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Highlights

• An analytics project aimed to determine optimized pharmacy kiosk capacity.

• Models for assortment problem under one-way substitution.

• A column-generation based heuristic approach is proposed.
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Capacity and Assortment Planning under One-way Supplier-driven
Substitution for Pharmacy Kiosks with Low Drug Demand

Gohram Baloch, Fatma Gzara∗

Department of Management Sciences, University of Waterloo

Abstract

MedAvail Technologies Inc. is a healthcare technology company that develops new technologies for

self-serve pharmacy solutions. The technology, called MedCenter, is a pharmacy kiosk that provides

24/7, easy, and reliable access to pre-packaged prescription drugs and over the counter medications.

To meet its business goals of having the right medication in the right kiosk at the right quantity,

MedAvail faces several challenges related to assortment and stocking decisions of medications in

the kiosk limited by kiosk capacity. This research addresses these decisions through an analytics

project aimed at analyzing pharmaceutical sales, determining optimized kiosk storage capacity and

service levels, and recommending assortment, stocking, and supplier-driven product substitution

guidelines. We developed several mixed integer optimization models that use sales data to obtain

robust solutions with respect to randomness in demand. We perform extensive testing using real as

well as randomly generated data, and under multiple substitution rules, replenishment guidelines,

and demand prediction strategies. Our results show that supplier-driven product substitution could

save up to 9% in storage capacity depending on the desired service level and characteristics of

product demand. We also propose a column-generation based heuristic approach that, on average,

obtains near optimal solutions within 1.1% of optimality gap while reducing computational times

by a factor of three.

Keywords: OR in Health services, capacity planning, assortment, column generation

1. Introduction

A recent innovation in the healthcare space is the automated medication dispensing system

where an ATM style kiosk dispenses both prescription and over the counter medications. The

global market for such a system enjoys an annual growth rate of 6.7% and is expected to reach $3.6

billion by 2018 (Slawsky, 2015). Several companies are developing self-serve kiosks with the purpose

of providing 24 hour service, extending pharmacy operations to remote areas, and reducing both

setup and operating costs. One such kiosk, namely MedCenter, shown in Figure 1, was developed

by MedAvail Technologies Inc., a healthcare technology company based in Canada.
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Figure 1: MedAvail’s MedCenter Kiosk source: (MedAvail, 2017)

Launched in 2013, MedCenters are now successfully deployed in US, Canada, and Switzerland

where they are installed in pharmacies, retail stores, hospitals, community clinics, university cam-

puses, and medical office buildings. The MedCenter dispenses prescription drugs and over the

counter (OTC) products under the supervision of a remote pharmacist (MedAvail, 2017). It con-

sists of multiple bins, each divided into several slots where a single slot can store various packages

each containing a specific drug of a particular quantity. When customers arrive at a MedCenter,

they insert their prescription into the kiosk to be scanned and are connected to a live pharmacist

who verifies if the medicines are in stock. A medication is considered available only if the drug is

stocked in a package with the exact requested quantity. Once the customer pays for the medica-

tions, the pharmacist authorizes the release of the prescription and the automated kiosk picks and

dispenses it. If the medications are not stocked, a customer may request the pharmacist to call the

physician for a substitute, to transfer the prescription to the home pharmacy, or to just cancel the

order request.

In comparison to traditional brick-and-mortar pharmacies, MedCenters are significantly less

expensive, both in terms of upfront and operating costs. A MedCenter costs around $100,000 while

the upfront cost of a traditional pharmacy is around $1,500,000 (HealthcareConference, 2017).

Similarly, its annual operating costs are less than $35,000, whereas a conventional pharmacy incurs

annual operating costs of at least $100,000. As such, a MedCenter covers its fixed and variable

costs with less than 25 dispenses per day (HealthcareConference, 2017). Although MedAvail’s

dispensing system is cost-effective, it faces inventory challenges at some locations due to its storage

capacity. The existing kiosk, developed to complement pharmacy operations, may store up to

1000 packages. This research was conducted in collaboration with MedAvail to optimize kiosk

capacity and drug assortment and achieve target service levels. MedAvail provided pharmacy store

and MedCenter sales transaction data for the year 2015. As a first step, we performed descriptive
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Figure 2: The graphs depict the performance of the existing kiosk in meeting customer requests. Plot (a) illustrates
daily success and failure rate distributions. Plot (b) summarizes the main reasons for failed transactions.

analysis to understand demand characteristics at pharmacy stores. Motivated by the findings of the

descriptive and predictive analyses, we developed optimization models that use empirical demand

distributions to make assortment and substitution decisions and determine optimal kiosk capacity

while ensuring that the desired service levels are met.

MedCenters are often located at existing pharmacy stores and provide 24 hour pharmacy ac-

cess. During working hours, a customer may either buy drugs at the counter or use the kiosk.

MedCenters dispense pre-packaged prescription drugs and OTC medications other than controlled-

substance drugs, refrigerated drugs, and drugs that need re-pouring. Government regulations

prohibit stocking of controlled-substance drugs, but these regulations may be relaxed in the future.

Since controlled-substance and refrigerated drugs constitute 17% of total pharmacy sales, MedCen-

ter is developing a new kiosk with refrigeration system and higher capacity to minimize missed

opportunities (failed transactions). Figure 2(a) illustrates the distribution of the daily success and

failure rates at MedCenters in 2015 where 45% of the transactions are successful, and Figure 2(b)

summarizes the factors leading to failed transactions where stocking issues contributed to 60% of

the failures.

In the MedCenter, a package is an SKU containing a specific drug of a specific quantity. Since

there are thousands of drugs, each ordered in various quantities, inventory decisions are crucial

in achieving high service levels when capacity is limited. Past data shows that 60% of the failed

transactions occur for three main reasons: (1) the drug is not stocked, (2) the drug is stocked but is

currently out of stock, and (3) the drug is stocked but a package with the exact requested quantity

is not available. The latter could be partially addressed through supplier-driven substitution where

the demand for higher quantities could be met by dispensing multiple packages of lower quantity
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at the discretion of supplier (pharmacist).

To determine the optimal capacity of a kiosk, the following key questions must be addressed:

1. Which drug should be stocked?

2. In what quantities should each drug be stocked in a package?

3. Which unstocked quantity should be substituted by stocked quantities?

4. What is the stock level of each drug-quantity during the replenishment lead time?

5. What should the replenishment lead time be?

Questions 1, 2, and 3 relate to assortment planning while Questions 3 and 4 relate to inventory

planning. All these questions should be addressed simultaneously when deciding on kiosk capacity

where the goal is to maximize service level. To make these decisions optimally, one must con-

sider drug demand distributions, seasonal variations, substitution, and co-ordering of the drugs in

prescriptions.

The remainder of the paper is organized as follows. In Section 2, an extensive data analysis

over pharmacy sales data is carried out. Section 3 reviews the related work in the literature.

In particular, we review previous work on newsvendor problem and assortment problem under

one-way substitution. Optimization models are formally defined in Section 4. In Section 5, we

present a column-generation based heuristic approach to solve large-scale instances. In Section

6, we present model results for the capacity planning problem faced by MedAvail and analyze

the effects of supplier-driven drug substitution and replenishment lead time on kiosk capacity. To

further generalize model results, the product substitution is studied using randomly generated data

and managerial insights are derived. We also compare computational performance of the proposed

column generation approach with CPLEX and Benders decomposition. Finally, some concluding

remarks and future research directions are presented in Section 7.

2. Analytics of demand

In the US, each drug is assigned a unique 11-digit 3-segment numeric identifier called “National

Drug Code (NDC)”, denoting manufacturer code, product code, and the package code. Drugs are

also assigned a 14-digit hierarchical classification scheme called “Generic Product Identifier (GPI)”

that classifies drugs based on their therapeutic use, dosage form, and strength regardless of the

manufacturer or package size. Drugs with same ingredients, dosage form, and strength but different

manufacturers or package sizes share the same GPI code. Since MedCenter stores a specific quantity

of the drug in a standardized package, the manufacturer’s package size is irrelevant in this context.

Similarly, drugs with the same formula, dosage form, and strength but different manufacturers

are pharmaceutically equivalent. It is therefore decided in consultation with the management to

consider GPI as a distinct drug identifier.

Analysis of pharmacy sales data shows that most of the GPIs are requested in multiple quantities

(QTY). Figure 3 illustrates the distribution of GPIs’ distinct quantities requested in the year 2015

over all stores. On average, each GPI is requested in four distinct quantities, while 46% of the GPIs
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Figure 3: The graph depicts distribution of the GPIs’ distinct quantities requested in the year 2015.

are ordered in a single quantity. From a kiosk perspective, a success requires the right drug with

the right quantity to be in stock when ordered, so we use GPI-QTY to denote a distinct SKU in the

rest of the analysis. We now analyze the significance of product substitution, demand distribution,

and co-ordering of drugs using historical data and identify the critical factors to be modelled.

2.1. Product Substitution

Since GPIs are ordered in various quantities, multiple packages of the same GPI with different

quantities may need to be stored resulting in higher capacity requirements. One possible solution

is to allow supplier-driven substitution between SKUs that share the same GPI code but have a

different quantity. We explain the supplier-driven substitution effect using an illustrative example.

Consider a GPI that is ordered in five different quantities: {20, 28, 40, 56, 60}. We may either stock

five distinct packages, one of each quantity 20, 28, 40, 56, and 60 or, we may store only packages

of 20 and 28 since 40 and 60 are multiples of 20 and 56 is a multiple of 28. As such, GPI-20

may substitute GPI-40 and GPI-60 while GPI-28 may substitute GPI-56. Optimal substitution

decisions, however, depend on the demand for each quantity. For instance, if GPI-60 is frequently

ordered, we should store it in quantities of 60 rather than 20, which would otherwise result in

increased number of packages. On the other hand, when GPI is rarely ordered in quantities of 60,

it may be better to stock packages in quantities of 20 to satisfy sales in quantities of 20 and 60.

We therefore incorporate the supplier-driven substitution effect in our modelling approach.

Another categorization of substitution is customer-driven substitution where customers decide

on substitution when their preferred product is not available. For instance, if a customer wanted

to buy his/her favorite brand pain reliever that is not available at the pharmacy store, he/she may

switch to another pain reliever. However, the data reveals that over the counter drugs constitute

only 2.5% of the total pharmacy sales. At pharmacy stores, customer orders predominantly consist
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Figure 4: Distribution of the number of days drugs are ordered in a year

of prescribed drugs (97.5% of sales) which cannot be substituted by other drugs at the request of

the customer. As such, we do not incorporate customer behavior in our modelling approach.

2.2. Demand distribution

We attempt to determine if demand follows a distribution that could be used in the modelling

approach to make stocking and supplier-driven substitution decisions. Pharmacy sales data reveals

that demand for the majority of drugs is low as shown in Figure 4. The latter illustrates the

distribution of the number of days in a year GPI-QTYs are ordered where 40% of the GPI-QTYs

appeared only one day and on average, the number of days GPI-QTYs are requested equals 11.

