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Abstract

The design of reinforced concrete flat plate slab-column connections subjected to unbalanced
moments varies greatly between national design codes. Specific to Canada and the United States
(U.S.), assumptions relating to the distribution of unbalanced moments between shear and
flexure stresses were introduced in the 1970s based on limited research. Research on the topic
of slab-column connections subjected to eccentric loading has deviated away from the linear
shear distribution assumptions of Canada, the U.S., and Europe in favour of beam, truss,
membrane, and other analogies. As such, it is of value to study the performance of varying
design code approaches as well as the accuracy of the stress distribution assumptions within

Canadian and American design codes.

In this thesis, numerical modelling of slab-column connections subjected to eccentric loading is
performed by the author using the software Abaqus (Dassault Systemes). Finite element models
were created to simulate the behaviour of laboratory-tested slab-column specimens. Preliminary
finite element model parameters were based on research by Genikomsou (2015) and geometry,
material, and boundary condition assumptions specific to the specimens. Calibration of the finite
element models was necessary to ensure that the analyses accurately reproduced behaviour
observed during testing. This was done by changing one parameter at a time and selecting the
parameter value that resulted in the most accurate results. Accuracy was evaluated based on the
analyses’ ability to reproduce moment-rotation data, load-displacement data, and crack patterns
of the experiments. To verify the calibrated parameters, finite element analyses of two edge
connections of varying eccentricities and one interior connection subjected to concentric loading

were conducted.

The calibrated finite element models were used to perform a parametric study on the effects of
varying eccentricities on the punching shear strength of three slab-column connections with
reinforcement ratios of 0.5-percent, 1.0-percent, and 1.5-percent. The study showed that the
normalized moment-shear data of the three specimens is nonlinear. In contrast, all design codes
assume a linear moment-shear interaction. With regard to design code performance, none of the
design codes’ punching shear provisions accurately predicted the capacities of the specimen
with a reinforcement ratio of 0.5-percent. This is because this specimen’s flexural reinforcement
yielded before punching shear failure could occur. Since ACI 318-19 and CSA A23.3-19 do not



consider the contribution of flexural reinforcement to a connection’s punching shear strength,
each of these design codes was accurate for only one reinforcement ratio. Eurocode 2 (2004)
accurately predicted the punching shear strength of specimens subjected to concentric loads.
Furthermore, it underestimated the punching shear strength for eccentricities approaching
infinity (i.e. only unbalanced moments). This was likely because the specimens failed in flexure,
rather than punching, when subjected to large unbalanced moments. The level I, 1I, and 1V
approximations of fib Model Code 2010 underestimated the punching shear capacities for all
eccentricities. Of the three levels of approximation, the level 1V predictions best reproduced the

shape of the moment-shear interaction obtained from finite element analyses.

The distribution of unbalanced moments between shear and flexural stresses at a critical section
d/2 from the column face (as defined by ACI 318-19 and CSA A23.3-19) was found to vary
depending on the magnitude of vertical loads applied and the reinforcement ratio. Both ACI
318-19 and CSA A23.3-19 describe this distribution using a coefficient y,,. This coefficient is
assumed to be equal to 0.40 for square, interior connections. From the results of specimen
analyses, the coefficient y,, was approximately equal to 0.25 for specimens subjected to low
eccentricities and approximately 0.40 for specimens subjected to large eccentricities. An
equation was presented to predict the coefficient y,, specific to the specimens analysed. Further

development of the equation is required to allow it to be applicable to other specimens.
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Chapter 1: Introduction

1.1 Problem statement

In the 1950s, flat plate floor slab systems without drop panels or column capitals became
increasingly common in office and residential buildings of substantial heights (FEMA 274,
1997). Similarly, smaller column sizes were becoming increasingly common within these
systems (Di Stasio & Van Buren, 1960). The benefits of using flat plate floor slabs over spandrel
beams include decreased floor thickness and more economic formwork. Decreased floor
thickness allows for either larger clear distances between story heights or increased number of
stories per building. More economic formwork allows for decreased construction time and cost.
However, two-way shear failure of flat plate slab-column connections is brittle and little
warning is provided prior to failure. Furthermore, shear failure of slab-column connections can
lead to progressive collapse of entire structural systems. In the event of interior slab-column
punching failure, shear stresses at adjacent connections increase by approximately 25-percent.
Furthermore, additional unbalanced moments develop at adjacent connections due to
inequalities in residual span lengths (Regan, 1981).

In 1971, ACI 318 introduced provisions describing the distribution of unbalanced moments
between shear and flexural stresses based on the dimensions of a critical perimeter. CSA A23.3
introduced the same provisions in 1973 (CSA Group, 1973). The research in support of these
design provisions was conducted by Hanson and Hanson (1968). For a square, interior column,
Hanson and Hanson stated that 40-percent of unbalanced moments are transferred to shear
stresses and the remaining 60-percent are transferred to flexural stresses. Although conflicting
distribution percentages were shown by researchers including Moe (1961) and ACI-ASCE
Committee 326 (1962), the provisions remain unchanged since the 1970s and describe the
behaviour of unbalanced moments in ACI 318-19 and CSA A23.3-19.

The effects of unbalanced moments on slab-column connections have remained of interest to
numerous researchers to this day. However, these researchers have commonly deviated away
from the linear shear stress distribution assumptions of ACI 318 and CSA A23.3 in favour of
prediction methods based on truss, beam, and membrane analogies. These methods were

developed based on results of various laboratory tests in which specimens were subjected to



combined gravity loads and unbalanced moments. Due to space, cost, and load frame
constraints, laboratory-tested specimens are often single slab-column sub-assemblages rather
than frames consisting of multiple slab-column connections. The dimension of the slab is based
on the radius of contraflexure, which is the distance away from the column at which moments
within the slab are equal to zero. Furthermore, specimens are typically scaled versions of
prototype structures. The behaviour observed among these scaled-specimens are assumed to be
scalable to full-sized structures.

In this thesis, finite element analyses were conducted to reproduce the behaviour observed
during laboratory-testing of slab-column connections without transverse reinforcement
subjected to unbalanced moments and gravity loads. Numerical modelling allows for the study
of stresses and strains within any region of the specimen, which would not be possible with
laboratory testing. To ensure that specimen behaviour was accurately reproduced, the finite
element models needed to be calibrated. Moment-rotation data, load-displacement data, and
crack patterns from literature were compared to those produced by the finite element analyses.
The finite element models were calibrated by changing one parameter at a time and selecting
the parameter value that resulted in results closest to experimental results. Once the finite
element models were calibrated, additional laboratory-tested specimens were analysed using the
calibrated parameters and their results were compared to experimental results. If these finite
element analyses accurately reproduced experimental behaviour, the finite element models were
considered calibrated. Finally, a parametric study was conducted on the effects of moment-to-

shear ratios on load capacities and stress distributions within the slab around the column.

Specimens SM 0.5, SM 1.0, and SM 1.5 tested by Ghali, Elmasri, and Dilger (1976) were used
to calibrate the finite element model parameters. The preliminary parameters were selected
based on research conducted by Genikomsou (2015) at the University of Waterloo as well as
geometry, material, and boundary condition information provided by Ghali et al. (1976). These
specimens were selected for analysis because only the slab reinforcement ratio varied between
specimens. Specimens XXX and HXXX tested by El-Salakawy (1998) and specimen SB1 tested
by Adetifa (2003) were analysed to verify the calibrated parameters. Specimens XXX and
HXXX were used for verification as these specimens were edge slab-column connections,

whereas the SM specimens were interior connections. Furthermore, specimens XXX and HXXX



differed only with respect to loading eccentricity. Specimen SB1 was used for verification as it
was subjected to concentric loading whereas other analysed specimens included unbalanced
moments. Finally, the SM specimens tested by Ghali et al. (1976) were used for the parametric

study on the effects of moment-to-shear ratios on load capacities and stress distributions.
The specific objectives of this research are as follows:

1. summarize current code provisions and relevant historical research relating to the effect

of unbalanced moments on the punching shear strength of slab-column connections,

2. develop a calibrated three-dimensional finite element model that may be used for
analysing slab-column sub-assemblages subjected to combined unbalanced moments

and gravity loads,

3. use the calibrated finite element model to conduct a parametric study on the effects of
moment-to-shear ratios on punching shear strength and shear distributions at the critical
perimeter defined by ACI 318-19 and CSA A23.3-19,

4. develop equations similar to those presented in ACI 318-19 and CSA A23.3-19 to
predict the punching shear capacity of slab-column connections subjected to unbalanced

moments, and

5. compare moment capacities for varying vertical loads as predicted by CSA A23.3-19,
ACI 318-19, Eurocode 2 (2004), and fib Model Code 2010 to moment capacities

determined from finite element analyses.

1.2 Thesis overview

The outline of this thesis is as follows:

Chapter 1 provides a brief introduction of the research problem, the process of developing the
finite element model, and the research objectives. Chapter 2 is separated into two sections.
Section 2.1 provides a review of past research in which laboratory tests were conducted and/or
analysis methods were developed. Section 2.2 provides an overview of national design codes
and their provisions relating to slab-column connections subjected to unbalanced moments.

Chapter 3 explains the constitutive modelling of concrete and steel reinforcement in Abaqus.



Chapter 4 outlines the preliminary finite element model parameters for specimens SM 0.5, SM
1.0, and SM 1.5 prior to calibration. Chapter 5 explains the process of calibrating the finite
element models and the effects of each parameter on finite element analysis results. Chapter 6
presents the calibrated finite element model parameters and the results of applying those
parameters to specimens SM 0.5, SM 1.0, SM 1.5, XXX, HXXX, and SB1. Chapter 7 presents
the results of the parametric study on the effects of moment-to-shear ratios (i.e. eccentricity) on
the punching shear strength of the SM specimens. In Chapter 8, equations for the average shear
stress and limiting average shear stress are developed based on the linear shear stress distribution
assumption of CSA A23.3-19 and ACI 318-19. Chapter 9 compares the proposed equation for
calculating the distribution of unbalanced moment between shear and flexural stresses (from
Chapter 8) to the equation in CSA A23.3-19 and ACI 318-19. Also, a comparison of the moment
versus vertical load data obtained from finite element analyses is made to the predictions of
various national design codes and the proposed method. Chapter 10 presents a summary of the

research herein and provides recommendations for future work.



Chapter 2: Literature review

2.1 Review of laboratory tests and analysis methods

2.1.1 Working stress analysis method by Di Stasio and Van Buren

Di Stasio and Van Buren (1960) developed a working stress analysis method based on
laboratory tests they had conducted. Di Stasio and Van Buren were among the first to suggest
that the ACI 318-56 (ACI Committee 318, 1956) concrete shear stress equation should include
an additional term to account for the shear stress created by unbalanced moments. This change
was implemented in ACI 318-63 (ACI Committee 318, 1965) and in all subsequent design code

releases.

Di Stasio and Van Buren presented equations to calculate critical concrete shear stresses for

exterior columns with and without spandrel beams, as well as interior columns without spandrel
H H H 1 n
beams. These concrete shear stresses were examined at a periphery a distance t — 1 > from the

column faces. For exterior columns without spandrel beams, the critical shear stress when the

moment axis was parallel to the free edge, was presented as

8tV (Hh—M—-Ve)a,
~7d|A J

v (2.1)

where t is the slab thickness, d is the effective slab depth, V' is the applied vertical force, A is

the area of the peripheral section given by

A= 2c+b)t (2.2)
Hh is a force-couple moment produced by the column horizontal shear force H multiplied by
the story height h, M is the resisting moment of the section, Ve is the moment produced by
eccentrically-applied vertical loads, «; is the distance from the centroid of the peripheral section
area to the extreme fibers given by

c

a1=2

+g, (2.3)

and J is the polar moment of inertia given by



2

2tc®  2ct3 c
= + 2ctg? + bt [E - g] : (2.4)

Je = 12 + 12

The dimension c is the length of the critical perimeter orthogonal to the free edge and g is given

by

bc

=— 2.
9= 20c+b) (25)
where b is the length of the critical perimeter parallel to the free edge.
For interior columns, the critical shear stress was presented as
8t|V Hh—M;+m)—(M,—m)c
o (My +m) — (M —m) ¢ 26)

T T7d|AT Ji 2
where M; and M, are the flexural moments on opposite sides of the column, and m is the

resultant unbalanced moment. For interior columns, the critical perimeter area is

A=2(c+Db)t 2.7)
and the polar moment of inertia is
2tc®  2ct3 cy?
= — 2.8
T +2bt[2] . (2.8)

The Di Stasio and Van Buren method multiples both the vertical load and unbalanced moment
shear stress contributions by 8t/7d. This comes from the assumption that shear stresses are
resisted over the lever arm jd, where j is equal to 7/8. This was the assumption found within
the ACI 318 design code (ACI Committee 318, 1956) at time that this method was published.

Multiplying by t/d reduces the shear-resisting area, which was previously calculated using the
entire slab thickness, to account for the concrete tension side cover that ruptures and does not

carry shear stresses.

This method assumes that longitudinal reinforcement increases the punching shear strength of
the connection through dowel action. This is done by increasing the shear-resisting area of the

peripheral section and the polar moment of inertia. The modified peripheral section area is

A" =A[1+ (n— 1)p] (2.9)



where n is the ratio between the modulus of elasticity of the steel to that of the concrete, and p

is the reinforcement ratio.

Similarly, the modified polar moment of inertia is

J' =J[1+(n-1)p]. (2.10)
The maximum shear stress used by Di Stasio and VVan Buren was based on the ACI 318-56
standard. This standard stated that the maximum shear stress is 0.03f, when at least 50-percent
of the required column strip reinforcement passes through the shear-resisting critical section.
This capacity is reduced proportionately to 0.025f, as the column strip reinforcement that
passes through the critical section approaches 25 percent. This was the minimum reinforcement
required to pass through the critical section based on ACI 318-56.

2.1.2 Ultimate strength analysis method by Johannes Moe

Johannes Moe produced an ultimate strength model for determining the punching shear capacity
of slab-column connections subjected to combined moment and vertical loading (1961). Moe
tested 43 slab-column connections that were simply supported along the slab edges and loaded
axially through the column. Of these 43 slabs, 12 slabs were loaded with eccentric column loads
to produce both a vertical load and a moment. These loads were applied at a point along a beam
attached to the top column stub. The eccentricity varied between 2.4-inches and 24.2-inches.

The reinforcement ratios of these specimens were either 1.34 or 1.50 percent.

At the time of publication, previous research by Elstner and Hognestad (1956) suggested that
the concrete punching strength did not change when the vertical load eccentricity was increased
up to one-half of the column size nor did it change when the amount of compression
reinforcement was increased. Their tested specimens had eccentricities, e, of 7-inches and
column side lengths, r, of 14-inches (e/r = 0.5). Moe commented that the test setup used by
Elstner and Hognestad likely did not produce eccentricities as the specimen columns were not

allowed to move horizontally (1961).

Moe later stated that specimens with e /r ratios less than 0.5 behaved similarly to concentrically-
loaded specimens. Although the behaviour was similar, Moe measured additional concrete

strains adjacent the column face on the same side as the imposed eccentricity. Furthermore,



specimens without negative moment reinforcement failed under lower loads than specimens

with negative moment reinforcement.

Moe concluded that placing bending reinforcement in narrow bands across the column did not

increase the connection’s shear strength but did increase the slab’s flexural rigidity (1961).

Moe stated that the maximum shear stress, v, for a square column could be determined using

P M r
=—4+—(= 2.11
v=2t5 Q) (@11)
where P is the vertical load,
A, =4rd, (2.12)

r is the column side length, d is the effective depth, £ is the percent of moment that is resisted

by shear, M is the unbalanced moment, and

3 2r3d

== (2.13)

Contrary to other mechanical models, Moe assumed that the punching shear critical perimeter
is located at the column rather than at a periphery some distance away. Moe determined that
using a value of 0.33 for g produced an average Pi.s:/P.qc Value of 1.026 with a standard
deviation of 0.103.

Moe presented a limiting shear stress of

v=(923-112d/r)/f! (US customary units: psi, in.) (2.14)

whenr/d < 3 and

v=(25+10d/r)\/f! (US customary units: psi, in.) (2.15)

when r/d > 3. The limiting shear stress prediction for r/d < 3 was based on empirical data
while the limiting shear stress for r/d > 3 was based on theoretical assumptions. Equations
2.14 and 2.15 were developed based on limiting shear forces from concentrically-loaded
specimens. As shown in Figure 2.1, Moe selected limiting shear forces such that the governing

failure mode would be in flexure rather than shear. Moe stated that the punching shear capacity



could be increased by adding flexural reinforcement but that this approach to increasing the

shear capacity would be uneconomical.
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Figure 2.1: Maximum vertical load used by Moe (1961) to develop limiting shear equations.
Reprinted from Development Department Bulletin D47, Portland Cement Association (April
1961). Reprinted with permission.

2.1.3 Ultimate strength analysis method by ASCE-ACI Committee 326

Based on the work of Di Stasio and VVan Buren (1960) and Moe (1961), ASCE-ACI Committee
326 (1962) proposed the following equation for determining the maximum concrete shear stress
at a periphery section d /2 from the column:

v K 5) (2.16)
vy = — = .
YA e \2
where V is the vertical load,
A.=2(c+b)d =b,d, (2.17)
K is the portion of unbalanced moment transferred to concrete shear stress,
S LY ) (2.18)
o=t 12 2/’ '

c and b are the critical section lengths parallel and orthogonal to the moment axis, respectively.

As proposed by Di Stasio and Van Buren (1960), the committee stated that A, and J. could be



multiplied by [1 + (n — 1)p] to account for the effects of dowel action. Based on empirical

data, the committee suggested that K equal 0.2 rather than 0.33 as suggested by Moe.

ASCE-ACI Committee 326 (1962) modified Moe’s limiting shear stress equations to provide a
conservative fit to tested specimen data. They proposed two different equations for determining

the limiting shear stress. The first equation was to use a limiting shear stress of

d . ..
v=4 (1 + ;> \/E (US customary units: psi, in.) (2.19)

calculated at the periphery section adjacent to the column, where r is the side length of a square

column. The second equation was to use a limiting stress of

v=4,f (US customary units: psi, in.) (2.20)

calculated at the periphery section a distance d /2 from the column.

ASCE-ACI Committee 326 recommended using Equation 2.20 as it does not depend on the

length r, which would be ambiguous for column shapes other than a square.

2.1.4 Implementation of unbalanced moment analysis in ACI 318-65

The Commentary on Building Code Requirements for Reinforced Concrete ACI 318-63 (ACI
Committee 318, 1965) suggested predicting shear at a periphery section defined by lengths a
and c in instances where the connection is loaded under combined moment, torsion, and vertical
load. Length a is parallel to the moment axis and equals 1.5t plus the column dimension parallel
to the moment axis (where t is the slab depth). Length c is perpendicular to the moment axis
and equals d plus the column dimension perpendicular to the moment axis. ACI Committee 318

suggest predicting the shear stress using:

V. My(c/2)
v=—--t——— 2.21
AC ]C ( )
where
A, =2(a+c), (2.22)
and

10



de3 ct3 c\2
- 4 — 2.23
Je=— +6+2ad(2). (2.23)
Similar to the method proposed by Di Stasio and VVan Buren (1960), only the torsional moment

My is transferred to concrete shear stress (i.e. the remaining moment not resisted by flexure at

the critical section). ACl Committee 318 suggested using a limiting shear stress of 2,/f;.

2.1.5 Moment transfer coefficient y, by Hanson and Hanson

In 1968, Hanson and Hanson tested 16 interior slab-column specimens and 1 edge slab-column
specimen. All of the specimens shared the same slab depth, concrete cover, reinforcement
spacing, and reinforcement size but had one of three different columns. Hanson and Hanson
studied the effect of column rectangularity and orientation on the transfer of unbalanced moment
to flexural and shear stresses. The specimens were loaded with either: only unbalanced
moments, only gravity loads, or a combination of unbalanced moments and gravity loads.
Additionally, Hanson and Hanson investigated how holes adjacent to the columns affected the
transfer of unbalanced moment between slabs and columns. These specimens had 1-inch wide
holes that were on opposite sides of the column and the lengths of these holes were along the

same direction (i.e. either parallel or orthogonal to the moment axis).

Hanson and Hanson compared their test results to the prediction methods of Di Stasio and Van
Buren (1960), Moe (1961), ACI-ASCE Committee 326 (1962), and the Commentary on ACI
318-63 (ACI Committee 318, 1965). Of these methods, Hanson and Hanson determined that the
method recommended by ACI-ASCE Committee 326 produced good predictions when K, the
portion of moment carried by shear, was increased from 0.2 to 0.4. Moreover, Hanson and
Hanson found that using a 12-inch by 6-inch column, with its short edge about the moment axis,
resulted in an ultimate moment increase between 33 and 60 percent over using a 6-inch by 6-
inch square column. Similarly, using a 12-inch by 6-inch column, with its long edge about the
moment axis, resulted in an ultimate moment increase between 20 and 40 percent over using a
6-inch by 6-inch square column. This research was later used by AClI Committee 318 (1970) to

develop an equation to predict y,,, the portion of moment carried by concrete shear stresses:

1

=1 -—
Yo 2 [c, +d (2.24)
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Equation 2.24 uses critical section lengths rather than column side lengths. It was implemented
in ACI 318-71 (ACI Committee 318, 1971) and kept in subsequent releases of the ACI 318

design code.

On the effect of holes on slab-column moment transfer, Hanson and Hanson observed that holes
adjacent to the column and orthogonal to the moment axis had little effect on the punching shear
capacity. Contrarily, holes adjacent to the column and parallel to the moment axis reduced the
shear capacity between 30 to 35 percent. Also, Hanson and Hanson found that existing code
provisions underestimated the punching shear capacity of slab-column connections with holes
adjacent to the column. They noted that the reinforcement passing through their specimens’
holes likely contributed to the specimens’ increased punching shear capacities (Hanson &
Hanson, 1968).

2.1.6 Column rectangularity on connection strength by Hawkins, Fallsen, and Hinojosa
Hawkins, Fallsen, and Hinojosa (1971) investigated the influence of column rectangularity on
the punching shear strength of slab-column connections. Hawkins et al. tested 9 concentrically
loaded interior slab-column specimens with short-to-long edge ratios between 1.0 and 4.3.
Hawkins et al. found that ACI 318-71 (ACI Committee 318, 1971) predicted accurate shear
capacities for specimens with column long-to-short side length ratios of less than 2. For
specimens with ratios greater than 2, the shear capacities decreased as the ratio was increased.
Hawkins et al. proposed the equation:

Vv,
body[f!

where s and [ are the column short and long side lengths, respectively. The inequality in

=(25+3.0s/1) <4.0 (US customary units: psi, in.) (2.25)

Equation 2.25 limits the calculated maximum shear stress to 4./f;, which was the governing

maximum shear stress in ACI 318-71. As per the inequality, this maximum shear stress is 4./ f/

for s /1 values greater than 0.5.

In 1974, ASCE-ACI Committee 426 proposed an alternative to Equation 2.25:

W

bod\[f!

= (2.0+3.0s/1) =4.0, (US customary units: psi, in.) (2.26)
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which would limit the maximum shear stress to ZJE for large /s ratios (ASCE-ACI
Committee 426, 1974).

The research of Hawkins et al. led to the following maximum shear stress equation within ACI
318-77 (ACI Committee 318, 1977) and subsequent ACI 318 releases:

4 . -
v, = (2 + /_3) Jfibod (US customary units: psi, in.) (2.27)
where £ is the ratio of the long-to-short column side lengths.

2.1.7 Tests of exterior connections subjected to unbalanced moments by Zaghlool

In 1971, Zaghlool tested 11 corner and 9 edge slab-column connections under both unbalanced
moments and gravity loading. For edge connections, moments were applied about the axis
parallel to the free edge. Zaghlool’s tests were separated into different series to test how different
parameters affected the strength and behaviour of slab-column connections. These parameters
included: r/d ratio, reinforcement ratio, and M/V ratio. The r/d specimens used square
columns with dimensions of either 7-inch by 7-inch, 10.5-inch by 10.5-inch, or 14-inch by 14-
inch. The reinforcement ratio specimens used reinforcement ratios of either 1.23-percent, 1.65-
percent, or 2.23-percent. For the M /V specimens, moment-to-vertical-load ratios of infinite (i.e.

only unbalanced moment), 2.48-feet, 1.28-feet, or zero (i.e. only vertical load) were used.

Zaghlool showed that the measured ultimate shear stresses were consistently higher than the
predictions of ACI 318-63. Increasing either the r/d ratio or reinforcement ratio resulted in
increased ultimate shear stress. Contrarily, increasing the M/V ratio resulted in decreased

ultimate shear stress.

Zaghlool produced the moment-shear interaction diagram reproduced in Figure 2.2. Specimens
subjected to both unbalanced moments and gravity loads had higher moment capacities than
specimens subjected to only unbalanced moments. Zaghlool suggested that the gravity loads
increased the moment capacity for two reasons. First, the gravity load (applied through the
column) increased the confinement within the concrete compression region. Second, the gravity
load produced an eccentric moment acting in the opposite direction to the applied moment.

Based on these results, Zaghlool suggested the use of a bilinear moment-shear relation. He

13



suggested that an applied moment does not influence a connection’s vertical load capacity and

vice versa (Zaghlool, 1971).
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Figure 2.2: Moment-shear interaction diagram by Zaghlool (1971)

2.1.8 Beam analogy by Hawkins and Corley

In 1971, Hawkins and Corley published a method of evaluating the strength of slab-column
connections by treating slabs as beams framing into the column. It is assumed that each beam
can deform enough to develop their ultimate strengths. By this beam analogy, connections can
fail either in shear-torsion, flexure, shear, or moment-torsion. Figure 2.3 shows a column
subjected to both an unbalanced moment and a vertical load. Shear-torsion failure occurs when
all faces except face BC reach their shear or torsional capacities. Moment-torsion failure occurs
when face CB (additionally, AD for interior connections) develops its flexural capacities and
the remaining moment is resisted through torsion by adjacent faces. This failure mode would
typically govern for cases where little shear is applied to the connection. Hawkins and Corley
showed that their method accurately predicted the ultimate capacities of tests by Hanson and
Hanson (1968), Anderson (1966), and themselves (Corley & Hawkins, 1968). Figure 2.4 shows
the failure envelope produced by Hawkins and Corley for the interior 6-inch by 6-inch square

columns tested by Hanson and Hanson (1968).
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Figure 2.3: Column of slab-column connection subjected to combined loading
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Figure 2.4: Vertical load versus moment envelope for 6-inch square column specimens

tested by Hanson and Hanson (1968) (N. Hawkins & Corley, 1971)

2.1.9 Influence of column shape on slab-column connection strength by VVanderbilt

In 1972, Vanderbilt presented test results of 15 interior slab-column specimens. The specimens
had varying r/d ratios with a column shape of either a square or a circle and a negative moment
reinforcement ratio of either 1-percent or 2-percent. For circular columns, the column side
length, r, assumed was that of a square column with equal column area. Vanderbilt showed that
circular columns had higher shear capacities than square columns of equal column area and
reinforcement ratio. Vanderbilt attributed this strength difference to stress concentrations at the

corners of square columns.

For the same reinforcement ratio and column area, VVanderbilt observed minimal shear strength
increases for r/d values of 2 and 8 and larger shear strength increases at intermediate r/d
values. The largest observed shear strength increase was 35-percent for specimens with r/d
equal to 4 (ASCE-ACI Committee 426, 1974; Vanderbilt, 1972).
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Vanderbilt’s research led to the following maximum shear stress equation within ACI 318-89
(ACI Committee 318, 1989) and subsequent ACI 318 releases:

d
v, = (as + 2) flbyd. (US customary units: psi, in.) (2.28)

In Equation 2.25, a, is equal to 40 for interior columns, 30 for edge columns, and 20 for corner
columns. Confinement is likely reduced as b,/d is increased, which would result in reduced

maximum shear stresses (Moehle, Kreger, & Leon, 1988).

The variable a was implemented in Equation 2.25 to predict similar maximum shear stresses
for all column locations, while incorporating the b,/d effects observed by Vanderbilt. For
example, consider a 12-inch by 12-inch square column with an effective depth, d, of 3-inches.
Assuming that the column is d /2 away from the free edges in edge and corner configurations,

the critical perimeter, b,, would be 60-inches, 45-inches, and 30-inches for interior, edge, and

corner locations, respectively. Equation 2.25 would predict a maximum shear stress of 4\/ﬁ for
all locations, which is consistent with the existing ACI 318-89 limiting shear stress based on
Moe’s research (ACI Committee 318, 1989; 1961).

2.1.10 Connections subjected to unbalanced moments tested by Stamenkovic

In 1969, Stamenkovic published the results of their study on the effects of gravity loading and
unbalanced moments on the strength of slab-column connections. He tested 52 half-scale slab-
column connections of varying column location, column shape, and loading. Gravity loads were
applied axially through column stubs and unbalanced moments were applied as opposing forces
at the ends of top and bottom column stubs. All specimens used 3-foot by 3-foot square slabs of
3-inch thickness, which were supported by tie-rods around the perimeter of the slabs. All slabs
were reinforced with Grade 60, 5/16-inch diameter bars with a reinforcement ratio of 1.17-

percent.

Ten interior connections were subjected to M /V ratios of infinite (i.e. only vertical load), 2.58
feet, 1.29 feet, 0.52 feet, and 0.26 feet. Five of these specimens used 5-inch by 5-inch square
columns and the remaining five used 3-inch by 6-inch square columns. Similarly, ten edge
connections with 5-inch by 5-inch square columns were subjected to the same M/V ratios as the

interior columns. For five of these specimens, the moment was applied about an axis parallel to

16



the free edge. For the remaining five specimens, the moment was applied about an axis
perpendicular to the free edge. Lastly, five corner connections with 5-inch by 5-inch square
columns were subjected to M /V ratios of 5.17 feet, 2.58 feet, 1.29 feet, and 0.81 feet.

Stamenkovic normalized and plotted moment-shear data for each column location and loading.
Based on this data, Stamenkovic suggested that the capacity of interior connections and edge
connections with moments about the axis perpendicular to the free edge could be predicted using

the equation
v + M_ 1 (2.29)
I/.LL Mu - . .
Similarly, Stamenkovic suggested that the capacity of corner connections and edge connections

with moments about the axis parallel to the free edge could be predicted using the equation

VN2 [ M\?

(—) + (—) ~1. (2.30)
Vu M,

In Equations 2.44 and 2.45, the ultimate vertical load without any moment applied, V,,, for

interior connections is

15(1 — 0.075r/d,)

Vv, =09 (41’6111/ Usyr

: (2.31)
4rd, /U
1+525 ——>= /
flex
The ultimate vertical load without any moment applied, ¥, for edge connections is
3r + 4d 15(1 - 0.0757/d,)
7, =09 4rd\JU 2.32
u 4r + 8d 1 cyl 3T'd1 ,——Ucyl ( )
1+5.25 —
flex
The ultimate vertical load without any moment applied, V},, for corner connections is
2r + 2d 15(1 - 0.0757/d,)
7, =09 4rd\JU 2.33
w= 0975 gal i Uen 2, Uy (239
14525 —5——
flex
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In Equations 2.46, 2.47, and 2.48, r is the column side length orthogonal to the moment axis, d

is the slab thickness, d; is the effective slab depth, U,,, is the concrete cylinder strength, and
Vriex s the slab flexural strength using the yield-line theory.
In Equations 2.44, the ultimate moment without any vertical load applied, M,,, is given by

d 2
M, = kU, (—) +0.13U,, %, ba, + k.U, rd.b

2
2.34)
Asf)\ (. d (
+0.5nkt< L2 ) d (b—§>.
In Equations 2.45, the ultimate moment without any vertical load applied, M,,, is given by

A d

My = 0945 dy (1 - 059 22) 1 0.5mk, (2202 2 (b - —) . (2.35)
Ueyi bd 3

In Equations 2.34 and 2.35: U,, is the concrete cube strength or 0.85U,,,; k., ks, and k, are

provided in Table 2.1; X, is the minimum of the top and bottom reinforcement circumference;
and b is the column side length parallel to the moment axis. In Equation 2.34, 0.13U,, %, cannot

exceed twice the reinforcement yield stress.

Table 2.1: Values of k., kg, and k; (Stamenkovic, 1969)

Column location k. kg k

Interior 1.00 0.10 1.00
Edge (span parallel to free edge) 0.80 0.07 1.00
Edge (span orthogonal to free edge) — — 0.70
Corner — — 0.70

2.1.11 Study of slab-column behaviour by Regan

In 1981, Regan developed various design equations using experimental data relating to flexure,
shear, and deflections. With respect to punching shear, Regan studied how various parameters
influenced the punching capacity of slab-column connections. These parameters included
concrete strength, reinforcement area and layout, r/d ratio, size effect, load and support

conditions, and unbalanced moments.

Based on research by Elstner and Hognestad (1956), Regan proposed that the ultimate punching
shear stress is proportional to the cube-root of the concrete compressive strength. Similarly, this

stress is proportional to the cube-root of 1004, /bd.
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Regan stated that adding flexural steel increases the punching shear strength for two reasons.
First, additional reinforcement increases the compression zone which means more uncracked
concrete to carry shear. Second, additional reinforcement reduces crack widths which means
more aggregate interlock to carry shear. On the topic of concentrating reinforcement toward the
column, Regan stated that existing data showed a 6-percent decrease in punching shear capacity
when the concentration of steel was increased from a uniform distribution. This difference was
negligible. On the topic of compression reinforcement, Regan stated that existing data in which
the area of compression steel was between 0.3 to 1.0 times the area of tension steel, the punching
shear capacity increased only up to 12-percent. Regan commented that many punching shear
predictions consider the reinforcement yield stress in their formulations. However, Moe’s tests
(1961) showed no differences in capacity when using reinforcement with a yield stress of 330
megapascals (MPa) compared to using reinforcement with a yield stress of 480 MPa.
Furthermore, Regan commented that using a reinforcement parameter within mechanical
models may not adequately capture behaviour since only a portion of the reinforcement is
yielding. Lastly, Regan stated that specimens with reinforcement fanning outward from the
column had punching capacities 30-percent less than specimens with orthogonal reinforcement

mats but equivalent flexural strength.

With respect to r/d ratios, Regan suggested that circular columns provide a 15-percent increase
in shear capacity compared to square columns of equal area. Regan stated that the nominal
ultimate shear stress is inversely proportional to the fourth-root of a slabs effective depth.
However, this effect is reduced if the maximum aggregate size is scaled in proportion with the
effective depth. On the topic of load and boundary conditions, Regan commented that specimens
typically do not include in-plane restraints at slab edges to recreate the compressive membrane
effects observed in practical flat slab systems. Furthermore, some experiments had slab edges

that were restrained from rotating. Regan stated that these effects were likely negligible.
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For an interior slab-column connection, Regan showed that the reduction in vertical load
capacity when the connection is subjected to an unbalanced moment could be approximated
using

v, 1

Vo 1+ 15e/(c, + 2d)(c, + 2d) (2:36)

Q

where 1}, is the ultimate shear capacity with a load eccentricity, 1, is the ultimate concentric
shear capacity, and e is the load eccentricity (or M /V). Regan proposed that the 1.5 coefficient
in Equation 2.36 could be modified to 1.0 or 2.0 to better correlate to some experimental data.

Equation 2.36 using coefficients of 1.0, 1.5, and 2.0 is plotted in Figure 2.5.
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Figure 2.5: Shear capacity versus eccentricity for interior connections (Regan, 1981)

Considering all aforementioned effects, Regan proposed that the ultimate load for interior

connections subjected to concentric loads could be predicted using

3 ’100,4
Via = 0.1K, & WS fruAe (2.37)

K., = 1.15\/ 41 - column area (2.38)

where

(column perimeter)?
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and

41300
& = — (2.39)
and
A, = 2.69d(Zc + 7.85d) (2.40)

where Xc is the perimeter a distance 2.5d from the column.

Regan proposed the following equation for determining the ultimate vertical load for interior

connections with unbalanced moments:

1

1.5(ex + ey) (2.41)
V(e +2d)(cy + 2d)

Veae = Vra -

where e, and e,, are the load eccentricities (i.e. M/V) in the x and y directions and c, and c,,

are the column dimensions in the x and y directions.

For edge connections, Regan proposed the following equation to predict the punching load:

B 3 (1004, A,
VRd,edge - 0-1Ksczs bd fcu 1.5e . (2-42)

For corner connections, Regan proposed the following equation to predict the punching load:

3 ’10014
Vra,corner = 0.8 - 0.1K & stcuAc . (2.43)

2.1.12 Size effect on unbalanced moment specimens by Neth, de Paiva, and Long

In 1981, Neth, de Paiva, and Long tested four flat plate subsystem configurations. The four
subsystems were scaled versions of a full-size design: one-half, one-quarter, one-sixth, and one-
eight scale specimens. The one-half scaled specimen had a 20-foot by 10-foot flat slab with two
columns spaced 10-feet apart along each of the longer slab edges. Each of these four columns

was located 5-feet from the shorter slab edges. The remaining specimens used square flat slabs
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with two columns total placed opposite one another at the center of the slab width. For all
specimens, the slab edges with columns present were unrestrained, while the slab edges without
columns were allowed to deform in all directions and rotate only about the axis parallel to the
edge. The flat plates of all specimens were loaded using 16 point loads to simulate combined
unbalanced moment and gravity loading conditions. All specimens had a reinforcement ratio of

1-percent with similar concrete mixes.

Neth et al. found that all specimens showed similar plate deflections, as well as rotations,
flexural cracking, and failure behaviour near slab-column connections (1981). Neth et al.
showed that the specimens deformed similarly but smaller-scale specimens had larger load
capacities compared to larger-scale specimens. They proved this by addressing similarities
among load-deflection data once all data had been normalized. Furthermore, they suggested
testing specimens scaled to no less than one-quarter of the full-sized specimen to avoid
overestimating a connections load capacity.

Regardless of size, all specimens developed the same types of cracks throughout testing. First,
flexural cracks began to form at a distance from the free edge equal to two-thirds of the
orthogonal-to-free-edge column dimension. These cracks formed at the tension slab-column
interface and propagated at an angle toward the compression slab face. These cracks continued
toward the interior column of the specimens. The slab plate adjacent the column would rotate
rigidly about the apex of the crack in a hinge-like manner. Although similar flexural cracks
formed at distances away from the column, the initial flexural cracks increased in width through
testing and ultimately governed the behaviour of the connections. Approaching the ultimate
loads of the connections, cracks formed orthogonal to the flexural cracks which developed as
punching shear failure began to occur. Neth et al. described these orthogonal cracks as secondary

failure cracks that formed after the crushing of the concrete compression zone (1981).

Based on slab deflections, Neth et al. doubted that dowel action contributed to punching shear
strength. However, they noted that compression reinforcement strains suddenly increased as
tension reinforcement began to yield. This meant that the compression reinforcement provided
additional confinement and capacity to the concrete compression zone. Furthermore, based on
compression reinforcement strains, Neth et al. found that the radius of contraflexure moved

toward the column as the load was increased (1981).
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2.1.13 Truss analogy analysis method by Alexander and Simmonds

In 1987, Alexander and Simmonds published a truss analogy for modelling internal forces
within slab-column connections under combined gravity loading and unbalanced moment. Their
truss analogy was developed for slab-column connections without transverse reinforcement.
They stated that existing models that assume a linear distribution of vertical shear stresses across
a critical section are problematic for three reasons. First, the vertical shear stresses within the
slab are part of a diagonal tension field. However, this tension field no longer exists after
diagonal cracks form within the slab. These cracks typically form under gravity loads equal to
50 to 70 percent of the ultimate gravity load. If the slabs are unloaded after cracking then
reloaded until failure, the load capacity is the same as if the slab had been monotonically loaded.
Alexander and Simmonds stated that the linear distribution model should apply only to
uncracked regions of compressed concrete which have diagonal tension fields that could carry
shear stresses. Second, the linear distribution model considers shear stresses adjacent to column
faces located orthogonal to the moment axis. Alexander and Simmonds stated that these faces
fail in torsion rather than shear and, therefore, should not be analysed using a shear distribution
model. Third, the failure surface changes with different moment-to-vertical load ratios;
however, the critical section location is based on a constant reinforcement depth instead of a

varying uncracked concrete depth.

The truss analogy proposed by Alexander and Simmons relies on a different set of assumptions.
The truss is made up of inclined concrete struts and horizontal steel ties. One end of each
concrete strut equilibrates the tensile force from an adjacent steel tie and the other end connects
to the column. The inclined concrete struts can be defined as anchoring struts, uplift struts, or
gravity struts. Anchoring struts are in-plane with the reinforcement and help to develop the
reinforcement. Uplift struts tie to bottom mat reinforcement and oppose upward movement of
the slab. Gravity struts tie to top mat reinforcement and oppose downward movement of the
slab. Gravity struts are present when only gravity loading is applied. These gravity struts are
replaced with anchoring struts as the moment-to-vertical-load ratio is increased. Under large
enough moments, uplift struts and gravity struts will oppose one another on opposite column
faces where both faces are parallel to the moment axis.
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The truss failure is based on the yielding of steel ties rather than the concrete struts. Alexander
and Simmonds stated that a flexural compression failure is outside the limits of practical design.
The steel tie failure occurs when the concrete struts reach a certain angle « relative to the slab.

Alexander and Simmonds proposed the equation

tana = 1.0 — ¢ 708K (2.44)
where
K= Serr @ VI (2.45)

 Apar* fy+ (c/dg)0%
In Equation 2.44, tan « is the out-of-plane shear force carried by the concrete strut divided by
the in-plane force carried by the yielding steel tie. This equation implies that the concrete strut
angle a cannot exceed 45 degrees. In Equation 2.45, d' is the concrete cover, s ¢ is the effective
bar spacing which is equal to the maximum of the bar spacing or 3d’, A4, is the area of the
reinforcing bar, c is the column dimension perpendicular to the bar being analysed, and d; is
the slab effective depth (i.e. distance from the compression face to the reinforcement centroid).
The term ¢/d, is based on research by Hawkins et al. (1971) which accounts for reductions in

concrete shear strength as column rectangularity is increased.

To produce Equation 2.44, Alexander and Simmonds performed a regression using tan a and K
values for 43 concentrically-loaded test specimens. Concentrically-loaded specimens were used
to ensure that only gravity struts were present rather than anchoring or lifting struts. However,
Alexander and Simmonds stated that the truss analogy can be applied to each column face
independently regardless of geometry, reinforcement, or loading. This is justified by crack

pattern similarities between interior and edge slab-column connections under combined loading.

