-
put’s convergence to an expected distribution with its convergence to a random distribution
(the metric used for this comparison is defined as “cross entropy”). In the context of the
Rainbow-23 hardware, the diagnostic yields a purity error and a total error for two-qubit
gates applied to each pair of qubits on the grid.

In general, control error can be expected to introduce a small amount of unitary error
during the application of a two-qubit gate (the most basic explanation for this phenomenon
is that two qubits with different frequencies will acquire a relative phase proportional to
their detuning in addition to any Hamiltonian that is implemented over their combined
system). The outcomes of an XEB calibration do not yield specific information about the
nature of coherent errors over two-qubit gates. Instead, it is inferred from the difference
between a total gate error and the purity error.

2.2.3 Randomized benchmarking

The single qubit gate fidelities on the Rainbow-23 device used are characterized by one-
qubit Clifford randomized benchmarking (RB) [27]. RB fidelity is computed by determining
the average marginal error introduced into a sequence of Pauli gates due to the addition of
single gate to the sequence, and is therefore not specific to the identity of the single qubit
gate being implemented and robust to state preparation and measurement errors typically
associated with gate fidelity diagnostics. In this work the RB fidelity incorporates both
unitary error and decoherence 2.

In [3] some evidence was provided for agreement between RB and XEB fidelities, though
to date no rigorous theoretical treatment of this comparison has been done.

2.3 Simulation noise model

Section 2.1 provided theoretical tools to understand decoherence in open systems. While
states in open quantum systems undergo evolution, the gate model for quantum computing
(and therefore the set of simulatable quantum circuits) is restricted to discrete-time chan-
nels and unitary operations. Therefore the goal of this section is to present the components

2At the time of writing, diagnostics were being developed for Rainbow-23 that would separate these
effects into two different metrics
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of a noise model that can be run as a (discrete-time) gate model quantum circuit but which
captures much of the noise phenomena that are expected to be present in actual quantum
hardware.

As the title of this chapter suggests, this model will be purely Markovian, in that at
each “moment” the quantum state evolves according to time-independent noise channels;
the only time dependence of the density matrix in the noisy simulation arises from the
arrangement of consecutive noise channels.

2.3.1 T1/T2 decay

T1 and T2 decoherence can be simulated using amplitude damping and dephasing channels
respectively. From [41], an amplitude damping channel DAD incurring a de-excitation with
probability Γ∆t = ∆t/T1 in a time interval ∆t << T1 leads to an exponential decay in the
probability to observe an excited state ρ11(t) like:(

1− ∆t

T1

)t/∆t
→ e−t/T1 (2.8)

For gate durations that are orders of magnitude lower than T1 values, it follows that
discrete amplitude damping channels DAD can be applied to simulate the incoherent idle
decay of qubits. The Kraus representation of DAD[p] parametrized by a decay probability
p is given by the following set of operators:

M0 =

(
0
√
p

0 0

)
, M1 =

(
1 0
0
√

1− p

)
(2.9)

The T2 decay of the qubit states due to phase noise can be similarly simulated using a
phase damping channel DPD[p] with the Kraus representation given by the operator set:

M0 = (1− p)
1
2 I, M1 =

(√
p 0

0 0

)
, M2 =

(
0 0
0
√
p

)
(2.10)

Similarly to T1 decay, this leads to exponential decay in the off-diagonal terms of the
single-qubit density matrix, ρ10 and ρ01 [41].

Since the decoherence captured by a fidelity metric on single qubit gates includes the
same noise profile as for idle qubits, its important to enforce that DAD and DPD are applied
only to qubits that are not acted on by a gate (which will be modified by a noise channel
separately to capture the gate infidelity). Additionally, these channels are paremtrized
according to the longest gate time in that moment.
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2.3.2 Measurement error

Measurement error can be simulated by classical postprocessing methods such as Monte
Carlo simulation of bitflips. However for completeness (namely the ability to generate
exact amplitudes for bitstrings in noisy simulations) I implement the measurement error
as a channel with the Kraus representation

M0 =

(
0 0√
p0 0

)
, M1 =

(
0
√
p1

0 0

)
, M2 = (1− p0)

1
2 I (2.11)

This has the desired effect of reproducing the bitflips that could otherwise be achieved
by classical post-processing while still acting on amplitudes in the full (potentially entan-
gled) quantum state3.

2.3.3 Single qubit gate error

The state infidelity due to a total RB error of pe can be simulated by the symmetric
depolarizing channel DD[3

4
pe] where DD[p] has the Kraus representation

M0 = (1− p)
1
2 I, Mi =

(p
3

) 1
2
σi (2.12)

where σi are the single qubit pauli matrices.

2.3.4 Two qubit gate error

In general the two-qubit error will be a combination of two mechanisms: Purity error and
unitary error. Purity error is caused by incoherent noise (which acts to send pure states to
mixtures), while the remainder of the error is unitary (and therefore potentially reversible).
Unfortunately, even accounting for the non-uniqueness of operator-sum representations, the
space of two-qubit decohering channels is very large. In simulations, I used a two-qubit
generalization of the symmetric depolarizing channel D2D[p] to enact the purity error, with
a Kraus representation like:

3It can be shown that this channel is equivalent to a composition of amplitude damping and bitflip for
a certain parametrization
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Mij =
( p

15

) 1
2
σi ⊗ σj ij 6= 00 (2.13)

M00 =

(
1− 15

16
p

) 1
2

I (2.14)

while to simulate two-qubit gate coherent error of magnitude p, I applied a unitary
randomly sampled from the set of operators of the form

U(p) = exp(ipσi ⊗ σj) (2.15)

2.3.5 Complete simulated noise model

The following circuits provide a minimal complete example for how the components of the
introduced noise model fit into an arbitrary simulated circuit. Beginning with a circuit like
the following (A and B represent arbitrary single qubit and two-qubit gates respectively):

q0 A
B

q1 A

q2 A

(2.16)

then applying the set of time-independent noise channels introduced in the preceding
sections would result in the following circuit:

q0 DD[λ(0)] UD[γ(0)] A

D2D[Λ(0,1)] U2D[Γ(0,1)] B

DB[p
(0)
0 , p

(0)
1 ]

q1 DD[λ(1)] UD[γ(1)] A DB[p
(1)
0 , p

(1)
1 ]

q2 DD[λ(2)] UD[γ(2)] A DAD[t(B)/T
(2)
1 ] DPD[t(B)/T

(2)
2 ] DB[p

(2)
0 , p

(2)
1 ]

(2.17)

Where the symbols appearing in the circuit model are defined in Table 2.1.
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Table 2.1: The noise model consumes a combination of calibration data provided with the
Rainbow-23 results, and the results of custom diagnostics.

Symbol Description

T
(i)
1 T1 for qubit i

T
(i)
2 T2 for qubit i

t(X) execution time for gate X

p
(i)
0 Probability of measuring “1” given a state |0〉, for qubit i

p
(i)
1 Probability of measuring “0” given a state |1〉, for qubit i
λ(i) Single qubit RB purity error for qubit i
γ(i) Single qubit RB unitary error for qubit j (Not implemented in this work)

Λ(i,j) Two qubit XEB purity error for the qubit pair (i, j)
Γ(i,j) Two qubit XEB unitary error for the qubit pair (i, j)
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Chapter 3

Hardware diagnostics and
optimization on a superconducting
quantum processor

This chapter details results of running diagnostics and preparing optimizations for the
actual QKM experiments of Chapter 5. Section 3.2.1 describes hardware calibrations
that were performed to optimize the performance of quantum circuits with respect to the
Rainbow-23 hardware.

3.1 Basic diagnostic data

Periodic calibrations of the Rainbow-23 superconducting qubit device produce diagnostic
data describing qubit and gate performances. The following list contains the calibration
data that are relevant to this project that the hardware providers release following the
submission of each experiment1:

• Readout p0 error: The probability of a computational basis measurement on any
given qubit reporting a “1” when the actual result should have been “0”.

1Use of the Rainbow-23 superconducting qubit device and access to the associated calibration data
was facilitated by A. Ho, M. Mohseni, and D. Strain and made possible through the UWaterloo-Fermilab
collaboration’s partnership with the Google AI Quantum Laboratory.
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• Readout p1 error: The probability of a measurement reporting a “0” when the actual
result should have been “1”.

• Single qubit T1: Longitudinal decoherence time for each qubit (see Section 2.1.3)

• Single qubit gate RB error: Average gate error per gate, computed using Randomized
Benchmarking (Section 2.2.3)

•
√

iSWAP gate XEB total error: The average infidelity for each
√

iSWAP two qubit
gate according to cross entropy benchmarking (Secction 2.2.2)

•
√

iSWAP gate XEB purity error: The decoherence introduced by each
√

iSWAP two
qubit gate according to cross entropy benchmarking, as opposed to unitary error.
The sum of purity error and unitary error is the total error.

These calibration data are used for running the gate-based noise simulation of Section
2.3.5 to predict the performance of submitted circuits and for optimizing qubit selection
of Section 5.2.3.

Since T2 values are necessary for a complete noisy simulation but were not provided
with the periodic hardware calibration data, the following section details experiments that
I conducted on the hardware to determine values of T2.

3.1.1 T2 diagnostics

This section details the results of different diagnostics for T2. For each qubit, I ran a
standard Ramsey experiment, a Hahn-echo experiment, and a CPMG sequence (with the
minimum possible wait time of 25 ns - the duration of a Y gate) over all qubits in parallel
(see Section 2.1.3 and Figure 2.1 for experiment descriptions). T2 values were determined
using a least-squares fit to exponential decay, slightly modified from [38]:

P1(t) = A exp

[(
t

T2

)B]
+ C (3.1)

Figure 3.2 shows the results of performing fitting like Figure 3.1 for each qubit on
Rainbow-23.
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Figure 3.1: This T2 diagnostic battery for qubit (4, 2) using 2000 repetitions shows (left) un-
modified Ramsey experiment, (middle) a Hahn echo T2 experiment, and (right) insertion
of as many Y gates as possible between preparation of |+〉 and readout of |1〉. The third
experiment resembles a CPMG pulse sequence with a wait duration of δt = 25 ns, and its
similarity to the Hahn echo outcomes suggests that low frequency noise is the dominant
contribution to dephasing in the system.
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Figure 3.2: T2 values (shaded according to T1 values over the same qubit set) extracted
from Ramsey T2 experiments using Equation 3.1 are in the 1-2 µs range. Empty squares
indicate failed fits due primarily to state preparation error.
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Figure 3.3: The unitary model for implementing
√

iSWAP (θ = 45, φ = 0) on hardware
[3]. Each two qubit gate on the superconducting qubit processor is initially accompanied
by unintended relative phasing of qubits that can be gathered into local rotations before
and after the intended two-qubit gate. Hardware calibrations are configured to optimize
single-qubit phase gates to cancel these unitary errors.

3.2 Mitigating crosstalk error

“Crosstalk” refers to decoherence or unitary error that occurs due to physical coupling
between qubits or control signals when two or more quantum gates are applied simultane-
ously. In the following sections, I primarily focus on optimizations/diagnostics based on
the unitary model for

√
iSWAP described in [3] and depicted in Figure 3.3.

3.2.1 Optimization over gate simultaneity graphs

Operating on the knowledge that gates exhibit crosstalk errors, there is an inherent tradeoff
between the fidelity that is gained by running gates sequentially when they might otherwise
be run simultaneously, versus the additional decoherence that results from the additionally
circuit depth that is incurred by running gates sequentially. Given some circuit fidelity
metric, this tradeoff can be cast into an optimization problem by parametrizing the degree
of gate simultaneity (inversely proportional to some function of depth) in the circuit.

Given a set of operations acting on disjoint sets of qubits P , let the “simultaneity
graph” be Gs(P ) = (E, V ) where edges indicate simultaneity of operations and vertices
represent operations on fixed qubits, and let Gs(n, P ) = {Gs(P ) : |V | = n} be the set
of all simultaneity graphs over n qubits. Then the degree of simultaneity of a circuit
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implementing all operations in P is literally the degree of the simultaneity graph, and
the existence of many graph implementations of a given degree demonstrates the different
schemes of parallelization available over P .

As will be seen later, this non-uniqueness can be exploited to discover pairs of opera-
tions that are more prone to crosstalk without having any prior knowledge of the physical
implementation of the operations that leads to crosstalk. In other words, this diagnostic
is hardware-agnostic and doesn’t require notions about proximity of qubits, proximity of
microwave control lines, the existence of defects supporting stray capacitances/inductances
between disconnected components, etc.

I implemented two instances of simultaneity graphs over 12-qubit circuits (graphs shown
in Figure 3.4), using the Hellinger distance between output hardware distributions with
respect to noiseless simulation as a fidelity metric. For each element of Gs(P ) ∈ Gs(12, P ),
I rearranged all entangling operations in an instance of a kernel circuit to respect the
simultaneity imposed by Gs(P ), and modified the circuit to use only the entangling gates
present in P to control for which gates were being analyzed. Figure 3.5 shows two instances
of kernel circuits that have been modified in this way. I ran 5000 repetitions per circuit,
repeated for two sets of six entangling gates (therefore probing all gates that would be used
in the implementation of a 12-qubit circuit), for each of eight different kernel circuits, for
a total of 1.1 million circuit repetitions.