Only 20% of the GPI-QTYs are requested in 10 days or more per year. Figure 5 plots the cumulative

demand distribution and yearly demand of the GPI-QTYs. The top 14% (1404) of the GPI-QTYs

capture 80% of the pharmacy sales. So to achieve a service level of 80%, it is sufficient to stock the

top 14% of drugs. However, at higher service levels, the assortment problem is nontrivial as another

3126 drugs numbered from 1404 to 4530 in Figure 5 represent (31% of drugs) and capture only

15% of the sales. These drugs have yearly demand between 3 and 17 with no particular seasonal

trends or patterns throughtout the year. As MedAvail’s target service level exceeds 90%, the

large number of drugs with low and erratic demand must be considered in making the assortment

decisions. Moreover, supplier-driven substitution is expected to have a significant impact on overall

stock levels and required kiosk capacity. Due to such random and low demand, fitting theoretical

distributions such as Normal and Poisson suffer from over or underestimation of the lead time

demand leading to sub-optimal stocking decisions and consequently erroneous service levels. This
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motivates the use of empirical distributions of demand in our modelling framework.

2.3. Co-ordering of Drugs

While making stocking decisions, one must consider the possibility of co-ordering of drugs in

a prescription. For prescriptions with multiple medications, a customer transaction is less likely

to be successful if one of the prescribed drugs is not stocked. Figure 6(a) shows the co-ordering

distribution of the transactions recorded in the year 2015 where 82% of the transactions record

only one drug, and the average number of drugs in a transaction equals 1.25.

We use the Apriori association rule algorithm (Agrawal et al., 1994) to determine SKUs that

frequently appear together in prescriptions. It proceeds by first identifying drugsets that frequently

occur in the transactions. A drugset is a set containing one or more drugs. Frequent drugsets are

determined using a minimum threshold known as threshold support. Support, supp(X) of a drugset

X is calculated as the number of times the drugset appears over the total number of transactions

in the year 2015. If the support of a drugset is less than the threshold support, it is excluded

from further analysis. We set threshold support to be 15
D , where D is the number of transactions

recorded in the year 2015. Once the frequently ordered drugsets are selected based on threshold

support, the confidence for all pairs of drugsets is computed. The confidence, conf{X ⇒ Y }
is the probability of purchasing drugset Y when drugset X is purchased. In our case, we select

a minimum confidence of 0.5. The results of the algorithm are presented in Figure 6(b) where

lift(X ⇒ Y ) = conf(X⇒Y )
supp(Y ) measures the significance of a rule. A total of 47 association rules

between different drugs are found. For better decision making, these association rules should be

taken into account when making assortment and stocking decisions. In our modelling approach,

we do not explicitly incorporate the effect of association between drugs. We detail the justification

in the Section 6 where we note that at higher service levels, i.e., greater than or equal to 80%, all
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Figure 6: Figure (a) shows the drug co-ordering distribution and Figure (b) compares significance of association rules
generated from Apriori association algorithm where threshold support is set to 15 and minimum confidence is 0.5

SKUs with yearly demand greater than or equal to 15 are selected. As such, all drugsets in 47

association rules found are already stocked.

3. Literature Review

Our goal is to develop a modelling framework that determines the required capacity of the kiosk

to achieve a desired level of service. Capacity is defined as the total number of packages stored

which equals the sum of the stock levels of all GPI-QTYs and therefore depends on the assortment

of drugs to be stocked and corresponding stock levels. The stock level of a GPI-QTY is determined

by its own demand and the demand of other GPI-QTYs it substitutes as well as the replenishment

policy and the target service level. We develop three stochastic optimization models that decide

on optimal assortment, inventory, and supplier-driven substitution decisions. These models share

similarities to the newsvendor problem and the assortment problem under one-way substitution.

In this section, we review previous work on these two problems and position our work accordingly.

3.1. Assortment & Inventory Decisions

MedAvail wants to determine optimal stock levels for GPI-QTYs with stochastic demand to

minimize kiosk storage capacity while ensuring that desired service level is achieved. This problem

is related to the well-known Constrained Multi-Product Newsvendor Problem (CMPNP) where a

newsvendor wants to determine single-period optimal stocking policy for multiple products with

stochastic demand and resource or budget constraint(s). The literature that deals with stochastic

modelling approaches for the newsvendor problem assumes that the demand distribution is known.
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In this stream, Hadley and Whitin (1963) are the first to study a CMPNP and propose a Lagrangian-

based method to the solve the problem. Fractional stock levels are allowed and to obtain an integer

solution, the optimal order quantity is approximated by rounding down to the nearest integer

value. Such an approach, however, performs poorly when the demand for products is low. To

overcome the issue, Hadley and Whitin (1963) propose a dynamic programming procedure which is

computationally inefficient when the products size is large and the largest instance reported in the

paper consists of three products only. Nahmias and Schmidt (1984) extends the work of Hadley

and Whitin (1963) and propose multiple heuristic approaches to solve the problem efficiently. The

approach is however only applicable for moderate-to-high demand items as the proposed solution

methodologies use continuous decision variables. The authors argue that for low demand items

a discrete model would be more applicable. Lau and Lau (1996) observe that the methodology

proposed by (Hadley and Whitin, 1963) may lead to negative optimal order quantities when the

capacity is tight. The authors present an extension of the procedure in (Hadley and Whitin, 1963)

to deal with general demand distributions including positive lower bounds. Abdel-Malek et al.

(2004) propose a closed form expression of optimal order quantities when the demand follows a

uniform distribution and present a generic iterative method to find near optimal solutions for other

general distributions. To avoid the issue of negative order quantities, Abdel-Malek and Montanari

(2005) suggest the use of thresholds to help decision maker remove products with low marginal

utilities. A binary search method applicable to both continuous and discrete demand distribution

is proposed by Zhang et al. (2009). The proposed solution approach, however, does not guarantee

optimality for the discrete distribution. For a comprehensive review on uncapacitated and single

newsvendor problems with known demand distribution, we refer the reader to Turken et al. (2012).

In stochastic models, the literature assumes a known distribution and could not be applied in

our case where demand is highly erratic and low. Since the demand for each GPI-QTY is erratic

and low, experimentation with fitting Negative binomial, Poisson, and Normal distributions reveal

that demand does not follow any specific probability distribution. This is true for many real-

life problems where the exact distribution is rarely known and is generally approximated based on

historical data. This explains the issue of poor out-of-sample performance in stochastic optimization

approaches. To address this, robust optimization approaches are proposed in the literature. In this

stream, Vairaktarakis (2000) considers a robust CMPNP under the assumption that the demand

distribution for each item is completely unknown and only a set of discrete demand scenarios are

available. The author presents minmax regret formulations with the objective to minimize expected

costs under the worst-case realization of demand. Scenario-based minmax modelling approach is

often criticized for being overly conservative as outliers in the historical data are not excluded.

Such a minmax approach could be used for the pharmacy kiosk problem but our results show

that it performs poorly. The poor performance is not due to overly conservative nature of the

model but rather it is unable to provide robust solutions due to fewer number of scenarios for the

kiosk problem with thousands of SKUs. To deal with the issue of overly conservative solutions

in minmax regret formulations, a standard approach is to assume that the demand for each item

10

                  



could deviate from its nominal demand while the total deviation for all items is control by a

user-defined budget of uncertainty (see for example, Bertsimas and Thiele (2006), Lin and Ng

(2011)). However, under service level maximization objective, the adversarial problem in robust

optimization is nonlinear and as such, tractable robust counterpart formulation does not exists. In

addition, mathematical formulations for such models are complex and difficult to understand for

the managers. We therefore adopt a scenario-based stochastic optimization framework where all

values of demand for each GPI-QTY recorded in the past data are used. Such an approach does not

require the probability associated with each scenario and is therefore appropriate in our case where

the probability density functions of GPI-QTYs are not known. In order to obtain robust solutions,

we generate robust scenarios using the maximum demand of each GPI-QTY over all stores data in

a given time period.

In CMPNP literature, the objectives considered optimize costs, profits, or the probability to

achieve a target profit under different criteria (Khouja, 1999). Our objective is to determine min-

imum kiosk capacity under service level constraints. The modelling approaches in the CMPNP

literature do not explicitly model service level constraints and under stocking is penalized through

shortage costs that are included in the objective function. Studies that do consider service levels

(see Table 1) in CMPNP (Chen and Chuang, 2000, Taleizadeh et al., 2008, 2009, Waring, 2012,

Abdel-Aal et al., 2017) include service level constraints for each item and use a well-defined cumu-

lative distribution function of the demand to define the service level as the probability of meeting

demand with a given stock level. However, such an approach is not applicable in our case since

demand is erratic and low and does not follow a known distribution. We use fill rate to define

service level as the proportion of successful transactions with given stock levels of GPI-QTYs over

a planning horizon of one year. Moreover, the service level in our problem is defined for the kiosk

rather than for each GPI-QTY.

3.2. Substitution Decisions

Another challenge is to make substitution decisions along with stocking decisions under stochas-

tic demand. Product substitution in general is defined as the act of using one product to meet

the demand of another product. In inventory and assortment planning literature, substitution is

categorized as either supplier-driven or customer-driven (Shin et al., 2015). In customer-driven

substitution, customers decide on substitution when their preferred product is not available. In

such problems, customer behavior is modelled within the optimization framework, see for example,

(Gaur and Honhon, 2006, Kök and Fisher, 2007, Aydin and Porteus, 2008). In this stream of

literature, Gaur and Honhon (2006) consider an uncapacitated multiproduct assortment planning

problem where the demand follows a known distribution and the goal is to decide on the stock

level for each product such that the expected profits are maximized. A utility-based locational

choice model is used to estimate the customer demand where substitution between the products is

allowed based on the substitution rate. For each customer, the utility it derives from product j is

calculated and it is assumed that a customer prefers the product that maximizes his/her utility.

If such a product is not available, he/she may select the second highest utility product with a

11
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probability defined by substitution rates. Kök and Fisher (2007) model the assortment problem

using an exogenous demand model where the demand and substitution rates are precomputed using

regression models, and are then used to decide on the number of facings allocated to each product

under a capacity constraint.

These models do not make substitution decisions but rather consider customers’ substitution

behavior to decide on assortment and stock levels. We do not incorporate such customer behavior

in our modelling approach since customer orders at pharmacy stores predominantly consist of

prescribed drugs (97.5% of sales) which cannot be substituted by other drugs at the request of the

customer. However, incorporating customer substitution behavior within a model making supplier-

driven substitution decisions is a promising future research work. We refer the reader to Kök

et al. (2015) and Shin et al. (2015) for a comprehensive review of literature on customer-driven

substitution. From here onward, term “substitution” refers to supplier-driven substitution unless

explicitly mentioned otherwise.