Alexander and Simmonds stated that describing slab-column failure as either shear or flexural
failure based on ductility is misleading. Instead, failure should be described as either local
connection failure or slab failure. Furthermore, they stated both local and slab failures can be
ductile or brittle, and that ductile failures occur in connections with high strain gradients. These
gradients can occur if: low reinforcement ratios are used, uplift struts are adjacent to gravity

struts, or anchoring struts connect to shear struts at a node (Alexander & Simmonds, 1987).
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2.1.14 Analysis of yf for edge slab-column connections by Moehle

In 1988, Moehle suggested that the ACI 318 (ACI Committee 318, 1986) code provisions
relating to unbalanced moment transfer at edge slab-column connections did not agree with
published test data. He suggested that existing test data correlated well to a bilinear V;, /V,, versus
M, /M, interaction diagram. The variable 1, is the ultimate vertical load without any applied
moment, V, is equal to v, A, M,, is the tested ultimate moment, and M, is the ultimate moment
without any applied vertical load. In other words, there is no significant interaction between

shear and moment and connections fail in either shear or flexure.

Using the provisions from ACI 318-86, Moehle plotted Strength Ratio versus V,, /V, data for 27
edge slab-column connections. These specimens were loaded with both gravity loads and
moments about an axis parallel to the free edge. Moehle defined Strength Ratio as the maximum
of v/v, at the inner column face, v/v, at the outer column face, and M,,/M, (where v is the
linearly-varying shear stress about the connection). Moehle stated that failure should occur when
the Strength Ratio is equal to 1. The plotted Strength Ratios varied between 1.05 and 2.53 with

a coefficient of variation of 0.25.

Moehle reduced the coefficient of variation to 0.19 by assuming only vertical loads were resisted
by shear stresses and moments were resisted entirely by flexural stresses (i.e. y; equal to one).
However, the data still did not correlate well for specimens with 1, /V,, values greater than 0.75.
The mean Strength Ratio (i.e. M,,/M,) was equal to 1.28.

To reduce the mean Strength Ratio to 1.0, Moehle increased M, by increasing the moment

transfer width from

¢, +3h (2.46)

to

Cy + 2¢¢, (2.47)

where c; is the distance from the column faces (oriented orthogonal to the free edge) to the

extents of torsional cracks measured after punching failure has occurred.
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The crack width ¢, is given by

¢t = C1y/ Pt/ P (2.48)

where p; and p; are the transverse and longitudinal reinforcement ratios. Equation 2.48 was
derived assuming that both transverse and longitudinal reinforcement mats are yielding when

slab-column connection failure occurs.

Using Equation 2.47, the mean Strength Ratio reduced to 1.07 with a coefficient of variation of

0.16. To simplify the calculation, he suggested using a moment transfer width of

c, +2¢4 (2.49)

which assumes that the torsional cracks are oriented 45 degrees from the free edge of the
connection. Equation 2.49 increased the mean Strength Ratio to 1.15 without changing the

coefficient of variation.

Moehle presented a design procedure in which shear and moment forces are first calculated.
Then, the column is sized such that the shear force is resisted by 0.75v.A,.. Finally, the
reinforcement required to resist the applied moment is placed across a width of ¢, + 2c;.
Moehle stated the reinforcement ratio should be less than 0.5p, to ensure the reinforcement

around the column fully develops (1988).

In 1995, ACI 318 allowed for y, modifications based on Moehle’s suggestions but did not
increase the moment transfer width (ACI Committee 318, 1995). ACI 318-95 stated that y
could be increased up to 1.0 if the vertical load is limited to 40-percent of the vertical load
capacity and the reinforcement ratio does not exceed 0.375p;,. In ACI 318-08, the reinforcement
ratio condition was replaced with a reinforcement tensile strain condition. ACI 318-08 stated

that the reinforcement tensile strain within the moment transfer width had to be at least 0.010.

2.1.15 Interior connections under unbalanced moments by Hawkins, Bao, and Yamazaki
In 1989, Hawkins, Bao, and Yamazaki tested 36 interior slab-column connections subjected to
both unbalanced moments and gravity loads. The specimens were grouped into seven different
series to test the influence of various parameters on the connection strength and stiffness. These
parameters included reinforcement ratio and concentration, slab depth, concrete strength and

type, shear reinforcement, and column rectangularity. Within each series, specimens were tested
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with M /V ratios of 5.1-inches and 22.7-inches and reinforcement ratios between 0.60-percent

and 1.42-percent.

Hawkins et al. found that ACI 318-83 over-predicted the punching shear capacity of six
specimens, all of which had reinforcement ratios not greater than 0.73-percent. One of these six
specimens had an ultimate shear lower than the concrete limiting shear and a higher yM than
the moment resistance of the slab section. This suggests that differently proportioned y; and y,
parameters could predict ultimate shear and moment values equal to their respective limits.
Another two of these six specimens exhibited wide beam flexural failures. Each of these failures
occurred at the column face across the width of the slab. The remaining three of the six

specimens failed due to pullout before their flexural strengths could develop.

For specimens with reinforcement ratios greater than 0.73-percent, ACI 318-83 predicted
capacities that were increasingly conservative with increasing reinforcement ratio. Specimens
with higher reinforcement ratios were less ductile and their punching failures were more sudden.
Concentrating the reinforcement toward the column increased the stiffness but decreased the
ultimate vertical load. When subjected to a M /V loading of 22.7-inches, specimen slabs would
lift at one slab end and lower at the opposite slab end. When subjected to a M /V loading of 5.1-
inches, all specimens deflected downwards along their slab edges.

2.1.16 Critical Shear Crack Theory

Through the use of a strut-and-tie model, Muttoni and Schwartz proposed that shear failure in
slabs without shear reinforcement is caused by the propagation of a critical shear crack through
the slab compression strut at the column (1991). Muttoni and Schwartz stated that the punching
shear capacity could be increased by moving the critical shear crack away from the column. For
example, Bollinger (1985) tested circular specimens with circular columns which were
reinforced with radial flexural reinforcement around the edges of the slabs. When additional
reinforcement was placed in the vicinity of the column, the ultimate vertical load decreased. The
addition of this reinforcement produced cracks tangent to the column at the location of the
reinforcement. Without this reinforcement, only cracks perpendicular to the column face were

present in this location.
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Muttoni and Schwartz stated that force transfer across cracks is dependent on the width and
roughness of the crack surfaces. Muttoni and Schwartz presented crack width versus transverse
displacement data from a test beam, which showed the crack width after which force transfer is
no longer possible. Since the crack width is proportional to slab rotation, Muttoni and Schwartz
developed a semi-empirical expression to relate the nominal shear strength to the product of slab

rotation and depth:

Ve 1
bod3\/T. L+ (41/,(1 )2 ' (SI units: N, mm) (2.50)
mm

Equation xx showed a significant decrease in punching shear capacity with increasing slab
depth. This suggested that size-effect has a strong effect on the punching shear capacity. In 2003,
Muttoni revised Equation 2.50 to include the influence of the maximum aggregate size on the

shear capacity (through affecting the roughness of the critical shear crack):

Ve 3/4

N Pd (2.51)
od*VFf; 1415

where d is a reference size equal to 16 millimetres (mm) and d,; is the maximum aggregate
size. This revision was based on research conducted by Vecchio and Collins (1986) and
Walraven (1981).

In 2008, Muttoni presented a direct relationship for predicting slab rotations of axisymmetric
isolated slabs in lieu of nonlinear numerical modelling. This load-rotation relationship was
developed based on a quadrilinear moment-curvature relationship. Muttoni offered a simpler
bilinear relationship by neglecting the concrete tensile stress and the effects of tension stiffening.

Additionally, Muttoni developed a simplified design method for determining slab rotation:

3/2
Y =1 T—Sf—y( Y > (2.52)
dEs Vflex

where r; is the radius of contraflexure equal to 0.22L (based on linear-elastic calculations), and
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Ts

Vilex = 2mmg (2.53)

Ty —Te

where 7, is the radius of the load introduction and  is the radius of a circular column. Muttoni
stated that the strength reduction due to size effect is a function of slenderness rather than

thickness as reflected by the radius of contraflexure, 7.

Muttoni showed that the quadrilinear and simplified formulations accurately predicted vertical
load and rotation capacities of 87 laboratory tests, except for connections with thick slabs and
low reinforcement ratios. For these connections, the effects of the concrete tensile strength and

tension stiffening needed to be considered through the use of the quadrilinear relationship.

For the same experimental data, ACI 318-05 predicted a constant punching shear capacity of
0.3 3\/E for all specimens with varying values of 1d /(dgo + d,). These predictions had a large
coefficient of variation of 0.20. Muttoni showed that ACI 318 does not consider the effects of
various parameters on the punching shear strength including reinforcement ratio, size effect, and
slenderness. ACI 318 considers the effects of b,/d by reducing the punching shear strength for
columns with aspect ratios greater than 2:1. However, its punching shear strength predictions

were increasingly conservative with decreasing b, /d.

Relative to ACI 318-05, Eurocode 2 produced more accurate predictions with a coefficient of
variation of 0.12. It considered the effects of reinforcement ratio and size effect on the punching
shear strength. However, it did not consider the effects of slenderness. Eurocode 2 predicted the
effects of b, /d accurately by considering the critical section at a distance of 2d from the column
instead of 0.5d.

Muttoni’s simplified design method considered all aforementioned effects on the punching shear
strength in addition to the effects of the reinforcement yield stress; however, this effect is
minimal. The simplified design method produced accurate predictions with a coefficient of
variation of 0.09. This design method is currently being used in the Swiss design code (SIA,
2003) and Model Code (federation internationale du béton (fib), 2013).

In addition to two-way slabs without transverse reinforcement, the Critical Shear Crack Theory

was extended to apply to two-way slabs with transverse reinforcement (Fernandez Ruiz &
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Muttoni, 2009), continuous slabs (Einpaul, Ruiz, & Muttoni, 2015), prestressed slabs (Clément,
Pinho Ramos, Fernandez Ruiz, & Muttoni, 2014), and concentrated loads in linearly supported
slabs (Natario, Fernandez Ruiz, & Muttoni, 2014) (Muttoni A., Fernandez Ruiz M., 2018). In
2018, Drakatos, Muttoni, and Beyer presented a mechanical model to predict the moment-
rotation relationship for connections subjected to combined gravity loads and lateral drifts
(2018). This model was developed based on the Critical Shear Crack Theory for slab-column
connections without transverse reinforcement (Drakatos et al., 2018).

2.1.17 Minimum reinforcement and size effect coefficient by Hawkins and Ospina

In 2017, Hawkins and Ospina proposed revisions to address two issues with ACI 318-14
punching shear design provisions. The first issue was that lightly-reinforced slab-column
connections could undergo flexure-driven punching failure (rather than “pure” punching failure)
as a result of flexural reinforcement yielding. In these flexure-driven failures, laboratory-tested
specimens did not develop their full shear capacities. The second issue with ACI 318-14 was
that it did not account for punching shear strength reductions with increasing slab depth (N. M.
Hawkins & Ospina, 2017).

Hawkins and Ospina’s solution to the first issue began by analysing test data for 48 interior slab-
column sub-assemblages and 12 frames containing at least one interior slab-column connection.
They showed that specimens with reinforcement ratios less than 1-percent commonly failed at
shear capacities lower than predicted by ACI 318-14. Hawkins and Ospina stated that the
punching shear resistance of a slab-column connection is the lesser of /. and the flexural strength

of the slab near the column, V,,,, based on the yield-line theory. This was also observed by Peiris

and Ghali (2011). Hawkins and Ospina defined V;,, as:
Viy = 8m = 8pf,d*. (2.54)

For connections subjected to concentric loading, Hawkins and Ospina showed that defining the

punching shear resistance as the lesser of V; and V,,, resulted in tested-to-calculated capacities

close to unity.
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Similarly, the tested-to-calculated strength of specimens subjected to gravity loads and

unbalanced moments as per ACI 318-14 is

(2.55)

Hawkins and Ospina showed that the ACI 318-14 tested-to-calculated specimen strength
produced values less than unity for M /Vc¢ ratios less than 2 (where ¢ is the square column

dimension). For specimens with M /V¢ ratios less than 2, modifying Equation 2.55 such that

Test Ve My V. M M
ma < L Lt R s T) (2.56)

P X\ + 7 ]
Calc Vw My, Vi, M, Mg
resulted in tested-to-calculated strengths closer to unity.

Equation 2.54 was implemented within Section 8.6.1.2 of ACI 318-19. In Section 8.6.1.2,
Ag/(bgiapd) was substituted in place of p, a;/5 was substituted in place of 8 (to scale the
constant 8 for different column locations), and the equation was rearranged to solve for the

minimum required area A,.

On the topic of size effect, Hawkins and Ospina showed good agreement between tested and

calculated shear strengths when I/, was reduced by a factor k,, for depths greater than 10-inches:

1.4

d (2.57)

1+ﬁ

k, =

Equation 2.57 with a constant v2 instead of 1.4 was implemented in Section 22.5.5.1.3 of ACI
318-19.

2.2 Review of punching shear provisions in national design codes
2.2.1 ACI 318-19

2.2.1.1 Critical sections
ACI 318-19 states that two-way shear strength must be analysed at critical sections at perimeters
d/2 from: column faces and, if applicable, changes in slab thickness (Section 22.6.4.1). For

slabs with shear reinforcement, two-way shear strength must also be checked at a critical section
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d/2 from the outermost peripheral line of shear reinforcement (Section 22.6.4.2). The critical
perimeter, b,, for Section 22.6.4.1 and Section 22.6.4.2 is presented in Figure 2.6. The
dimension b, defines the length of the critical perimeter parallel to the axis of the unbalanced
moment. Similarly, the dimension b, defines the critical perimeter length orthogonal to the
unbalanced moment axis. This figure applies to CSA A23.3-19 as the critical section definitions
are the same for both CSA A23.3-19 and ACI 318-19.
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Figure 2.6: Critical sections located: a) 0.5d away from column, and b) 0.5d away from
outermost shear reinforcement as per ACI 318-19 (ACI Committee 318, 2019)

2.2.1.2 Two-way shear strength
Section 22.6.5.2 governs the concrete two-way strength, v., for a slab without shear

reinforcement

0.33

2
0.17 (1 + E) AAJF! (Sl units: N, mm) (2.58)

ad
0.083 (2 + )
b,

v, = min

where g is the ratio of the longer column edge length to the shorter column edge length; a; is
40 for interior columns, 30 for edge columns, and 20 for corner columns; d is the effective slab
depth (from the compression fiber to the centroid of flexural reinforcement); and A is 1.0 for

normal density concrete and ranges between 0.75 and 1.0 for lightweight concrete.

32



The size effect coefficient, A, is given by:

As = 1 (SI units: N, mm) (2.59)

In the case of slabs with shear reinforcement, Section 22.6.6.1 outlines the appropriate values
of two-way concrete strength to use depending on the critical section and type of shear
reinforcement. Table 2.2 presents Section 22.6.6.1 as presented in the ACI code.

Table 2.2: Maximum v, for two-way members with shear reinforcement (ACI Committee 318,

2019)
Maximum v, at section d/2
Type of shear Maximum v, at section d/2 from last row of shear
reinforcement from column reinforcement
Stirrups 0.172Af! 0.17/f!
0.25
0171+ 2
Headed shear stud : - ( —) ; -
reinforcement min p At fe 0.174:4y fe

|0.083 (2 + ?j))

The two-way shear strength provided by shear reinforcement is provided by Section 22.6.7.2:

- Avfyt
S b,s

(2.60)

where A, is the area of shear reinforcement that lies on a perimeter peripheral to the column,
fye is the yield strength of transverse reinforcement, and s is the spacing between adjacent rows

of reinforcement.

The two-way shear strength contributions of the concrete and shear reinforcement may be
summed, as per Section 22.6.1.3, to determine the nominal two-way strength of the slab:

Vp =V, + Vg, (2.61)

It is important to note that a strength reduction factor, ¢, of 0.75 (Section 21.2.1) must be used

as a safety factor to account for slab understrength due to variations in material strengths and
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dimensions, to account for inaccuracies in equations, to reflect available ductility and required
reliability, and to reflect the importance of the member (R21.1.1).
The nominal two-way strength capacity is reduced as per Section 14.5.1.1:

v, = v, . (2.62)

In determining the shear capacity of the shear-reinforced specimens, two more sections must be
considered: Section 22.6.4.2 and Section 22.6.6.2.

Section R22.6.4.2 indicates to “check shear stress in concrete at a critical section located at a
distance d/2 beyond the point where shear reinforcement is discontinued. Calculated shear stress
at this section must not exceed the limits given in expressions (b) and (d) in Table 22.6.6.1”.
The code requires this check because the shear reinforcement will not contribute to the nominal
resistance at a perimeter d/2 from the perimeter containing the last row of shear reinforcement.

This section provides the lowest v, and will produce the lowest punching shear force.

Section 22.6.6.3 provides limiting factors on v, at sections d/2 from the column face as shown
in Table 2.3.

Table 2.3: Maximum v,, for two-way members with shear reinforcement (ACI Committee

318, 2019)
Maximum wv,, at critical section
Type of shear reinforcement d/2 from column face
Stirrups $0.5,/f/
Headed shear stud reinforcement $0.66/f;

Although the specimens analysed are loaded concentrically without unbalanced moments,
Section R8.4.4.2.3 provides a means of determining the factored shear stress, v, as:

YUMSCC
Je

where v, is the stress resulting from the controlling load combination without moment transfer,

(2.63)

Uy = Vyy +

¥, is a coefficient representing the portion of unbalanced moment distributed to shear, M. is
the unbalanced moment, c is the eccentricity, and /.. is analogous to the polar moment of inertia.
If unbalanced moments exist in two orthogonal axes, another unbalanced moment term may be

added and each term would correspond to one of the axes.
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The parameter y,, is given by Section 8.4.4.2.2

Yo=1-v¢ (2.64)
and y; is given by Section 8.4.2.3.2
1
Ve =—F~"——F/—"
1+(3) {5
Therefore,
YU=1——1+(2) 5 (2.66)
3/ b,y

where b, is the critical perimeter dimension parallel to the axis of the applied moment and b, is

the critical perimeter dimension orthogonal to the axis of the applied moment.

Section 8.4.2.2.4 of ACI 318-19 states that the value of y, can be increased (and, therefore, the
value of y,, to be decreased) if criteria shown in Table 2.4 are met. The maximum allowable y¢
depends on the connection location and span direction and can only be increased if: the factored
nominal shear stress, v,,,, does not exceed a percentage of the two-way shear strength v,, and
the net tensile strain within the effective slab width, ¢, exceeds the reinforcement yield strain,

&y, PlUS a given constant.

For a square column, the maximum allowable y, is 1.0 for edge connections analysed in the
span parallel to the free edge and corner connections in either span. For edge connections
analysed perpendicular to the free edge and interior connections in either span, the maximum

allowable y is 0.75. Recall that the unmodified y; for a square column is 0.6.

The commentary provided on this code provision is limited. Outside of cases where lateral drifts
are imposed, the net tensile strain, &, could be determined by performing a slab sectional
analysis. However, the unbalanced moment resisted by slab flexural stresses should be known

to perform this analysis. Also, the provision allows y to be increased up to a maximum value

but does not suggest a method for determining intermediate values of y;.
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Table 2.4: Maximum modified values of y, for nonprestressed two-way slabs (reproduced
with permission, ACI 318-19, Section 8.4.2.2.4)

Column location Span direction Vuy & (Within bggp) Max modified y,

Corner column Either direction < 0.5¢v, = &, +0.003 1.0

Perpendicular to

edge < 0.75¢v, > &, + 0.003 1.0
Edge column 1.25
—— <10
Parallel to edge < 0.4¢v, = &, +0.008 1+ (g) by
3/ b,
1.25
———=<1.0
Interior column Either direction < 0.4¢v, = &, +0.008 1+ (g) by
3/ b,
The polar moment of inertia, /.., is given by
dlc, +d)? (¢ +d)d®  d(cy, +d)(cy + d)?

¢ 6 6 2

where ¢, is the column face length in the direction of analysis and c, is the column face length

in the plane perpendicular to analysis.

New to the 2019 edition of ACI 318, Section 8.6.1.2 states that if
Uiy > $0.17AA\/f) (2.68)

then, the minimum area of reinforcement over the width b4, must be greater than Ag -

_ 5vuv bslab bo

A =
s;min b, (2.69)

According to the ACI 318-19 commentary, Section 8.6.1.2 was introduced based on research

by Peiris and Ghali (Peiris & Ghali, 2011), Hawkins and Ospina (N. M. Hawkins & Ospina,
2017), Bayrak and Jirsa (2009), Muttoni (2008), and Dam and Wight (2017).
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2.2.2 CSA A23.3-19

2.2.2.1 Critical sections

Section 13.3.3.1 of CSA A23.3-19 defines the critical two-way shear section at a distance d/2
from the perimeter of a concentrated load or reaction area (CSA Group, 2019). This is similar
to the definition provided by ACI 318-19.

2.2.2.2 Two-way shear strength

Section 13.3.4.1 governs the concrete two-way strength, v., for a slab without shear

reinforcement,

0.38
( 2|
0.19 (1 + —) _
v, = min B/t Ape/fe (Sl units: N, mm) (2.70)
0.19 + %4
. b

where S is the ratio of the longer column edge length to the shorter column edge length; a, is 4
for interior columns, 3 for edge columns, and 2 for corner columns; d is the depth from the
compression fiber to the centroid of flexural reinforcement; A is 1.0 for normal density concrete;
and ¢, is the resistance factor for concrete, which is taken as 0.65. Section 13.3.1.2 states that
the effective depth, d, when used for two-way shear calculations, is to be taken as the average

effective depth between the two directions of reinforcement.

In the case of slabs with headed shear reinforcement, Section 13.3.8.3 provides an equation for

two-way concrete strength:
v, = 0.284¢/f! (Sl units: N, mm) (2.71)

The two-way shear strength provided by shear reinforcement is provided by Section 13.3.8.3:

_ ¢sAvsfyv

2.72
S bOS ( )

where ¢ is the resistance factor of steel, A, is the area of shear reinforcement that lies on a
perimeter peripheral to the column, £,,,, is the yield strength of shear reinforcement, and s is the

spacing between adjacent rows of reinforcement.
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The two-way shear strength contributions of the concrete and shear reinforcement may be
summed, as per Section 11.3.3, to determine the nominal two-way strength of the slab:
Uy =V, + Vs . (2.73)

Unlike the ACI code, there is no additional section for the reduction of the shear resistance as
resistance factors for concrete and steel were already considered in the previous equations.

In determining the shear capacity of the shear-reinforced specimens, three more sections must
be considered: Section 13.3.7.4, Section 13.3.8.2 and Section 13.3.8.6.

Section 13.3.7.4 specifies that shear resistance must be placed where the factored shear is not

greater than 0.19A¢c\/ﬁ but at least 2d from the column face. Similar to ACI, CSA
implemented this check to ensure that at a distance of d/2 away from the shear reinforcement,
where shear reinforcement is inactive, the concrete alone can sustain the applied loads. The CSA

provisions differ from ACI 318 only by using 0.19 instead of 0.17.

Section 13.3.8.2 limits the factored shear stress, Vg, 10

vr = 0.751¢:/f; . (Sl units: N, mm) (2.74)

ACI has a near-identical limit of ¢>O.66\/ﬁ (as previously presented) when appropriate

reduction factors are considered.

Section 13.3.8.6 is not a typical analysis check as it provides values for spacing using factored
loads. In order to have a spacing of 0.75d between rows of shear bolts, the factored shear stress,

d/2 from the column face, must be less than or equal to:

vr = 0.564¢:/f . (Sl units: N, mm) (2.75)

Section R22.6.4.2 indicates to “check shear stress in concrete at a critical section located at a
distance d/2 beyond the point where shear reinforcement is discontinued. Calculated shear stress
at this section must not exceed the limits given in expressions (b) and (d) in Table 22.6.6.1”.
The code requires this check because the shear reinforcement will not contribute to the nominal
resistance at a perimeter d/2 from the perimeter containing the last row of shear reinforcement.

This provision provides the lowest v, and will produce the lowest punching shear force.
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Although the specimens analysed are loaded concentrically without unbalanced moments,
Section 13.3.5.5 provides a means of determining the factored shear stress, vy, as:

V. M:e M:e
vy = f_l_()/v f)+<)’vf)
bod "\ ] ],

(2.76)

where V; is the force resulting from vertical gravity loads, y,, is a coefficient representing the
portion of unbalanced moment distributed to shear, M, is the unbalanced moment, e is the

eccentricity, and J is analogous to the polar moment of inertia.
The parameter y, is given in Section 13.3.5.3:

vr = T : 2.77)

where b, is the critical perimeter dimension parallel to the axis of the applied moment and b, is

the critical perimeter dimension orthogonal to the axis of the applied moment.
2.2.3 Eurocode 2 (2004)

2.2.3.1 Critical sections

Similar to ACI 318-19 and CSA A23.3-19, there are two critical shear sections that need to be
considered. As per Section 6.4.2(1), a critical section at a distance of 2d from the column faces
is considered with rounded corners. Section 6.4.5(4) states to consider another critical section
of distance kd (k varies between countries but a value of 1.5 is recommended) from the
peripheral perimeter that intersects the outermost row of shear reinforcement. Both critical
perimeters have rounded corners versus the right-angle corners of ACI and CSA. The critical
perimeters defined by Section 6.4.2(1) and Section 6.4.5(4) are presented in Figure 2.7. Unlike
ACI 318-19 and CSA A23.3-19, Eurocode 2 limits the critical perimeter between adjacent

transverse reinforcing bars to 2d.
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Figure 2.7: Critical sections located: a) 2d away from column, and b) 1.5d away from
outermost shear reinforcement as per Eurocode 2 (British Standards Institution, 2004)

2.2.3.2 Two-Way Shear Strength
Section 6.4.4(1) governs the concrete two-way strength, v., for a slab without shear

reinforcement (note that SI units are used within all equations presented in this section),

1
Vra,c = Cra,ck(1000,fe)3 = Vi (2.78)
where

c _0.18_0.18_012 )7
Rd,c—yc—lls—. ()

and

200

k=1+ T <20 (280)

and
p1 = /Pypz < 0.02 (2.81)

and
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3 1
Vmin = 0.035k2f2 (2.82)

and f is the concrete cylinder compression strength (MPa), p,, is the flexural reinforcement

ratio in the y-direction, and p, is the flexural reinforcement in the z-direction.

The punching shear resistance of a slab with shear reinforcement is given by Section 6.4.5(1):

d 1
Vracs = 0.75Vpq . + 1.5 (s_> Aswlywaer (_u1d> sin a (2.83)
T

where s,. is the radial spacing between rows of shear reinforcement; A, is the area of shear

reinforcement in a perimeter peripheral to the column; f,,,4 .5 is given by
fywaer = 250 +0.25d < f,1q (2.84)

where f,,,q4 is the yield stress of the shear reinforcement; u, is the perimeter of the critical

section; and «a is the angle between the flexural reinforcement and the shear reinforcement.
The factored shear stress is given by Section 6.4.5(3):

BVEa
Vgg = U b;l < VRd,max (2-85)
0

where

b ts1s j(;_y)2+(;_z) 259
z y

and u, is the length of column periphery, e, and e, are Mg, /Vg, along the y- and z- axes, and
b, and b, are the widths of the critical section in the y- and z- axis, respectively. The g

coefficient accounts for any shear contributions attributed to unbalanced moments.

Similar to ACI and CSA, factored shear stress at a distance of 1.5d from the peripheral perimeter
intersecting the shear reinforcement must be less than the shear capacity contributions of

concrete alone:
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_ BVga
Vrae = T (2.87)

The maximum shear resistance, vgg may, as per Section 6.2.2(6) is:

Vrd,max = 0.517de (2-88)
where
fck )
= 0. — 2.89
v=06 (1 250 (2:89)
and
£ o ek (2.90)
Ye

2.2.4 Model Code 2010
2.2.4.1 Critical sections
Model Code 2010 considers that punching shear is resisted by perimeter b, and depth d,,. The
perimeter b, is the shear-resisting control perimeter, which is determined based on geometry
and loading, and d,, is the shear-resisting effective depth, which is the distance from the centroid

of the tension reinforcement mats to the supported area.

To determine the shear-resisting control perimeter, b,, the basic control perimeter, b, is first
determined then reduced based on geometry and loading. Similar to other design codes, the
punching shear capacity is to be checked at two sections: a distance of 0.5d,, from the column
and, if shear reinforcement is present, a distance of 0.5d,, from the outer perimeter of shear
reinforcement. The basic control perimeter, b, is shown for these sections in Figure 2.8. Model
Code 2010 limits the straight portions of the basic control perimeters to 3d,,. This is relevant to

connections with large column side lengths or connections with shear reinforcement.
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Figure 2.8: Critical sections located: a) 0.5d,, away from column, and b) 0.5d,, away from
outermost shear reinforcement as per Model Code 2010 (federation internationale du béton

(fib), 2013)

If gravity loads greater than 0.2V, are present closer than 3d,, from the edge of the column, b,

is calculated as

b, =

vperp,d,max

v
kd (2.91)

where Vg is the resultant shear force and vy, 4 max IS the maximum shear force per unit length

perpendicular to the basic control perimeter.

The basic control perimeter, by, is reduced to by ,..4 by considering non-uniform distributions

of shear forces caused by geometrical slab discontinuities such as cast-in pipes, pipe bundles,

slab inserts, or openings are present and are within a distance of 5d,, from the column.

Once b, ;4 is determined, it is multiplied by the coefficient of eccentricity k, to determine the

shear-resisting control perimeter b,:

b, = kebl,red .

(2.92)

When adjacent slabs differ by no more than 25-percent in length, k., may be approximated as

0.90 for inner slabs, 0.70 for edge slabs, 0.65 for corner slabs, and 0.75 for corners of walls.
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The coefficient of eccentricity, k., may be more accurately calculated as

1

ky=————
¢ 1+e,/b,

(2.93)

where e, is the eccentricity of the resultant of shear forces with respect to the centroid of the
basic control perimeter, and b,, is the diameter of a circular column that produces the same area

within the basic control perimeter, b,, as the designed column shape.

The eccentricity, e,,, is determined by

fu= \/(eux)z + (euy)z = \/(MEd,x/VEd)Z + (MEd,y/VEd)Z (2.94)

where e, and e,,, are the eccentricities in the x and y directions, respectively; and Mg, , and

Mg, ,, are the moments applied in the x and y directional spans, respectively.
2.2.4.2 Two-way shear strength
The punching shear resistance is calculated as

Vra = Vra,c + Vras < VEa (2.99)
where Vg, . is the design shear resistance of concrete and Vg, ; is the design shear resistance of
shear reinforcement. Note that SI units are used within all equations presented in this section.

The design shear resistance of concrete is

VRd,c -

ky @ b,d, (2.96)

C

where k,, is the parameter that considers rotations of the slab, and f¢, is the characteristic value

of compression strength of concrete determined from testing.
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The parameter k., is determined as

= <0.
k=157 0.9kq 9d ~ 06 (2.97)

where kg, is a parameter dependent on aggregate size, i is the slab rotation around the

supported area, and d is the mean value (in mm) of the flexural effective depth for the x and y

direction.

If dgis less than 16 mm, d,; is equal to 1. If d; is not less than 16 mm, k,is taken as

32
= 0.
Kag v d, > 0.75 (2.98)

where d, is in mm. For high strength and lightweight concrete, d, is assumed O due to the

possibility of aggregate particles breaking, which would reduce aggregate interlock.
The design shear resistance of shear reinforcement is

VRas = LAswkeOswa (2.99)

where XA, is the sum of the cross-sectional area of all shear reinforcement within the zone

bounded by 0.35d,, and d,, from the edge of the supported area, and

Esy ( fra d

0 =— -
wd 6 fywd ¢w

) < fywa (2.100)

and fy,q is assumed 3 MPa for corrugated bars or by Section 6.1.3.2 and f;,,, 4 denotes the design

yield strength of shear reinforcement. Section 6.1.3.2 states that

fek 05
MiM2N3My (z*c_s> (2.101)
Ye

fbd,o =
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where n,is 1.75 for ribbed bars, 1.4 for fusion epoxy coated ribbed bars; n,is based on the
casting position of the shear reinforcement bars during concreting, which is 1.0 when all bars
are 45 to 90 degrees to horizontal or all bars less than 45 degrees to horizontal are greater than
250 millimetres from the bottom face and 300 millimeters from the top face, n,is 0.7 for all
other cases where ribbed bars are used; ns is dependent on the bar diameter and is assumed 1.0
for diameters not less than 25 millimeters and (25/¢)°3 for diameters less than 25 millimeters;
ny is 1.2 for f,,,,= 400 MPa, 1.0 for f,, =500 MPa, 0.85 for f,,,= 600 MPa, 0.75 for f,,,= 700

MPa, 0.65 for f,,,= 800 MPa, and may be interpolated for intermediate values.

fpa may use the value determined for f,, , or modified based on confinement from transverse

pressure as outlined by Section 6.1.3.3.
The required minimum amount of punching shear reinforcement is such that

SAgykefywa = 0.5V (2.102)

If inclined shear reinforcement is used

Vras = LAswkeOsyq Sina (2.103)
where
E d
Oswd = S—lp (sina + cos ) (sin a+ fb—d—> < fywa (2.104)
6 fywd ¢W

and « is the angle between the shear reinforcement and horizontal.

The maximum punching shear resistance is

‘/ﬁ ‘/ﬂ b,d, (2.105)

Vramax = ksysklp y_bodv =
c

c
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where kg, caccounts for “performance of punching shear reinforcement systems to control shear

cracking and to suitably confine compression struts at the soffit of the slab”, and y,. is the partial

safety factor for concrete material properties.

The parameter kg, is assumed 2.4 for stirrups with sufficient development length at the
compression face and bent (no anchorages or development length) at the tension face; or kg, is

assumed 2.8 for studs (diameter of heads larger or equal than three times the bar diameter).

The slab rotation y is determined by one of four levels of approximation: Level I, Level I,

Level Il or Level IV.

2.2.4.2.1 Level | approximation

Level I is used for regular flat slabs designed according to an elastic analysis without significant

redistribution of internal forces.
The slab rotation around the column is determined as

s fya

V=150

(2.106)

where 7, is the position where radial bending moment is zero with respect to the support axis,

fya is the design yield strength of reinforcing steel in tension, E; is the modulus of elasticity of
reinforcing steel. The variable 7, can be approximated as the larger of 0.22L, or 0.22L,, for the
x and y directions, respectively, for flat slabs where the ratio of spans (L,/L,) is between 0.5
and 2.0.

2.2.4.2.2 Level Il approximation
Level Il is used when significant bending moment redistribution is considered in design.

The slab rotation around the column is determined as

=15

s fya (%)1'5 (2.107)

d Es Mpga
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where mg, is the average moment per unit length for calculation of the flexural reinforcement
in the support strip, and mg, is the design average flexural strength per unit length in the support

strip.

For inner columns,

Mgq = Vg <1 + —| eu'i|) , (2.108)

1 Cui V,
Mgg = VEd <—+ | L |> = id (2109)

For edge columns when considering the tension reinforcement is perpendicular to the slab edge,

1 ey
Mgq = Vga (g + | I;”|> : (2.110)
S
For corner columns,
1 ley; V
Meg = Vig <§+ | l;“|> > %d. (2.111)
S

In these equations, e, ; refers to the eccentricity of the resultant shear forces with respect to the

centroid of the basic control perimeter (i is equal to x and y for the x and y directions,

respectively), and

bs = 1-5\/ Tsx " Tsy < Lmin (2-112)

where 7y, and 7 ,, are calculated as per Level I, and L,y;,, is the smaller of the spans.
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2.2.4.2.3 Level Il approximation

Level Il is recommended for irregular slabs or for flat slabs where [,/1,, is not between 0.5 and

2.0.

The slab rotation around the column is determined as

Y=12

s fya (%)1'5 (2.113)

dE_s Mpa

where r; and mg, are calculated using linear elastic modelling. mg, is the average value of the

moment for design of the flexural reinforcement over the width of the support strip by.

2.2.4.2.4 Level IV approximation

Level 1V uses analytical or numerical methods to determine slab rotation. These methods should
consider cracking, tension-stiffening effects, yielding of reinforcement, and other non-linear

effects relevant to punching shear capacity prediction.

2.2.5 CSCT code-like formulation (2008)

The code-like formulation of the critical shear crack theory (Muttoni, 2008) is presented
alongside the various national design code provisions as it does not require analyses or
laboratory test results when determining a connection’s punching shear capacity. The original
critical shear crack theory (CSCT) was presented by Muttoni and Schwartz in 1991 as a model
for determining the punching shear capacity of slab-column connections without transverse
reinforcement. Over the years, it was extended to describe one-way slab failures (Muttoni,
2003), punching shear failures of slab-column connections with transverse reinforcement
(Fernandez Ruiz & Muttoni, 2009), and punching shear failures of slab column connections
without transverse reinforcement subjected to unbalanced moments (Drakatos et al., 2018). The
CSCT model states that under an applied vertical load, a critical shear crack develops around
the column. This crack propagates on an incline through the slab and the slabs compression
strut. As this compression strut is responsible for transferring shear between the column and the

slab, the formation of the crack decreases the slabs shear carrying capacity.

The code-like formulation of the CSCT presents the load-rotation relationship as
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3
2

_nazkly (Va (2.114)
¥ =03352 (guc)

where L is the slab span; d is the depth from the slab to the centroid of the flexural reinforcement;
fy and Eg are the yield stress and modulus of elasticity of the flexural reinforcement,
respectively; V; is the factored shear force; and mg, is the flexural capacity of the slab in the
column region. The coefficient in front of my, is 8 for interior, 4 for edge, and 2 for corner slab-

column connections.

The column-region flexural capacity, my,, can be calculated using

Mga = pd*fya(1—0.5p fya/fea) (Sl units: N, mm) (2.115)

where p is the average reinforcement ratio between the two layers of longitudinal reinforcement,
fya Is the reinforcement design yield stress, and f, is the design concrete compressive stress

(Muttoni, Ruiz, Bentz, Foster, & Sigrist, 2013).
The punching shear capacity, Vy, is determined using the equation

_ 3/4

Ve = Yd body/fe (SI units: N, mm) (2.116)
14+ 155—"—
dgo +dy

where b, is the critical perimeter at a distance of d/2 from the column, d, is the reference
aggregate size of 16 mm, and d,, is the aggregate size. A modified version of this equation was
used in the Swiss Code for structural concrete SIA 262 (2003). The equation was modified to
obtain a distribution fractile of 5-percent to account for geometry and load irregularities. The

modified equation presents the design punching shear capacity, Vg4, as

2 1
3y, Yd body/fc - (SI units: N, mm) (2.117)
I e
go T dg

Vra =

In 2018, Drakatos, Muttoni, and Beyer extended the CSCT mechanical model to account for the
effects of unbalanced moments. This mechanical model requires that rotations be determined
from finite element analyses. At this time, there is no code-like formulation that considers

unbalanced moments without completing finite element analyses.
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Chapter 3: Constitutive modelling of materials using Abaqus

The constitutive modelling of materials using Abaqus is explained in Section 3.1 and Section

3.2 for the concrete and steel reinforcement, respectively.

3.1 Concrete

Section 3.1.1 explains the Hognestad parabola used to describe the uniaxial compression
behaviour of the concrete. Section 3.1.2 describes the fracture energy model and the bilinear
stress-strain data assumed to describe the uniaxial tension behaviour of the concrete. Section
3.1.3 presents the Concrete Damaged Plasticity material model used to describe the plastic

behaviour of the concrete.

3.1.1 Uniaxial compressive behaviour

The uniaxial compressive behaviour of concrete was modelled using the Hognestad parabola
(Hognestad, 1951). The uniaxial compressive stress-strain data modelled by the Hognestad
parabola is shown in Figure 3.1. The stress-strain data is assumed linear-elastic until 40-percent
of the compressive strength, f,', which is denoted by a,.,. The modulus of elasticity for the linear-

elastic stress-strain data, E, is given by
E. =5000,/f; . (Sl units: N, mm) (3.1)

Past the linear-elastic region, the stresses given by the Hognestad parabola are calculated as a
function of strain by

— (sc) (ec>2 (3.2)
o. = f¢ . ., .
where &, is the strain at peak stress given by
£ = 2= . (3.3)

The modulus of elasticity tangent to the parabola at the origin, E;, is given by

E; = 5500y/f! . (S units: N, mm) (3.4)
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Figure 3.1: Hognestad parabola for defining concrete compression uniaxial stress-strain data

3.1.2 Uniaxial tensile behaviour

The uniaxial tensile behaviour of concrete was assumed linear-elastic until the concrete reaches
its tensile strength, f;, as shown in Figure 3.2. The linear-elastic modulus of elasticity E, is the
same as that calculated for linear-elastic concrete in compression. The strain-softening stress-
strain data was assumed to be bilinear as proposed by Petersson (1981). The area under the
strain-softening stress-strain data was assumed to be equal to the concrete’s fracture energy, Gy.
The fracture energy model as proposed by Hillerborg, Modeer, and Petersson (1976) is the

energy required for a unit area of concrete to fracture in tension.
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Figure 3.2: Typical concrete tensile uniaxial stress-strain data
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Two fracture energy models were explored in analyses that were provided in Model Code 1990

and Model Code 2010. Model Code 1990 predicts the fracture energy based on the equation

Gr = Gp, (fc—m>07 (Sl units: N, mm) (3.5)

fcmo

where G, is the base value of the fracture energy which is dependent on the maximum aggregate

Size dpax fom 1S the mean value of concrete compressive strength, and f.,,, is equal to 10 MPa.

The base value of the fracture energy, G, is determined using Table 3.1.

Table 3.1: Base values of fracture energy G, as per Model Code 1990

d gy (MM) Gr, (Nmm/mm?)
8 0.025
16 0.030
32 0.058

The mean value of concrete compressive strength, £, is expressed as a function of the

characteristic compressive strength, f,:

fem = fex + Af (3.6)

where Af is equal to 8 MPa. The characteristic compressive strength, f.,, was calculated using

the relationship proposed by Reineck, Kuchma, Kim, and Marx (2003):
fex = fd —1.6 MPa. (SI units: N, mm) (3.7)
Model Code 2010 predicts the fracture energy using the expression

Gr = 73(fer)®® . (SI units: N, mm) (3.8)

3.1.3 Concrete Damaged Plasticity

The Concrete Damaged Plasticity model from Abaqus was used to model the concrete’s plastic
behaviour. This model assumes a non-associated potential plastic flow. The Concrete Damaged
Plasticity model uses the yield function proposed by Lubliner, Oliver, and Ofiate (1989) with

modifications by Lee and Fenves (1998). The modifications account for different evolutions of

strength under tension compared to compression through hardening variables g”fl and g”fl, which
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are the equivalent plastic tensile and compression strains, respectively (Dassault Systemes,
2012).