Figure 3.6 shows the results of the simultaneity graph diagnostic. There is a clear trend
towards improved fidelity (lower Hellinger distance with respect to the simulated model)
over all instances of circuits that ran, and accounting for all different simultaneity graphs
of a given degree that were implemented. While a few cases indicate that the maximally
parallelized operations perform slightly worse than some of the degree-3 graphs, the overall
trend indicates that any performance gains due to the reduction of crosstalk effects from
operations run sequentially is overshadowed by the loss of fidelity due to the increased
circuit depth.

3.2.2 Optimization of unitary model corrections from conver-
gence of random circuits

A hypothesized method of detecting consistent unitary errors of the type depicted in Figure
3.3 was by analyzing the difference in a random circuit’s behavior in the presence of such
errors, versus its behavior without consistent control errors. This method is appealing
because the behavior of random circuits has been studied extensively theoretically [33, 8]
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Figure 3.4: All simultaneity graphs Gs(P ) over six two-qubit gates Gs(12, P ).
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Figure 3.5: Sample of correspondence between simultaneity graphs and circuit configura-
tions.
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Figure 3.6: Hardware results demonstrate a clear improvement in performance for max-
imally parallelized two-qubit gates, meaning that crosstalk error is outweighed by deco-
herence due to increased idle time for executing two-qubit gates sequentially. Each plot
corresponds to a different matrix element; the horizontal axis plots the degree of one of the
14 graphs taken from Figure 3.5 (the larger the degree, the more parallel the execution of
gates) while the vertical axis plots the Hellinger distance between distributions taken from
raw hardware results vs. noiseless simulation. Different colors correspond to different sets
of two-qubit gates that can be run fully parallel.

26



and have been validated experimentally on hardware similar to that used for this work’s
experiments [3].

The Porter Thomas distribution [8] describes the exponential distribution of counts of
bitstring outcomes observed when measuring a state that has been sampled Haar-randomly
from Hilbert space. That is, if N is the the total number of observable outcomes (expo-
nential in the number of system qubits) and p describes the the probability of a given
bitstring, then the distribution of the probabilities of bitstrings frequencies2 is expected to
be:

P (Np) ∝ exp(−Np) (3.2)

Convergence to this distribution is a function of circuit depth and number of qubits in
the random circuit being sampled. With this in mind, a diagonstic experiment for detecting√

iSWAP unitary errors via convergence to the Porter Thomas distribution is:

1. Simulate a noiseless random circuit (called RC1) composed of randomly selected
single qubit gates and

√
iSWAP gates

2. Run a modified circuit (RC2) that is identical to RC1 except for parametrized single-
qubit phase correction gates of the kind shown in Figure 3.3 on hardware

3. Compare each circuit’s distribution of bitstring frequencies to Equation 3.2, for ex-
ample using KL divergence

4. Modify the parameters in RC2 to match more closely the convergence behavior of
RC1, thereby nullifying any additional convergence provided by hidden phase errors
attached to each two qubit gate

This method requires demonstrating that a given circuit architecture (i) converges to
the distribution in Equation 3.2 and (ii) does so in a quantitatively different manner than
a similar circuit. Figures 3.7-3.8 demonstrate that these conditions are not met, and so
this method was not pursued on actual hardware.

3.2.3 Optimization of unitary model corrections from Quantum
Process Tomography

The results of Section 3.2.1 indicate that maximally parallelizing operations improves per-
formance over any partially sequential alternative, but does not rule out the possibility that

2In other words, the histogram of the populations in a histogram of bitstring outcomes - a metahis-
togram!
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Figure 3.7: Convergence of a 12 qubit random circuit to the Porter Thomas distribution
(Equation 3.2) for different numbers of “cycles” (each cycle consisting of a layer of single
qubit gates followed by a sparse layer of two qubit gates). The dashed line shows Equation
3.2, and demonstrates that (qualitative) agreement with the desired distribution does not
occur until some depth greater than 50 cycles.

Figure 3.8: Convergence of random circuits in a noiseless setting versus the same ran-
dom circuits with unitary noise presence, as reflected by KL-divergence of the observed
distribution with respect to Equation 3.2. For each circuit depth, 5 different simulated ran-
dom circuits were generated and sampled for 150,000 repetitions to produce a measured
distribution Pmeasured, from which DKL(Pmeasured, Pexponential) was computed (error bars
represent standard error in the five computed values). There is no statistically significant
difference in the convergence behaviors of these circuits beyond 5cycles, which is far too
shallow to reach Porter Thomas distribution as seen in Figure 3.7.
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crosstalk-related decoherence arises in the fully-parallel implementations. As described in
Section 2.3.4, gate infidelity can be attributed to a combination of unitary and non-unitary
errors. Given a compelling model for parameterized gates that would lead to unitary errors
and an acceptable single-qubit gate fidelity then one can attempt to optimize parameters
in this model, thereby learning corrections that will nullify the unitary errors introduced
by crosstalk.

More specifically, suppose a two-qubit gate is represented by the unitary U , and the two-
qubit gate infidelity in the hardware as the noise channel is represented as D, a combination
of unitary and non-unitary effects. The goal is to implement a parameterized unitary V (~θ)
and optimize its parameters to find

argminθ

(
f
(
DV (~θ), U

))
(3.3)

where f is some fidelity metric between unitaries. For this experiment, I implemented
the unitary model for

√
iSWAP described in [3] (Figure 3.3). However, the fidelity metric

from that work isn’t relevant here since that metric was specific to circuits approaching
random unitaries. Instead, I conduct QPT (Section 2.2.1) to determine the CPTP Choi
matrix representation of the entangling gates when run in a maximally parallel context
[26, 37]. After preparing a full tomography experiment in cirq, I used the optimiza-
tion algorithm from [26] provided in the Julia package Schrodinger.jl [4] to analyze the
experimental results.

Simulated QPT optimization results

This section demonstrates efficacy of an optimizer to solve for an optimum according to
Equation 3.3 with respect to a set of hidden local phases as shown in Figure 3.3, namely

V (θ) = Zb
0Z

c
1

√
iSWAPZa

0 (3.4)

The key observation is that the Choi representation J(DV (θ)) for a (unitary) channel
enacting Equation 3.4 (i.e. DV (θ) : ρ → V (θ)ρV †(θ)) admits an exact solution for the
parameters a, b, c. For example, element (0, 5) of the matrix form of JV ≡ J(DV (θ)) can
be solved for exactly:

(JV )05 =
1√
2

exp(−iπc) (3.5)
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which immediately yields the solution:

c =
i

π
ln
(√

2(JV )05

)
(3.6)

Repeating this process for a and b returns an overconstrained system of 9 equations
with three unknowns. In practice, statistical uncertainty in the elements of J(DV (θ)) makes
constrained simultaneous equation solving impossible, and unincorporated noise effects will
invalidate the exact solutions for parameters. Instead, the exact solutions for a, b, c of the
form in Equation 3.6 are used as initial estimates for the ~θ minimizing Equation 3.3, which
is then fed into a gradient-free optimizer.

Running this procedure with a Nelder Mead optimizer and a unitary error model like
Equation 3.4 resulted in 99.9999% accurate recovery of a variety of random input param-
eters a, b, c, demonstrating that in a noiseless simulation setting this unitary error model
for
√

iSWAP can be perfectly corrected for. However in the following section it is shown
that this result could not be extended to real hardware outcomes, based solely on the
uncertainty introduced by bitflip errors.

Hardware QPT results

The goal of the experiment is to compare the fidelity of a
√

iSWAP gate executed in
isolation to the fidelity when the same gate is executed with other gates in parallel. In
addition, since single qubit gate errors and T1/T2 decoherence introduce error into the
QPT experiment that is unrelated to the two qubit gate fidelity, for any given qubit pair I
also ran QPT on an identity gate, which is implemented by telling the processor to “wait”
for 32 ns (the duration of a

√
iSWAP gate). The three circuits for implementing this

experiment are shown in Figure 3.9.

In addition to running a control experiment, I also implemented postprocessing for
bitflip correction (see Section 5.3.2) which typically provided around a 10% improvement
to observed gate fidelities. Table 3.2.3 summarizes results from performing QPT using
the circuits from Figure 3.9 and applying bitflip correction, which propagates roughly
1/
√

5000 ≈ 2% uncertainty originating in the Poisson uncertainty in the p0, p1 values
determined from experiments using 5000 repetitions.

The results from Table 3.2.3 are bleak. An idealized interpretation might be to use
the Identity fidelities as normalization factors to back out “True” parallel and isolated√

iSWAP fidelities that more closely match the XEB fidelities reported in calibration data.
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a

b

c

simultaneous

Figure 3.9: (a) Control circuit that performs tomography on an identity gate to establish
an upper bound on the expected fidelity observed from a QPT experiment on any given pair
of qubits (b) a standard QPT experiment to compute fidelity of an isolated

√
iSWAP gate

(c) a QPT experiment that computes fidelity of a
√

iSWAP gate that is run in parallel
with five other two-qubit gates. The circuits are structured and parameterized so that
varying the angles on each X and Y rotation allows measurement of the POVM P =
{1+i

2
|0〉 + 1−i

2
|1〉 , 1−i

2
|0〉 + 1+i

2
|1〉 , 1+i

2
|0〉 + 1+i

2
|1〉 , 1−i

2
|0〉 + −1+i

2
|1〉 , |0〉 , |1〉} as well as

preparation of all states of the form |A〉 |B〉 for |A〉 , |B〉 ∈ P .

31



Table 3.1: Fidelities taken from XEB calibration data and results from QPT experiments
run on the circuits from Figure 3.9. QPT fidelities (fQPT, Equation 2.7) are reported to
two significant figures due to the 2% uncertainty introduced into the bitflip correction
algorithm.

Qubit pair: (7, 3)/(6, 3) (6, 3)/(6, 4) (5, 2)/(6, 2) (6, 1)/(6, 2)√
ISWAP fXEB (%) 99.1 98.3 99.3 98.9

Identity fQPT (%) 82 82 95 94

Isolated
√

ISWAP fQPT (%) 83 81 96 94

Parallel
√

ISWAP fQPT (%) 82 82 96 94

For example, on the (6, 1)/(6, 2) qubit pair (using an additional insignificant digit not
presented in Table 3.2.3):

“True” isolated
√

ISWAP fidelity ≈ 0.944/0.948 = 99.6% (3.7)

“True” parallel
√

ISWAP fidelity ≈ 0.942/0.948 = 99.3% (3.8)

However, this treatment doesn’t make sense when applied to some of the other qubit
pairs. The more general (and correct) interpretation is that there is no statistically signif-
icant method of confirming XEB fidelities against the process tomography results. There-
fore, this application of standard quantum process tomography cannot be used to verify
the existence of parallel

√
ISWAP errors to a degree of uncertainty less than the 2% error

in reported bitflip probabilities. For the same reason, there would be no way of confirm-
ing the success of a hardware optimization routine like the one described in the previous
section. A couple of possible solutions to this limitation are:

• Conducting a “self-consistent” process tomography experiment [32]: This scheme
uses fine-grained control of single qubit gates to construct tomography experiments
where the process matrices for the POVM measurement and state preparation gates
are known in advance, thereby mitigating error introduced to reconstruction of two-
qubit gates due to SPAM errors.

• Better statistics for p0, p1 values: The uncertainty in the gate fidelities are propagated
directly from the initial uncertainty in bitflip probabilities for state readout. Reducing
these uncertainties might allow more conclusive comparison between fidelities for√

iSWAP gates run in isolation versus parallel.
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3.2.4 Phase refocusing noise mitigation

The improvement of T2 values observed in the Hahn echo experiment compared to the stan-
dard Ramsey tomography suggests that phase coherence of the qubits can be preserved by
refocusing (executing “echos”) during idle time in the circuit. In practice this corresponds
to running pairs of Y gates (duration=25 ns each) during each 50 ns time period over
which a qubit is left untouched.

Figure 3.10 shows a sample histogram for which spin echo optimization was imple-
mented. The KL-divergence DKL was used compare results from hardware with/without
refocusing optimization to different simulations. Unfortunately, detailed analysis of these
outcomes is complicated by the depth of the circuit (49) combined with the KL-divergence’s
status as a pseudo-metric in probability space (DKL does not obey the triangle inequality)
so that its hard to reliably quantify convergence of the optimized hardware distributions
towards/away from simulated outcomes.

The qualitative trend in DKL values comparing the hardware outcomes for circuits
with and without refocusing suggests that this hardware optimization does not affect the
performance of the hardware much. Experimental results from the optimization applied
to a larger set of shallower circuits could be used to better determine efficacy of this
optimization.
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Figure 3.10: For the given circuit (i.e. implementing a depth-49 identity gate) on n = 4
qubits, there is little evidence for performance enhancement through the use of refocusing.
This is especially clear for the comparison of hardware with/without refocusing optimiza-
tion (far bottom right plot) in which the two distributions are nearly identical.
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Chapter 4

Theory of kernel method classifiers

This chapter introduces the Support Vector Machine, a supervised learning algorithm that
uses kernel functions to learn about data.

