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Highlights

• The distributed delays and discrete delays are considered in the pinning impulsive controllers respectively.

• A more general pinning impulsive algorithm is designed.

• Two criteria for exponential synchronization of coupled reaction-diffusion neural networks are given.

• The relations of impulsive gains, amounts of pinned nodes, impulsive intervals and time delays are presented.
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Abstract

This paper studies the synchronization problem of coupled reaction-diffusion neural networks with time-varying de-
lays. A novel pinning impulsive controller is proposed, where distributed delays and discrete delays are taken into
account, respectively. By using the Lyapunov-Krasovskii method, the relations among impulsive gains, pinned node
numbers, impulsive intervals, impulsive instants and time delays are derived. Exponential synchronization criteria
are established for the delayed coupled reaction-diffusion neural networks. Our results show that synchronization of
the neural networks can be achieved by controlling a small portion of nodes in the networks via delayed impulses.
Numerical examples are provided to demonstrate the effectiveness of the theoretical results.

Keywords: Impulsive control, neural network, pinning control, reaction-diffusion.

1. Introduction

During recent decades, coupled neural networks and other kinds of complex networks have stirred much research
interest and can be applied to signal processing, pattern recognition, associative memories, automatic control, combi-
natorial optimization, etc. (See [1–4].) In particular, the synchronization problem of coupled neural networks is paying
appreciable heed from researchers because it has many vital applications in engineering and human cooperation, such
as information processing [5], secure communication [6] and biological systems [7].

Various types of control methods have been used to achieve synchronization of coupled neural networks, such as
adaptive control [8], pinning control [9], intermittent control [10], sampled-data control [11], and impulsive control
[12]. Since a coupled neural network consists of a large number of high-dimensional neural networks, and most of
these control methods would be computing-expensive and infeasible to control all the nodes. Therefore, the pinning
control method, adding controllers to a small portion of nodes to tame the network dynamics to approach a desired
stability or synchronization performance, would be an effective method to reduce the control cost. By the practical
consideration, a wealth of interesting pinning impulsive control strategies have been reported for the stability or syn-
chronization of dynamical networks (see [13–18]), and these control strategies have been proved to be advantageous
to further reduce the control cost in practical applications [14, 19, 20].

Recently, since the inevitability of time delays in the sampling and transmission of impulsive information, lots
of researchers have paid attention to the delayed impulsive control and its potential applications in various kinds
of control problems. For example, stability of complex-valued neural networks with delayed impulses [21, 22],
master-slave synchronization of time-delay systems using delayed impulses [23], Input-to-state stability of nonlinear
systems with distributed-delayed impulses [24]. In [25], the stabilization problem of time-delay neural networks was
investigated via pinning delayed impulses. A new pinning impulsive controller with discrete delays was designed to
achieve stabilization, and the theoretical analysis about how the delay of impulses to affect the control process was
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also presented. The synchronization problem of complex dynamical networks on time scales was studied in [18].
Based on the theory of time scales and the direct Lyapunov method, the pinning delayed impulsive control scheme
was introduced to achieve the synchronization of complex dynamical networks on general time scales. In [26], two
pinning delayed impulsive control protocols were proposed for mean square exponential consensus of stochastic
multi-agent systems, and sufficient conditions were constructed under the presented strategies. These results focus on
the pinning impulsive controller with discrete delays. To the best of our knowledge, very few works about pinning
impulsive control with distributed delay have been reported in the literature. The idea of distributed-delayed impulsive
control is as follows: instead of relying on the system states at the impulsive instants, or the states at history moments,
the decision of the impulsive controller depends on the accumulation (or average) of the system states over a time
period. In many practical systems, distributed delays occur more often due to the evolution property of time delays
[27]. Hence, it is highly desirable to investigate the pinning impulsive control for dynamical systems with distributed-
delayed impulses.

On the other hand, the controlled network models above are described by ordinary differential equations with time-
varying state variables, which limit their applications. In practice, the reaction-diffusion effects cannot be avoided
in some applications of neural networks due to, for instance, the uneven electromagnetic field in which electrons
are moving and the diffusion effects in biological systems [12, 26]. Therefore, it is necessary to consider the state
activation that varies in space as well as in time. More recently, the synchronization problem of the reaction-diffusion
neural networks with Neumann boundary or Dirichlet boundary conditions have been considered in [12, 28–33]. In
[29], two coupled reaction-diffusion neural networks with different dimensions of input and output were addressed,
the dissipativity and passivity criteria for the considered systems were established. A general array model of coupled
reaction-diffusion neural networks with hybrid coupling was proposed in [31], in which the spatial diffusion coupling
and state coupling were considered. Sufficient conditions were presented to guarantee synchronization and H∞ of the
networks. Hence, due to the advantages of the pinning impulsive control and the existence of time-delay, it would
be interesting and challenging to study pinning impulsive synchronization of reaction-diffusion neural networks with
distributed-delayed impulses and discrete-delayed impulses, which motivates the research of this paper.

This paper investigates the synchronization problem of coupled reaction-diffusion neural networks by delayed
pinning impulsive control. A novel pinning impulsive control scheme is proposed, where distributed delays and dis-
crete delays are taken into account, respectively. By employing the distributed-delayed pinning impulsive controller,
new criteria on synchronization of the coupled reaction-diffusion neural networks with time-varying delays are given.
Under the discrete-delayed impulsive control, sufficient conditions on the system parameters, impulsive gains, pinned
node numbers, impulsive instants and time delays are derived, and three corollaries are presented for the special cases.

The main contributions of this paper are given in the following three aspects: (1) A more general pinning impulsive
algorithm is designed to synchronize the coupled reaction-diffusion neural networks, in which the amount of pinned
nodes and the impulsive gains are impulsive-instant dependent, i.e., at distinct impulsive instants, the amount of
pinned nodes and the impulsive gains are different. (2) We introduce a type of Lyapunov-Krasovskii functional
candidates, which consist of a function part and a functional part. Based on the Lyapunov-Krasovskii functionals,
pinning impulsive synchronization of coupled reaction-diffusion neural network with distributed-delayed impulses
and discrete-delayed impulses are achieved, respectively. (3) Appropriate inequalities are applied to deal with the
diffusion terms and the integral terms, which provide a tighter estimate on the integrals of these terms and relax the
constraints on the sufficient conditions. (4) The relations among impulsive gains, pinned node numbers, impulsive
intervals and time delays are derived and further discussed with three corollaries.

The remainder of this paper is as follows. Section 2 gives the synchronization problem of the coupled reaction-
diffusion neural networks, and proposes the delayed pinning impulsive scheme. Exponential synchronization criteria
are established in Section 3 with further discussions. Numerical examples are given in Section 4 to illustrate the
effectiveness of the obtained results. Finally, some conclusions and possible future research topics are drawn in
Section 5.

2. Problem Formulation

2.1. Notations
Let N denote the set of positive integers, R the set of real numbers, R+ the set of nonnegative real numbers, and

Rn the n-dimensional real space equipped with the Euclidean norm. Rn×n denotes the n × n real matrices. P ∈ Rn×n ≥
3
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0 (P ∈ Rn×n ≤ 0) means that matrix P is symmetric and semi-positive (semi-negative) definite. In denotes the n × n
real identity matrix. The notation T denotes the transpose of a matrix or a vector. ⊗ denotes the Kronecker product
of two matrices. λmin(·) and λmax(·) denote the minimum and the maximum eigenvalue of the corresponding matrix,
respectively. Cm(W) represents the set of continuous m-time differentiable real-valued functions on the domain W. ]G
denotes the cardinality of set G (i.e., the number of elements of set G if G is finite).

2.2. Preliminaries

Lemma 1. Let Ω be the cube satisfying |xk | < hk (k = 1, 2, · · · , q) and let u(x) be a real-valued function belonging to
C1 (Ω) which vanishes on the boundary ∂Ω of Ω, i.e., u(x)|∂Ω = 0. Then

∫

Ω

u2(x)dx ≤ h2
k

∫

Ω

(
∂u
∂xk

)2

dx, where x =
(
x1, x2, · · · , xq

)T
.

Lemma 2 ([34]). For matrix M > 0, any matrix G with an appropriate dimension, β ≤ s ≤ α and β ≤ γ ≤ α, the
following inequalities hold:

F =

[
M G
∗ M

]
≥ 0,

− (α − β)
∫ α

β

xT (s)Mx(s)ds ≤ −ηT Fη,

where η =

[∫ α

γ
xT (s)ds,

∫ γ

β
xT (s)ds

]T
.