The yield function is expressed as

F= ﬁ (C_I - 36!}5 + ﬁ(‘iﬁ)(gmax> - V<_3max)) - Ec(gfl) =0 (3.9)

where

_ (opo/0c0) — 1

D A (310
_ UC(Npl)
B = D) 1-a)-(1+a), (3.11)
3(1_ c)
=K -1 (3.12)

In these expressions: g,,,, is the maximum principal effective stress; a,,/0,, is the ratio of
initial equibiaxial compressive yield stress to initial uniaxial compressive yield stress; K, is the

ratio of the second stress invariant on the tensile meridian, qry), to the second stress invariant

on the compressive meridian, g.ca, which is calculated at initial yield for any hydrostatic stress
provided that the maximum principal stress is negative; at(”pl) is the effective tensile cohesion

stress; and ac( Npl) is the effective compressive cohesion stress (Dassault Systemes, 2012).

The flow potential function, G, uses the Drucker-Prager hyperbolic function

G = \/(an tany)? + g2 —ptany (3.13)

where €(6, f;) is the eccentricity which defines the rate at which the function approaches its

asymptote, a;,(6, f;) = atl.é?z is the uniaxial failure tensile stress obtained from user-

=0,P'=0
defined tension-stiffening data, ¥ (6, f;) is the dilation angle in the hydrostatic versus deviatoric
(i.e. p versus q) stress plane at high confining pressures, p is the average of hydrostatic stresses,

and q is the equivalent effective stress.
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3.2 Steel reinforcement

The steel reinforcement stress-strain data used for finite element analyses was that which was
provided alongside published unbalanced moment specimen test data. When stress-strain data
was not provided, it was obtained from other publications that used reinforcing bars that were

manufactured to the same or equivalent specification (e.g. ASTM A615-68).

The stress-strain data was converted from engineering stress-strain to true stress-strain before it
was for analysis in Abaqus. For a stress-strain data set, the true strain was obtained using the

equation
& =In(1+¢,) (3.14)

where &, is the true strain and ¢, is the engineering strain. The true stress was obtained using

the equation
o, =0,(1+¢,) (3.15)
where a; is the true stress and o, is the engineering stress.

The hardening rule used for the steel reinforcement was isotropic. This was done by user error.
The kinematic hardening rule would have been more appropriate to account for the Bauschinger
effect in which tensile strain hardening would cause a decrease in compressive strength.
Similarly, compressive strain hardening would cause a decrease in tensile strength. Although
steel reinforcement may occasionally be loaded, unloaded, then reloaded in the opposite
direction, the reinforcement would not yield until the final load step. As such, the finite element
analyses were not sensitive to the type of hardening rule used. If the finite element model is
further developed to analyse cyclically-loaded specimens (e.g. when simulating a seismic

event), a kinematic hardening rule should be used.

The steel reinforcement was perfectly bonded to the concrete using the embedded constraint
within Abaqus. This constraint interpolates the reinforcement’s translational degrees of freedom
(DOF) using the values of the concrete’s corresponding DOF. The embedded constraint
accounts for concrete-steel bond-slip through the failure of concrete elements adjacent to the
reinforcing bars (Earij, Alfano, Cashell, & Zhou, 2017).
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Chapter 4: Preliminary parameters of finite element models

To calibrate parameters for the numerical modelling of slab-column connections, a preliminary
set of parameters were selected and used to model interior slab-column sub-assemblages tested
by Ghali et al. (1976). The preliminary parameters were either assumed based on information
published by Ghali et al. or based on previous numerical modelling research conducted by
Genikomsou (2015) at the University of Waterloo. These parameters were subsequently
changed and their effects were studied. Final values for the finite element model parameters

were chosen that best reproduced behaviour observed during laboratory testing.

In Section 4.1, background information is provided on the specimens tested by Ghali et al.
(1976). Section 4.2 provides an overview of the preliminary parameters within the finite element
models as well as the reasoning for each parameter. Section 4.3, Section 4.4, and Section 4.5
describe the boundary conditions, concrete properties, and reinforcement properties used within

the finite element models.

4.1 Tests of interior connections by Ghali, EImasri, and Dilger (1976)

Ghali et al. (1976) tested six specimens to study the effects of dynamic lateral loading on slab-
column connection strength and deformation. They tested three specimens named SM 0.5, SM
1.0, and SM 1.5 which had tension reinforcement ratios of 0.5-percent, 1.0-percent, and 1.5-
percent, respectively. For each specimen, the compression reinforcement ratio was one-third of
the tension reinforcement ratio. The columns of these specimens were subjected to a constant
axial force of 129 kilonewtons (kN). While maintaining this axial force, a moment
displacement-couple was applied through the column and gradually increased until failure. The
applied moment was increased by 6.4 centimeters at 6 minute intervals. The remaining three
specimens were named DM 0.5, DM 1.0, and DM 1.5. The DM specimens were identical to the
SM specimens except the moment was applied at a rate of 6.4 centimeters every 0.1 seconds. In
this work, only specimens SM 0.5, SM 1.0, and SM 1.5 are studied.

All specimens used 1830 mm by 1830 mm square slabs without transverse reinforcement. The
slabs were 152 mm thick with a cover of 19 mm. The edges of the slabs represented the lines of
contraflexure within a flat plate system when subjected to uniform gravity loading. The

specimens were tested on their sides such that their column axis was parallel to the laboratory
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floor. Little information about the support conditions was provided. Ghali et al. stated that the
four slab edges were allowed to rotate but not translate. The corners of the slabs were
unrestrained to allow for lifting under axial loading. However, it was not stated how much of
each corner was unrestrained. Other specimens tested at the University of Calgary by Langohr,
Ghali, and Dilger (1976) showed neoprene bearing pads between the load frame and the slab. It

was assumed that neoprene bearing pads were also used when testing the SM specimens.

Each specimen used a 305 mm by 305 mm square column with a reinforcement ratio of 4.25-
percent. The spacing and size of the columns’ transverse reinforcement were not stated in the
publication by Ghali et al. The distance between the two ends of the column stubs was 1170
mm. Specimens SM 0.5, SM 1.0, and SM 1.5 had concrete compressive strengths of 36.8 MPa,
33.4 MPa, and 40.0 MPa, respectively. No. 4, Grade 60 deformed bars with a yield stress of

475.7 MPa were used for both slab and column longitudinal reinforcement.

4.2 Overview of parameters

The specimen geometries were modelled as described by Ghali et al. (1976), which included:
the column dimensions; slab dimensions; and the slab longitudinal reinforcement areas, depths
and spacings. The compressive strength and yield stress of the concrete and steel reinforcement,

respectively, were provided. These parameters were not modified or studied.

The preliminary concrete uniaxial compression and tension stress-strain data were obtained
using the same material models used by Genikomsou (2015). A concrete density of 2,400
kg/m3. The Hognestad parabola (Hognestad, 1951) was used to produce uniaxial compression
stress-strain data using only the concrete’s compression strength. The concrete uniaxial tension
stress-strain data was assumed linear-elastic until reaching the concrete’s tensile strength, which
was assumed to be equal to 0.33/1\/E . This tensile strength expression was selected because it
was used to derive the concrete web-shear strength equation within Section 22.5.8.3.2 of ACI
318-19. This derivation is presented in SP-010: Commentary on Building Code Requirements
for Reinforced Concrete (ACI 318-63) (ACI Committee 318, 1965). The concrete’s tension
stiffening stress-strain data was modelled using Petersson’s bilinear model (1981) and the
fracture energy was determined using the equation from Model Code 1990 (Comité Euro-
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International du Béton, 1993). The preliminary steel stress-strain data was assumed to be linear-

elastic-perfectly-plastic.

The loads acting on the column were as provided by Ghali et al. (1976) and were not modified.
In the preliminary finite element models, half of the length of the slab sides were restrained from
vertical translation. The corners of the slabs were unrestrained to allow for the corners to lift
under loading. The low tensile strength of the restrained concrete elements meant that the
elements would fail under low loads and allow the slab to lift and rotate. However, the failure
of these elements influenced the shape of the crack patterns. As such, different support lengths
were studied to determine the length that produced crack patterns that best resembled those

observed during laboratory testing.

As per Genikomsou’s research (2015), the concrete geometries were meshed with C3D8R
(continuum three-dimensional, 8-noded elements with reduced integration) with an element size
of 20 mm. The longitudinal reinforcement mats were meshed with T3D2 (truss three-
dimensional, 2-noded elements) with an element size of 20 mm to match the element size of the
concrete. A reinforced concrete one-way slab example from the Abaqus documentation stated
that if reduced-integration linear elements were used (such as the C3D8R element type) then at
least four elements should be used through the depth of the slab to adequately capture the
bending response within the model (Dassault Systemes, 2012). As such, various concrete
element sizes were selected to produce different numbers of elements through the depths of the

slabs. The element size which best captured the bending response was selected.

4.3 Boundary conditions

The boundary conditions used for the FE analyses of all SM specimens are presented in Figure
4.1. Only half of each specimen was analysed due to specimen symmetry. At the plane of
symmetry, rotation about the x- and z- axes were restrained and displacement in the y-direction
was restrained. In the same plane, the centroid of the concrete was restrained from translating
in the x-direction. This was done to prevent any lateral movement of the concrete. Half of each
slab edge was restrained from translating in the z-direction. In the first analysis step, a pressure
equivalent to 64.5 kN was linearly ramped and applied to the top face of the top column stub.

In the second analysis step, the vertical load was maintained and no additional forces were
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applied. In the third analysis step, 30 mm displacements were linearly ramped at the top and
bottom ends of the column stubs in equal and opposite directions until failure. The distance
between the ends of the two column stubs was 1.17 meters. The column dimension was 305 mm

by 305 mm. The dimension of the slab was 1830 mm by 1830 mm.

; F,=-64.5kN
Ux =30 mm
<t 0,=0,= UV =9
u,=0 = = 7
, 2 e
// _/7 : » = )
: —= o
= < 9’\"«\
k—457 mm / \
U, =0mm

<« U, =-30 mm XJ-OY

Figure 4.1: Boundary conditions used for FE analyses of SM specimens

4.4 Concrete properties
The concrete mesh used for the FE analyses of the SM specimens is shown in Figure 4.2. The

concrete slab and column were meshed with C3D8R continuum elements with an element size

of 20 mm.

Figure 4.2: Concrete mesh used for FE analyses of SM specimens

A Poisson’s ratio of 0.2 was used for the concrete. The concrete compression and tension stress-

strain data are presented in Figure 4.3 and Figure 4.4, respectively.
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Linear-elastic data

Specimen E. (MPa) Eco 0c, (MPa) g O -

SM 0.5 30,319 0.0005 14.71 ‘

SM 1.0 28,879 0.0005 13.34 < . :

SM 1.5 31,614 0.0005 15.99 L ‘

Plastic data E
D g.0F---

Specimen E; (MPa) & f! (MPa) i |

SM05 33351 0.0022 36.77

SM 1.0 31,767 0.0021 33.36 j

SM 15 34,776 0.0023 39.98 L & £

Strain (mm/mm)

Figure 4.3: Compression stress-strain data used for FE analyses of SM specimens

Linear-elastic data

Specimen E. (MPa) Eor fi (MPa) [ — )
SM 0.5 30,319 0.0001 2.00 : o= g—"
SM 1.0 28,879 0.0001 1.91 : ¢
SM15 31614  0.0001 2.09 7 e = 0BGy
= H fele E.
Plastic data a E 3.6G; f!
Specimen Gy (N/mm) & & % , ; fu = ft'ch +£_tc
SM05  0.39 00029 0.0127 SV I
SM 1.0 0.136 0.0030 0.0131 VT
SM 1.5 0.141 0.0028  0.0124
Eer €1 Eu

Note: Element length [, is equal to 19.70 mm Strain (mmimm]

Figure 4.4: Tension stress-strain data used for FE analyses of SM specimens
The concrete material assignments used for all SM specimens are shown in Figure 4.5. Most of
the concrete slab elements included the Concrete Damaged Plasticity material model. A dilation
angle ¥ of 40-degrees was used based on research by Genikomsou (2015). Default values from
Abaqus were used for: the default flow potential eccentricity, €, was equal to 0.1, the ratio of
initial equibiaxial compressive yield stress to initial uniaxial compressive yield stress, a5,/ 0.0,
was equal to 1.16, and the ratio of the second stress invariant on the tensile meridian to that on
the compressive meridian, K., was equal to 2/3 (Dassault Systemes, 2012). More information

about these parameters is presented in Section 3.1.3.

The edge of the slab used linear-elastic elements to prevent tension failures of the restrained
elements. Tension stresses were present within these elements because the slab edge lifted when

moments were applied. The concrete column used stiffened linear-elastic elements to reproduce
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the confinement effects of the stirrups on the concrete. For each specimen, the column E,. values

were the same as those presented in Figure 4.3.

1 Linear-elastic

2 | | Concrete Damaged Plasticity

o

Figure 4.5: Concrete material assignments for FE analyses of SM specimens

4.5 Reinforcement properties

All steel reinforcement was meshed using T3D?2 truss elements with an element size of 20 mm.
The compression and tension slab flexural reinforcement properties, including reinforcement
spacing and areas, are presented in Table 4.1 and Table 4.2, respectively. The column
longitudinal reinforcement ratio was 4.25-percent. The column stirrups were not modelled using
truss elements because the size and spacing of the stirrups were not included in the publication
by Ghali et al. (1976). Instead, the confining effects of the stirrups were reproduced using linear-
elastic concrete elements with higher modulus of elasticity values (i.e. ten times the modulus of
elasticity of the slab concrete).

Table 4.1: Compression reinforcement properties for FE analyses of SM specimens

. x-direction y-direction
Specimen - -
Depth Spacing Area Depth Spacing Area
SM 0.5 600 mm 534 mm
SM 1.0 25 mm 300 mm 127 mm? 38 mm 264 mm 127 mm?
SM 15 198 mm 171 mm

Table 4.2: Tension reinforcement properties for FE analyses of SM specimens

. x-direction y-direction
Specimen - -
Depth Spacing Area Depth Spacing Area
SM 0.5 200 mm 178 mm
SM 1.0 127 mm 100 mm 127 mm? 114 mm 88 mm 127 mm?
SM 15 66 mm 57 mm
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The steel reinforcement stress-strain data is shown in Figure 4.6.

) ) 600
Linear-elastic data
Poisson’s ratio Modulus of elasticity 500 f
0.3 183,686 MPa - 400
s
Plastic data E 300
Strain (mm/mm) Stress (MPa) j
Yield 0.0026 476 200
Rupture 0.1135 476
100
0

0 0.02 0.04 0.06 0.08 01 012 0.14
Strain (mm/mm)

Figure 4.6: Reinforcement stress-strain data used for FE analyses of SM specimens
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Chapter 5: Calibration of finite element model parameters

The calibration of the finite element models was completed by changing model parameters and
features and studying how each change affected the finite element analyses results. The
parameters studied were specific to either the concrete, the steel reinforcement, or the overall
model. The concrete parameters included the compressive stress-strain data, fracture energy
models, dilation angles, and meshing (i.e. element sizes). The steel reinforcement parameters
included stress-strain data, reinforcement layout, and meshing (i.e. element sizes and types). For
the overall model, changes to the boundary conditions and materials at the boundary conditions

were studied.

Calibration was necessary to ensure that each model accurately reproduced the behaviours
observed during testing. Since the models would later be used for parametric studies, calibration
ensured that errors in the parametric studies were minimized and the trends observed were

correct.

The process of calibration was completed in three steps. The first step was to create finite
element models of specimens SM 0.5, SM 1.0, and SM 1.5 using the experimental data
published by Ghali et al. (1976). The starting parameters with respect to element types and sizes,
concrete material model, and dilation angle were those Genikomsou (2015) used to numerically
model specimens tested at the University of Waterloo. More information about these parameters

is provided in Chapter 4.

The second step was to change one parameter at a time and study how each change affected the
results of the models. After each study, the parameter that most accurately reproduced
experimental behaviour among the three models was selected and used in subsequent studies.
Accuracy of the models was determined by comparing the crack patterns, displacement-rotation
plots, and moment-rotation plots of the finite element analyses to those obtained through
laboratory-testing. The displacement presented is the vertical displacement of the column, which
was calculated by averaging the displacements of the nodes at the top of the column. The
rotation presented is that of the column relative to the gravity axis. Once the model parameters
were selected, the next step was to validate these parameters. This was done by creating finite

element models of other tested specimens using the calibrated parameters. Similarly, the finite
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element analyses results were compared to their respective experimental results. The parameters

were confirmed to be calibrated if the finite element analyses accurately reproduced the results

of the experiments.

Three different specimens were used to validate the model parameters: specimens XXX and
HXXX tested by El-Salakawy (1998); and specimen SB1 tested by Adetifa (2003). All three

specimens were tested at the University of Waterloo. Specimens XXX and HXXX were edge

slab-column connections loaded with a vertical load and a moment applied simultaneously on

the column. Specimen SB1 was an interior slab-column connection subjected to concentric

loading.

In this chapter, the results of the following calibration studies are presented:

1.

Within the column, the effect of the concrete modulus of elasticity on the FEA results
was studied. This was done to determine the modulus of elasticity that best reproduced
the effects of the stirrups’ confinement on the concrete.

The effects of the slab edge restraint length on the FEA results was studied. This was
done to determine the restraint length that allowed the slab corners to lift without
adversely affecting the transfer of stresses from the column to the supports.

The FEA results of three possible boundary condition modifications were studied. This
was done to determine the optimal boundary conditions that would prevent failure of the
restrained elements along the lifting slab edge.

The effects of using different fracture energy models on the FEA results were studied.
The effects of using a reinforcement layout (i.e. depth and spacing) of equivalent
moment resistance on the FEA results were studied.

The effects of the concrete element size on the FEA results were studied.

The effects of the reinforcement element size and type on the FEA results were studied.
The effects of the concrete dilation angle on the FEA results were studied.

The effects of self-weight on the FEA results were studied.

. The effects of reducing the concrete tangent modulus of elasticity, E;, on the FEA results

were studied.

. The effects of defining the reinforcement plasticity using strain-hardening versus

perfectly-plastic stress-strain data on the FEA results were studied.
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5.1 Modelling of column concrete confinement

The first study was done to determine how to model the column concrete confinement provided
by the column stirrups. Without stirrups, the column concrete expands transversely under axial
loading as per the Poisson effect. When stirrups are present, the stirrups restrict this expansion.
This restriction increases aggregate interlock, which increases the column’s stiffness and shear
capacity.

Stirrups were not included in any of the three finite element models for two reasons. First, the
stirrup sizes and spacings were not provided in the publication by Ghali et al. (1976). Second,
the increased stiffness resulting from transverse concrete confinement is not possible to model
solely using embedded stirrups. The embedded stirrups are able to reproduce the lateral
confining pressures caused by axial loads. However, the confining pressures do not affect the
concrete’s stiffness in the column’s longitudinal direction. As a result, it is common practice to
use different stress-strain models to define the confined concrete’s uniaxial behaviour (e.g.
Dabaon, El-Khoriby, EI-Boghdadi, & Hassanein, 2009; Hu, Huang, Wu, & Wu, 2003).

In this work, the increased stiffness and capacity is modelled by modifying the column concrete
material properties. The stiffness is increased by defining a higher modulus of elasticity. The
column capacity limit is removed by modelling the column concrete as a linear elastic material.
Using linear elastic column concrete ensures that the column does not fail even under the large
moments applied during the parametric studies. Also, fewer computational resources are used
by defining elastic elements instead of plastic elements. This means that analyses can be
completed in a shorter duration.

Three different values for the column concrete modulus of elasticity were analysed and
compared. It was expected that increasing the modulus of elasticity would only affect the FEA
results up to a certain value. At this value, rigid body motion of the column would occur. The
first modulus of elasticity analysed was the unmodified modulus of elasticity calculated using
the Hognestad compression material model (i.e. one times the unstiffened modulus of elasticity).
The second modulus of elasticity analysed was 200 gigapascals (GPa), which is the typical
modulus of elasticity of steel. The third modulus of elasticity analysed was ten times the
modulus elasticity calculated using the Hognestad compression material model. The latter two
modulus of elasticity values were chosen arbitrarily.
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5.1.1 Results of specimen SM 0.5 analyses

For specimen SM 0.5, three values for the column modulus of elasticity were studied: 30,319
MPa; 200,000 MPa; and 303,191 MPa. The moment-rotation and displacement-rotation data for
the three analyses are presented in Figure 5.1. The moment-rotation data is expressed in
kilonewton-meters (kNm) and milliradians (mrad). The displacement-rotation data is expressed
in millimeters (mm) and milliradians (mrad). A summary of these results are shown in Table
5.1.

The three finite element analyses showed greater rotational stiffness compared to the laboratory-
tested specimen. All three analyses underestimated the moment capacity of the experiment. The
percentage differences between analyses E = 30,319 MPa, E = 200,000 MPa, and E = 303,191

MPa and the experiment were 3.5-percent, 7.6-percent, and 7.8-percent, respectively.

All three analyses showed similar rotational responses under the applied moment. However, the
E = 30,319 MPa analysis curve plateaued past 13 mrad. This indicated that the steel had yielded.
The E = 200,000 MPa and E = 303,191 MPa models produced near-identical moment-rotation
data. The moment capacity difference between the two stiffer analyses was negligible. The
percentage differences in moment capacities between analyses E = 30,319 MPa, E = 200,000
GPa, and E = 303,191 MPa and the experiment were 18.8-percent, 13.9-percent, and 14.9-
percent, respectively. The experiment moment-rotation data showed less rotational stiffness
compared to the three analyses. The differences in moment capacity and rotational stiffness

indicated that further model calibration was required.

All three models produced displacement-rotation results with near-identical slopes. The E =
30,319 MPa analysis had a lower ultimate displacement of 9.4 mm as it failed at a lower applied

moment compared to the two other analyses.
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Figure 5.1: Specimen SM 0.5 a) moment-rotation and b) displacement-rotation data using
varying values for column modulus of elasticity

Table 5.1: Specimen SM 0.5 analyses results using varying column moduli of elasticity E

Ultimate moment Displacement (mm) Rotation (mrad)
(KNm) at ultimate moment  at ultimate moment
Analyses
E = 30,319 MPa 82.1 9.4 19.9
E = 200,000 MPa 86.2 10.3 22.6
E = 303,191 MPa 85.4 10.0 21.4
Experiment 99.1 10.9 36.9

The experiment crack patterns and the crack patterns of the three analyses are shown in Figure
5.2. The crack patterns of the analyses were studied using the maximum principal plastic strain
contour plots. These contour plots are useful for studying concrete cracks because any value
greater than zero indicates that a crack has formed. This is because cracking occurs as soon as
a concrete element in tension meets the yield criterion. Furthermore, an elements maximum
principal plastic strain is proportional to the elements crack width. This is convenient for
differentiating between small cracks, which are caused by the redistribution of tension stresses
from the concrete to reinforcement, and large cracks, which caused by stress concentrations. For
any analysis, using the largest strain value for the contour plot upper limit makes it difficult to
see the smaller cracks represented by smaller strains. The upper limit was reduced independently
for each contour plot to better observe both small and large cracks. For each analysis, the strains

plotted are those produced when the 129 kN vertical load and the ultimate moment are applied.
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Based on the cracks that formed around the column on the top face, using a softer column (E =
30,319 MPa) resulted in lower shear stresses within the compression region and higher shear
stresses within the tension region compared to using a stiffer column (E = 200,000 MPa and E
= 303,191 MPa). These higher tensile stresses caused the steel reinforcement to yield under a
lower applied moment within the softer column analysis compared to the stiffer column
analyses. The flexural failure mode of these analyses is consistent with the failure mode
described by Ghali et al. (1976) of the laboratory-tested specimen.

All FEA crack patterns for the slab top faces showed cracks propagating from the column faces
toward the supports and the slab corners. These diagonal cracks matched those observed during
laboratory-testing. All FEA crack patterns showed concentrations of cracks around the columns,

which are also part of the experiment crack patterns.

On the bottom face, the analyses showed cracks propagating from the tension column face
towards the bottom left and bottom right edges. Additional vertical cracks were visible from the
tension column face to the slab supports. These cracks were present in the experiment crack
patterns. All FEA crack patterns showed cracking around the column that matched the
experiment crack patterns. The stiffer column analyses showed similar cracking to the softer

column analysis except with larger crack widths (i.e. larger strains).
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Figure 5.2: Specimen 80.5 experimnt (Ghali etal., 1976) and analyses crc attrns using
varying values for modulus of elasticity E. Authorized reprint of experiment photographs
from ACI Journal, Volume 73, Issue 10, October 1976.

69



5.1.2 Results of specimen SM 1.0 analyses

For specimen SM 1.0, three values for the column modulus of elasticity were studied: 28,880
MPa; 200,000 MPa; and 288,795 MPa. The moment-rotation and displacement-rotation data for
the three analyses are presented in Figure 5.3. A summary of these results are shown in Table
5.2.

The moment-rotation data of the three analyses had similar slopes to one another. The higher
moment capacity attained when using a softer column (rather than a stiffer column) was due to
differences in stress distribution. The softer column produced higher shear stresses on the top
face tension region and lower shear stresses on the top face compression region. These same
stress distribution differences were observed among the SM 0.5 analyses. Contrary to the SM
0.5 analyses, the SM 1.0 analyses showed an increase in moment capacity when a softer column
was used. This was because the SM 1.0 specimen had more reinforcement present to resist larger
moments before yielding. The added reinforcement changed the failure mode from steel yielding

to concrete crushing.

For the softer column analysis, the slope of the moment-rotation data decreased at a higher rate
compared to the stiffer column analyses. This is due to the progressive failure of the restrained
concrete elements along the slab edges. Under an applied moment, the elements on one side of
the slab resist stresses caused by the slab lifting and the elements on the other side of the slab
resist stresses caused by the slab lowering. Elements resisting lifting stresses would fail early
due to concrete’s low tensile strength. As an element would fail, additional stresses would be
carried by adjacent elements. The stiffness of this slab edge decreased as the number of failed
elements increased. This decreased stiffness caused the edge to lift more in the softer column
analysis compared to the stiffer column analyses under the same applied moment. The slope
discontinuity visible at 7.6 mrad was caused by lifting stresses being redistributed from the
lifting slab edge to the adjacent slab edge. This redistribution is reflected in the displacement-
rotation data as the displacement-rotation slope appears to decrease after 7.6 mrad. This was
because the vertical displacement, which until 7.6 mrad only considered downward
displacement of the column stub, now being offset by the upward displacement of the lifting

slab edge. Possible solutions to prevent lifting edge failure are presented in later sections.
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The three finite element analyses showed greater rotational stiffness compared to the laboratory-
tested specimen. All three analyses underestimated the moment capacity of the experiment. The
moment capacity percentage differences between analyses E = 28,880 MPa, E = 200,000 MPa,
and E = 288,795 MPa and the experiment were 3.5-percent, 7.6-percent, and 7.8-percent,

respectively.

All three analyses produced similar displacement-rotation results. At the ultimate moments, the
E = 28,880 MPa, E = 200,000 MPa, and E = 288,795 MPa analyses had displacements within
0.2 mm of each other. However, these analyses underestimated displacements by over three
times compared to the experiment. With respect to rotations, the softer column analysis had the
highest rotation of 13.2 mrad as it failed under a larger moment compared to the stiffer column
analyses. However, the ultimate rotation percentage difference between the softer column

analysis and the experiment was 68.7-percent.
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Figure 5.3: Specimen SM 1.0 a) moment-rotation and b) displacement-rotation data using
varying values for column modulus of elasticity E

Table 5.2: Specimen SM 1.0 analyses results using varying column moduli of elasticity E

Ultimate moment Displacement (mm) Rotation (mrad)
(KNm) at ultimate moment  at ultimate moment
Analyses
E = 28,880 MPa 122.7 3.7 13.2
E = 200,000 MPa 117.8 35 11.2
E = 288,795 MPa 117.5 3.5 11.0
Experiment 127.1 10.8 27.0
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The crack patterns of the three analyses are shown in Figure 5.4. Experimental crack patterns
for specimen SM 1.0 were not published. However, since the failure mode was the same for
specimens SM 1.0 and SM 1.5, the crack patterns were expected to be similar. This prediction

will be verified when analysing the SM 1.5 crack patterns.

Few differences were evident between the softer column analysis and the stiffer column
analyses. All the analyses formed crack concentrations around the columns. On the top face, all
analyses showed cracks propagating from the top column face in an “x” shape toward the slab
edges. On the bottom face, all analyses showed that cracks had formed from the bottom face in
the direction of the bottom slab corners. These cracks stopped one-third of the distance from the

column to the slab corners.

The softer column analysis had higher strains at the lift-resisting slab edge (0.099) compared to
the stiffer column analyses (0.065 and 0.073 for analyses E = 200,000 MPa and E = 288,785
MPa, respectively).
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Figure 5.4: Specimen S 1.0 analyss crack patterns using varying values for modulus of
elasticity E
5.1.3 Results of specimen SM 1.5 analyses
For specimen SM 1.5, three values for the column modulus of elasticity were studied: 31,615
MPa; 200,000 MPa; and 316,145 MPa. The moment-rotation and displacement-rotation data for
the three analyses are presented in Figure 5.5. A summary of these results are shown in Table
5.3.

The same trends among the SM 1.0 analyses were observed for the SM 1.5 analyses. First, the

moment-rotation data of the three analyses had similar slopes to one another. Second, the softer
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column analysis had the highest moment capacity among the analyses. The reason for this was
the same as it was for the SM 1.0 analyses: a softer column produced higher shear stresses in
the top face tension region and lower shear stresses in the top face compression region. Third,
the lift-resisting slab edge failed due to these increased stresses in both the E = 31,615 MPa and
E = 200,000 MPa analyses. As with the SM 1.0 analyses, this failure caused a decrease in
rotational stiffness. The moment capacities of all analyses were similar; all moment capacities
were within 1.5-percent of one another. All three analyses over-predicted the moment capacities
of the laboratory-tested specimen. The largest percentage difference was 18.7-percent for
analysis E = 31,615 MPa and the smallest percentage difference was 17.2-percent for analysis
E = 200,000 MPa. Each of the three analyses had a rotational stiffness greater than that of the

laboratory-tested specimen.

All three analyses produced similar displacement-rotation results. At the ultimate moments, all
three analyses had displacements within 0.3 mm of each other. All analyses had much lower
displacements when their respective ultimate moments were applied. The E = 316,145 MPa
analysis had the largest displacement of 2.0 mm, while the laboratory-tested specimen had a

displacement of 11.3 mm.

As discussed, the analyses had stiffer moment-rotation data compared to the laboratory-tested
specimen. This resulted in lower rotations at ultimate moments. The softer column analysis had
the highest rotation among the analyses of 14.1 mrad since it failed under a higher applied
moment. However, this is almost half of the laboratory-tested rotation at ultimate moment which

was 20.1 mrad.
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Figure 5.5: Specimen SM 1.5 a) moment-rotation and b) displacement-rotation data using
varying values for column modulus of elasticity E

Table 5.3: Specimen SM 1.5 analyses results using varying column moduli of elasticity E

Ultimate moment Displacement (mm) Rotation (mrad)
(kNm) at ultimate moment  at ultimate moment
Analyses
E = 31,615 MPa 158.6 1.7 14.1
E = 200,000 MPa 156.3 1.8 12.6
E = 316,145 MPa 157.2 2.0 12.1
Experiment 131.5 11.3 20.1

The experiment and analyses crack patterns are shown in Figure 5.6. Among the top face crack
patterns, all analyses showed cracks propagating from the left, top, and right column faces
toward the slab edges and corners. These cracks were present in the experiment crack patterns.
Each analysis had crack concentrations around the column. The maximum principal plastic
strain occurred at the lift-resisting slab edge for all analyses. Based on these strains, all analyses
observed failure of some, if not all, lift-resisting concrete elements. The softer column analysis
(E = 31,615 MPa) had the highest maximum strain of 0.182. This was expected based on
previous observations: softer column analyses have different slab stress distributions compared

to stiffer column analyses.

Among the bottom face crack patterns, all analyses had cracks form from the bottom column
face to the bottom slab edge. Additional cracks were visible forming from the bottom column

face toward the bottom left and right corners; however, these cracks stopped one-third of the
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distance between the column and slab edge. The bottom face experiment crack pattern published
focused on the top face of the column. Therefore, it is not known if the observed crack patterns
are representative of experiment crack patterns. However, all analyses did have crack

concentrations at the top column as shown in the experimental crack patterns.

The crack patterns of the SM 1.5 analyses showed many similarities to the crack patterns of the
SM 1.0 analyses in Figure 5.6. This was expected as the two specimens shared the same failure

mode.
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Figure 5.6: Specimen SM 1.5 experiment (hali etal., 1976) and analyses crack patter using varying
values for modulus of elasticity E. Authorized reprint of experiment photographs from ACI Journal,
Volume 73, Issue 10, October 1976.
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5.1.4 Conclusions and recommendations
The concrete confinement of the column concrete was adequately modelled by increasing the
modulus of elasticity of the concrete. There were clear differences in moment-rotation data and

crack patterns between using a lower modulus of elasticity compared to a higher one.

Using a modulus of elasticity equal to that calculated using the Hognestad material model
resulted in higher shear stresses in the top face tension region and lower shear stresses in the top
face compression region. This stress distribution resulted in a lower moment capacity for
specimen SM 0.5. This was because specimen SM 0.5 failed due to flexural yielding and the
increased tensile stresses caused flexural yielding to occur under a lower applied moment. The
opposite effect was had for specimens SM 1.0 and SM 1.5. The failure mode of these specimens
is concrete crushing. Since these specimens had more flexural reinforcement compared to
specimen SM 0.5, the increased tensile stresses were not enough to cause the steel to yield before
the concrete crushed. Furthermore, the decreased compression stresses when using a softer
column meant that more moment could be applied before the compression elements around the

column failed.

The difference in stress distribution when using a softer column compared to a stiffer column
resulted in increased stresses among the lift-resisting slab edge elements. This lead to failures
in the support elements for the softer column analyses of specimens SM 0.5 and SM 1.0. The
specimen SM 1.5 analyses experienced partial or full failure of the support elements regardless
of the column modulus of elasticity. The possible boundary conditions to prevent this failure are

studied in later sections.

There were negligible differences between using a modulus of elasticity of 200,000 MPa and
using a modulus of elasticity that is ten-times the modulus of elasticity calculated using the
Hognestad material model. Both moduli of elasticity adequately replicated the effects of
concrete confinement. Therefore, ten-times the Hognestad modulus of elasticity was used to

model the column concrete for subsequent analyses.

5.2 Study of corner boundary conditions
A number of finite element analyses were conducted to determine how to best model the

boundary conditions at the slab corners. Ghali et al. (1976) stated that the corners of the slabs
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were unrestrained to allow them to lift under load. This meant that the support restraints along
the slab edges stopped some distance short of the slab corners. However, the length of the
support restraints was not provided. This length is henceforth referred to as the support length.

To determine the support length, eight finite element models were analysed using four different
support lengths. The support lengths were chosen arbitrarily and expressed as fractions of the
total slab edge. The names of the analyses and their support lengths, expressed both as lengths
and as fractions of the slab edge, are presented in Table 5.4. The BC1 through BC4 analyses
and the BC1-E through BC4-E analyses used the same set of support lengths. However, the
analyses with the “-E” suffix did not have any restraints on the slab edge perpendicular to the

moment axis. The boundary conditions of the analyses are presented in Figure 5.7.

The reason for conducting analyses BC1-E through BC4-E was to observe how the analysis
rotational stiffness changed when the slab edge was free to follow the curvature produced by

the applied moment.

Table 5.4: Support lengths analysed for corner boundary condition study
Support length Fraction of slab edge

Analysis name Ls (mm) supported
BC1 and BC1-E 915 12
BC2 and BC2-E 1373 3/4
BC3 and BC3-E 1525 5/6
BC4 and BC4-E 1830 1
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b)

Figure 5.7: Boundary conditions used for analyses a) BC1 through BC4 and b) BC1-E
through BC4-E

The expectation among these analyses was that neither the moment-rotation nor the
displacement-rotation would change with varying support lengths. However, the crack patterns
were expected to change. The reason for this is attributed to the low tensile strength of the
concrete. The restrained corner elements would fail under a low applied moment and would
become inactive. As inactive elements, they would not prevent the lifting of the slab corners.
For this reason, the boundary conditions that produced crack patterns most similar to the

experiment were selected and used in subsequent studies.

5.2.1 Results of specimen SM 0.5 analyses

5.2.1.1 Results of analyses BC1 through BC4
The moment-rotation and displacement-rotation data for specimen 0.5 analyses BC1 through

BC4 are presented in Figure 5.8. A summary of this data is provided in Table 5.5.

All four analyses produced similar moment-rotation data. During analysis BC1, flexural failure
occurred under a lower applied moment compared to the other analyses. This was because
analysis BC1 did not have enough restrained support elements to resist the lifting forces caused
by the applied moment. The failure of the lift-resisting support elements lead to the formation
of a plastic hinge at the column face away from the failing elements. Along the plane of
symmetry, there were concentrations of maximum principal plastic strains at the failing slab
edge and the plastic hinge. The maximum principal plastic strain contour plot of the specimen
symmetry plane under the ultimate moment is shown in Figure 5.9. The ultimate failure of

analysis BC1 was due to the flexural reinforcement failure within this plastic hinge.
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All analyses had stiffer moment-rotation responses compared to the experiment when the
moment was only starting to be applied. Under higher moments, analyses BC2 through BC4
had moment-rotation responses of similar stiffness to the experiment. Furthermore, the ultimate
moments were similar between analyses BC2 through BC4 and the experiment. Among these
three analyses, analysis BC4 had the largest percentage difference compared to the experiment.
Analysis BC4 had an ultimate moment of 93.5 kNm and the experiment had an ultimate moment

of 99.1 kNm, which is a percentage difference of 5.8-percent.

The displacement-rotation data for analyses BC1 through BC4 were identical. All analyses
showed higher initial stiffness. Under only the vertical load, all analyses columns displaced a
distance of 0.7 mm. The experiment column displaced a distance of 7.7 mm. Throughout the
application of the moment, the analyses showed a lower displacement-rotation slope compared
to the experiment. At the ultimate moments, all analyses showed similar displacements to the
experiment. The largest difference between the analyses and the experiment was observed for
analysis BC4. The column of analysis BC4 displaced a distance of 9.9 mm while the column of

the experiment displaced a distance of 10.9 mm. This is a percentage difference of 10.1-percent.
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Figure 5.8: Specimen SM 0.5 a) moment-rotation and b) displacement-rotation data for
analyses BC1 through BC4
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Table 5.5: Specimen SM 0.5 results for analyses BC1 through BC4

Ultimate moment Displacement (mm) Rotation (mrad)
(kNm) at ultimate moment  at ultimate moment

Analyses

BC1 85.4 10.0 21.4

BC2 96.3 10.5 22.4

BC3 94.8 10.2 21.4

BC4 93.5 9.9 21.0
Experiment 99.1 10.9 36.9
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Figure 5.9: Specimen SM 0.5 analysis BC1 failure mechanism

The top face crack patterns of the experiment and analyses BC1 through BC4 for specimen SM
0.5 are shown in Figure 5.10. Among the top face crack patterns, cracks formed from the column
faces to the outermost support elements on each slab edge. Analyses BC1 and BC2 showed
cracking similar to the experiment as the cracks did not propagate to the corners. Analysis BC3
showed strain concentrations in the support elements by the slab corners. This indicated that
those outermost elements were failing due to the corner lifting under the applied moment.
Similar to analysis BC3, analysis BC4 showed significant strain concentrations in the slab

corner regions. These concentrations were not present in the experiment crack patterns.
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Figure 5.10: Specimen SM 0.5 tace experiment (Ghali et al., 976) nd analses ck
patterns for boundary condition analyses BC1 through BC4. Authorized reprint of experiment
photograph from ACI Journal, Volume 73, Issue 10, October 1976.

The bottom face crack patterns of the experiment and analyses BC1 through BC4 for specimen
SM 0.5 are shown in Figure 5.11. All analyses had cracks form from the bottom column face
towards the slab edges and bottom corners. All analyses showed cracks forming from the
column faces toward the edges and the outermost restrained slab elements. As the support
lengths increase from analysis BC1 through BC4, two trends were evident. First, the maximum
principal plastic strains (i.e. cracks) forming from the bottom column face toward the left and
right slab edges decreased. Second, higher maximum principal plastic strains were present
diagonally from the bottom column face toward the outer restrained slab elements. With
increased support lengths, more edge elements were restrained, stresses to the supports were

redistributed, and therefore, the crack patterns changed.

All analyses produced bottom face crack patterns that resembled those produced during the
laboratory experiment. From the bottom column face, all analyses had the same lateral, diagonal,
and vertical cracks; only the magnitude of each of these cracks (strains) differed between
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analyses. These differences are negligible. Although larger strain magnitudes indicate larger
crack widths, the photographed experiment cracks would be closed since the specimen would
be unloaded before photographing.

a) Experiment b) Analysis BC1 c) Analysis BC2

- 2]

e) Analysis BC4

PE, Max. Principal
(Avg: 75%)

patterns for boundary condition analyses BC1 through BC4. Authorized reprint of experiment
photograph from ACI Journal, Volume 73, Issue 10, October 1976.

5.2.1.2 Results of analyses BC1-E through BC4-E

The moment-rotation and displacement-rotation data for specimen 0.5 analyses BC1-E through
BC4-E are presented in Figure 5.12. A summary of this data is provided in Table 5.6. Analyses
BCL1-E through BC4-E had moment-rotation data discontinuities that were caused by failures in
the flexural reinforcement. The removal of the slab edge restraint made it such that only one
direction of reinforcement was active throughout analyses. The added stresses in the active
reinforcement resulted in reinforcement failure occurring at a lower applied moment. The
moment-rotation slopes are similar between the “E” and non-“E” analyses until approximately

20 kNm. Past 20 kNm, it is likely that the two sets of analyses would be similar had the restrained
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slab elements used a linear-elastic material and were not able to fail. Analyses BC1-E through
BC4-E ultimately failed under lower applied moments compared to their respective BC1
through BC4 analyses. On average, the “E” analyses had ultimate moments 33-percent lower
than their non-“E” counterparts and 38-percent lower than the experiment. The moment-rotation
data of all analyses plateaued toward the end of the analyses. Unlike the non-“E” analyses, these
analyses failed in flexure. The analyses showed lower rotations at ultimate moments due to their

lower moment capacities.