4.1 Supervised Learning

Supervised learning algorithms are tasked with the following problem: Given a dataset
X ⊂ Rd composed of n-dimensional datapoints and the corresponding classes Y ⊂ R that
each datapoint belongs to, construct a function f that can successfully predict f(xi) = yi
given a datapoint-label pair taken from the dataset (xi, yi) ∈ X × Y .

In the process of constructing a classification function f , supervised learning algorithms
need to have some way of determining whether the classifier’s predictions match reality.
This relationship is usually measured using a cost function, whose value depends on how
well the function f predicts the class yi corresponding to each xi ∈ X , while also enforcing
that f is well behaved. For a size-n dataset (|X | = n) a typical cost function might take
the form:

c : (X × R2)n → R
= c((x1, y1, f(x1)), ...(xn, yn, f(xn))) (4.1)

Once a cost function is chosen, training a supervised learning algorithm consists of
having some guess for the initial form of f , providing it with a subset of data points to
compute f(xi), comparing each outcome to yi via the cost function, and then adjusting f
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in some way to improve this computed loss (and therefore bring f(xi) closer to yi over the
entire dataset). Since the algorithm is exposed to only a subset of possible input data, it
may bias f to perform well for that specific subset of data without capturing trends over
the broader population. If this happens, the model will fail to generalize its predictions,
and so testing the algorithm refers to the process of exposing the trained algorithm to
previously unseen datapoints to measure its generalizability.

The last important detail remaining is how to structure f so that it can perform well
as a classification function. Since the space of functions on d-dimensional data is infinitely
large, one challenge for supervised learning algorithms (and in machine learning in general)
is to provide a form for f that both generalizes well to a broad class of data inputs and
is capable of achieving optimal performance for any given dataset. The next section will
introduce the methods associated with constructing one such optimal classifier.

4.2 Kernel methods

The main focus of this work is to use quantum hardware to efficiently find similarities
between data points xi ∈ X . A kernel function is a tool for computing some degree of
similarity between points, and is defined as a map k : X ⊗ X → R that satisfies the
following condition for positive definiteness:∑

xi,xj∈X

c∗i cjk(xi, xj) ≥ 0 (4.2)

for all possible choices ci ∈ C. For finite X , k will take on exactly |X |-many values, the
two-dimensional array of which is referred to as the Gram matrix:

Kij ≡ k(xi, xj) (4.3)

The kernel is symmetric, and therefore requires only n(n+1)/2 computations of k(xi, xj)
to describe an n×n Gram matrix, though the general cost of computing the Gram matrix
scales as O(n2)). Furthermore, k(xi, xi) ≡ 1 due to the kernel function’s status as an inner
product (see below); here and in future sections the term “diagonal” will refer to kernel
elements like k(xi, xi) and “off-diagonal” will refer to elements like k(xi, xj) when i 6= j.

In addition to these basic requirements, the kernel admits two important properties
that make it a useful tool for classifying data:
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• The existence of a corresponding Hilbert space [2]: Every function satisfying
the positive definite requirement of Equation 4.2 has a corresponding Hilbert space
H(X ) and mapping φ : X → H(X ) such that

k(xi, xj) = 〈φ(xi), φ(xj)〉H(X ) (4.4)

where 〈·, ·〉H(X ) is the inner product corresponding to the Hilbert space H(X ). In
other words, every kernel function is understood to be the inner product of mappings
of input data into some Hilbert space, even without specific knowledge of what space
or mappings satisfy the relation in Equation 4.4.

• The representer theorem [53, 48]: Any classifier that minimizes a typical cost
function like Equation 4.1 over datum-label pairs in X × Y admits a representation
of the form

f(x) =

|X |∑
i=1

αik(x, xi) (4.5)

The key point is that any new element taken from X can be optimally classified
(with respect to a given kernel k) using only the elements in the complete Gram
matrix over X . In other words, a classifier that is trained using a kernel function
or Gram matrix on a dataset of size n needs at most n free parameters to achieve
optimal classification with respect to some loss that compares f(xi) to yi for all i.
This is offers great reduction in complexity in the search among infinite classifier
functions of the form f : Rd → R.

As mentioned in Chapter 1, a conceptual way of justifying the use of a kernel is that
it implicitly maps data points into a higher dimensional space in which the points may be
successfully classified by a linear classifier. The results of [2] provide rigorous justification
for this view via the association of each positive definite kernel with an inner product on
some Hilbert space, and the representer theorem motivates the use of classifiers that digest
kernel functions (since such functions are strictly upper bounded in complexity). With
the above features of kernels established, Section 4.2.1 will develop the formalism for a
classifier that can be trained on known values of k(x, x′).

4.2.1 Support Vector Machine formalism

This section describes Support Vector Machine classifiers following a combination of the
derivations of [34] and [52].
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Geometric problem statement for the SVM

A basic Support Vector Machine (SVM) seeks to find a d− 1-dimensional hyperplane that
separates points in a dataset according to their labels. The dataset is defined as a size-n
subset of d-dimensional vectors, X ⊂ Rd, |X | = n, and a datapoint xi ∈ X will have a
corresponding label yi ∈ {−1, 1}. The classification task will be the most accurate if the
hyperplane is situated as far as possible from points in each class (maximizing the “margin”
- see Figure 4.1). The margin is determined by the distance of the closest datapoint to the
dividing hyperplane; defining vi as the perpendicular distance separating a point xi from
any given choice of hyperplane, the margin is defined by the shortest of these distances:

v ≡ min
i
vi (4.6)

A hyperplane in Rd has the general formula

〈w, x〉+ b = 0 (4.7)

Figure 4.1 shows that the vector describing perpendicular distance of point xi to the
hyperplane (at point Pi) is given by vi

w
||w|| , which combined with the fact that point Pi

must satisfy Equation 4.7 yields:

〈xi − vi
w

||w||
, w〉+ b = 0→ vi =

1

||w||
(〈w, xi〉+ b) (4.8)

This distance vi will be positive or negative depending on what side of the hyperplane
xi falls on, but multiplying by the binary class yi will enforce that it always takes on a
positive value:

vi → yi
1

||w||
(〈w, xi〉+ b) (4.9)

From Equation 4.9, vi (and therefore v) will be maximized if ||w|| is minimized: Maxi-
mizing the margin is equivalent to minimizing ||w||.

The goal of maximizing v must be constrained by the requirement that the SVM accu-
rately classifies data. For a given choice of hyperplane and v, a given data point xj that
falls well on one side of the hyperplane (by some distance c) will be assigned the same class
as all of the other points in that region1. For binary classification (i.e. y ∈ {1,−1}) this
can be stated with a single inequality:

1The simplest case of a working SVM assumes that the condition in Equation 4.10 is satisfiable for all
xi ∈ X simultaneously. In practice, a more general treatment is used that allows for some error (mixture
of classes on either side of the dividing hyperplane) and some degree of infeasibility. See [52].
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yi(〈xi, w〉+ b) ≥ c (4.10)

Comparing to Equation 4.9, a choice of c ≥ ||w||v will enforce that all classified data-
points are on the edge of or beyond the margin in Figure 4.1. But observing Equation 4.9,
there exists some arbitrary scaling of w and b for which vi is unchanged but vi||w|| = 1,
namely w, b → w

||w||vi ,
b

||w||vi . This rescaling is allowed because it doesn’t affect the goal of

the SVM (to minimize vi), but it allows the choice of c = 1 to satisfy that all classified
points lie on the edge of the margin or further. This choice of c, Equation 4.10, and the
goal of minimizing ||w|| (to maximize the margin) results in a constrained optimization
problem for the SVM:

minimize
1

2
||w||2

subject to yi(〈xi, w〉+ b) ≥ 1 (4.11)

where minimization of ||w|| was replaced with minimization of 1
2
||w||2 for convenience

in the following derivation. The purpose of the next section is to recast and solve this
constrained optimization problem.

Lagrangian/dual problem statement for the SVM

The constrained optimization problem of Equation 4.11 can be solved using the method
of Lagrange multipliers, which states that the extrema of a function f(x) subject to an
inequality constraint g(x) ≤ 0 can be solved by constructing a Lagrangian L = f(x) −
αg(x), enforcing α ≥ 0, and setting ∇L(x, α) = 0. Applying this to the SVM problem, the
constraint in Equation 4.11 must hold for all i = 1, . . . , n and so the generalized Lagrangian
to optimize is:

L(w, b, α) =
1

2
||w||2 −

n∑
i=1

αi (yi(〈w, xi〉+ b)− 1) (4.12)

where the inequality constraint will require that all αi ≥ 0. Setting the components of
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∇L to zero yields the outcomes:

∂bL =
n∑
i=1

αiyi = 0 (4.13)

∂wL = w −
n∑
i=1

αiyixi = 0 (4.14)

Then, solving Equation 4.14 for w and substituting into Equation 4.12 gives:

L(w, b, α)→ 1

2

n∑
i=1

n∑
j=1

〈αjyjxj, αiyixi〉 −
n∑
i=1

αi

[
yi

(
n∑
j=1

〈αjyjxj, xj〉+ b

)
− 1

]
(4.15)

= −1

2

n∑
i=1

n∑
j=1

αiyiαjyj〈xj, xi〉+
n∑
i=1

αi −
n∑
i=1

yiαi (4.16)

Applying the outcome of Equation 4.13 and gathering other constraints, the “dual
form” of the SVM optimization problem can thus be stated as:

find max
α

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiyiαjyj〈xj, xi〉 (4.17)

subject to αi ≥ 0, i = 1, . . . , n

subject to
n∑
i=1

αiyi = 0

With the optimal α chosen, the classifier function assigning a label to an input x ∈ X
is:

f(x) =
n∑
i=1

αiyi〈xi, x〉+ b (4.18)

Key features of the SVM

This final form of the SVM classifier function simply needs n optimal values for α1 . . . αn to
be determined during training by solving Equation 4.17, and by the representer theorem
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this optimum is guaranteed to exist for f . Furthermore, the number of nonzero αi is
typically small and corresponds exactly to the number points used to define the margin
of the dividing hyperplane [34]. These points were referred to as “support vectors” in the
original literature, hence the name of the Support Vector Machine.

The key insight for constructing SVMs capable of separating non-linearly separable
datasets is that both the optimization problem in Equation 4.17 and the corresponding
classifier function of Equation 4.18 do not depend explicitly on elements of X , only on
the positive definite, symmetric inner product on Rd. By substituting a kernel function
k(xi, xj) ≡ 〈φ(xi), φ(xj)〉 (recall that the kernel function always has an associated Hilbert
space for which it is an inner product) for 〈xi, xj〉, the SVM becomes sensitive to rela-
tionships in the mapped data φ(xi) without the need to explicitly compute these mappings,
and capable of performing classification with nonlinear boundaries using Equation 4.18.
This is a key mechanism of the SVM: Linear class boundaries on high-dimensional
mappings of data correspond to highly nonlinear boundaries in the space of
the data.

The substitution of kernel functions for inner products in the space of data is known
as the “kernel trick” [9] and is the key to building powerful SVM classifiers. It is also
essential for using the quantum Hilbert space and its associated kernel for performing
useful classification, since the explicit mapping of data into quantum state space φ(xi) will
require exponential resources to compute in general. The next section will demonstrate
how to compute a kernel function using a universal quantum computer, which can then be
passed into an SVM (or other more general algorithms) to perform classical classification.

4.3 Quantum kernel methods

This section reviews the formalism for quantum kernel methods as first introduced in
[49, 22]. From Section 4.2, an important consequence for any kernel function k is that
there exists some Hilbert space F and a mapping φ : X → F such that [2]:

k(x, x′) = 〈φ(x), φ(x′)〉 (4.19)

A quantum kernel just considers a mapping into a complex Hilbert space accomplished
via some encoding unitary U(·) that can be realized on a quantum circuit, i.e.

φ(x) = |ψ(x)〉〈ψ(x)| = U(x) |0〉〈0|U †(x) (4.20)
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Figure 4.1: The goal of the Support Vector Machine (SVM) is to compute a separating
(d−1)-dimensional plane that maximizes the “margin” (distance between the dashed lines)
between datapoints of different classes in d-dimensional space. Using trigonometry it can
be shown that d ∝ 1

||w|| , which motivates the minimization of ||w||

This leads to the quantum kernel to be evaluated as k(x, x′) = 〈φ(x), φ(x′)〉 = | 〈ψ(x)|ψ(x′)〉 |2.
Rephrasing this as an observable with respect to the circuit in Figure 4.25 gives2:

k(x, x′) = 〈φ(x), φ(x′)〉 (4.21)

= | 〈ψ(x)|ψ(x′)〉 |2 (4.22)

= | 〈0|U †Φ(x′)UΦ(x) |0〉 |2 (4.23)

= P (0n) (4.24)

That is, the kernel k is precisely equal to the probability of observing all zero’s at the
output (I’ll use the notation 0 to represent a string, e.g. 03 = 000).