Lemma 3 (Jensen’s inequalities [35]). For a given matrix M > 0, the following inequality holds for all continuously
differentiable function x in [a, b]→ Rn :

(b − a)
∫ b

a
xT (s)Mx(s)ds ≥

(∫ b

a
x(s)ds

)T

M

(∫ b

a
x(s)ds

)
+ 3ξT Mξ,

(b − a)2

2

∫ b

a

∫ b

k
xT (s)Mx(s)dsdk ≥

(∫ b

a

∫ b

k
x(s)ds

)T

M

(∫ b

a

∫ b

k
x(s)ds

)
,

where ξ =
∫ b

a
x(s)ds − 2

b−a

∫ b

a

∫ s

a
x(u)duds.

Lemma 4. For any vectors y, ỹ ∈ Rn, and matrix P ∈ Rn×n , the following inequality holds for positive constant
ε > 0,

2yT Pỹ ≤ εyT PPT y + ε−1ỹT ỹ.

Remark 1. In this paper, we construct the Lyapunov functional candidates as (12), in order to estimate the derivatives
of double integral functional terms, the reciprocally convex combination inequality in Lemma 2 would be used. Under
this integral inequality, more relationships among different integral terms would be established and more free matrices
are involved, and it is proved to be beneficial to yield less conservative stability criteria for time delayed systems
[10, 36].

2.3. Network Model

In this paper, a single reaction-diffusion neural network with time-varying delays is described by

∂wm(t, x)
∂t

=

q∑

l=1

∂

∂xl

(
dml

∂wm(t, x)
∂xl

)
− amwm(t, x) +

n∑

j=1

cm jg j

(
w j (t − τ(t), x)

)
+ Jm, (1)

where m = 1, 2, · · · , n, wm(t, x) ∈ R is the state of m-th neuron at time t and in space x. x =
(
x1, x2, · · · , xq

)T ∈ Ω ⊂ Rq

is the space variable with |xk | ≤ hk, k = 1, 2, · · · , q. g j(·) stands for the activation function of j-th neuron. am, cm j

4
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are constants: am > 0 represents the rate with which the m-th neuron will reset its potential to the resting state when
disconnected from the networks and external input Jm; cm j is the connection weight between neurons. Jm is the
external bias or input to the m-th neuron. dml > 0 is the transmission diffusion coefficient along the m-th neuron.

Throughout this paper, the following two assumptions on time-varying delays and activation functions hold.

(A1) There exist positive constants τ1 and τ2 and η such that

0 < τ1 ≤ τ(t) ≤ τ2, τ̇(t) ≤ η ≤ 1,

(A2) The function g j(·), j = 1, 2, · · · , n satisfies the Lipschitz condition, that is, there exists constant ϑ j such that

|g j (ξ1) − g j (ξ2) | ≤ ϑ j|ξ1 − ξ2|,
for all ξ1, ξ2 ∈ R, and | · | is the Euclidean norm.

The initial value and Dirichlet boundary conditions associated with system (1) are given by

wm(t0 + s, x) = φm(s, x), for (s, x) ∈ [−τ2, 0) ×Ω, (2)

wm(t, x) = 0, for (t, x) ∈ [t0 − τ2,+∞) × ∂Ω, (3)

where φ = (φ1, φ2, · · · , φn)T ∈ C ([−τ2, 0] ×Ω,Rn), τ2 is the upper bound of τ(t).
Then, the single reaction-diffusion neural networks (1) can be rewritten in the following compact form:

∂w(t, x)
∂t

=

q∑

l=1

∂

∂xl

(
Dl
∂w(t, x)
∂xl

)
− Aw(t, x) + Cg (w (t − τ(t), x)) + J, (4)

where w(t, x) = (w1(t, x),w2(t, x), · · · ,wn(t, x))T , g (w(t, x)) = (g1 (w1(t, x)) , g2 (w2(t, x)) , · · · , gn (wn(t, x)))T , Dl =

diag (d1l, d2l, · · · , dnl) , A = diag (a1, a2, · · · , an) , C =
(
cm j

)
n×n

, J = (J1, J2, · · · , Jn)T .
Next, the dynamical network to be considered in this paper, which is composed of N mutually coupled reaction-

diffusion neural networks (4), can be described by

∂zi(t, x)
∂t

=

q∑

l=1

∂

∂xl

(
Dl
∂zi(t, x)
∂xl

)
− Azi(t, x) + Cg (zi (t − τ(t), x)) + J + α

N∑

j=1

Gi jΓz j(t, x), (5)

where i = 1, 2, · · · ,N, and N is the number of nodes in the networks. zi(t, x) = (zi1(t, x), zi2(t, x), · · · , zin(t, x))T ∈ Rn is
the state vector of node i at time t and in space x. α > 0 represents the overall coupling strength, Γ ∈ Rn×n > 0 is
an inner coupling matrix, G =

(
Gi j

)
N×N

is the coupling configuration matrix representing the coupling strength and
topological structure of the network, where Gi j is defined as follows: if there exists a connection from neural network
i to neural network j, then Gi j > 0; otherwise, Gi j = 0 (i , j); and the diagonal elements of matrix G are defined by

Gii = −
N∑
j=1
j,i

Gi j, i = 1, 2, · · · ,N. The initial value and boundary value conditions of (5) are given in the following form:

zi(t0 + s, x) = ϕi(s, x), for (s, x) ∈ [−τ2, 0) ×Ω, ϕi ∈ Rn, (6)

zi(t, x) = 0, for (t, x) ∈ [t0 − τ2,+∞) × ∂Ω, 0 ∈ Rn, (7)

where ϕi is bounded and continuous on Ω. For zi(t, x) = (zi1(t, x), zi2(t, x), · · · , zin(t, x))T ∈ C ([t0 − τ2,+∞) ×Ω,Rn)
and a given t ≥ 0, we define the norm: ‖zi(t, ·)‖22 =

∫
Ω

zT
i (t, x)zi(t, x)dx.

2.4. Pinning Impulsive Control Scheme
The objective of this paper is to exponentially synchronize the network (5) with (4) by designing an appropriate

delayed pinning impulsive controller Ui(t, x), under which the trajectories of all nodes can be synchronized. Define
ei(t, x) = zi(t, x) − w(t, x), the impulsive controller is designed as follows:

Ui(t, x) =



∞∑
k=1
−qk

∫ t

t−d
ei(s, x)dsδ(t − tk), i ∈ Dk and ]Dk = lk,

0, i < Dk,
(8)

5
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where i = 1, 2, · · · ,N, qk are impulsive control gains, d is the distributed delay in the controller. The impulsive instant
sequence {tk} satisfies {tk} ⊂ R, 0 ≤ t0 < t1 < · · · < tk < · · · , and lim

k→∞
tk = ∞. δ(·) is the Dirac delta function. lk

denotes the number of nodes to be pinned at each impulsive instant. The index set Dk is defined as follows: at the
impulsive instant tk, we order the scalar states e1 (tk, x) , e2 (tk, x) , · · · , eN (tk, x) such that ‖ep1 (tk, ·) ‖2 ≥ ‖ep2 (tk, ·) ‖2 ≥
· · · ≥ ‖eplk (tk, ·) ‖2 ≥ · · · ≥ ‖epN (tk, ·) ‖2, then we define Dk = {p1, p2, · · · , plk} and ]Dk = lk, where 0 < lk ≤ N. The
pinning impulsive control mechanism is as follows: at each impulsive instant tk, we only control lk networks which
have larger deviations with trivial state than the rest N − lk networks.

Furthermore, under the properties of Dirac delta function, the controlled neural networks (5) with the distributed
delayed pinning impulsive controller (8) can be rewritten in the following form:



∂zi(t,x)
∂t =

q∑
l=1

∂
∂xl

(
Dl

∂zi(t,x)
∂xl

)
− Azi(t, x) + Cg (zi (t − τ(t), x)) + J + α

N∑
j=1

Gi jΓz j(t, x), t , tk,

∆zi (tk, x) = −qk

∫ t−k
tk−d

ei(s, x)ds, i ∈ Dk, ]Dk = lk, k ∈ N,
zi(t0 + s, x) = ϕi(s, x), (s, x) ∈ [−τ2, 0] ×Ω,
zi(t, x) = 0, (t, x) ∈ [t0 − τ2,+∞) × ∂Ω, 0 = [0, 0, · · · , 0]T ∈ Rn.