Analyses BC1-E through BC4-E had higher displacements at the start of moment application
compared to analyses BC1 through BC4. Furthermore, the displacement-rotation slopes were
softer throughout the application of moment compared to the non-“E” analyses. A softer
response was expected as fewer elements were restrained to resist stresses. However, additional
softening was caused by support elements becoming inactive due to the aforementioned

crushing failure.

a) 120 b) o
100 €
E 5
£ 80
z E 10 }
< 2
c 60 <
2 5
E 5 15
S 40 =
L
20 } g 207
O 1 1 1 1 1 1 1 25 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Rotation (mrad) Rotation (mrad)
— Experiment BC1E  ----- BC2-E ———-BC3E BC4-E

Figure 5.12: Specimen SM 0.5 a) moment-rotation and b) displacement-rotation data for
analyses BC1-E through BC4-E
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Table 5.6: Specimen SM 0.5 results for analyses BC1-E through BC4-E

Ultimate moment Displacement (mm) Rotation (mrad)
(kNm) at ultimate moment  at ultimate moment

Analyses

BC1-E 65.6 23.1 25.5

BC2-E 67.4 13.5 13.2

BC3-E 67.5 12.0 11.7

BC4-E 68.4 16.3 16.4
Experiment 99.1 10.9 36.9

The top face crack patterns of the experiment and analyses BC1-E through BC4-E for
specimen SM 0.5 are shown in Figure 5.13. When the two slab edge restraints were removed,
the specimen changed from a two-way slab to a one-way slab. As such, diagonal cracking was
reduced and horizontal cracking increased. The crack patterns of analysis BC1-E most clearly

show the compressive support failure common to all analyses.
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Figure 5.13: Specimen SM 0.5 top face experiment (Ghali et al., 1976) and analyses crack
patterns for boundary condition analyses BC1-E through BC4-E. Authorized reprint of
experiment photograph from ACI Journal, Volume 73, Issue 10, October 1976.
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The bottom face crack patterns of the experiment and analyses BC1-E through BC4-E for
specimen SM 0.5 are shown in Figure 5.14. Apart from compression support failure, the cracks
from the bottom face towards the slab edges seen among the non-“E” analyses and within the
experiment did not form among the “E” analyses.
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Figure 5.14: Specimen SM 0.5 bottom face experiment (Ghali et al., 1976) and analyses
crack patterns for boundary condition analyses BC1-E through BC4-E. Authorized reprint of
experiment photograph from ACI Journal, Volume 73, Issue 10, October 1976.
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5.2.2 Results of specimen SM 1.0 analyses
5.2.2.1 Analyses BC1 through BC4

The moment-rotation and displacement-rotation data for specimen 1.0 analyses BC1 through

BC4 are presented in Figure 5.15. A summary of this data is provided in Table 5.7.

All analyses but BC1 showed identical behaviour to one another. The dissimilarities in the
analysis BC1 results were caused by the failure of the supports along its lift-resisting slab edge.
As with specimen SM 0.5, analysis BC1 had a lower ultimate moment compared to analyses
BC2 through BC4. However, this difference in ultimate moment was not as large for specimen
SM 1.0 as it was for specimen SM 0.5. This was because specimen SM 1.0 had more
reinforcement compared to specimen SM 0.5. The additional reinforcement within the slab-

column plastic hinge allowed for higher moments to be applied before ultimate failure.

Similar displacement-rotation behaviour was observed for specimen SM 1.0 as for specimen
SM 0.5. The failure of the lift-resisting slab edge elements caused the slab edge to lift. This
decreased the displacement-rotation slope because the upward column displacement due to

support failure counteracted the downward column displacement due to the column loading.
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Figure 5.15: Specimen SM 1.0 a) moment-rotation and b) displacement-rotation data for
analyses BC1 through BC4
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Table 5.7: Specimen SM 1.0 results for analyses BC1 through BC4

Ultimate moment Displacement (mm) Rotation (mrad)
(kNm) at ultimate moment  at ultimate moment

Analyses

BC1 117.5 3.5 11.0

BC2 119.8 3.7 10.6

BC3 120.1 3.7 10.6

BC4 120.5 3.6 10.5
Experiment 127.1 10.8 27.0

The crack patterns of the experiment and analyses BC1 through BC4 for specimen SM 1.0 are
shown in Figure 5.16. The cracks propagated from the column toward the outermost restrained
elements on each side of the slab. As the support length was increased, the angles between these
cracks increased. This trend was easier to observe among the bottom face crack patterns than
the top face crack patterns. The bottom face crack patterns of analysis BC1 show two groups of
cracks from the bottom column face outward toward the center of the bottom slab edge. The
angle between these groups of cracks increases in analysis BC2 through BC4 as the support

length is increased.
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a) Top face, analysis BC1 b) Bottom face, analysis BC1
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Figure 5.16: Specn SM 1.0 analyses cra patterns for boundary condition analyses BC1
through BC4
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5.2.2.2 Analyses BC1-E through BC4-E
The moment-rotation and displacement-rotation data for specimen 1.0 analyses BC1-E through
BCA4-E are presented in Figure 5.17. A summary of this data is provided in Table 5.8.

Removing the edge restraints orthogonal to the moment axis had little influence on the moment-
rotation data of the analyses. The stiffness differences between the “E” analyses and their
respective non-“E” analyses were negligible. A 5 kNm ultimate moment decrease was observed
when the edge restraints were removed. The removal of the edge restraints lead to larger
downward column displacements. As a result, some slab-column connection elements failed
due to excessive strains. This lead to a lower rotational stiffness and ultimate moment as fewer

elements were active to prevent rotations and resist forces caused by the applied moment.

All analyses showed similar displacement-rotation data to one another. Analyses BC1-E through
BC4-E showed larger vertical displacements prior to the application of moment compared to
analyses BC1 through BC4. This was expected as fewer restrained elements were present to
increase the stiffness of the slab-column connection. The displacement-rotation slopes of these
analyses were steeper than their non-“E” counterparts. The removal of support restraints
changed the specimen from a two-way slab to a one-way slab. The stresses within the elements
between the column and the now unrestrained slab edge were redistributed to the elements
between the column and the two remaining slab edge restraints. These additional stresses
resulted in more strain-softening. These decreases in element stiffness resulted in a softer

displacement-rotation response.
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Figure 5.17: Specimen SM 1.0 a) moment-rotation and b) displacement-rotation data for
analyses BC1-E through BC4-E

Table 5.8: Specimen SM 1.0 results for analyses BC1-E through BC4-E

Ultimate moment Displacement (mm) Rotation (mrad)
(KNm) at ultimate moment  at ultimate moment

Analyses

BC1-E 115.1 5.9 9.7

BC2-E 115.7 5.4 9.1

BC3-E 115.8 53 9.1

BC4-E 116.1 53 9.2
Experiment 127.1 10.8 27.0

The top face crack patterns of the experiment and analyses BC1-E through BC4-E for specimen
SM 1.0 are shown in Figure 5.18. Among both top and bottom face crack patterns, the previously
observed vertical cracks were not present after removing the slab edge. This was expected as
the cracks form perpendicular to compressive stresses and stresses were no longer being

transferred to the left and right slab edges.
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Figure 5.18: Specimen SM 1.0 analyses crack patterns for boundary condition analyses BC1-
E through BC4-E
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5.2.3 Results of specimen SM 1.5 analyses
5.2.3.1 Results of analyses BC1 through BC4

The moment-rotation and displacement-rotation data for specimen 1.5 analyses BC1 through

BC4 are presented in Figure 5.19. A summary of this data is provided in Table 5.9.

Analyses BC2 through BC4 produced identical moment-rotation and displacement-rotation
data. Analysis BC1 behaved differently due to tensile failures among its lifting edge support

elements.

The effects of the failure were visible from 5 mrad until ultimate failure. For rotations greater
than 5 mrad, the lifting edge support elements became inactive and additional stresses were
being transferred to the support elements along the edge orthogonal to the failing slab edge. The
failure of these elements caused the slab edge to lift and therefore, cause the column to move
upwards. The upward movement caused by the support failure added to the downward
displacement caused by the vertical load created a net displacement of zero. Furthermore, the

lifting of the failing slab edge caused some rigid body motion of the slab.

Unlike the BC1 analyses of specimens SM 0.5 and SM 1.0, specimen SM 1.5 did not have a
lower ultimate moment than analyses BC2 through BC4. The additional reinforcement in
specimen SM 1.5 prevented the formation of the plastic hinge observed with specimens SM 0.5
and SM 1.0. As such, the slab underwent rigid body motion through the failure of the support
elements and did not reduce the moment capacity.
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Figure 5.19: Specimen SM 1.5 a) moment-rotation and b) displacement-rotation data for
analyses BC1 through BC4

Table 5.9: Specimen SM 1.5 results for analyses BC1 through BC4

Ultimate moment Displacement (mm) Rotation (mrad)
(KNm) at ultimate moment  at ultimate moment

Analyses

BC1 157.2 2.0 12.1

BC2 158.7 2.4 11.3

BC3 158.2 2.3 11.3

BC4 159.2 2.4 114
Experiment 131.5 11.3 20.1

The top face crack patterns of the experiment and analyses BC1 through BC4 for specimen SM
1.5 are shown in Figure 5.20. As with the other specimens, increasing the support length resulted

in increased angles between the diagonal cracks which form between the column and slab edges.
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Figure 5.20: Specimen SM 1.5 top face experiment (Ghali et al., 1976) and analyses crack

patterns for boundary condition analyses BC1 through BC4. Authorized reprint of experiment
photograph from ACI Journal, Volume 73, Issue 10, October 1976.

The bottom face crack patterns of the experiment and analyses BC1 through BC4 for specimen
SM 1.5 are shown in Figure 5.21. The two vertical cracks visible in analysis BC1 became
diagonal as the support length was increased in analysis BC2. The angle between these cracks

increased with subsequent support length increases in analyses BC3 and BC4.
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Figure 5.21: Specimen SM 1.5 bottom face experiment (Ghali et al., 1976) and analyses crack
patterns for boundary condition analyses BC1 through BC4. Authorized reprint of experiment
photograph from ACI Journal, Volume 73, Issue 10, October 1976.

5.2.3.2 Results of analyses BC1-E through BC4-E
The moment-rotation and displacement-rotation data for specimen 1.5 analyses BC1-E through
BC4-E are presented in Figure 5.22. A summary of this data is provided in Table 5.10.

Analyses BC1-E through BC4-E produced similar moment-rotation and displacement-rotation
results to one another. Compared to analyses BC1 through BC4, analyses BC1-E through BC4-
E showed similar moment-rotation behaviour until failure. However, the ultimate moments of
each “E” analysis were regularly 5 kNm less than its respective non-“E” analysis. This was
consistent with the behaviour observed among the analyses for specimen SM 1.0. The
displacement-rotation data of all analyses were nearly identical. The initial displacement values
were higher than those of the non-“E” analyses as the removal of the slab edge restraint
decreased vertical stiffness. This decreased vertical stiffness was evident by the steeper

displacement-rotation data as larger moments were applied on the column.
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Figure 5.22: Specimen SM 1.5 a) moment-rotation and b) displacement-rotation data for
analyses BC1-E through BC4-E

Table 5.10: Specimen SM 1.5 results for analyses BC1-E through BC4-E

Ultimate moment Displacement (mm) Rotation (mrad)
(KNm) at ultimate moment  at ultimate moment

Analyses

BC1-E 154.6 3.9 10.4

BC2-E 154.5 3.7 9.9

BC3-E 155.2 3.7 9.9

BC4-E 156.3 3.7 9.9
Experiment 131.5 11.3 20.1

The top face crack patterns of the experiment and analyses BC1-E through BC4-E for specimen
SM 1.5 are shown in Figure 5.23. The support length had little influence on the crack patterns.
Compared to analyses BC1 through BC4, analyses BC1-E through BC4-E showed similar
horizontal cracks but no longer developed vertical cracks. This is consistent with the trends
observed for specimens SM 0.5 and SM 1.0.
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Figure 5.23: Specimen SM 1.5 top face experiment (Ghali et al., 1976) and analyses crack
patterns for boundary condition analyses BC1-E through BC4-E. Authorized reprint of
experiment photograph from ACI Journal, Volume 73, Issue 10, October 1976.

The bottom face crack patterns of the experiment and analyses BC1-E through BC4-E for
specimen SM 1.5 are shown in Figure 5.24. All analyses produced similar crack patterns to one
another. Unlike analyses BC1 through BC4, these analyses did not have as much diagonal
cracking from the bottom column faces toward the slab corners. Furthermore, unlike BC1

through BC4, any diagonal cracking did not change as the support length was increased.
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Figure 5.24: Specimen SM 1.5 bottom face experiment (Ghali et al., 1976) and analyses
crack patterns for boundary condition analyses BC1-E through BC4-E. Authorized reprint of
experiment photograph from ACI Journal, Volume 73, Issue 10, October 1976.

5.2.4 Conclusions and recommendations

Changing the support length had no influence on the moment-rotation nor displacement-rotation
responses of the finite element models. As the slabs were restrained along the bottom of their
sides, any slab edge lifting resulted in tensile strains among the restrained elements. Due to
concrete’s low tensile strength, these elements failed under low applied moments and did not
have any effect on the rotational stiffness of the models. However, the cracking of these
elements contributed to the overall crack patterns. The overall crack patterns were used to
determine which support length produced crack patterns most similar to those observed during

laboratory testing.

Removing the restraints from the slab edge orthogonal to the axis of the applied moment
influenced the displacement-rotation responses but did not influence moment-rotation
responses. The removal of these restraints made it such that only one directional reinforcement

mat was active. The increased stresses within these reinforcement elements resulted in strain
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softening and therefore, larger column displacements. The moment-rotation stiffness was not
affected; however, the added stresses resulted in flexural failures occurring prior to slab
punching failure.

A support length of 915 mm (i.e. half of the slab length) was used in subsequent calibration
analyses. This support length produced crack patterns most similar to the experiment crack
patterns. However, using this support length resulted in lifting edge support failures for all
specimens. This was because the reaction forces were too large for the few restrained elements
to carry without failing. These element failures caused the slab edge to lift. In most cases, this
caused the reinforcement within the slab-column connection to fail before punching failure
could occur. In all cases, support failure resulted in specimen behaviour that was

unrepresentative of the test behaviour.

In subsequent studies, three different options for preventing support failure were examined.
Option A was to restraint the top edges along sides of the slab parallel to the moment axis. These
restraints were in addition to the restraints along the bottom edges of the slab. Option B was to
use a linear-elastic material for the elements along the lifting side of the slab. Finally, option C
was to simultaneously add a restraint along the top of the lifting slab edge and remove the
restraint along the bottom of the lifting slab edge. This would be done between the vertical
loading step and the moment loading step.

5.3 Preventing support failure

5.3.1 Option A: restraining top of failing slab edge

This section examines the accuracy and viability of option A in preventing support failure.
Option A requires restraining the top edges along sides of the slab parallel to the moment axis.
These top edge restraints were implemented in addition to the restraints along the bottom edges
of the slab. The analysis in which only the bottom edges of the slab were restrained is referred
to as the base case. The added restraints in option A would provide element confinement and
reduce tensile stresses within the elements susceptible to tensile failure. The boundary
conditions for option A are presented in Figure 5.25.
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Figure 5.25: Boundary conditions used for option A study of preventing support failure study

The analyses results after implementing option A are shown in Section 5.3.1.1, Section 5.3.1.2,
and Section 5.3.1.3 for specimens SM 0.5, SM 1.0, and SM 1.5, respectively. Each section
shows comparisons between the option A analysis and the base case analysis. Comparisons are
shown between moment-rotation, displacement-rotation, and crack patterns of the analyses and

recommendations are made based on the accuracies of the analyses.

5.3.1.1 Results of specimen SM 0.5 analyses
The moment-rotation and displacement-rotation data for option A and base case analyses of
specimen 0.5 are presented in Figure 5.26. A summary of this data is provided in Table 5.11.

The addition of the top edge restraints on the slab edges parallel to the moment axis successfully
prevented support failure. The moment-rotation data of option A showed an increased stiffness
past 5 mrad. Past 10 mrad, option A showed moment-rotation results that were almost parallel
to the experimental results. The moment-rotation data of both analyses plateaued as they
approached their respective ultimate moments suggesting that they both failed in flexure. This
is consistent with the experimental results. The ultimate moment increased from 85 kNm to 92
KNm when restraining the top slab edges in addition to the bottom edges. This meant that the
percentage difference between the analysis and the experiment decreased from 15-percent to 8-

percent. However, the rotation at ultimate moment decreased.

The displacement-rotation data was identical between both analyses. This meant that the added

restraints did not prevent element rotations or displacements.
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Figure 5.26: Specimen SM 0.5 a) moment-rotation and b) displacement-rotation data for top
and bottom of slab edges restrained analysis versus bottom of slab edges restrained analysis

Table 5.11: Specimen SM 0.5 analyses results for top of failing slab edge restrained versus top
and bottom of failing slab edges restrained analyses

Ultimate moment Displacement (mm) Rotation (mrad)
(KNm) at ultimate moment at ultimate moment

Analyses

Top and bottom

of slab edges 91.9 10.1 21.0

restrained

Bottom

of slab edges 85.4 10.0 21.4

restrained
Experiment 99.1 10.9 36.9

The experiment and analyses crack patterns for option A and base case analyses for specimen
SM 0.5 are shown in Figure 5.27. There were few differences in crack patterns between the two
analyses. Option A showed much lower strains along the top and bottom supports of the slab
compared to the base case. Both analyses were in good agreement with the experimental crack

patterns.
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Figure 5.27: Specimen SM 0.5 experiment (Ghali et al., 1976) and analyses crack patterns for
option A and base case analyses. Authorized reprint of experiment photographs from ACI
Journal, Volume 73, Issue 10, October 1976.

5.3.1.2 Results of specimen SM 1.0 analyses
The moment-rotation and displacement-rotation data for option A and base case analyses of

specimen 1.0 are presented in Figure 5.28. A summary of this data is provided in Table 5.12.

The moment-rotation differences between option A and the base case were evident past 6.5 mrad

but were negligible. However, option A increased the ultimate moment to 121 kNm from 118
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KNm of the base case analysis. The decreased the ultimate moment percentage difference
between the analyses and the experiment from 8-percent to 5-percent. With regards to the
displacement-rotation data, option A maintained a consistent slope throughout the analysis. The

decrease in slope due to support failure did not happen with the option A analysis.
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Figure 5.28: Specimen SM 1.0 a) moment-rotation and b) displacement-rotation data for top
and bottom of slab edges restrained analysis versus bottom of slab edges restrained analysis

Table 5.12: Specimen SM 1.0 analyses results for top of failing slab edge restrained versus top
and bottom of failing slab edges restrained analyses

Ultimate moment Displacement (mm) Rotation (mrad)
(KNm) at ultimate moment at ultimate moment

Analyses

Top and bottom

of failing slab 120.7 3.7 10.6

edge restrained

Bottom of failing

slab edge 117.5 3.5 11.0

restrained
Experiment 127.1 10.8 27.0

The analyses crack patterns for option A and base case analyses for specimen SM 1.0 are shown
in Figure 5.29. Among the top face crack patterns, option A had significantly lower plastic
strains along the top and bottom support edges compared to the base case. This indicated that
the lifting-edge supports were no longer failing. The bottom face crack patterns showed wider
and longer cracks from the bottom column face toward the bottom slab edge and corners. This

was because the support failure in the base case increased the load eccentricity. Therefore,
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stresses were being concentrated within the slab-column connection elements by the top column

face.
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Figure 5.29: Specimen SM 1.0 analyses crack patterns for top and bottom of slab edges
restrained analysis versus bottom of slab edges restrained analysis

5.3.1.3 Results of specimen SM 1.5 analyses
The moment-rotation and displacement-rotation data for option A and base case analyses of

specimen 1.5 are presented in Figure 5.30. A summary of this data is provided in Table 5.13.

The moment-rotation data of option A showed an increase in stiffness from the base case past 5
mrad. The lower rotational stiffness of the base case was caused by failure of the lift-resisting
supports. This failure lead to lifting of the slab edge that contributed to rotations of the column.
The increased rotational stiffness of the option A analysis suggested that support failure had not
occurred. Although option A resolved the support failure problem, the analysis ultimate moment
increased from 157 kNm to 161 kNm. By comparison, the ultimate moment of the experiment
was 132 kNm. The ultimate moment percentage difference between the analysis and the

experiment increased from 18-percent to 20-percent.
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In addition to moment-rotation data, analysis option A produced favourable displacement-
rotation data. Past 5 mrad, the plateau observed in the base case data was no longer present. As
with the moment rotation data, this suggested that the lifting-resisting supports were active and

preventing lift of the slab edge and therefore the column.
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Figure 5.30: Specimen SM 1.5 a) moment-rotation and b) displacement-rotation data for top
and bottom of slab edges restrained analysis versus bottom of slab edges restrained analysis

Table 5.13: Specimen SM 1.5 analyses results for top and bottom of slab edges restrained
analysis versus bottom of slab edges restrained analysis

Ultimate moment Displacement (mm) Rotation (mrad)
(KNm) at ultimate moment  at ultimate moment

Analyses

Top and bottom

of failing slab 161.0 2.6 11.3

edge restrained

Bottom

of failing slab 157.2 2.0 12.1

edge restrained
Experiment 131.5 11.3 20.1

The experiment and analyses crack patterns for option A and base case analyses for specimen
SM 1.5 are shown in Figure 5.31. As observed with analyses of other specimens, option A
reduced strains at the top and bottom support edges of the top face. On the top face, shorter
horizontal cracks and longer vertical cracks were observed in the option A results compared to
the base case results. The top face crack patterns of option A were in better agreement with the

experimental crack patterns compared to the base case. On the bottom face, more cracks were
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visible propagating from the bottom column face toward the bottom slab corners. This area was
not shown in the photograph of the experiment crack patterns; therefore, it is not possible to say
which of the two analyses had more accurate bottom face crack patterns.

a) Top face, experiment b) Bottom face, experiment

—

c) Top face, top and bottom of failing slab d) Bottom face, top and bottom of failing slab
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Figure 5.31: Specimen SM 1.5 experiment (Ghali et al., 1976) and analyses crack patterns for
top and bottom of slab edges restrained analysis versus bottom of slab edges restrained analysis.
Authorized reprint of experiment photographs from ACI Journal, Volume 73, Issue 10, October
1976.
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5.3.1.4 Conclusions and Recommendations

Restraining the top and bottom slab edges on the sides parallel to the moment axis effectively
prevented support tension failure without adversely affecting moment-rotation, displacement-
rotation, and crack pattern results. These restraints provided confinement of support elements

which reduced strains and prevented failures.

Among the analyses in which only the bottom slab edges were restrained, the lifting-edge
restrained elements commonly failed due to excessive tensile stresses. This caused that side of
the slab to lift and created a plastic hinge at the slab-column connection. The lifting increased
slab rotation and cause upward displacement of the column. This was observable in both the
moment-rotation and displacement-rotation plots. The plastic hinge increased stresses in the
slab-column connection which lead to flexural or punching failure (depending on the failure
mode of the specimen) occurring under a lower applied moment. This was visible in the

moment-rotation plots.

The analyses in which both top and bottom slab edges were restrained no longer showed the
aforementioned trends in neither the moment-rotation nor displacement-rotation plots.
Furthermore, the maximum principal plastic strains (i.e. crack patterns) no longer showed strain
concentrations at the compression and tension slab edges. Although this option prevented
support failure, two more options were examined. The option that prevented support failure with

the least adverse effects on the results was selected and implemented in subsequent analyses.

5.3.2 Option B: using elastic material at failing slab edge

Option B for preventing lifting-edge support failure was to use an elastic material for the
elements along the edge susceptible to failure. This would allow elements to carry unlimited
amounts of stresses with no possibility of failing. To define these elements with a different
material, additional partitions were made in the concrete and reinforcement mats around the
perimeter of the slab. The partitions were made at a distance of 20 mm from the edges of the
slab. This distance was the same as the concrete and reinforcement element size as not to affect
the element aspect ratio during meshing. The typical material definitions and mesh are shown
in Figure 5.32.
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Figure 5.32: Typical a) material properties and b) meshing for option B analyses

5.3.2.1 Results of specimen SM 0.5 analyses
The moment-rotation and displacement-rotation data for option B and base case analyses of

specimen 0.5 are presented in Figure 5.33. A summary of this data is provided in Table 5.14.

Option B successfully prevented support failure along the lifting slab edge. Compared to the
base case analysis (i.e. plastic material at slab edge), option B showed an increase in rotational
stiffness past 10 mrad. As a result, the shape of the option B moment-rotation plot closely
resembled the moment-rotation data of the experiment. Furthermore, the ultimate moment was
higher for the option B analysis (96 kNm) compared to the base case analysis (85 kNm). Relative
to the experiment, the analysis percentage difference decreased from 15-percent to 3-percent
when option B was implemented. The rotation at ultimate moment did not change significantly

from the base case to option B.

With respect to the displacement-rotation data, both analyses produced near-identical results.

The only difference was that option B showed stiffer data past 10 mrad.
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Figure 5.33: Specimen SM 0.5 a) moment-rotation and b) displacement-rotation data for
elastic lifting slab edge analysis versus plastic lifting slab edge restrained analysis

Table 5.14: Specimen SM 0.5 analyses results for elastic lifting slab edge analysis versus
plastic lifting slab edge restrained analysis

Ultimate moment Displacement (mm) Rotation (mrad)
(kNm) at ultimate moment  at ultimate moment

Analyses

Elastic lifting slab 95.7 10.9 997

edge

Plastic lifting slab 85.4 10.0 214

edge
Experiment 99.1 10.9 36.9

The experiment and analyses crack patterns for option B and base case analyses for specimen
SM 0.5 are shown in Figure 5.34. Among the top face crack patterns, using an elastic lifting slab
edge produced more diagonal cracks between the bottom column face and the bottom corners.
These were not present in the plastic lifting slab edge analysis but were present in the
experiment. Among the bottom face crack patterns, the elastic lifting slab edge analysis showed
that diagonal cracks had formed which started halfway between the column and bottom slab
edge and continued toward the extents of the bottom edge support. Diagonal cracks were present

in the experiment but were not captured using a plastic lifting slab edge.
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Figure 5.34: Specimen SM 0.5 experiment (Ghali et al., 1976) and analyses crack patterns for
elastic lifting slab edge analysis versus plastic lifting slab edge restrained analysis. Authorized
reprint of experiment photographs from ACI Journal, VVolume 73, Issue 10, October 1976.

5.3.2.2 Results of specimen SM 1.0 analyses
The moment-rotation and displacement-rotation data for option B and base case analyses of

specimen 1.0 are presented in Figure 5.35. A summary of this data is provided in Table 5.15.

The differences in moment-rotation data between the two analyses were minimal. Past 5 mrad,

the moment-rotation data of the elastic lifting edge analysis were stiffer than the plastic lifting
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edge analysis. Using an elastic slab lifting edge resulted in an increase in ultimate moment from
118 kNm to 121 kNm. Relative to the experiment, the percentage difference decreased from 8-
percent to 5-percent when an elastic lifting slab edge was used. The displacement-rotation data
slope change after 5 mrad which was visible in the plastic lifting slab edge analysis was no
longer present in the elastic lifting slab edge analysis. This slope change was caused by the
support failure which subsequently resulted in the slab lifting and rotating. The absence of this
slope change indicated that support failure did not occur when an elastic material was used for
the lifting slab edge.
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Figure 5.35: Specimen SM 1.0 a) moment-rotation and b) displacement-rotation data for
elastic lifting slab edge analysis versus plastic lifting slab edge restrained analysis

Table 5.15: Specimen SM 1.0 analyses results for elastic lifting slab edge analysis versus
plastic lifting slab edge restrained analysis

Ultimate moment Displacement (mm) Rotation (mrad)
(kNm) at ultimate moment  at ultimate moment

Analyses

Elastic lifting slab 120.9 38 106

edge

Plastic lifting slab 1175 35 11.0

edge
Experiment 127.1 10.8 27.0

The analyses crack patterns for option B and base case analyses for specimen SM 1.0 are shown
in Figure 5.36. Using an elastic lifting slab edge did not affect the crack patterns on the top face

of the slab. Compared to using a plastic lifting slab edge, using an elastic lifting slab edge
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resulted in a greater angle between the diagonal cracks from the bottom column face toward the

corners.

a) Top face, elastic lifting slab edge b) Bottom face, elastic lifting slab edge
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Figure 5.36: Specimen SM 1.0 analyses crack patterns for elastic lifting slab edge analysis
versus plastic lifting slab edge restrained analysis

5.3.2.3 Results of specimen SM 1.5 analyses
The moment-rotation and displacement-rotation data for option B and base case analyses of

specimen 1.5 are presented in Figure 5.37. A summary of this data is provided in Table 5.16.

The option B analysis had a higher rotational stiffness past 5 mrad compared to the base case
analysis. The ultimate moment increased from 157 kNm to 161 kKNm when changing the lifting
slab edge from a plastic to an elastic material. This meant a percentage difference increase from

18-percent to 20-percent relative to the ultimate moment of the experiment.

The displacement-rotation plateau past 5 mrad observed in the base case analysis was no longer

present in the option B analysis. This suggested that support failure did not occur.
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Figure 5.37: Specimen SM 1.5 a) moment-rotation and b) displacement-rotation data for
elastic lifting slab edge analysis versus plastic lifting slab edge restrained analysis

Table 5.16: Specimen SM 1.5 analyses results for elastic lifting slab edge analysis versus
plastic lifting slab edge restrained analysis

Ultimate moment Displacement (mm) Rotation (mrad)
(KNm) at ultimate moment at ultimate moment

Analyses

Elastic lifting slab 1613 57 114

edge

Plastic lifting slab 157 2 20 121

edge
Experiment 131.5 11.3 20.1

The experiment and analyses crack patterns for option B and base case analyses for specimen
SM 1.5 are shown in Figure 5.38. There were no discernible differences in the top face crack
patterns between the option B and base case analyses. The bottom face crack patterns showed a
wider angle between diagonal cracks in the option B analysis compared to the base case analysis.
Furthermore, the option B analysis did not have as much vertical cracking from the column

toward the bottom slab edge as the base case analysis did.
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Figure 5.38: Specimen SM 1.5 experiment (Ghali et al., 1976) and analyses crack patterns for
elastic lifting slab edge analysis versus plastic lifting slab edge restrained analysis. Authorized
reprint of experiment photographs from ACI Journal, Volume 73, Issue 10, October 1976.

5.3.2.4 Conclusions and Recommendations

Using an elastic material (option B) in place of a plastic material (base case) for the lifting slab
edge prevented support failure. Among moment-rotation plots, implementing option B resulted
in higher ultimate moments. This reduced the difference between the analysis and experiment
ultimate moments for specimens SM 0.5 and SM 1.0 but increased the difference for specimen

SM 1.5. All displacement-rotation plots no longer decreased in slope mid-analysis. This meant
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that implementing option B produced displacement-rotation data that better resembled that of
the laboratory-tested specimens. In all cases, the option B analyses produced additional cracks
that were present in the experiment. The base case did not produce these same cracks.

5.3.3 Option C: changing support boundary conditions between loads

Option C for preventing support failure was to change support boundary conditions between
loads. Recall that the support failure was due to excessive tensile stresses acting on the concrete
support elements, which have low tensile strength. Furthermore, the finite element analyses are
separated into three steps: the vertical load step, rest step, and moment step. In the vertical load
step, the 129 kN vertical load is ramped onto the top column stub. In the rest step, no changes
are made to loads or boundary conditions. In the moment step, displacements are ramped equally

and in opposite lateral directions at the top and bottom ends of the column.

The intention behind option C was to change tensile stresses into compressive stresses by
changing the lifting-edge boundary conditions mid-analysis. In the base case analysis, the side
of the slab that lifts during moment application was restrained along its bottom edge throughout
the entire analysis. Option C involved removing and replacing this restraint during the rest step
with a restraint along the top edge of the same side. The two sets of boundary conditions for the
vertical load and rest steps, and the moment step are shown in Figure 5.39. Changing the
boundary conditions was done to move the reaction forces from the bottom to the top edge of
the slab. This meant that tensile stresses acting on the elements would become compressive

stresses. Since concrete performs well in compression, support failure was unlikely to occur.

8  F,=-120kN—» b)

Y m = Y Q
Figure 5.39: Typical boundary conditions for option C analyses in the a) apply vertical load
and rest steps and b) apply moment step
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5.3.3.1 Results of specimen SM 0.5 analyses
The moment-rotation and displacement-rotation data for option C and base case analyses of
specimen 0.5 are presented in Figure 5.40. A summary of this data is provided in Table 5.17.

The option C moment-rotation data starts at (-2 mrad, 0 KNm) rather than (0 mrad, 0 KNm). This
was because the reaction forces under the vertical load resulted in tensile stresses among the
lifting-edge restrained elements. Due to concrete’s low tensile strength, some of these elements
became inactive and few active elements remained to resist deformation. As a result, the lifting-

edge displaced downwards causing the entire slab and column to rotate with it.

When 2 mrad was added to each datum of the moment-rotation plot, the plot started at the origin
and showed similarities to the option A analysis data. However, the downward displacement on

one edge of the slab and not the other was not characteristic of what was observed during testing.

One solution to the negative rotation problem would be to change the number of analysis steps
from three to five and change the boundary conditions in the fourth step rather than the second
step. Option C had three steps: apply vertical load, rest, and apply moment. The boundary
conditions were changed in the rest step. The moment applied in the apply moment step was
displacement-based. The possible solution would be to use five steps: apply vertical load, first
rest, apply partial moment, second rest, and apply remaining moment. In the apply partial
moment step, 28 KNm would be applied. This is the moment at which the moment-rotation data
intersects the y-axis. In the second rest step, the boundary conditions would be changed. In the
apply remaining moment step, displacement-based moment would be applied until failure.

The problem with the five-step analysis was that the three-step analysis would need to be run
first to determine how much moment to apply in the apply partial moment step. The moment at
which the three-step analysis moment-rotation data intersects the y-axis would be applied in the
five-step analysis apply partial moment step. This solution is not favourable because completing

two analyses would take more computational time than completing one analysis.

The moment-rotation data of the option C analysis was nearly parallel to the base case analysis.
The ultimate moment increased from 85 kKNm to 90 kNm. Relative to the experiment, the
ultimate moment decreased from 15-percent to 10-percent. The vertical displacement at 0 KNm

was 2.6 mm for option C compared to 1.2 mm for the base case analysis. The experiment 0 kNm
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displacement was 7.7 mm. The vertical displacement at ultimate moment did not change in the
option C analysis compared to the base case analysis. The displacement-rotation data slope of
the option C analysis was similar to the base case analysis.
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Figure 5.40: Specimen SM 0.5 a) moment-rotation and b) displacement-rotation data for
changing support boundary conditions between loads analysis versus static boundary
conditions analysis

Table 5.17: Specimen SM 0.5 analyses results for changing support boundary conditions
between loads analysis versus static boundary conditions analysis

Ultimate moment  Displacement (mm) Rotation (mrad)
(KNm) at ultimate moment  at ultimate moment
Analyses
Changing support
boundary conditions 90.1 10.7 20.3
between loads
Static boundary 85.4 10.0 21.4
conditions
Experiment 99.1 10.9 36.9

The moment-rotation and displacement-rotation data for option C and base case analyses of
specimen 0.5 are presented in Figure 5.41. A summary of this data is provided in Table 5.18.
Among the top face crack patterns, both analyses produced very similar cracks to one another
and to the experiment. Subtle cracks were in the option C analysis results that were also visible
in the experiment crack patterns. The diagonal crack between the bottom column face and
bottom extents of the side slab supports were more straight in the option C analysis compared

to the base case analysis. The cracks between the bottom column face and the bottom slab edge
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were angled in the option C analysis whereas these cracks were vertical in the base case analysis.
Among the bottom face crack patterns, the option C analysis showed higher strain
concentrations along the bottom edge compared to the base case analysis. Apart from this, no

differences in crack patterns were evident between the two analyses.
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Figure 5.41: Specimen SM 0.5 experiment (Ghali et al., 1976) and analyses crack patterns
for changing support boundary conditions between loads analysis versus static boundary
conditions analysis. Authorized reprint of experiment photographs from ACI Journal,
Volume 73, Issue 10, October 1976.

120



5.3.3.2 Results of specimen SM 1.0 analyses
The moment-rotation and displacement-rotation data for option C and base case analyses of
specimen 1.0 are presented in Figure 5.42. A summary of this data is provided in Table 5.18.

As observed with specimen SM 0.5, the moment-rotation data did not start at the origin.
Similarly, the data of the option C analysis was parallel to the base case analysis. The ultimate
moment increased from 118 kNm in the base case analysis to 121 KNm in the option C analysis.
Relative to the experiment, this was a percentage difference change from 8-percent to 5-percent.
The displacement-rotation data of option C was parallel to that of the base case. The
displacement before the moment was applied was higher for the option C analysis (1.9 mm)
compared to the base case analysis (0.8 mm). The displacement at the ultimate moment was

higher for option C (4.0 mm) compared to the base case (3.5 mm).

a) 446

O
~
o

Moment (kNm)
Vertical displacement (mm)
(]

10

C 1 1 1 1 1 12 1 1 1 1 1
-5 0 5 10 15 20 25 30 0 5 10 15 20 25 30

Rotation (mrad) Rotation (mrad)
Experiment Changing support boundary conditions between loads = = = - Static boundary conditions

Figure 5.42: Specimen SM 1.0 a) moment-rotation and b) displacement-rotation data for
changing support boundary conditions between loads analysis versus static boundary
conditions analysis
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Table 5.18: Specimen SM 1.0 analyses results for changing support boundary conditions
between loads analysis versus static boundary conditions analysis

Ultimate moment  Displacement (mm) Rotation (mrad)
(KNm) at ultimate moment  at ultimate moment
Analyses
Changing support
boundary conditions 120.7 4.0 10.2
between loads
Static boundary 117.5 35 11.0
conditions
Experiment 1271 10.8 27.0

The analyses crack patterns for option C and base case analyses for specimen SM 1.0 are shown
in Figure 5.43. Both analyses produced almost identical crack patterns. The location change of
the lifting-edge restraint from the bottom edge to the top edge similarly resulted in a strain

concentration change from the bottom face to the top.
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Figure 5.43: Specimen SM 1.0 analyses crack patterns for changing support boundary
conditions between loads analysis versus static boundary conditions analysis
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5.3.3.3 Results of specimen SM 1.5 analyses
The moment-rotation and displacement-rotation data for option C and base case analyses of
specimen 1.5 are presented in Figure 5.44. A summary of this data is provided in Table 5.19.

The same trends were observed for specimen SM 1.5 as for specimens SM 0.5 and SM 1.0. The
moment-rotation data: did not start at the origin, was parallel to the base case analysis, and the
ultimate moment was higher for option C compared to the base case. The ultimate moment
increased from 157 kNm to 161 KNm which was a percentage difference increase from 18-
percent to 20-percent relative to the experiment. Similar trends were also observed for the
displacement-rotation data: the displacement-rotation data for the option C analysis was parallel
to the base case analysis, the displacement under no moment was higher for the option C analysis
(1.4 mm compared to 0.7 mm), and the displacement at ultimate moment was higher for the

option C analysis (2.7 mm versus 2.0 mm).
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Figure 5.44: Specimen SM 1.5 a) moment-rotation and b) displacement-rotation data for
changing support boundary conditions between loads analysis versus static boundary
conditions analysis
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Table 5.19: Specimen SM 1.5 analyses results for changing support boundary conditions
between loads analysis versus static boundary conditions analysis

Ultimate moment  Displacement (mm) Rotation (mrad)
(KNm) at ultimate moment  at ultimate moment
Analyses
Changing support
boundary conditions 160.6 2.7 11.2
between loads
Static boundary 157.2 2.0 12.1
conditions
Experiment 131.5 11.3 20.1

The experiment and analyses crack patterns for option B and base case analyses for specimen
SM 1.5 are shown in Figure 5.45. The top crack patterns of both analyses were the same. The
bottom crack patterns of the option C analysis had a wider angle between the diagonal cracks
compared to the base case analysis. Furthermore, the vertical cracks visible in the base case

analysis were not as prevalent in the option C analysis.
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Figure 5.45: Specimen SM 1.5 experiment (Ghali et al., 1976) and analyses crack patterns for
changing support boundary conditions between loads analysis versus static boundary
conditions analysis. Authorized reprint of experiment photographs from ACI Journal, Volume
73, Issue 10, October 1976.

5.3.3.4 Conclusions and Recommendations
Option C, which was to change the boundary conditions between loads, prevented support
failure of the lifting slab edge. The option C analyses of all specimens produced moment-

rotation data parallel to their respective base case analyses. All option C analyses had higher
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ultimate moments than their respective base case analyses. Lastly, all option C analyses showed
negative column rotation prior to the application of moment. The negative rotation was caused
by tensile stresses in the top edge slab restraint. This caused the slab edge to displace downward
and the entire slab and column to rotate. A solution was proposed in which a five step analysis
would be completed after the three step analysis. The five step analysis steps were: apply vertical
load, first rest, apply partial moment, second rest, and apply remaining moment. The moment
at 0 mrad of the three step analysis would be applied in the apply partial moment step. The
support boundary conditions would be changed in the second rest step. The rotation caused by
applying the partial moment plus the rotation from changing the support boundary conditions
would result in a net zero rotation prior to applying to remaining moment. However, this solution

would be computationally intensive and was not investigated.

5.3.4 Comparison of options

The differences in moment-rotation and displacement-rotation data between the options were
consistent between the three specimens. As the data trends are common to all specimens, only
specimen SM 0.5 is shown as a typical case to present these trends. The specimen SM 0.5
moment-rotation and displacement-rotation data for the three analysis options, base case

analysis, and the experiment are shown in Figure 5.46.

Up to 5 mrad, options A and B produced moment-rotation data identical to the base case. Past
5 mrad, options A and B moment-rotation data were similar to one another but stiffer than the
base case analysis. The option C analysis had a negative rotation prior to the application of
moment due to tensile stresses on its lifting-edge support. These tensile stresses resulted in
downward displacement of the support edge which caused negative column rotation. Toward
the end of the analysis, option C had similar moment-displacement stiffness and capacity as
options A and B. All option analysis reduced the percentage difference in ultimate moment

relative to the experiment.