2This motivates the use of density matrix formulation for φ(x), since otherwise the inner product over
state vectors 〈ψ(x)|ψ(x′)〉 is not positive in general and the phase of the vectors themselves introduces a
problem for the uniqueness of the map φ onto real probabilities. See [22].
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UΦ(~x) U †Φ(~x′)

(4.25)

The finite statistics available to compute P (0n) measured from a circuit U introduces
statistical error into the resulting k(x, x′). If U is sampled N times to produce N bitstrings,
the consequence is that k(x, x′) cannot be estimated accurately for N < 1/|k(x, x′)|. While
the distribution of bitstrings sampled from the QKM circuit is unknown in advance, using
the uniform distribution over n qubits as a model for typical bitstring frequencies would
suggest that k(x, x′) could have magnitudes as small as 1/22n when computed on an n-qubit
circuit.

However, Section 4.2 introduced the interpretation of a kernel function as measuring
a degree of similarity between two points x, x′; if this interpretation is correct and the
quantum kernel being computed is useful (i.e. one that does indeed measure similarity
between encoded points) then it stands to reason that for x, x′ belonging to the same class,
sampling k(x, x′) ≡ P (0n) would be distinguishable from sampling the uniform distribu-
tion. Section 5.6 will explore this behavior for the PROTO-3 quantum kernel specifically,
finding sampled kernel values from that architecture are subject to an exponential decrease
with respect to the number of qubits in the system.

4.3.1 Encoding functions

In the previous section a datapoint x ∈ X was provided as input to the unitary that
produces φ(x) = |ψ(x)〉〈ψ(x)| = U(x) |0〉〈0|U †(x), but the kernel circuit still works provided
a substitution of the form x→ f(x) for f : X → Rm. That is, preprocessing on a datapoint
x can arbitrarily reshape and modify the input to U .

One immediate consequence of allowing preprocessing is that the performance of a
QKM-assisted algorithm can no longer be solely attributed to the quantum components.
A concrete example of this consequence was provided by [29], wherein a deep convolutional
neural network processes images into two floats, which are subsequently passed on to a
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two-qubit quantum circuit to perform classification. Given that a trivial extension of the
classical component of such an architecture could finish the classification, it is questionable
whether the quantum part of the model contributed any reasonable degree of performance
to the heavy-duty classical encoding process.

To combat the inflation of QKM performance that encoding functions introduce, I
followed a guideline similar to the “linear baseline” rule proposed in [55]. In its original
form, this rule requires that all pre- and postprocessing be linear so that any nonlinear
behavior (supposedly the source of power in a kernel classifier) is attributed to the quantum
part of the algorithm. In other words, this forces the quantum kernel function to produce
a nonlinearity that allows linear separation in feature space. In a modified form, I impose
that no nonlinearities be introduced in encoding functions, but allow for classical non-linear
steps to be applied for data postprocessing. This is justifiable because while a nonlinear
encoding function fundamentally changes the information content of inputs to the quantum
circuit – and therefore modifies the theoretical algorithmic performance of the model – the
goal of nonlinear postprocessing is to recover information that existed at the output of the
quantum circuit but was corrupted by imperfect hardware, thereby modifying the hardware
performance of the model.

4.3.2 Noise in quantum kernels

Noise contributes another stochastic element to kernel matrices computed on quantum
hardware. In the presence of noise, the explicit mapping x → |φ(x)〉 is augmented by
non-unitary channels representing decoherence in the system. Taking a simplistic example
of a channel D with Kraus representation {Mk} acting on the encoding unitary UΦ(x) the
effective kernel computed is

k̃(x, x′) = Tr(ρ(x)ρ(x′)) (4.26)

=
∑
ij

Tr(〈0|U †(x′)M †
jMiU(x)|0〉) (4.27)

which effectively replaces the intended data encoding UΦ(x) with D[UΦ(x)], its composition
with the noise channel. Non-unitary channels D will generally fail to preserve inner prod-
ucts over the set of mappings {|φ(x)〉} over the input dataset, resulting in the computation
of an entirely new kernel k̃ 6= k.
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4.3.3 On quantum advantage

In the previous sections it was shown that any unitary parametrized by datapoints xi ∈ X
that can be implemented on a universal quantum computer and has an associated kernel
k(x, x′) that can be sampled as P (0).

Primary evidence for quantum advantage of quantum kernel methods relies on demon-
strating that there exists some φ for which 〈φ(x), φ(x′)〉 is classically hard to compute but
efficient to compute on a universal quantum computer. Previous work in quantum kernel
methods have argued for precisely this advantage of QKMs over classical ones. In [22] it
was argued that the hardness of the quantum circuit encoding a kernel function relied on
the circuit being “similar” to an algorithm used to solve the hidden shift problem for bent
boolean functions of the Maiorana-McFarland kind [47]. An argument of this type requires
that the subcircuit UΦ(~x) be diagonal in the computational basis (so that it has a classical
boolean function equivalent) and therefore does not apply to the modified circuits with
more than one layer implemented in this work (see Section 5.2.1). [28] provides another
notable mention of justifying QKM circuits strictly from a perspective of classical hardness,
wherein the circuit used to produce k(x, x′) was chosen based simply on prior evidence that
the output of such a circuit corresponds to solutions to classically hard graph problems.

In general, arbitrary circuits of the form U(x)U †(x′) (the exact type that samples
from a symmetric p.d. kernel) can be composed at a much quicker pace than proofs
for classical (in)tractability of sampling from such a circuit’s output, and at the same
time offer no intuitive justification for why their corresponding kernel functions would be
effective for classifying real data. A secondary, weaker path to motivating the use of QKM
is to demonstrate that there exists some quantum feature map φ for which a classifier
f̂ incorporating φ outperforms existing classical classifiers. While such a demonstration
does not prove any sort of quantum speedup, it allows for the discovery of families of
kernel functions that are useful for machine learning regardless of whether these kernels
are eventually shown to be classically hard to compute or not. From this perspective,
quantum kernel methods can be thought of as a way of conveniently prototyping machine
learning algorithms that may have otherwise performed poorly using only well-understood
and currently available classical functions.

Quantum kernel methods do not necessarily offer speedup over the computation of
popular classical kernels. The RBF kernelK(~x, ~y) = exp(−γ||~x− ~y||2) computed on x ∈ Rp

has complexity O(p). Meanwhile classical preprocessing to map data points x into gate
parameters requires O(p) operations, and the circuit architectures used in this work (see
Section 5.2) using only nearest-neighbor connectivity has depth O(p) resulting in a total
complexity equal to that of computing the RBF kernel, but with the severe disadvantage of
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requiring an interface with quantum hardware. Possible circuits with greater connectivity
will then exceed computation of classical kernels in complexity, for example a circuit with
all-to-all entangling gates will result in O(pC2) = O(p2).

It is also possible that classical approximations to a given quantum kernel can per-
form well without the need for quantum hardware. For instance, the method of “Random
Kitchen Sinks” (RKS) developed in [43, 45, 44] describes how ensembles of practically ran-
dom feature space projections can be used to efficiently approximate classical kernels that
are otherwise expensive to compute. For circuits with more than one layer implemented in
this work, the methods of [43] for approximating shift-invariant kernels do not apply since
layers of the form U(x) =

∏
k exp(iZkf(x)) are trivially non-commuting with interspersed

layers of single-qubit Hadamards.

4.3.4 The “curse of dimensionality”

One underlying assumption motivating the use of QKM for machine learning is that the
exponentially large Hilbert space describing quantum states can be leveraged to provide
greater expressibility for classical data by mapping low-dimensional classical datapoints
into a higher-dimensional feature space. This section will review a classical example of
where this intuition fails in the case of purely classical high dimension feature spaces.

The “curse of dimensionality” in the context of classical machine learning refers to the
relationship between the dimensionality of the encoded feature space and the size of the
dataset N resulting in a very low density of datapoints. Consider a classifier that assigns
the class of a new datapoint x based on the predominant class of previously seen datapoints
in some region R(x) = {xi} around x:

f̂(x) =
1

M

M∑
xi∈R(x)

yi

A common version of this selection rule is the K-nearest-neighbor algorithm, in which
R(x) is defined as the region containing the K closest training points to x with respect to
a metric d(x, x′). The performance of this algorithm in the limit as N →∞ is guaranteed
to minimize empirical risk if [18]:

lim
N→∞

K(N) =∞ (4.28)

lim
N→∞

K(N)/N = 0 (4.29)
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That is, the number of neighbors used to classify x must grow with the size of the dataset,
but must remain smaller than the dataset itself so that the k-nearest-neighborhood remains
nontrivial. (4.28) ensures that the K-NN retains some flexibility with respect to a growing
body of observations, while (4.29) implies that for a fixed dimension p, the size of R(x)→ 0
as N → ∞ and therefore guarantees that x is classified according to the classes of a
neighborhood of points that are nearly identical to x.

With the requirements for this model in place, the curse of dimensionality effect is
typically demonstrated in two ways:

1. The size of the k-nearest-neighborhood scales like N1/p for N points uniformy dis-
tributed in Rp [18]:

d(p,N) = 2

(
pΓ(p/2)

2πp/2N

)1/p

(4.30)

For large p the size of R(x) decreases slowly with respect to N , which means that the
k-nearest-neighborhood remains large and the limit (4.29) will be difficult to satisfy.

2. A more heuristic approach considers the vanishing volume of the p-sphere with re-
spect to the p-cube:

lim
p→∞

V (Sp)

V (p-cube)
= lim

p→∞

πp/2

pΓ(p/2)
= 0 (4.31)

The reasoning here is that R(x) defined with respect to the 2-norm will be a p-sphere
centered at x. If data are uniformly distributed within an n-cube centered at x, then
the for large p the fraction of points contained in R(x)→ 0. This means that K(N)
grows much more slowly, and that satisfying the limit (4.28) becomes substantially
more difficult.

Extending these arguments against high-dimensional (classical) feature space to the
quantum case is nontrivial, but the arguments should certainly temper the belief that the
high dimensional quantum state space will necessarily provide advantages to the classifi-
cation power of classical machine learning algorithms.
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Chapter 5

Computing quantum kernels on
superconducting qubit hardware

This chapter details results of preparing, running, and analyzing a full QKM algorithm.

Section 5.1 includes analysis and data manipulation used to prepare the input data to
be analyzed using a quantum circuit. Section 3.2.1 describes hardware calibrations that
were performed to optimize the performance of quantum circuits in general that do not
affect the circuit model representation of the kernel circuits, while Section 5.2 describes
specific changes made to the circuit model of the QKM algorithm to improve performance.
Section 5.3 describes modifications to the bitstring readouts from the quantum circuit to
improve the performance of the QKM-SVM model. Finally, Section 5.5 details the analysis
of the SVM classifier trained using quantum hardware

5.1 Data preprocessing

5.1.1 Data compression

All of the classification using real data in this work is based on the simulated Strong Lensing
(SL) dataset provided by the Bologna Lens Factory [1]. In this dataset, compressed images
are classified as either “lensed” or “not lensed” depending on the presence of observable
gravitational lensing.

Without processing, a typical image from this dataset is 101× 101 pixels, resulting in
datapoints that are 10, 201-dimensional (i.e. X ⊂ R10201) and contain too many parameters
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to fit into a near term circuit. To rectify this situation, the data was compressed to a
number of floats equal to the number of qubits in each circuit using Principle Component
Analysis [39, 56]. This compression acts by performing a change of basis on elements of a
dataset for which magnitudes of components in the new basis better reflect independent
variables explaining trends in the dataset. This has the effect of reducing the number of
dimensions required to explain variance in the positions of datapoints, and also assigns a
greater importance for explaining this variance to a small number of dimensions in the new
basis.

Initial exploration with classical binary classifiers on a variety of compressed data for-
mats (X ⊂ R4, X ⊂ R6, etc.) showed that a reasonable model performance should be
somewhere in the 70%-80% range.

5.1.2 Dataset engineering and cross-validation

To make generalizable claims about the performance of a QKM SVM it was important
to select a train dataset for which the performance of a trained SVM was highly likely
to generalize to new data points. In a hardware context this was especially important
because the number of circuit computations needed to compute a kernel matrix on a data
set of size N scales like N2, while the available number of hardware runs was fixed. As a
result, computing additional circuits would require a reduction in the number of runs (and
therefore increase in variance) used to compute each circuit.

An algorithm to determine the minimum acceptable size of a kernel matrix that pro-
duces validated model performance needs to have the following features:

1. Access to a large number of training points - this ensures that the model is not
“overfitting” according to idiosyncrasies in the feature-label relationships for a very
small dataset

2. Random selection of validation subsets - The model should not be allowed to “choose”
as subset that is especially high performance, as this would produce the conditions
of (1)

3. Low variance in validated accuracy - model validation techniques offer insights into
generalizability of a model, but are equally susceptible to statistical anomalies that
may over/under-represent model performance on a small dataset. Therefore, a series
of validation runs is required so that the mean of the observed validation scores
approaches a true mean generalizable to all data subsets of a fixed size (i.e. “law of
large numbers”)
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Algorithm 1 presents a validation procedure satisfying the above criteria for engineering
a dataset that results in generalizable performance with respect to a QKM SVM. In sum-
mary, the algorithm determines how reproducible training results from any given subset
size are by repeatedly sampling subsets of that size and testing models trained from each
subset on the subset’s own members. One motivating factor for employing this algorithm
is that it can be run many times on a single Gram matrix, thereby eliminating the need
for re-computing O(n2) kernel function values at each evaluation of the model.