(9)

Remark 2. Under the assumption (A2), it is shown in Theorem 1 in [37] that system (4) admits a unique mild solution
with the Dirichlet boundary condition (3) and the initial condition (2). Meanwhile, since the considered delays in the
system are bounded from assumption (A1), the existence of solution to system (5) can be guaranteed by the results
of reaction-diffusion equations in [38], and the method of steps. In addition, the case for system (9) with impulses is
essentially the same, by an argument using the method of steps over all the impulsive intervals.

By introducing the error vector ei(t, x), the error system is described as follows:


∂ei(t,x)
∂t =

q∑
l=1

∂
∂xl

(
Dl

∂ei(t,x)
∂xl

)
− Aei(t, x) + C f (ei (t − τ(t), x)) + α

N∑
j=1

Gi jΓe j(t, x), t , tk,

∆ei (tk, x) = −qk

∫ t−k
tk−d

ei(s, x)ds, i ∈ Dk, ]Dk = lk, k ∈ N,
ei(t0 + s, x) = ϕi(s, x) − φ(s, x), (s, x) ∈ [−γ, 0] ×Ω,
ei(t, x) = 0, (t, x) ∈ [t0 − γ,+∞) × ∂Ω, 0 = [0, 0, · · · , 0]T ∈ Rn,

(10)

where γ = max (τ2, d) . We assume that ei(t, x) is right-continuous at each tk, k ∈ N, i.e., lim
t→t+k

ei(t, x) = ei (tk, x) .

f (ei(t, x)) = g (zi(t, x)) − g (w(t, x)) for i = 1, 2, · · · ,N.

Definition 1. The controlled neural network (5) is said to be globally exponentially synchronized onto the trajectory
of (4) if there exist µ > 0 and M ≥ 1 such that for i = 1, 2, · · · ,N, it holds that

‖ei(t, ·)‖2 ≤ Me−µ(t−t0) sup
s∈[−γ̂,0]

‖ϕi(s, ·) − φ(s, ·)‖2.

Remark 3. The key point of applying pinning control approach is the selection of suitable nodes to control. Compar-
ing with the pinning impulsive scheme for synchronization of delayed networks in [13, 39–41], the pinning algorithm
in this paper is more general and flexible. In this paper, the pinning strategy (8) is impulsive-instant dependent, i.e.,
at distinct impulsive instants tk, the number of pinned nodes lk and the impulsive gain qk are maybe different, while
the two parameters are assumed to be fixed for all impulsive instants in [13, 39–41]. The pinning impulsive control
scheme (8) is inspired by the idea in [30]. The distributed delay is considered in the impulsive controller. Qualitative
analysis on how the time delay contributes the dynamics of systems would be presented in Section 3. Furthermore,
sufficient conditions on suitable relation among the impulsive gain qk, the number of pinned nodes lk, and the length
of the impulsive interval would be established.

3. Main Results

In this section, the exponential synchronization criteria for reaction-diffusion neural networks will be derived. By
using the Lyapnunov-Krasovskii method and the reciprocally convex combination inequality, Subsection 3.1 aims to

6
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investigate the pinning impulsive synchronization of reaction-diffusion neural network (10) with distributed-delayed
impulses. By estimating the relation between the system states at the impulsive instants and the distributed-delayed
system states, two necessary propositions are proposed first, and sufficient conditions are given in Theorem 1 to en-
sure exponential synchronization of system (10). Moreover, in Subsection 3.2, we will further discuss the pinning
impulsive synchronization of reaction-diffusion neural network with discrete-delayed impulses. Exponential synchro-
nization criterion is presented in Theorem 2 for the considered system with discrete-delayed impulses. We also give
three corollaries and some detailed discussions regarding the construct of Lyapunov-Krosovskii functional candidates,
the affects of time-delay in the controller, and the relationship of the time-delay, pinned node numbers, impulsive gains
and the length of impulsive interval.

3.1. Pinning Impulsive Synchronization of Reaction-Diffusion Neural Network with Distributed-Delayed Impulses

By employing the Kronecker product, network (10) can be rewritten in the following compact form:



∂e(t,x)
∂t =

q∑
l=1

∂
∂xl

[
(IN ⊗ Dl)

∂e(t,x)
∂xl

]
− (IN ⊗ A) e(t, x) + (IN ⊗C) f (e (t − τ(t), x)) + α (G ⊗ Γ) e(t, x), t , tk,

∆ei (tk, x) = −qk

∫ t−k
tk−d

ei(s, x)ds, i ∈ Dk, ]Dk = lk, k ∈ N,
e(t0 + s, x) = ϕ(s, x) − φ̄(s, x), (s, x) ∈ [−γ, 0] ×Ω,
e(t, x) = 1N ⊗ 0, (t, x) ∈ [t0 − γ,+∞) × ∂Ω, 0 = [0, 0, · · · , 0]T ∈ Rn,

(11)

where ϕ(s, x) =
(
ϕT

1 (s, x), ϕT
2 (s, x), · · · , ϕT

N(s, x)
)T
, and φ̄(s, x) = 1N ⊗ φ(s, x) with 1N = (1, 1, · · · , 1)T ∈ RN . For

convenience, we define the following notations:

ρ = diag (ϑ1, ϑ2, · · · , ϑn) , D̃ =

q∑

l=1

Dl

h2
l

, λ1 =

√
λmax

(
AT P0A

)

λmin (P0)
+

√
λmax

(
ρCT P0Cρ

)

λmin (P0)
+ αg1

√
Nlkλmax

(
ΓTP0Γ

)

λmin (P0)
,

eT
i =

0Nn, · · · , 0Nn︸         ︷︷         ︸
i−1

, INn, 0Nn, · · · , 0Nn︸         ︷︷         ︸
9−i

 ∈ R
Nn×9Nn, ξ(t, x) = −

∫ t

t−τ1

e(s, x)ds +
2
τ1

∫ t

t−τ1

∫ t

k
e(s, x)dsdk,

ζ(t, x) =

[∫ t−τ1

t−τ(t)
eT (s, x)ds,

∫ t−τ(t)

t−τ2

eT (s, x)ds

]T

, Θ(t, x) = −Aei (t, x) + C f (ei (t − τ(t), x)) + α

N∑

j=1

Gi jΓe j(t, x),

η(t, x) =

[
eT (t, x), eT (t − τ(t), x) , eT (t − τ1, x) , eT (t − τ2, x) ,

∫ t

t−τ1

eT (s, x)ds,
∫ t−τ1

t−τ(t)
eT (s, x)ds,

∫ t−τ(t)

t−τ2

eT (s, x)ds,
∫ t

t−τ1

∫ t

k
eT (s, x)dsdk,

∫ t−τ1

t−τ2

∫ t

k
eT (s, x)dsdk

]T

, g1 = |max
(
Gi j

)
|.

To facilitate the analysis of (11), we construct the Lyapunov-Krasovskii functional candidates along the trajectory
of (11) as

V(t) = V1(t) + V2(t) + V3(t), and Ψ(t) = e−ctV(t), (12)

V1(t) =
1
2

∫

Ω

eT (t, x) (IN ⊗ P0) e(t, x)dx,

V2(t) = $

∫

Ω

∫ t

t−τ1

eT (s, x) (IN ⊗ P1) e (s, x) dsdx +$

∫

Ω

∫ t

t−τ2

eT (s, x) (IN ⊗ P2) e (s, x) dsdx

+$

∫

Ω

∫ t

t−τ(t)
eT (s, x) (IN ⊗ P3) e (s, x) dsdx,

V3(t) = $τ1

∫

Ω

∫ t

t−τ1

∫ t

k
eT (s, x) (IN ⊗ Q1) e (s, x) dsdkdx

+$ (τ2 − τ1)
∫

Ω

∫ t−τ1

t−τ2

∫ t

k
eT (s, x) (IN ⊗ Q2) e (s, x) dsdkdx,

7
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in which P0, P1, P2, P3, Q1, Q2 ∈ Rn×n > 0 are positive matrices, $ is a positive constant. Denote w1 = 1
2λmin(P0),

w2 = 1
2λmax(P0), w3 = $

(
τ1λmax(P1) + τ2λmax(P2) + τ2λmax(P3) + 1

2τ
3
1λmax(Q1) + 1

2 (τ2 + τ1) (τ2 − τ1)2 λmax(Q2)
)
. It

is obtained that

w1‖e(t, x)‖22 ≤ V1(t) ≤ w2‖e(t, x)‖22, 0 ≤ V2(t) + V3(t) ≤ w3 sup
−τ2≤s≤0

‖e(t + s, x)‖22. (13)

