
Dynamic Memory Bandwidth
Allocation for Real-Time GPU-Based

SoC Platforms

by

Homa Aghilinasab

A thesis
presented to the University Of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2020

© Homa Aghilinasab 2020

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contribution

The work presented in this thesis is partially based upon and extends the work presented
in the following submitted paper:

[4]: Homa Aghilinasab, Waqar Ali, Heechul Yun, and Rodolfo Pellizzoni. ”Dynamic
Memory Bandwidth Allocation for Real-Time GPU-Based SoC Platforms.” International
Conference on Embedded Software (EMSOFT), 2020, submitted for publication.

Due to the relation with the published work, parts of this thesis contain significant
material from [4], including Chapters 3-5 and Section 2.3. We would like to thank all the
co-authors for their precious help in completing this research. In particular, we would like to
thank Waqar Ali and Heechul Yun for their work on the modification of the BWLOCK++
Linux kernel module [1], and Rodolfo Pellizzoni for his help on the Worst-Case Execution
Time (WCET) estimation and budget allocation algorithms.

iii

Abstract

Heterogeneous SoC platforms, comprising both general purpose CPUs and accelerators
such as a GPU, are becoming increasingly attractive for real-time and mixed-criticality
systems to cope with the computational demand of data parallel applications. However,
contention for access to shared main memory can lead to significant performance degrada-
tion on both CPU and GPU. Existing work has shown that memory bandwidth throttling
is effective in protecting real-time applications from memory-intensive, best-effort ones;
however, due to the inherent pessimism involved in worst-case execution time estimation,
such approaches can unduly restrict the bandwidth available to best-effort applications.
In this work, we propose a novel memory bandwidth allocation scheme where we dynami-
cally monitor the progress of a real-time application and increase the bandwidth share of
best-effort ones whenever it is safe to do so. Specifically, we demonstrate our approach by
protecting a real-time GPU kernel from best-effort CPU tasks. Based on profiling informa-
tion, we first build a worst case execution time estimation model for the GPU kernel. Using
such model, we then show how to dynamically recompute on-line the maximum memory
budget that can be allocated to best-effort tasks without exceeding the kernel’s assigned
execution budget. We implement our proposed technique on NVIDIA embedded SoC and
demonstrate its effectiveness on a variety of GPU and CPU benchmarks.

iv

Acknowledgements

I would like to thank my supervisor Rodolfo Pellizzoni for his dedication, encouragement
and guidance. This research and thesis would not have been accomplished without his
constant support. I sincerely thank my committee members, Professor Hiren Patel and
Professor Nachiket Kapre for reviewing this thesis.

v

Dedication

To my beloved parents and husband, Zahra, Mohammadreza, and Reza.

vi

Table of Contents

List of Figures ix

List of Tables x

List of Acronyms xi

1 Introduction 1

1.1 Motivation . 1

1.2 Methodology . 4

1.3 Thesis Outline . 6

2 Background and Related Work 7

2.1 Resource Isolation in Real-Time Systems 7

2.1.1 Software Solutions . 8

2.1.2 Hardware Solutions . 9

2.2 WCET Analysis . 10

2.2.1 WCET Analysis in Multi-Core Systems 11

2.3 GPUs in Real-Time Systems . 12

2.3.1 Thread Scheduling in CUDA . 13

2.3.2 Real-Time Frameworks for GPU . 13

2.3.3 Memory-Aware Frameworks on GPU 14

2.3.4 WCET Estimation for GPU . 15

vii

3 System Model and Evaluation Platform 17

3.1 System Model and Assumptions . 17

3.2 Evaluation Platform . 19

4 WCET Estimation 20

4.1 Hybrid WCET Estimation . 20

4.2 Block Clustering . 21

4.3 Memory Interference Estimation . 24

4.4 Implementation . 27

4.5 Evaluation . 28

4.5.1 Bandwidth and Budget Estimation 28

4.5.2 Testing the Interference Hypothesis 29

4.5.3 Clustering Results . 29

4.5.4 Tightness of WCET Estimation . 29

4.6 Discussion and Conclusions . 30

5 Dynamic Budget Allocation 33

5.1 Allocation Algorithm . 33

5.2 Improved Allocation . 35

5.3 Implementation . 36

5.4 Evaluation . 37

5.5 Discussion and Conclusions . 39

6 Conclusions and Future Work 41

References 43

Appendix 52

viii

List of Figures

1.1 Performance reduction of histo benchmark due to increased number of in-
terfering CPU cores . 3

3.1 Jetson TX2 Architecture . 19

4.1 Distribution of block execution times for histo benchmark 23

4.2 tmem derivation . 26

4.3 Analytical WCET vs Measured WCET for histo 32

5.1 Budget Distribution over Time . 40

1 Distribution of block execution times for spmv benchmark 57

2 Distribution of block execution times for sad benchmark 58

3 Distribution of block execution times for bfs benchmark 59

4 Distribution of block execution times for lbm benchmark 60

5 Distribution of block execution times for stencil benchmark 61

ix

List of Tables

4.1 Clustering: hist benchmark. Time values are in us. 22

4.2 Benchmark Characterization . 29

5.1 Nominal Budgets for all Benchmarks . 37

5.2 Normalized Performance Improvement over NOMINAL, Synthetic BE Tasks 37

5.3 Performance Results, SPEC BE Tasks . 38

x

List of Acronyms

GPU Graphics Processing Unit

CPU Central Processing Unit

WCET Worst-Case Execution Time

PREM Predictable Execution Model

ACET Average-Case Execution Time

CFG Control Flow Graph

DMA Direct Memory Access

TFS Throttle Fair Scheduler

WCL Worst-Case Latency

TDMA Time-Division Multiple Access

SoC System-on-Chip

DSAs Domain-Specific Architectures

LLC Last-Level Cache

HwCS Hardware Context Switch

CTA Concurrent Thread Arrays

SM Streaming Multiprocessors

PEG-C Performance Enhancement Guaranteed Cache

xi

OS Operating System

EVT Extreme Value Theory

CBS Constant Bandwidth Server

BE Best Effort

EDF Empirical Distribution Function

K-S Kolmogorov-Smirnov

xii

Chapter 1

Introduction

1.1 Motivation

Safety-critical embedded systems, in different areas such as avionics, automotive systems,
medical devices, etc., are increasingly adopting high-performance computing architectures
to meet rapidly growing computational demands. To cope with the breakdown of Dennard’s
scaling, Domain-Specific Architectures (DSAs) [40] are required to meet demanding targets
in terms of performance-per-watt and performance-per-area. Graphics Processing Unit
(GPU) is an example of such architecture, specialized for massively parallel applications.
Examples of embedded applications employing GPUs for safety-critical processes include
sensor data processing in robotics and autonomous cars [24]. Embedded systems tend
to be highly resource-constrained in terms of power, cost, area, and weight. For this
reason, heterogeneous System-on-Chip (SoC) platforms, integrating both general purpose
CPU cores as well as GPU cores on the same device, are becoming the preferred solutions
thanks to their ability to combine high performance and efficiency [52].

It is important to notice that due to the higher degree of integration, many such systems
are mixed-critical, allowing applications with different criticality levels (for example: ASIL
in ISO 26262 [2], or DAL in DO-178C [41]) to coexist on the same platform. Due to safety
and fault propagation considerations, we will specifically consider systems where processing
elements are partitioned based on the criticality of the applications they service. Therefore,
we will distinguish between critical cores, which run safety-critical tasks, and Best Effort
(BE) cores, which are used to execute lower-criticality applications. Many safety-critical
tasks exhibit real-time requirements, where the correctness of the application depends on
its ability to provide results before a predetermined point in time (a deadline). Hard real-

1

time systems do not tolerate any deadline miss, as such occurrence could lead to damage or
loss of life. In contrast, soft real-time systems allow for some deadline misses to occur, or
tolerate a finite lateness with respect to the deadline. A schedulability analysis is employed
off-line to guarantee that real-time tasks will complete by their deadline under all possible
execution scenarios. Such analysis relies on the Worst-Case Execution Time (WCET) of
tasks as input. The estimation of WCET has to be safe, which means it should be above
or equal to any possible execution time, and should also be tight, that is close to the actual
execution time.

Unfortunately, the assumption of a constant per-task WCET breaks down on modern
multi-core architectures, making it difficult to provide real-time guarantees. The key is-
sue is the presence of various hardware resources, like caches, main memory, and buses,
which are shared among cores. Contention for access to such resources can remarkably
alter the WCET, effectively making the WCET of a task dependent on all other tasks
in the system. In turn, this makes certification of mixed-critical systems essentially im-
possible, since the dependency means that low-criticality software applications can affect
high-criticality ones and should therefore be certified at the highest (and most expensive)
level.

In this thesis, we are particularly concerned with interference between the GPU and
CPU cores, which share an individual main memory module in integrated SoC platforms.
The interference of memory-intensive tasks running on BE processing elements, with the
execution of critical real-time tasks running on real-time processing elements in parallel,
can cause main memory bandwidth contention. To demonstrate this problem, we have
evaluated the effect of running memory-intensive synthetic CPU tasks on the performance
of the GPU benchmark histo from the Parboil suit [59] on a NVIDIA Jetson TX2 board,
an approach similar to [8]. For this evaluation, we first run the GPU benchmark alone
and record solo execution statistics. We then repeat the experiment by increasing the
number of CPU cores running interfering memory-intensive tasks from one to three to
effectively show main memory bandwidth contention. Figure 1.1 illustrates the result of
this experiment. As it can be seen, co-scheduling the memory-intensive tasks on the CPU
cores significantly increases the execution time of the GPU benchmark histo, up to 3.3X.
Hence, in spite of the fact that the Jetson TX2 platform offers plenty of raw performance,
no timing guarantee can be provided for a real-time task executing the GPU benchmark,
unless the number and characteristics of co-running CPU tasks are known.

The key to break the timing dependencies between tasks, and support independent
certification of applications with different criticality levels, is to provide timing isolation
between cores. Specifically, the idea is to partition available hardware resources among
the cores, so that the WCET of each task can be computed based on the system-wide

2

0

0.5

1

1.5

2

2.5

3

3.5

Corun-3 Corun-2 Corun-1 Solo

N
o

rm
al

iz
ed

 E
x
ec

u
ti

o
n
 T

im
e

Figure 1.1: Performance reduction of histo benchmark due to increased number of inter-
fering CPU cores

isolation parameters only, rather than the detailed behavior of co-running tasks. Since
this thesis is concerned with main memory bandwidth contention, we specifically discuss
memory regulation, a method by which we regulate a memory system to serve the requests
of different requestors with defined rates. Memory regulation can be implemented at the
hardware or software level. MemGuard [74] is one of the software methods to provide
memory performance isolation in multi-core real-time systems. The goal is to ensure that
the average memory access latency of a task is no larger than when executing on a system
with a dedicated main memory that processes memory requests at a particular rate [74].
Hence, a multi-core system can be considered as a set of uni-core systems, each of which
has a slower dedicated memory subsystem. Memguard bounds the bandwidth budget of
each core by employing the hardware performance counters of the CPU cores. MemGuard
assigns a budget, which is a predefined maximum access usage, to each core in every regu-
lation period. If a core exceeds its budget, the core becomes idle until the next regulation
period. As a result, the memory bandwidth is partitioned among cores guaranteeing a
minimum bandwidth for each core. The same approach has been later ported to protect a
real-time GPU kernel from interference generated by BE tasks executed on CPU cores in
BWLOCK++[9].

While memory regulation can significantly reduce the maximum contention, and thus WCET
inflation, suffered by a real-time GPU kernel, its impact on the performance of BE ap-

3

plications can be significant. For example, our evaluation in Section 5.4 shows that to
limit WCET inflation to 10% for the memory-intensive kernel histo, we have to reduce the
bandwidth of BE cores to 14% of their maximum throughput. While this severe constraint
is needed to provide a WCET bound for the real-time kernel, it is important to notice that
the contention caused by BE applications at run-time can sometimes be significantly less
than the worst-case measurable one. In particular, computationally intensive BE applica-
tions might require low memory throughput and thus cause limited interference; further-
more, the pattern of memory accesses might be different from the worst-case one. Hence,
by forcing a constant regulation budget based on the worst-case interference pattern, we
might unnecessarily reduce the performance of BE tasks.

1.2 Methodology

To address the limitations of static memory bandwidth partitioning, in this work, we
propose to adopt a dynamic approach to memory regulation. Specifically, when a GPU
kernel first starts executing, our system enforces the statically-computed bandwidth budget
for BE cores. We then monitor the progress of the kernel at run-time: if we determine that
its execution is ahead compared to the worst-case behavior, we can increase the budget
by dynamically re-computing the maximum BE bandwidth that allows the kernel to still
complete within its original WCET; hence, increasing the performance of BE applications
at no cost to real-time guarantees. In details, we target the following objectives:

1. Enforce main memory bandwidth isolation

2. Estimate the progress of the GPU kernel at run-time

3. Estimate the WCET of the GPU kernel

4. Re-compute the BE cores’ bandwidth budget

Enforce main memory bandwidth isolation

We employ the existing BWLOCK++ framework to guarantee the worst-case memory
bandwidth of the real-time processing element (the GPU) by regulating the number of
injected requests from non-real-time ones (BE CPU cores). Some BE applications might
require less bandwidth that the assigned regulation budget. Hence, the GPU kernel might
execute faster compared to its worst-case behavior; this creates slack, the difference between

4

the WCET and the actual execution time of a real-time task. The idea is that, as the real-
time GPU kernel accumulates slack at run-time, we can use the slack to increase the
memory budget of BE cores, as long as the slow down suffered by the kernel for the rest
of its execution is no larger than the accumulated slack. Note that we use the slack to
improve the performance of BE applications, rather than other real-time tasks, because the
real-time tasks fundamentally care about meeting deadlines, whereas BE applications care
about average-case performance; and we already guarantee the real-time tasks’ deadlines
by computing their WCET while providing memory bandwidth isolation.

Estimate the progress of the GPU kernel at run-time

We propose a methodology to estimate the progress of a GPU kernel at run-time. Our
methodology is based on the observation that a kernel executes a large number of threads
with the same code; while such code can include control instructions, the number of differ-
ent program paths is usually limited. We thus classify groups of threads into clusters, each
with different execution time profiles; then, at run-time, we count the number of completed
groups for each cluster as a measure of progress. We show how to implement the required
instrumentation using NVIDIA CUDA programming framework and implement it on a
Jetson TX2 board.

Estimate the WCET of the GPU kernel

Following the proposed progress mechanism, we introduce a measurement-based WCET
approach to estimate the execution time of a kernel, based on its remaining number of
thread groups per cluster, and the bandwidth budget for BE cores. Our WCET estimation
method follows a hybrid approach: the execution time for each cluster of thread groups
is first obtained by extensive measures under both isolation, and maximal interference by
memory-intesive BE tasks. Then, the overall WCET of the kernel is analytically derived
using the cluster information and the amount of time that BE tasks can perform memory
requests based on the BWLOCK++ bandwidth budget.

Re-compute the BE cores’ bandwidth

Finally, we propose an on-line dynamic budget allocation mechanism which re-computes
the BE cores’ bandwidth at each regulation period while ensuring that the kernel completes
within its original WCET. We can guarantee that WCET of the GPU tasks will not

5

be exceeded, while the BE tasks can benefit from higher main memory bandwidth. We
propose three different allocation schemes, which provide different grades of allocation
fairness to BE tasks. We show that the approach can be implemented with low overhead
on the Jetson TX2, and can lead to significant performance improvements using realistic
benchmarks.

1.3 Thesis Outline

The rest of this thesis is organized as follows: in Chapter 2, we provide the background
required to understand our approach and discuss related work. In Chapter 3, we introduce
our system model and evaluation platform. Chapter 4 presents the clustering method
and WCET estimation approach. In Chapter 5 we demonstrate the budget re-computation
mechanism. Finally, we summarize the main contributions of this thesis and possible future
work in Chapter 6.

6

Chapter 2

Background and Related Work

In this chapter, we present essential background for the work performed in this thesis and
review related work. We begin by discussing work related to resource isolation in real-
time systems, with a focus on homogeneous CPU-based systems, in Section 2.1. We then
present background on Worst-Case Execution Time (WCET) analysis for real-time tasks
in Section 2.2. Finally, we present background on GPU’s execution model, and related
work on real-time computing on GPU, in Section 2.3.

2.1 Resource Isolation in Real-Time Systems

Contention for access to shared hardware resources makes WCET estimation considerably
more challenging. In this section, we discuss approaches that attempt to mitigate the effect
of resource contention and provide timing isolation between CPU cores. The proposed
methods consider different types of shared resources, such as cache and main memory. In
this work, we focus on providing isolation at the level of the main memory bandwidth.
From a performance perspective, contention at the level of shared caches can have an
even more significant impact than contention in main memory; hence, we also discuss
works targeting cache-level isolation. We categorize related works based on whether the
mechanism is implemented in software only, or requires hardware modifications. Note that
related work on memory regulation (specifically, Memguard [74]) have already been covered
in Chapter 1.