At a pharmacy kiosk, a pharmacist may dispense multiple packages of one GPI-QTY to satisfy

the demand of another GPI-QTY as long as they share the same GPI code, and the quantities

match. This is known as supplier-driven substitution where the supplier makes stocking decisions

while taking into account product substitution (Shin et al., 2015). More specifically, such quantity

based substitution is referred to in the literature as one-way substitution and is common in man-

ufacturing and service industries such as semiconductor industry (Bassok et al., 1999), computer

hardware industry (Leachman and Glassey, 1987), and airline industry (Wollmer, 1992). One-

way substitution may improve overall service level due to pooling. Potential benefits of one-way

substitution in inventory management are detailed in Fuller et al. (1993).

The term assortment problem was first introduced by Sadowski (1959) who considers a problem

of determining n steel beams of different strengths where the demand of a lesser strength beam is

substitutable by a beam with greater strength. A similar problem in apparel industry in considered

by Tryfos (1985) where the manufacturer has to decide on the set of m sizes. In these two papers,

demand patterns are described by continuous distributions. The modelling approach in these works

only decides on whether a quantity is stocked or not. On the other hand, Pentico (1974) considers a

single product ordered in different quantities following a discrete probability distribution. The goal

is to decide on the stock levels for each size while taking into account one-way substitution where a

smaller stocked size can meet the demand of a larger unstocked size while incurring a substitution

cost. The demand for each size is assumed to be probabilistic and some strong substitution as-

sumptions are made in the paper. The author assumes that to meet the demand of a larger stocked

size, only the smallest stocked size could be used. It is also assumed that demand is realized in

descending order of size. Moreover, capacity is incorporated implicitly as a fixed charge cost of

stocking a given size. A dynamic programming approach is proposed to formulate and solve the

problem. These assumptions greatly limit the applicability of the proposed model. Pentico (1976)

relaxes the linear cost functions and substitution cost assumption in Pentico (1974) but considers

deterministic demand. Chand et al. (1994) generalizes the problem in Pentico (1976) with infinite
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planning horizon. A different variant of demand uncertainty in the assortment problem is studied

by Dutta and Chakraborty (2010) where the demand is fuzzy and lies within an interval data. Bas-

sok et al. (1999), Rao et al. (2004), and Deflem and Van Nieuwenhuyse (2013) study multi-product

assortment problem under downward substitution without incorporating storage or resource con-

straints. Bassok et al. (1999) present a two-stage profit maximization formulation with N products

and N demand classes under full downward substitution. Rao et al. (2004) consider a similar prob-

lem but take into account setup costs while Deflem and Van Nieuwenhuyse (2013) derive optimality

conditions where substitution outperforms separate stock levels for the two-item case. Ahiska et al.

(2017) and Hsieh and Lai (2019) study one-way substitution for manufacturing industry problem

where high quality products substitute low quality ones. Ahiska et al. (2017) formulate the prob-

lem using Markov decision process while Hsieh and Lai (2019) use a game-theoretical modelling

framework.

Pharmacy kiosk assortment problem poses new research questions within the assortment op-

timization literature that have not been studied before. As such, our work differs from existing

literature in the following aspects.

1. Substitution rules considered in our work have not been studied before. The literature on

supplier driven substitution deals with problems where a high-quality product may substitute

a lower quality one with one to one substitution i.e., to meet the demand of a single unstocked

unit, only one unit of higher quality item is dispatched. On the other hand, in our case, to meet

the demand of a single unit, multiple packages must be dispensed to fulfill the demand while

ensuring that the quantity dispensed is equal to the requested quantity. Such requirements

are not handled by the models in the literature. From a modelling perspective, the exact

requested quantity requirement leads to extremely complex mathematical models.

2. The models in the literature explicitly include substitution costs in the objective function.

For instance, in a computer hardware industry if a customer order of 4GB memory chip is

not available, an 8GB memory chip may fulfill the demand with substitution cost equals

to the difference between the prices of the two different memory chips. In our case, there

are no explicit substitution costs. The latter are captured implicitly within the service level

expression to avoid over-substitution that may lead to lower service levels. To the best of our

knowledge, our work is the first to consider fill rate in assortment planning problems with

one-way substitution. As shown in Table 2, other than (Bagchi and Gutierrez, 1992), no work

considers service level. In Bagchi and Gutierrez (1992), however, service level constraints are

added for each item using a well-defined cumulative distribution function and fractional stock

levels are also allowed in the optimal solution.

3. A common assumption in assortment planning problems under one-way substitution is that

demand for all items is realized at the same time. The problem is then formulated as a two-

stage stochastic program. In the first stage, when demand is not realized, the formulation

decides on stock levels of each item while taking into account substitution. In the second

stage when the demand is realized for all items, substitution decisions are made based on the
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given stock levels to meet the demand for all items. However, for a pharmacy kiosk, demand

is realized in a dynamic fashion where customers arrive one at a time. Rao et al. (2004)

correctly point out that dynamic substitution models are extremely complex. Such complex

models are intractable for the large-scale capacity planning problem faced by MedAvail with

around 30,000 GPI-QTYs. We therefore employ a stationary substitution policy i.e., same

substitution rules are employed throughout the planning horizon irrespective of the stock

levels at any given time. However, to deal with the problem of dynamic customer arrivals,

our models make robust substitution decisions which guarantee that the desired service level is

always achieved irrespective of the sequence of demand realization for substitutable products.

4. The proposed models in this paper are computationally tractable for the pharmacy kiosk

problem with 30,000 GPI-QTYs and could be solved using a commercial solver. Other models

in the literature are too complex for the large-scale instances with thousands of GPI-QTYs.

4. Modelling Stocking and Assortment Decisions

The problem is to decide on the single period (replenishment lead time) stock level xi, for each

product i ∈ I using the empirical distribution that is generated from historical data. When xi = 0,

product i is not stocked and the assortment is defined by i ∈ I such that xi > 0. We adopt a

scenario-based stochastic optimization model that uses past data to generate T demand scenarios

by dividing the planning horizon into T =
⌈

365
h

⌉
lead time intervals, where h is the lead time. The

demand Ait for i ∈ I, during time period t ∈ Θ = {1, ..., T}, is calculated using historical sales data.

Products are grouped in classes if they only differ by quantities. In the presence of substitution,

the demand dit, depends on the substitution variable sij , which equals 1 if product i substitutes

product j. The latter is only possible if products i and j belong to the same product class and

quantity qj is a multiple of quantity qi. A 0 − 1 incidence matrix b = [bij ] is computed where

bij = 1 if product j is substitutable by i. As such, dit =
∑

j∈I:
bij=1

mijAjtsij , where mij =
qj
qi

units of

product i are required to meet the unit demand for product j. Substitution variables may be either

predetermined or optimized within a mathematical model. In pharmacy kiosk application, each

GPI is a product class containing GPI-QTYs sharing the same GPI code. Multiple packages have

to be dispensed to meet the demand of a higher quantity. Such a substitution arises for a variety of

other industry applications where a requested quantity could be substituted by multiple packages

of smaller quantities. For instance, in case of a Bank ATM, customer request for $100 could be met

by dispensing five currency notes of $20. Similarly, for grocery store/vending machine, a customer

may be willing to accept six 250ml bottles of Coke if 1.5 liter family pack is not available.

Since there are no backorders, any unsatisfied demand is a lost sale. The lost sales for a product

i ∈ I during time period t ∈ Θ is max{0, dit − xi}. Lost sales occur either because the drug is not

stocked, i.e., xi = 0, or observed demand exceeds the stock level, i.e., xi < di. At a pharmacy kiosk,

unsatisfied demand is lost because a customer is most likely going to use another pharmacy and

not wait for the medication to be back-ordered. The same applies for other kiosk applications such
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as Bank ATM and vending machines, etc. Since unsatisfied demand is lost, we model the problem

with no backorders which also justifies single period stock planning. The expected service level or

fill rate is calculated as 1−

∑

i∈I

∑

t∈Θ

max{0, dit − xi}

D where D is the total yearly demand. Our goal

is to determine the capacity such that a desired service level α is met.

We develop three optimization models to solve the capacity planning problem and address

management’s questions under three different substitution rules: (1) no substitution, i.e., sii = 1

and all other substitution variables take value 0, (2) management’s substitution rule, (3) optimized

substitution. In rules (1) and (2), substitution is predefined. We now discuss the models under

predefined and optimized substitution.

4.1. Predefined substitution

The first model [M1] decides only on optimal stock levels for products using one of the predefined

substitution rules, and minimizes the capacity under service level constraint. Given the substitution

rule, demand scenarios dit for each product i ∈ I are precomputed and serve as input data to the

model. The formulation is

[M1]: min
∑

i∈I
xi (4.1.1)

s.t. 1−

∑

i∈I

∑

t∈Θ

max{0, dit − xi}

D
≥ α (4.1.2)

xi ∈ Z+, ∀ i ∈ I, t ∈ Θ, (4.1.3)

where the objective function (4.1.1) minimizes the total number of packages stocked i.e., re-

quired capacity of the kiosk. Constraint (4.1.2) ensures that the expected service level, 1 −∑

i∈I

∑

t∈Θ

max{0, dit − xi}

D , is greater than or equal to the desired service level, α. Finally, con-

straint (4.1.3) is the nonnegative integer requirement on xi. The above formulation is nonlinear

due to max functions in constraint (4.1.2). The latter may be linearized by introducing auxiliary

variables (fit, yit) and replacing constraint (4.1.2) with the following set of constraints

1−

∑

i∈I

∑

t∈Θ

fit

D
≥ α, (4.1.4)

fit ≥ 0, ∀ i ∈ I, t ∈ Θ, (4.1.5)

fit ≥ dit − xi, ∀ i ∈ I, t ∈ Θ, (4.1.6)

fit ≤ (dit − xi) +M × yit, ∀ i ∈ I, t ∈ Θ, (4.1.7)

fit ≤ 0 +M × (1− yit) , ∀ i ∈ I, t ∈ Θ, (4.1.8)

fit ≥ 0, yit ∈ {0, 1}, ∀ i ∈ I, t ∈ Θ, (4.1.9)
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where M is a significantly large number. If dit > xi, yit must be equal to 0 for the problem to

be feasible. Constraint (4.1.6) is then fit ≤ dit − xi and constraint (4.1.7) is fit ≤ M . As such,

fit = dit−xi. On the other hand, if dit < xi, yit = 1 for the problem to be feasible and fit = 0. The

problem, however, becomes challenging to solve due to binary variables yit. We therefore present a

relaxed formulation [R1] where constraints (4.1.7) and (4.1.8) are dropped

[R1]: min
∑

i∈I
xi (4.1.10)

s.t. fit ≥ dit − xi ∀ i ∈ I, t ∈ Θ, (4.1.11)

1−

∑

i∈I

∑

t∈Θ

fit

D
≥ α, (4.1.12)

xi ∈ Z+, fit ≥ 0, ∀ i ∈ I, t ∈ Θ, (4.1.13)

and prove in Lemma 1 that its optimal solution x∗ = [x∗i ] is also optimal to the original model

[M1].

Lemma 1. An optimal solution x∗ for model [R1] is also optimal to the original model [M1].

Proof. Let (x∗ = [x∗ij ], f
∗ = [f∗it]) be an optimal solution to model [R1]. Rearranging constraint

(4.1.12),

∑

i∈I

∑

t∈Θ

f∗it ≤ (1− α)×D

In model [R1], f∗it may take a value greater than the max term max{0, dit−x∗i } in constraint (4.1.2).