Proposition 1. Suppose that assumptions (A1) and (A2) hold. If there exist a matrix Q3 ∈ RNn×Nn, positive constants
$, ε1, c > 0 such that for all k ∈ N,

Υ ≤ 0, (14)

Q =

(
IN ⊗$Q2 Q3

∗ IN ⊗$Q2

)
≥ 0, (15)

then along the trajectory of system (11), it is satisfied that V̇(t) ≤ cV(t) for t ∈ [tk, tk+1), in which

Υ = e1

[
IN ⊗

(
−P0D̃ − P0A +

1
2
ε−1

1 P0CCT PT
0 +$ (P1 + P2 + P3) +$τ2

1Q1 − c
2

P0 +$ (τ2 − τ1)2 Q2

)

+α (G ⊗ P0Γ)

]
eT

1 + e2

[
IN ⊗

(
1
2
ε1ρ

2 −$ (1 − η) P3

)]
eT

2 − e3 (IN ⊗$P1) eT
3 − e4 (IN ⊗$P2) eT

4

−e5

[
IN ⊗$

(
Q1 +

c
τ1

P1

)]
eT

5 −
(
−e5 +

2
τ1

e8

)
(IN ⊗ 3$Q1)

(
−eT

5 +
2
τ1

eT
8

)
− (e5 + e6)

(
IN ⊗ $cP3

τ2

) (
eT

5 + eT
6

)

− (e5 + e6 + e7)

(
IN ⊗ $cP2

τ2

) (
eT

5 + eT
6 + eT

7

)
− (e6, e7)

(
IN ⊗$Q2 Q3

∗ IN ⊗$Q2

) (
eT

6
eT

7

)

−e8

(
IN ⊗ 2$cQ1

τ1

)
eT

8 − e9

(
IN ⊗ 2$cQ2

τ2 − τ1

)
eT

9 .

Proof. By Green’s formula, the Dirichlet boundary condition, Lemma 1, and the definition of D̃, we have

∫

Ω

q∑

l=1

eT (t, x) (IN ⊗ Dl)
∂2

∂x2
l

(e(t, x)) dx = −
∫

Ω

q∑

l=1

(
∂e(t, x)
∂xl

)T

(IN ⊗ Dl)
∂e(t, x)
∂xl

dx

≤ −
∫

Ω

eT (t, x)
(
IN ⊗ D̃

)
e(t, x)dx. (16)

For any impulsive interval [tk, tk+1), k ∈ N, differentiate V(t) along the trajectory of system (11). By using Lemma
4 and (16), it yields that

V̇1(t) ≤
∫

Ω

eT (t, x)

(
−

(
IN ⊗ P0D̃

)
− (IN ⊗ A) +

1
2

(
IN ⊗ ε−1

1 P0CCT PT
0

)
+ α (G ⊗ P0Γ)

)
e (t, x) dx

+
1
2

∫

Ω

eT (t − τ(t), x)
(
IN ⊗ ε1ρ

2
)

e (t − τ(t), x) dx, (17)

V̇2(t) =

∫

Ω

[
eT (t, x) (IN ⊗$ (P1 + P2 + P3)) e (t, x) dx − eT (t − τ1, x) (IN ⊗$P1) e (t − τ1, x)

−eT (t − τ2, x) (IN ⊗$P2) e (t − τ2, x) − (1 − η) eT (t − τ(t), x) (IN ⊗$P3) e (t − τ(t), x)
]

dx. (18)

By employing the inequalities in Lemma 2 and Lemma 3, and differentiating V3(t) along the trajectory of system (11),
it gives

V̇3(t) =

∫

Ω

eT (t, x)
[
IN ⊗$

(
τ2

1Q1 + (τ2 − τ1)2 Q2

)]
e (t, x) dx −

∫

Ω

ζT (t, x)Qζ(t, x)

−
∫

Ω

(∫ t

t−τ1

e(s, x)ds

)T

(IN ⊗$Q1)

(∫ t

t−τ1

e(s, x)ds

)
dx − 3

∫

Ω

ξT (t, x) (IN ⊗$Q1) ξ(t, x)dx, (19)

8
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where Q =

(
IN ⊗$Q2 Q3

∗ IN ⊗$Q2

)
≥ 0 in (15).

Then, by Lemma 3 and the definition of V(t), it is obtained that

−cV1(t) = − c
2

∫

Ω

eT (t, x) (IN ⊗ P0) e(t, x)dx, (20)

−cV2(t) ≤ −c
∫

Ω


(∫ t

t−τ1

e(s, x)ds

)T (
IN ⊗ $

τ1
P1

) (∫ t

t−τ1

e(s, x)ds

)
+

(∫ t

t−τ2

e(s, x)ds

)T (
IN ⊗ $

τ2
P2

)

(∫ t

t−τ2

e(s, x)ds

)
+

(∫ t

t−τ(t)
e(s, x)ds

)T (
IN ⊗ $

τ(t)
P3

) (∫ t

t−τ(t)
e(s, x)ds

) dx, (21)

−cV3(t) ≤ −c
∫

Ω


(∫ t

t−τ1

∫ t

k
e(s, x)dsdk

)T (
IN ⊗ 2$

τ1
Q1

) (∫ t

t−τ1

∫ t

k
e(s, x)dsdk

)

+

(∫ t−τ1

t−τ2

∫ t

k
e(s, x)dsdk

)T (
IN ⊗ 2$

τ2 − τ1
Q2

) (∫ t−τ1

t−τ2

∫ t

k
e(s, x)dsdk

) dx. (22)

Now calculate the time derivative of Ψ(t) along the trajectory of system (11), combine (17)-(22) with (12), then we
have

d
dt

(Ψ(t)) = e−ct
(
V̇(t) − cV(t)

)
≤ e−ct

∫

Ω

ηT (t, x)Υη(t, x)dx, (23)

where Υ ≤ 0 in (14), and η(t, x) is defined before. Consequently, V̇(t) ≤ cV(t) for t ∈ [tk, tk+1), k ∈ N.

Proposition 2. For the Lyapunov-Krasovskii candidates (12), when t = tk, k ∈ N, there exist positive constants
ε0, ε1, ε2, ε5, ε6, ε7 > 0 and 0 < ρ1k < 1, ρ2k ≥ 0 such that along the solution of system (11),

V1

(
t+k

)
≤ ρ1kV1

(
t−k

)
+ ρ2k sup

s∈[−γ−d,0]

{
V1

(
t−k + s

)}
, where f or k ∈ N, (24)

ρ0k = (1 + ε0) (1 − dqk)2 +Φ4 (1 + ε6) d2q2
k/

(
1 + ε−1

6

)
, ρ2k = Φ1q4

kd4ς2 + 1
3 Φ2q2

kd4λ2
1 +Φ3q2

kd2, ρ1k = 1− lk
N (1 − ρ0k),

Φ1 =
(
1 + ε−1

0

)
(1 + ε1) + Φ4 (1 + ε7), Φ2 = Φ5 (1 + ε2) + Φ4

(
1 + ε−1

7

)
, Φ3 = Φ5

(
1 + ε−1

2

)
(1 + ε5),

Φ4 = Φ5

(
1 + ε−1

2

) (
1 + ε−1

5

) (
1 + ε−1

6

)
, Φ5 =

(
1 + ε−1

0

) (
1 + ε−1

1

)
.

ς =
⌊

d
δ

⌋
denotes the number of impulses that the system (11) subject to on each impulsive interval [tk − d, tk), δ =

tk+1 − tk.