7

2.1.1 Software Solutions

Contention in shared memory among multiple processing elements can lead to a very high
increase in memory access latency [44, 63, 35]. The Predictable Execution Model (PREM),
first proposed in [53], introduces a method for prevent contention in the shared memory
of multi-core platforms. In particular, the authors divide programs into two phases: first,
the memory phase, which is sensitive to contention, and second, the computation phase,
which is free of contention. PREM schedules these phases such that two memory phases can
never be executed in parallel. A task does not need access to the main memory during its
computation phase, thereby allowing other processing elements to access it. By this rule,
contention in memory can be avoided by construction. PREM effectively bounds memory
access latency and provides a shorter WCET and improved hardware efficiency.

The approach has been refined in successive works [6, 66] into three phases. Specifically,
two memory phases are considered: an acquisition (or load) phase that copies data and
instructions from main memory into local memory, and a replication (or unload) phase
that copies modified data back to main memory. While the computation phase is always
executed on a processor, the memory phases can be either executed on the processor
itself [5, 6, 13, 22, 26, 49, 50, 53, 56, 71, 72], or on another hardware component [30, 31],
such as a programmable Direct Memory Access (DMA) module [7, 20, 61, 66]. Works that
proposed using a DMA unit to perform the memory transfers [66] can efficiently hide the
memory latency by overlapping the execution of a task with the DMA transfer of another
task; this leads to considerable improvements in schedulability.

Other works provide isolation at the level of the shared cache through cache parti-
tioning. Software partitioning techniques usually rely on indirect control over the cache,
manipulating address-to-line mapping at compiler, Operating System (OS), or application-
level [48, 23, 51]. Cache partitioning means assigning a given portion of the cache to a given
task or core in the system to reduce space contention. The most common software-based
cache partitioning technique is page coloring [47, 62]. Page coloring explores the virtual
to physical page address translation present in the virtual memory system at the OS level
when caches are physically indexed. Page addresses are mapped to predefined cache re-
gions, avoiding the overlap of cache spaces.

Mancuso et al. proposed a cache allocation technique at the level of the OS kernel to
improve performance with guaranteed predictable timing [48]. In this work, first, real-time
tasks are profiled to determine the most accessed memory locations for each task. The
profiling data is then used, at run-time, in a cache coloring and locking mechanism to help
tighten the WCET for real-time tasks. Such a technique can be implemented regardless of
the cache replacement policy and without any hardware modification. Ward et al. proposed

8

MC2, a cache management strategy [65]. The authors used the page coloring mechanism
along with cache scheduling instead of partitioning the cache statically. In MC2, memory
colors are treated as shared resources to which accesses must be arbitrated by either a
real-time locking protocol or a scheduling algorithm.

A cache coherence protocol ensures the correctness of shared data across all cores in a
multi-core platform. Nevertheless, adopting a conventional coherence protocol can reduce
the predictability of the system: the latency suffered by one core accessing a shared line is
dependent on the coherence state of that line in the private caches of other cores. Cache
coherency can be implemented by employing software and hardware techniques. Software
approaches for cache coherence require changing the application to handle the different
copies of shared data explicitly. For instance, [55] modified the application to protect
accesses to shared data by using lock mechanisms such that only one core at any time
has access to the shared data. In the worst-case, this approach performs as well as the
sequential execution of tasks sharing data.

2.1.2 Hardware Solutions

Several works have proposed to design new multi-core architectures to implement deter-
ministic resource sharing schemes that provide better guarantees on the WCET of real-time
tasks. Recently, the research community has introduced various predictable DRAM con-
troller designs that provide improved worst-case latency for access to main memory. The
proposed controllers are significantly different in terms of configuration, arbitration, etc.
The authors in [32] presented a comprehensive evaluation for predictable DRAM controllers
and attempted to classify the available controllers, and introduce an analytical performance
model based on Worst-Case Latency (WCL).

Other works target cache modifications. Performance Enhancement Guaranteed Cache
(PEG-C) [74] is a hardware addition to regular instruction cache in the form of a benefit
counter for the hit and miss rates. The benefit counter follows the number of misses and at
run-time provides access to the cache only when the value of the benefit counter is positive;
otherwise, the access is served from memory. This hardware design not only addresses
the unpredictability in the access to caches but also enhances the average performance
compared to a regular cache.

Hardware Context Switch (HwCS) [10] is a hardware component which replaces the
standard L1 cache controller of a processor. HwCS partitions the cache into two inter-
changeable layers. Each cache layer can either save in or load from the main memory,

9

while another layer is used as a usual L1 cache by the processor. HwCS makes the pre-
emption overheads smaller compared to the task WCET since the cache content is saved
after preemption and restored before resuming the task. Since both layers can access
main memory simultaneously, memory bandwidth is divided between the two layers in the
worst-case.

Hassan et al. [34] proposed PMSI, which is a predictable cache coherence protocol
for multi-core systems. PMSI is the extended version of the classic MSI protocol and
improved it with transient coherence states to bound the worst-case access latency. The
implementation of PMSI only needs hardware modifications, and no changes to the OS and
application. PMSI allowed tasks to access copies of shared data cached in their private
caches simultaneously, which results in improved Average-Case Execution Time (ACET).
Nevertheless, PMSI was not designed for mixed-criticality systems.

HourGlass [58] is a time-based predictable cache coherence protocol that is criticality-
aware. HourGlass is designed specifically for dual-critical multi-core systems with only
two criticality levels. This method ensures WCL bounds for memory requests originating
from critical cores. By employing a timer-based mechanism, the bandwidth utilization of
non-critical cores is improved while loosening the WCL bounds of critical tasks, which is
acceptable until they meet their temporal requirements.

2.2 WCET Analysis

WCET analysis plays the important role of estimating an upper bound on the execution
time of every real-time program that runs on a processing element. In classic real-time
theory, schedulability analysis is based on the assumption of a fixed, known WCET for
each task. Typically, the WCET of a task can be obtained in two ways:

Static Analysis employs the code of the real-time program in conjunction with a detailed
model of the processing element to derive a safe WCET bound. This analysis method
does not require the task to be actually executed on the hardware. It takes the code
as input and finds the set of all possible Control Flow Graph (CFG) paths, and
estimates an upper bound of WCET by determining the longest path based on the
considered hardware model. The complex nature of multi-core and heterogeneous
systems makes static analysis difficult or even impossible due to lack of detailed
knowledge about the hardware behavior.

Measurement estimates the WCET by either running the program in a simulator or by
executing it on the actual platform. This method measures the WCET by trying

10

different sets of inputs, thereby producing a range of execution times. Measurement-
based methods are more suitable for soft real-time systems as they produce estima-
tions rather than provable upper bounds. This method cannot guarantee to cover
all possible execution paths; hence, the estimated WCET can be less than the ac-
tual WCET.

Bernat et al. [16] presented a technique to handle the interaction of complex hardware
features by proposing probabilistic WCET estimation. The authors combine both ana-
lytical and measurement methods into a model for estimating probabilistically bounds on
the execution time of the worst path of code sections. This idea is based on combining
the worst-case effects seen in individual blocks to build the execution time model of the
worst-case path of the program. Each basic block is given a probabilistic execution time
distribution indicating that it is not always executed in the worst-case manner. Combining
several basic block distributions constructs an execution time distribution for the whole
program.

2.2.1 WCET Analysis in Multi-Core Systems

In multi-core systems, inter-core interference makes WCET analysis more complex com-
pared to single-core platforms. In general, a bound on multi-core systems can be deter-
mined in two ways:

• Performing a joint analysis of all tasks and cores of the system. This way, the
scheduling of the tasks and their allocation to the cores is known to the micro-
architectural analysis. While this type of analysis may produce the most precise
results, it is often disregarded due to the high computational complexity, rendering
this approach infeasible [67].

• Performing separate WCET analyses for each task on each core, ignoring all inter-
ferences from the outside. Later, in a second step, the costs due to the interferences
are analysed and incorporated into the results from the former analyses. Albeit
computationally easier, this approach must be applied carefully due to the many
non-timing-compositional features of modern processor architectures [67].

Few works have been proposed to address the challenge of analyzing shared caches in
multi-core systems. These techniques are applicable for simple architectures and statically
scheduled tasks. The first work that presents an analysis of shared caches in multi-core

11

systems is [70]. This work considers two tasks simultaneously executing on two cores
with direct-mapped shared instruction cache. Later, cache conflict graphs were used for
capturing the inter-core conflicts [75]. The work in [46] improves upon [70] by exploiting
the lifetime information of tasks and excluding tasks that cannot overlap at run-time from
the analysis. This work assumes all tasks are synchronized. Obviously, in any systems
employing dynamic scheduling, it will be extremely hard to identify disjoint tasks. Other
work [33] proposes to bypass the shared cache for single-usage cache lines to avoid inter-core
conflicts and therefore improve the timing analysis.

Several works have considered the issue of computing WCL bounds for access to shared
main memory in multi-core systems. The authors of [54] propose a framework for WCET
analysis, which computes memory delay bounds for systems containing any number of cores
and any number of peripheral buses with a single shared main memory. The authors provide
two main contributions: first, they introduce the idea of computing a memory traffic arrival
curve for each core, given a set of executed tasks. This curve presents an upper bound to the
amount of memory traffic generated by the core in any time interval. Second, they describe
an algorithm that computes a delay bound for a task given traffic curves for all other cores
and peripheral buses in the system. The work in [44] considers the timing characteristics of
resources in the main memory system. Their technique combines a request-driven approach
that concentrates on the task memory requests, and a job-driven approach that focuses on
interfering memory requests during task execution. The combination of both approaches
allows the derivation of a tighter upper bound on the WCET of a task in the presence of
memory interference.

2.3 GPUs in Real-Time Systems

A GPU is a highly parallel co-processor that performs operations requested by CPU code.
A CPU application makes use of the GPU through a parallel-programming framework such
as NVIDIA’s CUDA, which offers standard APIs. A request to GPU typically comprises
the following steps: 1) allocate memory in GPU’s memory region and copy data from CPU
memory to GPU memory; 2) launch the GPU function—called kernel—to process data
in GPU memory; 3) wait for kernel completion; 4) copy the processed data from GPU
memory region to CPU memory and 5) free the allocated GPU memory.

A GPU kernel consists of a combination of instruction code and a group of threads which
execute those instructions. In CUDA terminology, this group of threads is denoted as a
thread block ; the number of thread blocks comprising the kernel and the dimensions of each
thread block are specified by the programmer as part of the kernel’s launch parameters. At

12

the hardware level, each thread block is processed by a number of hardware threads which
form a warp. In NVIDIA GPUs, a warp comprises 32 hardware threads—executing in lock-
step—and a number of warps can execute simultaneously on a streaming-multiprocessor
(SM). A GPU consists of one or more SMs. For example, the integrated GPU in NVIDIA’s
Jetson TX-2 contains two SMs, each of which comprises 128 GPU cores and can thus
execute up to 4 warps simultaneously. Overall, the GPU contains 256 cores and can
execute instructions of up to 8 warps at any given time.

2.3.1 Thread Scheduling in CUDA

We next discuss in more details how thread scheduling is performed inside the GPU, as it
affects our proposed solution in Chapters 4 and 5. Internally, the GPU contains a hardware
scheduler which decides which warps to execute out of a pool of active warps. The behavior
of the warp scheduler is proprietary and undisclosed; hence, we do not make any specific
assumption on how warps are selected for execution. The pool of active warps is formed
by selecting threads within a set of active thread blocks; within each thread block, threads
are selected in increasing ID order. The number of active blocks depends on the GPU
architecture and the resources consumed by each specific kernel; we will use M to denote
the number of active blocks for a given kernel in the whole GPU (hence, for a GPU with
two SMs, each SM is allocated M/2 blocks). When a kernel starts, blocks with IDs 0 to
M − 1 first become active; once all warps within a thread block complete execution, the
block finishes and the not-yet started block with lowest ID becomes active. Hence, from
the point of view of block scheduling, the GPU can be abstracted as a multiprocessor with
M processors using a non-preemptive, global FIFO scheduling policy.

2.3.2 Real-Time Frameworks for GPU

Due to increased interest in GPU for accelerating parallel real-time applications, many
real-time scheduling frameworks for GPU have been proposed in recent years [27, 45,
21, 37], with a particular focus on DNN acceleration [76, 69]. We first review works
concerned with kernel scheduling, leaving more directly-related frameworks focusing on
memory management to Section 2.3.3. Kato et al. proposed TimeGraph and RGEM
frameworks that combine OS scheduling support for GPUs with timing guarantees [43, 42].
TimeGraph supports priority-based GPU scheduling to ensure hardware isolation of time-
critical GPU tasks [43]. RGEM is a user-space approach that supports real-time GPU
scheduling by ensuring the highest priority tasks are assigned to the GPU first [42]. RGEM

13

also breaks long copy operations into chunks that can be preempted. Elliott et al. proposed
GPUSync [27] that provides real-time scheduling across one or more GPUs and supports
sophisticated operations like copying data from one GPU to another. GPUSync has been
used as a platform for real-time vision applications like those required in autonomous
vehicles [28]. GPES is another software framework designed to support real-time processing
on GPUs by making long-running kernels preemptible [77].

The most related work in this area is Merlot [57]. Similarly to our work, the authors
of [57] note that WCET estimates for GPU kernels typically needs to be conservative.
Therefore, they propose to monitor the execution of the kernel at run-time. If the kernel
accumulates slack (i.e., its execution time is shorter than the worst-case), then such slack
can be used to reduce the amount of resources used by the GPU and improve system
performance. There are, however, three fundamental differences between Merlot and our
approach. First of all, the goal of Merlot is to minimize the system’s energy consumption,
while our goal is to improve the memory throughput available to best-effort applications.
Second, Merlot computes slack by dividing the kernel into a sequence of intervals and
storing timing information for each interval. However, such approach does not work well
with our memory regulation framework; instead, we show that we can perform run-time
WCET estimation at the finer level of thread blocks. Finally, Merlot requires hardware
modifications to the GPU, while our approach is software-based and can be implemented
on available commercial platforms.

2.3.3 Memory-Aware Frameworks on GPU

In an integrated CPU-GPU platform, CPU and GPU share the same memory subsystem,
which makes bandwidth sensitive GPU kernels susceptible to interference from CPU ap-
plications [31]. BWLOCK++ [9] is a software framework to protect GPU kernels from
CPU-side interference on integrated CPU-GPU platforms. In BWLOCK++, one CPU
core is dedicated to execute GPU using real-time tasks while the rest of the CPU cores
are dedicated to execute best-effort CPU tasks. A GPU-using real-time task declares an
acceptable interference budget from co-executing best-effort CPU tasks in the form of total
number K of Last-Level Cache (LLC) miss events (and hence, fetches from main memory)
from co-executing tasks that the subject task can tolerate in an interval of time T , called
a regulation period. The budget K is split equally among the regulated CPU cores. A
kernel level memory throttling framework [74] then limits the interfering memory traffic
from co-executing CPU applications to the specified threshold value through periodic reg-
ulation using hardware performance monitoring counters. The implementation in [74, 9]

14

uses a value of T equal to 1-msec. In addition, BWLOCK+++ implements a throttling-
aware best-effort CPU scheduling algorithm, called TFS, which favors CPU intensive tasks
over memory intensive ones to minimize throttling while real-time GPU tasks are being
executed. As we discuss in Chapter 3, our work used BWLOCK++ to enforce memory
regulation for best-effort CPU cores.

In [39], the authors show how to partition GPU memory resources, including cache
and main memory, to enforce strong isolation between concurrent kernels. However, the
approach is highly platform-specific, requiring a great deal of reverse engineering, it is
focused on discreet GPUs rather than integrated CPU-GPU SoCs, and does not protect
the GPU from CPU interference.

A compiler-based technique to make GPU code PREM-compliant is introduced in [30].
Under PREM [53], each task has distinct computation and memory phases. The approach
in [31, 30] ensures that the CPU does not perform memory accesses during the GPU
memory phases, therefore eliminating memory contention by construction. However, it
needs significant code restructuring, and can suffer significant overhead from the required
fine-grained CPU-GPU synchronization.

In SiGAMMA [22], the authors introduced a mechanism for preempting the Graphics
Processing Unit (GPU) kernel to protect critical real-time Central Processing Unit (CPU)
applications. SiGAMMA is a server-based mechanism that operates as a memory arbiter
between the CPU and GPU, to moderate the penalties arising with concurrent memory
access by the GPU. CPU tasks follow PREM and have memory phases that have been
separated from purely computation phases. A high priority spin kernel is used to preempt
the currently running GPU kernel while a CPU is in its memory phase, thus preventing
memory interference. This work is orthogonal to ours as it solves the problem of protect-
ing CPU tasks from GPU tasks while our work solves the problem of protecting GPU tasks
from CPU tasks.

