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Abstract

We study three different problems in this thesis, all related to G2 structures and geomet-
ric flows. In the first problem we study hypersurfaces in a nearly G2 manifold. We define
various quantities associated to such a hypersurface using the G2 structure of the ambient
manifold and establish several relations between them. In particular, we give a necessary
and sufficient condition for a hypersurface with an almost complex structure induced from
the G2 structure of the ambient manifold to be nearly Kähler. Then using the nearly G2

structure on the round sphere S7, we prove that for a compact minimal hypersurface M6

of constant scalar curvature in S7 with the shape operator A satisfying |A|2 > 6, there
exists an eigenvalue λ > 12 of the Laplace operator on M such that |A|2 = λ − 6, thus
giving the next discrete value of |A|2 greater than 0 and 6 in terms of the spectrum of the
Laplace operator on M . The latter is related to a question of Chern on the values of the
scalar curvature of compact minimal hypersurfaces in Sn of constant scalar curvature.

The second problem is related to the study of solitons and almost solitons of the Ricci-
Bourguignon flow. We prove some characterization results for compact Ricci-Bourguignon
solitons. Taking motivation from Ricci almost solitons, we then introduce the notion
of Ricci-Bourguignon almost solitons and prove some results about them which generalize
previous results for Ricci almost solitons. We also derive integral formulas for compact gra-
dient Ricci-Bourguignon solitons and compact gradient Ricci-Bourguignon almost solitons.
Finally, using the integral formula we show that a compact gradient Ricci-Bourguignon al-
most soliton is isometric to an Euclidean sphere if it has constant scalar curvature or if its
associated vector field is conformal.

In the third problem we study a flow of G2 structures that all induce the same Rie-
mannian metric. This isometric flow is the negative gradient flow of an energy functional.
We prove Shi-type estimates for the torsion tensor T along the flow. We show that at a
finite-time singularity the torsion must blow up, so the flow will exist as long as the torsion
remains bounded. We prove a Cheeger–Gromov type compactness theorem for the flow.
One possible motivation for studying this isometric flow of G2-structures is that it can be
coupled with “Ricci flow” of G2 structures, which is a flow of G2 structures that induces
precisely the Ricci flow on metrics, in contrast to the Laplacian flow which induces Ricci
flow plus lower order terms involving the torsion. In effect, one may hope to first flow
the 3-form in a way that improves the metric, and then flow the 3-form in a way that
preserves the metric but still decreases the torsion. More generally, the isometric flow is
a particular geometric flow of G2-structures distinct from the Laplacian flow, and both fit
into a broader class of geometric flows of G2-structures with good analytic properties. In
the final section, we summarize the rest of the results on the isometric flow which include
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an Uhlenbeck type trick and the definition of a scale-invariant quantity Θ for any solution
of the flow and the proof that it is almost monotonic along the flow. We also introduce an
entropy functional and prove that low entropy initial data lead to solutions of the flow that
exist for all time and converge smoothly to a G2 structure with divergence-free torsion. We
study the singular set of the flow. Finally, we prove that if the singularity is of Type-I then
a sequence of blow-ups of a solution admits a subsequence that converges to a shrinking
soliton for the flow.
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Chapter 1

Introduction

The two unifying themes in this thesis are: special algebraic structures on manifolds, specif-
ically a G2 structure on a seven dimensional manifold, and geometric flows on manifolds.

Let (Mn, g) be a Riemannian manifold. An algebraic structure on M corresponds to
a smooth section of some tensor bundle of M , satisfying some natural algebraic condition
at each point p ∈ M . For example, an orientation on M is a nowhere vanishing smooth
section µ ∈ Λn(T ∗M). An orientation compatible with the metric g is called an SO(n)
structure on M which is equivalent to a reduction of the structure group of the frame
bundle of M from GL(n,R) to SO(n). Another example is an almost Hermitian structure
on M which is a smooth section J of the tensor bundle TM ⊗ T ∗M such that J2 = −I
and g(JX, JY ) = g(X, Y ) for all X, Y ∈ Γ(TM). It is easy to check that such a structure
exists if and only if n = 2m is even. An almost Hermitian structure on M is a reduction
of the structure group of the frame bundle from GL(2m,R) to U(m).