Proof. Here for t = t+k , k ∈ N, it gives

V1

(
t+k

)
=

1
2

∑

i∈Dk

∫

Ω

eT
i

(
t+k , x

)
P0ei(t

+
k , x)dx +

1
2

∑

i<Dk

∫

Ω

eT
i

(
t+k , x

)
P0ei(t

+
k , x)dx. (25)

For i ∈ Dk, from the second equation of (11), we have ei

(
t+k , x

)
= ei

(
t−k , x

)
−qk

∫ t−k
tk−d

ei(s, x)ds.Next we should estimate

the term
∫ t−k

tk−d
ei(s, x)ds. For t ∈ [tk − d, tk), integrating both sides of the first equation in system (10) from t to t−k , it

yields

ei (t, x) = ei

(
t−k , x

)
−

∫ t−k

t

q∑

l=1

∂

∂xl

(
Dl
∂ei(s, x)
∂xl

)
ds −

∫ t−k

t
Θ(s, x)ds +

ςk∑

m=1

qk

∫ 0

−d
ei (tk−m + s, x) ds, (26)

where ςk denotes the number of impulses activated onto the ith node during the period (t, tk) and it is satisfied that
ςk ≤ ς (Refer to Fig. 2 in [25]). Continue to integrate both sides of (26) from tk − d to t−k , then we have

∫ t−k

tk−d
ei(s, x)ds = dei

(
t−k , x

)
−

∫ t−k

tk−d

∫ t−k

t

q∑

l=1

∂

∂xl

(
Dl
∂ei(s, x)
∂xl

)
dsdt + qk

∫ t−k

tk−d

ςk∑

m=1

∫ 0

−d
ei (tk−m + s, x) dsdt

−
∫ t−k

tk−d

∫ t−k

t
Θ(s, x)dsdt. (27)

9
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So it follows that

ei(t
+
k , x) = (1 − dqk) ei

(
t−k , x

)
− q2

k

∫ t−k

tk−d

ςk∑

m=1

∫ 0

−d
ei (tk−m + s, x) dsdt + qk

∫ t−k

tk−d

∫ t−k

t
Θ(s, x)dsdt

+qk

∫ t−k

tk−d

∫ t−k

t

q∑

l=1

∂

∂xl

(
Dl
∂ei(s, x)
∂xl

)
dsdt. (28)

Let Xi1 = (1 − dqk) ei

(
t−k , x

)
, Xi2 = −q2

k

∫ t−k
tk−d

ςk∑
m=1

∫ 0

−d
ei (tk−m + s, x) dsdt, Xi3 = qk

∫ t−k
tk−d

∫ t−k
t

Θ(s, x)dsdt,

Xi4 = qk

∫ t−k
tk−d

∫ t−k
t

∑q
l=1

∂
∂xl

(
Dl

∂ei(s,x)
∂xl

)
dsdt. Then, we have

1
2

∑

i∈Dk

∫

Ω

eT
i

(
t+k , x

)
P0ei(t

+
k , x)dx ≤ 1

2

∑

i∈Dk

∫

Ω

{
(1 + ε0) XT

i1P0Xi1 +
(
1 + ε−1

0

)
(1 + ε1) XT

i2P0Xi2 +
(
1 + ε−1

0

) (
1 + ε−1

1

)

(1 + ε2) XT
i3P0Xi3 +

(
1 + ε−1

0

) (
1 + ε−1

1

) (
1 + ε−1

2

)
XT

i4P0Xi4

}
dx. (29)

Applying Lemma 3 and Schwarz’s inequality, we get

∑

i∈Dk

∫

Ω

XT
i2P0Xi2dx = q4

k

∑

i∈Dk

∫

Ω


∫ t−k

tk−d

ςk∑

m=1

∫ 0

−d
ei (tk−m + s, x) dsdt


T

P0


∫ t−k

tk−d

ςk∑

m=1

∫ 0

−d
ei (tk−m + s, x) dsdt

 dx

≤ q4
kd2

∑

i∈Dk

∫

Ω

∫ t−k

tk−d
ςk

ςk∑

m=1

∫ 0

−d
eT

i (tk−m + s, x) P0ei (tk−m + s, x) dsdtdx

≤ q4
kd4ς2

∑

i∈Dk

∫

Ω

sup
s∈[−2d,0]

{
eT

i

(
t−k + s, x

)
P0ei

(
t−k + s, x

)}
dx. (30)

Moreover, by employing the Jensen’s inequality twice, we can estimate

∫ t−k

tk−d

∫ t−k

t
eT

i (s, x)dsdt
∫ t−k

tk−d

∫ t−k

t
ei(s, x)dsdt ≤ 1

3
d4 sup

s∈[−d,0]

{
eT

i

(
t−k + s, x

)
ei

(
t−k + s, x

)}
. (31)

Similarly, it is obtained that

∑

i∈Dk

∫

Ω

XT
i3P0Xi3dx = q2

k

∑

i∈Dk

∫

Ω


∫ t−k

tk−d

∫ t−k

t
Θ(s, x)dsdt


T

P0


∫ t−k

tk−d

∫ t−k

t
Θ(s, x)dsdt

 dx

≤ 1
3

q2
kd4

N∑

i=1

∫

Ω

(1 + ε3)
λmax

(
AT P0A

)

λmin (P0)
+

(
1 + ε−1

3

)
(1 + ε4)

λmax

(
ρCT P0Cρ

)

λmin (P0)

+
(
1 + ε−1

3

) (
1 + ε−1

4

)
α2Nlkg2

1

λmax

(
ΓTP0Γ

)

λmin (P0)

 sup
s∈[−d−τ2,0]

{
eT

i

(
t−k + s, x

)
P0ei

(
t−k + s, x

)}

=
1
3

q2
kd4λ2

1

N∑

i=1

∫

Ω

sup
s∈[−d−τ2,0]

{
eT

i

(
t−k + s, x

)
P0ei

(
t−k + s, x

)}
, (32)

with (ε3, ε4) =

(√
λmax(ρCT P0Cρ)
λmax(AT P0A) + αg1

√
Nlkλmax(ΓT P0Γ)
λmax(AT P0A) , αg1

√
Nlkλmax(ΓT P0Γ)
λmax(ρCT P0Cρ)

)
. From (27), it can be further deduced that

10
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∫ t−k

tk−d

∫ t−k

t

q∑

l=1

∂

∂xl

(
Dl
∂ei(s, x)
∂xl

)
dsdt = −

∫ t−k

tk−d
ei(s, x)ds + dei

(
t−k , x

)
+ qk

∫ t−k

tk−d

ςk∑

m=1

∫ 0

−d
ei (tk−m + s, x) dsdt

−
∫ t−k

tk−d

∫ t−k

t
Θ(s, x)dsdt,

∑

i∈Dk

∫

Ω

XT
i4P0Xi4dx ≤ q2

k

∑

i∈Dk

∫

Ω

(1 + ε5)


∫ t−k

tk−d
ei(s, x)ds


T

P0


∫ t−k

tk−d
ei(s, x)ds



+
(
1 + ε−1

5

)
(1 + ε6) d2eT

i

(
t−k , x

)
P0ei

(
t−k , x

)
+

(
1 + ε−1

5

) (
1 + ε−1

6

)
(1 + ε7)

1

q2
k

XT
i2P0Xi2

+
(
1 + ε−1

5

) (
1 + ε−1

6

) (
1 + ε−1

7

) 1

q2
k

XT
i3P0Xi3. (33)

So, from (29)-(33), it is obtained that

1
2

∑

i∈Dk

∫

Ω

eT
i

(
t+k , x

)
P0e(t+k , x)dx ≤ 1

2
ρ0k

∑

i∈Dk

∫

Ω

eT
i

(
t−k , x

)
P0e

(
t−k , x

)
dx + ρ2k sup

s∈[−γ,0]

{
V1

(
t−k + s

)}
, (34)

where ρ0k, ρ2k are defined above. According to the selection of nodes in setDk, we have

1
2

∑

i<Dk

∫

Ω

eT
i

(
t−k , x

)
P0ei(t

−
k , x)dx ≤ 1

2
(N − lk)

1
lk

∑

i∈Dk

∫

Ω

eT
i

(
t−k , x

)
P0ei

(
t−k , x

)
dx. (35)

Let ρ1k = 1 − lk
N (1 − ρ0k). Based on (34), (35) and (25), we can conclude that

V1

(
t+k

)
≤ ρ1kV1

(
t−k

)
+ ρ2k sup

s∈[−γ,0]

{
V1

(
t−k + s

)}
.

This completes the proof.