2.3.4 WCET Estimation for GPU

Due to its complexity, WCET analysis for GPU kernels has received less attention compared
to CPU analysis. A static analysis approach is introduced in [38], but it assumes a specific
behavior of the warp scheduler that is not respected by commercial systems. The approach
in [14] also employs static analysis, but with more relaxed assumptions. However, it can not
handle cache stalls, and thus cannot be used in our context. A robust measurement-based
probabilistic timing analysis is introduced in [15]. Similar to the approach we employ in
Chapter 4, WCET estimation is based on collecting a trace of independent measurements.

15

However, the approach in [15] is applied at the level of the whole kernel, and thus cannot
be used to estimate run-time progress.

All in all, GPU WCET estimation is difficult due to the lack of information about
the hardware. GPU manufacturers rarely reveal specific implementation details, which are
necessary to build a static analysis model, to maintain their competitive edge. For example,
the associativity and replacement policies of the cache, the pipeline depth, and how exactly
threads are scheduled on NVIDIA GPUs all remain undisclosed. For this reason, our
approach only uses minimal assumptions on how threads are scheduled, as discussed in
Section 2.3.1. The most related work is the hybrid analysis approach introduced in [19].
Here, the authors collect measurement traces at the level of individual warps, and then
analytically compose the traces to derive the WCET of the whole kernel. Our approach
in Chapter 4 also uses a hybrid analysis, but we apply it at the coarser level of thread
blocks, since we find that analyzing traces at the warp level induces too much overhead for
run-time implementation.

16

Chapter 3

System Model and Evaluation
Platform

We begin by detailing the system model and key assumptions of our work in Section 3.1.
Then, in Section 3.2 we introduce our evaluation platform and show how it meets such
assumptions.

3.1 System Model and Assumptions

We consider an integrated CPU-GPU platform, comprising a GPU and multiple CPU cores,
all sharing the same main memory. One core is used to execute real-time tasks, while the
remaining cores execute best-effort applications with no real-time constraints. Only real-
time tasks can use the GPU, by invoking the execution of a GPU kernel and suspending
on the real-time core until the kernel completes. We do not make any assumption on
the execution model or scheduling policy for best-effort applications; i.e., a regulation-
aware scheduler such as TFS (see Section 2.3.3) can still be used to improve throughput
of best-effort tasks under throttling.

Real-Time Task Model: we assume that the real-time core executes a set of periodic
or sporadic real-time tasks. Each task τi comprises an alternating sequence of one or
more CPU segments and zero or more GPU segments. Each GPU segment comprises the
execution of a kernel κi,j, as well as the required memory copy operations. We assume that
GPU operations are executed non-preemptively; while kernel preemption can improve the
responsiveness of GPU operations [68, 21], it can also incur overhead in terms of additional

17

memory operations. We further assume that only one GPU kernel is executed at a time.
While recent work has shown that co-scheduling multiple kernels can improve GPU resource
utilization [76, 39], it also complicates the issue of timing analysis. For this reason, we
reserve such an extension to future work. The methodology presented in this work does
not require any further assumption on how real-time tasks are scheduled; the work in [8]
presents a schedulability analysis for the same task model described above, assuming that
tasks are scheduled according to fixed-priority preemptive policy on the CPU, and that
bounds on the length of each memory copy operations, each kernel execution and the total
amount of CPU execution are known.

Regulation Model: each kernel κi,j is protected by enforcing a maximum budget
ratio Q for best-effort cores through BWLOCK++ [9]. Recall from Section 2.3.3 that
BWLOCK++ allows best-effort cores to perform up to K memory requests every regula-
tion period of size T = 1 ms. Let BWmax to denote the maximum cumulative memory
throughput that can be generated by the best-effort cores in number of LLC misses per
second; we will obtain the value of BWmax experimentally in Section 4.5. Then, a budget
ratio of Q corresponds to a regulation budget of K = BWmax · T · Q LLC misses per
period T . Note that Q = 0 corresponds to the case where the kernel runs in isolation
(without interference from the CPU), while Q = 1 corresponds to the case where no reg-
ulation is applied (maximum CPU-caused interference). Our WCET estimation method
in Chapter 4 can compute a bound on the WCET Ge

i,j(Q) of κi,j for any given value of

Q. For each kernel κi,j, we define a nominal budget ratio Qi,j, such that BWLOCK++

uses Q = Qi,j at the start of the kernel. We select the highest budget ratio such that the

slowdown of the GPU kernel, computed based on the estimated WCETs Ge
i,j(Qi,j) and

Ge
i,j(0), is within an acceptable margin (e.g., < 10% in our evaluation). The overarching

goal of our approach is to increase the actual budget ratio Q used at run-time as much
as possible, while guaranteeing that the execution time of the kernel does not exceed its
nominal WCET Ge

i,j(Qi,j). This guarantees that schedulability analysis can be based on
the nominal WCET computed off-line.

Platform Requirements: we assume that the scheduling of thread blocks follows the
rules discussed in Section 2.3.1. To extract detailed timing information on each block, we
further assume that the platform provides the following three functionalities: 1) a cycle
accurate timer that can be used to count the elapsed time on the GPU since the beginning
of a kernel; 2) a way to synchronize said GPU timer with the timer of the real-time core;
3) a mechanism to determine the IDs of all co-running thread blocks on the GPU.

18

L1-I

128 KB

Denver CPU shared L2 cache

2 MB

L1-D

64 KB

Denver CPU 0

L1-I

128 KB

L1-D

64 KB

Denver CPU 1

L1-I

48 KB

L1-D

32 KB

A57 CPU 0

L1-I

48 KB

L1-D

32 KB

A57 CPU 1

L1-I

48 KB

L1-D

32 KB

A57 CPU 2

L1-I

48 KB

L1-D

32 KB

A57 CPU 3

A57 CPU shared L2 cache

2 MB

SM 0 SM 1

Copy Engine

GPU L2 cache

512 KB

Memory Controller

DRAM

Bank n-1.

Pascal GPU

128 Cores 128 Cores

DRAM

Bank n

DRAM

Bank 2

DRAM

Bank 1

DRAM

Bank 0

Figure 3.1: Jetson TX2 Architecture

3.2 Evaluation Platform

We use NVIDIA’s Jetson TX-2 as our evaluation platform. As we can see in Figure 3.1
the Jetson TX-2 board contains a heterogeneous multi-core CPU cluster (4 Cortex A-57
+ 2 Denver cores) and an integrated GPU. On the software side, we use NVIDIA’s default
Linux kernel (v4.4.38) and patch it with the changes required for memory bandwidth
throttling of best-effort tasks through BWLOCK++ kernel module. As per our system
model, we designate 3 Cortex-A57 cores as BE cores and one as the real-time CPU core;
the real-time CPU core is not regulated whereas we use BWLOCK++ to regulate the LLC
miss events (L2 DCACHE REFILL in Cortex-A57 TRM [11]) of best-effort CPU cores. Please
note that we only use the Cortex cores and disable the Denver cores in all our experiments
because the latter lack support of necessary performance monitoring counters required by
the memory throttling framework of BWLOCK++. Note that the Jetson TX-2 board
meets all our platform requirements. Specifically, under CUDA the %ctaid registers can
be read to determine the IDs of all running thread blocks, satisfying the third requirement.
Furthermore, the GPU and CPU share a same clock timer, which can be used to satisfy
the first two requirements.

19

Chapter 4

WCET Estimation

In this chapter, we introduce our first main contribution: a novel coarse-grained, hy-
brid Worst-Case Execution Time (WCET) estimation method for GPU kernels. We begin
by introducing our hybrid method in Section 4.1. Since our methodology relies on measur-
ing the execution time of thread blocks, in Section 4.2 we then discuss how blocks can be
clustered into homogeneous groups based on their timing characteristics; then, Section 4.3
shows how to include the effects of memory regulation in the WCET estimation. Finally,
Section 4.3 discusses the implementation of our methodology on our evaluation platform,
specifically in terms of required kernel instrumentation, while we evaluate the results in
Section 4.5 and conclude in Section 4.6

4.1 Hybrid WCET Estimation

Based on the discussion in Section 3.1, our goal is to estimate an upper bound on the
completion time of a kernel based on the budget ratioQ assigned to BE cores. For simplicity
of notation, in the rest of this section, we shall drop subscripts and use κ to refer to the
kernel under analysis. As mentioned in Section 2.3.4, WCET estimation for GPU kernels is
especially difficult because key architectural details, such as the way warps are scheduled,
GPU caches are managed, etc., are both undisclosed and difficult to reverse-engineer.
Inspired by the approach taken in [19], we thus propose to employ a hybrid approach
to WCET analysis: specifically, we assume that the WCET of each thread block can
be estimated through measurement-based techniques. We then analytically compose the
per-block information to obtain a WCET bound for the whole kernel.

20

Hence, let Nκ denote the number of thread blocks for kernel κ, and ∀i, 1 ≤ i ≤ Nκ, let
ei denote the execution time of the i-th block. Without loss of generality, assume that the
kernel starts at time 0, let j be the index of the block that finishes last in the kernel, and tj
be its starting time. Then by definition, the execution time of κ is equal to tj + ej. Recall
from Section 2.3.1 that the GPU executes M thread blocks simultaneously. We thus note
that since the j-th block is not started until time tj, it follows that there must always be
M other active thread blocks in the interval [0, tj). Therefore, it must hold: 1

tj ≤
(∑
i=1...Nκ

ei − ej
)
/M ; (4.1)

and since tj + ej is increasing in ej, we obtain the following bound on the WCET Ge of
the kernel:

Ge =
(∑
i=1...Nκ

ei − emax

)
/M + emax, (4.2)

where emax = maxNκi=1 ei.

It remains to determine how to compute an upper bound to the execution time of
each thread block ei. Given that a kernel can comprise thousands of blocks, we find
that maintaining per-block WCET information is too cumbersome, especially for on-line
estimation. Instead, we propose to first classify the thread blocks in each kernel into
clusters, where all blocks in the same cluster have similar execution profiles.

4.2 Block Clustering

All threads within the same kernel execute the same code; but due to the presence of control
instructions such as branches and loops, different threads can execute along different code
paths. We find that the following two observations typically hold for well-coded kernels:
1) the number of paths is small, as GPU code tends to be more predictable than CPU
code. 2) It is highly desirable for threads within the same thread block to follow the same
execution path: when threads in the same warp execute along different paths, the resulting
thread divergence forces the GPU to execute the warp along all such paths, incurring a
significant performance penalty. For these reasons, thread blocks can typically be classified
into a small set of clusters.

1Note that our logic is equivalent to the computation of the interference rectangle in global scheduling
analysis, see [17] for example.

21

Cluster # 1 2 3

worst-case measured e0i 1.70 2.50 3.30
worst-case measured e1i 3.69 6.52 8.83

Q = 0, mean 1.61 2.3 3.21
Q = 0, std 0.035 0.067 0.039
e0i percentile 99.5% 99.9% 99.0%
Q = 1, mean 3.44 6.27 8.53
Q = 1, std 0.09 0.099 0.11
e1i percentile 99.7% 99.4% 99.7%

Table 4.1: Clustering: hist benchmark. Time values are in us.

Our proposed clustering approach works in two steps: 1) first, we measure the execution
time of each thread block by instrumenting the code of the kernel (see Section 4.4 for
details) and executing it many times in isolation. This allows us to construct an Empirical
Distribution Function (EDF) of the execution time of each block. While this process takes
time and requires storing a large amount of data, we stress that the clustering step is
performed off-line. 2) Based on the obtained EDFs, we then cluster thread blocks together
by repeatedly applying the two-sample Kolmogorov-Smirnov (K-S) test [25] at a level
α = 0.05.

Let C be the resulting number of clusters, where the i-th cluster comprises Ni thread
blocks. We can then modify Equation 4.2 to obtain an analytical WCET bound based on
per-cluster, rather than per-block, execution time values. Specifically, let e0i be the WCET
for blocks of cluster i when executed in isolation (that is, with BE budget Q = 0), and let
e1i be the WCET when executed under maximum interference (Q = 1). We then obtain:

Ge(0, {Ni}) =
(∑
i=1...C

Ni · e0i − e0max

)
/M + e0max, (4.3)

for the WCET in isolation, and

Ge(1, {Ni}) =
(∑
i=1...C

Ni · e1i − e1max

)
/M + e1max (4.4)

for the case Q = 1, where e0max, e
1
max have the obvious meaning: e0max = maxCi=1 e

0
i , e

1
max =

maxCi=1 e
1
i .

Finally, we point out that the problem of extracting the values of e0i and e1i from
the EDF of each cluster is fundamentally orthogonal to our approach. In our evaluation,

22

0

2

4

6

8

10

12

14

16

1
.5

2

1
.5

3

1
.5

4

1
.5

5

1
.5

6

1
.5

7

1
.5

8

1
.5

9

1
.6

1
.6

1

1
.6

2

1
.6

3

1
.6

4

1
.6

5

1
.6

6

1
.6

7

1
.6

8

1
.6

9

1
.7

#
 C

T
A

 (
%

)

CTA Excution Time

(a) Cluster1 No Interference

0

1

2

3

4

5

6

7

8

2
.1

2
.1

2

2
.1

4

2
.1

6

2
.1

8

2
.2

2
.2

2

2
.2

4

2
.2

6

2
.2

8

2
.3

2
.3

2

2
.3

4

2
.3

6

2
.3

8

2
.4

2
.4

2

2
.4

4

2
.4

6

2
.4

8

2
.5

#
 C

T
A

 (
%

)

CTA Execution Time

(b) Cluster2 No Interference

0

2

4

6

8

10

12

14

3
.1

2

3
.1

3

3
.1

4

3
.1

5

3
.1

6

3
.1

7

3
.1

8

3
.1

9

3
.2

3
.2

1

3
.2

2

3
.2

3

3
.2

4

3
.2

5

3
.2

6

3
.2

7

3
.2

8

3
.2

9

3
.3

#
 C

T
A

 (
%

)

CTA Execution Time

(c) Cluster3 No Interference

0

1

2

3

4

5

6

3
.2

1

3
.2

4

3
.2

7

3
.3

3
.3

3

3
.3

6

3
.3

9

3
.4

2

3
.4

5

3
.4

8

3
.5

1

3
.5

4

3
.5

7

3
.6

3
.6

3

3
.6

6

3
.6

9

#
 C

T
A

 (
%

)

CTA Execution Time

(d) Cluster1 Full Interference

0

1

2

3

4

5

6

6
.0

1

6
.0

4

6
.0

7

6
.1

6
.1

3

6
.1

6

6
.1

9

6
.2

2

6
.2

5

6
.2

8

6
.3

1

6
.3

4

6
.3

7

6
.4

6
.4

3

6
.4

6

6
.4

9

6
.5

2

#
 C

T
A

 (
%

)

CTA Execution Time

(e) Cluster2 Full Interference

0

1

2

3

4

5

6

8
.2

8

8
.3

1

8
.3

4

8
.3

7

8
.4

8
.4

3

8
.4

6

8
.4

9

8
.5

2

8
.5

5

8
.5

8

8
.6

1

8
.6

4

8
.6

7

8
.7

8
.7

3

8
.7

6

8
.7

9

8
.8

2

#
 C

T
A

 (
%

)

CTA Execution Time

(f) Cluster3 Full Interference

Figure 4.1: Distribution of block execution times for histo benchmark

we simply set them to the maximum observed execution time in the cluster. In Table 4.1,
we report the corresponding values for the kernel of the histo benchmark [60], for which
C = 3; the kernel has been executed one million times with Q = 0 and one million times
with Q = 1 and memory-intensive BE tasks. Following the approach in probabilistic
timing analysis [15], we could otherwise fit the EDF to a test distribution, and then obtain
e0i (respectively, e1i) as a given percentile of the distribution, depending on the desired
confidence level. To this end, we decided to again employ the K-S test with level α = 0.05
for the fit of the execution time of each cluster to a normal distribution. As an example, we
show detailed results for histo in Figure 4.1 and Table 4.1. Specifically, Figure 4.1 provides
plots for the measured EDFs of all clusters, while Table 4.1 shows the obtained mean and
standard deviation of the normal distribution for each cluster, the percentile level of the
chosen e0i , e

1
i , and the goodness of fit, expressed as the ratio of the K-S statistic and the

critical value of the K-S distribution 2. We show the goodness of fit for other benchmarks
in Section 4.5.3, while plots for the measured EDFs of other benchmarks are provided in
appendix.

2The K-S statistic is the maximum difference between the EDF and the cumulative distribution function
of the fit distribution; note that ratios below 1 indicate that the null hypothesis is not rejected, and hence
the distributions are considered to be equal at the specified level.