The displacement-rotation data for options A and B resembled that of the experiment. Option C
had a larger vertical displacement compared to options A and B and the experiment. As with the
negative rotation, this was caused by the downward displacement of the lifting slab edge.
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Figure 5.46: Specimen SM 0.5 a) moment-rotation and b) displacement-rotation data for the
three options to prevent support failure and base case

For comparison purposes, only the analysis top and bottom face crack patterns of specimen SM
0.5 are presented. The crack patterns of the specimen SM 1.0 analyses are not presented because
it is not possible to comment on their accuracy without having the experiment crack patterns for
comparison. The crack patterns of the specimen SM 1.5 analyses are not presented because the
top face crack patterns were similar to one another for the three options. The specimen SM 1.5
bottom face experiment crack pattern was focused on the area around the column. Therefore, it
was not possible to comment on the analyses accuracy without being able to see the rest of the

slab.

The specimen SM 0.5 top face crack patterns for the three analysis options, base case analysis,
and the experiment are shown in Figure 5.47. Both options B and C captured the diagonal
cracking from the bottom column face toward the extents of the bottom edge restrained
elements. Both options B and C showed more cracks in the top corners of the slab. These cracks
were not captured by option A but were visible in the experiment crack patterns. Option C
showed straighter diagonal cracks from the bottom column corners toward the vertical slab

edges which were present in the experiment.
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Figure 5.47: Specimen SM 0.5 top face experiment (Ghali et al., 19) and analyse crack

patterns for the support failure prevention options and base case. Authorized reprint of
experiment photograph from ACI Journal, Volume 73, Issue 10, October 1976.

The specimen SM 0.5 bottom face crack patterns for the three analysis options, base case
analysis, and the experiment are shown in Figure 5.48. All crack patterns were similar to one
another. Options B and C produced diagonal cracks below the column which were visible in the
experiment. Option A produced more vertical cracking below the column compared to the other

analyses. This vertical cracking was visible in the experiment.
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Figure 5.48: Specimen SM 0.5 bottom face experiment (Ghali et al., 1976) and analyses crack
patterns for the support failure prevention options and base case. Authorized reprint of
experiment photograph from ACI Journal, Volume 73, Issue 10, October 1976.

5.3.5 Conclusions and recommendations

All three options prevented support failure. Option B, using an elastic material along the lifting
slab edge, was selected and used in subsequent analyses. Of the three options, option C was
quickly eliminated from consideration. Although option C produced accurate crack patterns and
showed a larger initial vertical displacement, the excessive strains on the lifting-edge resulted
in downward displacement of that slab edge. This was uncharacteristic of the behaviour
observed during testing. Option A produced near-identical moment-rotation and displacement-
rotation data to option B. However, option B produced crack patterns that closer resembled those
of the experiment for specimen SM 0.5. The top face crack patterns for specimen SM 1.5 were
the alike for option A and B; however, the bottom face crack patterns were not. As the
experiment bottom face crack patterns only showed the area around the column, it was not

possible to comment on which of the two options was more accurate.
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5.4 Study of fracture energy models

Previously completed SM specimen analyses used concrete fracture energies calculated using
the model provided by Model Code 2010 (federation internationale du béton (fib), 2013). In this
study, the models were reanalysed using the Model Code 1990 fracture energy model (Comité
Euro-International du Béton, 1993). For each specimen, the Model Code 1990 and Model Code
2010 analyses results were compared to the experiment results to determine which fracture

energy model produced the most accurate results.
Model Code 2010 provides the following equation for calculating fracture energy G;:
Gr = 73(fom) 18 (SI units: N, mm) (5.1)
where £, is the mean value of the concrete compressive strength. This parameter is defined by
fem = fex +Af (SI units: N, mm) (5.2)

where f,, is the characteristic compressive strength and Af is equal to 8 MPa. Reineck et al.
(2003) proposed that the characteristic compressive strength f., is related to the concrete

cylinder strength £, by the equation
fex = f —1.6 MPa. (SI units: N, mm) (5.3)

Model Code 1990 provides the following model for calculating fracture energy G;:

Gr = Gy, (fcm )OJ (SI units: N, mm) (5.4)

fcmo
where Gy, is the base value of fracture energy obtained by linearly interpolating between data

from Table 5.20, and f,,,, is equal to 10 MPa.

Table 5.20: Base values of fracture energy Gr, (Comité Euro-International du Béton, 1993)

Maximum aggregate size Gro
Ay (MM) (Nmm/mm?)
8 0.025
16 0.030
32 0.058
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The fracture energy G values used in the analyses of the SM specimens, and the parameters
used in calculating those values, are presented in Table 5.21. The maximum aggregate size was
unknown for any of the SM specimens. As such, an assumed maximum aggregate size of 19
mm was used. This value was chosen to maximize the fracture energy calculated using MC 1990
to fracture energy calculated using MC 2010. Since the concrete cover for all specimens was 19

mm, the largest possible maximum aggregate size used was 19 mm.

Table 5.21: Fracture energy G values used in analyses of SM specimens

MC 1990 MC 2010
fex fem dmax Gro Gy Gy
Specimen  f/ (MPa)  (MPa) (MPa) (mm) (N/mm)  (N/mm)  (N/mm)
SM 0.5 36.77 35.17 43.17 0.098 0.139
SM 1.0 33.36 31.76 39.76 19 0.035 0.093 0.136
SM 1.5 39.98 38.38 46.38 0.103 0.141

5.4.1 Results of specimen SM 0.5 analyses

The moment-rotation and displacement-rotation data using MC 1990 and MC 2010 fracture
energy analyses and experimental results for specimen SM 0.5 are presented in Figure 5.49. A
summary of this data is provided in Table 5.22.

The moment-rotation data of the MC 1990 fracture energy analysis was closer in slope to the
experiment compared to the MC 2010 fracture energy analysis. Of the two fracture energy
models, the MC 2010 fracture energy analysis produced an ultimate moment closer to that of
the experiment. This higher ultimate moment was expected from the MC 2010 analysis as its
higher fracture energy meant that more energy was required to form a crack over a unit area of

concrete.

The displacement-rotation data showed that the MC 2010 analysis showed a stiffer response
compared to the MC 1990 analysis. The MC 2010 analysis produced a displacement at ultimate
moment that was identical to that of the experiment. The MC 1990 analysis produced a
displacement at ultimate moment with a percentage difference of 10-percent relative to the

experiment value.
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Figure 5.49: Specimen SM 0.5 a) moment-rotation and b) displacement-rotation data using
MC 1990 versus MC 2010 fracture energy models

Table 5.22: Specimen SM 0.5 analyses results using MC 1990 versus MC 2010 fracture
energy models

Ultimate moment  Displacement (mm) Rotation (mrad)
(KNm) at ultimate moment  at ultimate moment
Analyses
MC 1990 83.3 9.9 18.6
MC 2010 95.7 10.9 22.7
Experiment 99.1 10.9 36.9

The crack patterns of the experiment as well as the MC 1990 and MC 2010 fracture energy
analyses for specimen SM 0.5 are presented in Figure 5.50. Both analyses produced similar
crack patterns to one another with varying maximum principal plastic strain magnitudes. The
variance in strain magnitudes was because the MC 1990 analysis crack patterns were produced

at a lower ultimate moment compared to the MC 2010 analysis crack patterns.
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Figure 5.50: Specimen SM 0.5 experiment (Ghali et al., 1976) and analyses crack patterns
using MC 1990 versus MC 2010 fracture energy models. Authorized reprint of experiment
photographs from ACI Journal, Volume 73, Issue 10, October 1976.

5.4.2 Results of specimen SM 1.0 analyses
The moment-rotation and displacement-rotation data using MC 1990 and MC 2010 fracture
energy analyses and experimental results for specimen SM 1.0 are presented in Figure 5.51. A

summary of this data is provided in Table 5.23.
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As was the case with the specimen SM 0.5 analyses, The softer moment-rotation data produced
by the MC 1990 analysis was closer in stiffness to the experiment data than the moment-rotation
data produced by the MC 2010 analysis. Of the two analyses, the ultimate moment of the MC
2010 analysis was higher than that of the MC 1990 analysis. Furthermore, the ultimate moment

of the MC 2010 analysis was closer to the experiment ultimate moment.

Both analyses produced similar moment-rotation data to one another. The MC 2010 analysis
produced negligibly stiffer displacement-rotation data compared to the data produced by the
MC 1990 analysis. Both analyses produced a similar displacement at ultimate moment.
However, both analyses underestimated the experiment displacement at ultimate moment by a

percentage difference of 88-percent.
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Figure 5.51: Specimen SM 1.0 a) moment-rotation and b) displacement-rotation data using
MC 1990 versus MC 2010 fracture energy models

Table 5.23: Specimen SM 1.0 analyses results using MC 1990 versus MC 2010 fracture
energy models

Ultimate moment  Displacement (mm) Rotation (mrad)
(KNm) at ultimate moment  at ultimate moment
Analyses
MC 1990 113.4 3.9 10.4
MC 2010 120.9 3.8 10.6
Experiment 127.1 10.8 27.0

The crack patterns of the MC 1990 and MC 2010 fracture energy analyses for specimen SM 1.0
are presented in Figure 5.52. As observed with the specimen SM 0.5 analyses, both specimen
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SM 1.0 analyses produced similar crack patterns to one another with varying maximum

principal plastic strain magnitudes.
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5.4.3 Results of specimen SM 1.5 analyses
The moment-rotation and displacement-rotation data using MC 1990 and MC 2010 fracture
energy analyses and experimental results for specimen SM 1.5 are presented in Figure 5.53. A

summary of this data is provided in Table 5.24.

As was the case with the other two SM specimens, the MC 2010 analysis produced stiffer
moment-rotation data with a greater ultimate moment compared to the MC 1990 analysis. The
increased ultimate moment of the MC 2010 analysis meant an increased percentage difference
between the analysis and the experiment. The percentage difference in ultimate moment
between the analysis and the experiment was 13.3-percent and 20.4-percent for the MC 1990

and MC 2010 analyses, respectively.
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The displacement-rotation data produced by both analyses were similar to one another. Both
underestimated the displacement at ultimate moment of the experiment by a percentage

difference of 122.9-percent.
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Figure 5.53: Specimen SM 1.5 a) moment-rotation and b) displacement-rotation data using
MC 1990 versus MC 2010 fracture energy models

Table 5.24: Specimen SM 1.5 analyses results using MC 1990 versus MC 2010 fracture
energy models

Ultimate moment  Displacement (mm) Rotation (mrad)
(KNm) at ultimate moment  at ultimate moment
Analyses
MC 1990 150.2 2.7 10.5
MC 2010 161.3 2.7 114
Experiment 131.5 11.3 20.1

The crack patterns of the experiment as well as the MC 1990 and MC 2010 fracture energy
analyses for specimen SM 1.5 are presented in Figure 5.54. As observed with the analyses for
specimens SM 0.5 and SM 1.0, both analyses for specimen SM 1.5 produced similar crack

patterns to one another with varying plastic strain magnitudes.
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Figure 5.54: Specimen SM 1.5 experiment (Ghali et al., 1976) and analyses crack patterns
using MC 1990 versus MC 2010 fracture energy models. Authorized reprint of experiment
photographs from ACI Journal, Volume 73, Issue 10, October 1976.

5.4.4 Conclusions and recommendations

Analyses that used the Model Code 2010 fracture energy model produced stiffer moment-
rotation data with greater ultimate moments compared to analyses that used the Model Code
1990 fracture energy model. This was expected because the Model Code 2010 fracture energy
model produced higher fracture energy values for all specimens compared to the Model Code

1990 fracture energy model. A higher fracture energy meant that more tensile energy was
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required to fracture a unit area of concrete. Using the MC 2010 model reduced the difference in
ultimate moment between the analysis and the experiment for specimens SM 0.5 and SM 1.0
but increased the difference for specimen SM 1.5. For each specimen, both fracture energy
models produced similar displacement-rotation data and crack patterns. The MC 2010 fracture
energy model was used in subsequent analyses because it improved the accuracy of the analyses

ultimate moments.

5.5 Equivalent versus as-tested reinforcement layout

In this section, the finite element models were modified to use an equivalent reinforcement
layout then analysed. In this context, equivalent meant using different mat depths and spacings
without affecting the moment resistance of either direction. Their results were compared to the
results of the as-tested reinforcement layout models. Among the equivalent reinforcement layout
models, the depths and spacings of the inner compression and tension mats were changed to
match the depths and spacings of the outer compression and tension mats, respectively. While
it was not realistic to have overlapping reinforcement bars, this was done as an exercise to
observe if changing element connectivity influenced either the moment-rotation data,

displacement-rotation data, or crack patterns.

5.5.1 Results of specimen SM 0.5 analyses
The moment-rotation and displacement-rotation data for the equivalent and as-tested
reinforcement layout analyses and experimental results for specimen SM 0.5 are presented in

Figure 5.55. A summary of this data is provided in Table 5.25.

Using an equivalent reinforcement layout did not significantly affect the results. When using
the equivalent reinforcement layout, the slopes of both sets of data decreased by about 8-percent
after 5 mrad (e.g. the displacement-rotation slope decreased from 0.39 mm/mrad to 0.36
mm/mrad). The percentage differences between the equivalent and the as-tested reinforcement
layout analyses were 1.67-percent for the ultimate moment, 11.65-percent for the displacement
at ultimate moment, and 6.36-percent for the rotation at ultimate moment. The as-tested
reinforcement layout produced an ultimate moment closer to the experimental results, while the
equivalent reinforcement layout produced displacement and rotation at ultimate moment values

that were closer to the experimental results.
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Figure 5.55: Specimen SM 0.5 a) moment-rotation and b) displacement-rotation data using
equivalent versus as-tested reinforcement layouts

Table 5.25: Specimen SM 0.5 analyses results using equivalent versus as-tested reinforcement

layouts
Ultimate moment  Displacement (mm) Rotation (mrad)
(KNm) at ultimate moment  at ultimate moment

Analyses

Equwalent 973 9.7 213

reinforcement layout

As-tested 95.7 10.9 22.7

reinforcement layout
Experiment 99.1 10.9 36.9

The crack patterns of the experiment as well as the equivalent and as-tested reinforcement layout
analyses for specimen SM 0.5 are presented in Figure 5.56. Both analyses produced crack
patterns similar to one another. However, the equivalent reinforcement layout analysis did not
produce some of the diagonal cracks observed in both the as-tested reinforcement layout
analysis and the experiment. The first set of diagonal cracks missing were along the top face
from the top column face toward the top left and right slab corners. The second set of diagonal
cracks missing were along the bottom face from the bottom column face toward the left and

right extents of the bottom edge restraints.
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using equivalent versus as-tested reinforcement layouts. Authorized reprint of experiment
photographs from ACI Journal, Volume 73, Issue 10, October 1976.

5.5.2 Results of specimen SM 1.0 analyses

The moment-rotation and displacement-rotation data for the equivalent and as-tested
reinforcement layout analyses and experimental results for specimen SM 1.0 are presented in
Figure 5.57. A summary of this data is provided in Table 5.26. Both analyses produced identical
moment-rotation and displacement-rotation results to one another. The ultimate moments of the

two analyses were close to the ultimate moment of the experiment; there was a percentage
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difference in ultimate moment of 4-percent and 5-percent relative to the experiment compared
to the equivalent and as-tested reinforcement layout analyses, respectively. However, the
rotation and vertical displacement at ultimate moment for each analysis were on average 37-

percent lower and 33-percent lower than those experimental values.
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Figure 5.57: Specimen SM 1.0 a) moment-rotation and b) displacement-rotation data using
equivalent versus as-tested reinforcement layouts

Table 5.26: Specimen SM 1.0 analyses results using equivalent versus as-tested reinforcement

layouts
Ultimate moment  Displacement (mm) Rotation (mrad)
(KNm) at ultimate moment  at ultimate moment

Analyses

Equivalent 122.1 3.4 10.4

reinforcement layout

As-tested 120.9 3.8 10.6

reinforcement layout
Experiment 127.1 10.8 27.0

The crack patterns of the experiment as well as the equivalent and as-tested reinforcement layout
analyses for specimen SM 1.0 are presented in Figure 5.58. Both analyses produced crack
patterns similar to one another. However, the equivalent reinforcement layout analysis did not
produce some of the diagonal cracks observed in both the as-tested reinforcement layout
analysis and the experiment. The first set of diagonal cracks missing were along the top face

from the top column face toward the top left and right slab corners. The second set of diagonal
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cracks missing were along the bottom face from the bottom column face toward the left and

right extents of the bottom edge restraints.
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5.5.3 Results of specimen SM 1.5 analyses

The moment-rotation and displacement-rotation data for the equivalent and as-tested
reinforcement layout analyses and experimental results for specimen SM 1.5 are presented in
Figure 5.59. A summary of this data is provided in Table 5.27. Both analyses produced identical

moment-rotation and displacement-rotation results to one another.
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Figure 5.59: Specimen SM 1.5 a) moment-rotation and b) displacement-rotation data using
equivalent versus as-tested reinforcement layouts

Table 5.27: Specimen SM 1.5 analyses results using equivalent versus as-tested reinforcement

layouts
Ultimate moment  Displacement (mm) Rotation (mrad)
(KNm) at ultimate moment  at ultimate moment

Analyses

Equivalent 165.4 2.4 115

reinforcement layout

As-tested 161.3 2.7 11.4

reinforcement layout
Experiment 131.5 11.3 20.1

The crack patterns of the experiment as well as the equivalent and as-tested reinforcement layout
analyses for specimen SM 1.5 are presented in Figure 5.60. There were no differences between

the crack patterns of the two analyses.

143



a) Top face, experiment b) Bottom face, experiment

PE, Max. Principal PE, Max. Principal
(Avg: 75%) (Avg: 75%)

PE, Max. Principal PE, Max. Principal
(Avg: 75%) (Avg: 75%)

using equivalent versus as-tested reinforcement layouts. Authorized reprint of experiment
photographs from ACI Journal, Volume 73, Issue 10, October 1976.

5.5.4 Conclusions and recommendations

Using equivalent reinforcement layouts (i.e. changing the depths and spacings of the inner
reinforcement mats to match the outer reinforcement depths and spacings) produced near
identical results to those produced when using the as-tested reinforcement layouts. Fewer
diagonal cracks were observed for specimen SM 0.5 when using the equivalent reinforcement

layout; however, these cracks were present in both the as-tested reinforcement layout analysis
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and during laboratory testing. Based on these results, the as-tested reinforcement layouts

continued to be used in subsequent analyses.

5.6 Comparison of concrete mesh sizes

In this section, the effects of using varying concrete mesh sizes were studied. Previous analyses
were completed using a concrete mesh size of 20 mm for the three specimens. For this study,
previous analyses were modified and reanalysed using concrete mesh sizes of 15 mm, 25 mm,
and 30 mm. For each specimen, the moment-rotation data, displacement-rotation data, and crack
patterns were compared to one another and to the experiment. The concrete mesh size that
produced analysis results that best resembled the experimental results was selected and used in

subsequent analyses.

5.6.1 Results of specimen SM 0.5 analyses

The moment-rotation and displacement-rotation data for the analyses of varying concrete mesh
sizes and experimental results for specimen SM 0.5 are presented in Figure 5.61. A summary of
this data is provided in Table 5.28.

Based on the moment-rotation data, all analyses had slopes parallel to one another as they
approached their respective ultimate moments. However, each analysis reached this slope at a
different rate. The first analyses to reach this slope were the 25 mm and 30 mm concrete mesh
size analyses. Following those analyses, the 20 mm mesh size analysis reached this slope
followed by the 15 mm mesh size analysis. Based on these findings, increasing the concrete

mesh size resulted in concrete cracking under lower applied moments.

All analyses produced similar displacement-rotation data. The only difference was that each
displacement-rotation plot ended at a different rotation and displacement along the same curve.
The ultimate rotation and ultimate displacement of each analysis was proportionate to the

moment capacity of the analysis.
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Figure 5.61: Specimen SM 0.5 a) moment-rotation and b) displacement-rotation data using
varying concrete mesh sizes

Table 5.28: Specimen SM 0.5 results using varying concrete mesh sizes

Ultimate moment  Displacement (mm) Rotation (mrad)
(KNm) at ultimate moment  at ultimate moment

Analyses

15 mm 91.1 8.7 17.3

20 mm 95.7 10.9 22.7

25 mm 91.0 10.1 20.9

30 mm 92.9 10.0 20.3
Experiment 99.1 10.9 36.9

Gradually increasing the size of concrete elements eventually resulted in single elements that
exceeded the volume of strain concentrations. Since linear elements were used, these strains
were distributed across the entire volume of the element. This meant that coarse mesh analyses
inaccurately calculated strains in regions that were not strained during laboratory testing. As a

result, these added strains reduced the rotational stiffness and ultimate moment of the models.

Contrarily, using too fine of a mesh also resulted in a lower ultimate moment. This was because
smaller elements within volumes of high strain would have higher strains compared to larger
elements in the same location (since the larger elements would linearly distribute the strains
across their volume). The higher element strains for a smaller element would cause element
failure to occur at a lower applied moment than it would for a larger element. With fewer

elements active, the rotational stiffness and ultimate moment would decrease. This was observed
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with the 15 mm concrete mesh size analysis. The moment-rotation data of this analysis showed
a slight rotational softening prior to its failure. Furthermore, its ultimate failure occurred at 91.1
kNm, which was lower than the 20 mm concrete mesh size analysis that had an ultimate moment
of 95.7 kKNm.

As mentioned, using too coarse or too fine of a mesh resulted in lower moment capacities. For

best accuracy, element sizes should be the same volume as the regions of strain concentrations.

The top face crack patterns of the experiment as well as the 15 mm, 20 mm, 25 mm, and 30 mm
concrete mesh size analyses for specimen SM 0.5 are presented in Figure 5.62. There were no

differences between the crack patterns of the four analyses.
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Figure 5.62: Specimen SM 0.5 top face experiment (Ghali et al., 1976) and analyses crack
patterns using varying concrete mesh sizes. Authorized reprint of experiment photograph
from ACI Journal, VVolume 73, Issue 10, October 1976.
The bottom face crack patterns of the experiment as well as the 15 mm, 20 mm, 25 mm, and 30
mm concrete mesh size analyses for specimen SM 0.5 are presented in Figure 5.63. The 15 mm
concrete mesh size analysis had higher strains at the top column face compared to the other
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analyses. The 25 mm and 30 mm concrete mesh size analyses had strains at the bottom face that

propagated further away from the column face compared to the other analyses.
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Figure 5.63: Specimen SM 0.5 bottom face experiment (Ghali et al., 1976) and analyses crack
patterns using varying concrete mesh sizes. Authorized reprint of experiment photograph
from ACI Journal, Volume 73, Issue 10, October 1976.

5.6.2 Results of specimen SM 1.0 analyses

The moment-rotation and displacement-rotation data for the analyses of varying concrete mesh
sizes and experimental results for specimen SM 1.0 are presented in Figure 5.64. A summary of
this data is provided in Table 5.29.

The same trends were observed among the specimen SM 1.0 analyses as observed among the
specimen SM 0.5 analyses. The 25 mm and 30 mm concrete mesh size analyses had smaller
ultimate moments compared to the 20 mm concrete mesh size analysis. As with the specimen
SM 0.5 analyses, this was due to individual large elements distributing strains to areas where
strains were not observed during testing. The 15 mm concrete mesh size analysis had a smaller

ultimate moment compared to the 20 mm concrete mesh size analysis. As with the specimen

148



SM 0.5 analyses, this was because smaller elements within regions of strain concentrations had
higher strains compared to when using larger elements. The higher element strains resulted in
element failure occurring at lower applied moments. Having fewer active elements meant that

the model moment capacity was reduced.

As observed with the displacement-rotation data of the SM 0.5 analyses, the displacement-
rotation data of the SM 1.0 analyses overlapped one another. Analyses with larger ultimate

moments had proportionately larger ultimate displacements and ultimate moments along the

same curve.
a) 140 b) o
120 } = \\
€ N
S .
100 f - .
B & 4 N
£ 80 §
o
€ s 6
2 60 g
= = 8
40 8
20 2 10}
0 . . . . : 12 . . . . .
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Rotation (mrad) Rotation (mrad)
Experiment 15mm  ----- 20 mm ———-25mm 30 mm

Figure 5.64: Specimen SM 1.0 a) moment-rotation and b) displacement-rotation data using
varying concrete mesh sizes

Table 5.29: Specimen SM 1.0 results using varying concrete mesh sizes

Ultimate moment Displacement (mm) Rotation (mrad)
(KNm) at ultimate moment  at ultimate moment

Analyses

15 mm 114.6 3.4 8.8

20 mm 120.9 3.8 10.6

25 mm 121.0 4.5 13.6

30 mm 117.7 3.8 10.8
Experiment 127.1 10.8 27.0

The top and bottom crack patterns of the 15 mm, 20 mm, 25 mm, and 30 mm concrete mesh
size analyses for specimen SM 1.0 are presented in Figure 5.65. The 15 mm concrete mesh size
analysis showed cracks propagating outward from the top column face along its top slab face.
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Increasing the concrete mesh size decreased the length of these cracks. Among the bottom face
crack patterns, the 15 mm concrete mesh size had the shortest cracks propagating from the
bottom face toward the bottom support edge. The length of these cracks increased as the concrete
mesh size was increased from 15 mm to 20 mm then to 25 mm. However, the lengths of these

cracks produced by the 30 mm concrete mesh size analysis resembled those of the 20 mm

concrete mesh size analysis.
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Figure 5.65: Specimen SM 1.0 analyses crack patterns using varying concrete mesh sizes
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5.6.3 Results of specimen SM 1.5 analyses

The moment-rotation and displacement-rotation data for the analyses of varying concrete mesh

sizes and experimental results for specimen SM 1.5 are presented in Figure 5.66. A summary of
this data is provided in Table 5.30.

Both moment-rotation and displacement-rotation data for these analyses produced the same

trends as observed with specimens SM 0.5 and SM 1.0. The 25 mm and 30 mm concrete mesh

size analyses had the lower ultimate moments compared to the 20 mm concrete mesh size

analysis. As with the SM 0.5 and SM 1.0 analyses, this meant these mesh sizes were too large.

The 15 mm concrete mesh had the lowest ultimate moment of the four analyses. This meant that

this mesh size was too small. The displacement-rotation data for all analyses overlapped one

another.
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Figure 5.66: Specimen SM 1.5 a) moment-rotation and b) displacement-rotation data using

varying concrete mesh sizes

Table 5.30: Specimen SM 1.5 results using varying concrete mesh sizes

Ultimate moment

Displacement (mm)

Rotation (mrad)

(kNm) at ultimate moment  at ultimate moment
Analyses
15 mm 150.9 24 94
20 mm 161.3 2.7 11.4
25 mm 153.8 2.8 11.7
30 mm 155.9 2.8 11.8
Experiment 131.5 11.3 20.1
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The top face crack patterns of the experiment as well as the 15 mm, 20 mm, 25 mm, and 30 mm
concrete mesh size analyses for specimen SM 1.5 are presented in Figure 5.67. The 15 mm
concrete mesh size analysis produced cracks where it was clear that four main cracks propagated
from the column towards the four slab corners. Smaller, orthogonal cracks were visible
branching off of the four main cracks. Each subsequent increases in concrete mesh size resulted
in lower resolutions of analysis crack patterns. As the elements were linear with one integration
point, these larger elements averaged concentrated strains within them over entire element
volumes. This made it difficult to discern the difference between the four main cracks and the
smaller, branching cracks. Due to its high resolution, the 15 mm concrete mesh size analysis

produced top face crack patterns that best resembled the experimental crack patterns.
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Figure 5.67: Specimen SM 1.5 top face experiment (Ghali et al., 1976) and analyses crack
patterns using varying concrete mesh sizes. Authorized reprint of experiment photograph
from ACI Journal, Volume 73, Issue 10, October 1976.

The bottom face crack patterns of the experiment as well as the 15 mm, 20 mm, 25 mm, and 30

mm concrete mesh size analyses for specimen SM 1.5 are presented in Figure 5.68. As with the
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top face crack patterns, the 15 mm concrete mesh size analysis produced the highest resolution
crack patterns and the 30 mm mesh size analysis produced the lowest. Among the analyses,
there were two main cracks forming from the bottom column face toward the bottom left and
right slab corners. Smaller, orthogonal cracks branched out from those two cracks. Each increase
in concrete mesh size made it more difficult to differentiate between the two main cracks and
the smaller, branching cracks. As only a close-up photograph of the specimen column was
published, it was not possible to comment on the accuracy of the aforementioned cracks.
However, the concentration of cracking at the positive-x column face shown in the photograph

was also observed in all four analyses.
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Figure 5.68: Specimen SM 1.5 bottom face experiment (Ghali et al., 1976) and analyses crack
patterns using varying concrete mesh sizes. Authorized reprint of experiment photograph
from ACI Journal, Volume 73, Issue 10, October 1976.

5.6.4 Conclusions and recommendations

Based on the analyses for the three SM specimens using concrete mesh sizes of 15 mm, 20 mm,

25 mm, and 30 mm, the 20 mm concrete mesh size analyses produced results that most
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accurately resembled the results of the experiment. Using a concrete mesh size of 15 mm
resulted in high element strains within regions of strain concentrations. This caused elements to
fail and become inactive under lower applied moments. With fewer active elements, the
effective concrete area was reduced resulting in a lower moment capacity. Contrarily, using
large concrete mesh sizes resulted in elements that were partially inside high strain regions and
partially inside low/no strain regions. However, as these elements had one integration point and
linear shape functions, the analyses produced strains across the entire element. This meant that
the analyses produced strains in locations where no strains were observed during testing. As a

result, the moment capacities of the models were reduced.

The optimal concrete mesh size for the three specimens was 20 mm. Smaller than 20 mm
resulted in high strains within elements leading to element failure. Larger than 20 mm resulted
in elements extending beyond regions of strain concentrations. It was important to choose an
element size such that when the geometry was meshed and analysed, no element would exist in
both high and low strain regions simultaneously. Instead of calibrating the concrete element
size, another option was to use higher order elements with multiple integration points. This
option was avoided as higher order elements would require much more computational power

and time.

With respect to the displacement-rotation data, the analyses for each specimen produced data
similar to one another. Furthermore, the crack patterns of all analyses for each specimen showed
identical cracks of varying resolution. The 15 mm concrete mesh size analyses showed large
cracks propagating from the columns toward the slab corners. Smaller, orthogonal cracks were
observed branching off of the larger cracks. As the concrete mesh size was increased, the linear
shape functions of the elements would calculate strains in locations where strains were not
observed during testing. As a result, it was more difficult to differentiate between the main, large
cracks from the branching, smaller cracks. The 15 mm concrete mesh size analyses produced
very clear crack patterns that best resembled the cracks observed during testing. However, the

15 mm concrete mesh size analyses produced inaccurate moment-rotation data.

The 20 mm concrete mesh size analyses produced ultimate moments that were close to the

experimental values. Furthermore, these analyses produced crack patterns that were clear and
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accurate to the experimental crack patterns. For these reasons, a concrete mesh size of 20 mm

was used in subsequent analyses.

5.7 Comparison of reinforcement mesh sizes and element types

In this section, the effects of using varying reinforcement mesh sizes and element types were
studied. Previous analyses were completed using 20 mm T3D2 truss elements for both the slab
and column reinforcement. This element size was selected such that the reinforcement and

concrete used the same element size.

For this study, six models of varying reinforcement mesh sizes and element types were analysed
and compared. The first three models used T3D2 truss elements with mesh sizes of 20 mm, 50
mm, and 100 mm. The last three models used B31 beam elements with mesh sizes of 20 mm,
50 mm, and 100 mm. The B31 beam element analyses were conducted to determine whether or
not the additional degrees of freedom would produce more accurate results compared to the
T3D2 truss element analyses. T3D2 truss elements have the three translational degrees of
freedom at both ends of the element and only transfer axial stresses. B31 beam elements have
three rotational degrees of freedom in additional to the three translational degrees of freedom at

both ends. Furthermore, B31 beam elements transfer shear stresses in addition to axial stresses.

For each specimen, the moment-rotation data, displacement-rotation data, and crack patterns
were compared to one another and to the experiment. The reinforcement mesh size and element
type that produced analysis results that best resembled the experimental results were selected

and used in subsequent analyses.

5.7.1 Results of specimen SM 0.5 analyses
The moment-rotation and displacement-rotation data for the analyses of varying reinforcement
mesh sizes and element types, in addition to the experimental results, for specimen SM 0.5 are

presented in Figure 5.69. A summary of this data is provided in Table 5.31.

All analyses produced moment-rotation data of similar slope and capacity. The moment-rotation
slopes of analyses 20 mm T3D2 and 50 mm T3D2 were most similar to the experiment as these
analyses approached failure. However, the 50 mm T3D2 analysis had the lowest ultimate

moment of 90.8 KNm compared to the other analyses. Analyses 100 mm T3D2 and 100 mm
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B31 produced the most accurate ultimate moments compared to the other analyses. Analyses
100 mm T3D2 and 100 mm B31 had a percentage differences of 0.4-percent and 1.5-percent,
respectively, relative to the experimental ultimate moment. Also, these analyses had higher

rotations at ultimate moments compared to the other analyses.

Based on the displacement-rotation data, all analyses produced data that fit the same curve.
Analysis 20 mm T3D2 had a displacement at ultimate moment of 10.9 mm, which matched the
experimental value. Analyses 100 mm T3D2 and 100 mm B31 produced displacements similar
to that of the experiment (11.1 mm and 11.0 mm, respectively). The displacement at ultimate
moment percentage differences relative to the experiment were 1.8-percent and 0.9-percent,

respectively. These two analyses also produced the largest rotations of all analyses.
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Figure 5.69: Specimen SM 0.5 a) moment-rotation and b) displacement-rotation data using
varying reinforcement mesh types and sizes
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Table 5.31: Specimen SM 0.5 results using varying reinforcement mesh types and sizes

Ultimate moment Displacement (mm) Rotation (mrad)
(kNm) at ultimate moment  at ultimate moment

Analyses

20 mm T3D2 95.7 10.9 22.7

20 mm B31 99.4 10.2 21.9

50 mm T3D2 90.8 9.9 20.0

50 mm B31 99.3 10.5 22.6

100 mm T3D2 99.5 11.1 23.5

100 mm B31 100.6 11.0 23.5
Experiment 99.1 10.9 36.9

The top face crack patterns of the experiment as well as the varying reinforcement element size
and element type analyses for specimen SM 0.5 are presented in Figure 5.70. For each
reinforcement element size, the T3D2 analyses and the B31 analyses produced crack patterns
that were similar to one another. The 20 mm T3D2, 20 mm B31, 50 mm T3D2, and 50 mm B31
analyses were similar to one another. The main cracks produced by these analyses started at the
column and propagated outward toward the slab corners. The 100 mm T3D2 and 100 mm B31
analyses produced the same diagonal cracks. However, these analyses produced additional
cracks located at half the distance between the column faces and slab edges. These cracks
formed parallel to the column faces. The cracks observed within the photographed experiment
crack patterns were primarily diagonal. Therefore, the crack patterns of the 100 mm T3D2 and

100 mm B31 analyses were least representative of the experiment crack patterns.
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Figure 5.70: Specimen SM 0.5 top face experiment (Ghali et al., 1976) and analyses crack
patterns using varying reinforcement mesh types and sizes. Authorized reprint of experiment
photograph from ACI Journal, Volume 73, Issue 10, October 1976.

The bottom face crack patterns of the experiment as well as the varying reinforcement element
size and element type analyses for specimen SM 0.5 are presented in Figure 5.71. The 20 mm
T3D2, 20 mm B31, 50 mm T3D2, and 50 mm B31 analyses were similar to one another. The
100 mm T3D2 and 100 mm B31 analyses produced the same cracks observed among the other

analyses. However, these analyses produced additional horizontal cracks starting along the
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bottom column face and propagating toward the left and right slab edges. These cracks were not

observed among the photographed experiment crack patterns.
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Figure 5.71: Specimen SM 0.5 bottom face experiment (Ghali et al., 1976) and analyses crack
patterns using varying reinforcement mesh types and sizes. Authorized reprint of experiment
photograph from ACI Journal, Volume 73, Issue 10, October 1976.
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5.7.2 Results of specimen SM 1.0 analyses
The moment-rotation and displacement-rotation data for the analyses of varying reinforcement
mesh sizes and element types, in addition to the experimental results, for specimen SM 1.0 are

presented in Figure 5.72. A summary of this data is provided in Table 5.32.

The 20 mm T3D2, 20 mm B31, 50 mm T3D2, and 50 mm B31 analyses produced near-identical
results. The 100 mm T3D2 and 100 mm B31 analyses produced softer moment-rotation data
compared to the other analyses. Furthermore, the ultimate moments of these analyses were 116.9
KNm and 117.7 kKNm, respectively. The other analyses produced ultimate moments between
120.0 kNm and 122.6 kNm. These analyses were closer to the ultimate moment of the
experiment (127.1 kNm).

The displacement-rotation data of all analyses overlapped one another. All analyses except for
the 100 mm analyses produced displacements at ultimate moments of approximately 3.8 mm.
The 100 mm T3D2 and 100 mm B31 analyses had the same displacement at ultimate moment
(4.1 mm). These analyses had displacements at ultimate moments that were closest to the

experimental value (10.8 mm).
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Figure 5.72: Specimen SM 1.0 a) moment-rotation and b) displacement-rotation data using

varying reinforcement mesh types and sizes
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Table 5.32: Specimen SM 1.0 results using varying reinforcement mesh types and sizes

Ultimate moment Displacement (mm) Rotation (mrad)
(kNm) at ultimate moment  at ultimate moment

Analyses

20 mm T3D2 120.9 3.8 10.6

20 mm B31 122.6 3.7 10.5

50 mm T3D2 120.0 3.8 10.8

50 mm B31 121.2 3.8 10.9

100 mm T3D2 116.9 4.1 115

100 mm B31 117.7 4.1 11.5
Experiment 1271 10.8 27.0

The top face crack patterns of the experiment as well as the varying reinforcement element size
and element type analyses for specimen SM 1.0 are presented in Figure 5.73. For each
reinforcement element size, the T3D2 analyses and the B31 analyses produced crack patterns
identical to one another. The main cracks produced by all analyses started at the column and
propagated outward toward the slab corners. The 50 mm reinforcement element size analyses
had large vertical and horizontal cracks along the reinforcement bars near the column. This was
because the long elements linearly distributed large strains from the column faces across the
length of the elements. This resulted in crack patterns showing strains where strains were not
observed during testing. This is similar to the findings of the concrete mesh size study. The 100
mm reinforcement element size analyses produced even larger vertical and horizontal cracks.

This was because the high strains were now being distributed over an even larger element length.
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Figure 5.73: Specimen SM 1.0 top face analyses crack patterns using varying reinforcement

mesh types and sizes

The bottom face crack patterns of the experiment as well as the varying reinforcement element

size and element type analyses for specimen SM 1.0 are presented in Figure 5.74. All analyses

cracks were similar to one another. The analyses produced cracks that started from the bottom

column face and continued toward the bottom left and bottom right slab corners. However,

increasing the reinforcement element size resulted in widening of the aforementioned diagonal

cracks.
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Figure 5.74: Specimen“ SMlO nbAottom face analyses crack pattérhsm usmg Qarying
reinforcement mesh types and sizes
5.7.3 Results of specimen SM 1.5 analyses
The moment-rotation and displacement-rotation data for the analyses of varying reinforcement
mesh sizes and element types, in addition to the experimental results, for specimen SM 1.5 are
presented in Figure 5.75. A summary of this data is provided in Table 5.33.

The 20 mm T3D2, 20 mm B31, 50 mm T3D2, and 50 mm B31 analyses produced similar

moment-rotation data. The 100 mm T3D2 and 100 mm B31 analyses had lower moment-
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rotation slopes and capacities compared to the other analyses. These analyses had ultimate
moments of 143.5 KNm and 145.4 kNm, respectively. The other analyses had ultimate moments
between 159.0 kNm and 164.4 KNm.

All analyses produced similar displacement-rotation data to one another. All analyses had

similar rotations at ultimate moments between 10.8 mm and 11.7 mm.
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Figure 5.75: Specimen SM 1.5 a) moment-rotation and b) displacement-rotation data using
varying reinforcement mesh types and sizes

Table 5.33: Specimen SM 1.5 results using varying reinforcement mesh types and sizes

Ultimate moment Displacement (mm) Rotation (mrad)
(kNm) at ultimate moment  at ultimate moment

Analyses

20 mm T3D2 161.3 2.7 114

20 mm B31 164.4 2.6 114

50 mm T3D2 159.0 2.7 114

50 mm B31 162.2 2.7 11.7

100 mm T3D2 143.5 2.7 10.8

100 mm B31 145.4 2.8 10.9
Experiment 131.5 11.3 20.1

The top face crack patterns of the experiment as well as the varying reinforcement element size
and element type analyses for specimen SM 1.5 are presented in Figure 5.76. As with the SM
0.5 and SM 1.0 analyses, the T3D2 analyses and the B31 analyses produced crack patterns

identical to one another for a given element size. All analyses produced cracks that started at the
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column and propagated outward toward the slab corners. As observed with specimen SM 1.0,
the 50 mm reinforcement element size analyses had large vertical and horizontal cracks along
the reinforcement bars near the column. Recall, this was due to the long elements linearly
distributing high strains from the column face to low strain regions away from the column.
These strain distributions were not representative of the strain distributions of the experiment.
The 100 mm reinforcement element size analyses produced even larger vertical and horizontal
cracks as the strains were distributed over an even longer element length.
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Figure 5.76: Specimen SM 1.5 top faceexperimnt (Ghali et al., 1976 and anayses crack
patterns using varying reinforcement mesh types and sizes. Authorized reprint of experiment
photograph from ACI Journal, Volume 73, Issue 10, October 1976.
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The bottom face crack patterns of the experiment as well as the varying reinforcement element
size and element type analyses for specimen SM 1.5 are presented in Figure 5.77. No discernable
crack pattern differences were observed among the analyses.
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Figure 5.77: Specimen SM 1.5 bottom face experiment (Ghali et al., 1976) and analyses crack
patterns using varying reinforcement mesh types and sizes. Authorized reprint of experiment
photograph from ACI Journal, Volume 73, Issue 10, October 1976.
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5.7.4 Conclusions and recommendations
The analyses within this study showed that the most accurate results for each specimen were
produced when using a reinforcement element size of 20 mm and element type of T3D2.

Generally, using B31 elements in place of T3D2 elements did not impact the moment-rotation
data, displacement-rotation data, or crack patterns. The 20 mm analyses had the highest ultimate
moments, the 50 mm analyses had the next highest ultimate moments, and the 100 mm analyses
had the lowest ultimate moments. The exception to this was specimen SM 0.5 in which the 100
mm T3D2 and B31 analyses had ultimate moments of 99.5 kNm and 100.6 KNm, respectively.
The 20 mm T3D2 and B31 analyses ultimate moments were 95.7 kNm and 99.4 kNm,

respectively. Comparatively, the specimen SM 0.5 experiment ultimate moment was 99.1 KNm.