As such,
∑

i∈I

∑

t∈Θ

f∗it ≥
∑

i∈I

∑

t∈Θ

max{0, dit − x∗i } and

(1− α)×D ≥
∑

i∈I

∑

t∈Θ

f∗it ≥
∑

i∈I

∑

t∈Θ

max{0, dit − xi}

This implies
∑

i∈I

∑

t∈Θ

max{0, dit − x∗i } ≤ (1− α)×D and constraint (4.1.2) holds for x∗. This proves

that solution x∗ is feasible to the original model [M1].

Let z∗M1 and z∗R1 be the optimal objective function values for models [M1] and [R1], respectively.

Since [R1] is a relaxed formulation of model [M1], z∗R1 ≤ z∗M1. Since the original model [M1] can

not have a solution superior than z∗R1, x∗ is also optimal for [M1].

Note that fit is simply an analysis variable used to linearize model [M1]. One could adjust its

value after solving the model [R1] by setting f∗it = max{0, dit − x∗i }.
Model [R1] is a new variant of the well known single period newsvendor problem under a service

level constraint and could be applied to any inventory problem where the service level needs to be
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considered while making stocking decisions. In addition to capacity minimization objective, the

model is easily extendable for profit maximization or cost minimization objectives.

4.2. Optimized substitution

We develop two additional models that extend [M1] to optimize both stocking and substitution

decisions. Model [M2] decides on substitution and stock levels to minimize storage capacity under

a service level constraint. The parameter dit in model [M1] is now a decision variable in [M2] as the

model makes substitution decision sij . As such, model [M2] has two additional decision variables :

dit and sij . The formulation is then as follows.

[M2]: min
∑

i∈I
xi (4.2.1)

s.t. dit =
∑

j∈I:
bij=1

mijAjtsij ∀i ∈ I, t ∈ Θ, (4.2.2)

∑

i∈I:
bij=1

sij = 1 ∀j ∈ I, (4.2.3)

1−

∑

i∈I

∑

t∈Θ

max{0, dit − xi}

D
≥ α, (4.2.4)

sij ∈ {0, 1} ∀i ∈ I, j ∈ I, (4.2.5)

xi ∈ Z+, dit ∈ Z+ ∀i ∈ I, t ∈ Θ, (4.2.6)

where the objective function (4.2.1) is the same as (4.1.1). Constraint (4.2.2) computes demand

dit of a product i ∈ I in period t ∈ Θ taking into account the demand of products it substitutes.

Constraint (4.2.3) ensures that each product j ∈ I is substituted by exactly one product. If sii = 1,

it implies that product i ∈ I is not substituted by any other product. Constraint (4.2.5) is the

binary requirement on variable sij and constraints (4.2.6) are nonnegative integer requirements on

variables xi and dit. Constraint (4.2.4) defines the service level and is the same as constraint (4.1.2)

in model [M1]. It may be linearized using the same approach discussed earlier for model [M1]. Note

that substitution variables sij only change dit to a decision variable and constraints (4.1.4) - (4.1.9)

are valid for model [M2]. As such, the relaxed formulation [R2] for model [M2] is

[R2]: min
∑

i∈I
xi (4.2.7)

s.t. (4.2.2), (4.2.3), (4.2.5), (4.2.6)

fit ≥ dit − xi, ∀i ∈ I, t ∈ Θ (4.2.8)

1−

∑

i∈I

∑

t∈Θ

fit

D
≥ α, (4.2.9)

fit ≥ 0, ∀i ∈ I, t ∈ Θ. (4.2.10)
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Lemma 1 holds trivally and an optimal solution (x∗, s∗) to model [R2] is also optimal for [M2].

Model [M3] is developed to maximize the expected service level of a kiosk under a capacity

constraint. The decision variables are the same as in [M2], and the mathematical formulation is as

follows:

[M3]: max α = 1−

∑

i∈I

∑

t∈Θ

max{0, dit − xi}

D
(4.2.11)

s.t. (4.2.2), (4.2.3), (4.2.5), (4.2.6),
∑

i∈I
xi ≤ C, (4.2.12)

where the objective function (4.2.11) maximizes the expected service level α and constraint (4.2.12)

ensures that the total number of packages stored is restricted to capacity, C. As in model [M2],

[M3] is also nonlinear due to the max terms in the objective function. However, to linearize it, we

only introduce analysis variable fit. The linear formulation is

[R3]: max α = 1−

∑

i∈I

∑

t∈Θ

fit

D
(4.2.13)

s.t. (4.2.2), (4.2.3), (4.2.5), (4.2.6), (4.2.12),

fit ≥ dit − xi, ∀i ∈ I, t ∈ Θ (4.2.14)

fit ≥ 0, ∀i ∈ I, t ∈ Θ (4.2.15)

where constraint (4.2.14) along with nonnegativity constraint (4.2.15) ensure that fit ≥ max{0, dit−
xi}. At optimality, f∗it = max{0, d∗it − x∗i } ∀i ∈ I, t ∈ Θ and is proven in Lemma 2.

Lemma 2. For model [R3], given an optimal solution (x∗, f∗, s∗,d∗), f∗it = max{0, d∗it − x∗i } ∀i ∈
I, t ∈ Θ.

Proof. Note that constraints (4.2.14) and (4.2.15) ensure that f∗it ≥ max{0, d∗it − x∗i } ∀i ∈ I, t ∈ Θ.

We now prove by contradiction that at optimality, f∗it can not take a value greater than the

max term. Assume that (x∗, f∗, s∗,d∗) is optimal with objective function value z∗ and f∗it >

max{0, d∗it − x∗i } ∃i ∈ I, t ∈ Θ. Let (x∗, fa, s∗,d∗) be the adjusted solution with objective function

value za where fait = max{0, d∗it − x∗i }. As such,

∑

i∈I

∑

t∈T
f∗it >

∑

i∈I

∑

t∈T
fait =⇒


1−

∑

i∈I

∑

t∈T
f∗it

D


 <


1−

∑

i∈I

∑

t∈T
fait

D


 =⇒ z∗ < za

which contradicts the assumption that z∗ is optimal. This proves that if f∗it > max{0, d∗it−x∗i } ∃i ∈
I, t ∈ Θ, there always exists a better solution fait = max{0, d∗it − x∗i } for which za > z∗.

Models [R2] and [R3] are extensions of the capacitated newsvendor problem under supplier-
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driven substitution. Since 97.5% of customer orders consist of prescribed drugs which cannot be

substituted by other drugs at the request of the customer, we only model one-way supplier-driven

substitution where a pharmacist may dispense multiple packages of one GPI-QTY to meet the

demand of another sharing the same GPI code. As such, the proposed models are specific to

supplier driven substitution and do not readily handle customer driven substitution.

Note that the proposed models are generic and apply for any demand values. However, when

demand is less sporadic, a single period model that uses moments of the demand distribution may

become useful. Under dynamic customer arrivals, our models make robust substitution decisions

which guarantee that the desired service level is always achieved irrespective of the sequence of

demand realization for substitutable products. This is detailed next.

4.3. Substitution under dynamic customer arrivals

Models [R2] and [R3] make substitution decisions that are robust against the sequence of demand

realization for substitutable products. We first explain this using an illustrative example and

present a formal proof in Lemma 3. Consider two products i and j, in the same product class

and let qi = 20 and qj = 60. Since qj is a multiple of qi, assume that product i substitutes j,

and mij = 60
20 = 3. In a given period t, let Ait = 10, Ajt = 1, D = 10 + 1 = 11, and stock level

xi = 10. If product j is requested when less than three packages of product i are available, then

the number of failed transactions equals 1 and demand for product i is fully met. As such, service

level α = 1− 1
11 = 91%. However, if product j is requested when at least three packages of product,

i are available, the demand for product j is fulfilled and there is a shortage of three packages to

meet the demand for product i. In this case, α = 1 − 3
11 = 73%. Depending on the sequence of

demand realization, the service level either equals 91% or 73%. Proposed mathematical models

calculate service level as α = 1− fit
D = 1− 3

11 = 73% if product i substitutes j. We now show that

substitution decisions are robust against the sequence of demand realization.

Lemma 3. Substitution decisions are robust against the sequence of demand realization for sub-

stiutable products and guarantee that desired service level is achieved.

Proof. We first present the exact formula to compute the number of failures fEit . Then, we show

that fit ≥ fEit for any sequence of demand realization.

Given a solution s, let Ki = {1, 2, ..., n − 1, n} be the set of products substituted by product

i ∈ I i.e., sij = 1∀j ∈ Ki. Without loss of generality, assume that the set Ki is ordered such that

the sequence of demand realization is

Ant → An−1,t → · · · → A2t → A1t (4.3.1)

Let f jit be the number of failures and xji be the number of packages available for product j ∈ Ki.

The exact formula for the number of failures is

f jit = dmax{0, Ajt −
xji
mij
}e (4.3.2)
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where
xji
mij

computes the demand that could be met for product j using product i. Note that since

xji
mij

can take fractional values, the value max{0, Ajt − xji
mij
} needs to be rounded up to the nearest

integer value. Within an optimization model, one may linearize constraint (4.3.2) as

f jit ≥ 0 (4.3.3)

f jit ≥ Ajt −
xji
mij

(4.3.4)

f jit ∈ Z (4.3.5)

Constraints (4.3.3) and (4.3.4) ensure that f jit ≥ max{0, Ajt− xji
mij
} while integer requirement (4.3.5)

rounds up f jit to the nearest integer value.

Given the demand sequence (4.3.1), xni = xi and xji = xi −
k=n∑

k=j+1

(
Akt − fkit

)
×mik where

(
Akt − fkit

)
×mik is the number of packages of product i already used for product k. As such,

fnit ≥ Ant −
xi
min

f jit ≥ Aj,t −
xi −

k=n∑

k=j+1

(
Akt − fkit

)
×mik

mij
∀ j ∈ Ki \ {n} (4.3.6)

f jit ∈ Z+ ∀ j ∈ Ki

The exact total number of failures is then

fEit =
∑

j∈Ki
f jit (4.3.7)

Given solution sij = 1 ∀j ∈ Ki, we rewrite constraint (4.2.2) as dit =
∑

j∈Ki
mijAjt. Constraints

(4.2.8) and (4.2.14) in models [R2] and [R3] are then

fit ≥
∑

j∈Ki
mijAjt − xi (4.3.8)

We now show that fit ≥ fEit for any sequence of demand realization. Let f̃ jit = mijf
j
it and
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rearranging constraints (4.3.6),

minf
n
it = f̃nit ≥ minAnt − xi

mijf
j
it = f̃ jit ≥ mijAj,t −


xi −

k=n∑

k=j+1

(
Akt − fkit

)
×mik


 ∀ j ∈ Ki \ {n} (4.3.9)

f̃ jit ≥ 0 ∀ j ∈ Ki

Note that since A,m,x are integers, f̃ jit always takes an integer value. The integrality requirement

on f̃ jit is therefore dropped. Since mij ≥ 1,

∑

j∈Ki
f̃ jit ≥

∑

j∈Ki
f jit. (4.3.10)

Setting xji = xi −
k=n∑

k=j+1

(
Akt − fkit

)
×mik = 0 ∀j ∈ Ki \ {n}, we have

f
n
it ≥ minAnt − xi,
f
j
it ≥ mijAj,t ∀j ∈ Ki \ {n}, (4.3.11)

f
j
it ≥ 0 ∀j ∈ Ki,

and

∑

j∈Ki
f
j
it ≥

∑

j∈Ki
f̃ jit (4.3.12)

∑

j∈Ki
f
j
it ≥

∑

j∈Ki
mijAjt − xi (4.3.13)

Since fit ≥
∑

j∈Ki
mijAjt − xi, then by inequalities (4.3.7), (4.3.10), (4.3.12), and (4.3.13)

fit =
∑

j∈Ki
f
j
it ≥

∑

j∈Ki

f̃ jit ≥
∑

j∈Ki

f jit = FEit =⇒ fit ≥ fEit

This shows that for any given sequence of demand realization, fit ≥ fEit . Let zE be the service level

achieved when the exact number of failures are computed while z∗ be the service level using fit.