Algorithm 1 Validation. KFold validation for determining a minimum

1: procedure VALIDATE SUBSETS(X , f) . Determine subsets of X generalizable
under model f

2: for n < |X | do
3: sem := 1
4: scores = []
5: while 2.576 ∗ sem < 0.01 do . enforce 3σ confidence interval of 1%
6: Sample S ⊂ X with |S| = n
7: Train f on subset S
8: Run K-fold validation on the subset (K = 5) with respect to f → s
9: scores.append(s)

10: sem← Var(scores)1/2/|scores|

Figure 5.1 shows the validated model performance of the standard HW-1 kernel circuit
(introduced in Section 5.2.1).

Not only is Algorithm 1 capable of validating a QKM’s performance, but it is also a
tool for prototyping modified kernel circuits using simulated data. Using this technique,
along with a series of trial-and-error simulated experiments, I eventually produced a proto-
type kernel circuit (proto-3) that performed significantly better on the training dataset
compared to its hw-1 and ZPOW-2 predecessors (Figure 5.2).

5.2 Hardware-native kernel engineering

5.2.1 Prototyping circuits for computing quantum kernels

The structure of the quantum circuit that will produce a useful kernel using the methods
of Section 4.3 is not known in advance for any given dataset. Furthermore, the structure
of a quantum kernel circuit that produces good results for one dataset won’t necessarily
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Figure 5.1: Simulated validation results for HW-1 using Algorithm 1. For each training
set size on the x-axis, each point indicates a different accuracy produced by training an
SVM classifier on a subset of SL PCA data that size and then evaluating its performance
on a larger test set. The spread in scores associated with small train sizes is due to
poor generalizability for models that have only seen a small amount of data. Even after
optimization of the encoding function constants by grid search, HW-1 failed to achieve
average performance anywhere near that of an RBF kernel.
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Figure 5.2: In an improvement over Figure 5.1, simulated validation results for PROTO-3
kernel circuit using Algorithm 1 show that the grid search optimized PROTO-3 circuit has
performance almost indistinguishable from an out-of-the-box classical RBF kernel.
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generalize to other datasets. This is also the case for classical kernel methods, which tend
to be more of an art than a science. Nevertheless, its possible that high-performance kernels
for a given dataset can be discovered through trial and error.

The following sections detail relevant circuit architectures and (linear) encodings used
throughout this work.

ZPOW-2

This encoding circuit implements a unitary similar to the one originally proposed in [22]:

UZPOW-2(x) =
2∏

k=1

(⊗
i

H

) ∏
Ek(i,j)

exp
(
φ(i, j)Z(i)Z(j)

)
(5.1)

From trial and error, it was determined localized Z-rotations did not improve accuracy on
the SL dataset and were therefore dropped. Figure 5.2.1 shows a sample circuit diagram
of a single layer of ZPOW-2 implemented for n = 4 qubits.

(4, 1) H
exp(iφ0ZZ)

exp(iφ2ZZ)

(4, 2) H exp(iφ3ZZ)

(5, 1) H
exp(iφ1ZZ)

(5, 2) H

Figure 5.3: Circuit diagram implementing a single layer of ZPOW-2

HW-1

The ZPOW-2 encoding was problematic for running on actual hardware due to the depth
required to implement the exp(iθZZ) gate on actual hardware (see Section 5.2.2). This
modified circuit replaces the exp(iθZZ) gates with hardware native

√
iSWAP gates followed

by pairs of local rotations, resulting in a unitary of the form:

UHW-1(x) =
2∏

k=1

(⊗
i

H

) ∏
Ek(i,j)

√
ISWAPijR

(i)
z (0.2x)R(j)

z (0.2x) (5.2)
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Figure 5.2.1 shows a sample circuit diagram of HW-1 implementation for n = 4 qubits.

(4, 1) H

ISWAP−0.5

Zφ0 iSwap−0.5
Zφ2

(4, 2) H Zφ0 iSwap−0.5
Zφ3

(5, 1) H

ISWAP−0.5
Zφ1 iSwap Zφ2

(5, 2) H Zφ1 iSwap Zφ3

Figure 5.4: HW-1 circuit diagram

PROTO-3

Based on trial and error with the HW-1 architecture, it was eventually determined that
single-qubit Z rotations did improve accuracy on the SL dataset. So this encoding circuit
implements a unitary of the form:

UPROTO-3(x) =
2∏

k=1

(⊗
i

HR(i)
z (0.6x)

) ∏
Ek(i,j)

√
ISWAPijR

(i)
z (0.3x)R(j)

z (0.3x) (5.3)

where the linear factors 0.6, 0.3 were found by grid search over SVM (validated) per-
formance (See Section 5.1.2). Figure 5.2.1 shows a sample circuit diagram of PROTO-3
implementation for n = 4 qubits.

5.2.2 Compilation to hardware-native gates

As mentioned in Section 5.2.1, enacting unitaries of the form exp(iθZ ⊗ Z) on the Rainbow-
23 device using the available gateset resulted in much larger depth for a given circuit. Figure
5.2.2 shows the decomposition of a single two-qubit gate of this form 1.

1I am grateful to D. Strain for passing this decomposition on to us.
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(4, 1) H Zθ0

ISWAP−0.5

Zφ0 iSwap−0.5
Zφ2

(4, 2) H Zθ1 Zφ0 iSwap−0.5
Zφ3

(5, 1) H Zθ2

ISWAP−0.5
Zφ1 iSwap Zφ2

(5, 2) H Zθ3 Zφ1 iSwap Zφ3

Figure 5.5: PROTO-3 circuit diagram

Zφ0 Rz(πζ0) Rx(πξ0)

ISWAP−0.5

Rx(πξ0) Z

ISWAP−0.5

Z Rx(πξ0)

Zφ0 Rz(πζ0) Xpx Xax

Figure 5.6: ZZPow hardware gate decomposition; each implementation of a two-qubit
exp(iθZ ⊗ Z) gate used in the circuits of [22] requires a depth-7 decomposition on Rainbow-
23 (a hardware optimization on the device allows nearly instant execution of Z-gates).

5.2.3 Automated qubit map optimization

Average qubit performance is limited by design and fabrication techniques used to pro-
duce a chip. Parameters like T1, T2, and one- and two-qubit gate fidelities in a transmon
qubit setting are all limited by extensive material defects .In addition, these parameters
in superconducting qubit systems can drift on timescales as short as hours. As a result,
the fidelities of gates and coherence of individual qubits are known with a large degree
of uncertainty with respect to the most recent experiment determining these parameters.
Therefore, the optimization procedure for preparing hardware circuits must take into ac-
count the quickly-changing knowledge of qubit performance metrics.

The qubit map algorithm constructs a qubit graph Gq = (E, V ) where edges represent
entangling gate connectivity and nodes represent qubits. The optimization is done by
traversing all simple (one to two edges per node) paths (no repeated node visits) of fixed
length k (implemented according to [50, 20]), and then scoring each path according to some
function of the metrics for the subset of nodes visited. Succinctly, this algorithm solves
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finds the maximum:
max

f(Vk(G))
Gq (5.4)

subject to the constraint |Vk(G)| = k and f : V → R is a function scoring subsets of
vertices. The content of f is to implement a value system for dealing with tradeoffs
between different calibration metrics.

Before applying f , the heterogeneous calibration data were normalized to the range
[0, 1] and inverted if they represented an error. For example, a p1 value of 0.7% would
be converted to 0.993/p1,max while a T1 value of 10 µs would be converted to 10/T1,max.
With different datatypes homogenized, let the value of the p-th category of calibration
data for the i-th qubit vi be cp(vi). Then a simple function f might simply be a linear
function of all calibration categories:

f(V ) =
∑
vi∈V

∑
p

cp(vi) (5.5)

Figure 5.2.3 shows the results of optimization with respect to the unweighted f . In par-
ticular, the path included an undesirable qubit q10 in order to reach the highest-performing
qubit q11. In practice, this might lead to poor performance of the algorithm due to includ-
ing the “weak link” q10, and introduces the need to assign a penalty to bad calibration
values. This modifies the form of f to be more general:

f(V ) =
∑
vi∈V

∑
p

gp(cp(vi)) (5.6)

where gp is a scoring function applied to the p-th normalized, inverted calibration metric.
An example of the results of weighting cT1 to penalize low T1 values is shown in Figure
5.2.3, alongside the logarithmic penalty function for normalized T1 values in Figure 5.2.3.
This modified graph now avoids the exceptionally bad q10, demonstrating the flexibility
of using weighted scoring function for qubit selection.

Automated qubit map optimization as described here was implemented in all later
iterations of experiments after February 17.

5.3 Data postprocessing

This section uses the notation 0n to represent the all-zeros bitstring over n qubits. In
general, underlined 0’s and 1’s will be used to represent individual bits of {0, 1}, and
underlined bitstrings of length k will represent vectors in {0, 1}k.
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Figure 5.7: (left) The results of automatically optimizing 12-qubit “snake” grid layout (red
boxes) with respect to unweighted calibration metrics, overlaid on T1 values serving as input
to the optimizer. (center) The same grid structure generated by using a logarithmic penalty
function applied to T1 values. (right) An plot of the penalty function y = 1.5 ln(x) + 1
applied to T1 values to achieve the results in (center).
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As introduced in Section 4.3, the kernel matrix element k(x, x′) is determined from the
probability P (0n). Due to the measurement error described in Section 2.3.2, increasing the
number of qubits results in an exponentially higher rate of transition out of the 0n state
N0n

∏n
i p

i
0, accompanied by a higher transition rate into the 0n state from all states some

Hamming distance h away from 0n.

5.3.1 Bitflip correction by system of linear equations

Let Ni be the prior frequency of bitstring ’i’ for an experiment with no bitflip error, i.e.
pq0 = pq1 = 0 for all qubits {q}. Let Mi be the observed frequency of bitstring ’i’ and define
an offset xi so that Ni = Mi + xi. Now define a response matrix (P )jk that contains as its
elements the total probability for transition from bitstring ’k’ to bitstring ’j’ (for example,
Figure 5.8 shows an example response matrix for n = 6 qubits). P is not symmetric in
general, since typically p0 < p1.

The goal is to solve for xi given P and Mi for all bitstrings bi as a system of linear
equations. This follows from the statement that the observed frequency of bitstring k is
the “true” frequency of k reduced by transitions k → j and increased by transitions j → k
from all prior populations j 6= k:

Mk = Nk(1−
∑
j 6=k

Pjk) +
∑
j 6=k

NjPkj (5.7)

= (Mk + xk)Pkk +
∑
j 6=k

(Mj + xj)Pkj (5.8)

This yields a linear equation of the form A~x = ~b where A = P T and B = (1−P T ) ~M . In
practice, drift or inaccuracies in the recorded bit flip probabilities or statistical uncertainty
introduced by finite sample sizes can lead to inconsistencies with the observed bitstring
frequencies M (an example is if Mk is very large but Pkk is vanishing). This can produce
skewed or negative predictions for frequencies of bitstrings in the prior distribution that
must be corrected by undesirable rounding and up-/down-sampling.

5.3.2 Bitflip correction by Bayesian iterative unfolding

The method of Section 5.3.1 is unstable due to the possibility that matrix inversion yields
negative-valued entries (which will possibly result in negative calculated prior frequencies).
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Figure 5.8: The response matrix characterizing total probabilities for transitions between
length-6 bitstrings, computed from 3/31/2020 calibration data. The logarithm of probabil-
ity for transition from a bitstring Cj on the vertical axis to a bitstring Ei on the horizontal
axis is displayed as the color of the matrix element. Nonzero off-diagonal elements are the
source of bitflip error, and the asymmetry in the response matrix is caused by the asym-
metric bitflip probabilities for single bits. The set of bitstrings of weight 2 or less shown
represents 34% of all length-6 bitstrings but accounts for almost all transitions into/out of
the all-zeros bitstring.
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Table 5.1: Likelihoods for single bit bitflips based on p0 and p1 values. These single-bit
bitflip likelihoods are combined to produce full bitstring transition likelihoods according
to Equation 5.9.

bC bE P (bE|bC)
0 0 1− p0

0 1 p0

1 0 p1

1 1 1− p1

For a more stable correction scheme, I implemented an iterative unfolding method as first
introduced in [14]. Using their notation, define:

• Ci: An unobserved (“true”) bitstring i labeled “cause”

• Ei: An observed bitstring i labeled “effect”

• The likelihood that bit i is observed from an underlying cause j, P (Ei|Cj)

• An unknown “prior” P (Ci) describing the “true” frequency of bitstring i

The likelihood P (Ei|Cj) is identical to the element Pij from the response matrix intro-
duced in Section 5.3.1. The likelihood of transition for a single cause bit bC into an effect
bit bE is given by the truth Table 5.1. The transition likelihood for a length-n bitstrings is
then just a product of the transition likelihoods for the individual bits that make up the
bitstring:

P (Ei|Cj) =
n∏
k=1

P ((Ei)k|(Cj)k) (5.9)

Where (Ei)k, (Cj)k denote the k-th bit of the effect and cause bitstring respectively. An
intermediate requirement for performing the unfolding is the probability P (Ci|Ej) which
is connected to the above elements via Bayes’ theorem2:

P (Ci|Ej) =
P (Ej|Ci)P (Ci)∑nC

`=1 P (Ej|C`)P (C`)
(5.10)

2It’s tempting to try to solve for P (Ci|Ej) directly using Table 5.1, thereby avoiding the need for
Equation 5.9. This would be a mistake, since the bitflip probabilities p0 = P (“effect = 1”|“cause = 0”)
and p1 = P (“effect = 0”|“cause = 1”) are themselves likelihoods conditioned on causes and arising from
physical processes.
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The problem statement for Bayesian iterative unfolding is then as follows: Given
knowledge of how many bitstrings j were observed, P (Ej), and the known transition prob-
ability P (Ei|Cj) from an unseen cause bitstring Cj to an observed effect bitstring Ei,
find the unknown prior distribution of unseen bitstrings P (Ci). The method of [14] was
implemented using the following iterative procedure, using the pyunfold library [10]:

1. Compute the response matrix Pij = P (Ej|Ci) from calibration data for bitflip prob-
abilities p0, p1 and Equation 5.9

2. Guess an initial prior distribution bitstrings, P (0)(Ci)

3. Compute an initial estimator for the frequency of Ci using observed frequencies for
Ej along with the computed P (Ej|Ci) from step (1) and Equation 5.10:

n̂(0)(Ci) =

nE∑
j=1

P (Ci|Ej)n(Ej) (5.11)

4. Compute an estimator for P (Ci): P̂ (Ci) = n̂(0)(Ci)/
∑

i n̂
(0)(Ci)

5. Compare P̂ (Ci) to P (0)(Ci):

• if P̂ (Ci) ≈ P (0)(Ci), terminate.