23

4.3 Memory Interference Estimation

Equations 4.3 and 4.4 provide a way to compute the WCET of the kernel under either no
interference (Q = 0) or full interference (Q = 1). It remains to determine how to bound
the WCET for Q values between 0 and 1. This is significantly more difficult due to the
way regulation works in our system: namely, BWLOCK++ does not mandate when BE
cores can perform memory accesses during a regulation period, but only how many they
can perform. Hence, without further assumptions on the interference model, we cannot
determine the worst case memory request pattern. For this reason, we will provide a
WCET estimation under the following interference hypothesis :

Hypothesis 1. The interference suffered by a kernel for any value of Q is maximized when
the BE cores issue requests at the same time and as fast as possible.

We do not claim that Hypothesis 1 holds generally for all architectures and number of
cores. Rather, in Section 4.5.2 we show through extensive testing that the hypothesis holds
for our hardware platform; and we remark that systematic testing is accepted as proof of
validation for even critical systems by certification authorities.

Under Hypothesis 1, in the worst case interference pattern the BE cores perform mem-
ory accesses at the maximum rate for Q · T time during each regulation period, and no
memory access for the remaining (1−Q) · T time. We call memory time and denote with
tmem the total amount of time, over the entire execution of the kernel, when BE cores
perform memory accesses. We can then bound the WCET of κ by assuming that thread
blocks which execute during the memory time take e1i time to complete; while blocks which
execute outside the memory time take e0i each.

Algorithm 1 formalizes the corresponding WCET analysis. Note that the memory
time depends on the number of regulation periods that the kernel’s execution spans; while
in turn, the WCET of the kernel depends on the memory time. To solve such circular
dependency, Algorithm 1 iterates over the WCET t of the kernel, starting from the WCET
in isolation t = Ge(0, {Ni}) (Equation 4.3). At each step, the algorithm first uses the value
of t to determine the memory time, and then computes a new estimate for the WCET
based on tmem. The algorithm then set t to be equal to the new WCET bound and iterates
until convergence.

Figure 4.2 shows how to compute tmem. The worst case scenario changes whether the
kernel starts at the same time as a regulation period (sync = 1), or no such assumption
can be made (sync = 0). In the latter case, tmem is maximized when the BE cores access
memory as late as possible in the first interval, and as soon as possible in all other intervals;

24

Algorithm 1: WCET Estimation

Input: Q, {Ni}, {e0i }, {e1i }, sync
Output: Kernel WCET

1 t = Ge(0, {Ni})
2 while 1 do
3 Compute tmem(t, Q, sync) based on Eq. 4.5
4 Compute Ge(Q, {Ni}, sync) by solving Eq. 4.8-4.10
5 if t == Ge(Q, {Ni}, sync) then
6 return t
7 t = Ge(Q, {Ni}, sync)
8 end

and the beginning of the kernel is aligned with the start of the BE accesses. Based on such
patterns, we obtain: 3

tmem(t, Q, sync) =
t if t ≤ tinit;
(1− sync+ P) ·Q · T+
min(t− tinit − P · T,Q · T) otherwise,

(4.5)

where:

tinit = (1− sync) ·Q · T, (4.6)

P =
⌊t− tinit

T

⌋
. (4.7)

Finally, we consider Ge(Q, {Ni}, sync). Let xi, with xi ≤ Ni, to denote the number of
blocks in the i-th cluster that execute during the memory time. We can then bound the
WCET of the kernel by solving the following problem:

maxGe(Q, {Ni}, sync) =(∑
i=1...C

xi · e1i + (Ni − xi) · e0i − e1max

)
/M + e1max (4.8)(∑

i=1...C

xi · e1i
)
/M ≤ tmem(t, Q, sync) (4.9)

∀i = 1...C : 0 ≤ xi ≤ Ni (4.10)

3Note that the derivation is equivalent to computing the workload of a sporadic task in a problem
window under global scheduling [17].

25

(a) sync = 1

(b) sync = 0

Figure 4.2: tmem derivation

Note that here, Equation 4.9 constraints the variables {xi} based on the length of the
memory time, while Equation 4.8 bounds the WCET in the same way as Equation 4.2. To
solve the problem in polynomial time, we overapproximate the WCET bound by relaxing
the variables {xi} to be real rather than integer. Under such relaxation, and since by
definition e1i ≥ e0i , it is easy to see that the objective function in Equation 4.8 is maximized
when Equation 4.9 holds with equality, i.e. (

∑C
i=1 xi ·e1i)/M = tmem(t, Q, sync). If we define

∀i : yi = xi · e1i , the problem is then equivalent to:

maxCONST −
∑
i=1...C

yi ·
e0i
e1i

(4.11)∑
i=1...C

yi = tmem(t, Q, sync) ·M (4.12)

∀i = 1...C : 0 ≤ yi ≤ Ni · e1i (4.13)

where CONST does not depend on variables {yi} (it is constant). It is then obvious that
the problem can be solved in the following greedy manner: 1) start with all variables {yi}
(equivalently, {xi}) set to zero; 2) order the clusters by increasing values of the ratio e0i /e

1
i

and select one cluster at a time in such order (i.e., select first the cluster which experiences
the largest relative increase in execution, that is, the cluster which is most susceptible to

26

Algorithm 2: Measure Block Execution Time

1 if threadId.x == 0 then
2 clk = getclock()
3 if blockId.x > M then
4 read co-running thread block IDs in IDlist
5 find i such that TimeAr[i].ID is not in IDlist
6 Duration = clk - TimerAr[i].clk
7 Write Duration to main memory array

8 else
9 i = blockId.x

10 TimeAr[i].ID = blockId.x
11 TimeAr[i].clk = clk

memory interference); 3) for the selected cluster, increase yi (equivalently, xi) until either
Equation 4.12 or 4.13 saturates; 4) if 4.13 saturates before 4.12, go to the next cluster and
repeat from step 2.

4.4 Implementation

We next explain how we instrument the code of a GPU kernel to measure the execution time
of each thread block. As discussed in Section 2.3.1, whenever a block finishes, another block
is assigned to the GPU for execution immediately; hence, the finish time of the terminated
block is the start time of the newly assigned block. The execution time of the terminated
block is then computed as the difference between finish and start time.

For ease of exposition, Algorithm 2 shows the pseudo-code of the instrumentation;
complete CUDA code is provided in appendix. We allocate two data structures. An array
of size Nκ in main memory is used by the GPU to store the computed execution time
of each thread block; after the kernel finishes executing, we read the array content from
the CPU and use it as input to the clustering process. TimeAr is an array of size M
allocated in GPU memory; each element of the array is a structure comprising the ID and
the start time of an active thread block. Based on Line 1, the instrumentation code is
executed by the first thread of each block; since threads in each block are selected in order,
this guarantees that the thread execution coincides with the start time of the block. The
thread reads the current clock time at Line 2, as well as the list of co-running thread blocks
at Line 4. The list of co-running blocks is then matched based on IDs to the content of

27

TimeAr to determine which thread block has finished (note this is done only after the first
M blocks have started), and the execution time of the finished block is computed (Lines
5-7). Finally, the ID and start time of the new block is saved in TimeAr.

Note that this scheme cannot measure the execution time for the M thread blocks of
the kernel that finish last, since no new block will start after their termination. Hence, we
only use data for Nκ−M blocks to perform the clustering. After clustering, we then rerun
the kernel with a modified instrumentation, where we estimate the execution time of each
of the last M thread blocks as the difference between the start time of the last and first
thread in the block. While such measurement is much less precise than what obtained by
Algorithm 2, we found it sufficient to classify each thread block in one of the previously
obtained clusters.

4.5 Evaluation

In this section, we report results for our presented WCET estimation framework. Similarly
to [9], we use six memory bandwidth sensitive GPU benchmarks from Parboil suite [60].
Table 4.2 details benchmarks’ characteristics which will be discussed throughout the rest
of this section. Note that each benchmark invokes the same kernel multiple times, possibly
with a different input set size; for this reason, we decided to report information for the
first kernel invocation in each benchmark.

4.5.1 Bandwidth and Budget Estimation

We employ bandwidth benchmark from IsolBench suite [63] as our synthetic memory-
intensive CPU application to cause maximum interference on GPU kernels. The band-
width benchmark linearly accesses a 1-D array of configurable size and the sequential write
pattern of this benchmark is known to cause worst-case interference on several multi-core
platforms [64]. In our case, we configure bandwidth benchmark to generate LLC misses;
thus creating memory level interference. We also use this benchmark to determine the
BWmax value for our TX-2 platform. For this purpose, we run three instances of band-
width benchmark on the 3 Cortex-A57 cores. Our measurement shows that the maximum
cumulative memory bandwidth of the three bandwidth benchmarks is ∼3.9 GB/s. In
terms of LLC misses, this corresponds to ∼60,000 events per regulation interval of 1-msec.
Divided over 3 best-effort CPU cores, this is equal to 20,000 LLC misses in each regula-
tion interval which corresponds to Q = 1 i.e., maximum possible interference from each
best-effort core.

28

Benchmark histo sad bfs spmv stencil lbm

Number of thread blocks 37,627 59,136 82,318 31,624 31,952 63,627
Number of clusters 3 6 6 3 4 5

Goodness of fit 0.76 0.45 0.53 0.68 0.86 0.66
Cluster intervals 14 21 29 17 19 25

Analytical WCET overestimation at Q = 0 (%) 5 9.1 0.6 5.6 5.2 2
Analytical WCET overestimation at Q = 1 (%) 23.2 26.9 11.3 9.1 7 25.7

Table 4.2: Benchmark Characterization

4.5.2 Testing the Interference Hypothesis

We validated Hypothesis 1 through extensive testing. Specifically, we synchronized the
execution of three copies of the synthetic bandwidth benchmark running on the three BE
cores, and modified the benchmark code to randomly vary: 1) the offsets, relative to the
beginning of the regulation period, at which each BE core starts execution; 2) the ratio
of read and write operations; 3) the time separation between LLC misses, controlled by
inserting a variable number of NOP instructions between reads or writes. We then executed
each kernel for several hours and recorded its worst case execution time. In all cases, we
found that the WCET is maximized for a 100% write ratio with no NOP added and equal
offsets for all cores, which matches the hypothesis.

4.5.3 Clustering Results

Table 4.2 shows the number of thread blocks per benchmark, as well as the clustering
results, in terms of number of clusters, intervals, and the worst goodness of fit (i.e., the
maximum ratio) over all clusters of each benchmark. We find that the numbers of both
clusters and intervals is small for all benchmarks, leading to small memory space overhead
for the data structures in Section 4.4, and low run-time for the on-line algorithm.

4.5.4 Tightness of WCET Estimation

To estimate the tightness of the hybrid WCET bounds, we run the following experiment:
we first run each kernel one million time for varying values of Q, without any instrumenta-
tion and together with the synthetic bandwidth benchmark, and determine its worst-case
measured execution time. To reduce variability, we further force the kernel to start syn-
chronously with the regulation period, i.e. sync = 1. We then compare such measured

29

WCET with the analytical WCET obtained through Algorithm 1, and report in Table 4.2
the overestimation ratio at both Q = 0 and Q = 1 for all benchmarks; while Figure 4.3
shows the detailed WCET plots for all benchmarks as a function of Q. We point out that
the overestimation is due to three factors: 1) the measured execution does not represent
the real worst-case, as the bandwidth benchmark performs all memory requests at the
beginning of each regulation period; hence, it might fail to align memory requests with the
most interference-sensitive thread blocks. 2) Our clustering approach can lead to some over
approximation of the real WCET of the thread block. However, we expect such effect to
be limited, since as shown in Table 4.1, the fitted standard deviations for the clusters tend
to be rather small. 3) Finally, the instrumentation adds some timing overhead; however,
this is again small, at most 1.5% for the tested benchmarks, measured by running each
benchmarks in isolation with and without instrumentation.

4.6 Discussion and Conclusions

In this chapter, we presented our hybrid WCET estimation method. Compared to other
techniques for WCET estimation of GPU kernels, our approach makes very limited as-
sumptions on the internal behavior of the GPU, which is largely unknown for commercial
platforms. Results show that our clustering technique is effective in grouping thread blocks
with similar characteristics, leading to relatively limited pessimism in WCET estimation.

We make four additional, important observations. First, as pointed out in Section 4.2,
the WCET results necessarily depend on our choice of selecting the values of e0i , e

1
i as the

worst-case observed values. Based on the percentiles reported in Table 4.1, we acknowledge
that higher percentiles would be needed to satisfy strict certification requirements, and this
would lead to more pessimistic WCET estimates. However, we point out that in this case,
the performance of the dynamic allocator presented in Chapter 5 would actually increase,
since a wider gap between estimated and actual WCET would provide a higher ability to
reclaim memory budget for best-effort cores.

Second, since our WCET estimation depends on Hypothesis 1, we cannot claim gener-
ality beyond our tested platform. However, we believe it is likely that the hypothesis holds
on other platforms as well, since several previous studies have highlighted that worst-case
delays are generated when hardware request queues saturate [63, 12], and maximizing con-
current activity of all cores increases the probability of such occurrence. Furthermore, in
case the hypothesis does not hold, but a precise model of main memory is available, we
argue that a more complex analysis, along the lines of [35, 73], could be used to bound the
maximum delay suffered by the kernel.

30

Third, our approach requires modifications to the code of each GPU kernel. For the
sake of obtaining the results in this thesis, we modified each benchmark manually. We
point out that the required modification is rather simple, limited to adding some variable
declarations and code at the beginning of each kernel; hence, it is reasonable to assume that
the approach could be automated at the compiler level, possibly by modifying executable
code (CUDA PTX) so that source code access is not required.

Finally, note that the complexity of our WCET estimation Algorithm 1 is pseudo-
polynomial in the kernel’s characteristics, since the algorithm is required to iterate over t.
However, the algorithm is only used off-line: as we show in Chapter 5, our online budget
allocation scheme employs a faster algorithm that has linear complexity in the number of
clusters.

31

(a) histo (b) sad

(c) bfs (d) spmv

(e) stencil (f) lbm

Figure 4.3: Analytical WCET vs Measured WCET for histo

32

Chapter 5

Dynamic Budget Allocation

In this chapter, we present the second main contribution of this thesis: a run-time algorithm
to dynamically allocate the memory budget ratio Q to BE cores, while guaranteeing that
the real-time GPU kernel completes within its original execution time, which is determined
off-line based on a nominal memory budget. We begin by presenting the basic allocation
scheme in Section 5.1, and then introduce alternative improved methods in Section 5.2.
We elaborate on our implementation in Section 5.3; this includes modifications to the GPU
kernel code, the existing BWLOCK++ OS-level implementation, and the introduction of
a user-level process to perform the actual budget computation. Finally, we evaluate results
in Section 5.4 and provide discussion and concluding remarks in Section 5.5.

5.1 Allocation Algorithm

As discussed in Section 3.1, let Q be the nominal budget for kernel under analysis κ. Since
the kernel can be invoked at any point in time, we cannot guarantee that its start time
t coincides with the beginning of a regulation period. Hence, following the analysis in
Section 4.3, we have sync = 0 and we let Ge(Q, {Ni}, 0) be the computed WCET bound
for κ. Then, the real-time requirement that our algorithm satisfies is to ensure that κ
finishes no later than t+Ge(Q, {Ni}, 0).

Specifically, we employ the following approach. The first regulation period, which
starts before or at the beginning of the kernel, is assigned the nominal budget Q. For each
successive time treg, corresponding to the beginning of a regulation period, we perform two
steps: 1) first, we determine the number of remaining thread blocks {Ri} for each cluster.

33

Algorithm 3: On-line Budget Computation

Input: t, {Ri}, {e0i }, {e1i }, with clusters ordered by increasing e0i /e
1
i

Output: Budget ratio Q for next regulation period
1 for j = 1...C do
2 if (

∑
i=1...j Ri · e1i +

∑
i=j+1...C Ri · e0i − e1max)/M + e1max ≥ t then

3 xj =
(t−e1max)·M−

∑j−1
i=1 Ri·e

1
i−

∑C
i=j Ri·e0i+e1max

e1j−e0j
4 tmemmax = (

∑j−1
i=1 Ri · e1i + xj · e1j)/M

5 return max Q s.t. tmem(t, Q, 1) = tmemmax by inverting Equation 4.5

6 end
7 return 1

We instrument the code similarly to Section 4.2 to determine which blocks have finished,
and use this information to determine Ri; details are provided in Section 5.3. 2) Based on
the remaining thread blocks, we determine the maximum budget Q that can be assigned
to the next regulation period while ensuring that κ completes by t+Ge(Q, {Ni}, 0).