For each specimen, all six analyses produced displacement-rotation curves that overlapped one
another. Analyses with higher ultimate moments showed the full shape of this displacement-
rotation curve and analyses with lower ultimate moments showed only a portion of the same

curve.

Using reinforcement element sizes of 50 mm and 100 mm resulted in strains in areas where no
strains were observed during testing. Elements located near the column would linearly distribute
(as both T3D2 and B31 use linear interpolation) high strains at the column across the entire
length of the element. This was evident as the 50 mm and 100 mm analyses had long vertical
and horizontal cracks near and around their columns. These cracks were not present in the

photographed crack patterns of the experiment.

Due to the strain inaccuracies when using larger elements, it was necessary to use 20 mm
reinforcement elements in subsequent analyses. The ultimate moments were similar between
the T3D2 and B31 analyses. However, T3D2 elements were selected for use in subsequent

analyses because these elements are less computationally demanding.

5.8 Comparison of concrete dilation angles
In this section, the effects of using varying concrete dilation angles were studied. Previous
analyses were completed using a concrete dilation angle of 40 degrees. For this study, each of

the three specimens were analysed using concrete dilation angles of 30, 35, 40, and 45 degrees.
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The concrete dilation angle that produced accurate results for all three specimens was selected

and used in subsequent analyses.

5.8.1 Results of specimen SM 0.5 analyses
The moment-rotation and displacement-rotation data for the specimen SM 0.5 analyses using
varying concrete dilation angles, in addition to the experimental results, are presented in Figure

5.78. A summary of this data is provided in Table 5.34.

Among the analyses, using a 40 degree concrete dilation angle resulted in an ultimate moment
closest to that of the experiment. With respect to displacement at ultimate moment, both the 40
and 45 degree concrete dilation angle analyses produced displacements that were similar to the
displacement of the experiment.

The moment-displacement curves of the analyses shared similar shapes to one another. Past 5
mrad, analyses with higher dilation angles had steeper slopes compared to analyses with lower
dilation angles. The reason for this is that the plastic flow of the Concrete Damaged Plasticity
model is defined by the Drucker-Prager hyperbolic function. The dilation angle within this
function proportionately affected the angle between the hydrostatic axis and the failure surface.
Since using a larger dilation angle resulted in a wider failure surface cone, a higher value for the
second invariant of the deviatoric stress tensor was required to meet the Drucker-Prager failure
criterion. This was evident by the higher rotational stiffness and capacity of the analyses which

used higher dilation angles.
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Figure 5.78: Specimen SM 0.5 a) moment-rotation and b) displacement-rotation data using
varying concrete dilation angles
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Table 5.34:

Specimen SM 0.5 results using varying concrete dilation angles

Ultimate moment

Displacement (mm)

Rotation (mrad)

(kNm) at ultimate moment  at ultimate moment
Analyses
30° 63.6 7.3 11.9
35° 76.4 8.9 16.4
40° 95.7 10.9 22.7
45° 109.7 10.8 24.1
Experiment 99.1 10.9 36.9

Linear interpolation could be done to determine the dilation angle required to reproduce the
ultimate moment of the experiment. The ultimate moment versus dilation angle and
displacement versus dilation angle data for specimen SM 0.5 are shown in Figure 5.79. On the
ultimate moment versus dilation angle plot, a line was fitted through the four data points. The
equation of this line was rearranged such that the dilation angle was a function of ultimate
moment. This function was used to determine the dilation angle required to produce an analysis
with an ultimate moment identical to the ultimate moment of the experiment. To produce an
ultimate moment of 99.1 KNm, a dilation angle of 41.5 degrees needed to be used. This datum
was plotted on the ultimate moment versus dilation angle graph as a red triangle. A vertical
displacement of 10.9 mm was predicted by linearly interpolating between the 40 and 45 degree
data points using the dilation angle of 41.5 degrees. This datum was plotted on the vertical

displacement versus dilation angle graph as a red triangle.

a) 120 b) o
.
100 } A” T 2
~ -Z E
= _-7 y=3.152x-31.85 €
g ¥ - R? = 0.9941 o 4
+— i [0}
c o7 Q
g 60 2 6 - —- - Analyses
o ) )
IS ] & A Experiment
o 40 = 8 ~
g L b ~x
§ ¢ Analyses 5 Se
5 20 A Experiment > 10t N
- - - - Linear (Analyses) > A-- -9
0 1 1 1 1 12 1 1 1
25 30 35 40 45 50 25 30 35 40 45 50

Dilation angle (degrees) Dilation angle (degrees)
Figure 5.79: Specimen SM 0.5 a) moment versus dilation angle and b) displacement versus

dilation angle data using varying concrete dilation angles
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The top face crack patterns for the specimen SM 0.5 analyses using varying concrete dilation
angles, in addition to the experimental results, are presented in Figure 5.80. All analyses
produced identical crack patterns to one another. However, each subsequent increase in dilation
angle resulted in increased strains at the top column face and within the diagonal cracks that
formed from the bottom column face toward the extents of the bottom support elements. Since
it was not possible to compare the experiment strain magnitudes to those of the analyses, strain

magnitudes were not used as a criterion for determining analysis accuracy.
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Figure 5.80: Specimen SM 0.5 top face experiment (Ghali et al., 1976) and analyses crack
patterns using varying concrete dilation angles. Authorized reprint of experiment photograph
from ACI Journal, Volume 73, Issue 10, October 1976.

The bottom face crack patterns for the specimen SM 0.5 analyses using varying concrete dilation
angles, in addition to the experimental results, are presented in Figure 5.81. As with the top
crack patterns, all analyses produced crack patterns with similar shapes to one another but with
varying strain magnitudes. Decreasing the upper limit of the maximum principal plastic strain
for the 30 and 35 degree analyses would show the same cracks observed for the 40 and 45 degree

analyses. As such, all dilation angles produced accurate crack patterns.
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Figure 5.81: Specimen SM 0.5 bottom face experiment (Ghali et al., 1976) and analyses crack
patterns using varying concrete dilation angles. Authorized reprint of experiment photograph
from ACI Journal, Volume 73, Issue 10, October 1976.

5.8.2 Results of specimen SM 1.0 analyses
The moment-rotation and displacement-rotation data for the specimen SM 1.0 analyses using
varying concrete dilation angles, in addition to the experimental results, are presented in Figure

5.82. A summary of this data is provided in Table 5.35.

As observed with the specimen SM 0.5 analyses, increasing the dilation angle resulted in an
increase in rotational stiffness and ultimate moment. The 45 degree dilation angle analysis had
an ultimate moment (129.3 kNm) closest to the ultimate moment of the experiment (127.1
kNm). The analysis with the next closest ultimate moment was the 40 degree dilation angle

analysis which had an ultimate moment of 120.9 kNm.

The displacements at ultimate moments were the same for all analyses. However, the rotations

at ultimate moments increased as the dilation angle was increased.
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Figure 5.82: Specimen SM 1.0 a) moment-rotation and b) displacement-rotation data using
varying concrete dilation angles

Table 5.35: Specimen SM 1.0 results using varying concrete dilation angles

Ultimate moment Displacement (mm) Rotation (mrad)
(KNm) at ultimate moment  at ultimate moment

Analyses

30° 97.8 3.7 9.6

35° 111.9 3.8 10.5

40° 120.9 3.8 10.6

45° 129.3 3.8 11.0
Experiment 127.1 10.8 27.0

Linear interpolation was done to determine the dilation angle required to reproduce the ultimate
moment of the experiment. The ultimate moment versus dilation angle and displacement versus
dilation angle data for specimen SM 1.0 are shown in Figure 5.83. On the ultimate moment
versus dilation angle plot, a line was fitted through the four data points. Using this linear
regression, a dilation angle of 44.6 degrees was required to produce an ultimate moment of
127.1 kNm. This datum was plotted on the ultimate moment versus dilation angle graph as a red
triangle. A vertical displacement of 3.8 mm was predicted by linearly interpolating between the
40 and 45 degree data points using a dilation angle of 44.6 degrees. This datum was plotted on

the vertical displacement versus dilation angle graph as a red triangle.
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Figure 5.83: Specimen SM 1.0 a) moment versus dilation angle and b) displacement versus

dilation angle data using varying concrete dilation angles

The top face and bottom face crack patterns for the specimen SM 1.0 analyses using varying
concrete dilation angles are presented in Figure 5.84. As with the specimen SM 0.5 analyses,

the strain magnitudes among the specimen SM 1.0 analyses differed from one another but the

overall crack patterns were the same.
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Figure 5.84: Specimen SM 1.0 analyses crack patterns using varying concrete dilation angles
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5.8.3 Results of specimen SM 1.5 analyses
The moment-rotation and displacement-rotation data for the specimen SM 1.5 analyses using
varying concrete dilation angles, in addition to the experimental results, are presented in Figure

5.85. A summary of this data is provided in Table 5.36.

As observed with the dilation angle analyses for specimens SM 0.5 and SM 1.0, increasing the
dilation angle resulted in an increase in rotational stiffness and ultimate moment. The 35 degree
dilation angle analysis had an ultimate moment (138.6 kNm) closest to the ultimate moment of
the experiment (131.5 kNm). The analysis with the next closest ultimate moment was the 30

degree dilation angle analysis which had an ultimate moment of 120.6 kNm.

The displacements at ultimate moments were the same for all analyses but the rotations at

ultimate moments increased with increases in dilation angle.
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Figure 5.85: Specimen SM 1.5 a) moment-rotation and b) displacement-rotation data using
varying concrete dilation angles

Table 5.36: Specimen SM 1.5 results using varying concrete dilation angles

Ultimate moment Displacement (mm) Rotation (mrad)
(kNm) at ultimate moment  at ultimate moment

Analyses

30° 120.6 2.4 8.1

35° 138.6 2.5 9.4

40° 161.3 2.7 114

45° 176.0 2.5 11.5
Experiment 131.5 11.3 20.1
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Linear interpolation was done to determine the dilation angle required to reproduce the ultimate
moment of the experiment. The ultimate moment versus dilation angle and displacement versus
dilation angle data for specimen SM 1.5 are shown in Figure 5.86. On the ultimate moment
versus dilation angle plot, a line was fitted through the four data points. Using the equation of
this line, a dilation angle of 32.8 degrees was required to produce an ultimate moment of 131.5
kKNm. This datum was plotted on the ultimate moment versus dilation angle graph as a red
triangle. A vertical displacement of 2.5 mm was predicted by linearly interpolating between the
30 and 35 degree data points using the dilation angle of 32.8 degrees. This datum was plotted

on the vertical displacement versus dilation angle graph as a red triangle.
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Figure 5.86: Specimen SM 1.5 a) moment versus dilation angle and b) displacement versus
dilation angle data using varying concrete dilation angles

The top face crack patterns for the specimen SM 1.5 analyses using varying concrete dilation
angles, in addition to the experimental results, are presented in Figure 5.87. As with the
specimen SM 0.5 and SM 1.0 analyses, all specimen SM 1.5 analyses produced identical top
face crack patterns to one another. The only differences between the analyses crack patterns
were with respect to strain magnitudes. As previously discussed, strain magnitudes were not a

criterion for analysis accuracy as the strain magnitudes of the experiment were unknown.
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Figure 5.87: Specimen SM 1.5 top face experiment (Ghali et al., 1976) and analyses crack
patterns using varying concrete dilation angles. Authorized reprint of experiment photograph
from ACI Journal, VVolume 73, Issue 10, October 1976.
The bottom face crack patterns for the specimen SM 1.5 analyses using varying concrete dilation
angles, in addition to the experimental results, are presented in Figure 5.88. All specimen SM
1.5 analyses produced identical bottom face crack patterns to one another. There were
differences between the maximum principal plastic strain magnitudes. If the upper contour
limits of the 30 and 35 degree analyses were reduced, the contour plots produced would be

identical to the contour plots of the 40 and 45 degree analyses.

178



a) Experiment b) Analysis 30° c) Analysis 35°

d) Analysis 40° e) Analysis 45°

PE, Max. Principal
(Avg: 75%)

0.001 y

Figure 5.88: Specimen SM 1.5 bottom face experiment (Ghali et al., 1976) and analyses crack
patterns using varying concrete dilation angles. Authorized reprint of experiment photograph
from ACI Journal, Volume 73, Issue 10, October 1976.

5.8.4 Comparison of specimen results

The experiment ultimate moments increased from 127.1 kNm to 131.5 kNm when the
reinforcement ratio was increased from 1.0-percent to 1.5-percent. This was a 3-percent increase
in ultimate moment for a 33-percent increase in steel reinforcement. Using a concrete dilation
angle of 40 degrees, the finite element analyses showed a 32-percent increase in ultimate
moment for the same increase in steel reinforcement. For this reason, it was believed that the
specimen SM 1.5 experiment would produce a higher ultimate moment had the experiment been
repeated. Therefore, the specimen SM 1.5 analyses were not considered when calculating the
concrete dilation angle to use. Had they been considered, the overall concrete dilation angle

would be lower and the error would increase for specimens SM 0.5 and SM 1.0.

In previous sections, linear equations relating ultimate moments to concrete dilation angles were

obtained for the three specimens. These ultimate moment versus concrete dilation angle
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equations were modified by subtracting their respective experiment ultimate moments from the
equations. The modified equations, in addition to the average of the modified equations, were
plotted in Figure 5.89. The average of the modified equations provided the average difference
in ultimate moment between the analyses and their respective experiments. The x-intercept of
this average provided the concrete dilation angle required to minimize the overall ultimate

moment error between the analyses and the experiments.

Figure 5.89a shows all three specimen equations in addition to the average of the three
equations. As aforementioned, specimen SM 1.5 was treated as an outlier and including
specimen SM 1.5 results would lower the overall concrete dilation angle. Based on Figure 5.89a,

the concrete dilation angle that would result in the lowest overall error was 38.3 degrees.

Figure 5.89b shows the equations for specimens SM 0.5 and SM 1.0 in addition to the average
of these two specimen equations. Based on this figure, the concrete dilation angle that would

result in the lowest overall error was 42.3 degrees.
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Figure 5.89: Analysis ultimate moments minus experiment ultimate moments versus dilation
angles for specimens a) SM 0.5, SM 1.0, and SM 1.5; and b) SM 0.5 and SM 1.0

5.8.5 Conclusions and recommendations
In this section, the three SM specimens were analysed using concrete dilation angles of 30, 35,
40, and 45 degrees. For each specimen, linear relationships were observed between the ultimate

moments and the concrete dilation angles used. These linear relationships were used to
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determine the optimal concrete dilation angle that would produce the least ultimate moment

error among the three specimen analyses. The optimal concrete dilation angle was 42.3 degrees.

As mentioned, the ultimate moment increased proportionately when the concrete dilation angle
was increased. The vertical displacements at ultimate moments increased when the dilation
angle was increased for specimen SM 0.5. However, these vertical displacements did not change
when the concrete dilation angle was increased for specimens SM 1.0 and SM 1.5. Lastly, the

crack patterns remained the same when the concrete dilation angle was changed.

Based on these findings, the optimal concrete dilation angle to use for subsequent analyses was
42 degrees. Due to user error, a dilation angle of 40 degrees was used instead. However, as the
differences in results when using a 42 degree dilation angle versus a 40 degree dilation angle

were minimal, the models were not reanalysed.

5.9 Study of effects of self-weight
In this section, analyses were completed in which self-weight forces were included. Previously
completed analyses neglected self-weight forces based on the assumption that these forces were

negligible. This study was completed to determine whether or not this assumption was correct.

Ghali et al. (1976) stated that the SM specimens were rotated 90 degrees relative to their
positions within actual structures. This meant that the specimens were positioned such that their
columns were parallel to the ground. Figure 5.90 shows the test orientation of SM specimens
including the vertical force V, force couple P, and gravity force G. The coordinate system shown

matches the coordinate system used in Abaqus analyses.
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Figure 5.90: Test orientation of SM specimens including vertical force V, force couple P, and
gravity force G

Gravity loads were applied on the analyses specimens through the load module of Abaqus. An
acceleration of -9,810 mm/s? was defined in the x-direction. The resultant loads were calculated

by Abaqus using the acceleration, part volumes, and material densities.

5.9.1 Results of specimen SM 0.5 analyses

The moment-rotation and displacement-rotation data for the specimen SM 0.5 analyses
including and excluding self-weight, in addition to the experimental results, are presented in
Figure 5.91. A summary of this data is provided in Table 5.37.

Both the self-weight included and self-weight excluded produced identical moment-rotation and
displacement-rotation results to one another. Therefore, the self-weight of specimen SM 0.5 was
not enough to affect the ultimate moment nor the displacement or rotation at the ultimate

moment.
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Figure 5.91: Specimen SM 0.5 a) moment-rotation and b) displacement-rotation data when
including versus excluding self-weight

Table 5.37: Specimen SM 0.5 analyses results when including versus excluding self-weight

Ultimate moment  Displacement (mm) Rotation (mrad)
(KNm) at ultimate moment  at ultimate moment
Analyses
Self-weight included 96.4 10.7 22.4
Self-weight excluded 95.7 10.9 22.7
Experiment 99.1 10.9 36.9

The crack patterns for the specimen SM 0.5 analyses including and excluding self-weight, in
addition to the experimental crack patterns, are presented in Figure 5.92. Both analyses

produced identical crack patterns to one another.
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Figure 5.92: Specimen SM 0.5 experiment (Ghali et al., 1976) and analyses crack patterns

when including versus excluding self-weight. Authorized reprint of experiment photographs
from ACI Journal, Volume 73, Issue 10, October 1976.

5.9.2 Results of specimen SM 1.0 analyses
The moment-rotation and displacement-rotation data for the specimen SM 1.0 analyses
including and excluding self-weight, in addition to the experimental results, are presented in

Figure 5.93. A summary of this data is provided in Table 5.38.

184



Both the self-weight included and self-weight excluded produced identical moment-rotation and
displacement-rotation results to one another. As with specimen SM 0.5, the self-weight of
specimen SM 1.0 was not enough to affect the results.

(.

a) 140

O
~
o

120

100

80 |

60

Moment (kNm)

40

Vertical displacement (mm)
(o]

20 10

0 1 1 1 1 1 12 1 1 1 1 1
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Rotation (mrad) Rotation (mrad)
Experiment Self-weight included - = = - Self-weight excluded

Figure 5.93: Specimen SM 1.0 a) moment-rotation and b) displacement-rotation data when
including versus excluding self-weight

Table 5.38: Specimen SM 1.0 analyses results when including versus excluding self-weight

Ultimate moment  Displacement (mm) Rotation (mrad)
(KNm) at ultimate moment  at ultimate moment
Analyses
Self-weight included 120.3 3.7 10.5
Self-weight excluded 120.9 3.8 10.6
Experiment 127.1 10.8 27.0

The crack patterns for the specimen SM 1.0 analyses including and excluding self-weight are

presented in Figure 5.94. Both analyses produced identical crack patterns to one another.
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Figure 5.94: Specimen SM 1.0 analyses crack pétterns when including versus excluding self-
weight
5.9.3 Results of specimen SM 1.5 analyses
The moment-rotation and displacement-rotation data for the specimen SM 1.5 analyses
including and excluding self-weight, in addition to the experimental results, are presented in
Figure 5.95. A summary of this data is provided in Table 5.39.

Both the self-weight included and self-weight excluded produced identical moment-rotation and
displacement-rotation results to one another. As with specimens SM 0.5 and SM 1.0, the self-

weight of specimen SM 1.5 was not large enough to affect the results.
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Figure 5.95: Specimen SM 1.5 a) moment-rotation and b) displacement-rotation data when
including versus excluding self-weight

Table 5.39: Specimen SM 1.5 analyses results when including versus excluding self-weight

Ultimate moment  Displacement (mm) Rotation (mrad)
(KNm) at ultimate moment  at ultimate moment
Analyses
Self-weight included 161.2 2.6 11.1
Self-weight excluded 161.3 2.7 114
Experiment 131.5 11.3 20.1

The crack patterns for the specimen SM 1.5 analyses including and excluding self-weight, in
addition to the experimental crack patterns, are presented in Figure 5.96. Both analyses

produced identical crack patterns to one another.
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Figure 5.96: Specimen SM 1.5 experiment (Ghali et al., 1976) and analyses crack patterns
when including versus excluding self-weight. Authorized reprint of experiment photographs
from ACI Journal, Volume 73, Issue 10, October 1976.

5.9.4 Conclusions and recommendations

In this section, the three SM specimens were analysed with and without self-weight forces. The
moment-rotation data, displacement-rotation data, and crack patterns of analyses with self-
weight included were identical to the aforementioned results for analyses without self-weight.
For subsequent analyses, gravity loads continued being excluded as they increased

computational resources but did not influence the results.
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5.10 Study of concrete modulus of elasticity

In this study, the concrete uniaxial compression stress-strain data was horizontally stretched by
reducing the tangent modulus of elasticity E,. More information about the Hognestad parabola
used to define the stress-strain data is presented in Section 3.1.2. The motivation for this study
came from compression cylinder test data produced by El-Salakawy (1998). In previous
analyses, the Hognestad parabola stress-strain data was defined using E; equal to 5500\/ﬁ .
When this E, and the Hognestad parabola to predict stress-strain data for EI-Salakawy’s cylinder
tests, the predicted strains at peak stresses were on average 57-percent smaller than the tested

strains at peak stresses.

In Section 5.10.1, an equation for E; is presented that produces strains at peak stresses (when
used with the Hognestad parabola) closer to the strains at peak stresses obtained from
compression cylinder testing by El-Salakawy. In Sections 5.10.2 through 5.10.4, the SM

specimens were reanalysed using E; equal to 3150\/E to define the Hognestad parabola. The

analyses using E; with equal to 5500/, and 3150,/f; were compared to the experimental data

to determine which of the E; equations produced more accurate results.

It was expected that reducing the modulus of elasticity would reduce the large differences in
rotations and displacements at ultimate moments between the experiments and their respective
analyses. Additionally, it was predicted that using the reduced tangent modulus of elasticity
would provide increased punching shear capacity due to the increased area under the Hognestad
parabola. Since the area under the parabola is equal to the energy required to crush the concrete,
specimens would be able to withstand higher moments before failure.

5.10.1 Calculation of tangent modulus of elasticity
The compressive strengths, tested strains at peak stresses, and Hognestad strains at peak stresses
for each specimen are presented in Table 5.40. As previously mentioned, the tested strains at

peak stresses were on average 57-percent smaller than strains at peak stresses predicted using

the Hognestad parabola with a tangent modulus of elasticity E; equal to 5500\/ﬁ.
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Table 5.40: Concrete properties of specimens tested by El-Salakawy (1998)

Compressive strength

Tested strain at peak

Hognestad strain at peak
Specimen f. (MPa) stress & stress &
CFO 30.5 0.0035 0.0020
CFO-R 32.0 0.0036 0.0021
HSEO 36.5 0.0040 0.0022
HSFO 36.0 0.0038 0.0022
HXXX 36.5 0.0038 0.0022

HXXX-R 335 0.0042 0.0021
SEO 325 0.0035 0.0021
SEO-R 315 0.0035 0.0020
SFO 315 0.0034 0.0020
SFO-R 325 0.0036 0.0021
SF1 33.0 0.0036 0.0021
SF2 30.0 0.0035 0.0020
XXX 33.0 0.0036 0.0021
XXX-R 32.0 0.0036 0.0021

El-Salakawy provided a typical stress-strain curve using the average of the data from Table 5.40.
The typical stress-strain curve (El-Salakawy, 1998) and the Hognestad parabolas with E; equal
to 5500@ for specimens XXX and HXXX are presented in Figure 5.97. Figure 5.97 shows

that the Hognestad parabola predictions with E; equal to 5500\/ﬁ were too stiff for El-
Salakawy’s specimens.
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Figure 5.97: Typical stress-strain curve (El-Salakawy, 1998) and Hognestad parabolas with

E, equal to 5500,/ for specimens XXX and HXXX
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To horizontally stretch the stress-strain data, the tangent modulus of elasticity was reduced. The
5500 coefficient within the tangent modulus of elasticity equation (previously shown in

Equation 3.4) was replaced with a variable x:

E.(x) = x\/f! . (5.5)

Next, Equation 5.5 was substituted into Equation 3.3 and rearranged to solve for x:

x = 2@ (5.6)

Eot

where the ¢, is the strain at peak stress from El-Salakawy’s tests.

Table 5.41 shows the required E, coefficient for each of El-Salakawy’s specimens such that the
Hognestad parabola predicts a strain at peak stress equal to the tested strain at peak stress. The
required coefficients varied between specimens but were typically between 3100 and 3200. As
such, a tangent modulus of elasticity coefficient of 3150 was selected for use in FE analyses of
specimens SM 0.5, SM 1.0, and SM 1.5.

Figure 5.98 shows strains at peak stresses versus compressive strengths from El-Salakawy’s
tests as well as calculated values using the Hognestad parabola with tangent modulus of

elasticity equations equal to 5500,/f/ and 3150,/f/. Based on this figure, the Hognestad

parabola using a tangent modulus of elasticity equal to 3150\/]? produced data that was in good

agreement with the tested values.
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Table 5.41: Required tangent modulus of elasticity coefficients for El-Salakawy’s specimens

Compressive strength

Tested strain at

Tangent modulus of

Specimen 1! (MPa) peak stress &, elasticity coefficient
SF2 30.0 0.0035 3130
CFO 305 0.0035 3156

SEO-R 315 0.0035 3207
SFO 315 0.0034 3301
CFO-R 320 0.0036 3143
XXX-R 32.0 0.0036 3143
SEOQ 325 0.0035 3258
SFO-R 325 0.0036 3167
SF1 33.0 0.0036 3101
XXX 33.0 0.0036 3101
HXXX-R 335 0.0042 2756
HSFO 36.0 0.0038 3158
HSEO 36.5 0.0040 3021
HXXX 36.5 0.0038 3180
5.0

30 f

2.0 F

& Tests by El-Salakawy (1998)
10 F e Hognestad parabola (E; = 5500,/f)
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Figure 5.98: Strain at peak stress versus compressive strength for tested and Hognestad
values
The reduced elastic modulus of elasticity was obtained by finding the slope of the secant
between the origin and the Hognestad parabola datum at 0.4f; calculated using the reduced

tangent modulus of elasticity (since the stress-strain data is assumed linear-elastic up to 0.4f,):

E. =2795,/f/! (SI units: N, mm) (5.7)
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As discussed, the reduced tangent modulus of elasticity is

E, = 3150,/f; . (SI units: N, mm) (5.8)

The typical stress-strain curve (El-Salakawy, 1998) and the Hognestad parabolas (using E; equal
to 3150\/ﬁ) for specimens XXX and HXXX are presented in Figure 5.99. The stretched

Hognestad parabolas for specimens XXX and HXXX better represented the typical stress-strain

curve compared to the classical Hognestad parabolas for these same specimens.
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Figure 5.99: Typical stress-strain curve (El-Salakawy, 1998) and Hognestad parabolas with
E, equal to 3150,/ for specimens XXX and HXXX

Typical stress-strain curve

5.10.2 Results of specimen SM 0.5 analyses

The moment-rotation and displacement-rotation data for the specimen SM 0.5 analyses using

the Hognestad parabola with E; equal to 3150\/ﬁ and 5500\/E, in addition to the experimental

results, are presented in Figure 5.100. A summary of this data is provided in Table 5.42.

Of the two analyses, the analysis in which E; was equal to 3150@ produced softer moment-

rotation data. The analysis in which E; was equal to 5500\/E produced moment-rotation data
with a slope closer to that of the experiment. The ultimate moment percentage difference

between the analysis and the experiment was 3.5-percent and 8.1-percent when E; was equal to

5500,/f; and 3150,/f/, respectively. The rotation at ultimate moment percentage difference
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between the analysis and the experiment decreased from 47.6-percent to 32.1-percent when E;

was reduced from 5500,/f to 3150,/f;.

Using E; equal to 3150\/ﬁ reduced the ultimate moment and increased the rotation at ultimate
moment for specimen SM 0.5. Since specimen SM 0.5 failed in flexure, the analysis did not
benefit from the increased crushing energy of the stretched Hognestad parabola. Instead, the
lower modulus of elasticity values meant that higher column rotations occurred under lower

applied moments. This meant that the flexural reinforcement yielded under a lower applied

moment compared to the analysis that used E; equal to 5500\/ﬁ :

The displacement-rotation data showed that the initial vertical displacement was higher for the

analysis in which E, was equal to 3150\/ﬁ (2.5 mm versus 0.7 mm). For comparison, the
specimen SM 0.5 experiment initial vertical displacement was 7.7 mm. The slopes of the two
analyses were similar to one another. The displacement at ultimate moment percentage

difference increased from 0.4-percent to 15.2-percent when E; was reduced from 5500,/ f/ to
3150,/f;.
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Figure 5.100: Specimen SM 0.5 a) moment-rotation and b) displacement-rotation data using

the Hognestad parabola with E, equal to 3150,/f/ and 5500,/f
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Table 5.42: Specimen SM 0.5 analyses results using the Hognestad parabola with E; equal to

3150,/ f/ and 5500,/ f/
Ultimate moment Displacement (mm) Rotation (mrad)
(kNm) at ultimate moment at ultimate moment
Analyses
Hognestad parabola, E, = 3150,/f/ 91.4 12.7 26.7
Hognestad parabola, E; = 5500,/ f; 95.7 10.9 22.7
Experiment 99.1 10.9 36.9

The crack patterns for the specimen SM 0.5 analyses using the Hognestad parabola with E;

equal to 3150,/ and 5500,/f/, in addition to the experimental crack patterns, are presented

in Figure 5.101. Both analyses produced similar crack patterns to one another.
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Figure 5.101: Specimen SM 0.5 experiment (Ghali et al., 1976) and analyses crack patterns

using the Hognestad parabola with E, equal to 3150,/f and 5500,/f;. Authorized reprint of
experiment photographs from ACI Journal, Volume 73, Issue 10, October 1976.

5.10.3 Results of specimen SM 1.0 analyses

The moment-rotation and displacement-rotation data for the specimen SM 1.0 analyses using

the Hognestad parabola with E, equal to 3150,/f; and 5500/, in addition to the experimental

results, are presented in Figure 5.102. A summary of this data is provided in Table 5.43.
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Of the two analyses, the analysis in which E; was equal to 3150\/E produced softer moment-
rotation data. Furthermore, the slope of this analysis was closer to that of the experiment past
10 mrad. The reduced E; analysis produced a larger ultimate moment and ultimate rotation
compared to the larger E, analysis. The larger ultimate moment was due to the greater concrete
crushing energy of the stretched Hognestad parabola and the larger ultimate rotation was a result
of the stretched parabolas lower modulus of elasticity. The increased column rotation was not
enough to yield the flexural reinforcement and the specimen still failed in punching.

The moment-rotation results of the reduced E, analysis produced results closer to the experiment

compared to the larger E; analysis. The ultimate moment percentage difference between the
analyses and the experiment was 3.2-percent and 5.0-percent when E; was equal to 3150\/ﬁ
and 5500\/ﬁ , respectively. The rotation at ultimate moment percentage difference between the
analyses and the experiment was 47.4-percent and 87.0-percent when E; was equal to 3150\/ﬁ
and 5500,/f/, respectively.

The displacement-rotation data showed that the reduced E; analysis had a higher initial vertical
displacement of 1.2 mm compared to the original E; analysis which had an initial vertical
displacement of 0.7 mm. The experiment had an initial vertical displacement of 5.8 mm.
Relative to the experiment, the initial displacement percentage differences were 131.4-percent
and 156.9-percent for the reduced and original E; analyses, respectively. The displacement-
rotation data produced by both analyses had similar slopes to one another until failure. The
reduced E; analysis had a larger displacement at ultimate moment of 5.2 mm compared to the
original E; analysis which had a displacement of 3.8 mm. Relative to the experiment, the
displacement at ultimate moment percentage differences were 70.2-percent and 97.1-percent for

the reduced and original E; analyses, respectively.
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Figure 5.102: Specimen SM 1.0 a) moment-rotation and b) displacement-rotation data using
the Hognestad parabola with E, equal to 3150,/f/ and 5500,/f

Table 5.43: Specimen SM 1.0 analyses results using the Hognestad parabola with E; equal to

3150,/f/ and 5500,/f/
Ultimate moment Displacement (mm) Rotation (mrad)
(KNm) at ultimate moment at ultimate moment
Analyses
Hognestad parabola, E; = 3150,/ f/ 1311 5.2 16.7
Hognestad parabola, E, = 5500,/f/ 120.9 3.8 10.6
Experiment 127.1 10.8 27.0

The crack patterns for the specimen SM 1.0 analyses using the Hognestad parabola with E;

equal to 3150,/f; and 5500,/f; are presented in Figure 5.103. Both analyses produced similar

crack patterns to one another.
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5.10.4 Results of specimen SM 1.5 analyses
The moment-rotation and displacement-rotation data for the specimen SM 1.5 analyses using

the Hognestad parabola with E, equal to 3150,/7 and 5500/, in addition to the experimental

results, are presented in Figure 5.104. A summary of this data is provided in Table 5.44.

As with the other SM specimens, the reduced E; analysis produced softer moment-rotation data
compared to the original E, analysis. Of the two analyses, the moment-rotation slope of the
reduced E, analysis that was closer to that of the experiment. As with specimen SM 1.0,
specimen SM 1.5 had a larger ultimate moment and rotation at ultimate moment when using the
lower E, value. Similarly, the larger ultimate moment was caused by the greater concrete
crushing energy of the stretched Hognestad parabola and the larger rotation at ultimate moment
was a result of the stretched Hognestad parabolas lower modulus of elasticity.

The ultimate moment percentage difference between the analyses and the experiment was 23.6-

percent and 20.3-percent for the reduced and original E; parabola analyses, respectively. The
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rotation at ultimate moment percentage difference between the analyses and the experiment was

21.2-percent and 55.4-percent for the reduced and original E; analyses, respectively.

As with the other specimen analyses, the reduced E; analysis had a higher initial displacement
(1.2 mm compared to 0.5 mm). By comparison, the experiment had an initial vertical
displacement of 6.1 mm. The slope of the displacement-rotation data for the two analyses and
the experiment were similar to one another. The analysis displacement at ultimate moment was
closer to that of the experiment for the reduced E; analysis compared to the original E; analysis.
The displacement at ultimate moment percentage difference was 108.9-percent and 123.6-

percent for the reduced and original E; analyses, respectively.
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Figure 5.104: Specimen SM 1.5 a) moment-rotation and b) displacement-rotation data using
the Hognestad parabola with E, equal to 3150,/f/ and 5500,/f

Table 5.44: Specimen SM 1.5 analyses results using the Hognestad parabola with E, equal to

3150,/f/ and 5500,/f/
Ultimate moment  Displacement (mm) Rotation (mrad)
(KNm) at ultimate moment  at ultimate moment
Analyses
Hognestad parabola, E, = 3150,/f/ 166.8 3.3 16.3
Hognestad parabola, E, = 5500,/f/ 161.3 2.7 11.4
Experiment 1315 11.3 20.1

The crack patterns for the specimen SM 1.5 analyses using the Hognestad parabola with E;

equal to 3150,/f7 and 5500,/f;, in addition to the experimental crack patterns, are presented

in Figure 5.105. Both analyses produced similar crack patterns to one another.
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experiment photographs from ACI Journal, Volume 73, Issue 10, October 1976.
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5.10.5 Conclusions and recommendations

In this study, each of the three SM specimens were analysed using a reduced tangent modulus
of elasticity E; equation to define uniaxial compression stress-strain data with the Hognestad
parabola. In previous analyses, E; was equal to 5500\/E but was reduced to 3150\/ﬁ for

analyses in this study. Using a reduced E; coefficient of 3150 produced larger strains at peak
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stress, which produced a better correlation between the stress-strain data predicted by the
Hognestad parabola and by El-Salakawy’s (1998) test stress-strain data obtained through
compression cylinder testing. It was expected that using a lower modulus of elasticity would

increase rotations and displacements at ultimate moments for the three specimens.

When using the reduced E, equation versus the original E; equation (i.e. from previous
analyses), specimen SM 0.5 had a larger rotation at ultimate moment but a lower ultimate
moment. The larger rotation was a direct result of using a smaller modulus of elasticity. The
ultimate moment was lower because the larger rotations under the same applied moments
resulted in higher strains within the flexural reinforcement. As a result, the flexural
reinforcement reached its yield strain at a lower applied moment compared to the original E,
equation analyses. The slope of the moment-rotation data was closer to the slope of the
experiment data when using the Hognestad parabola with reduced E; equation compared to the

original E; equation.

Specimens SM 1.0 and SM 1.5 had larger rotations at ultimate moments and larger ultimate
moments. As with specimen SM 0.5, each of the specimens had a reduced rotational stiffness
which meant increased rotations at ultimate moments. Specimens SM 1.0 and SM 1.5 had higher
ultimate moments as a result of the increased area under the Hognestad parabola when using a
reduced E, equation. The increased area under the Hognestad parabola meant that the concrete
could withstand more energy from greater applied moments before crushing. For both specimen
SM 1.0 and specimen SM 1.5, the slopes of the moment-rotation data sets were closer to the

slopes of the experiments when using the reduced E; equation versus the original E; equation.

The displacement-rotation differences when using the reduced E, versus the original E; were
consistent between all specimen analyses. When a reduced E; was used, all specimens saw a
higher initial vertical displacement. The reduced E; analyses produced higher displacement at
ultimate moments compared to the original E; analyses. For each specimen, the displacement-

rotation slopes were similar to one another regardless the E, equation.

For all specimens, changing the value of E, did not affect analyses crack patterns. Using smaller
E; values to define the Hognestad parabola decreased the analysis accuracy for specimen SM

0.5 but improved the analysis accuracy for specimens SM 1.0 and SM 1.5. Since using the
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reduced E; equation improved analysis accuracy for two of three specimens, the reduced E;

equation was used for subsequent analyses.

5.11 Comparison of strain-hardening versus perfectly-plastic reinforcement
Previous analyses used an elastic-perfectly-plastic model to define the uniaxial stress-strain data
of the steel reinforcement. In this study, each of the three SM specimen models were reanalysed
using elastic-strain-hardening stress-strain data that was obtained from a publication entitled
Dynamic Tests of Large Reinforcing Bar Splices by Flathau (1971). This stress-strain data was
used because both Flathau (1971) and Ghali et al. (1976) used reinforcement that met the
requirements of ASTM A615-68 Standard Specification for Deformed Billet-Steel Bars for
Concrete Reinforcement (1968).

The elastic-strain-hardening analyses results were compared to the elastic-perfectly-plastic
analyses results. This was done to determine whether or not strain-hardening significantly
affected the analyses results. Since specimen SM 0.5 was the only specimen to fail in flexure,
the expectation of this study was that the ultimate moment of the specimen SM 0.5 analysis
would increase. Increasing the analysis ultimate moment of specimen SM 0.5 would mean a

smaller difference between the ultimate moment of the analysis and the experiment.

5.11.1 Strain-hardening stress-strain data

Ghali et al. (1976) stated that No. 4 steel reinforcement was used and that the reinforcement had
a yield stress of 69 ksi (475 MPa). At the time of their publication, ASTM A615-68 outlined the
requirements for deformed billet-steel bars produced for use as concrete reinforcement. ASTM
A615-68 stated that there were three grades of steel reinforcement: Grade 40, Grade 60, and
Grade 75, which had minimum yield stresses of 40 ksi (280 MPa), 60 ksi (420 MPa), and 75 ksi
(520 MPa), respectively. The steel used by Ghali et al. exceeded 60 ksi but not 75 ksi. Therefore,
Ghali et al. used Grade 60 deformed reinforcing bars for their tests.

Stress-strain data was obtained from a publication entitled Dynamic Tests of Large Reinforcing
Bar Splices by Flathau (1971). In this publication, Flathau performed a number of tensile tests
using No. 11 deformed bars. The tested specimens had varying grades of A615 billet-steel
(Grades 60 and 75), different types of splices, and varying rates at which strains were applied

(slow, intermediate, and rapid). In addition, Flathau tested as-rolled and machined bars using
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the varying grades of A615 billet-steel and strain rates. For each combination of steel grade and
strain rate, the spliced bar results were compared to the as-rolled and machined bar results to
evaluate the performance of the splicing methods.

The tensile test results obtained by Flathau (1971) in which a No. 11 as-rolled bar with Grade
60 steel (loaded with an intermediate strain rate) was used for this study. The stress-strain data
met the ASTM A615-68 requirements for a No. 11 bar; however, it was necessary to check if
the data met the requirements for a No. 4 bar. The minimum percent elongation requirement for
No. 4 bars was higher compared to the requirement for No. 11 bars (i.e. 9-percent elongation
compared to 7-percent elongation). Flathau’s stress-strain data had a percent elongation of
approximately 12-percent which exceeded the ASTM A615-68 requirements for No. 4 bars.

It was necessary to convert the engineering stress-strain data into true stress-strain data before
it could be used to define the steel reinforcement behaviour in Abaqus. The procedure to do this
was explained in Section 3.2. The engineering and true stress-strain data are presented in Figure
5.106.
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Figure 5.106: True and engineering stress-strain data of steel reinforcement used for SM
specimens (Flathau, 1971)

5.11.2 Results of specimen SM 0.5 analyses
The moment-rotation and displacement-rotation data for the specimen SM 0.5 analyses using
the strain-hardening and perfectly-plastic reinforcement, in addition to the experimental results,

are presented in Figure 5.107. A summary of this data is provided in Table 5.45.
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The strain-hardening reinforcement analysis produced more accurate moment-rotation data
compared to the perfectly-plastic reinforcement analysis. For the strain-hardening reinforcement
analysis, the slope of the moment-rotation data was similar in slope to the experiment data. This
was expected as specimen SM 0.5 was the only specimen to fail in flexure. The additional
toughness of the strain-hardening uniaxial stress-strain data allowed the reinforcement to carry

more energy before fracturing compared to the perfectly-plastic stress-strain data.

Compared to the perfectly-plastic reinforcement analysis, the strain-hardening reinforcement
analysis had an ultimate moment closer to that of the experiment. The ultimate moment
percentage difference between the analyses and the experiment was 1.4-percent and 8.1-percent
for the strain-hardening and perfectly-plastic reinforcement analyses, respectively. Furthermore,
the strain-hardening reinforcement analysis had a displacement at ultimate moment closer to
that of the experiment compared to the perfectly-plastic reinforcement analysis. The
displacement at ultimate moment percentage difference between the analyses and the
experiment was 13.0-percent and 15.2-percent for the strain-hardening and perfectly-plastic

reinforcement analyses, respectively.