Then,

∑

i∈I

∑

t∈T
fit ≥

∑

i∈I

∑

t∈T
fEit ⇐⇒


1−

∑

i∈I

∑

t∈T
fit

D


 ≤


1−

∑

i∈I

∑

t∈T
fEit

D


⇐⇒ z∗ ≤ zE (4.3.14)
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which proves that desired service level z∗ is always achieved irrespective of the sequence of demand

realization.

5. A Column-Generation Based Heuristic Approach

In many practical problems, the optimization models are of large-scale and it may be impossible

to explicitly include all variables in the initial formulation or it may consume too much memory.

Column generation is a well-known procedure to solve such large-scale problems where columns are

added at each iteration of the simplex method. The idea of column generation was first suggested by

Ford Jr and Fulkerson (1958) for multicommodity network flow problem and have been successfully

applied to many real-life problems including cutting stock problems (Gilmore and Gomory, 1961,

1963), crew scheduling (Desaulniers et al., 1997), and vehicle routing (Agarwal et al., 1989). Oğuz

(2002) show that column generation may even be efficient for some problems where the number of

variables are low enough to be explicitly included in the model. In our problem, all variables can

be explicitly included in the formulation but it consumes too much memory and thus slowing down

CPLEX. In particular, the pharmacy kiosk problem consists of too many GPI-QTYs and only a

few could be stocked due to limited capacity. As such, one may include variables xi and sij only

for products that are most likely to be stocked.

We present a column-generation based heuristic approach (CGA) to solve model [R3] to near

optimality by selecting only a subset of products in the initial formulation. Other products are

then added iteratively. The approach is also applicable for the other two models, [R1] and [R2].

Let Ĩ ⊆ I be the set of products selected for the initial formulation. We rewrite model [R3] and

drop integer requirements to formulate the restricted master problem [RMP] as

[RMP]: max 1− 1

D
×
∑

i∈I

∑

t∈Θ

fit (5.1)

s.t.
∑

i∈I
xi ≤ C, [λ] (5.2)

∑

j∈I:
bij=1

mijAjtsij − xi − fit ≤ 0 ∀i ∈ I, t ∈ Θ, [uit] (5.3)

∑

i∈I:
bij=1

sij = 1 ∀j ∈ I, [ωj ] (5.4)

xi, sij ≥ 0 ∀i ∈ Ĩ , j ∈ I : bij = 1, (5.5)

fit ≥ 0, ∀i ∈ I, j ∈ I, t ∈ Θ, (5.6)

where [.] are dual variables for each constraint. Constraint (5.4) along with nonnegativity constraint

(5.6) ensures sij ≤ 1, and we therefore do not include this constraint to the model. We select a

subset of products to initialize the algorithm. A subset should be selected such that it minimizes

the number of iterations required to add the columns. To do so, we sort products in decreasing
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order of the number of substitution a product can make, and the yearly demand. We then select top
C
2 products with highest yearly demand and the number of substitutions. This allows us to start off

with products that are likely to be stocked due to higher demand and their ability to substitute the

demand for other products. Variables xi and sij ∀j ∈ I are introduced for the selected products.

Products that are not selected, we only include variable sii i.e., either its demand is met using one

of the selected products or sii = 1, and the demand for such product is never met. Once model

[RMP] is solved, its dual information is used to determine potential products to be added to the

model. Taking the dual,

[RMP-D]: min 1 + Cλ+
∑

j∈I
ωj (5.7)

s.t. − uit ≥ −
1

D
i ∈ I, t ∈ Θ, [fit] (5.8)

λ−
∑

t∈Θ

uit ≥ 0 ∀i ∈ I, [xi] (5.9)

∑

t∈Θ

mijAjtuit + ωj ≥ 0 ∀i ∈ I, j ∈ I : bij = 1 [sij ] (5.10)

λ ≥ 0, uit ≥ 0, ωj → urs ∀i ∈ I, j ∈ I, t ∈ Θ (5.11)

Given λ and uit, the reduced cost is RCi = λ−
∑

t∈Θ

uit for product i. Let I be the set of products not

included in the initial formulation. The pricing problem min
i∈I
{λ−

∑

t∈Θ

uit} determines the product

with most negative reduced costs which is then added to [RMP]. For most of the problems in

the literature, enumerating over all possible columns is computational impractical and therefore a

pricing subproblem is solved to determine the column to be added. In our case, however, one could

easily calculate reduced costs for all products. Instead of selecting the product with most negative

reduced cost, we select all products with reduced cost RCi < 0 and columns xi and sij ∀j ∈ I are

added to [RMP] which is solved again. This procedure terminates when RCi ≥ 0∀i ∈ I, and the

latest [RMP] solution provides a lower bound to the original model [R3]. The other approach could

be to first solve model [RMP] with all variables. Then, for products with positive RCi, variables

xi and sij ∀j ∈ I are removed. However, it turns out that such an approach is computationally

inefficient compared to the proposed column generation approach.

To obtain a feasible solution, [RMP] is solved with integrality constraints on xi and sij and

its objective function value is an upper bound to model [R3]. Note that this approach does not

guarantee optimality. To solve to optimality, one needs to apply the CGA at each node of the

branch-and-bound tree. However, we implement CGA only at the root node and computational

results in Section 6.3 show that optimality gap is 1.1%, on average.
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6. Results

We perform numerical testing over several datasets including seven pharmacy store sales data

and randomly generated instances. In Section 6.1, we use the proposed optimization models to de-

termine the optimized storage capacity for MedAvail’s pharmacy kiosk and recommend assortment

and stocking guidelines using pharmacy sales data. To further generalize model results, we solve

model [R2] using randomly generated instances in Section 6.2 and derive managerial insights. Fi-

nally, the proposed column generation solution approach is compared against CPLEX and Benders

decomposition in Section 6.3.

6.1. The case of MedAvail

In this section, we first use models [R1] and [R2] to analyze the effects of substitution and

replenishment lead time on the capacity of a kiosk using single pharmacy store data for the year

2015. The data records 2,355 GPIs (or product classes) and 10,145 GPI-QTYs (or products). The

goal is to assess the savings in kiosk capacity through drug substitution and through reducing

replenishment lead time from two days to one day. The management suggested that it is useful to

explore the effect of capacity on service level, as it may not be possible to build a machine of an

optimized capacity. Therefore, we use model [R3] to determine maximum service level achieved at

different capacity levels as suggested by the management. We then perform several experiments

using multiple datasets generated from seven 24/7 pharmacy store sales data to provide bounds on

the service level that management should expect to achieve at a given capacity. All optimization

models are coded in C++ and solved using CPLEX version 12.6.3 on a 64-bit Windows 10 with In-

tel(R) Core i5-5300U 2.30GHz processors and 4.00GB RAM. We solve all instances to an optimality

gap of 0.5% since solving the problem to optimality may only reduce the required capacity by at

most 57 which is not significant from the management perspective. They were of the view that

such an exact machine could not be built and the optimized capacity values be rounded off to the

nearest 100. Finally, we evaluate the computational efficiency of the proposed column generation

approach against solving model [R3] directly using CPLEX.

6.1.1. Effects of substitution

Service level, α
[R2] [R1]-MedAvail’s substitution [R1]-no substitution

Capacity, C Capacity, C 4% to [M2] Capacity, C 4% to [M2]

80% 2,542 2,710 6.6% 2,618 3.0%
85% 3,261 3,449 5.8% 3,385 3.8%
90% 4,375 4,606 5.3% 4,583 4.8%
95% 6,485 6,856 5.7% 6,938 7.0%
96% 7,233 7,604 5.1% 7,686 6.3%
97% 7,980 8,506 6.6% 8,690 8.9%
98% 9,460 10,002 5.7% 10,186 7.7%
99% 10,956 11,497 4.9% 11,681 6.6%

Table 3: Kiosk storage capacity to achieve desired service level α under different substitution rules.
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The management was inclined towards a predefined substitution criterion rather than a complex

mathematical model. So we optimized capacity under various substitution strategies to see whether

substitution plays a role in deciding on the capacity of the kiosk. We generate a dataset using

one pharmacy store sales data for the year 2015 with replenishment lead time, h = 2. Model

[R1] is solved under two distinct substitution rules: (1) MedAvail’s substitution rule, and (2) no

substitution. MedAvail’s substitution rule was suggested by the management where a GPI-QTY

i substitutes GPI-QTY j with the same GPI code, if the quantity of j is twice that of i and its

average lead time demand is less than 25% of that of i, or if the quantity of j is three times that of

i and its average lead time demand is less than 15% of that of i. An iterative procedure is used to

assign values to the substitution variables sij based on this rule, and dit is calculated apriori. Model

[R2] is solved to determine optimized substitution. Each model is solved repeatedly by varying the

desired service level α between 80% and 99%. Table 3 summarizes the results.

At 95% service level, the capacity under optimized substitution is 6,485. It increases by 5.7%

when MedAvail’s rule is used and by 7.0% when substitution is not allowed. As the service level

decreases, the effect of MedAvail’s substitution rule decreases. In fact, the effect becomes negative

relative to no substitution when the service level is 90% or lower. This is due to over substitution

by MedAvail’s substitution rule at lower service levels. At lower service levels, fewer GPI-QTYs

should be substituted to optimize the capacity. Optimized substitution, as expected, is always

better than both no substitution and apriori rules. This comes at the expense of larger solution

times. Given the potential improvements in capacity under optimized substitution, model [R2] is

used in subsequent analysis.