We next discuss the second step. A trivial solution would be to employ Algorithm 1;
since we know that treg corresponds to the beginning of a regulation period, and the
number of not-yet-completed blocks in each cluster is Ri, it follows that for a budget Q,
the kernel must complete by treg +Ge(Q, {Ri}, 1). We could thus use binary search to find
the maximum Q such that treg +Ge(Q, {Ri}, 1) ≤ t+Ge(Q, {Ni}, 0), or equivalently:

max
Q

: Ge(Q, {Ri}, 1) ≤ Ge(Q, {Ni}, 0)− (treg − t). (5.1)

Note that in Equation 5.1, Ge(Q, {Ni}, 0) is a constant computed off-line. To speed up the
on-line computation for Ge(Q, {Ri}, 1), we next propose a faster algorithm. The key idea is
that since we know that the remaining time to complete execution is t = Ge(Q, {Ni}, 0)−
(treg − t), we do not need to iterate over time t as in Algorithm 1.

We show our solution in Algorithm 3. Following the same principle as in the greedy
solution for the problem in Equations 4.11-4.13, the algorithm iterates over clusters starting
from the most interference-sensitive one, and tries to maximize the number of blocks of
that cluster that execute with maximum interference (i.e., for e1i each during tmem). The
iteration stops when the condition at Line 2 is met; note that the right side of the condition
computes the WCET for the kernel assuming that all blocks of clusters 1...j execute for
e1i , while all other clusters execute for e0i . If the condition is never met, then the kernel
can complete within the allocated time t even under maximum interference for all blocks,

34

hence we return Q = 1. Otherwise, let xj to denote the maximum number of thread blocks
of cluster j that can execute during tmem; we can rewrite the equation at Line 2 to:(∑

i=1...j−1

Ri · e1i + xj · e1j + (Rj − xj) · e0j +

∑
i=j+1...C

Ri · e0i − e1max

)
/M + e1max = t, (5.2)

and solving the equation yields the assignment to xj in Line 3 of the algorithm. Finally,
we compute the value of tmem at Line 4 (which is equivalent to Equation 4.9,4.12), and
then determine the value of Q by using the inverse of the function in Equation 4.5.

5.2 Improved Allocation

It is interesting to note that the strategy presented in Algorithm 3, which we call the FAIR
allocation, consists in splitting the memory time fairly among all remaining regulation
periods: the same value of Q is used for all future periods. However, there is no requirement
to allocate the budget in a fair manner: we could instead compute the worst-case finish
time of the kernel by increasing only the budget of the next period, while keeping all other
periods to the nominal budget Q. The idea is that the kernel is likely to accumulate more
slack while executing during the next regulation period, at the end of which we will run the
allocation algorithm again to re-compute the budget Q; hence, such GREEDY allocation
might result in higher budget values for the first regulation periods of the kernel execution.

Under GREEDY, the budget for the next regulation period is computed by first de-
termining the maximum memory time during the next period: this is equal to tmemmax , as
computed at Line 4 of Algorithm 3, minus the memory time of all other periods under
nominal budget, which is max

(
0, tmem(Q, t − T, 1)

)
. Since the memory time in a single

regulation period is by definition equal to Q · T , we then obtain:

Q = min
(

1,
(
tmemmax −max(0, tmem(Q, t− T, 1))

)
/T
)
, (5.3)

which replaces Line 5 in Algorithm 3. Finally, as we will show in Section 5.4, a downside of
the GREEDY allocation is that the budget ratio Q can change widely between successive
regulation periods, possibly leading to a rather unfair bandwidth allocation for co-running
BE applications. We thus propose a third allocation scheme, which we call SMOOTH,
which modifies the GREEDY allocation by applying a simple filter of the form:

yn = min
(
xn, a · xn + (1− a) · yn−1

)
, (5.4)

35

where xn is the budget computed by GREEDY for the current regulation period and
yn−1, yn are the budgets selected for the previous and current period, respectively. Based
on our evaluation, we experimentally set a value a = 0.3 for the smoothing parameter.

5.3 Implementation

Because of the nuances involved in making necessary CUDA library calls from a Linux
kernel module, we do not implement our on-line budget computation algorithm at the OS
kernel level. Instead, we implement it in a user-level high priority real-time process which
runs concurrently to the GPU kernels on the real-time CPU core. At the kernel level,
we use BWLOCK++ Linux kernel module [1] to enforce the computed budget values
for regulating the memory bandwidth of best-effort CPU cores. For this purpose, we
implement a shared-memory based communication mechanism between the kernel module
and the user-space budget-computation process. Concretely, for each regulation period, the
user-space process calculates a new budget value as per Algorithm 3 which is then written
to a predefined shared-memory area. The kernel module reads the new budget value from
the shared-memory and enforces it in the current regulation interval. Note that the budget-
computation process takes some time to perform the required computation and pass the
information to BWLOCK++; for this reason, we synchronize it to start computation a
fixed amount of time before the start of each regulation period of BWLOCK++. We note
that the resulting budget computation is still safe albeit more pessimistic: the extra time
might cause us to miss some completed thread blocks, but this would lead to higher values
of {Ri} and hence a higher WCET estimate and a lower computed Q. However, due to
the pessimism, it is theoretically possible to compute a value of Q that is less than the
nominal budget Q, in which case we can still safely set Q = Q.

Similarly to Section 4.4, we allocate a data structure in main memory that can be
accessed by both the GPU and the user-level process. We instrument the kernel code so
that it writes the current clock value at the beginning of the first thread block, which we
take as the starting time t of the kernel itself; the budget-computation process uses the
value passed by the GPU to compute the elapsed time treg−t for the kernel. Each successive
thread block writes to main memory the IDlist of concurrent blocks, which is used by the
budget-computation process to determine the remaining blocks {Ri}. Complete CUDA
code for the instrumentation is provided in appendix.

To efficiently compute {Ri}, we use the concept of a cluster interval [i, j], that is, a
sequence of thread blocks where all blocks with IDs in [i, j] belong to the same cluster.
The budget-computation process is provided with a table, computed off-line, where each

36

Benchmark histo sad bfs spmv stencil lbm

Nominal budget (%) 14 12 17 28 28 22.5
Adjusted nominal budget (%) 13.2 11.2 16.2 27.2 27.2 21.7

Table 5.1: Nominal Budgets for all Benchmarks

Benchmark histo sad bfs spmv stencil lbm

FAIR 1.69 1.95 1.54 2.36 2.19 1.96
GREEDY 1.61 1.87 1.51 2.31 2.16 1.98
SMOOTH 1.64 1.97 1.53 2.33 2.17 1.95

Table 5.2: Normalized Performance Improvement over NOMINAL, Synthetic BE Tasks

line, corresponding to a cluster interval, stores the initial ID for the interval, as well as
the number of remaining blocks in all successive intervals. At run-time, the process then
matches the IDlist written by the most recently started thread block with the interval table
to determine the number of not-yet-completed thread blocks for each cluster; note this is
possible because blocks are activated in ID order, hence, if block ID i is executing, then
we know that all blocks with ID less than i must either be executing (hence in IDlist) or
have finished.

5.4 Evaluation

We evaluate the performance of our dynamic budget allocation approach based on the
same benchmarks from Parboil used in Section 4.5. We compare the FAIR, GREEDY and
SMOOTH allocation schemes against the NOMINAL allocation, where the same nominal
budget is used for all regulation periods of a given kernel. As discussed in Section 3.1,
we determine the nominal budget for kernel κ as the maximum Q such that the slowdown(
Ge(Q, {Ni}, 0) − Ge(0, {Ni}, 0)

)
/Ge(0, {Ni}, 0) is equal to 10%; the obtained values are

listed in Table 5.1. Under NOMINAL, the kernel is run without instrumentation and no
extra CPU process. For FAIR, GREEDY and SMOOTH, as discussed in Section 5.3 we
need to instrument each kernel, and run a user-level CPU process to perform the on-line
budget computation. We experimentally determined that the process can cause at most
470 LLC misses during each regulation period; since these misses cause extra interference
to the GPU, we have to adjust the budget assigned to BE cores for the dynamic schemes by
subtracting such LLC amount for every regulation period. This leads to a lower adjusted

37

Benchmark histo sad bfs spmv stencil lbm

FAIR, 462.libquantum 2.05 2.98 1.78 2.65 2.43 2.21
GREEDY, 462.libquantum 2.09 2.89 1.75 2.66 2.46 2.2
SMOOTH, 462.libquantum 2.04 2.93 1.76 2.67 2.42 2.19

FAIR, 403.gcc 1.36 1.42 1.23 1.35 1.27 1.29
GREEDY, 403.gcc 1.35 1.39 1.21 1.37 1.29 1.26
SMOOTH, 403.gcc 1.37 1.37 1.22 1.39 1.25 1.27

FAIR, 458.sjeng 1.14 1.11 1.07 1 1 1.03
GREEDY, 458.sjeng 1.11 1.12 1.06 1 1 1.04
SMOOTH, 458.sjeng 1.13 1.13 1.07 1 1 1.05
FAIR, Q mean (%) 41.77 49.1 36.3 74.4 70.4 59.6

GREEDY, Q mean (%) 42.02 48.9 36.2 74.4 70.6 59.6
SMOOTH, Q mean (%) 41.63 49 36.2 74.6 70.6 59.4

FAIR, Q std (%) 12.84 20.04 9.67 21.11 20.69 14.70
GREEDY, Q std (%) 20.09 13.88 9.67 13.82 10.81 11.28
SMOOTH, Q std (%) 8.35 8.16 3.33 13.43 9.5 6.52

Table 5.3: Performance Results, SPEC BE Tasks

nominal budget for the first regulation period of each kernel, see Table 5.1. As for the
execution time of the budget-computation process, we measured a worst-case time of 10us
to compute {Ri}, and 10us to execute Algorithm 3. Also accounting for the time to
communicate with the BWLOCK++ kernel module, we configured the process to start
50us before the beginning of each regulation period.

Figure 5.1 provides graphs for all benchmarks, where the BE cores execute the synthetic
bandwidth benchmark. Specifically, we report results in terms of assigned budget ratio Q
for each allocation scheme and regulation period over a single run of each kernel. For the
same scenario, Table 5.2 shows the performance improvement for each dynamic scheme,
in terms of memory requests issued by the BE cores during the execution of the kernel,
averaged over a million runs and normalized based on NOMINAL. As we can see, the
performance improvement of the three schemes is similar, but they behave very differently
in terms of budget allocation over time, with SMOOTH achieving by far the most uniform
distribution. We also note that the performance improvement is significant, ranging from
51% to 136%.

Finally, we repeat the same experiments while running a benchmark from the SPEC2006
suite [36] on each BE core. We selected three benchmarks with different memory intensive-

38

ness [74]: 462.libquantum (high), 403.gcc (medium), and 458.sjeng (low). Table 5.3 rep-
resents the results in terms of performance improvement over NOMINAL for each SPEC
benchmark, as well as mean and standard deviation of the assigned budget ratio Q over
all regulation periods. We find that for 462.libquantum, the performance improvement is
higher compared to the synthetic benchmarks; this is because the other two benchmarks
stress the memory less, thus resulting in less interference and more slack for the GPU
kernel. The three dynamic allocation schemes again perform similarly, with the exception
of the standard deviation, which is significantly smaller for SMOOTH.

5.5 Discussion and Conclusions

We have shown how the WCET estimation framework of Chapter 4 can be used to dy-
namically adjust the budget assigned to best-effort cores at run-time. To reduce run-time
overhead, we introduce a new Algorithm 3 that performs the budget computation in linear
time in the number C of thread block clusters. We also show how to optimize the compu-
tation of the remaining thread blocks at run-time based on information provided through
kernel instrumentation. Results show that our implementation achieves low overhead while
leading to significant performance improvements for best-effort tasks.

Based on our evaluation, we conclude that the three discussed allocation schemes,
namely FAIR, GREEDY and SMOOTH, lead to similar average improvements in terms of
throughput of best-effort applications. However, among those, SMOOTH shows by far the
most stable budget allocation over time. While in our evaluation we ran a single benchmark
per BE core, in practice we should expect that each BE core schedules a plurality of tasks in
a time-sharing fashion; hence, we believe that SMOOTH can provide the fairest allocation
of memory bandwidth over time to best-effort applications.

Finally, we note that the significant gains shown in Table 5.2 might appear surprising,
since for this part of the evaluation we used the same memory-intensive benchmarks that we
also employed to determine the WCET of thread blocks; hence, it might seem strange that
there is a significant amount of slack in the kernel execution. As discussed in Section 4.5.4,
we believe that this is both due to WCET overestimation, and because the benchmarks
fail to cause the actual worst case, especially with sync = 0 in this scenario.

39

(a) histo (b) sad

(c) bfs (d) spmv

(e) stencil (f) lbm

Figure 5.1: Budget Distribution over Time

40

Chapter 6

Conclusions and Future Work

Bounding interference effects is essential for the certification of multi-core real-time sys-
tems. Bandwidth throttling is an effective mechanism to protect real-time application
from main memory interference, but it can lead to significant performance penalties for
best-effort applications. To mitigate such performance impact, in this paper we have pro-
posed a dynamic throttling scheme which adjusts the bandwidth budget assigned to best
effort cores by exploiting the slack accumulated by a real-time GPU kernel. We proposed
a methodology to estimate the progress of a GPU kernel at run-time. Our methodology is
based on the observation that a kernel executes a large number of threads with the same
code; while such code can include control instructions, the number of different program
paths is usually limited. We thus classify groups of threads into clusters, each with differ-
ent execution time profiles; then, at run-time, we count the number of completed groups
for each cluster as a measure of progress. Following the proposed progress mechanism, we
introduce a measurement-based WCET approach to estimate the execution time of a kernel
based on its remaining number of thread groups per cluster, and the bandwidth thresh-
old for BE cores. Using the discussed WCET estimation approach, we then show how to
re-compute the BE bandwidth online while ensuring that the kernel completes within its
original WCET. Our scheme significantly increases the throughput of memory-intensive,
best-effort applications, up to 2.98x in our evaluation.

The presented work could be extended in several different directions. First of all, as
noted in Section 3.1, each GPU segment comprises the execution of a kernel, but also
memory copies that might be required to duplicate memory buffers held by the CPU and
the GPU. Such copies are performed by hardware copy engines on the GPU, essentially
specialized DMA units. Under BWLOCK++, both the memory copies and the kernel
execution are protected by regulating memory accesses of best-effort cores; however, in

41

our current framework we only dynamically adjust the memory budget during the kernel
execution. A key challenge in extending the approach to memory copies is that we do not
have a simple way to estimate the progress of the copy engines; this would effectively require
breaking each memory copy into multiple smaller operations, so that the completion of each
operation can be tracked in software. Furthermore, at least for the tested benchmarks, the
length of the memory copies tend to be quite small, in most case smaller than the duration
of a regulation period, limiting our ability to recompute the budget.

The approach could also be extended to protect CPU segments from memory inter-
ference by either other CPU applications, or GPU kernels. In particular, we believe that
hybrid CPU analysis [3, 18] can be adapted to estimate CPU progress in a way compatible
with our framework. In this sense, one could investigate a more general system model com-
prising multiple CPUs and GPUs with any combinations of real-time processing elements.
In such a system, we should protect CPUs, GPUs, or the combination of them from the
effect of best-effort processing elements.

Finally, our approach relies on software memory regulation. Recent work [29] has shown
that performing regulation in hardware can lead to a much finer regulation granularity and
significant improvements in predictability for real-time applications. Hence, it would be
interesting to develop a combined hardware-software approach to adjust at run-time the
parameters of the hardware regulator.

42

References

[1] BWLOCK++ Github Repository. https://github.com/wali-ku/BWLOCK-GPU/

tree/master/kernel_module.

[2] ISO, ISO 26262 road vehicles – functional safety. 2011.

[3] RapiTime. https:https://www.rapitasystems.com/products/rapitime, 2013.

[4] Homa Aghilinasab, Waqar Ali, Heechul Yun, and Rodolfo Pellizzoni. Dynamic memory
bandwidth allocation for real-time gpu-based soc platforms. In 2020 International
Conference on Embedded Software, 2020.

[5] Ahmed Alhammad and Rodolfo Pellizzoni. Schedulability analysis of global memory-
predictable scheduling. In Proceedings of the 14th International Conference on Em-
bedded Software, pages 1–10, 2014.

[6] Ahmed Alhammad and Rodolfo Pellizzoni. Time-predictable execution of multi-
threaded applications on multicore systems. In 2014 Design, Automation & Test
in Europe Conference & Exhibition (DATE), pages 1–6. IEEE, 2014.

[7] Ahmed Alhammad, Saud Wasly, and Rodolfo Pellizzoni. Memory efficient global
scheduling of real-time tasks. In 21st IEEE Real-Time and Embedded Technology and
Applications Symposium, pages 285–296. IEEE, 2015.

[8] Waqar Ali and Heechul Yun. Work-in-progress: Protecting real-time gpu applica-
tions on integrated cpu-gpu soc platforms. In 2017 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages 141–144. IEEE, 2017.