Theorem 1. Suppose that assumptions (A1) and (A2) hold. If there exist positive matrices P0, P1, P2, P3, Q1, Q2 ∈
Rn×n > 0, a matrix Q3 ∈ RNn×Nn, positive constants $, ε1, ε0, ε1, ε2, ε5, ε6, ε7, c, µ > 0, ρ1k > 0, ρ2k ≥ 0 such
that for all k ∈ N,

ln

[
ρ1k + ρ2keµ(γ+d) +

w3

w1
eµτ2

]
≤ − (µ + c) (tk+1 − tk) , (36)

Υ ≤ 0, (37)(
IN ⊗$Q2 Q3

∗ IN ⊗$Q2

)
≥ 0, (38)

then the trivial solution of system (9) is globally exponentially synchronized.

Proof. Step 1: By employing Proposition 1, it is obtained from (37) and (38) that along the trajectory of system (11),

V̇(t) ≤ cV(t). (39)

Step 2: Next we estimate the growth trend of V(t) at impulsive instants, when t = tk, under the pinning impulsive
scheme (8), from Proposition 2, we have

V1

(
t+k

)
≤ ρ1kV1

(
t−k

)
+ ρ2k sup

s∈[−γ−d,0]

{
V1

(
t−k + s

)}
. (40)
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In addition, for the Lyapunov-Krasovskii functional candidates V2

(
t+k

)
, V3

(
t+k

)
, we have

V2

(
t+k

)
+ V3

(
t+k

)
= V2

(
t−k

)
+ V3

(
t−k

)
. (41)

Step 3: We derive globally exponential synchronization criteria of system (9).
Since lim

k→∞
tk = ∞, there exists an integer i ≥ 1 such that ti − γ − d ≥ t0, and for t ∈ [t0, ti), we can obtain that

V(t) = V(t)eµ(t−t0)e−µ(t−t0) ≤ Me−µ(t−t0), (42)

where M = eµ(ti−t0) sup
t∈[t0,ti)

{V(t)}. Next, we shall claim that for t ∈ [tk, tk+1), k ≥ i,

V(t) ≤ Me−(µ+c)(tk+1−t0)ec(t−t0). (43)

From the idea in Theorem 1 in [25], here we give a sketch of the proof. First, when k = i, we obtain from (42) and
(13) that

sup
s∈[−γ−d,0]

{∥∥∥e(t−i + s, ·)
∥∥∥2

2

}
≤ sup

s∈[−γ−d,0]

{
1

w1
V1(t−i + s)

}
≤ 1

w1
Meµ(γ+d)e−(µ+c)(ti−t0)ec(ti−t0). (44)

Next, it gives from (36), (40) and (41) that

V(t+i ) ≤
(
ρ1i + ρ2ie

µ(γ+d) +
w3

w1
eµτ2

)
Me−(µ+c)(ti−t0)ec(ti−t0) ≤ Me−(µ+c)(ti+1−t0)ec(ti−t0). (45)

Therefore, we obtain from (39) and (45) that for t ∈ [ti, ti+1),

V(t) ≤ V(t+i )ec(t−ti) ≤ Me−(µ+c)(ti+1−t0)ec(t−t0). (46)

So (43) holds for k = i. Then based on the mathematical induction, we can prove that (43) is true for all k ≥ i.
Therefore, for t ∈ [tk, tk+1), we have

V(t) ≤ Me−(µ+c)(tk+1−t0)ec(t−t0) ≤ Me−(µ+c)(t−t0)ec(t−t0) = Me−µ(t−t0). (47)

Thus, from (42) and (47), we get for t ≥ t0, V(t) ≤ Me−µ(t−t0). It follows that

‖e(t, ·)‖2 ≤ M̄ sup
s∈[−γ,0]

‖ϕ(s, ·) − φ̄(s, ·)‖2e−
µ
2 (t−t0), (48)

where M̄ =
√

M√
w1 sup

s∈[−γ,0]
‖ϕ(s,·)−φ̄(s,·)‖2

> 1. So from Definition 1, we can conclude that system (9) is globally exponentially

synchronized.

Remark 4. The Lyapunov-Krasovskii functional candidates in this section are divided into a function part V1(t) and
the functional parts V2(t), V3(t). Since the function V1(t) is a quadratic form, it is straightforward that the function part
can be affected instantaneously by the impulses, whereas the impulses can not bring the value of the purely functional
parts V2(t), V3(t) down. So the function V1(t) plays an important role in describing the dynamic of impulsive behavior.
Note that in (39), the constant c is positive, which means that the reaction-diffusion neural networks (11) maybe
unstable without the impulsive controller. Therefore, the sufficient conditions in Theorem 1 is applicable to a delayed
reaction-diffusion neural network with unstable continuous dynamics.

Remark 5. The most recent results about distributed delay-dependent impulsive control were reported in [24, 42, 43].
However, the authors did not consider the reaction-diffusion effects in the systems. Since the existence of reaction-
diffusion effects, the methods in [24, 42, 43] to estimate the states of Lyapunov candidates at impulsive instants are
not feasible.
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Very recently, there have been some studies on the stability or synchronization analysis issue for various reaction-
diffusion neural networks via impulsive control, see e.g. [12, 30] for some recent publications. However, these results
have not considered the time-delay existed in the impulsive controller. Actually the existence of time-delay in the
impulsive controller brings dramatic difficulties in estimating the relation between the states with and without time-
delay. Furthermore, in [44–50], the delayed impulsive stability for network systems have been studied, but among
the publications, only discrete-delayed impulses have been handled, and the reaction-diffusion effects have not been
considered. To the best of our knowledge, this is the first time to study the pinning impulsive synchronization for the
reaction-diffusion neural network with distributed-delayed impulses.

Remark 6. The factor w3
w1

plays an important role in estimating the functional parts V2(t) and V3(t), which eventually
leads to condition (36), The length of impulsive interval conditions are depending on the delay size τ2, d, and the factor
w3
w1
, ρ1k, ρ2k. Note that the results in Theorem 1 can be applicable to system with arbitrarily large delay size. Because

we can always add the tuning coefficient of Lyapunov functional parts V2(t) and V3(t) to make w3 sufficiently small ($
is the tuning coefficient in this paper), such that w3

w1
eµτ2 < 1 and (36) is satisfied. However, by doing so, more burden

would be placed on the estimations of ρ1k and ρ2k (because they can become larger), which leads more restrictions on
the length of impulsive interval (in [51], similar discussions are given for delayed impulsive system). ρ1k and ρ2k are

original from (27) in the estimation of the relation between the state ei

(
t−k , x

)
and the delayed state

∫ t−k
tk−d

ei(t, x)dt. It is

required that the factor w3
w1

and the parameters ρ1k, ρ2k should be small enough such that ρ1k + ρ2keµ(γ+d) +
w3
w1

eµτ2 < 1.
Therefore, it is the key point to appropriately estimate the derivatives and the growth by impulsive effects to reach
balance conditions in terms of the impulsive interval upper bounds. For more details, please see the examples in the
next section.

3.2. Pinning Impulsive Synchronization of Reaction-Diffusion Neural Network with Discrete-Delayed impulses

Next we will consider the discrete delay in the impulsive controller, then the pinning impulsive controller is given
by the following form:

Ui(t, x) =



∞∑
k=1
−q̄kei(t − d̄, x)δ(t − tk), i ∈ Dk and ]Dk = lk,

0, i < Dk,
(49)

where i = 1, 2, · · · ,N, q̄k is the impulsive gains and d̄ is the discrete delay. Under this impulsive controller, the error
system is described as follows:



∂ei(t,x)
∂t =

q∑
l=1

∂
∂xl

(
Dl

∂ei(t,x)
∂xl

)
− Aei(t, x) + C f (ei (t − τ(t), x)) + α

N∑
j=1

Gi jΓe j(t, x), t , tk,

∆ei (tk, x) = −q̄kei

(
tk − d̄, x

)
, i ∈ Dk, ]Dk = lk, k ∈ N,

ei(t0 + s, x) = ϕi(s, x) − φ(s, x), (s, x) ∈ [−γ̄, 0] ×Ω,

ei(t, x) = 0, (t, x) ∈ [t0 − γ̄,+∞) × ∂Ω, γ̄ = max
(
τ2, d̄

)
.

(50)

Remark 7. Note that the principles of the distributed-delayed impulsive controller (8) and the discrete-delayed im-

pulsive controller (49) are different. For the first case, the distributed-delayed states
∫ t−k

tk−d
ei(s, x)ds can be regarded as

the accumulation (or average) of the states over a time interval [tk − d, tk). The idea of distributed-delayed impulsive
control is as follows: instead of relying on the system states at the impulsive instants t−k , or the states at history mo-
ments tk − d, the decision of the impulsive controller depends on the accumulation (or average) of the system states
over a time period [tk − d, tk). Therefore, it is more practical to employ the distributed-delayed states in this case.