• otherwise, set P (0)(Ci) = P̂ (Ci) and repeat steps 3-5

Hamming truncation

An immediate issue with the technique of Section 5.3.2 is that it requires a response matrix
defined over all of the relevant bitstrings, which scales exponentially with the number of
qubits in the experiment. However, since the goal of the experiment is to determine
the probability of readout for 0n, and observing that Pij << 1 causes the probability
of transitions between 0Nqubits and a bitstring Hamming distance k away is suppressed
exponentially in k, so bitstrings with a large Hamming distance from the all-zeros string
can be safely excluded during the correction.

Approximating the complexity of bitflip correction via iterative unfolding as the same
as that of matrix inversion (Section 5.3.1), then the naive matrix inversion complexity of
O(n3) for an n×n matrix results in exponential complexity of O(23d) for iterative unfolding
with respect to d qubits. However, if correction is restricted to only bitstrings of weight
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6 7 8 9 10 11 12

Number of qubits d

5.5

6.0

6.5

7.0

7.5

8.0

y=0.469x + 2.707

Figure 5.9: The size of a bitstring subspace restricted to bitstrings of weight four or less
is given by log

(∑4
k=0 dCk

)
as a function of number of qubits d. While still exponential in

d, the dimensionality of the space of bitstrings of weight ≤ 4 scales like 20.47d for d < 13,
a factor of roughly 2d/2 less than the dimensionality of the full space of bitstrings.

less than or equal to some constant, the exponent of 3d can be linearly reduced. Figure 5.9
demonstrates that for the case of truncating to bitstrings of weight ≤ 4 the exponential
argument for the complexity of bitflip correction can be reduced by a factor of about 1

2
.

In other words, this results in 2d/2 reduction in overhead for correcting bitflip errors in
practice for d ≤ 12.

Given a set of conditional likelihoods P (Ei|Cj), a desired cause Cx to compute, and
the set of bitstrings of weight equal to k, {vk} ≡ {v ∈ {0, 1}n : |v| = k}, let εx,k be the net
error introduced into the likelihoods of the form P (Ex|Cj) due to excluding all bitstrings
of weight greater than k:

εx,k ≡ 1−
∑

Cj∈{vk}

P (Ex|Cj) (5.12)

The sum in Equation 5.12 is simply the sum of the column corresponding to Ex in the
response matrix that includes only transitions into Ex from bitstrings of weight k or less
(recall that

∑
j P (E|Cj) = 1 when no entries are excluded; as k increases Equation 5.12

will asymptotically approach 1). Similarly, let εk,x be the error introduced to likelihoods
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of the form P (Ej|Cx) due to Hamming truncation:

εk,x ≡ 1−
∑

Ei∈{vk} P (Ei|Cx)∑nE

j=1 P (Ej|Cx)
(5.13)

The sum in Equation 5.13 computes the normalized sum of the row corresponding Cx
for a Hamming-truncated response matrix; since

∑
i P (Ei|C) 6= 1 in general, this sum is

normalized according to sum of the same row in the non-truncated version of the response
matrix. Equations 5.12-5.13 can be computationally expensive to compute for many qubits
since the size of the response matrix scales like 2n. A very rough approximation of these
errors can be computed directly from p0, p1 bitflip probabilities by using the following
heuristics:

εx,k ≈ 1−
n/2∑

`=k+1

(
n
`

)
p0
` (5.14)

εk,x ≈ 1−
n/2∑

`=k+1

(
n
`

)
p1
` (5.15)

where p0 is the mean probability for a bitflip from “0” to “1”. Conceptually, the sums
in Equations 5.14-5.15 treat transition into/out of any bitstring of weight ` as equally likely
and accumulate the error introduced by ignoring bitstrings of weight greater than the set
truncation point, and the termination of the sum at n/2 coincides with the maximum of
n-choose-`.

Figure 5.10 provides an example illustration of appropriate cutoffs for computing the
all-zeros bitstring using the exact errors of Equations 5.12-5.13 as a function of k for
different numbers of qubits n for a specific set of bitflip probabilities, as well as the heuristic
Equations 5.14-5.15. The approximation for εk,x tends to diverge from the true value for
large numbers of qubits, but captures the asymptotic behavior necessary to determine
the Hamming distance at which to truncate bitstring transitions in a truncated response
matrix.
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Figure 5.10: (left) 1− εx,k and (right) 1− εk,x
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Table 5.2: Abbreviations for distributions to be compared in the following analyses.
Label Description
SIM Noiseless simulation
NSY Full noisy simulation
HW Hardware
NSY∼BF Noisy simulation that excludes bitflip errors
SIM+BF Bitflip-only noise simulation
CORR[ · ] Bitflip-corrected version of argument (with Hamming truncation as indicated)

5.4 Assessing bitflip correction performance and un-

certainty

By providing the full noise model introduced in Section 2.3.5 with a complete set of cal-
ibration data for all relevant parameters (see Appendix A), one can characterize the per-
formance of the model by bitstring distributions to the hardware outcomes. On a very low
level this can be accomplished by comparing the full histograms of bitstrings observed in
the noiseless simulation, noisy simulation, and hardware runs. To capture this compar-
ison so that broader trends in performance can be observed, differences in distributions
of bitstrings sampled from various sources will be summarized using the Kullback-Leibler
divergence (also referred to as KL-divergence,DKL, or relative entropy) of the distributions:

DKL(P ||Q) ≡ −
∑
x

P (x) logQ(x)− S(P ) (5.16)

where S is represents the entropy and P,Q are discrete distributions. Since training an
SVM using the quantum kernel method requires access to a gram matrix of sufficient size
to return validated accuracy scores (see Section 5.1.2), then computing DKL over the full
gram matrix gives a reasonable estimate of how well hardware results conform to simulated
expectations.

Controlled analysis of the performance of the bitflip correction scheme can be accom-
plished by comparing different variations of simulated noise models and hardware outcomes
with and without the correction applied. Table 5.4 introduces identifiers that will be ap-
plied during the analysis.

The following sections explore the performance of the bitflip correction algorithm by
comparing various distributions in Table 5.4. Additionally, there is a very real risk of the
asymmetric measurement error producing an excess of all-zeros bitstrings compared to the
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true rate, which might suggest that the decoherence in the circuit is not as bad as it really
is. To control for this, I provide results of experiments in which the input state of the
kernel circuit was prepared to |1n〉. This then maps the value of k(x, x′) onto P (1n), which
will be suppressed due to asymmetric measurement error to the same degree that P (0n)
will be artificially increased.

As a reminder, the notation 0n and 1n used to represent the all-zeros and all-ones
bitstrings over n qubits. The histograms in the following subsections all have the following
properties:

1. Histograms are restricted to the sorted top 12 frequencies with respect to the union
of the compared distribution (though the 012 bitstring always appears first).

2. Bitflip correction skew - When analyzing these types of histograms, the following
t is very important to remember that Hamming truncation skews bitflip cor-
rection results according to the Hamming distance from the un-modified
value. That is, after the methods of the previous section have been applied to a
distribution, the accuracy of the resulting P (0n) (or P (1n) in the case of the inverted
input state) will be much higher than the accuracy of a Hamming distance one bit-
string (e.g. P (0100) for n = 4) since the Hamming truncation leaves an asymmetric
bitstring transition space with respect to such a bitstring.

5.4.1 CORR[HW] vs NSY∼BF

Comparing CORR[HW] to NSY∼BF determines the performance of the simulation noise
model. Given a reliable algorithm for bitflip correction, this quantity describes how closely
the dynamics within the circuit are being modeled with respect to the true hardware
dynamics.

Figures 5.11-5.12 present two examples of CORR[HW] distributions compared to their
NSY∼BF counterparts for 12 qubits. Figure 5.11 corresponds to the computation of a
diagonal kernel element (for which P (0n) = 1 in noiseless simulation) with X gates inserted
on all qubits immediately before readout (to bias against the tendency of asymmetric bitflip
probabilities to cause “pileup” in the 0n bitstring); Figure 5.12 shows another 12-qubit
event for an offidiagonal kernel element with no X gate modification.

The qualitative comparison shown here generalizes to most 12-qubit results: There
is only sporadic agreement between CORR[HW] and NSY∼BF for 12 qubits, which
indicates that a large part of the hardware results are due to noise processes that cannot

66



Figure 5.11: Sample distribution for computation of a HW-1 diagonal element on 12 qubits,
for (left) HW vs NSY∼BF and (right) CORR[HW] vs NSY∼BF. Recall that due to the
Hamming truncation procedure, only the 112 bitstring population on the right histogram is
valid. The bitflip correction algorithm is generally successful at recovering populations for
the 012 / 112 bitstrings for diagonal elements, likely due to the large populations of these
bitstrings to begin with.

be accounted for using the present noise model, and motivates against the use of 12 qubits
for full runs used to train an SVM.

5.4.2 CORR[HW] vs SIM

Comparing CORR[HW] to SIM determines the verifiability of the results received from
hardware with respect to the broader QKM model. In practice, the anticipated difference
in performance of an SVM trained using a Gram matrix computed from hardware versus
noiseless simulation will depend on the un-correctable statistics for the 0 . . . 0 bitstrings in
each case.

Figure 5.13 shows comparisons between (subsets of) the distributions observed for HW,
CORR[HW], and SIM respectively for a few example distributions taken from a subset of
k(xi, xj) computed using PROTO-3 for n = 8 qubits. There is a general improvement
in the agreement between hardware outcomes and noiseless simulation after the correction
has been applied.

By comparing these outcomes like Figure 5.13 over the full set of k(xi, xj) computed, a
distribution of KL-divergence values can be assembled showing a general trend of improve-
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Figure 5.12: Sample distribution for computation of a HW-1 off-diagonal element on 12
qubits, for (left) HW vs NSY∼BF and (right) CORR[HW] vs NSY∼BF. A number of
different off-diagonal circuits exhibited this behavior

ment in the agreement between CORR[HW] and SIM compared to the agreement between
HW and SIM. Figure 5.14 demonstrates this overall trend in improvement for three sepa-
rate experiments: an unmodified PROTO-3 circuit, a modified version with n/2 X-gates
over half of the qubits inserted at the beginning of the circuit, and a modified version with
n X-gates over all of the qubits inserted (again, the motivation for these modifications is
to control for any possible bias introduced into sampled outcomes due to the asymmetric
nature of the readout error, though this has a much smaller effect on comparisons of full
distributions than comparisons of P (0n)).

Plotting mean DKL values taken from a set of histograms like Figure 5.14 for n =
4, 6, 8, 10 qubits (10 being the maximum number of qubits for which iterative unfolding
can be performed over full distributions of outcomes using the available implementation)
yields the scaling analysis in Figure 5.15. While DKL cannot provide an absolute measure
for how successful a model employing QKM will be, the scaling in Figure 5.15 provides
two insights:

1. For all numbers of qubits and independently of artificial bitflips introduced to the
circuit, bitflip correction improves the performance of hardware outcomes.