[9] Waqar Ali and Heechul Yun. Protecting real-time gpu kernels on integrated cpu-gpu
soc platforms. In 30th EUROMICRO Conference on Real-Time Systems (ECRTS’18),
pages 3:1–3:2, 2018.

43

https://github.com/wali-ku/BWLOCK-GPU/tree/master/kernel_module
https://github.com/wali-ku/BWLOCK-GPU/tree/master/kernel_module
https:https://www.rapitasystems.com/products/rapitime

[10] Yannick Allard, Geoffrey Nelissen, Joel Goossens, and Dragomir Milojevic. A context
aware cache controller to bridge the gap between theory and practice in real-time
systems. In 2014 IEEE 20th International Conference on Embedded and Real-Time
Computing Systems and Applications, pages 1–10. IEEE, 2014.

[11] ARM Inc. ARM Cortex-A57 MPCore Processor Technical Reference Manual.
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0488c/

BIIBJJGG.html.

[12] Michael Garrett Bechtel and Heechul Yun. Denial-of-service attacks on shared cache
in multicore: Analysis and prevention. In 2019 IEEE Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS), pages 1–12. IEEE, 2019.

[13] Matthias Becker, Dakshina Dasari, Borislav Nicolic, Benny Akesson, Vincent Nélis,
and Thomas Nolte. Contention-free execution of automotive applications on a clus-
tered many-core platform. In 2016 28th Euromicro Conference on Real-Time Systems
(ECRTS), pages 14–24. IEEE, 2016.

[14] Kostiantyn Berezovskyi, Konstantinos Bletsas, and Björn Andersson. Makespan com-
putation for gpu threads running on a single streaming multiprocessor. In 2012 24th
Euromicro Conference on Real-Time Systems, pages 277–286. IEEE, 2012.

[15] Kostiantyn Berezovskyi, Fabrice Guet, Luca Santinelli, Konstantinos Bletsas, and
Eduardo Tovar. Measurement-based probabilistic timing analysis for graphics proces-
sor units. In International Conference on Architecture of Computing Systems, pages
223–236. Springer, 2016.

[16] Guillem Bernat, Antoine Colin, and Stefan M Petters. Wcet analysis of probabilistic
hard real-time systems. In 23rd IEEE Real-Time Systems Symposium, 2002. RTSS
2002., pages 279–288. IEEE, 2002.

[17] Marko Bertogna, Michele Cirinei, and Giuseppe Lipari. Schedulability analysis of
global scheduling algorithms on multiprocessor platforms. IEEE Transactions on par-
allel and distributed systems, 20(4):553–566, 2009.

[18] Adam Betts. Hybrid Measurement-Based WCET Analysis using Instrumentation
Point Graphs. PhD thesis, Citeseer, 2008.

[19] Adam Betts and Alastair Donaldson. Estimating the wcet of gpu-accelerated ap-
plications using hybrid analysis. In 2013 25th Euromicro Conference on Real-Time
Systems, pages 193–202. IEEE, 2013.

44

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc. ddi0488c/BIIBJJGG.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc. ddi0488c/BIIBJJGG.html

[20] Paolo Burgio, Andrea Marongiu, Paolo Valente, and Marko Bertogna. A memory-
centric approach to enable timing-predictability within embedded many-core acceler-
ators. In 2015 CSI Symposium on Real-Time and Embedded Systems and Technologies
(RTEST), pages 1–8. IEEE, 2015.

[21] Nicola Capodieci, Roberto Cavicchioli, Marko Bertogna, and Aingara Paramakuru.
Deadline-based scheduling for gpu with preemption support. In 2018 IEEE Real-Time
Systems Symposium (RTSS), pages 119–130. IEEE, 2018.

[22] Nicola Capodieci, Roberto Cavicchioli, Paolo Valente, and Marko Bertogna. Sigamma:
Server based integrated gpu arbitration mechanism for memory accesses. In Proceed-
ings of the 25th International Conference on Real-Time Networks and Systems, pages
48–57. ACM, 2017.

[23] Trishul M Chilimbi, Mark D Hill, and James R Larus. Making pointer-based data
structures cache conscious. Computer, 33(12):67–74, 2000.

[24] Leonardo Milhomem Franco Christino and Fernando dos Santos Osório. Gpu-services:
Real-time processing of 3d point clouds for robotic systems using gpus. In 2015 12th
Latin American Robotics Symposium and 2015 3rd Brazilian Symposium on Robotics
(LARS-SBR), pages 151–156. IEEE, 2015.

[25] Yadolah Dodge. The concise encyclopedia of statistics. Springer Science & Business
Media, 2008.

[26] Guy Durrieu, Madeleine Faugère, Sylvain Girbal, Daniel Gracia Pérez, Claire Pagetti,
and Wolfgang Puffitsch. Predictable flight management system implementation on a
multicore processor. 2014.

[27] Glenn A Elliott, Bryan C Ward, and James H Anderson. Gpusync: A framework for
real-time gpu management. In 2013 IEEE 34th Real-Time Systems Symposium, pages
33–44. IEEE, 2013.

[28] Glenn A Elliott, Kecheng Yang, and James H Anderson. Supporting real-time com-
puter vision workloads using openvx on multicore+ gpu platforms. In 2015 IEEE
Real-Time Systems Symposium, pages 273–284. IEEE, 2015.

[29] Farzad Farshchi, Qijing Huang, and Heechul Yun. Bru: Bandwidth regulation unit for
real-time multicore processors. In Conference on Real-Time and Embedded Technology
and Applications Symposium (RTAS), April 2020. IEEE, 2020.

45

[30] Björn Forsberg, Luca Benini, and Andrea Marongiu. Heprem: Enabling predictable
gpu execution on heterogeneous soc. In 2018 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pages 539–544. IEEE, 2018.

[31] Björn Forsberg, Andrea Marongiu, and Luca Benini. Gpuguard: Towards supporting
a predictable execution model for heterogeneous soc. In Proceedings of the Confer-
ence on Design, Automation & Test in Europe, pages 318–321. European Design and
Automation Association, 2017.

[32] Danlu Guo, Mohamed Hassan, Rodolfo Pellizzoni, and Hiren Patel. A comparative
study of predictable dram controllers. ACM Transactions on Embedded Computing
Systems (TECS), 17(2):53, 2018.

[33] Damien Hardy, Thomas Piquet, and Isabelle Puaut. Using bypass to tighten wcet
estimates for multi-core processors with shared instruction caches. In 2009 30th IEEE
Real-Time Systems Symposium, pages 68–77. IEEE, 2009.

[34] Mohamed Hassan, Anirudh M Kaushik, and Hiren Patel. Predictable cache coherence
for multi-core real-time systems. In 2017 IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), pages 235–246. IEEE, 2017.

[35] Mohamed Hassan and Rodolfo Pellizzoni. Bounding dram interference in cots hetero-
geneous mpsocs for mixed criticality systems. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 37(11):2323–2336, 2018.

[36] John L Henning. Spec cpu2006 benchmark descriptions. ACM SIGARCH Computer
Architecture News, 34(4):1–17, 2006.

[37] Seyedmehdi Hosseinimotlagh and Hyoseung Kim. Thermal-aware servers for real-time
tasks on multi-core gpu-integrated embedded systems. In 2019 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), pages 254–266. IEEE,
2019.

[38] Yijie Huangfu and Wei Zhang. Static wcet analysis of gpus with predictable warp
scheduling. In 2017 IEEE 20th International Symposium on Real-Time Distributed
Computing (ISORC), pages 101–108. IEEE, 2017.

[39] Saksham Jain, Iljoo Baek, Shige Wang, and Ragunathan Rajkumar. Fractional gpus:
Software-based compute and memory bandwidth reservation for gpus. In 2019 IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 29–
41. IEEE, 2019.

46

[40] John L. Hennessy, David A. Patterson. A New Golden Age for
Computer Architecture. https://cacm.acm.org/magazines/2019/2/

234352-a-new-golden-age-for-computer-architecture/fulltext, 2019.

[41] Leslie A Johnson et al. Do-178b, software considerations in airborne systems and
equipment certification. Crosstalk, October, 199, 1998.

[42] Shinpei Kato, Karthik Lakshmanan, Aman Kumar, Mihir Kelkar, Yutaka Ishikawa,
and Ragunathan Rajkumar. Rgem: A responsive gpgpu execution model for runtime
engines. In 2011 IEEE 32nd Real-Time Systems Symposium, pages 57–66. IEEE, 2011.

[43] Shinpei Kato, Karthik Lakshmanan, Raj Rajkumar, and Yutaka Ishikawa. Timegraph:
Gpu scheduling for real-time multi-tasking environments. In Proc. USENIX ATC,
pages 17–30, 2011.

[44] Hyoseung Kim, Dionisio De Niz, Björn Andersson, Mark Klein, Onur Mutlu, and
Ragunathan Rajkumar. Bounding memory interference delay in cots-based multi-core
systems. In 2014 IEEE 19th Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 145–154. IEEE, 2014.

[45] Hyoseung Kim, Pratyush Patel, Shige Wang, and Ragunathan Raj Rajkumar. A
server-based approach for predictable gpu access control. In 2017 IEEE 23rd Interna-
tional Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA), pages 1–10. IEEE, 2017.

[46] Yun Liang, Huping Ding, Tulika Mitra, Abhik Roychoudhury, Yan Li, and Vivy Suhen-
dra. Timing analysis of concurrent programs running on shared cache multi-cores.
Real-Time Systems, 48(6):638–680, 2012.

[47] Jochen Liedtke, Hermann Hartig, and Michael Hohmuth. Os-controlled cache pre-
dictability for real-time systems. In Proceedings Third IEEE Real-Time Technology
and Applications Symposium, pages 213–224. IEEE, 1997.

[48] Renato Mancuso, Roman Dudko, Emiliano Betti, Marco Cesati, Marco Caccamo,
and Rodolfo Pellizzoni. Real-time cache management framework for multi-core archi-
tectures. In 2013 IEEE 19th Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 45–54. IEEE, 2013.

[49] Joel Matějka, Björn Forsberg, Michal Sojka, Zdeněk Hanzálek, Luca Benini, and An-
drea Marongiu. Combining prem compilation and ilp scheduling for high-performance
and predictable mpsoc execution. In Proceedings of the 9th International Workshop

47

https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/fulltext
https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/fulltext

on Programming Models and Applications for Multicores and Manycores, pages 11–20,
2018.

[50] Alessandra Melani, Marko Bertogna, Vincenzo Bonifaci, Alberto Marchetti-
Spaccamela, and Giorgio Buttazzo. Memory-processor co-scheduling in fixed priority
systems. In Proceedings of the 23rd International Conference on Real Time and Net-
works Systems, pages 87–96, 2015.

[51] Frank Mueller. Compiler support for software-based cache partitioning. In ACM
Sigplan Notices, volume 30, pages 125–133. ACM, 1995.

[52] Nathan Otterness, Ming Yang, Sarah Rust, Eunbyung Park, James H Anderson,
F Donelson Smith, Alex Berg, and Shige Wang. An evaluation of the nvidia tx1
for supporting real-time computer-vision workloads. In 2017 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), pages 353–364. IEEE,
2017.

[53] Rodolfo Pellizzoni, Emiliano Betti, Stanley Bak, Gang Yao, John Criswell, Marco
Caccamo, and Russell Kegley. A predictable execution model for cots-based embedded
systems. In 2011 17th IEEE Real-Time and Embedded Technology and Applications
Symposium, pages 269–279. IEEE, 2011.

[54] Rodolfo Pellizzoni, Andreas Schranzhofer, Jian-Jia Chen, Marco Caccamo, and Lothar
Thiele. Worst case delay analysis for memory interference in multicore systems. In
2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010),
pages 741–746. IEEE, 2010.

[55] Arthur Pyka, Mathias Rohde, and Sascha Uhrig. Extended performance analysis of
the time predictable on-demand coherent data cache for multi-and many-core systems.
In 2014 International Conference on Embedded Computer Systems: Architectures,
Modeling, and Simulation (SAMOS XIV), pages 107–114. IEEE, 2014.

[56] Benjamin Rouxel, Steven Derrien, and Isabelle Puaut. Tightening contention delays
while scheduling parallel applications on multi-core architectures. ACM Transactions
on Embedded Computing Systems (TECS), 16(5s):164, 2017.

[57] Muhammad Husni Santriaji and Henry Hoffmann. Merlot: Architectural support for
energy-efficient real-time processing in gpus. In 2018 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages 214–226. IEEE, 2018.

48

[58] Nivedita Sritharan, Anirudh M Kaushik, Mohamed Hassan, and Hiren D Patel. Hour-
glass: Predictable time-based cache coherence protocol for dual-critical multi-core
systems. CoRR, abs/1706.07568, 2017.

[59] John A Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen Chang,
Nasser Anssari, Geng Daniel Liu, and Wen-mei W Hwu. Parboil: A revised benchmark
suite for scientific and commercial throughput computing. Center for Reliable and
High-Performance Computing, 127, 2012.

[60] John A. Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen Chang,
Nasser Anssari, Geng Daniel Liu, and Wen mei W. Hwu. Parboil: A revised bench-
mark suite for scientific and commercial throughput computing. Technical report,
University of Illinois at Urbana-Champaign, 2012.

[61] Rohan Tabish, Renato Mancuso, Saud Wasly, Ahmed Alhammad, Sujit S Phatak,
Rodolfo Pellizzoni, and Marco Caccamo. A real-time scratchpad-centric os for multi-
core embedded systems. In 2016 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 1–11. IEEE, 2016.

[62] David Tam, Reza Azimi, Livio Soares, and Michael Stumm. Managing shared l2 caches
on multicore systems in software. In Workshop on the Interaction between Operating
Systems and Computer Architecture, pages 26–33, 2007.

[63] Prathap Kumar Valsan, Heechul Yun, and Farzad Farshchi. Taming non-blocking
caches to improve isolation in multicore real-time systems. In 2016 IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), pages 1–12. IEEE,
2016.

[64] Prathap Kumar Valsan, Heechul Yun, and Farzad Farshchi. Addressing isolation
challenges of non-blocking caches for multicore real-time systems. Real-Time Systems,
53(5):673–708, 2017.

[65] Bryan C Ward, Jonathan L Herman, Christopher J Kenna, and James H Anderson.
Outstanding paper award: Making shared caches more predictable on multicore plat-
forms. In 2013 25th Euromicro Conference on Real-Time Systems, pages 157–167.
IEEE, 2013.

[66] Saud Wasly and Rodolfo Pellizzoni. Hiding memory latency using fixed priority
scheduling. In 2014 IEEE 19th Real-Time and Embedded Technology and Applica-
tions Symposium (RTAS), pages 75–86. IEEE, 2014.

49

[67] Simon Wegener. Towards multicore wcet analysis. In 17th International Workshop
on Worst-Case Execution Time Analysis (WCET 2017). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2017.

[68] Bo Wu, Xu Liu, Xiaobo Zhou, and Changjun Jiang. Flep: Enabling flexible and
efficient preemption on gpus. ACM SIGPLAN Notices, 52(4):483–496, 2017.

[69] Yecheng Xiang and Hyoseung Kim. Pipelined data-parallel cpu/gpu scheduling for
multi-dnn real-time inference. In 2019 IEEE Real-Time Systems Symposium (RTSS),
pages 392–405. IEEE, 2019.

[70] Jun Yan and Wei Zhang. Wcet analysis for multi-core processors with shared l2 in-
struction caches. In 2008 IEEE Real-Time and Embedded Technology and Applications
Symposium, pages 80–89. IEEE, 2008.

[71] Gang Yao, Rodolfo Pellizzoni, Stanley Bak, Emiliano Betti, and Marco Caccamo.
Memory-centric scheduling for multicore hard real-time systems. Real-Time Systems,
48(6):681–715, 2012.

[72] Gang Yao, Rodolfo Pellizzoni, Stanley Bak, Heechul Yun, and Marco Caccamo. Global
real-time memory-centric scheduling for multicore systems. IEEE Transactions on
Computers, 65(9):2739–2751, 2015.

[73] Heechul Yun, Rodolfo Pellizzon, and Prathap Kumar Valsan. Parallelism-aware mem-
ory interference delay analysis for cots multicore systems. In 2015 27th Euromicro
Conference on Real-Time Systems, pages 184–195. IEEE, 2015.

[74] Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha. Memguard:
Memory bandwidth reservation system for efficient performance isolation in multi-core
platforms. In 2013 IEEE 19th Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 55–64. IEEE, 2013.

[75] Wei Zhang and Jun Yan. Static timing analysis of shared caches for multicore proces-
sors. Journal of Computing Science and Engineering, 6(4):267–278, 2012.

[76] Husheng Zhou, Soroush Bateni, and Cong Liu. Sˆ 3dnn: Supervised streaming and
scheduling for gpu-accelerated real-time dnn workloads. In 2018 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), pages 190–201. IEEE,
2018.