6.1.2. Effect of replenishment lead time

Before the start of the project, kiosks were being replenished every other day. MedAvail man-

agement wanted to investigate the effect of replenishment lead time on capacity and assortment

decisions. A larger lead time is expected to increase capacity since lead time demand would be

higher, so we experimented with 1 and 2 day lead times. Table 4 summarizes the results where

[R2] is solved at eight different service levels. At 90% service level, the capacity is reduced by 14%

when the replenishment lead time is reduced from two days to one day. Although a one day lead

time may increase operating costs of the kiosk due to frequent replenishment, management believes

that the significant reduction in capacity is much more important when taking into account the

technical challenges in designing a kiosk with higher capacity. Testing in subsequent sections is

Service level, α
Capacity Threshold demand

C1 C2 4% h = 1 h = 2

80% 2,093 2,542 18% 14 15
85% 2,743 3,261 16% 11 11
90% 3,769 4,375 14% 6 7
95% 5,745 6,485 11% 3 4
99% 10,161 10,956 7% 2 2

Table 4: We compare storage capacity Ch at one day (h = 1) and two day (h = 2) lead time. Threshold demand is
the highest yearly demand among all GPI-QTYs that are not stocked.
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Figure 7: The graph plots threshold demand against storage capacity under different lead times.

based on daily replenishment.

To study the significance of co-ordering, we report the highest yearly demand among all GPI-

QTYs that are not stocked in Table 4. For a one day lead time (h = 1) and service level α = 80%,

every GPI-QTY with a yearly demand greater than 15 are stocked. Recall that in the Section

Co-ordering of drugs, we set threshold support to 15
D . The results in Table 4 show that demand

threshold is always less than or equal to the threshold support used in the Apriori association

rule algorithm. As such, GPI-QTYs that frequently appear together are already stocked when the

service level is α ≥ 80%. As expected, threshold demand decreases as α increases. Therefore,

we do not need to incorporate association rules explicitly in our modelling framework. Given the

lead time and kiosk capacity, Figure 7 may be used as easy to use guidelines to decide on which

medications to store without solving the assortment problem. For instance, if MedAvail decides

on one day replenishment lead time for a kiosk with capacity C = 4, 000, threshold demand is 5.6

based on Figure 7. As such, MedAvail should stock all GPI-QTYs with yearly demand greater or

equal to 6.

6.1.3. Capacity planning over multiple pharmacies

A crucial question we faced in deriving demand distributions from the data is whether to use

individual store data or multiple stores data and whether to use average or maximum observed

demands in the latter case. Each of these approaches may have merits and drawbacks. We carried

several tests to answer this question. At this point, management suggested that it is useful to

explore the effect of limited capacity on service level, as it may not be possible to build a machine

of an optimized capacity. Hence, we modified the objective to service level maximization and added

a constraint that limits capacity to obtain model [R3]. The results presented next are based on

service level maximization where capacity is varied between 2,000 and 7,000 with an increment of
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1,000.

Individual store data (IAS). The IAS approach makes stocking and substitution decisions for

each store individually using its yearly demand data. The expected service levels achieved at seven

pharmacy stores are shown in Table 5a. On average, setting the capacity to 5,000 achieves a service

level of 92.5%. The drawback of IAS approach is that it may lead to overestimation of the service

level due to over-fitting, also referred to as optimizers curse in the Operations Research literature.

Overfitting leads to stocking decisions that are susceptible to small changes in demand which could

lead to much worse service levels. IAS approach therefore provides an upper bound on the service

level achieved.

Capacity C
Store ID

Average
S1 S2 S3 S4 S5 S6 S7

2,000 78.9% 78.3% 77.4% 77.1% 75.9% 75.9% 74.5% 76.9%
3,000 86.3% 86.0% 85.2% 85.1% 84.1% 84.0% 83.0% 84.8%
4,000 90.6% 90.4% 89.8% 89.7% 89.0% 88.9% 88.0% 89.5%
5,000 93.4% 93.4% 92.8% 92.7% 92.1% 92.0% 91.3% 92.5%
6,000 95.3% 95.4% 94.7% 94.1% 94.4% 94.2% 93.6% 94.5%
7,000 96.5% 96.5% 96.2% 96.1% 95.8% 95.7% 95.1% 96.0%

(a) Service level achieved at different stores at different capacities (IAS)

Capacity C
Store ID

S1 S2 S3 S4 S5 S6 S7

2,000 69.4% 69.6% 71.3% 70.1% 70.3% 71.1% 74.5%
3,000 76.5% 76.6% 78.1% 77.3% 77.8% 78.3% 83.0%
4,000 80.5% 80.7% 82.0% 81.4% 82.1% 82.3% 88.0%
5,000 83.8% 83.4% 84.6% 84.2% 85.0% 85.0% 91.3%
6,000 85.6% 85.1% 86.5% 86.0% 86.9% 86.9% 93.6%
7,000 87.1% 86.6% 88.1% 87.4% 88.6% 88.4% 95.1%

(b) Service level achieved using most-active store data to make stocking decisions (MSD)

Capacity C
Store ID

Average
S1 S2 S3 S4 S5 S6 S7

2,000 69.5% 69.9% 69.7% 68.7% 67.3% 67.3% 66.0% 68.3%
3,000 75.6% 76.4% 75.9% 75.2% 73.8% 73.7% 72.9% 74.8%
4,000 78.9% 79.7% 79.1% 78.7% 77.3% 77.3% 76.6% 78.2%
5,000 80.6% 81.5% 80.7% 80.8% 79.2% 79.4% 78.7% 80.1%
6,000 82.0% 82.5% 82.0% 82.1% 80.6% 81.2% 80.0% 81.5%
7,000 83.4% 84.1% 83.3% 83.7% 82.1% 82.6% 81.5% 83.0%

(c) Service level achieved using average demand over all stores to make stocking decisions (ADS)

Capacity C
Store ID

Average
S1 S2 S3 S4 S5 S6 S7

2,000 73.7% 74.6% 74.4% 73.8% 73.1% 71.9% 71.7% 73.3%
3,000 81.6% 82.2% 81.6% 81.5% 81.1% 79.6% 79.9% 81.1%
4,000 85.8% 86.6% 86.1% 85.9% 85.7% 84.4% 84.9% 85.6%
5,000 88.6% 89.1% 88.8% 88.6% 88.6% 87.2% 87.8% 88.4%
6,000 90.5% 91.0% 90.7% 90.6% 90.8% 89.7% 90.1% 90.5%
7,000 92.2% 92.6% 92.3% 92.4% 92.5% 91.6% 91.9% 92.2%

(d) Service level achieved using the highest demand across all stores in a given period t ∈ Θ to make stocking
decisions (HDS)

Table 5: Capacity Planning using different demand prediction strategies
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Most-active store data (MSD). To avoid overfitting, we make stocking and substitution de-

cisions using the most active store data, i.e., the one with highest yearly sales. The optimized

decisions are then applied to all other stores data to calculate their achieved service levels. The

results in Table 5b highlight the problem of overfitting with IAS approach. The expected service

levels are substantially reduced when the optimal solution from the most active store is applied to

other stores. On average, service level achieved at capacity C = 5, 000 is 84.3%.

Although MSD approach addresses the problem of overfitting, it ignores GPI-QTYs ordered at

other stores. The number of distinct GPIs recorded in the year 2015 at a store varies between 2,316

and 2,509. However, when the data is aggregated for all stores, the total number of distinct GPIs

equals 3,579. Similarly, the number of distinct GPI-QTYs recorded at the most active store equals

12,014. This number increases to 29,626 when all store data is analyzed. As such, an optimal

solution derived based on one store may be suboptimal for other stores and only provides a lower

bound on the service level.

Average demand over all stores (ADS). Both IAS and MSD approaches use a single store

data and ignore GPI-QTYs ordered at the other stores. To overcome this, we generate a new

dataset by calculating the average demand of a GPI-QTY in time period t ∈ Θ, over all stores. We

use this new dataset containing all GPI-QTYs to make stocking and substitution decisions, which

are then applied to stores data to calculate their achieved service levels. ADS approach results

in poor stocking and substitution decisions as shown in Table 5c. When capacity C = 5, 000, the

average service level over all stores is 80.1%. This is due to the aggregation of demand which leads

to reduced uncertainty. Consider a GPI-QTY i, with demand on a specific day at four stores as

{0, 1, 0, 3}. If the stock level xi = 1, then the number of failures at store 4 equals 3 − 1 = 2.

However, the average demand equals 0+1+0+3
4 = 1, and the calculated number of failures equals

1− 1 = 0. This example shows that averaging demand over all stores does not capture variability

among stores, leading to suboptimal solutions and lower service levels.

Highest demand over all stores (HDS). Another approach is to use the maximum demand of

each GPI-QTY in a given time period t ∈ Θ across all stores. The HDS approach provides better

stock levels that are robust for all stores by making stocking and substitution decisions under the

worst-case scenario. The results are summarized in Table 5d. At capacity C = 5, 000, the service

level achieved is 88.4% on average. The drawback of HDS is that it may overestimate stock levels

for some SKUs as the decisions are made under worst-case scenario. It is also possible that demand

characteristics may vary from store to store and some GPI-QTYs ordered at one store may never

be ordered at other stores.

6.1.4. Recommendations

Computational results show that substitution and daily replenishment guidelines significantly

reduce the capacity required to achieve a desired service level. We observe that MedAvail’s substi-

tution rule is not as effective as optimized substitution which may save up to 9% of capacity. On
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(a) Comparative analysis of the stocking decision approaches
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(b) Capacity planning using top 3 approaches (IAS,MSD,HDS)

Figure 8: Capacity Planning using different approaches

the other hand, daily replenishment saves up to 18% of capacity compared to two day replenish-

ment. The results also show that the marginal benefit of additional capacity decreases at higher

capacities as illustrated in Figure 8a where the service level increases at a decreasing rate as the

capacity increases. We also observe that the service level achieved at a fixed capacity is roughly

the same across all stores as shown by the boxplots in Figure 8a.

To present robust results, we perform several experiments at different service levels using four

different demand prediction strategies. Other than ADS which results in suboptimal solutions,

management may use any of the other three approaches discussed earlier. The approaches IAS

and MSD provide upper and lower bounds on the service level, respectively. On the other hand,

the HDS approach offers a more realistic expectation of the service level and gives stock levels

that are robust against small changes in demand. Management may also make capacity decisions

using a combination of the three approaches as illustrated in Figure 8b. The boxplot represents

the uncertainty in the service level achieved at a fixed capacity. For instance, when the capacity is

set to 5,000, MedAvail should expect a service level between 84% and 93% depending on the store
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under consideration and the level of conservatism when making stocking decisions.

6.2. Numerical Analysis over Randomly Generated Instances

In this section, we solve model [R2] using randomly generated data instances to generalize the

findings of the case study. Section 6.2.1 details the procedure employed to generate random data

and in Section 6.2.2, we discuss model results and derive managerial insights.

6.2.1. Data Generation

To generate data instances, we consider 200 distinct product classes and randomly generate

products for each class from a uniform distribution, Unif [1, 10]. To study the effect of substitution,

three distinct substitution patterns are defined: (1) “None”, QTYs = {2, 3, 5, 7, ...}, where product

substitution is not possible as no product quantity is a multiple of another, (2) “Single”, QTYs =

{1, 2, 3, 5, ...} , where only the smallest quantity product is able to substitute all other quantities, and

(3) “All”, QTYs = {1, 2, 4, 8, ...} , where all smaller quantity products can substitute larger quantity

product. To generate demand values, we randomly generate yearly demand for each product from

an exponential distribution Exp( 1
µ) where µ is varied between 10 and 50 with increments of 10.