Both analyses produced similar displacement-rotation data to one another. There was a
negligible increase in stiffness observed with the strain-hardening reinforcement analysis
toward the end of the analysis. Of the two analyses, the strain-hardening reinforcement analysis
had a displacement at ultimate moment closer to the experiment value. The percentage
difference for the displacement at ultimate moment between the analyses and the experiment
was 30.3-percent for the strain-hardening analysis and 32.1-percent for the perfectly-plastic

analysis.
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Figure 5.107: Specimen SM 0.5 a) moment-rotation and b) displacement-rotation data using
strain-hardening versus perfectly-plastic reinforcement

Table 5.45: Specimen SM 0.5 analyses results using strain-hardening versus perfectly-plastic
reinforcement
Ultimate moment  Displacement (mm)

Rotation (mrad)

(KNm) at Ultimate moment  at Ultimate moment
Analyses
Strain-hardening 97.7 124 27.2
Perfectly-plastic 914 12.7 26.7
Experiment 99.1 10.9 36.9

The crack patterns for the specimen SM 0.5 analyses using strain-hardening versus perfectly-
plastic reinforcement, in addition to the experimental crack patterns, are presented in Figure
5.108. The two analyses produced crack patterns that were identical to one another.
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Figure 5.108: Specimen SM 0 5 experlment (Ghali et al., 1976) and analyses crack patterns

using strain-hardening versus perfectly-plastic reinforcement. Authorized reprint of
experiment photographs from ACI Journal, Volume 73, Issue 10, October 1976.

5.11.3 Results of specimen SM 1.0 analyses
The moment-rotation and displacement-rotation data for the specimen SM 1.0 analyses using
the strain-hardening and perfectly-plastic reinforcement, in addition to the experimental results,

are presented in Figure 5.109. A summary of this data is provided in Table 5.46.

207



The moment-rotation and displacement-rotation data produced by the two analyses were
identical to one another. Since the reinforcement did not yield for specimen SM 1.0, the plastic
portion of the stress-strain data was not important as the reinforcement remained linear elastic

until the specimen failed.
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Figure 5.109: Specimen SM 1.0 a) moment-rotation and b) displacement-rotation data using
strain-hardening versus perfectly-plastic reinforcement

Table 5.46: Specimen SM 1.0 analyses results using strain-hardening versus perfectly-plastic
reinforcement

Ultimate moment  Displacement (mm) Rotation (mrad)
(KNm) at ultimate moment  at ultimate moment
Analyses
Strain-hardening 131.9 5.1 16.4
Perfectly-plastic 131.1 5.2 16.7
Experiment 127.1 10.8 27.0

The crack patterns for the specimen SM 1.0 analyses using strain-hardening versus perfectly-
plastic reinforcement are presented in Figure 5.110. Both analyses produced identical crack

patterns to one another.
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Figure 5.110: Specimen SM 1.0 analyses crack patterns using strain-hardening versus perfectly-
plastic reinforcement

5.11.4 Results of specimen SM 1.5 analyses

The moment-rotation and displacement-rotation data for the specimen SM 1.5 analyses using
the strain-hardening and perfectly-plastic reinforcement, in addition to the experimental results,
are presented in Figure 5.111. A summary of this data is provided in Table 5.47.

Both the moment-rotation and displacement-rotation were identical for both analyses. As was
the case with specimen SM 1.0, both analyses produced the same data because the steel

reinforcement did not yield.
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Figure 5.111: Specimen SM 1.5 a) moment-rotation and b) displacement-rotation data using
strain-hardening versus perfectly-plastic reinforcement

Table 5.47: Specimen SM 1.5 analyses results using strain-hardening versus perfectly-plastic
reinforcement

Ultimate moment  Displacement (mm) Rotation (mrad)
(KNm) at ultimate moment  at ultimate moment
Analyses
Strain-hardening 167.0 3.3 16.3
Perfectly-plastic 166.8 3.3 16.3
Experiment 131.5 11.3 20.1

The crack patterns for the specimen SM 1.5 analyses using strain-hardening versus perfectly-
plastic reinforcement, in addition to the experimental crack patterns, are presented in Figure

5.112. The two analyses produced identical crack patterns to one another.
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Figure 5.112: Specimen SM 1.5 experiment (Ghali et al., 1976) and analyses crack patterns
using strain-hardening versus perfectly-plastic reinforcement. Authorized reprint of
experiment photographs from ACI Journal, Volume 73, Issue 10, October 1976.

5.11.5 Conclusions and recommendations

In this study, the three SM specimen models were reanalysed using strain-hardening uniaxial
plasticity data whereas previous analyses were completed using perfectly-plastic data.
Engineering stress-strain data was obtained from Dynamic Tests of Large Reinforcing Bar
Splices (Flathau, 1971). After checking that the stress-strain data fulfilled ASTM A615-68
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requirements, the engineering stress-strain data was converted into true stress-strain data then

used in reanalyses of the specimens.

Specimen SM 0.5 was the only specimen to produce different results when the uniaxial stress-
strain data was changed from elastic-perfectly-plastic to elastic-strain-hardening. This was
because specimen SM 0.5 failed in flexure rather than punching. The reinforcement strain-
hardening provided additional capacity to the reinforcing bars and subsequently increased the
moment-rotation slope and the ultimate moment. The resulting moment-rotation slope and
ultimate moment was closer to that of the experiment. The differences in displacement-rotation
data between the two specimen SM 0.5 analyses were negligible.

The results of specimens SM 1.0 and SM 1.5 did not change when strain-hardening was
introduced. This was because both specimens failed in punching and the steel reinforcement
within both specimens did not yield. It was predicted that specimens SM 1.0 and SM 1.5 would
show a greater sensitivity to reinforcement stress-strain data during parametric studies. This was
because these specimens were expected fail in flexural when the applied vertical load was

reduced.

For each of the three analyses, introducing strain-hardening did not have any affect on the crack

patterns.

Since strain-hardening improved the accuracy of the specimen SM 0.5 analysis and did not
affect the results of the other specimen analyses, elastic-strain-hardening uniaxial stress-strain

data was used for the steel reinforcement for subsequent analyses.

5.12 Additional possible calibration: neoprene supports

Neoprene supports were shown in another publication describing tests by Langohr, Ghali, and
Dilger (1976), which were also tested at the University of Calgary. Neoprene supports could be
introduced to decrease the slope of the moment-rotation data under lower moments. Also, using
neoprene supports would increase the initial vertical displacement prior to the application of
moment. If more information about the neoprene supports was available including their

geometry and material properties, it would be possible to model these supports in Abaqus.
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Chapter 6: Finite element analyses of laboratory-tested specimens

In this section, the calibrated numerical model parameters were verified through numerical
modelling of different specimens. Chapter 5 focused on calibrating numerical model parameters
based on specimens SM 0.5, SM 1.0, and SM 1.5 tested by Ghali et al. (1976). The final model

parameters and subsequent FEA results for the SM specimens are presented in Section 6.1.

To validate the numerical model parameters, three additional specimens were analysed using
numerical modelling and their results were compared to laboratory test results. The first two
specimens analysed were specimens XXX and HXXX. These specimens were tested by El-
Salakawy (1998) at the University of Waterloo. Specimens XXX and HXXX were edge slab-
column sub-assemblages without shear reinforcement with eccentricities of 0.30-meters and
0.66-meters, respectively. More information about these specimens, in addition to analysis and

experimental results, are presented in Section 6.2.

The final specimen analysed was specimen SB1 tested by Adetifa (2003) at the University of
Waterloo. This specimen was an interior slab-column sub-assemblage without shear
reinforcement. Unlike the other specimens, specimen SB1 was subjected to only a linearly
ramping concentric load until failure. More information about specimen SB1, as well as its

analysis and experimental results, is presented in Section 6.3.

6.1 SM specimens by Ghali, Elmasri, and Dilger (1976)
Information about the geometries, loadings, boundary conditions, and materials for specimens
SM 0.5, SM 1.0, and SM 1.5 is provided in Section 4.1.

6.1.1 Boundary conditions
The final boundary conditions used for the FE analyses of all SM specimens did not differ from
the preliminary boundary conditions. Information about the boundary conditions used for these

analyses is presented in Section 4.3.

6.1.2 Concrete properties
The concrete mesh used for the FE analyses of the SM specimens is shown in Figure 6.1. The
concrete slab and column were meshed with C3D8R continuum elements with an element size

of 20 mm.
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Figure 6.1: Concrete mesh used for FE analyses of SM specimens

The concrete compression and tension stress-strain data are presented in Figure 6.2 and Figure
6.3, respectively. The compression stress-strain data were calculated using the Hognestad
parabola with reduced E, and E; parameters. More information about these modifications is

presented in Section 5.10.

Linear-elastic data

Specimen E. (MPa) Eco 0c0 (MPa) ,
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Plastic data g i
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Figure 6.2: Compression stress-strain data used for FE analyses of SM specimens
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Figure 6.3: Tension stress-strain data used for FE analyses of SM specimens
The concrete material assignments used for all SM specimens are shown in Figure 6.4. Most of
the concrete slab elements included the Concrete Damaged Plasticity material model. The edge
of the slab used linear-elastic elements to prevent tension failures of the restrained elements.
Tension stresses were present within these elements because the slab edge lifted when moments
were applied. The concrete column used stiffened linear-elastic elements to reproduce the
confinement effects of the stirrups on the concrete. For each specimen, the column E, values

were ten times those presented in Figure 6.2.

1 Linear-elastic (stiffened E)

2 | | Concrete Damaged Plasticity

Linear-glastic

_
Figure 6.4: Concrete material assignments for FE analyses of SM specimens

6.1.3 Reinforcement properties

All steel reinforcement was meshed using T3D2 truss elements with an element size of 20 mm.

The compression and tension reinforcement properties, including reinforcement spacing and

areas, are presented in Table 6.1 and Table 6.2, respectively. The column reinforcement was not
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modelled using truss elements. Instead, the effects of the column longitudinal reinforcement and
stirrups were reproduced using linear-elastic concrete elements with higher modulus of elasticity

values (i.e. ten times the modulus of elasticity of the slab concrete).

Table 6.1: Compression reinforcement properties for FE analyses of SM specimens

. x-direction y-direction
Specimen - -
Depth Spacing Area Depth Spacing Area
SM 0.5 600 mm 534 mm
SM 1.0 25 mm 300 mm 127 mm? 38 mm 264 mm 127 mm?
SM 15 198 mm 171 mm

Table 6.2: Tension reinforcement properties for FE analyses of SM specimens

. x-direction y-direction
Specimen - -
Depth Spacing Area Depth Spacing Area
SM 0.5 200 mm 178 mm
SM 1.0 127 mm 100 mm 127 mm? 114 mm 88 mm 127 mm?
SM 15 66 mm 57 mm

The steel reinforcement true stress-strain data obtained from Flathau (1971) is shown in Figure
6.5.
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Yield 0.0026 476 200
Ultimate 0.0839 723 100
Rupture 0.1135 693 o
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Strain (mm/mm)

Figure 6.5: Reinforcement stress-strain data used for FE analyses of SM specimens

6.1.4 Moment versus rotation results
The FEA and experiment moment versus rotation results for specimen SM 0.5 are presented in
Figure 6.6. The FEA moment-rotation data had similar slopes for all moment values compared

to the experiment moment-rotation data. The FEA accurately reproduced the ultimate moment
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of the experiment. The ultimate moments of the FEA and the experiment were 97.7 kNm and

99.1 kNm, respectively.

120

SM 0.5
100

Moment (kNm)
(2] [0
o o

N
o

—FEA
Experiment

N
o

0 5 10 15 20 25 30 35 40
Rotation (mrad)

Figure 6.6: Specimen SM 0.5 moment versus rotation results

The moment versus rotation results for specimen SM 1.0 are presented in Figure 6.7. The slope
of the FEA data was steeper than that of the experiment until 10 mrad. Past 10 mrad, both the
FEA and experiment moment-rotation data had similar slopes. The ultimate moment of the FEA

and the experiment were 131.9 kNm and 127.1 KNm, respectively.
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Figure 6.7: Specimen SM 1.0 moment versus rotation results

The moment versus rotation results for specimen SM 1.5 are presented in Figure 6.8. The FEA
moment-rotation did not accurately reproduce the experiment moment-rotation data. Despite a
50-percent increase in reinforcement area, the difference in ultimate moment between specimen

SM 1.0 and SM 1.5 was minimal. It was expected that the ultimate moment of specimen SM 1.5
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would be greater if the specimen was recast and tested. The additional reinforcement was
expected to reduce rotations. This would result in smaller crack widths and, therefore, greater
punching shear capacity through aggregate interlock. Ghali et al. (1976) tested three specimens
named DM 0.5, DM 1.0, and DM 1.5. These specimens were identical to SM 0.5, SM 1.0, and
SM 1.5 except they were subjected to dynamic loading instead of static loading. Specimens DM
0.5 and DM 1.0 were loaded to ultimate moments which were 20 kNm greater than the ultimate
moments of SM 0.5 and SM 1.0. Specimen DM 1.5 failed when subjected to a moment of 180
KNm. It was expected that SM 1.5 would fail when subjected to an ultimate moment of 160
KNm. An ultimate moment of 160 kNm would be closer to the ultimate moment observed
through finite element analysis. The ultimate moment of the FEA and the experiment were 167.0

kNm and 131.5 kNm, respectively.
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Figure 6.8: Specimen SM 1.5 moment-rotation results

6.1.5 Vertical displacement versus rotation results

The vertical displacement versus rotation results for specimen SM 0.5 are presented in Figure
6.9. The vertical displacement at ultimate moment of the FEA and the experiment were 12.4
mm and 10.9 mm, respectively. The FEA initial vertical displacement was 1.9 mm, while the
experiment initial vertical displacement was 7.6 mm. The additional vertical displacement of
the experiment is likely to due to the compression of neoprene bearing pads, which were not
modelled in the finite element analyses. Also, additional displacements from creep effects
during vertical loading were not captured using FEA. The slopes of the two data sets were not
similar to one another. The ultimate displacement of the FEA was 13.0 mm and the ultimate

displacement of the experiment was 10.9 mm.
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Figure 6.9: Specimen SM 0.5 vertical displacement versus rotation results

The vertical displacement versus rotation results for specimen SM 1.0 are presented in Figure
6.10. The vertical displacement at ultimate moment of the FEA and the experiment were 5.1
mm and 10.8 mm, respectively. The slope of the FEA displacement-rotation data was similar to
the slope of the experiment displacement-rotation data as the experiment specimen approached
its ultimate moment (i.e. for rotations between 15 mrad and 27 mrad).
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Figure 6.10: Specimen SM 1.0 vertical displacement versus rotation results

The vertical displacement versus rotation results for specimen SM 1.5 are presented in Figure
6.11. The vertical displacement at ultimate moment of the FEA and the experiment were 3.3
mm and 11.3 mm, respectively. The slope of the FEA displacement-rotation data was similar to
the slope of the experiment displacement-rotation data for rotations between 0 mrad and 18

mrad.
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Figure 6.11: Specimen SM 1.5 vertical displacement versus rotation results

6.1.6 Crack patterns

The specimen SM 0.5 experiment and FEA crack patterns are presented in Figure 6.12. The
analysis crack patterns were identical to the experiment crack patterns. On the top face, the
analysis captured the vertical cracks that formed from the —x column face toward the —x slab
edge. On the same face, the FEA reproduced the cracks that formed from the other column faces
toward the restrained support elements. Furthermore, the FEA showed a concentration of
cracking at the +x column face, which is observed among the experiment crack patterns. On the
bottom face, the FEA reproduced the cracks that propagated from the —x column face toward
the —x slab edge and slab columns. Similarly, the FEA reproduced the concentration of cracks

around the column on the bottom face.
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Figure 6.12: Specimen SM 0.5 experiment (Ghali et al., 1976) and analyses crack patterns.
Authorized reprint of experiment photographs from ACI Journal, Volume 73, Issue 10,
October 1976.

The specimen SM 1.0 FEA crack patterns are presented in Figure 6.13. Experimental crack
patterns for specimen SM 1.0 were not published by Ghali et al. (1976). However, the crack
patterns of specimen SM 1.0 were similar to those of specimen SM 1.5.

a) Top face b) Bottom face

PE, Max. Principal
(Avg: 75%)

PE, Max. Principal

Figure 6.13: Specimen SM 1.0 FE analyses crack patterns
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The specimen SM 1.5 experiment and FEA crack patterns are presented in Figure 6.14. On the
top face, the tangential cracks around the -y, +x, and +y column faces was reproduced by the
finite element analysis. Furthermore, the radial cracks propagating from the column toward the
slab supports were reproduced by the FEA. On the bottom face, the FEA reproduced crack

concentrations observed during laboratory testing.

a) Top face, experiment b) Bottom face, experiment

e

c) Top face, FE énalysis d) Bottom face, FE analysis

PE, Max. Principal

Figure 6.14: Specimen SM 1.5 experiment (Ghali et al., 1976) and FE analyses crack patterns.
Authorized reprint of experiment photographs from ACI Journal, Volume 73, Issue 10,
October 1976.

6.2 Specimens XXX and HXXX by El-Salakawy (1998)

Specimens XXX and HXXX were edge slab-column sub-assemblages tested by El-Salakawy
(1998) at the University of Waterloo. Each specimen was subjected to a vertical load and
unbalanced moment applied simultaneously through the column. The moments were applied
about the axis parallel to the free edge. Both specimens were identical to one another except for
the ratio between the moment and vertical load (e = M /V). The moment-to-shear ratio was

0.30-meters and 0.66-meters for specimens XXX and HXXX, respectively. For both specimens,
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the vertical loads were applied at a rate of 1.5 KN per minute (KN/min). The lateral loads were

applied at a rate of 0.34 kN/min and 0.75 kN/min for specimens XXX and HXXX, respectively.

For both specimens, the slab dimension parallel to the free edge was 1540 mm. The slab
dimension orthogonal to the free edge was 1020 mm. The slabs were 120 mm thick with a cover
of 20 mm. The tension reinforcement mats were reinforced with 10M deformed bars with a
reinforcement ratio of 0.75-percent in both directions. The compression reinforcement mats
were reinforced with 5M bars with a reinforcement ratio of 0.45-percent in both directions. The

slabs did not contain any transverse reinforcement.

A 250 mm by 250 mm square column was centered at the midpoint of the free edge with its free
column face flush with the slab edge. The columns of each specimen were reinforced with 25M
longitudinal bars with a gross reinforcement ratio of 4.8-percent. Plain bars with a diameter of
8 mm were used as ties and were placed at a distance of 115 mm center-to-center. The distance

between the two column ends was 1320 mm.

Three of the slab edges were simply supported on steel I1-beams. Steel bearing pads and neoprene
strips were placed between the I-beams and the slabs. The steel bearing pads and neoprene strips
were 25 mm and 3 mm thick, respectively, and both were 40 mm wide. The corners of the slab

were restrained from lifting using built-up steel sections.

The compressive strengths of XXX and HXXX were 33.0 MPa and 36.5 MPa, respectively. The
tensile strengths of XXX and HXXX were 3.38 MPa and 3.36 MPa, respectively. The yield
stresses of the 5M and 10M bars were 430 MPa and 476 MPa, respectively.

6.2.1 Boundary conditions

The boundary conditions used for the analyses of specimens XXX and HXXX are presented in
Figure 6.15. At the plane of symmetry, rotation about the y and z axes were restrained and
displacement in the x-direction was restrained. The center of the concrete at the free edge was
restrained from translating in the y-direction to prevent any lateral movement of the concrete.
The full length of each slab edge was restrained from translating in the z-direction. A pressure
equivalent to force F, was applied at the top face of the top column stub with a linear ramp.

Simultaneously, a force-couple moment F, [ was applied through two equal and opposite forces

F,, toward the top and bottom ends of the column stubs with a linear ramp. The lever arm [ was
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equal to 1320 mm. The magnitudes of forces F, and F, were selected arbitrarily while

maintaining the e = F, [ /F, ratios of the experiments.

Magnitude of forces for each specimen
Specimen E, Eyl El/F,
XXX 150 kN 45kNm  0.30m
HXXX 150 kN 99kNm  0.66m

Figure 6.15: Boundary conditions used for FE analyses of specimens XXX and HXXX

6.2.2 Concrete properties
The concrete mesh used for the FE analyses of specimens XXX and HXXX is shown in Figure
6.16. The concrete slab and column were meshed with C3D8R continuum elements with an

element size of 20 mm.

e

Figure 6.16: Concrete mesh used for FE analyses of specimens XXX and HXXX

The concrete compression and tension stress-strain data are presented in Figure 6.17 and Figure

6.18, respectively.
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Linear-elastic data

Specimen  E. (MPa) Eco 0c0 (MPa)
XXX 16,056 0.0008 13.20
HXXX 16,886 0.0009 14.60
Plastic data
Specimen  E; (MPa) & f¢ (MPa)
XXX 18,095 0.0036 33.00
HXXX 19,031 0.0038 36.50

Stress (MPa)

ECO

EO
Strain (mm/mm)

Eu

Figure 6.17: Compression stress-strain data used for FEA of specimens XXX and HXXX

Linear-elastic data

Specimen E. (MPa) Ecr fi (MPa)
XXX 16,056 0.0002 3.38
HXXX 16,886 0.0002 3.36
Plastic data
Specimen Gy (N/mm) & £,
XXX 0.136 0.0018 0.0074
HXXX 0.138 0.0018 0.0075

Note: Element length [, is equal to 20.22 mm
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fi/3
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Figure 6.18: Tension stress-strain data used for FEA of specimens XXX and HXXX

The concrete material assignments used for specimens XXX and HXXX are shown in Figure

6.19. For each specimen, the column E, values were ten times those presented in Figure 6.17.
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1 Linear-elastic (stiffened E)

2 ) Concrete Damaged Plasticity

Figure 6.19: Concrete material assignments for FE analyses of specimens XXX and HXXX

6.2.3 Reinforcement properties

All steel reinforcement was meshed using T3D?2 truss elements with an element size of 20 mm.
The compression and tension reinforcement properties are presented in Table 6.3 and Table 6.4,
respectively. The column longitudinal reinforcement properties are presented in Table 6.5. The

column stirrups were 8M bars with an area equal to 50 mm? spaced at 115 mm center-to-center.

Table 6.3: Compression reinforcement properties for FEA of specimens XXX and HXXX

x-direction y-direction
Spacing Spacing
Specimen Depth (from free edge) Area Depth (from centerline) Area
XXX 1-10Mat60 mm, gy, a8 2 1-10M at65mm,  5M: 38 mm?
31 mm 1-10Mat 20 mm, o011 00 mme 43 mm 5-5Mat 135 mm  10M: 100 mm?
HXXX 6-5M at 135 mm : :

Table 6.4: Tension reinforcement properties for FEA of specimens XXX and HXXX

x-direction y-direction
Spacing Spacing
Specimen Depth (from free edge) Area Depth (from centerline) Area
XXX 1-10M at 30 mm, 1-10M at 60 mm,
91 mm 1-10M at 190 mm, 100 mm? 98 mm 2-10M at 120 mm, 100 mm?
HXXX 5-10M at 154 mm 2-10M at 220 mm

Table 6.5: Column reinforcement properties for FEA of specimens XXX and HXXX

x-direction y-direction
Specimen Spacing Area Spacing Area (mm?)
XXX 3-25M at 105 mm 490 mm? 2-25M at 210 mm 490 mm?
HXXX

The true stress-strain data for the 5M steel reinforcement is shown in Figure 6.20.
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Linear-elastic data
Poisson’s ratio Modulus of elasticity 1000 f
0.3 180,000 MPa - 800
s
Plastic data E 600
Strain (mm/mm) Stress (MPa) j
Yield 0.0024 430 400
Rupture 0.1389 724
200
O 1 1 1
0 0.04 0.08 0.12 0.16

Strain (mm/mm)
Figure 6.20: 5M reinforcement stress-strain data used for specimens XXX and HXXX FE
analyses

The true stress-strain data for the 10M steel reinforcement is shown in Figure 6.21.

1200

Linear-elastic data
Poisson’s ratio Modulus of elasticity 1000 f
0.3 195,000 MPa - 800
: s
Plastic data = 600
. (9]
Strain (mm/mm) Stress (MPa) ju
Yield 0.0026 476 ® 400
Rupture 0.0945 989
200
O 1 1 1
0 0.04 0.08 0.12 0.16

Strain (mm/mm)
Figure 6.21: 10M reinforcement stress-strain data used for specimens XXX and HXXX FE
analyses

6.2.4 Moment versus rotation results

The FEA and experiment moment versus rotation results for specimen XXX and HXXX are
presented in Figure 6.22. The FEA accurately reproduced the slope of moment-rotation data for
specimens XXX and HXXX for moments up to 21.5 kNm and 18.1 KNm, respectively. For
larger applied moments, both analyses predicted moment-rotation data with shallower slopes
than respective experimental data. As such, both FE analyses under-predicted the ultimate
moments of their respective experiments. For specimen XXX, the ultimate moment of the FEA
and the experiment were 31.6 KNm and 38.0 kNm, respectively. For specimen HXXX, the
ultimate moment of the FEA and the experiment were 38.4 kKNm and 50.7 kNm, respectively.
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Figure 6.22: Moment versus rotation results for specimens XXX and HXXX

6.2.5 Vertical load versus displacement results

The FEA and experiment vertical load versus vertical load results for specimen XXX and
HXXX are presented in Figure 6.23. For specimen XXX, the FEA accurately reproduced the
load-displacement data of the experiment with respect to the slope of the data and ultimate
vertical displacement. The ultimate moment of the specimen XXX FE analysis and experiment
were 103.7 kNm and 125.0 kNm, respectively. For specimen HXXX, the FE analysis accurately
reproduced the slope of the load-displacement of the experiment. The ultimate moment of the

specimen HXXX FE analysis and experiment were 58.5 kKNm and 70.0 KNm, respectively.
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—FEA ——FEA
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O L L L O L L L L
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Vertical displacement (mm) Vertical displacement (mm)

Figure 6.23: Load versus displacement results for specimens XXX and HXXX
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6.2.6 Crack patterns

The top view of the specimen XXX crack patterns for the experiment and the FEA are presented
in Figure 6.24. The FEA accurately reproduced experiment cracks that formed from the inner
column face toward the inner slab corners. Furthermore, the FEA reproduced the cracks which

were tangential to the column faces in the vicinity of the column.

XXX
V=123.0 kN
M=37.50 kN.m

BT

PE, Max. Principal
(Avg: 75%)

0.099 : |
0.030 e '
0.027
0.025

0.007
0.005 X
0.002
0.000 Y

Figure 6.24: Top view of specimen XXX experiment (El-Salakawy, 1998) and FEA crack
patterns. Photograph reprinted from Shear behaviour of reinforced concrete flat slab-column
edge connections with openings (p.115), by E. El-Salakawy, 1998. Reprinted with permission.

The perspective view of specimen XXX crack patterns for the experiment and the FEA are
presented in Figure 6.25. Although the quality of the experiment crack patterns photograph is
low, the photograph shows diagonal cracking along the compression slab face at the inner slab

corners. These cracks were adequately reproduced by the analysis.

229



PE, Max. Principal
(Avg: 75%)

005 Y
0.002
0.000 z

Figure 6.25: Perspective view of specimen XXX experiment (El-Salakawy, 1998) and FEA
crack patterns. Photograph reprinted from Shear behaviour of reinforced concrete flat slab-
column edge connections with openings (p.122), by E. El-Salakawy, 1998. Reprinted with
permission.

The perspective view of specimen HXXX crack patterns for the experiment and the FEA are
presented in Figure 6.26. The FEA accurately reproduced the tangential cracks near the column
that were present in the experiment photograph. Furthermore, the FEA accurately reproduced
the cracks from the inner column face toward the inner slab corners as well as the cracks from

the inner column face toward the inner slab edge.
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Figure 6.26: Perspective view of specimen HXXX experiment (El-Salakawy, 1998) and FEA

crack patterns. Photograph reprinted from Shear behaviour of reinforced concrete flat slab-

column edge connections with openings (p.143), by E. El-Salakawy, 1998. Reprinted with
permission.
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The column view of specimen HXXX crack patterns for the experiment and FEA are presented
in Figure 6.27. The FEA reproduced the diagonal cracks that started at the slab-column interface

of the tension face and continued away from the column toward the compression face.
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Figure 6.27: Column view of specimen HXXX experiment (El-Salakawy, 1998) and FEA
crack patterns. Photograph reprinted from Shear behaviour of reinforced concrete flat slab-

column edge connections with openings (p.146), by E. El-Salakawy, 1998. Reprinted with
permission.

6.3 Specimen SB1 by Adetifa (2003)

Specimen SB1 was a interior slab-column sub-assemblage tested by Adetifa (2003) at the
University of Waterloo. A linearly increasing concentric axial load was applied through the
specimen column until failure. The rate of loading was 4 kN/min up to 70-percent of the

anticipated ultimate load then 2 kN/min until failure.
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Specimen SB1 had a square slab with dimensions of 1800 mm by 1800 mm. The slab was 120
mm thick with a cover of 20 mm. The tension reinforcement mats were reinforced with 10M
deformed bars with a reinforcement ratio of 1.2-percent in both directions. The compression
reinforcement mats were reinforced with 10M bars with a reinforcement ratio of 0.6-percent in

both directions. The slab did not contain any transverse reinforcement.

Specimen SB1 had a square column with dimensions of 150 mm by 150 mm. The column was
reinforced with four 20M bars with 8 mm ties placed at a distance of 100 mm center-to-center.

The distance between the two column ends was 420 mm.

The edges of the slabs represented the lines of contraflexure within a flat plate system when
subjected to uniform gravity loading. The slab edges were simply supported on long flat solid
bars with a width of 40 mm width and a thickness of 25 mm. These bars formed a 1500 mm by
1500 mm square. This meant that there was a slab overhang of 150 mm on each of the four

sides. Neoprene strips were placed between the steel bars and the slab.

The compressive and tension strengths of the slab were 44 MPa and 2.2 MPa, respectively. The

yield stress of the flexural reinforcement was 455 MPa.

6.3.1 Boundary conditions

The boundary conditions used for the FE analysis of specimen SB1 is presented in Figure 6.28.
At the plane of symmetry, rotation about the y and z axes were restrained and displacement in
the x-direction was restrained. The center of the concrete geometry at the free edge was
restrained from translating in the y-direction to prevent any lateral movement of the concrete.
The full length of each slab edge was restrained from translating in the z-direction. A pressure
equivalent to 250 kN was applied at the top face of the top column stub with a linear ramp. The
slab dimension was 1500 mm by 1500 mm and the column dimension was 150 mm by 150 mm.

The column stub extended 150 mm from each slab face.

233



Figure 6.28: Boundary conditions used for FE analysis of specimen SB1

6.3.2 Concrete properties
The concrete mesh used for the FE analysis of specimen SB1 is shown in Figure 6.29. The
concrete slab and column were meshed with C3D8R continuum elements with an element size

of 20 mm.

Figure 6.29: Concrete mesh used for FE analysis of specimen SB1

The concrete compression and tension stress-strain data are presented in Figure 6.30 and Figure

6.31, respectively.
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Linear-elastic data

Specimen  E. (MPa) Eco 0c0 (MPa)
SB1 18,561 0.0010 17.64
Plastic data
Specimen  E; (MPa) & f¢ (MPa)
SB1 20,918 0.0042 44.10

Stress (MPa)

c

ECO

€o

Eu

Strain (mm/mm)

Figure 6.30: Compression stress-strain data used for FE analysis of specimen SB1

Linear-elastic data

Specimen  E, (MPa) Ecr fi (MPa) [ — '

SB1 18561 0.0001 2.19 t , o1

: Ec
Plastic data = i 086 . f_t'
Specimen Gy (N/mm) £ €y S ; O TE
SB1 0.143 0.0028 0.0122 E i _ 3.6Gf fi
) b ] u - T +=
Note: Element length [, is equal to 19.44 mm mf’/s | file  Ec

t I
El G A

Eer & Eu

Strain (mm/mm)
Figure 6.31: Tension stress-strain data used for FE analysis of specimen SB1
The concrete material assignments used for the FE analysis of specimen SB1 are shown in
Figure 6.32. The column modulus of elasticity E. was ten times the value presented in Figure
6.30.

Linear-elastic (stiffened E)

Concrete bamaged Plasticity -

: 14>Yx

Figure 6.32: Concrete material éssignments for FE analysis of specimen SB1
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6.3.3 Reinforcement properties

All steel reinforcement was meshed using T3D?2 truss elements with an element size of 20 mm.
The compression and tension reinforcement properties are presented in Table 6.6 and Table 6.7,
respectively. The column longitudinal reinforcement properties are presented in Table 6.8. The

column stirrups were 5M bars with an area equal to 50 mm? spaced at 100 mm center-to-center.

Table 6.6: Compression reinforcement properties for FE analysis of specimen SB1

x-direction y-direction
Spacing Spacing
Specimen Depth (from centerline) Area Depth (from centerline) Area
1-10M at 25 mm, 2 1-10M at 25 mm, 2
SBl 24 mm 3-10M at 200 mm 100 mm 24 mm 3-10M at 200 mm 100 mm

Table 6.7: Tension reinforcement properties for FE analysis of specimen SB1

x-direction y-direction
Spacing Spacing
Specimen Depth (from centerline) Area Depth (from centerline) Area
1-10M at 25 mm, 2 1-10M at 25 mm, 2
SB1 90 mm 8-10M at 93 mm 100 mm 90 mm 8-10M at 93 mm 100 mm

Table 6.8: Column reinforcement properties for FE analysis of specimen SB1
x-direction y-direction
Specimen Spacing Area Spacing Area (mm?)
SB1 2-20M at 100 mm 300 mm? 2-20M at 100 mm 300 mm?

The true stress-strain data for the steel reinforcement is shown in Figure 6.33.

_ ) 800
Linear-elastic data
3 3 . 700 |
Poisson’s ratio Modulus of elasticity
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. s
Plastic data E 400
Strain (mm/mm) Stress (MPa) 2 300
Yield 0.0023 455 @
Ultimate 0.1777 767 200
Rupture 0.2358 612 100 |
0

0 0.04 0.08 0.12 016 02 024 0.28
Strain (mm/mm)

Figure 6.33: Reinforcement stress-strain data used for specimen SB1 analysis

6.3.4 Vertical load versus displacement results
The vertical load versus vertical displacement results for the experiment and the FE analysis are

presented in Figure 6.34. The load-displacement data produced by the analysis was steeper than
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that of the experiment for vertical loads up to 120 kN. Past 120 kN, the slope of the FE analysis
load-displacement data was similar to the experiment data. The ultimate vertical loads for the
analysis and the experiment were 226.3 kN and 250.4 kN, respectively.
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Figure 6.34: Specimen SB1 vertical load versus vertical displacement results

6.3.5 Crack patterns

The tension-side view of the specimen SB1 experiment and FEA crack patterns are presented
in Figure 6.35. The FEA accurately reproduced the tangential cracks that formed midway
between the column and the slab edge. Furthermore, the FEA reproduced the radial cracks that

formed from the column toward the slab corners.
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Figure 6.35: Tension-side view of specimen SB1 experiment (Adetifa & Polak, 2005) and
FEA crack patterns. Authorized reprint of experiment photograph from ACI Structural
Journal, Volume 102, Issue 2, March-April 2005.
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Chapter 7: Parametric study using numerical modelling

Using the calibrated FE analyses of the SM specimens, a parametric study was conducted to
study the effects of moment-to-shear-force ratios on load capacities and slab stress distributions
at a critical perimeter d/2 from the column. This critical perimeter was selected because it is
used by ACI 318-19, CSA A23.3-19, and fib Model Code 2010.

In the laboratory tests conducted by Ghali et al. (1976), the SM specimens were first subjected
to a vertical load of 129 kN. The vertical load remained constant while an increasing moment
was applied until failure. To conduct the parametric study, the vertical load within the calibrated
FE models was modified and the models were reanalysed. Between FE analyses of each
specimen, the magnitude of the vertical load varied between 0 kN (i.e. only a moment was

applied) and infinite (i.e. only a vertical load was applied).

Moment versus rotation data and observations are presented in Section 7.1. Similarly, moment
versus vertical load data is studied in Section 7.2. Vertical load versus eccentricity results are
compared to observations by Regan (1981). Then, a moment-shear interaction diagram is

presented in Section 7.4.

In Chapter 8, slab stress distributions at a critical perimeter d/2 are studied and compared to
the linear shear distribution model used by ACI 318-19 and CSA A23.3-19.

7.1 Moment versus rotation results

Figure 7.1 shows the moment versus rotation results for specimen SM 0.5 subjected to constant
vertical loads between 20 kN and 240 kN then increasing moments until failure. As the vertical
load was increased between FE analyses, the ultimate moment and column rotation at ultimate
moment decreased almost linearly. Similarly, increasing the vertical load resulted in lower
moment-rotation stiffness. This was because higher vertical loads caused an increased number

of elements to fail in tension in the vertical load step prior to the start of the moment step.
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Each SM 0.5 FE analysis with a vertical load of 129 kN or greater had moment-rotation data
that plateaued as the analysis approached its ultimate moment. This behaviour is characteristic
to slab-column connections that fail due to tension flexural reinforcement yielding. In these
types of failures, the reinforcement closest to the column centerline yields. This is followed by
yielding of adjacent reinforcement. This pattern continues in which adjacent bars further from
the column yield until the slab-column connection ultimately fails in punching. FE analyses in

which tension flexural reinforcement yielded showed concentrations of plastic strains and larger

15 20 25 30 35 40
Rotation (mrad)

Figure 7.1: Moment-rotation results for specimen SM 0.5 subjected to varying vertical loads

vertical column displacements as shown in Figure 7.2.

.

I

Figure 7.2: Typical tension flexural failure among SM 0.5 FE analyses under larger vertical

loads (160 kN analysis shown)
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FE analyses with vertical loads lower than 129 kN had kinks along each analyses moment-
rotation curve. At each of these kinks, compression flexural reinforcing bars yielded due to
excessive tensile stresses. These stresses were redistributed to adjacent reinforcing bars. This

compression flexural failure is shown in Figure 7.3.

PE, PE11
(Avg: 75%)

Compression 0.009
flexural yielding :
. 0.007

0.002
7 0.002
0.001
L « 0.000

Figure 7.3: Typical compression flexural yielding among SM FE analyses under low vertical
loads (60 kN analysis of SM 1.5 shown)

Figure 7.4 shows the moment versus rotation results for specimen SM 1.0 subjected to constant
vertical loads between 60 kN and 360 kN then increasing moments until failure. Similar to the
specimen SM 0.5 FE analyses, these FE analyses showed increasing moment capacities and
rotations at ultimate moments with decreasing vertical loads. However, the moment-rotation
data for each FE analysis was less ductile at fail than respective SM 0.5 FE analyses (i.e.
moment-rotation data did not plateau prior to failure). Discontinuities associated with
reinforcement yielding and stress redistribution was evident only in FE analyses with initial
vertical loads of 129 kN or less. Even so, these redistributions occurred near each FE analyses
ultimate moment. For each of these FE analyses, this suggests a partial yielding of the

reinforcement mat rather the entire mat.
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Figure 7.4: Moment-rotation results for specimen SM 1.0 subjected to varying vertical loads

Figure 7.5 shows the moment versus rotation results for specimen SM 1.5 subjected to constant
vertical loads between 60 kN and 460 kN then increasing moments until failure. As observed
among the FE analyses of the other SM specimens, the ultimate moment and accompanying
rotation decreased almost linearly as the initial vertical load was increased. No tension flexural
reinforcement vyielded in any of these FE analyses. However, compression flexural

reinforcement yielding was observed for specimens with initial vertical loads less than 129 kN.

200 60 kN

180 | 80 kN
160 ——— 100 kN
129 kN
z 140 ——— 140 kN
§ 120+ L | eeeee-- 160 kN
put 180 kN

1
é 00 220 kN
s 80 — — - 260 kN
60 ——— 300 kN
— 340 kN
40 380 kN
20 420 kN
0 , , , , 460 kN
0 5 10 15 20 25

Rotation (mrad)

Figure 7.5: Moment-rotation results for specimen SM 1.5 subjected to varying vertical loads
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7.2 Moment versus vertical load results
The combined moment versus vertical load results for specimens SM 0.5, SM 1.0, and SM 1.5

are shown in Figure 7.6.

As discussed in Section 7.1, partial yielding of the compression reinforcement mat was
commonly observed for FE analyses with initial vertical loads less than 129 kN. FE analyses in
which specimens were subjected to initial vertical loads less than 60 kN exhibited full yielding
of their compression reinforcement mats. These compression flexural failures occurred prior to
the development of the specimens respective punching shear capacities. For FE analyses with
initial vertical loads less than 60 kN, the ultimate moment decreased as the initial vertical load

was decreased.

Among the specimen SM 0.5 FE analyses, significant yielding of the tension flexural
reinforcement occurred prior to punching. As a result, specimen SM 0.5 FE analyses results did
not follow the data trends of FE analyses for specimens SM 1.0 and SM 1.5.

For predicting punching failure in following sections, only FE analyses that failed in punching
were considered. All SM 0.5 FE analyses as well as SM 1.0 and SM 1.5 FE analyses with vertical
loads less than 140 kN were not considered. The specimen SM 0.5 FE analyses failed due to
tensile compression reinforcement yielding under lower vertical loads or due to tensile tension
reinforcement yielding under higher vertical loads. It is unnecessary to predict the capacities of
the SM 0.5 analyses since ACI 318-19 would not allow these flexure-driven failures to occur.
ACI 318-19 requires a minimum reinforcement area within a slabs column strip to allow the
slab-column connection to develop its full punching shear strength prior to failure. Similarly,
the SM 1.0 and SM 1.5 FE analyses subjected to lower vertical loads failed due to compression

reinforcement yielding prior to punching failure.
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Figure 7.6: Moment versus vertical load results for SM specimens

7.3 Vertical load capacity versus eccentricity

The FEA moment versus vertical load results presented in Section 7.2 showed reduced moment
capacities when specimens were subjected to low vertical loads. As discussed, the reduction in
moment capacity is caused by compression reinforcement failure occurring prior to punching
failure. It was stated that the FEA moment capacities for specimens subjected to low vertical

loads are unrepresentative of connections with adequate compression reinforcement.

To verify the observed moment versus vertical load behaviours for large vertical loads, the FEA
results are compared to a punching shear prediction equation developed by Regan (1981). Using
experimental data, Regan developed an equation to predict the normalized vertical load capacity
as a function of eccentricity, M/V. The normalized vertical load capacity is equal to the
eccentric vertical load capacity, V, divided by the concentric vertical load capacity, V,. More

information about Regan’s research is provided in Section 2.1.11.