2. There is an accelerating trend in the disagreement of bot HW and CORR[HW] out-
comes versus simulation with respect to the number of qubits.
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Figure 5.13: Sample distributions for HW vs. SIM on an 8 qubit proto-3 architecture
before and after the full distributions were bitflip corrected. This visualization only includes
the most frequent (with respect to the union of the distributions) outcomes of each bitstring
histogram. These examples also highlight shortcomings of DKL as a comparison metric:
Even a relatively small KL-divergence can correspond to a large error in the computed
probability of the all-zeros bitstring (as is the case in the bottom left pane, third histogram
bin).
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Figure 5.14: Comparing KL-divergence over larger sets of proto-3 circuits that have
(left) no modification (middle) 4 artificial bitflips introduced and (right) 8 artificial bitflips
introduced demonstrates CORR[HW] has better agreement with SIM than HW in general.
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Figure 5.15: The mean KL-divergence from each artificial bitflip scenario on proto-3 cir-
cuits trends steadily upwards with respect to the number of qubits when comparing either
HW to SIM or CORR[HW] to SIM. Assuming that the Bayesian iterative unfolding
corrects a large fraction of the bitflip error, this is evidence that the remainder of hardware
noise sources contribute to degradation in performance that scales super-linearly with the
number of qubits. The stopping point of 10 qubits represents the largest system for which
un-truncated bitflip correction can be performed using the available software.
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Figure 5.16: The outcome in this sample comparison of CORR[HW] vs SIM generalizes to
most other 12 qubit results: Only a small part of the deficit in P (012) bitstring is explained
by readout error, and attempting to use even the bitflip corrected results in an SVM will
result in a model performance that is completely uncorrelated with the performance of the
quantum hardware. Distributions represent a diagonal element computed using 12 qubit
HW-1 architecture modified with a full set of X gates immediately before readout.

Attempting to extend this comparison to 12 qubits (for which correction of the full
distribution of bitstrings is no longer possible), Figure 5.16 compares sample values for
P (1n) computed using truncation on bitstrings Hamming distance > 3 away from 112 (the
target bitstring is all one’s due to the artificial bitflip circuit modification). The main
observation gathered from this example and others like it is that for results sampled from
diagonal element circuits the bitflip errors apparently account for only a small fraction of
the observed deficit in P (012) and P (112). This suggests a restriction on scaling up to 12
qubits imposed by the hardware, which combined with results presented in Section 5.6
suggests that 12 qubits presents an insurmountable barrier to computing HW-1 circuit
outcomes on the SL dataset.

5.4.3 CORR[SIM+BF](0) vs. SIM(0)

This comparison is meant to isolate the performance of the bitflip correction scheme by
controlling for all sources of error except bitflips in a simulated setting. The inequality

[CORR[SIM+BF](0)− SIM(0)] < ε
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Figure 5.17: For a diagonal element (plus artificial bitflips before readout) Hamming-
truncated bitflip correction almost recovers the SIM frequency of 112, but fails to do so
within the combined uncertainty of Hamming truncation and p0, p1 statistical error.

will be satisfied if the performance of the bitflip correction scheme is accurate to within its
propagated uncertainty bound ε, which must account for both statistical uncertainty in p0

and p1 as well as error introduced by Hamming truncation (as provided in Figure 5.10, for
example).

From Figure 5.17 and other comparisons like it, its apparent that while the bitflip
correction method developed in this chapter seems to improve the hardware outcomes, the
propagated uncertainties fail to provide meaningful error bars on the result of the bitflip
correction. Tuning the error propagation methods described in [14, 10] will be an important
subject of future work.

5.4.4 CORR[NSY](0) vs NSY∼BF(0)

Similarly to the previous section, comparing CORR[NSY](0) to NSY∼BF(0) provides
an understanding of how well the bitflip correction performs in a simulated setting where
more general (but still well controlled) noise is included. The inequality

|CORR[NSY](0)−NSY∼BF(0)| < ε

will be satisfied if the performance of the bitflip correction scheme is accurate to within its
stated uncertainty bounds ε.
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Figure 5.18: This example comparison between CORR[NSY](0) and NSY∼BF(0) for a
diagonal element (sampled from 12 qubit HW-1 circuit architecture) shows that even in
the presence of non-bitflip noise, the bitflip correction tends to perform decently well.

In the right panels of Figures 5.18-5.19 the corrected value for P (112) (or P (012)) com-
puted from a full noisy simulation agrees well with the corresponding value in the noisy
simulation that had no bitflips to begin with. This furthers the hypothesis that the bitflip
correction scheme is effective if provided a distribution for which the primary error mech-
anism was bitflip error. In the examples provided, the propagated error bounds for the
bitflip correction scheme also capture the degree of disagreement between CORR[NSY](0)
and NSY∼BF(0), though a more thorough study over a larger dataset is necessary before
generalizing this behavior to the wider dataset.

5.5 Characterizing quantum SVM classifier performance

on quantum hardware

I used a 12 qubit implementation of the proto-3 architecture to compute a 200 × 200
Gram matrix corresponding to the training set of the SL dataset. Figure 5.20 shows the
performance of an SVM trained on the bitflip-corrected hardware outcomes for P (012) =
k(xi, xj) using the validation scheme described in Algorithm 1 with 5-fold validation. Like
its simulated counterpart in Figure 5.2, the QKM SVM achieves comparable accuracy to
an RBF kernel.

The accuracy outcomes in Figure 5.20 demonstrate limited success of the QKM clas-
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Figure 5.19: Another example comparison between CORR[NSY](0) and NSY∼BF(0) for
an off-diagonal element (sampled from 12 qubit HW-1 circuit architecture) showing that
underlying noise in a system doesn’t necessarily corrupt the bitflip correction algorithm.

sifier. This is due to the imbalanced nature of the SL dataset used in this work, wherein
the population of events with the label y = 1 (corresponding to “not lensed”) represented
roughly 70% of the full population of the dataset. This leads to a situation in which even
a very bad classifier that always guesses a class label of y = 1 can perform with 70%
accuracy on representative subsets of the SL data.

In addition to the data balancing problem, the error in the computed probabilities
P (012) = k(xi, xj) for the 12 qubit circuit is heavily skewed towards events with limited
statistics for the all-zeros bitstring. Figure 5.21 summarizes this behavior by demonstrating
that roughly 50% of the cumulative error across all computed P (012) values is associated
with sampled distributions with less than 10 occurrences of the all-zeros bitstring.

The final section of this thesis is devoted to explaining this behavior and provides some
evidence that the observed errors (and associated weakness of the model described here)
may be due to a more fundamental limitation on the Quantum Kernel Method wherein
some circuits map real data points into a Hilbert space representation with vanishing inner
products.
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Figure 5.20: SVM classifier performance for 12-qubit proto-3 using a 200 × 200 input
Gram matrix over SL training data. For each subset size x shown on the horizontal axis,
the blue scatter points show accuracies for SVMs trained on a size 4

5
x random dataset and

tested on the remaining 1
5
x points. Accuracies assume discrete values according to integral

combinations of class sizes for events in the testing subset (i.e. the minimum observable
difference in accuracy is 1

5
x). Both RBF and PROTO-3 SVM performances track the

class balance boundary of 70%.
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Figure 5.21: The normalized relative error in the HW P (012) with respect to SIM P (012)
values shown on the vertical axis of the 2D histogram is highly concentrated among HW
circuits for which the total counts of the all-zeros bitstring N(012) < 10 (total counts are
captured on the horizontal, logarithmic axis). Normalized relative error is defined here as
a−b

max(a,b)
for two scalars a, b, which is bounded on [0, 1]. The inset histogram shows the sum

of all bins over relative error for each bin of N(012) normalized by the total cumulative
error over all 20100 events. Zero-count events are not included in the 2D histogram but to
contribute to the normalization factor for the cumulative relative error.
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5.6 Determining the minimum computable kernel el-

ement

With the bitflip correction validated from results in 5.3.2, there remains an additional
limitation to computing any given kernel element k(xi, xj). The large error associated
with small kernel entries presented in Section 5.5 indicated a limitation on the 12-qubit
circuit architecture, and Section 4.3.3 alluded to the possibility of vanishing inner products
(and therefore k(xi, xj) values) as a function of the number of qubits in the system. As
the expected value of k(xi, xj) approaches zero, the number of circuit repetitions needed
to extract this value from experiment increases accordingly.

To test this effect, I constructed a dataset of kernel elements by sampling 15 entries
from each of 10 neighborhoods spaced evenly over a sorted set of k(xi, xj) values from a
400 × 400 gram matrix with entries computed by simulated wavefunction inner products
for the PROTO-3 architecture. This subset preserves the median value of | 〈xi|xj〉 |2 =
P (0n) = k(xi, xj) over a validated training set and is therefore representative of results
expected for computing full gram matrices using the PROTO-3 architecture. In addition,
the sampling process was repeated for each of two more circuit architectures in which X
gates were sporadically introduced to test the robustness of the bitflip correction algorithm
(see Section 5.3.2); all three sets of outcomes are aggregated below with only a modest
effect on the subset’s median | 〈xi|xj〉 |2 value.

Figures 5.22-5.24 compare the noiseless simulation of exact values for | 〈xi|xj〉 |2 to the
corresponding HW outcomes (with statistical noise) over the aggregated subset, for 10000
repetitions on 8, 10, and 12-qubit PROTO-3 circuits respectively (4- and 6-qubit results
are provided in Appendix B). The following trends appear

• All HW results fail to accurately predict values for | 〈xi|xj〉 |2 that approach zero.

• For values greater than n = 8 qubits, the statistical observable limit for P (0n) begins
to affect outcomes. In the case of n = 10 qubits (Figure 5.23) 27 events with zero
counts on the all-zeros bitstring could be reasonably dropped without affecting bulk
trends in the sample. However, this was not the case for n = 12 qubits (Figure 5.24),
for which roughly a quarter of the entire population of events resulted in P (0n) = 0
on hardware.

• The Mean Squared Error (MSE) and Mean Absolute Error (MAE) of log(P (0n))
compared to log(| 〈xi|xj〉 |2) steadily grows with respect to the number of qubits (log
comparisons were chosen so that the contribution of every datapoint to the mean
error is of the same order of magnitude).
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• Distributions on | 〈xi|xj〉 |2 are not normal, and exhibit a “tail” towards the lower
end with respect to the average inner product for a given number of qubits

Figures 5.25-5.27 show the bitflip-corrected versions of the HW plots in Figures 5.22-
5.24. Not only do the trends in outcomes improve, but the trend persists for results from
CORR[HW] even for events where P (0n) was at the naive threshold of 1/(number of repetitions) =
1e − 4 that was directly observable from hardware. In other words, a single count
of the all-zeros bitstring can be corrected to yield an experimental value of
| 〈xi|xj〉 |2 ' 1e−5. However from Figure 5.27 it is clear that this is not the case for events
where P (0n) = 0 on hardware: Corrected outcomes originating from zero prior
observed counts were consistently high error.

The CORR[HW] outcomes indicate a general improvement in MSE and MAE compared
to HW alone, and demonstrate that the experiment yields qualitatively good results for
values of k(xi, xj) in the range | 〈xi|xj〉 |2 ' 1e − 5, PHW (0n) = 0 ' 1e − 5. Figure 5.28
captures the scaling behavior in these trends by plotting both log-MSE on CORR[HW]
versus SIM and the trends in the median magnitude of encoded inner products as a function
of n = 4, 6, 8, 10, 12 qubits.

The super-exponential trend in log-error for corrected hardware outcomes indicates a
large sensitivity to the number of qubits. The almost perfectly exponential decrease in
median | 〈xi|xj〉 |2 indicates potential problems for scaling QKM algorithms to larger num-
bers of qubits in general, and this value crossing minimum observable statistic threshold of
1e− 4 after n = 10 qubits provides some explanation for the accelerating behavior of the
SIM vs. CORR[HW] error. As alluded to in Section 4.3.3, if a QKM circuit were to map
data points to random points in 22n-dimensional Hilbert space, the average inner product
(and therefore value of k(xi, xj)) between mapped points would scale like O(1/22n) as the
dimensionality of the space containing the mapped points quickly outpaced the number of
of points. This closely describes the trend in k(xi, xj) values for the PROTO-3 circuit,
which resulted in the median inner product to sample being much smaller than the min-
imum value observable on hardware using a 10,000-repetition experiment. Furthermore,
given the exponential rate of decrease in median inner product values, no reasonable sam-
pling scheme can continue to accurately extract k(xi, xj) as n continues to climb beyond
10 qubits.
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Figure 5.22: Comparison of simulated | 〈xi|xj〉 |2 = P (08) values (horizontal axis) to the
corresponding HW P(0) (vertical axis) for each (xi, xj) pair in the median preserving data
subset (see description in main body) shows that the lowest performance in hardware out-
comes can be attributed to events associated with smaller wavefunction inner products. In
this and all similar plots, there is statistical noise only along the vertical axis corresponding
to the size-10000 sample of bitstrings.
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Figure 5.23: To allow use of the Log-MSE error metric for this aggregated dataset, 27
zero-count events were dropped from the set of HW outcomes. At 10 qubits, the minimum
observable statistic of 1e-4 for this experiment has the noticeable effect of biasing HW
outcomes away from equality to the value predicted by noiseless simulation for | 〈xi|xj〉 |2 /
1e-4.
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Figure 5.24: 12-qubit results from the median-preserving data subset (see main body)
show that uncorrected hardware outcomes are barely correlated with their corresponding
noiseless simulation values. The 127 circuits (roughly 1/4 of the dataset) that resulted
in zero observed all-zeros bitstrings have been placed in an overflow bin labeled 1e-6 (the
log-MSE metrics should therefore be ignored for this plot).
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Figure 5.25: This corrected version of Figure 5.22 shows large improvement in P (08),
especially for k(xi, xj) values approaching the minimum observable statistic of 1e-4.
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Figure 5.26: The corrections applied to 10-qubit results not only greatly improve trends in
agreement between HW and SIM, but demonstrate that the bitflip correction procedure is
capable of recovering values for | 〈xi|xj〉 |2 from hardware with magnitudes as low as 1e-5
with reasonable qualitative agreement to simulation. This is an order of magnitude lower
than the smallest probability P (010) than can actually be observed in hardware for this
experiment, suggesting that the bitflip correction may be even more robust than initially
shown in Section 5.3.2.
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Figure 5.27: A majority of the error in the outcomes for the median k(xi, xj)-preserving 12
qubit data subset is due to CORR[HW](0) values that were computed using zero observed
012 bitstrings. This demonstrates that, while the bitflip correction algorithm may be able
to extract useful information from a single observed all-zeros bitstring, it cannot do so
when no all-zeros bitstrings were observed.
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Figure 5.28: Scaling trends for data aggregated from 450 different circuits sampled for 1e4
repetitions provide a hardware-independent explanation for poor hardware behavior above
10 qubits. For greater than 10 qubits, the median inner product to be sampled from P (0n)
passes below the minimum observable frequency for 1e4 repetitions; in other words, for
> 11 qubits over half of the values of k(xi, xj) extracted from hardware will be based on
experiments yielding the all zeros bitstring either zero or one time out of ten thousand. The
exponential trend in | 〈xi|xj〉 |2 suggests that this cannot be combated by simply increasing
the number of samples taken from each circuit.
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Chapter 6