50

[77] Husheng Zhou, Guangmo Tong, and Cong Liu. Gpes: A preemptive execution sys-
tem for gpgpu computing. In 21st IEEE Real-Time and Embedded Technology and
Applications Symposium, pages 87–97. IEEE, 2015.

51

Appendix

Instrumentation Code: Measuring Thread Block Exe-

cution

Listing 1 shows the CUDA code used to measure the execution time of each thread block,
as detailed in Section 4.4. Note that compared to Algorithm 1, the presented code also
extracts the execution time for the last M thread blocks of the kernel. M and Nk represent
the number M of thread blocks that are executed simultaneously and the total number
of thread blocks Nκ, respectively. As discussed in Section 4.4, we allocate two main data
structures. ExecTime is used by the GPU to store the computed execution time of each
thread block; while TimeAr is an array of type Block, where each Block element is a
structure comprising the ID and the start time of an active thread block (clk). Finally,
CurrThreadBlocks is a temporary array used to save the current running thread blocks’
IDs.

The code in Kernel Function represents the code added at the beginning of the GPU
kernel κ under analysis. At the beginning of the kernel function for the first thread of a
thread block, we measure the time to be the start for that thread block. If the block is
among the first M blocks, then no thread block is terminated, and we only push its ID and
start time to the TimeAr array. If the new thread block is not among the first M thread
blocks, then we call the Compute ExecTime function to determine which thread block is
terminated and calculate its execution time (Lines 4-7 and 10-11 of Algorithm 1). As
discussed in Section 4.4, we still need to measure the execution time of the last M thread
blocks. We use the start time of the last thread of the final M thread blocks to be their
finish time; using the finish time and start time of last M thread blocks, we can estimate
their execution times.

Listing 1: Thread Block Execution Time Measurement

52

#include <stdio.h>

#include <sys/time.h>

#include <time.h>

#include <stdint.h>

#include <cooperative_groups.h>

struct Block{

int ID;

clock_t clk;

};

const int M = 8;

const int Nk = Number_of_Thread_Blocks;

volatile __device__ Block TimeAr[M];

volatile __device__ int CurrThreadBlocks[M];

__device__ clock_t get_clock(void)

{

clock_t clock;

asm("mov.u32 %0, %clock;" : "=r"(clock));

return clock;

}

__device__ void Compute_ExecTime(clock_t clk , int blockID , double*

ExecTime)

{

for(int i=0;i<M;i++)

Asm("declare i32 @llvm.nvvm.read.ptx.sreg.ctaid.x(i)" : "=r"(

CurrThreadBlocks[i]));

for(int index =0;index <M;index ++)

{

bool flag = 0;

for(int j=0;j<M;j++)

if(CurrThreadBlocks[j]== TimeAr[index].ID)

{

flag = 1;

break;

}

if(flag ==0)

{

ExecTime[TimeAr[index].ID] = (double)(clk -TimeAr[index].clk)/

CLOCKS_PER_SEC;

TimeAr[index].clk = clk;

TimeAr[index].ID = blockID;

return;

}

53

}

}

__global__ void Kernel_Function(double * ExecTime)

{

if(threadIdx.x==0)

{

clock_t clk = get_clock ();

if(blockIdx.x<M)

{

TimeAr[blockIdx.x].clk = clk;

TimeAr[blockIdx.x].ID = blockIdx.x;

}

else

Compute_ExecTime(clk , blockIdx.x,ExecTime);

}

else if ((Nk-blockIdx.x)<=M && threadIdx.x== MAX_THREADS_PER_BLOCK -1)

{

clock_t clk = get_clock ();

int index;

for(index =0;index <M;index ++)

{

if(blockIdx.x== TimeAr[index].ID)

break;

}

ExecTime[blockIdx.x] = (double)(clk -TimeAr[index].clk)/

CLOCKS_PER_SEC;

}

.

.

.

}

int main()

{

double * ExecTime;

cudaMallocManaged (&ExecTime , Nk*sizeof(double));

Kernel_Function(ExecTime);

.

.

.

}

54

Instrumentation Code: Run-time Budget Allocation

Listing 2 shows the CUDA code for the kernel instrumentation required to run the on-
line budget allocation, as detailed in Section 5.3. We allocate a data structure named
CurrThreadBlocks in main memory that can be accessed by both the GPU and the user-
level process. We instrument the kernel code so that it writes the current clock value at the
beginning of the first thread block. We write the start time of the kernel in the memory
using StartKernel for the synchronization; hence the real-time CPU, which runs the
process for budget allocation in parallel with the kernel, knows when the kernel starts the
execution. We used the start flag to make sure that we only write the start of the kernel
at the beginning of the first thread block. We used clock() function which is a global
timer shared with the CPU. StartKernel and CurrThreadBlocksare allocated in the main
memory using cudaMallocManaged, and the user-space process can access their address
for reading the values. Each successive thread block writes to the CurrThreadBlocks the
IDlist of concurrent blocks, which is used by the budget-computation process to determine
the remaining blocks {Ri}.

Listing 2: Run-Time Instrumentation

#include <stdio.h>

#include <sys/time.h>

#include <time.h>

#include <stdint.h>

#include <cooperative_groups.h>

const int M = 8; // Depending on the Kernel

volatile __device__ bool start = 1;

__global__ void Kernel_Function(int* CurrThreadBlocks ,clock_t*

StartKernel)

{

if(threadIdx.x==0)

{

if(start ==1)

{

(* StartKernel) = clock();

start = 0;

}

for(int i=0;i<M;i++)

Asm("declare i32 @llvm.nvvm.read.ptx.sreg.ctaid.x(i)" : "

=r"(CurrThreadBlocks[i]));

}

.

55

.

}

int main()

{

int *CurrThreadBlocks;

cudaMallocManaged (& CurrThreadBlocks , M*sizeof(int));

clock_t* StartKernel;

cudaMallocManaged (& StartKernel , sizeof(clock_t));

kernel(CurrThreadBlocks ,StartKernel);

.

.

}

Measured EDFs of Parboil Benchmark

Figures 1, 2, 3, 4, and 5 show the Empirical Distribution Function (EDF) for the execution
times of the thread block clusters of the spmv, sad, bfs, lbm, and stencil Parboil bench-
marks, respectively. As in Figure 4.1, we show the distributions both for the case of no
interference (Q = 0), which is used to derive e0i , and the case of full interference (Q = 1),
which is used to derive e1i .

56

0

5

10

15

20

25

2
.4

4

2
.4

5

2
.4

6

2
.4

7

2
.4

8

2
.4

9

2
.5

2
.5

1

2
.5

2

2
.5

3

2
.5

4

2
.5

5

2
.5

6

2
.5

7

#
 C

T
A

 (
%

)

CTA Execution Time

Cluster1 of spmv Benchmark Distribution with no Interference

(a) Cluster1 No Interference

0

2

4

6

8

10

12

14

16

18

20

3
.8

3

3
.8

4

3
.8

5

3
.8

6

3
.8

7

3
.8

8

3
.8

9

3
.9

3
.9

1

3
.9

2

3
.9

3

3
.9

4

3
.9

5

3
.9

6

#
 C

T
A

 (
%

)

CTA Execution Time

Cluster2 of spmv Benchmark Distribution with no Interference

(b) Cluster2 No Interference

0

2

4

6

8

10

12

14

16

18

5
.2

7

5
.2

8

5
.2

9

5
.3

5
.3

1

5
.3

2

5
.3

3

5
.3

4

5
.3

5

5
.3

6

5
.3

7

5
.3

8

5
.3

9

5
.4

5
.4

1

5
.4

2

5
.4

3

#
 C

T
A

 (
%

)

CTA Execution Time

Cluster3 of spmv Benchmark Distribution with no Interference

(c) Cluster3 No Interference

0

2

4

6

8

10

12

14

16

3
.5

1

3
.5

2

3
.5

3

3
.5

4

3
.5

5

3
.5

6

3
.5

7

3
.5

8

3
.5

9

3
.6

3
.6

1

3
.6

2

3
.6

3

3
.6

4

3
.6

5

3
.6

6

3
.6

7

3
.6

8

#
 C

T
A

 (
%

)

CTA Execution Time

Cluster1 of spmv Benchmark Distribution with Full Interference

(d) Cluster1 Full Interference

0

2

4

6

8

10

12

14

5
.1

9

5
.2

5
.2

1

5
.2

2

5
.2

3

5
.2

4

5
.2

5

5
.2

6

5
.2

7

5
.2

8

5
.2

9

5
.3

5
.3

1

5
.3

2

5
.3

3

5
.3

4

5
.3

5

5
.3

6

5
.3

7

5
.3

8

5
.3

9

5
.4

5
.4

1

5
.4

2

5
.4

3

#
 C

T
A

 (
%

)

CTA Execution Time

Cluster2 of spmv Benchmark Distribution with Full Interference

(e) Cluster2 Full Interference

0

2

4

6

8

10

12

14

16

18

6
.7

9

6
.8

6
.8

1

6
.8

2

6
.8

3

6
.8

4

6
.8

5

6
.8

6

6
.8

7

6
.8

8

6
.8

9

6
.9

6
.9

1

6
.9

2

6
.9

3

6
.9

4

6
.9

5

6
.9

6

6
.9

7

#
 C

T
A

 (
%

)

CTA Execution Time

Cluster3 of spmv Benchmark Distribution with Full Interference

(f) Cluster3 Full Interference

Figure 1: Distribution of block execution times for spmv benchmark

57

0

5

10

15

20

25

0
.3

7

0
.3

8

0
.3

9

0
.4

0
.4

1

0
.4

2

0
.4

3

0
.4

4

0
.4

5

0
.4

6

0
.4

7

0
.4

8

0
.4

9

0
.5

#
 C

T
A

 (
%

)

CTA Execution Time

Cluster1 of sad Benchmark Distribution with no Interference

(a) Cluster1 No Interference

0

2

4

6

8

10

12

14

16

18

0
.5

9

0
.6

0
.6

1

0
.6

2

0
.6

3

0
.6

4

0
.6

5

0
.6

6

0
.6

7

0
.6

8

0
.6

9

0
.7

0
.7

1

0
.7

2

0
.7

3

0
.7

4

0
.7

5

#
 C

T
A

 (
%

)

CTA Execution Time

Cluster2 of sad Benchmark Distribution with no Interference

(b) Cluster2 No Interference

0

2

4

6

8

10

12

14

16

18

0
.9

7

0
.9

8

0
.9

9

1 1
.0

1

1
.0

2

1
.0

3

1
.0

4

1
.0

5

1
.0

6

1
.0

7

1
.0

8

1
.0

9

1
.1

1
.1

1

1
.1

2

1
.1

3

1
.1

4

1
.1

5

#
 C

T
A

 (
%

)

CTA Execution Time

Cluster3 of sad Benchmark Distribution with no Interference

(c) Cluster3 No Interference

0

2

4

6

8

10

12

14

16

2
.0

8

2
.0

9

2
.1

2
.1

1

2
.1

2

2
.1

3

2
.1

4

2
.1

5

2
.1

6

2
.1

7

2
.1

8

2
.1

9

2
.2

2
.2

1

2
.2

2

2
.2

3

2
.2

4

2
.2

5

2
.2

6

2
.2

7

#
 C

T
A

 (
%

)

CTA Execution Time

Cluster4 of sad Benchmark Distribution with no Interference

(d) Cluster4 No Interference

0

5

10

15

20

25

4
.4

1

4
.4

2

4
.4

3

4
.4

4

4
.4

5

4
.4

6

4
.4

7

4
.4

8

4
.4

9

4
.5

4
.5

1

4
.5

2

4
.5

3

4
.5

4

4
.5

5

4
.5

6

#
 C

T
A

 (
%

)

CTA Execution Time

Cluster5 of sad Benchmark Distribution with no Interference

(e) Cluster5 No Interference

0

2

4

6

8

10

12

14

16

18

6
.1

2

6
.1

3

6
.1

4

6
.1

5

6
.1

6

6
.1

7

6
.1

8

6
.1

9

6
.2

6
.2

1

6
.2

2

6
.2

3

6
.2

4

6
.2

5

6
.2

6

6
.2

7

6
.2

8

6
.2

9

6
.3

#
 C

T
A

 (
%

)

CTA Execution Time

Cluster6 of sad Benchmark Distribution with no Interference

(f) Cluster6 No Interference

0

2

4

6

8

10

12

2
.0

1

2
.0

2

2
.0

3

2
.0

4

2
.0

5

2
.0

6

2
.0

7

2
.0

8

2
.0

9

2
.1

2
.1

1

2
.1

2

2
.1

3

2
.1

4

2
.1

5

2
.1

6

2
.1

7

2
.1

8

2
.1

9

2
.2

2
.2

1

2
.2

2

2
.2

3

2
.2

4

2
.2

5

2
.2

6

2
.2

7

#
 C

T
A

 (
%

)

CTA Execution Time

Cluster1 of sad Benchmark Distribution with Full Interference

(g) Cluster1 Full Interference

0

2

4

6

8

10

12

14

16

18

3
.1

4

3
.1

5

3
.1

6

3
.1

7

3
.1

8

3
.1

9

3
.2

3
.2

1

3
.2

2

3
.2

3

3
.2

4

3
.2

5

3
.2

6

3
.2

7

3
.2

8

3
.2

9

3
.3

3
.3

1

3
.3

2

3
.3

3

3
.3

4

3
.3

5

3
.3

6

3
.3

7

3
.3

8

3
.3

9

3
.4

3
.4

1

3
.4

2

3
.4

3

3
.4

4

#
 C

T
A

 (
%

)

CTA Execution Time

Cluster2 of sad Benchmark Distribution with Full Interference

(h) Cluster2 Full Interference

0

2

4

6

8

10

12

14

16

4
.4

9

4
.5

4
.5

1

4
.5

2

4
.5

3

4
.5

4

4
.5

5

4
.5

6

4
.5

7

4
.5

8

4
.5

9

4
.6

4
.6

1

4
.6

2

4
.6

3

4
.6

4

4
.6

5

4
.6

6

4
.6

7

4
.6

8

4
.6

9

4
.7

4
.7

1

4
.7

2

4
.7

3

4
.7

4

4
.7

5

4
.7

6

4
.7

7

4
.7

8

4
.7

9

4
.8

4
.8

1

4
.8

2

#
 C

T
A

 (
%

)

CTA Execution Time

Cluster3 of sad Benchmark Distribution with Full Interference

(i) Cluster3 Full Interference

0

2

4

6

8

10

12

14

16

6
.4

8

6
.4

9

6
.5

6
.5

1

6
.5

2

6
.5

3

6
.5

4

6
.5

5

6
.5

6

6
.5

7

6
.5

8

6
.5

9

6
.6

6
.6

1

6
.6

2

6
.6

3

6
.6

4

6
.6

5

6
.6

6

6
.6

7

6
.6

8

6
.6

9

6
.7

6
.7

1

#
 C

T
A

 (
%

)

CTA Execution Time

Cluster4 of sad Benchmark Distribution with Full Interference

(j) Cluster4 Full Interference

0

2

4

6

8

10

12

14

16

18

9
.2

3

9
.2

4

9
.2

5

9
.2

6

9
.2

7

9
.2

8

9
.2

9

9
.3

9
.3

1

9
.3

2

9
.3

3

9
.3

4

9
.3

5

9
.3

6

9
.3

7

9
.3

8

9
.3

9

9
.4

9
.4

1

9
.4

2

9
.4

3

9
.4

4

9
.4

5

9
.4

6

9
.4

7

9
.4

8

9
.4

9

9
.5

#
 C

T
A

 (
%

)

CTA Execution Time

Cluster5 of sad Benchmark Distribution with Full Interference

(k) Cluster5 Full Interference

0

2

4

6

8

10

12

14

1
2
.4

7

1
2
.4

9

1
2
.5

1

1
2
.5

3

1
2
.5

5

1
2
.5

7

1
2
.5

9

1
2
.6

1

1
2
.6

3

1
2
.6

5

1
2
.6

7

1
2
.6

9

1
2
.7

1

1
2
.7

3

1
2
.7

5

1
2
.7

7

1
2
.7

9

1
2
.8

1

#
 C

T
A

 (
%

)

CTA Execution Time

Cluster6 of sad Benchmark Distribution with Full Interference

(l) Cluster6 Full Interference

Figure 2: Distribution of block execution times for sad benchmark

58

0

5

10

15

20

25

1
.1

7

1
.1

8

1
.1

9

1
.2

1
.2

1

1
.2

2

1
.2

3

1
.2

4

1
.2

5

1
.2

6

1
.2

7

1
.2

8

1
.2

9

1
.3

#
 C

T
A

 (
%

)

CTA Execution Time

Cluster1 of bfs Benchmark Distribution with no Interference

(a) Cluster1 No Interference

0

5

10

15

20

25

1
.6

8

1
.6

9

1
.7

1
.7

1

1
.7

2

1
.7

3

1
.7

4

1
.7

5

1
.7

6

1
.7

7

1
.7

8

1
.7

9

1
.8

1
.8

1

#
 C

T
A

 (
%

)