Mean daily demand µi for product i is calculated as µi =
Exp( 1

µ
)

365 which is used to generate 200

demand scenarios from Poisson distribution, Poi(µi). Figure 9 plots the cumulative distribution of

yearly demand for different values of µ. As µ increases, the product’s probability of having high

yearly demand increases. As such, increasing µ reduces the number of products with low yearly

demand. Sensitivity analysis over µ allows us to study the effect of substitution under different

demand settings where low values of µ implies low and erratic demand while setting higher values

for µ implies less sporadic demand. Service level α is also set at eight different levels between 80%

to 99%. For a given µ, substitution pattern, and service level, 5 random instances are generated,

resulting in a total of 600 instances.

6.2.2. Results on Random Instances

Tables 6 and 7 summarize computational results for substitution patterns “Single” and “All”, re-

spectively. Average values over 5 randomly generated instances are reported in the tables. Column

“value” under “Capacity” records the minimum capacity required to achieve desired service level

α and column “∆% imp” denotes percentage reduction in required capacity due to substitution.

The latter is calculated as the percentage difference in optimal capacity under a given substitution

pattern (“Single” or “All”) and substitution pattern “None”. Column “Possible” counts the total

number of products that can be substituted by other products, while Column “Optimized” counts

the number of products substituted by other products in the optimal solution, i.e.,
∑

i∈I:
bij=1

∑

j∈I:
i 6=j

sij .

Column “% Substituted” is the ratio of “Optimized” to “Possible”. Total number of products

considered is given in column “Nb. Products” out of which, “Nb. Covered” number of products

are stocked or substituted by stocked products in the optimal solution. Column “%. Covered” is

the percentage of products covered in each instance.
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Mean Service Capacity Product Substitution Product Coverage

Demand level Value ∆% imp Possible Optimized % Substituted NbProducts Covered % Covered

10

80% 461 0.3% 872 21 2.4% 1072 460 42.9%
85% 532 0.4% 872 30 3.4% 1072 529 49.4%
90% 623 0.5% 872 42 4.9% 1072 616 57.4%
95% 751 0.7% 872 71 8.2% 1072 730 68.1%
96% 781 1.1% 872 73 8.3% 1072 760 70.8%
97% 833 1.6% 872 113 13.0% 1072 796 74.2%
98% 891 1.5% 872 121 13.9% 1072 819 76.4%
99% 949 1.4% 872 115 13.2% 1072 849 79.1%

Average 728 0.9% 872 73 8.4% 1072 695 64.8%

20

80% 508 0.3% 872 15 1.7% 1072 502 46.8%
85% 590 0.5% 872 25 2.9% 1072 580 54.1%
90% 696 0.7% 872 36 4.1% 1072 676 63.0%
95% 856 1.3% 872 69 7.9% 1072 796 74.2%
96% 902 1.8% 872 80 9.2% 1072 834 77.8%
97% 960 1.7% 872 93 10.6% 1072 860 80.2%
98% 1022 2.4% 872 99 11.3% 1072 904 84.3%
99% 1136 2.4% 872 128 14.7% 1072 942 87.8%

Average 834 1.4% 872 68 7.8% 1072 762 71.0%

30

80% 559 0.5% 872 18 2.0% 1072 546 50.9%
85% 648 0.7% 872 25 2.9% 1072 626 58.3%
90% 766 1.1% 872 37 4.2% 1072 725 67.6%
95% 944 1.5% 872 58 6.6% 1072 846 78.9%
96% 999 1.7% 872 74 8.5% 1072 869 81.1%
97% 1063 2.1% 872 79 9.0% 1072 907 84.6%
98% 1151 2.0% 872 91 10.5% 1072 948 88.5%
99% 1283 2.6% 872 119 13.7% 1072 977 91.1%

Average 927 1.5% 872 63 7.2% 1072 806 75.1%

40

80% 587 0.5% 872 16 1.9% 1072 565 52.7%
85% 685 0.7% 872 24 2.7% 1072 647 60.3%
90% 815 1.0% 872 39 4.5% 1072 746 69.5%
95% 1013 1.6% 872 60 6.9% 1072 871 81.2%
96% 1073 1.7% 872 68 7.8% 1072 897 83.6%
97% 1146 1.9% 872 74 8.5% 1072 924 86.1%
98% 1241 2.2% 872 90 10.3% 1072 955 89.1%
99% 1381 3.0% 872 118 13.5% 1072 989 92.2%

Average 993 1.6% 872 61 7.0% 1072 824 76.9%

50

80% 619 0.3% 872 14 1.7% 1072 583 54.4%
85% 723 0.5% 872 19 2.2% 1072 666 62.1%
90% 860 0.7% 872 32 3.7% 1072 762 71.0%
95% 1075 1.1% 872 51 5.9% 1072 877 81.8%
96% 1139 1.3% 872 58 6.7% 1072 909 84.8%
97% 1221 1.6% 872 69 7.9% 1072 939 87.6%
98% 1327 1.9% 872 80 9.2% 1072 970 90.4%
99% 1481 2.6% 872 94 10.8% 1072 999 93.2%

Average 1056 1.3% 872 52 6.0% 1072 838 78.2%

Table 6: Numerical results for Random Instances under Substitution Pattern “Single”
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Mean Service Capacity Product Substitution Product Coverage

Demand level Value ∆% imp Possible Optimized % Substituted NbProducts Covered % Covered

10

80% 457 1.4% 872 59 6.8% 1072 456 42.5%
85% 525 1.6% 872 87 10.0% 1072 524 48.9%
90% 612 2.3% 872 110 12.6% 1072 610 56.9%
95% 732 3.3% 872 154 17.6% 1072 725 67.6%
96% 761 3.7% 872 159 18.3% 1072 752 70.1%
97% 796 6.3% 872 159 18.3% 1072 781 72.9%
98% 853 6.0% 872 153 17.6% 1072 822 76.7%
99% 911 5.6% 872 154 17.6% 1072 866 80.8%

Average 706 3.8% 872 129 14.8% 1072 692 64.5%

20

80% 501 1.7% 872 55 6.3% 1072 499 46.5%
85% 579 2.4% 872 79 9.0% 1072 576 53.7%
90% 678 3.3% 872 106 12.2% 1072 672 62.6%
95% 826 5.0% 872 158 18.1% 1072 802 74.8%
96% 865 6.1% 872 160 18.4% 1072 828 77.2%
97% 920 6.1% 872 185 21.2% 1072 865 80.7%
98% 979 6.9% 872 202 23.2% 1072 902 84.1%
99% 1075 8.3% 872 186 21.3% 1072 939 87.6%

Average 803 5.0% 872 141 16.2% 1072 760 70.9%

30

80% 552 1.8% 872 59 6.7% 1072 546 50.9%
85% 637 2.5% 872 79 9.0% 1072 625 58.3%
90% 747 3.6% 872 109 12.5% 1072 724 67.5%
95% 910 5.4% 872 147 16.8% 1072 849 79.1%
96% 955 6.4% 872 160 18.4% 1072 878 81.9%
97% 1014 7.1% 872 179 20.5% 1072 914 85.3%
98% 1095 7.2% 872 177 20.3% 1072 946 88.3%
99% 1207 9.1% 872 182 20.9% 1072 974 90.8%

Average 889 5.4% 872 136 15.6% 1072 807 75.3%

40

80% 580 1.7% 872 58 6.6% 1072 566 52.8%
85% 672 2.6% 872 78 8.9% 1072 649 60.5%
90% 794 3.6% 872 112 12.9% 1072 750 69.9%
95% 978 5.3% 872 162 18.5% 1072 876 81.7%
96% 1033 5.6% 872 163 18.7% 1072 905 84.4%
97% 1098 6.3% 872 183 21.0% 1072 932 86.9%
98% 1180 7.5% 872 180 20.6% 1072 961 89.6%
99% 1301 9.3% 872 190 21.8% 1072 988 92.2%

Average 955 5.2% 872 141 16.1% 1072 828 77.3%

50

80% 610 1.8% 872 58 6.6% 1072 589 55.0%
85% 707 2.7% 872 82 9.4% 1072 674 62.8%
90% 836 3.6% 872 117 13.4% 1072 777 72.4%
95% 1035 5.0% 872 156 17.8% 1072 894 83.4%
96% 1094 5.5% 872 162 18.6% 1072 920 85.8%
97% 1167 6.2% 872 176 20.2% 1072 951 88.7%
98% 1262 7.2% 872 185 21.2% 1072 978 91.2%
99% 1403 8.3% 872 202 23.2% 1072 1005 93.7%

Average 1014 5.1% 872 142 16.3% 1072 848 79.1%

Table 7: Numerical results for Random Instances under Subsitution Pattern: “ALL”
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Figure 9: The graph plots exponential distribution under different mean values.

Results in Tables 6 and 7 show that substitution plays an important role in reducing the storage

capacity at higher service levels. For instance, under substitution pattern “All” and µ = 40,

substitution is able to reduce the storage capacity by 9.3% when desired service level α = 99%. On

the other hand, when α = 80%, the capacity is reduced by only 1.7%. This is further illustrated in

Figure 10a(i) that plots a boxplot for the percentage reduction in capacity (PRC) at given a service

level under each substitution pattern. At higher service levels, more products are substituted as

shown in Figure 10a(ii). We observe that the effect of substitution is significant when more products

are able to substitute. As shown in Figure 10a(ii), percentage of products substituted is higher

under substitution pattern “All” compared to “Single”, and as such, PRC is significantly higher

for “All”. For instance, when µ = 30, the average PRCs under patterns “Single and “All” are 1.5%

and 5.4%, respectively. However, when product demand is generated from exponential distribution

with µ = 10, PRC starts decreasing at higher service levels. Under substitution pattern “All”

and α = 97%, PRC is 6.3% which decreases to 5.6% for α = 99%. This is because substitution

negatively impacts the service level of the products substituting other products and at higher service

levels, negative affect outweighs the positive affect of substitution in improving service level of the

unstocked products. As such, product substitution is less preferred as shown in Table 7 where

number of products substituted decreases from 159 to 154 when desired service level is increased

from 97% to 99%.