Conclusion

Quantum Machine Learning presents exciting prospects for leveraging the power of quan-
tum computers to analyze real-world data by encoding classical data into quantum states
for processing. However this potential comes with the burden of validating the outcomes
of quantum hardware as well as the performance of the QML algorithms themselves. This
thesis set out to provide the means to approach this validation via three distinct goals:

1. Develop a noise model that is predictive of hardware outcomes (Chapter 2).

2. Verify and optimize the outputs of quantum hardware (Chapter 3).

3. Maximize the accuracy of an SVM model that employs QKM (Chapters 4-5).

The rudimentary noise model suggested in this thesis proved to be effective for pre-
dicting the outcomes of circuits that ran on real hardware on / 8 qubits with depth / 25
gates, while at the same time providing a valuable tool for validating the performance of
the Bayesian iterative unfolding bitflip correction method. Equally important was the find-
ing that the noise model fails to capture the dynamics of the hardware for large numbers
of qubits which indicates either a degree of inaccuracy in accepted gate fidelity metrics as
Kraus operator parameters, or a large contribution of non-local/non-Markovian sources of
error to many-qubit hardware runs, or both.

In the course of optimizing and postprocesing hardware outcomes, this thesis provided
foundations for implementing automated qubit selection and CPMG-style T2 optimizations
to reduce the impact of noise on algorithms designed for NISQ devices. Crosstalk diag-
nostics demonstrated one possible technique for mitigating crosstalk error (assumed to be
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a large source of error for the larger circuits implemented in this work) but also demon-
strated that crosstalk error induced by massively parallel gate execution is preferable to
erro introduced by any sequential execution of the same set of gates.

This thesis provided evidence for a 10 qubit limit on QKM circuit size that was due in
part to hardware noise, but also due to an uncovered exponential scaling in magnitudes of
| 〈φ(x)|φ(x′)〉 |2 over Hilbert space embeddings of classical data x, x′ ∈ Rd. This result may
indicate a fundamental limitation on the advantage that QKM-based classifiers can bring
to classical machine learning settings.

Regardless of the prospects of quantum kernel methods in the long run, understanding,
optimizing, and iterating algorithm design based on hardware outcomes from NISQ com-
puters will continue to be challenge for algorithms of all types, and the results provided
here contribute a few more strategies to approach this problem with.

Future Work

All of the results in this thesis represent a work in progress using a prototype quantum
computer and a fairly novel QML algorithm for which the benefits of using are still largely
unproven. As such, it has provided a starting point for many potentially fruitful investi-
gations to be continued as understanding of both the QKM algorithm and the quantum
hardware improve.

Section 3.2.3 demonstrated that QPT could be used to perform detailed analysis of
non Markovian noise channels, which could both further our understanding of crosstalk
noise on superconducting qubit devices as well as provide a means of correcting unitary
components of these channels. The performance of the noise model might be reasonably
improved by converting parallelized QPT results for

√
iSWAP gates into noise channels

compatible with our circuit model noise simulation via Equation 2.4.

Sections 5.2.1 and 5.1.2 introduced the difficulty of engineering both a QKM circuit
that would perform well in an SVM with respect to a specific dataset as well as a subset
of datapoints for which the performance of the SVM could be trusted. While dataset
validation is a well known problem in classical machine learning, future work on this project
will be devoted to integrating these two processes into a single process for prototyping
circuit architectures, perhaps using reinforcement learning or some other classical machine
learning algorithm to learn what families of QKM circuits are effective for a given dataset.

Sections 3.2.4 and 5.2.3 introduced two hardware optimizations that have the potential
to significantly improve results extracted from this project’s hardware and NISQ devices
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in general. While promising, these techniques will need to be rigorously tested in dif-
ferent contexts to determine the extent of their efficacy and whether their performance
enhancements generalize.

Finally, Sections 5.3.2 and 5.4 introduced and provided evidence for the performance
of a bitflip correction scheme based on Bayesian iterative unfolding over a Hamming-
truncated subspace of bitstring outcomes. This work’s unique reliance on the all-zero’s
bitstring to compute kernel elements gives (Hamming-truncated) bitflip correction a central
role in analyzing and interpreting results for the QKM. This work provided some initial
investigation into the performance of this bitflip correction method, and future work will
follow up with broader analyses on whether or not the observed behavior can be generalized.
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McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud
Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Murphy Yuezhen
Niu, Eric Ostby, Andre Petukhov, John C. Platt, Chris Quintana, Eleanor G. Rief-
fel, Pedram Roushan, Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Vadim
Smelyanskiy, Kevin J. Sung, Matthew D. Trevithick, Amit Vainsencher, Benjamin Vil-
lalonga, Theodore White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut Neven,
and John M. Martinis. Quantum supremacy using a programmable superconducting
processor, volume 574. 2019.

[4] Jeremy Bejanin. Schrodinger.jl.

[5] Alexandre Blais, Ren Shou Huang, Andreas Wallraff, S M Girvin, and R J Schoelkopf.
Cavity quantum electrodynamics for superconducting electrical circuits: An architec-
ture for quantum computation. Physical Review A - Atomic, Molecular, and Optical
Physics, 69(6):1–14, 2004.

90



[6] F. Bloch. Nuclear induction. Physical Review, 70(7-8):460–474, 1946.

[7] Sergio Boixo, Sergei V. Isakov, Vadim N. Smelyanskiy, Ryan Babbush, Nan Ding,
Zhang Jiang, Michael J. Bremner, John M. Martinis, and Hartmut Neven. Char-
acterizing quantum supremacy in near-term devices. Nature Physics, 14(6):595–600,
2018.

[8] Sergio Boixo, Sergei V. Isakov, Vadim N. Smelyanskiy, Ryan Babbush, Nan Ding,
Zhang Jiang, Michael J. Bremner, John M. Martinis, and Hartmut Neven. Char-
acterizing quantum supremacy in near-term devices. Nature Physics, 14(6):595–600,
2018.

[9] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. Training algorithm
for optimal margin classifiers. Proceedings of the Fifth Annual ACM Workshop on
Computational Learning Theory, pages 144–152, 1992.

[10] James Bourbeau and Zigfried Hampel-Arias. PyUnfold: A Python package for itera-
tive unfolding. Journal of Open Source Software, 3(26):741, 2018.

[11] Michael Broughton, Guillaume Verdon, Trevor McCourt, Antonio J. Martinez,
Jae Hyeon Yoo, Sergei V. Isakov, Philip Massey, Murphy Yuezhen Niu, Ramin
Halavati, Evan Peters, Martin Leib, Andrea Skolik, Michael Streif, David Von Dollen,
Jarrod R. McClean, Sergio Boixo, Dave Bacon, Alan K. Ho, Hartmut Neven, and Ma-
soud Mohseni. TensorFlow Quantum: A Software Framework for Quantum Machine
Learning. pages 1–39, 2020.

[12] H. Y. Carr and E. M. Purcell. Effects of diffusion on free precession in nuclear magnetic
resonance experiments. Physical Review, 94(3):630–638, 1954.

[13] Iris Cong, Soonwon Choi, and Mikhail D. Lukin. Quantum convolutional neural
networks. Nature Physics, 15(12):1273–1278, 2019.

[14] G. D’Agostini. A multidimensional unfolding method based on Bayes’ theorem. Nu-
clear Inst. and Methods in Physics Research, A, 362(2-3):487–498, 1995.

[15] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A Quantum Approximate Op-
timization Algorithm. pages 1–16, 2014.

[16] Edward Farhi and Hartmut Neven. Classification with Quantum Neural Networks on
Near Term Processors. https://arxiv.org/abs/1802.06002.

91



[17] Richard P. Feynman. Simulating physics with computers. International Journal of
Theoretical Physics, 21(6-7):467–488, 1982.

[18] J Friedman. Flexible Metric Nearest Neighbor Classification. 1994.

[19] Lov K Grover. A Fast Quantum Mechanical Algorithm for Database Search. pages
212–219, 1996.

[20] A A Hagberg, D A Schult, and P J Swart. Exploring network structure, dynamics, and
function using NetworkX. 7th Python in Science Conference (SciPy 2008), (SciPy):11–
15, 2008.

[21] E.L. Hahn. Spin Echoes. Phys. Rev., 80(4):580, 1950.
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Appendix A

Calibration data example plots

The results of each job submission to the hardware were returned with a suite of calibration
data describing the most recent characterizations of hardware performance. These results
are subject to drift over time and therefore comparisons between the noisy simulation and
hardware results are sensitive to the accuracy of the calibration data provided to the noise
model.
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Figure A.1: Sample p0 values for the 02/10/2020 job submission
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Figure A.2: Sample p1 values for the 02/10/2020 job submission
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Figure A.3: Sample single-qubit RB gate fidelity values for the 02/10/2020 job submission
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Figure A.4: Sample T1 values for the 02/10/2020 job submission

101



Figure A.5: Sample two qubit gate total XEB fidelity values for the 02/10/2020 job sub-
mission
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Appendix B

Inner product scaling analysis results
for 4 and 6 qubits

The following plots report the 4- and 6-qubit outcomes supporting the scaling analysis
developed in Section 5.6.
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Figure B.1: Aggregated 4 qubit results for proto-3, HW vs SIM: Comparison of simu-
lated | 〈xi|xj〉 |2 = P (08) values (horizontal axis) to the corresponding HW P(0) (vertical
axis) for each (xi, xj) pair in the median preserving data subset (see description in main
body of Section 5.6). The upwards bias affecting small-magnitude HW P(0) values is es-
pecially pronounced for small numbers of qubits, though its not clear why this should be
the case.

104



Figure B.2: Aggregated 4 qubit results for proto-3, CORR[HW] vs SIM: One of the
weaknesses of the bitflip correction algorithm is its difficulty in correcting probabilities
over wide ranges. As depicted here, in the presence of heavy bias over a five decade
range of probabilities the correction is only effective for around 3 decades of inner product
magnitudes.
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Figure B.3: Aggregated 6 qubit results for proto-3, HW vs SIM
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Figure B.4: Aggregated 6 qubit results for proto-3, CORR[HW] vs SIM
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Glossary

NISQ “Noisy Intermediate Scale Quantum” – A term used to describe early quantum
computers that are limited by decoherence and contain only hundreds of qubits. 2,
87

QKM “Quantum Kernel Method” – This describes the general approach of using the
Hilbert space of states prepared by a quantum circuit as a feature space for embedding
classical data. 4, 6, 46, 68, 87, 88

QML “Quantum Machine Learning” – An umbrella term describing the use of a QPU
to enhance the performance of ML models or the application of ML to improve the
performance of quantum circuits. 4, 87

QPT “Quantum Process Tomography” – A family of diagnostics used to determine the
form of a quantum channel, typically in the context of applying a gate with nonzero
error. 12, 29, 32, 88

RB “Randomized Benchmarking” – A gate fidelity diagnostic [27] that captures the av-
erage infidelity in sequences of Pauli gates. 13, 17, 19

RBF “Radial Basis Function” – A popular, parametrized kernel with the form K(x, y) =
exp(−γ||~x− ~y||2) 45, 51

SVM “Support Vector Machine” – A supervised learning algorithm capable of computing
linear class boundaries between high-dimensional mappings of data points, corre-
sponding to nonlinear boundaries in the space of the original data. 4, 38, 88

XEB “Cross Entropy Benchmarking” – A gate fidelity diagnostic [7] that summarizes
a pseudo-distance between an observed distribution and the Porter Thomas distri-
bution (developed specifically for compatibility with Google’s quantum supremacy
experiment [3]). 13, 17, 19, 32
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