The normalized vertical load capacities versus eccentricities for all SM specimens and Regan’s
predictions (as per Equation 2.36) are shown in Figure 7.7. As previously discussed, Regan
stated that the constant 1.5 within his equation could be substituted with constants 1.0 or 2.0.
These variations are also shown in Figure 7.7. For each SM specimen, the concentric vertical

load capacity, V,, was obtained from FEA.
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Specimen SM 0.5 data did not correlate well with Regan’s predictions. This is likely because
this specimen failed in flexure rather than punching under all eccentricities. Specimens SM 1.0
and SM 1.5 showed good agreement with Regan’s equation with a coefficient of 2.0 for
eccentricities up to 2.0. For larger eccentricities, compression flexural failure occurred. This
suggests that the FEA moment versus vertical load data is reasonable when the FEA specimens

failed due to punching rather than flexure.
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Figure 7.7: Normalized vertical load capacities versus eccentricities for SM specimens and
predictions by Regan (1981)

7.4 Moment-shear interaction diagram

In this section, the linear moment-shear interaction assumed by ACI 318-19 and CSA A23.3-19
is derived. Then, the moment versus vertical load data from the parametric study FE analyses is
normalized and a line is superimposed on the FEA moment-shear data. This is done to determine

if a linear relation can accurately describe the interaction between moment and shear.
As shown in Section 2.2, the failure criterion for both ACI 318-19 and CSA A23.3-19 is:

V  y,Mc

~5at ] (7.1)

where v, is the two-way shear strength, V is the vertical load, b, is the critical perimeter at d/2

from the column, d is the effective depth, y,, is the fraction of moment transferred to shear, M
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is the unbalanced moment, c is the distance from the centroid to the edge of the critical section,

and J is the polar moment of inertia.

If the unbalanced moment, M, in Equation 7.1 is set to zero, an equation for the concentric

vertical load required to cause punching shear failure V, is obtained:
V, =v.b,d . (7.2)

Similarly, if the vertical load V in Equation 7.1 is set to zero, an equation is obtained for the

unbalanced moment required to cause punching failure M,:

M,=v.]/c. (7.3)

A linear moment-shear relation can be obtained by dividing Equation 7.1 by v, then substituting

Equation 7.2 and Equation 7.3:

My 7.4
MO_ " (')

NSRS

For each specimen, the FEA moment-shear data was obtained by dividing the vertical load V
and moment M of each datum by V, and M, respectively. Both V, and M, were found using FE

analyses.

The FEA moment-shear data for the SM specimens is presented in Figure 7.8. In the same figure,
a line is plotted through moment-shear data points (0, 1) and (0.93, 0.29). The latter datum is
used since the FE analyses failed due to compression flexural failure when V' /V, was less than
0.29 (i.e. when IV was less than 129 kN). While ACI 318-19 and CSA A23.3-19 suggest that y,,
is a constant based on column location and geometry, it is likely that y,, is also a function of
vertical load and reinforcement ratio. This is because the moment-shear interaction was

nonlinear between M /M, values of 0 and 0.93.
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Figure 7.8: Moment-shear interaction diagram for the SM specimens
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Chapter 8: Proposed method for predicting punching shear failure

Using the FE analyses from the parametric study, equations were produced to predict punching
shear failure based on shear stresses within elements located at a perimeter d/2 from the column.
This perimeter was chosen as it is the critical perimeter of CSA A23.3-19, ACI 318-19, and fib
Model Code 2010 design codes. The elements studied are shown in Figure 8.1.

T A I L D )

Ay 7 (0 [ g T

e ey T e |

N

e,

Figure 8.1: Critical perimeter elements used to develop stress-based analysis method

Since all specimen concrete slabs were meshed with 20 mm C3D8R elements, eight elements
were present through the depths of the slabs. For each stress distribution, the shear stresses
among the elements through the slab depth were averaged to obtain an average shear stress at
each x-y coordinate. For elements along the column face parallel to the y-axis, 1-3 shear stresses
were used in calculations. For elements along the column face parallel to the x-axis, 2-3 shear
stresses were used in calculations. Calculations involving elements at the perimeter corners used

both 1-3 and 2-3 shear stresses.

At each x-y location, the average shear stress was found by dividing the sum of element shear
forces through the slab depth by the sum of element areas through the slab depth. The shear
force for each element was found by multiplying the element area by its shear stress. The
average shear stresses around the perimeter located d/2 from the column were plotted with

respect to their element centroid x and y coordinates.
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A typical shear stress distribution at the critical perimeter for a specimen subjected to only a
vertical load is shown in Figure 8.2. A typical shear stress distribution at the critical perimeter
for a specimen subjected to a vertical load and 85-percent of the ultimate moment is shown in
Figure 8.3. When specimens were subjected to a combined vertical load and moment, the

average shear stresses along the critical perimeter were nonlinear.
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Figure 8.2: Typical shear stress distribution at critical perimeter under only vertical load
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Figure 8.3: Typical shear stress distribution at critical perimeter under combined vertical
load and unbalanced moment
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In this approach, punching shear failure occurs when the average of the shear stresses among
elements at the additive side of the critical section equal a limiting average shear stress, v,.
These elements are shown in Figure 8.4 and will be referred to as the critical elements. The
average of shear stresses among the critical elements is the sum of the average shear stress
caused by the vertical load, vy, and the average shear stress caused by the unbalanced moment,
vy. The shear stress from vertical load, vy, was estimated as a function of the vertical load,
critical perimeter, and effective depth. The shear stress from the unbalanced moment, v,,, was
estimated as a function of the vertical load, unbalanced moment, and reinforcement ratio. Lastly,

the limiting shear stress, v,, was estimated as a function of the vertical load and reinforcement

ratio.
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Figure 8.4: Critical elements at additive side of critical section

8.1 Average shear stresses of critical elements versus applied moment

During specimen failure, the largest shear stresses were observed within concrete slab elements
located at the side of the critical section where shear stresses from the vertical load and
unbalanced moment are additive. Figure 8.5, Figure 8.6, and Figure 8.7 show the average shear
stresses versus applied moments for these critical elements for specimens SM 0.5, SM 1.0, and
SM 1.5, respectively. Linear regressions were plotted alongside data obtained from numerical
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modelling. These linear functions fit the observed data well and were used to predict average

shear stresses in following sections.

Consistent between Figure 8.5, Figure 8.6, and Figure 8.7, the average shear stress caused by
only the vertical load increased linearly as the vertical load was increased. Furthermore, the
slope of the shear-moment data decreased as the vertical load was increased. The ultimate
average shear stress varied between 1.2 MPa and 1.4 MPa for specimen SM 0.5, 1.8 MPa and
2.1 MPa for specimen SM 1.0, and 2.3 MPa and 2.6 MPa for specimen SM 1.5.
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T
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5: 180 kN linear regression
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Moment (kNm)

Figure 8.5: Average shear stress versus moment for specimen SM 0.5 FE analyses
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Figure 8.6: Average shear stress versus moment for specimen SM 1.0 FE analyses
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Figure 8.7: Average shear stress versus moment for specimen SM 1.5 FE analyses

8.2 Stress-based method: vertical load contribution to average shear stress

The average shear stress versus vertical load for the SM specimens subjected to only a vertical
load are presented in Figure 8.8. Alongside this data, a linear function predicting the average

shear stress from vertical load (MPa) as a function of vertical load (kN) is presented.
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Figure 8.8: Average shear stress versus vertical load from FE analyses of SM specimens
subjected to only vertical loading

Recall that ACI 318-19 and CSA A23.3-19 state that the average stress from a vertical load vy,
isequal to V /b,d (where b, is the critical perimeter at d/2 from the column and d is the effective

depth). For the SM specimens, b, d is equal to 205 - 10 mm?3. The v, function shown in Figure

8.8 suggests that b, d is equal to 235 - 103 mm3. This is a difference of 15-percent.

Therefore, the vertical load contribution to the total shear stress v, was estimated as

|4

W = 115h,d

(8.1)

In future work, the constant 1.15 can be studied further to determine if this was a calculation
error or if the effective depth as defined by ACI 318-19 and CSA A23.3-19 should be increased

to consider a larger punching shear critical section.

8.3 Stress-based method: moment contribution to average shear stress

As previously shown in Figure 8.5, Figure 8.6, and Figure 8.7, the average shear stress increased
linearly as the moment was increased. However, the rate at which the average shear stress
increased was greater when lower initial vertical loads were applied. As defined by the
Hognestad parabola, the uniaxial compression modulus of elasticity decreases as the axial stress
increases. The changes in stress given an applied strain for low and high initial stresses are
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shown in Figure 8.9. If a uniaxial compressive stress a; was applied followed by an applied
strain of Ae, a change in uniaxial compressive stress Ag; would occur. If a higher uniaxial
compressive stress a, were applied followed by the same applied strain Ae, the change in
uniaxial compressive stress Ag, would be less than the change in uniaxial stress Ao; (i.e. when

stress a; was applied).
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Figure 8.9: Changes in stresses given an applied strain for low and high axial forces

The moment contribution to the average shear stress, v,,, is assumed to be equal to

y,Mc
Uy = ] =

aM . (8.2)

This definition is based on that provided by ACI 318-19 and CSA 23.3-19. For the work herein,
the coefficient y,, is assumed to be a function of vertical load, V, and reinforcement ratio, p.
Parameters c (the distance from the centroid to the centroid to the edge of the critical section)
and J (the polar moment of inertia) are constant since all SM specimens have identical concrete
geometries. The coefficient « is the slope of average shear versus moment data as shown in

Figure 8.10, which is also equal to y,c/J.
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Figure 8.10: Slope a of average shear stress versus moment results from FEA (180 kN FE
analysis of SM 1.5 shown)

To determine y,,, an equation is developed to predict a based on shear-moment data previously

presented in Section 8.1. Then, coefficient a is multiplied by J/c to produce y,,.

The coefficient a is assumed to be a function of VV and p:

a(V,p) =mV + b(p) (8.3)

where m is a constant, V is the vertical load, and b is a function of the reinforcement ratio p.

The value of coefficient a versus vertical load data for the SM specimens is presented in Figure
8.11. It is assumed that the values of a for specimen SM 0.5 would be larger if more flexural
reinforcement was provided such that the specimen failed in two-way shear rather than flexure.
It is assumed that additional reinforcement would reduce rotations, which would result in a
higher portion of stresses to be transferred to shear rather than flexure. However, it is
recommended that a slab-column connection with similar geometry and materials but with

another reinforcement ratio greater than 1-percent be analysed to confirm this assumption.

Another observation from Figure 8.11 is that the a-V data for all specimens is linear and parallel
to one another. This meant that the slope of « (i.e. m) is constant for all specimens and

independent of reinforcement ratio.
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Figure 8.11: Values of a coefficient versus vertical loads
From linear regressions, the slope of the a-V data m for all specimens is determined to be

1

- Sl units: N, mm) (8.4
ST ( ) (8.4)

m =

It is assumed that « increases linearly as the reinforcement ratio is increased. A linear function
for the y-intercept b is developed based on the y-intercepts of the linear regressions for
specimens SM 1.0 and SM 1.5:

1
b(P) = ge15—981 1005 °

(SI units: N, mm) (8.5)

Substituting Equation 8.4 and Equation 8.5 into Equation 8.3 produces the equation:

1
~ 86.15-9.81-100-p 8-107 "

a (SI units: N, mm) (8.6)

For the SM specimens, the polar moment of inertia, J, is equal to 6.29 - 10° mm* and the

distance from the centroid to the edge of the critical section, c, is equal to 213 mm. The

equations used to calculate these values are presented in Section 2.2.1.2.
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Equation 8.6 was multiplied by J/c to obtain a function for y,,:

1

vV, p) = 3 +53p . (Sl units: N, mm) (8.7)

2703296

The constants within Equation 8.7 are specific to the SM specimens. Further development of
Equation 8.7 is necessary before it can be applied to other slab-column connections.

In future work, average shear stress versus moment data should be obtained for connections
with varying column locations, column dimensions, effective depths, and concrete strengths.
This data should be studied to understand the influence of each parameter. Then, the constants

within Equation 8.7 could be replaced with physical parameters to produce a general equation.

8.4 Stress-based method: ultimate shear stress

Per this method, failure occurs in a specimen when the average of shear stresses within the
critical elements reaches an ultimate average shear stress, v.. The proposed equation for
predicting the ultimate average shear stress, v,, as a function of vertical load, V, and

reinforcement ratio, p, is

v.(V,p) =126 + 101p — (SI units: N, mm) (8.8)

7.1-105°

The ultimate average shear stress, v,, versus vertical load results and the proposed equation are
presented in Figure 8.12. For each of the specimens, the ultimate average shear stress decreases
linearly as the vertical load increases. The rate at which this ultimate stress decreases is the same
regardless of the reinforcement ratio. Increasing the reinforcement ratio results in increased

ultimate average shear stresses for all vertical loads.

The proposed equation was obtained by performing linear regressions using the ultimate shear
stress versus vertical load data for the SM specimens. The results of specimen SM 0.5 were
considered outliers as it is assumed that shear stresses within specimen SM 0.5 would be larger
if the specimen had failed in punching rather than flexure. As such, it is assumed that the

reinforcement ratio linearly affected the ultimate average shear stress.
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Figure 8.12: Ultimate average shear stresses versus vertical loads for SM FE analyses
As previously mentioned, it is assumed that the reinforcement ratio has a linear effect on
ultimate shear stress. In future work, it is recommended that this assumption be verified by
analysing a slab-column connection with similar geometry and material properties but different
reinforcement ratio (preferably greater than 1-percent). It is recommended that additional
numerical modelling be completed for other specimens to replace the constants in Equation 8.8

with parameters relating to connection geometries and material properties.
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Chapter 9: Comparisons with current design codes

9.1 SM specimens by Ghali, EImasri, and Dilger (1976)

In Section 9.1.1, the average shear stresses versus moments calculated using the proposed
method are compared the predictions of ACI 318-19. In Section 9.1.2, the moment versus
vertical load results from FE analyses are compared to the predictions of ACI 318-19, CSA
A23.3-19, Eurocode 2 (2004), fib Model Code 2010, and the proposed method.

9.1.1 Coefficient y,, as proposed versus ACI 318-19

In this section, the average shear stresses versus moments calculated using the proposed stress-
based method are compared to ACI 318-19 predictions for SM specimens subjected to vertical
loads of 140 kN, 160 kN, and 180 kN. The predicted average shear stresses are plotted alongside
FEA stresses to ensure that the proposed equations were developed without errors. Then, the

values of y,, from the stress-based method are compared to ACI 318-19 predictions.

The FEA and predicted average shear stresses for the SM specimens subjected to a vertical load
of 140 kN are plotted in Figure 9.1. The ultimate shear stress predicted by ACI 318-19 is
dependent on the concrete compressive strength. Since all specimens were cast from concrete
of similar compressive strength, the predicted ultimate average shear stresses are similar
between specimens. The y,, value of 0.4 from ACI 318-19 is closest to that of specimen SM 1.5.
As per the FEA results, the y,, values for specimens SM 0.5, SM 1.0, and SM 1.5 are 0.31, 0.33,
and 0.36.
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Figure 9.1: Average shear stress versus moment for SM specimens (V = 140 kN)
The FEA and predicted average shear stresses for the SM specimens subjected to a vertical load
of 160 kN are plotted in Figure 9.2. As was the case with the 140 kN vertical load, the y,, value
of 0.4 from ACI 318-19 is closest to that of specimen SM 1.5. As per the FEA results, the y,
values for specimens SM 0.5, SM 1.0, and SM 1.5 with an applied vertical load of 160 kN are
0.30, 0.33, and 0.35, respectively.
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Figure 9.2: Average shear stress versus moment for SM specimens (V = 160 kN)
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The FEA and predicted average shear stresses for the SM specimens subjected to a vertical load
of 180 kN are plotted in Figure 9.3. As per the FEA results, the y,, values for specimens SM 0.5,
SM 1.0, and SM 1.5 with a vertical load of 180 kN are 0.29, 0.32, and 0.35, respectively.

SM 1.5 FEA

V =180 kN

SM 1.0 FEA

N
o

SM 0.5 FEA

N

----- SM 1.5 prediction
(proposed)

SM 1.0 prediction

(proposed)

SM 0.5 prediction

(proposed)
--------------- SM 1.5 prediction

(ACI 318-19)

SM 1.0 prediction

(ACI 318-19)

SM 0.5 prediction
(ACI 318-19)

-

Average shear stress (MPa)
o

o
(8)]
T

0 1 1 1
0 50 100 150 200

Moment (KNm)
Figure 9.3: Average shear stress versus moment for SM specimens (V = 180 kN)

The proposed values of y,, for the SM specimens using Equation 8.7 are presented in Table 9.1.
Since the proposed equation is a function of vertical load and reinforcement ratio, the values of
y,, for two load cases are presented for each specimen. The first load case is when the specimen
is subjected to only an unbalanced moment (i.e. the vertical load equals zero). The second load
case is when the connection is subjected to its concentric vertical load capacity V, (without any
unbalanced moment). For each specimen, , was obtained from FE analyses. Intermediate

values of y,, may be obtained through linear interpolation.

Table 9.1: Proposed values of y, for SM specimens subjected to only moments or only vertical loads

Vo Concentric vertical Yo
(only unbalanced load capacity V, (only vertical load
Specimen moment) (from FEA) V)
SM 0.5 0.36 277 KN 0.26
SM1.0 0.39 403 kN 0.24
SM 15 0.41 499 kN 0.23
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Based on these results, the value of y, ranged between 0.23 and 0.41 depending on the

reinforcement ratio and vertical load. Other parameters possibly have an influence on y,, as well.

When Moe first introduced his version of y,, in 1961, he found that y,, equal to 0.27 fit his “Type
A” specimens well and y,, equal to 0.38 fit his “Type B specimens well. Both sets of specimens
had 6-ft by 6-ft slab sizes. Type A specimens used a reinforcement ratio of 1.5-percent with a
square column dimension of 12-inches. Type B specimens used a reinforcement ratio of 1.34-
percent with a square column dimension of 10-inches. Ultimately, he decided on a y,, equal to
0.33, which provided adequate results for both sets of specimens. ASCE-ACI Committee 326
(1962) found that y,, equal to 0.2 provided a good fit to available test data. Hanson and Hanson
(1968) showed that y,, equal to 0.4 provided a good fit to their experimental data.

Each of these researchers proposed a different value for y, varying between 0.2 and 0.4. These
values are consistent with the values of the stress-based method shown in Table 9.1. In 2003,
Alexander and Simmonds argued that Hanson and Hanson’s specimens were subjected to
substantially greater magnitudes of unbalanced moments than shears. As a result, the specimens
failed due to compression crushing rather than shear failure (Alexander & Simmonds, 2003).
These statements were consistent with Table 9.1, which showed that specimens subjected to no

(or little) vertical loads had y,, values close to 0.4.

In conclusion, each researcher selected a value of y,, that worked best for their set of specimens.
It is worthwhile to further study how the value of y,, can change depending on specimen loading,
geometry, and material properties. A more efficient y,, approach would increase the accuracy of
ACI 318-19 and allow for more efficient structural designs. For example, if specimen SM 1.5
is subjected to an unbalanced moment of 50 kNm, ACI 318-19 predicts a vertical load capacity
of 284 kN (based on y,, equal to 0.4). Using the proposed y,, equation, this prediction is increased
to 318 kN (based on y,, equal to 0.3). If the connection is only required to resist 284 kN, using
the proposed y,, equation allows the column size to be reduced from 305 mm by 305 mm to 280

mm by 280 mm.

9.1.2 Moment versus vertical load results
In this section, the ultimate moments versus vertical loads of specimens SM 0.5, SM 1.0, and
SM 1.5 are compared to the code predictions of ACI 318-19, CSA A23.3-19, EC2-2004, MC
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2010, and the proposed method. It is expected that the predictions of CSA A23.3-19 will be
similar to ACI 318-19. This is because both codes are based on the same research but CSA
A23.3-19 has different safety factors combined into its constants. For all design codes, the safety
factors are set equal to 1. For MC 2010 calculations, the radius of contraflexure, r;, was assumed

equal to the specimen length since the specimen was sized to the radius of contraflexure.

The level 1V approximation of MC 2010 uses slab rotations obtained from FE analyses. For
each combination of vertical load and ultimate moment, slab rotations were calculated using
nodal vertical displacements along the slab’s top and bottom faces, at the plane of symmetry,
along the axis perpendicular to the moment axis. Four rotations were calculated where the slab
meets the column: one rotation at each side of the column along the top slab face and one rotation
at each side of the column along the bottom slab face. The maximum magnitude of these four

rotations was used for the level IV approximation of MC 2010.

The FEA and predicted ultimate moment versus vertical load data for specimen SM 0.5 are
shown in Figure 9.4. It is important to note that specimen SM 0.5 failed in flexure for all vertical
load levels. As such, the punching shear code provisions would provide better estimates had the
specimens failed in punching rather than flexure. Section 8.6.1.2 of ACI 318-19 provides an
equation for the minimum reinforcement ratio (based on connection geometry) to prevent
flexure-driven failure. More information about the research behind this provision is provided in
Section 2.1.17. For the SM specimens, the minimum reinforcement ratio is 0.75-percent. The
design codes’ punching shear provisions would likely produce more accurate predictions if the

reinforcement ratio of SM 0.5 was increased to 0.75-percent.

ACI 318-19 underestimated the moment capacities for all vertical loads except between 40 kKN
and 120 kN. CSA A23.3-19 underestimated the moment capacities for all vertical loads. EC2
was adequate for vertical loads between 20 kN and 240 kN. Level | approximations of MC 2010
were the most conservative of all analyses. As previously discussed, level | is intended to be
used for regular flat slabs without significant redistribution of internal forces. For this reason, it
was expected that level | would be accurate for low eccentricities (i.e. high vertical loads).
However, the slope of the moment versus vertical load data was accurate to that of the FE
analyses. Level Il approximations of MC 2010 were the least conservative of the three MC 2010

levels compared. Level Il predicted the same ultimate moment as the FE analyses when no
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vertical load was applied. However, it underestimated the vertical load when no unbalanced
moment was applied. The shape of level 1V approximations was very similar to the shape of the
FEA data. This is likely because the rotations for level 1V calculations were obtained from FEA
data.
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Figure 9.4: FEA and code-predicted moment capacities for specimen SM 0.5 subjected to
various vertical loads

The FEA and code-predicted ultimate moment versus vertical load data for specimen SM 1.0
are shown in Figure 9.5. ACI 318-19 and CSA A23.3-19 do not consider the effects of flexural
reinforcement. As such, the predictions of these design codes are the same for all three SM
specimens. That being said, ACI 318-19 predicted the punching shear capacities accurately for
moment-only and vertical-only load cases for specimen SM 1.0. However, it was conservative
for intermediate vertical load values. Using ACI 318-19 with the proposed y,, equation produced
less conservative predictions for these intermediate values. CSA A23.3-19 predictions were
non-conservative for vertical loads less than 45 kN and greater than 350 kN. EC2 accurately
predicted the punching shear capacity when only a vertical load was applied. However, it
underestimated the connection strength when only an unbalanced moment was applied. None
of the MC 2010 levels of approximation adequately predicted the punching capacities for any
vertical loads. However, level 1V accurately predicted the slope of the FEA moment versus

vertical load data. The proposed method demonstrated the possible moment capacities if

264



additional compression reinforcement been provided. Additional compression reinforcement
would ensure that the specimen failed in punching shear rather than flexure under low vertical

loads.
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Figure 9.5: FEA and code-predicted moment capacities for specimen SM 1.0 subjected to
various vertical loads
The FEA and code-predicted ultimate moment versus vertical load data for specimen SM 1.5
are shown in Figure 9.6. ACI 318-19 was conservative for all vertical loads. ACI 318-19 using
the proposed y, equation predicted less conservative moment capacities. CSA A23.3-19
accurately predicted the punching shear capacities for the vertical load only and moment only
load cases. As previously mentioned, these code predictions did not change between the SM
specimens. EC2 accurately predicted the punching shear capacity for the vertical load only load
case. However, its punching shear capacity prediction was non-conservative for the moment
only load case. Model Code 2010 did not adequately predict the capacities of the SM specimens.
However, the slope of the level 1V approximation was similar to the analysis data since the
rotations were obtained from the analyses. As with specimen SM 1.0, the proposed method
showed the possible moment capacities if additional compression reinforcement had been

provided such that the specimens did not fail in flexure.
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Figure 9.6: FEA and code-predicted moment capacities for specimen SM 1.5 subjected to
various vertical loads

To summarize, none of the design codes’ punching shear provisions accurately predicted the
slope of the moment versus vertical load data for specimen SM 0.5. This is because specimen
SM 0.5’s moment capacities were governed by its flexural strength rather than its punching
shear strength. ACI 318-19 accurately predicted the punching shear capacities of specimen SM
1.0. However, it did not acknowledge the increase in capacity due to additional reinforcement.
As such, its predictions were conservative for specimen SM 1.5. For specimens SM 1.0 and SM
1.5, Eurocode 2 accurately predicted the punching shear capacities for most vertical load values.
However, it was non-conservative for low vertical loads. This may be because the specimens
failed in flexure under low vertical loads. Model Code 2010 did not adequately predict the
moment capacities for any of the specimens but the slopes of its predictions were close to the
slopes of the FE analyses. It is possible that adjusting the parameter r; would increase the
accuracy of Model Code 2010.

9.2 Specimens XXX and HXXX by El-Salakawy (1998)

The experiment, FEA, and code-predicted maximum vertical loads and moments for specimen
XXX are presented in Table 9.2. The percentage differences of all vertical loads were compared
to the experiment and analysis vertical loads. For all design codes, maximum vertical loads and

moments were calculated while maintaining an eccentricity (i.e. M /V ratio) of 0.3 m. Relative
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to the experiment, the vertical load predicted by CSA A23.3-19 was the most accurate. Relative
to the FEA, the vertical load predicted by EC2-2004 was the most accurate. Unexpectedly, MC
2010 (LoA 1) predicted more accurate maximum vertical loads than MC 2010 (LoA V).

Table 9.2: Experiment, FEA, and code-predicted capacities for specimen XXX

Vertical load percentage difference

relative to
Vertical load (kN) Moment (kNm) experiment (%) analysis (%)

Experiment 125.0 38.1 0.0 18.7
FEA 103.7 31.6 18.7 0.0
Code predictions

ACI 318-19 1134 34.0 9.7 9.0

CSA A23.3-19 131.3 39.4 4.9 23.5

EC2-2004 106.6 32.0 159 2.8

MC 2010 (LoA 1) 44.7 134 94.7 79.5

MC 2010 (LoA 1) 109.6 32.9 13.1 5.6

MC 2010 (LoA IV) 75.9 22.8 48.8 30.9

The experiment, FEA, and code-predicted maximum vertical loads and moments for specimen
HXXX are presented in Table 9.3. ACI 318-19 predicted a maximum vertical load closest to
that of the experiment. The next closest prediction was produced by EC2-2004 then MC 2010
(LoA 1V). Relative to the FEA, MC 2010 (LoA IV) was the most accurate followed by EC2-
2004 then ACI 318-19. Contrary to the specimen XXX predictions, the MC 2010 predictions

increased in accuracy with increasing LoA level.

Table 9.3: Experiment, FEA, and code-predicted capacities for specimen HXXX

Vertical load percentage difference

relative to
Vertical load (kN) Moment (kNm) experiment (%) analysis (%)

Experiment 70.0 50.7 0.0 17.9
FEA 58.5 384 17.9 0.0
Code predictions

ACI 318-19 711 47.0 1.6 19.5

CSA A23.3-19 82.4 54.4 16.2 33.9

EC2-2004 68.5 45.2 2.2 15.7

MC 2010 (LoA I) 29.2 19.3 82.3 66.9

MC 2010 (LoA II) 85.7 56.5 20.1 37.7

MC 2010 (LoA 1V) 65.1 42.9 7.3 10.6
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9.3 Specimen SB1 by Adetifa (2003)

The experiment, FEA, and code-predicted maximum vertical loads and moments for specimen
SB1 are presented in Table 9.4. The Critical Shear Crack Theory (CSCT) was included among
the code predictions. It was not included in other specimen predictions since it is not applicable

to slab-column connections subjected to unbalanced moments.

Relative to the experiment, the most accurate vertical load capacity was predicted by CSA
A23.3-19 followed by EC2-2004 then ACI 318-19. The least accurate prediction as produced
by MC 2010 (LoA I). Relative to the FEA, the most accurate vertical load capacity was predicted
by CSA A23.3-19 followed by EC2-2004 then CSCT.

Table 9.4: Experiment, FEA, and code-predicted capacities for specimen SB1

Percentage difference relative to:

Vertical load (kN) experiment (%) analysis (%)
Experiment 253.1 0.0 11.2
FEA 226.3 11.2 0.0
Code predictions
ACI 318-19 186.8 30.2 19.1
CSA A23.3-19 213.7 16.9 5.7
EC2-2004 202.7 22.1 11.0
MC 2010 (LoA 1) 81.2 102.8 94.4
MC 2010 (LoA 1) 160.3 44.9 34.1
MC 2010 (LoA IV) 150.0 51.2 40.6
CSCT 186.0 30.6 19.6
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Chapter 10: Conclusions and recommendations

10.1 Finite element model parameter calibration

In this work, finite element models of specimens SM 0.5, SM 1.0, and SM 1.5 tested by Ghali
et al. (1976) were created. The preliminary parameters were based on past research by
Genikomsou (2015) and boundary condition, material, and geometry information provided by
Ghali et al. (1976). It was necessary to calibrate the finite element model parameters to ensure
the analyses accurately reproduced behaviour observed during laboratory testing. This was done
by changing one parameter at a time and selecting the parameter value that best reproduced
experimental results. The moment-rotation data, load-displacement data, and crack patterns
obtained from analyses were compared to those of obtained from laboratory testing when

evaluating the accuracy of analyses.

The calibrated finite element analyses of the SM specimens showed good agreement with
experimental results. The FE analyses produced moment-rotation data with similar slopes to the
experimental data. The percentage differences between analysis and experiment ultimate
moments for specimens SM 0.5, SM 1.0, and SM 1.5 were 1.4-percent, 3.7-percent, and 23.8-
percent, respectively. It was predicted that specimen SM 1.5 was an outlier and would produce
a higher moment if recast and retested. This is because the dynamically-loaded specimens DM
0.5 and DM 1.0 produced ultimate moments which were 20 kNm larger than statically-loaded
specimens SM 0.5 and SM 1.0; however, specimens DM 1.5 and SM 1.5 had a difference in
ultimate moment of 50 KNm.

The finite element analyses did not accurately reproduce the slopes of experimental column
displacement versus rotation data. It was predicted that modelling neoprene bearing pads
(instead of restraining the nodes of slab edge elements) would increase the accuracy of the
analyses displacements. However, no information about the dimensions or material properties
of the bearing pads was included in the publication by Ghali et al. (1976). Furthermore, creep
during the application of vertical loads would have increased the deformations of the specimens.
However, creep effects were not captured by the finite element analyses. The FEA crack patterns

of specimens SM 0.5 and SM 1.5 showed good agreement with the photographed crack patterns.
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Photographs of specimen SM 1.0 crack patterns were not published. FEA crack patterns of

specimen SM 1.0 and SM 1.5 were nearly identical to one another.

10.2 Verification of calibrated finite element model parameters

The finite element model parameters were verified by conducting finite element analyses of
specimens XXX and HXXX tested by El-Salakawy (1998) and specimen SB1 tested by Adetifa
(2003). Specimens XXX and HXXX were edge slab-column sub-assemblage specimens with
eccentricities of 0.30-meters and 0.66-meters, respectively. Specimen SB1 was an interior slab-

column sub-assemblage specimen subjected to concentric loading.

Finite element analyses of specimens XXX and HXXX underestimated the ultimate moments
of the experiments. Furthermore, the FEA moment-rotation data was softer than the
experimental data. The percentage differences between FEA and experiment ultimate moments
for specimens XXX and HXXX were 18.4-percent and 27.6-percent. Similarly, the FE analyses
underestimated the ultimate vertical loads of the experiments. However, the slopes of the load-
displacement data were accurately predicted by the FE analyses. The percentage differences
between the FEA and experiment ultimate vertical loads for specimens XXX and HXXX were
18.6-percent and 17.9-percent, respectively. The FEA accurately reproduced the photographed

experiment crack patterns.

The finite element analysis of specimen SB1 showed good agreement with experimental results.
The ultimate vertical load percentage difference between the FEA and the experiment was 10.1-
percent. The FEA accurately reproduced the slope of the load-displacement data. Lastly, the

crack patterns showed good agreement between the FE analysis and the experiment.

10.3 Accuracy of national design codes

Using the calibrated finite element models of the SM specimens, a parametric study was
conducted on the effect of varying eccentricities on the strengths of slab-column connections.
FE analyses were conducted in which the SM specimens were subjected to varying initial
vertical loads prior to the application of a displacement-couple, which was ramped until failure.
For each specimen, moment capacities were plotted as a function of the initial vertical loads. On
the same figures, moment capacities predicted by ACI 318-19, CSA A23.3-19, EC2-2004, and

fib Model Code 2010 were plotted for the same range of vertical loads.
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ACI 318-19 and CSA A23.3-19 do not consider increases in punching shear strengths resulting
from increases in flexural reinforcement area. For this reason, the predictions of ACI 318-19
and CSA A23.3-19 did not change between the three SM specimens.

None of the design codes’ punching shear provisions accurately predicted the punching shear
strength of specimen SM 0.5. This was expected since specimen SM 0.5 had a flexure-driven
failure rather than a punching failure (i.e. flexural failure occurred before its shear capacity was
developed). However, ACI 318-19 introduced a provision that requires a minimum area of
flexural reinforcement to be provided to allow for slab-columns to develop their full shear
capacity. By this provision, the minimum allowable reinforcement ratio for the SM specimens
is 0.75-percent. It was expected that the design codes’ punching shear provisions would produce

more accurate predictions if the reinforcement ratio of SM 0.5 was increased to 0.75-percent.

ACI 318-19 accurately predicted the punching shear strength for specimen SM 1.0 subjected to
eccentricities equal to zero (i.e. only gravity load applied) and infinity (i.e. only unbalanced
moment applied). For intermediate eccentricities, these predictions were conservative. This is
because ACI 318 assumes a linear interaction between unbalanced moment and shear, while the
parametric study analyses produced a nonlinear moment-shear interaction. Since the predictions
of ACI 318-19 were not affected by the reinforcement ratio, these predictions were conservative
for specimen SM 1.5.

CSA A23.3-19, which is based on the same research as ACI 318-19, produced non-conservative
punching shear predictions for specimen SM 1.0. However, its predictions were accurate for
specimen SM 1.5 subjected to eccentricities of zero and infinity. Like ACI 318-19, CSA A23.3-

19 assumes a linear moment-shear interaction.

EC2-2004 accurately predicted the punching shear strengths for both specimens subjected to
eccentricities equal to zero. However, it was non-conservative for eccentricities equal to infinity.
Analyses in which SM specimens were subjected to large eccentricities failed due to flexural
failure. This is because the reinforcement ratios of these specimens’ compression mats were
one-third of their tension mats. It is possible that EC2-2004 would produce more accurate

predictions if sufficient compression reinforcement were provided to prevent flexural failures at
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larger eccentricities. Like ACI 318-19 and CSA A23.3-19, EC2 assumes a linear moment-shear

interaction.

Level I, Il, and 1V approximations of fib Model Code 2010 (MC 2010) predicted conservative
punching shear capacities for all SM specimens. As expected, level | predictions were more
conservative than level 11 predictions. Unexpectedly, level Il predictions were less conservative
than level 1V predictions. However, level IV predictions accurately reproduced the shape of the
moment-shear interaction of the finite element analyses. This is because slab rotations used to
predict the ultimate vertical load were obtained from the finite element analyses. It was predicted
that the radius of contraflexure r, may need to be modified to improve the accuracy of MC 2010

predictions for the SM specimens.

With the exception of MC 2010 level 1V predictions, all aforementioned design codes assumed
a linear interaction between moment and shear. However, the finite element analyses produced
moment-shear data that was nonlinear. As such, if the codes accurately predicted punching shear
capacities for eccentricities of zero and infinity, they were non-conservative for intermediate

values of shear.

10.4 Study of shear stresses at critical perimeter of ACI 318-19

Using the parametric study FE analyses, shear stresses were studied at a distance of d/2 from
the column as defined by ACI 318-19 and CSA A23.3-19. The shear stresses along the critical
periphery did not vary linearly as assumed by these design codes. Furthermore, the FEA average
shear stress at failure varied depending on the eccentricity of the loading. Both ACI 318-19 and
CSA A23.3-19 assume that failure occurs when the average shear stress reaches a limiting value,

which is a function of the concrete compressive strength.

The maximum average shear stress along the critical section was compared to the average shear
stress predicted by the design codes. This maximum average shear stress was separated into
vertical load and unbalanced moment components. The vertical load component had good
agreement with the assumptions of the design codes. With respect to unbalanced moment shear
component, the coefficient y,, was found to vary as a function of eccentricity with some

influence from the reinforcement ratio. When the loading eccentricity was equal to zero, the
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coefficient y,, was approximately 0.25 for all three specimens. When the loading eccentricity

was equal to infinity, the coefficient y,, was approximately 0.40 for all three specimens.

10.5 Recommendations

The calibrated finite element model was capable of accurately predicting punching shear
capacities and crack patterns of slab-column connections subjected to varying magnitudes of
unbalanced moments. As is, the model may be used to study stresses at any location depending
on the purpose of the study. The model may be further developed to improve the accuracy of
deflections and rotations if necessary. This can be done through more advanced modelling of

boundary conditions or contact conditions between the concrete and reinforcement.

In this work, an equation specific to the SM specimens was presented to calculate the coefficient
¥, as a function of vertical load and reinforcement ratio. In its current form, the y,, equation
includes constants that are based on geometry properties of the analysed specimens. The finite
element model presented herein may be used to study shear stresses of other slab-column sub-
assemblages along the same critical perimeter. The resulting average shear stresses can be
compared to shear stresses presented herein to develop a universal equation for predicting the
coefficient y,,. To do so, additional experimental data are required, in which slab-column sub-
assemblages, of varying reinforcement ratios, are subjected to varying monotonically-applied

eccentric loads until failure.

The finite element model presented herein was developed to work for specimens without
transverse reinforcement. The research of Genikomsou (2015) may be used to extend the finite

element model to include shear reinforcement.
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3/8/2020 Re: Request for permission to reproduce crack pattern figu... - Mikhail Laguta

Re: Request for permission to reproduce crack pattern figures
(specimens XXX and HXXX) in Master’s thesis

Ehab El-Salakawy <Ehab.El-Salakawy@umanitoba.ca>

Sun 2020-03-08 7:47 PM

To:Mikhail Laguta <mikhail.laguta@uwaterloo.ca>;

Hi Mikhail

Good to hear that you are working on the punching shear of slab-column connections.
Yes, you have my permission to reproduce the said figures.

Regards,

Ehab El-Salakawy, Ph.D., P.Eng., FCSCE
Professor of Structural Engineering

Department of Civil Engineering

University of Manitoba

Room E1-434 (EITC), 15 Gillson St.

Winnipeg, Manitoba R3T 5V6

Tel: (204) 474-8319

Fax: (204) 474-7513

Home page: http://home.cc.umanitoba.ca/~elsalaka/

From: Mikhail Laguta <mikhail.laguta@uwaterloo.ca>

Sent: March 8, 2020 2:14:02 PM

To: Ehab El-Salakawy

Subject: Request for permission to reproduce crack pattern figures (specimens XXX and HXXX) in Master’s thesis

Good afternoon Dr. El-Salakawy,

My name is Mikhail Laguta and | am one of Dr. Polak’s graduate students at the University of Waterloo. | am
preparing my Master’s thesis and | would like permission to include the crack pattern photographs of your
specimens XXX and HXXX in my thesis. | would like to reproduce the following figures from your PhD thesis:

* specimen XXX of Figure 5.1 from page 115,

e specimen XXX of Figure 5.8 from page 122,

e specimen HXXX of Figure 5.36 from page 143, and

¢ specimen HXXX of Figure 5.39 from page 146.

My thesis will be published in the institutional repository at the University of Waterloo (Waterloo, Ontario,
Canada). Proper citation would be included with the reproduction of the figures.

Please let me know if you need any other information.

Thank you for considering this request,
Mikhail Laguta

https://connect.uwaterloo.ca/owa/#viewmodel=ReadMessageltem&ltemID=AAMkADM1ZDIkZJE2LWMONzgtNGMwOCO5MDNhLTBkOTFiYTM4NWUw...
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3/13/2020 Mail - mikhail.laguta@uwaterloo.ca

RE: Request for permission to reproduce ACI figures in master's thesis

Barry M. Bergin <Barry.Bergin@concrete.org>

Fri 2020-03-13 12:21 PM

To:Mikhail Laguta <mikhail laguta@uwaterloo.ca>;

Hi,

Yes, you can use these 3 items for your thesis.
Be well!

Barry

Barry M. Bergin

Manager, Publishing Services

p+1.248.848.3749

American Concrete Institute | Always advancing

www.concrete.org

From: Mikhail Laguta <mikhail.laguta@uwaterloo.ca>

Sent: Thursday, March 12, 2020 4:46 PM

To: Barry M. Bergin <Barry.Bergin@concrete.org>

Subject: Request for permission to reproduce ACI figures in master's thesis

Hi Barry,

My name is Mikhail Laguta and | am a graduate student at the University of Waterloo. | am emailing to follow up on a voicemail | left earlier today.

| am preparing my master's thesis and | would like permission to reproduce ACI figures in my thesis. | spoke to Mary Meeks who recommended that |
contact you about this.

| would like to include one table from ACI 318-19 and two figures from the ACI Structural Journal in my thesis:

e Table 8.4.2.2.4 Maximum modified values of yf for nonprestressed two-way slabs from page 106 of
“Building Code Requirements for Structural Concrete (ACI 318-19)” (June 2019);

e Figure 5 Cracks after failure from page 571 of “Punching of Flat Plates under Static and Dynamic Horizontal

Forces” (ACl Journal, Vol. 73 No. 10, October 1976); and
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e Figure 13 Final crack patterns for SB1 and SB4 with no openings and four rows of shear bolts, and SB6 with
two openings and four rows of shear bolts from page 274 of “Retrofit of slab column interior connections
using shear bolts” (ACI Structural Journal, Vol. 102 No. 2, March-April 2005).

My thesis will be published in the institutional repository at the University of Waterloo (Waterloo, Ontario,
Canada). Proper citation would be included with the reproduction of the figures.

Please let me know if you need any other information.

Thank you for considering this request,
Mikhail Laguta
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