As for the second case, since the inevitability of time delays in the sampling and transmission of impulsive in-
formation, the delayed states ei(tk − d̄, x) are considered. To be more specific, the states ei(τk, x) are sampled at a set
of moments denoted as τk, the controller formulates the impulsive signals based on the sampled values. However,
there are two types of delays involved in the control process: sampling-to-controller delays and controller-to-actuator
delays. Hence, due to the fact that these two kinds of delays co-exist, it is not feasible to instantaneously apply the
impulsive control signals at the exact moments τk. Rather, there will be a delay term, d̄, at each impulse. Therefore the
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impulsive signals are, in fact, applied at the moments tk := τk + d̄, and the discrete-delayed states ei(τk, x) = ei(tk− d̄, x)
would be employed in this case.

Theorem 2. Suppose that assumptions (A1) and (A2) hold. If there exist positive matrices P0, P1, P2, P3, Q1, Q2 ∈
Rn×n > 0, a matrix Q3 ∈ RNn×Nn, positive constants $, ε1, ε0, ε1, ε2, ε5, ε6, ε7, c, µ > 0, ρ̄1k > 0, ρ̄2k ≥ 0 such
that for all k ∈ N,

ln

[
ρ̄1k + ρ̄2keµ(γ̄+d̄) +

w3

w1
eµτ2

]
≤ −(µ + c) (tk+1 − tk) , (51)

Υ ≤ 0, (52)(
IN ⊗$Q2 Q3

∗ IN ⊗$Q2

)
≥ 0, where f or k ∈ N, (53)

ρ̄0k = (1 + ε0) (1 − q̄k)2 + Φ4 (1 + ε6) q̄2
k/

(
1 + ε−1

6

)
, ρ̄2k = Φ1q̄4

k ς̄
2 + Φ2q̄2

k d̄2λ2
1 + Φ3q̄2

k , ρ̄1k = 1 − lk
N (1 − ρ̄0k),

Φ1, Φ2, Φ3, Φ4, Φ5 are the same as in Theorem 1. ς̄ =
⌊

d̄
δ

⌋
is the number of impulses that the system (50) subject

to on each impulsive interval [tk − d, tk), δ = tk+1 − tk, then the trivial solution of system (9) is globally exponentially
synchronized.

Proof. Here for i ∈ Dk and t = t+k , we will estimate the relationship between ei(t−k , x) and ei

(
tk − d̄, x

)
. from the

second equation of (50), we have ei

(
t+k , x

)
= ei

(
t−k , x

)
− q̄kei

(
tk − d̄, x

)
. Integrating both sides of first equation in

system (50) from tk − d to t−k yields

ei

(
tk − d̄, x

)
= ei

(
t−k , x

)
−

∫ t−k

tk−d̄

q∑

l=1

∂

∂xl

(
Dl
∂ei(s, x)
∂xl

)
ds +

ς̄k∑

m=1

q̄kei

(
tk−m − d̄, x

)
−

∫ t−k

tk−d̄
Θ(s, x)ds, (54)

where ς̄k denotes the number of impulses activated onto the ith node during the period (tk − d, t−k ), and similarly we
have ς̄k ≤ ς̄. We consider the same Lyapunov-Krasovskii functional candidates as (12). Similarly, by employing
Green’s formula, the Dirichlet boundary condition (7), Lemma 1 and Lemma 4, we get

V1

(
t+k

)
≤ ρ̄1kV1

(
t−k

)
+ ρ̄2k sup

s∈[−γ̄−d̄,0]

{
V1

(
t−k + s

)}
. (55)

Moreover, from (52), (53) and Proposition 1, we conclude that V̇(t) ≤ cV(t) for t ∈ [tk, tk+1). The rest of the proof
is essentially the same as the proof of Theorem 1.

Remark 8. The Dirichlet boundary conditions for reaction-diffusion neural networks are considered in this paper.
Actually when considering the Neumannn boundary conditions, which is given by

∂zi(t, x)
∂v

=

(
∂zi(t, x)
∂x1

,
∂zi(t, x)
∂x2

· · · , ∂zi(t, x)
∂xq

)T

for (t, x) ∈ [t0 − τ2,+∞) × ∂Ω,

the method in Theorem 1 and Theorem 2 are still applicable. Obviously Lemma 1 is not feasible for the Neumannn
boundary conditions, but we can employ the Poincaré inequality instead. By using the Poincaré inequality, the param-
eter hl in (36) would be replaced by the lowest positive eigenvalue λ1 of the Neumann boundary problem (5) in [28].
For more details about the explanation and application of Poincaré inequality on reaction-diffusion neural networks,
we can refer to [28, 52–54].

Remark 9. In Theorem 1 and Theorem 2, the guidelines of balancing the values among the impulsive gain qk (or q̄k),
the number of pinned nodes lk, and the length of the impulsive interval are estimated. From inequalities (36) and (51),
it is implied that for fixed impulsive gain, reducing the amounts of pinned networks at each impulsive instant would
reduce the length of impulsive interval. It is also observed that reducing the absolute value of the impulsive strength
will lead to increasing the frequency of the impulsive effects. In order to better understand the effects of the time-delay
in the impulses and the ratio lk

N on the synchronization process, we will give the following three particular cases.
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(a) (b)

Fig. 1. Spatiotemporal chaotic behavior of neural network (4) with the given initial conditions φ1(s, x) = 1.2cos (πx/8) , φ2(s, x) =

−0.6cos (πx/8) for s ∈ [−τ2, 0] and x ∈ Ω. (a) State trajectory of w1. (b) State trajectory of w2.

Case 1: For lk = N. Then the impulsive controller (49) is reduced to the form: Ui(t, x) =
∞∑

k=1
−q̄kei(t − d̄, x)δ(t − tk),

we have the following stability criterion:

Corollary 1. Suppose the assumptions (A1) and (A2) hold, and (52)-(53) satisfied, replace the condition (51) by
ln

[
ρ̄0k + ρ̄2keµ(γ̄+d̄) +

w3
w1

eµτ2
]
≤ −(µ + c) (tk+1 − tk), then the trivial solution of system (9) is globally exponentially

synchronized.

Case 2: For d̄ = 0. The impulsive controller (49) reduces to be Ui(t, x) =



∞∑
k=1
−q̄kei(t, x)δ(t − tk), i ∈ Dk

0, i < Dk

. The

corresponding stability criterion can be obtained as follows:

Corollary 2. Suppose the assumptions (A1) and (A2) hold, and (52)-(53) satisfied, replace the condition (51) by
ln

[
ρ̄1k +

w3
w1

eµτ2
]
≤ −(µ + c) (tk+1 − tk) with ρ̄0k = (1 − q̄k)2 and ρ̄2k = 0, then the trivial solution of system (9) is

globally exponentially synchronized.

Case 3: For lk = N and d̄ = 0. The impulsive controller (49) reduces to be Ui(t, x) =
∞∑

k=1
−q̄kei(t, x)δ(t − tk). We derive

the corresponding stability criterion:

Corollary 3. Suppose the assumptions (A1) and (A2) hold, and (52)-(53) satisfied, replace the condition (51) by
ln

[
ρ̄0k +

w3
w1

eµτ2
]
≤ −(µ + c) (tk+1 − tk) with ρ̄0k = (1 − q̄k)2 and ρ̄2k = 0, then the trivial solution of system (9) is

globally exponentially synchronized.

By comparing Corollary 1 with Corollary 3, the main difference is the term ρ̄2k, which relates to the time-delay in
the impulsive controller. Therefore, it can be easily observed from (51) that for fixed impulsive control gain, reducing
the discrete delay size in the impulses would increase the upper bound of the impulsive interval. Meanwhile, from
Corollary 2 with Corollary 3, the difference lies in the term ρ̄1k. Since ρ̄1k < 1 is required, we have ρ̄0k < 1 and
ρ̄1k > ρ̄0k if lk < N. Therefore, it can be seen from the results in Corollary 2 with Corollary 3 that increasing the
number of nodes to be pinned would lead to reducing the frequency of the impulsive effects, which is in accord with
the theoretical analysis given before.
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Fig. 2. Synchronization error states of neural network (5) with the initial conditions ϕ11(s, x) = 1.1cos (πx/8) , ϕ12(s, x) =

−0.4cos (πx/8), ϕ21(s, x) = 1.5cos (πx/8) , ϕ22(s, x) = −1.4cos (πx/8), ϕ31(s, x) = 0.7cos (πx/8) , ϕ32(s, x) = 0 for s ∈ [−γ, 0]
and x ∈ Ω. (a) State trajectory of e11(t, x). (b) State trajectory of e12(t, x). (c) State trajectory of e21(t, x). (d) State trajectory of
e22(t, x). (e) State trajectory of e31(t, x). (f) State trajectory of e32(t, x).