CTA Execution Time

Cluster2 of bfs Benchmark Distribution with no Interference

(b) Cluster2 No Interference

0

5

10

15

20

25

2
.5

9

2
.6

2
.6

1

2
.6

2

2
.6

3

2
.6

4

2
.6

5

2
.6

6

2
.6

7

2
.6

8

2
.6

9

2
.7

2
.7

1

2
.7

2

2
.7

3

2
.7

4

2
.7

5

2
.7

6

2
.7

7

#
 C

T
A

 (
%

)

CTA Execution Time

Cluster3 of bfs Benchmark Distribution with no Interference

(c) Cluster3 No Interference

0

2

4

6

8

10

12

14

16

18

20

3
.0

6

3
.0

7

3
.0

8

3
.0

9

3
.1

3
.1

1

3
.1

2

3
.1

3

3
.1

4

3
.1

5

3
.1

6

3
.1

7

3
.1

8

3
.1

9

3
.2

3
.2

1

3
.2

2

3
.2

3

3
.2

4

3
.2

5

#
 C

T
A

 (
%

)

CTA Execution Time

Cluster4 of bfs Benchmark Distribution with no Interference

(d) Cluster4 No Interference

0

2

4

6

8

10

12

14

16

18

20

4
.7

3

4
.7

4

4
.7

5

4
.7

6

4
.7

7

4
.7

8

4
.7

9

4
.8

4
.8

1

4
.8

2

4
.8

3

4
.8

4

4
.8

5

4
.8

6

4
.8

7

4
.8

8

#
 C

T
A

 (
%

)

CTA Execution Time

Cluster5 of bfs Benchmark Distribution with no Interference

(e) Cluster5 No Interference

0

2

4

6

8

10

12

14

16

18

5
.2

4

5
.2

5

5
.2

6

5
.2

7

5
.2

8

5
.2

9

5
.3

5
.3

1

5
.3

2

5
.3

3

5
.3

4

5
.3

5

5
.3

6

5
.3

7

5
.3

8

5
.3

9

5
.4

5
.4

1

5
.4

2

#
 C

T
A

 (
%

)

CTA Execution Time

Cluster6 of bfs Benchmark Distribution with no Interference

(f) Cluster6 No Interference

0

2

4

6

8

10

12

2
.0

1

2
.0

2

2
.0

3

2
.0

4

2
.0

5

2
.0

6

2
.0

7

2
.0

8

2
.0

9

2
.1

2
.1

1

2
.1

2

2
.1

3

2
.1

4

2
.1

5

2
.1

6

2
.1

7

2
.1

8

2
.1

9

2
.2

2
.2

1

2
.2

2

2
.2

3

2
.2

4

2
.2

5

2
.2

6

2
.2

7

#
 C

T
A

 (
%

)

CTA Execution Time

Cluster1 of sad Benchmark Distribution with Full Interference

(g) Cluster1 Full Interference

0

2

4

6

8

10

12

14

16

18

3
.1

4

3
.1

5

3
.1

6

3
.1

7

3
.1

8

3
.1

9

3
.2

3
.2

1

3
.2

2

3
.2

3

3
.2

4

3
.2

5

3
.2

6

3
.2

7

3
.2

8

3
.2

9

3
.3

3
.3

1

3
.3

2

3
.3

3

3
.3

4

3
.3

5

3
.3

6

3
.3

7

3
.3

8

3
.3

9

3
.4

3
.4

1

3
.4

2

3
.4

3

3
.4

4

#
 C

T
A

 (
%

)

CTA Execution Time

Cluster2 of sad Benchmark Distribution with Full Interference

(h) Cluster2 Full Interference

0

2

4

6

8

10

12

14

16

4
.4

9

4
.5

4
.5

1

4
.5

2

4
.5

3

4
.5

4

4
.5

5

4
.5

6

4
.5

7

4
.5

8

4
.5

9

4
.6

4
.6

1

4
.6

2

4
.6

3

4
.6

4

4
.6

5

4
.6

6

4
.6

7

4
.6

8

4
.6

9

4
.7

4
.7

1

4
.7

2

4
.7

3

4
.7

4

4
.7

5

4
.7

6

4
.7

7

4
.7

8

4
.7

9

4
.8

4
.8

1

4
.8

2

#
 C

T
A

 (
%

)

CTA Execution Time

Cluster3 of sad Benchmark Distribution with Full Interference

(i) Cluster3 Full Interference

0

2

4

6

8

10

12

14

16

5
.4

8

5
.4

9

5
.5

5
.5

1

5
.5

2

5
.5

3

5
.5

4

5
.5

5

5
.5

6

5
.5

7

5
.5

8

5
.5

9

5
.6

5
.6

1

5
.6

2

5
.6

3

5
.6

4

5
.6

5

5
.6

6

5
.6

7

5
.6

8

5
.6

9

5
.7

5
.7

1

#
 C

T
A

 (
%

)

CTA Execution Time

Cluster4 of bfs Benchmark Distribution with Full Interference

(j) Cluster4 Full Interference

0

2

4

6

8

10

12

14

16

7
.4

4

7
.4

5

7
.4

6

7
.4

7

7
.4

8

7
.4

9

7
.5

7
.5

1

7
.5

2

7
.5

3

7
.5

4

7
.5

5

7
.5

6

7
.5

7

7
.5

8

7
.5

9

7
.6

7
.6

1

7
.6

2

7
.6

3

7
.6

4

7
.6

5

7
.6

6

7
.6

7

#
 C

T
A

 (
%

)

CTA Execution Time

Cluster5 of bfs Benchmark Distribution with Full Interference

(k) Cluster5 Full Interference

0

2

4

6

8

10

12

14

9
.0

1

9
.0

3

9
.0

5

9
.0

7

9
.0

9

9
.1

1

9
.1

3

9
.1

5

9
.1

7

9
.1

9

9
.2

1

9
.2

3

9
.2

5

9
.2

7

9
.2

9

9
.3

1

9
.3

3

9
.3

5

#
 C

T
A

 (
%

)

CTA Execution Time

Cluster6 of bfs Benchmark Distribution with Full Interference

(l) Cluster6 Full Interference

Figure 3: Distribution of block execution times for bfs benchmark

59

0

5

10

15

20

25

30

1
.6

7

1
.6

8

1
.6

9

1
.7

1
.7

1

1
.7

2

1
.7

3

1
.7

4

1
.7

5

1
.7

6

1
.7

7

1
.7

8

1
.7

9

1
.8

#
 C

T
A

 (
%

)

CTA Execution Time

Cluster1 of lbm Benchmark Distribution with no Interference

(a) Cluster1 No Interference

0

5

10

15

20

25

2
.9

9

3 3
.0

1

3
.0

2

3
.0

3

3
.0

4

3
.0

5

3
.0

6

3
.0

7

3
.0

8

3
.0

9

3
.1

3
.1

1

3
.1

2

#
 C

T
A

 (
%

)

CTA Execution Time

Cluster2 of lbm Benchmark Distribution with no Interference

(b) Cluster2 No Interference

0

2

4

6

8

10

12

14

16

18

4
.7

5

4
.7

6

4
.7

7

4
.7

8

4
.7

9

4
.8

4
.8

1

4
.8

2

4
.8

3

4
.8

4

4
.8

5

4
.8

6

4
.8

7

4
.8

8

4
.8

9

#
 C

T
A

 (
%

)

CTA Execution Time

Cluster3 of lbm Benchmark Distribution with no Interference

(c) Cluster3 No Interference

0

5

10

15

20

25

5
.5

3

5
.5

4

5
.5

5

5
.5

6

5
.5

7

5
.5

8

5
.5

9

5
.6

5
.6

1

5
.6

2

5
.6

3

5
.6

4

5
.6

5

5
.6

6

#
 C

T
A

 (
%

)

CTA Execution Time

Cluster4 of lbm Benchmark Distribution with no Interference

(d) Cluster4 No Interference

0

2

4

6

8

10

12

14

16

18

20

7 7
.0

1

7
.0

2

7
.0

3

7
.0

4

7
.0

5

7
.0

6

7
.0

7

7
.0

8

7
.0

9

7
.1

7
.1

1

7
.1

2

#
 C

T
A

 (
%

)

CTA Execution Time

Cluster5 of lbm Benchmark Distribution with no Interference

(e) Cluster5 No Interference

0

2

4

6

8

10

12

14

16

2
.2

1

2
.2

2

2
.2

3

2
.2

4

2
.2

5

2
.2

6

2
.2

7

2
.2

8

2
.2

9

2
.3

2
.3

1

2
.3

2

2
.3

3

2
.3

4

2
.3

5

2
.3

6

2
.3

7

2
.3

8

2
.3

9

2
.4

2
.4

1

2
.4

2

2
.4

3

2
.4

4

#
 C

T
A

 (
%

)

CTA Execution Time

Cluster1 of lbm Benchmark Distribution with Full Interference

(f) Cluster1 Full Interference

0

2

4

6

8

10

12

14

4
.1

4

4
.1

5

4
.1

6

4
.1

7

4
.1

8

4
.1

9

4
.2

4
.2

1

4
.2

2

4
.2

3

4
.2

4

4
.2

5

4
.2

6

4
.2

7

4
.2

8

4
.2

9

4
.3

4
.3

1

4
.3

2

4
.3

3

4
.3

4

4
.3

5

4
.3

6

4
.3

7

4
.3

8

4
.3

9

4
.4

4
.4

1

4
.4

2

4
.4

3

4
.4

4

#
 C

T
A

 (
%

)

CTA Execution Time

Cluster2 of lbm Benchmark Distribution with Full Interference

(g) Cluster2 Full Interference

0

2

4

6

8

10

12

14

16

6
.6

5

6
.6

6

6
.6

7

6
.6

8

6
.6

9

6
.7

6
.7

1

6
.7

2

6
.7

3

6
.7

4

6
.7

5

6
.7

6

6
.7

7

6
.7

8

6
.7

9

6
.8

6
.8

1

6
.8

2

6
.8

3

6
.8

4

6
.8

5

6
.8

6

6
.8

7

6
.8

8

6
.8

9

6
.9

#
 C

T
A

 (
%

)

CTA Execution Time

Cluster3 of lbm Benchmark Distribution with Full Interference

(h) Cluster3 Full Interference

0

2

4

6

8

10

12

14

8
.0

7

8
.0

8

8
.0

9

8
.1

8
.1

1

8
.1

2

8
.1

3

8
.1

4

8
.1

5

8
.1

6

8
.1

7

8
.1

8

8
.1

9

8
.2

8
.2

1

8
.2

2

8
.2

3

8
.2

4

8
.2

5

8
.2

6

8
.2

7

8
.2

8

8
.2

9

8
.3

#
 C

T
A

 (
%

)

CTA Execution Time

Cluster4 of lbm Benchmark Distribution with Full Interference

(i) Cluster4 Full Interference

0

2

4

6

8

10

12

14

9
.4

1

9
.4

2

9
.4

3

9
.4

4

9
.4

5

9
.4

6

9
.4

7

9
.4

8

9
.4

9

9
.5

9
.5

1

9
.5

2

9
.5

3

9
.5

4

9
.5

5

9
.5

6

9
.5

7

9
.5

8

9
.5

9

9
.6

9
.6

1

9
.6

2

9
.6

3

9
.6

4

#
 C

T
A

 (
%

)

CTA Execution Time

Cluster5 of lbm Benchmark Distribution with Full Interference

(j) Cluster5 Full Interference

Figure 4: Distribution of block execution times for lbm benchmark

60

0

5

10

15

20

25

3
.5

2

3
.5

3

3
.5

4

3
.5

5

3
.5

6

3
.5

7

3
.5

8

3
.5

9

3
.6

3
.6

1

3
.6

2

3
.6

3

3
.6

4

3
.6

5

#
 C

T
A

 (
%

)

CTA Execution Time

Cluster1 of stencil Benchmark Distribution with no Interference

(a) Cluster1 No Interference

0

2

4

6

8

10

12

14

16

18

6
.1

6
.1

1

6
.1

2

6
.1

3

6
.1

4

6
.1

5

6
.1

6

6
.1

7

6
.1

8

6
.1

9

6
.2

6
.2

1

6
.2

2

6
.2

3

#
 C

T
A

 (
%

)

CTA Execution Time

Cluster2 of stencil Benchmark Distribution with no Interference

(b) Cluster2 No Interference

0

2

4

6

8

10

12

14

16

18

20

8
.2

7

8
.2

8

8
.2

9

8
.3

8
.3

1

8
.3

2

8
.3

3

8
.3

4

8
.3

5

8
.3

6

8
.3

7

8
.3

8

8
.3

9

8
.4

8
.4

1

8
.4

2

8
.4

3

8
.4

4

8
.4

5

#
 C

T
A

 (
%

)

CTA Execution Time

Cluster3 of stencil Benchmark Distribution with no Interference

(c) Cluster3 No Interference

0

5

10

15

20

25

30

35

9
.5

9

9
.6

9
.6

1

9
.6

2

9
.6

3

9
.6

4

9
.6

5

9
.6

6

#
 C

T
A

 (
%

)

CTA Execution Time

Cluster4 of stencil Benchmark Distribution with no Interference

(d) Cluster4 No Interference

0

2

4

6

8

10

12

14

16

4
.7

1

4
.7

2

4
.7

3

4
.7

4

4
.7

5

4
.7

6

4
.7

7

4
.7

8

4
.7

9

4
.8

4
.8

1

4
.8

2

4
.8

3

4
.8

4

4
.8

5

4
.8

6

4
.8

7

4
.8

8

4
.8

9

4
.9

4
.9

1

4
.9

2

4
.9

3

4
.9

4

4
.9

5

4
.9

6

4
.9

7
#

 C
T

A
 (

%
)

CTA Execution Time

Cluster1 of stencil Benchmark Distribution with Full Interference

(e) Cluster1 Full Interference

0

2

4

6

8

10

12

14

16

7
.5

3

7
.5

4

7
.5

5

7
.5

6

7
.5

7

7
.5

8

7
.5

9

7
.6

7
.6

1

7
.6

2

7
.6

3

7
.6

4

7
.6

5

7
.6

6

7
.6

7

7
.6

8

7
.6

9

7
.7

7
.7

1

7
.7

2

7
.7

3

7
.7

4

7
.7

5

7
.7

6

#
 C

T
A

 (
%

)

CTA Execution Time

Cluster2 of stencil Benchmark Distribution with Full Interference

(f) Cluster2 Full Interference

0

2

4

6

8

10

12

14

9
.6

7

9
.6

8

9
.6

9

9
.7

9
.7

1

9
.7

2

9
.7

3

9
.7

4

9
.7

5

9
.7

6

9
.7

7

9
.7

8

9
.7

9

9
.8

9
.8

1

9
.8

2

9
.8

3

9
.8

4

9
.8

5

9
.8

6

9
.8

7

9
.8

8

9
.8

9

9
.9

9
.9

1

9
.9

2

9
.9

3

9
.9

4

9
.9

5

9
.9

6

#
 C

T
A

 (
%

)

CTA Execution Time

Cluster3 of stencil Benchmark Distribution with Full Interference

(g) Cluster3 Full Interference

0

5

10

15

20

25

1
2
.0

8

1
2
.0

9

1
2
.1

1
2
.1

1

1
2
.1

2

1
2
.1

3

1
2
.1

4

1
2
.1

5

1
2
.1

6

1
2
.1

7

1
2
.1

8

1
2
.1

9

1
2
.2

1
2
.2

1

#
 C

T
A

 (
%

)

CTA Execution Time

Cluster4 of stencil Benchmark Distribution with Full Interference

(h) Cluster4 Full Interference

Figure 5: Distribution of block execution times for stencil benchmark

61

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Methodology
	Thesis Outline

	Background and Related Work
	Resource Isolation in Real-Time Systems
	Software Solutions
	Hardware Solutions

	WCET Analysis
	WCET Analysis in Multi-Core Systems

	GPUs in Real-Time Systems
	Thread Scheduling in CUDA
	Real-Time Frameworks for GPU
	Memory-Aware Frameworks on GPU
	WCET Estimation for GPU

	System Model and Evaluation Platform
	System Model and Assumptions
	Evaluation Platform

	WCET Estimation
	Hybrid WCET Estimation
	Block Clustering
	Memory Interference Estimation
	Implementation
	Evaluation
	Bandwidth and Budget Estimation
	Testing the Interference Hypothesis
	Clustering Results
	Tightness of WCET Estimation

	Discussion and Conclusions

	Dynamic Budget Allocation
	Allocation Algorithm
	Improved Allocation
	Implementation
	Evaluation
	Discussion and Conclusions

	Conclusions and Future Work
	References
	Appendix