Sensitivity analysis over mean demand µ shows that when the number of products with low

demand is high, the effect of substitution on PRC is low. The effect of product demand is illustrated

in Figure 10b(i) where PRC increases at a decreasing rate as the product demand increases. Under

pattern “All” and µ = 10, the average PRC is 3.8% which increases to 5.0% when µ = 20. When

all or most of the products have low demand, products’ stock levels are low and cannot substitute

higher quantity products that require multiple packages to be dispensed. In contrast, when µ
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Figure 10: Figures (a) and (b) illustrate the effect of service level and product demand on percentage reduction in
capacity (PRC), products substituted, and product coverage, respectively.

changes from 30 to 40, PRC decreases from 5.4% to 5.2%. This is due to the fact at higher values

of µ, product demand is high and it is preferred to stock a product rather than substituting it

which would result in multiple packages to be dispensed, whenever it is ordered. This is illustrated

in Figure 10b(ii) where product substitution does not increase with increasing µ. Figures 10a(iii)

and 10b(iii) illustrate how product coverage is effected by service level and mean demand µ under

each substitution pattern, respectively. The plots show that the effect of substitution in improving

product coverage is not significant. For µ = 30, the percentage of products covered is 75.1%, on

average, under pattern “Single” which increases slightly to 75.3% under pattern “All”. Analysis

over demand shows that product substitution is preferred when there is a right balance between

the number of products with low demand and the ones with high demand. Product substitution

does not have a significant effect when most of the products have either high or low demand.

We also study the effect of multiplies on product substitution as shown in Figures 11a and 11b.

Under substitution pattern “Single”, the smallest quantity product only substitutes products with
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Figure 11: Figures (a) and (b) plot the percentage of products substituted with multiples mij under substitution
pattern “Single” and “All”, respectively.

multiples mij less than or equal 7, where 5.3% of the products substituted have multiplies mij = 2

only 0.01% of the products are substituted with mij = 7. For pattern “All”, where all smaller

quantity products are able to substitute higher quantity products, only the products with mij ≤ 4

are substituted. The results show that the cost of substitution is implicitly captured by mij and

the product substitution is less preferred when mij increases. This is due to multiple packages to be

dispensed for the substituted products which would lead to fewer packages available for substituting

product.

6.3. Analysis of Solution Approach: CGA

To test the computational efficiency of the column generation approach, we generate five in-

stances using HDS data with 29,626 products by varying the kiosk capacity between 1,000 and

7,000. For each instance, we solve model [R3] using CPLEX and Benders decomposition, and

compare their performances against the CGA approach. Column generation alogrithm is coded

in C++ Visual Studio 2013 and all optimization problems are solved using CPLEX version 12.6.1

on a 64-bit Windows 10 with Intel(R) core i7-4790 3.60GHz processors and 8.00 GB RAM. For

CPLEX and CGA, each instance is executed to an optimality gap of 1e-09 with no time limit.

Computational results are summarized in Table 8a where the column generation is compared

against CPLEX solution. Column “RMP linear Sol” is the solution to model [RMP] and column

“Best found Sol” denotes the best integer solution found by adding integer constraint to [RMP].

Gap is calculated as RMP linear Sol-Best found Sol
Best found Sol . Column “CG time” is the time spent to generate

all columns while “RMP-MIP time” denotes the time spent to solve model [RMP] with integer

constraint. The total CPU time (in seconds) spent by column generation approach and CPLEX

are denoted by “TCGA time” and “CPLEX time”, respectively. Finally, Time Ratio in Table 8a

is calculated as CPLEX time
TCGA time . Overall, CGA is able to solve all instances in less than one hour with

optimality gaps less than 2%. At capacity C = 7, 000, gap value shows that the best solution

obtained from CGA can only be improved by at most 1.94% if the original model [R3] is solved
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Capacity Column Generation Approach Time Comparison

C [RMP] linear
Sol.

Best found
Integer Sol.

Gap CG time RMP-MIP
time

TCGA
time(s)

CPLEX
time (s)

Time
ratio

1000 38.85% 38.84% 0.02% 82.92 568.35 651.27 3651.55 5.61
2000 58.68% 58.41% 0.47% 143.35 1162.32 1304.67 3968.64 3.04
3000 70.45% 69.63% 1.18% 143.77 1728.56 1872.33 4300.48 2.30
5000 82.95% 81.39% 1.91% 195.48 1754.58 1949.62 4906.26 2.52
7000 89.06% 87.36% 1.94% 268.98 2854.92 3123.90 5880.13 1.88

Avg 1.10% Avg 3.07

(a) Column Generation Approach vs CPLEX

Capacity, C
Benders Column Generation Approach

UB LB Gap Iterations UB LB Gap Time(s)

1000 41.16% 26.00% 58.31% 71 38.85% 38.84% 0.02% 651.27
2000 67.78% 36.70% 84.67% 52 58.68% 58.41% 0.47% 1304.67
3000 88.17% 42.47% 107.60% 38 70.45% 69.63% 1.18% 1872.33
5000 114.67% 53.13% 115.83% 31 82.95% 81.39% 1.91% 1949.62
7000 1.33629 60.31% 121.56% 28 89.06% 87.36% 1.94% 3123.9

Average 97.59% Average 1.10%

(b) Column Generation Approach vs L-shaped Benders decompositionL-shaped

Table 8: Computational efficiency of the proposed column generation against CPLEX and L-shaped Benders Decom-
position

to optimality. In fact, for all instances, optimal solutions obtained by directly solving model [R3]

equals the solution obtained by CGA. This signifies the effectiveness of the CGA in obtaining

solutions that are close to optimal while reducing the computational effort by a factor of three.

We also compare our proposed column generation approach against the L-shaped Benders de-

composition approach generally applied in stochastic programming where the master problem de-

cides on first stage decision variables while the subproblem decides on second stage decision vari-

ables. The overall Benders procedure is based on the general framework in Carøe and Tind (1998)

and is detailed in Appendix A. All instances are solved with a time limit of 3600 seconds. Compu-

tational results are summarized in Table 8b where Columns ”UB” and ”LB” denote upper bound

and lower bound obtained from respective solution approaches, respectively, while column ”Itera-

tions” refers to the number of iterations between the master problem and subproblems in Benders

decomposition. Computational results show that the proposed column generation approach outper-

forms Benders decomposition. The latter fails to solve any instance to optimality within one-hour

time window and reports an average optimality gap of 97.6%.

7. Conclusions

In this paper, we addressed the strategic capacity and assortment planning problem faced by Me-

dAvail through extensive descriptive and prescriptive analytics. We developed three optimization

models that decide on stock levels and product substitution. In addition, we developed a column-

generation based heuristic solution methodology that is able to obtain near-optimal solutions within
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1.1% of optimality gap while reducing computational times by a factor of 3. Computational ex-

periments over real and randomly generated data show that product substitution reduces kiosk’s

capacity requirements by up to 9%. We also show that the effect of product substitution depends

on desired service level and the nature of demand data. As an outcome of this work, MedAvail

expects to improve its service levels by 30% using a larger capacity kiosk. MedAvail also expects

10% improvement in service levels of the existing kiosks by optimizing assortment and stocking

decisions using the suggested optimization models. In the future, MedAvail plans to implement

our optimization models in their technology to make better inventory and assortment decisions.

A promising research direction is to use robust optimization to model the uncertainty in demand.

Another possible extension could be to model exact substitution. As discussed earlier in Lemma 3,

the proposed model obtains a lower bound on the service level due to conservative approximation of

the number of failures. As such, some of the substitution rules that could improve the solution are

not selected. Also, the model allows only one substitute for each quantity. Modelling the problem

with exact substitution and multiple substitutes would be computationally difficult to solve, and

developing an efficient solution methodology for such a model is another promising future work.
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Appendix A. L-shaped Benders Decomposition

In this section, we solve model [M3] using L-shaped Benders decomposition based on the general

framework by Carøe and Tind (1998) where the master problem decides on first stage decision

variables while the subproblem decides on second stage decision variables. For model [M3], x = [xi]

and s = [sij ] are the first-stage variables, and second stage consists of variables f = [fit]. The

master problem [MP] is

[MP]: max 0 + z(x, s) (A.1)

s.t. Benders Optimality Cuts
∑

i∈I:
bij=1

sij = 1 ∀j ∈ I, (A.2)

∑

i∈I
xi ≤ C (A.3)

xi ∈ Z+, sij ∈ {0, 1} ∀i ∈ I, j ∈ I (A.4)
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The optimal solution to [MP] is an upper bound to the original problem [M3] and z(x, s) is the

optimal solution to the subproblem [SP] given (x, s)

[SP]: max 1−

∑

i∈I

∑

t∈Θ

fit

D
(A.5)

s.t. fit ≥
∑

j∈I:
bij=1

mijAjtsij − xi i ∈ I, t ∈ Θ, [µit] (A.6)

fit ≥ 0, ∀i ∈ I, t ∈ Θ. (A.7)

where [.] corresponds to dual variable for constraint (A.6). The optimal solution to [SP] provides an

upper bound to the lower bound to the original problem [M3]. Note that subproblem [SP] further

into sub subproblems for each GPI-QTY i ∈ I and scenario t ∈ Θ as

[SP]it min fit (A.8)

s.t. fit ≥
∑

j∈I:
bij=1

mijAjtsij − xi [µit] (A.9)

fit ≥ 0, (A.10)

Let f∗it be the optimal solution to [SP]it, then the optimal solution to [SP] is 1 −

∑

i∈I

∑

t∈Θ

f∗it

D . To

solve sub subproblem [SP]it, we take its dual

[DSP]it max



∑

j∈I:
bij=1

mijAjtsij − xi


µit (A.11)

s.t. µijt ≤ 1, (A.12)

µit ≥ 0 (A.13)

which is trivial to solve. The optimal solution µ∗it = 1 if
∑

j∈I:
bij=1

mijAjtsij − xi > 0, else µ∗it = 0.

Note that since the subproblem [SP] is always feasible for a given (x, s), we do not need to add

feasibility cuts (extreme rays) to the master problem [MP]. Let Eit be the set of the extreme points
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to [DSP]it. The master problem could be written as

[MP]: max 1−

∑

i∈I

∑

t∈Θ

zit

D
(A.14)

s.t. zit ≥



∑

j∈I:
bij=1

mijAjtsij − xi


µeit i ∈ I, t ∈ Θ, e ∈ Eit, (A.15)

∑

i∈I:
bij=1

sij = 1 ∀j ∈ I, (A.16)

∑

i∈I
xi ≤ C (A.17)

xi ∈ Z+, sij ∈ {0, 1} ∀i ∈ I, j ∈ I (A.18)

Note that the set of extreme points Eit = {0, 1}. For e = 0, µijt = 0, and Constraint (A.15) is

zit ≥ 0 which corresponds to the nonnegativity constraint (4.2.15) in the original formulation [M3].

On the other hand, when e = 1, µijt = 1 and Constraint (A.15) is zijt ≥
∑

k∈Ji:
bijk=1

mijkAiktsijk − xij

corresponding to constraint (4.2.14). The approach is equivalent to a cutting plane algorithm where

constraints (4.2.14) and (4.2.15) in the original model [M3] are dropped and added iteratively.

To warm-start the algorithm, nonnegativity constraints (A.15) corresponding to e = 0 are

included in [MP]. To tighten the relaxation, we also add a set of valid inequality constraints

xi ≤
∑

i∈I:
bij=1

dmax
j sij ∀ i ∈ I (A.19)

where dmax
j is the maximum daily demand recorded for GPI j in the sales data. Constraint (A.19)

ensures that GPI-QTY i is not stocked if sij = 0∀j ∈ I.
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