Fig. 3. Synchronization processes of the error states in norm (‖e1(t, ·)‖2, ‖e2(t, ·)‖2, ‖e3(t, ·)‖2) via the distributed-delayed impulsive
controller. The effects of time-delay are shown through the visible serrations.

4. Numerical Examples

Example 1. In this section, two representative examples are presented to demonstrate our main results. In the first
example, we consider the synchronization problem of coupled reaction-diffusion neural network with distributed-
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Fig. 4. Synchronization processes of the error states ‖e1(t, ·)‖2, ‖e2(t, ·)‖2, ‖e3(t, ·)‖2 with different pinning algorithms: (a) Pinning
impulsive control the neural network (5) with lk = 1. (b) Impulsive control the first node of neural network (5) at each impulsive
instants. (c) Impulsive control the second node of neural network (5). (d) Impulsive control the third node of neural network (5).

delayed impulses. Consider the coupled reaction-diffusion neural network (5) consisting of three nodes with hybrid
coupling, the single node is described by (4) with the initial condition (2) and Dirichlet boundary condition (3), where
m = 1, 2, i = 1, 2, 3, t0 = 0, q = 1, Ω = [−4, 4], τ(t) = 0.6 − 0.4e−t, g j(·) = tanh(·), J1 = J2 = 0. j = 1, 2,
D1 = diag(0.1, 0.1), α = 0.1, Γ = diag(0.2, 0.2), A = diag(1, 1), and the matrices C =

(
cm j

)
2×2

, G =
(
Gi j

)
3×3

are
chosen as

C =

( −1.5 −0.1
−0.2 −2.5

)
, G =


−0.1 0.1 0
0.15 −0.15 0

0 0.2 −0.2

 .

Obviously, assumption (A1) is satisfied with τ1 = 0.2, τ2 = 0.6 and η = 0.4, g j(·) ( j = 1, 2) are Lips-
chitz continuous with ϑ1 = ϑ2 = 1, so ρ = diag(1, 1). Set the initial value of neural network (4) as φ1(s, x) =

1.2cos (πx/8) , φ2(s, x) = −0.6cos (πx/8) for s ∈ [−τ2, 0] and x ∈ Ω, then the chaotic behavior of neural network (4)
is shown in Fig. 1. It can be easily observed that w1(t, x) and w2(t, x) are not convergent as time goes by.

Secondly, we consider the coupled reaction-diffusion neural network (5) with the given coupling information.
Choosing ε1 = 0.01, by using MATLAB LMI Toolbox, we can find feasible solutions for (37) and (38) with c =
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Fig. 5. Synchronization processes of the error states ‖e1(t, ·)‖2, ‖e2(t, ·)‖2, ‖e3(t, ·)‖2 and ‖e4(t, ·)‖2. Set the initial value as
ϕT

1 (s, x) = (0.5cos(πx/2), 0.5cos(πx/2)), ϕT
2 (s, x) = (2.5cos(πx/2), 0.75cos(πx/2)), ϕT

3 (s, x) = (2cos(πx/2), 0.75cos(πx/2)),
ϕT

4 (s, x) = (4.5cos(πx/2), 1.25cos(πx/2)), φT (s, x) = (3cos(πx/2), 0.25cos(πx/2)). Four cases are considered: (a) Pinning im-
pulsive control the neural network (5) with lk = 1, d̄ = 0.15. (b) lk = 1, d̄ = 0. (c) lk = 4, d̄ = 0.15. (d) lk = 4, d̄ = 0.

35.8882. Then we consider the impulsive controller (8) with lk = N = 3, d = 0.05, tk− tk−1 = 0.02, and qk = 3.5 for all
k ∈ N, and we can get the following estimations: ρ1k = 0.8053, ρ2k = 0.3948, γ = 0.6, w1 = 0.1808 and w3 = 0.0127
($ is sufficiently small). So (36) is satisfied with µ = 1.4837. Therefore, according to the results in Theorem 1, the
exponential synchronization of neural network (5) can achieved under the impulsive controller (8). The trajectories of
error states are presented in Fig. 2 and Fig. 3. Since the existence of time-delay, the serration phenomenon occurred
and can be clearly observed in Fig. 3 when t < 0.6. It is indicated through these two figures that under the delayed
impulsive controller (8), the synchronization of coupled reaction-diffusion neural network (5) can be achieved.

Next, we consider the pinning impulsive controller with lk = 1, i.e., at each impulsive instant, only one node
is under controlled. As mentioned in Remark 3, the selection of pinned nodes is important when applying pinning
control approach. We make a comparison with the traditional impulsive control method in [15, 32], in which the
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pinned nodes are fixed and no conditions about the selection of pinned nodes are given. Set tk − tk−1 = 0.01 for
k ∈ N, the other parameters stay the same, the simulation results are shown in Fig. 4. It can be observed in sub-figure
4(a) that different node are controlled at distinct impulsive instants. This is consistent with the idea of our pinning
controller, i.e., to control the nodes who have larger state deviation. From the comparison of 4(a) with 4(b), 4(c) and
4(d), we can find that the selected pinning methods in sub-figures 4(b), 4(c) and 4(d) fail to synchronize the network.
In sub-figure 4(a), in order to select the appropriate pinned nodes, the dynamical performances of each isolated node,
the coupling strategies and their relations are more deeply considered, and it is efficient in synchronizing the network.
Therefore, our pinning impulsive method is more efficient to synchronize the reaction-diffusion neural network (5)
than the results in [15, 32].

Example 2. To illustrate the effectiveness of Theorem 2, we consider neural network (5) with the pinning impulsive
controller (49), where m = 1, 2, i = 1, 2, 3, 4, t0 = 0, q = 1, Ω = [−4, 4], τ(t) = 0.2 + 0.3et

1+et , g j(w j) =
|w j+1|−|w j−1|

4 ,
J1 = J2 = 0. j = 1, 2, D1 = diag(0.2, 0.1), α = 0.2, Γ = diag(0.4, 0.6), A = diag(1, 2), and the matrices C =(
cm j

)
2×2

, G =
(
Gi j

)
4×4

are chosen as

C =

( −1.5 −0.5
−1 −1.5

)
, G =



−0.1 0.1 0 0
0 −0.1 0.1 0
0 0 −0.1 0.1

0.1 0 0 −0.1


.

It is obvious that g j(·) satisfies assumption (A2) with ρ = diag(0.5, 0.5), assumption (A1) is satisfied with τ1 = 0.2,
τ2 = 0.5 and η = 0.075. Based on the results on Theorem 2, Corollary 1, Corollary 2 and Corollary 3, Set tk − tk−1 =

0.1, q̄k = 0.3, we consider four different cases, and the numerical results are shown in Fig. 5.

5. Conclusion

This paper has analyzed the exponential synchronization problem of coupled reaction-diffusion neural networks
with time-varying delays. The pinning impulsive controllers that take into account both distributed time delays or
discrete time delays have been proposed, respectively. By utilizing the Lyapunov-Krasovskii functional method and
the pinning impulsive control algorithms, exponential synchronization criteria are derived to design suitable pinning
impulsive controllers. Numerical simulations of delayed reaction-diffusion neural networks, pinning impulsive syn-
chronization of delayed reaction-diffusion neural networks with distributed impulses and discrete impulses are given
to demonstrate the effectiveness of our theoretical results.

Moreover, possible future research directions may include the following: 1) This paper focuses on the synchro-
nization problem of couple neural networks. It would be interesting to apply our results to the consensus problem of
networked multi-agent systems with suitable impulsive protocols (see, e.g., [26, 55]). 2) Since stochastic disturbances
always occur in networked systems, our proposed approach can be extended to solve various control problems of
networked systems with stochastic disturbance.
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