A G2 structure on M , the subject matter of this thesis, is a special algebraic structure
which we can only consider in dimension n = 7. Topologically, a G2 structure on M is a
reduction of the structure group of the frame bundle of M from SO(7) to the Lie group
G2. From the point of view of differential geometry, a G2 structure on M corresponds to
a special kind of 3-form ϕ on M . Such a pair (M,ϕ) is a manifold with a G2 structure. In
addition, if the 3-form is parallel with respect to the Levi-Civita connection ∇ of g, i.e.,
∇ϕ = 0 then (M,ϕ) is called a G2 manifold.

One motivation for studying manifolds with a G2 structure is the following. The holon-
omy group of a Riemannian manifold is an invariant of the metric, defined as the group
generated by parallel transport around closed loops. In [Ber55], Berger classified the pos-
sible holonomy groups of simply-connected, irreducible and non-symmetric Riemannian
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manifolds. Berger’s classification is given in the following table.

Dimension Holonomy group Remarks
n SO(n) Generic Riemannian manifold
2m U(m) Kähler
2m SU(m) Calabi-Yau
4q Sp(q) Hyper-Kähler
4q Sp(q) · Sp(1) Quaternionic-Kähler
7 G2 G2-holonomy
8 Spin(7) Spin(7)-holonomy

Manifolds with holonomy SU(m), Sp(q), Sp(q)·Sp(1), G2 or Spin(7) are called manifolds
with special holonomy. With the exception of manifolds with holonomy Sp(q) · Sp(1), all
other special holonomy manifolds are Ricci-flat. In fact, all currently known examples of
irreducible and non-symmetric, compact Ricci-flat manifolds have special holonomy. In
particular, G2 manifolds are always Ricci-flat.

Another motivation is that G2 manifolds have parallel spinors which make them very
useful in physics, especially in string theory. M -theory is an 11-dimensional theory which
is “compactified” on a 7-dimensional manifold (4 dimensions for space-time). For “super-
symmetric” reasons, the 7-dimensional manifolds must admit a non-zero parallel spinor and
hence must be a G2 manifold. In this respect, G2 manifolds are analogous to Calabi–Yau
3-folds which are the “compactified” spaces in the 10-dimensional string theory.

In Chapter 2 we discuss preliminaries on G2 geometry. We start with the definition of a
G2 structure on a seven dimensional Riemannian manifold and discuss the decomposition of
the space of differential forms on such a manifold. We describe the torsion of a G2 structure
and give an explicit description of the four torsion tensors along with their expressions in
local coordinates. This also allows us to define manifolds with nearly G2 structures which
are the subject matter of Chapter 4. We then see the relationship between the torsion of
a G2 structure and the curvature of the induced metric.

The second theme of the thesis is geometric flows on a manifold. Geometric flows have
been a very powerful tool to study geometric structures. The Ricci flow introduced by
Hamilton paved the way for the solution of the Poincaré conjecture by Perelman. Similarly,
other geometric flows like the Kähler-Ricci flow, the harmonic map heat flow, the Yang-
Mills flow and others have been indispensable tools for a variety of geometric problems.
In Chapter 3, we discuss some preliminaries on geometric flows. We start by describing
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the basic idea of a flow on a manifold. We review the notion of parabolic partial differ-
ential equations and discuss short-time existence and uniqueness for a solution of such an
equation. We also discuss maximum principles for scalar and tensor equations.

Chapter 2 and Chapter 3 contains an introduction to the basic ideas involved in the thesis.

The new results start from Chapter 4 where we are concerned with minimal hyper-
surfaces in nearly G2 manifolds. A G2 structure on a manifold M

7 induces a Hermitian
structure on any oriented hypersurfaceM . A G2 structure ϕ is called a nearly G2 structure
if

dϕ = λ ? ϕ,

where λ is a non-zero constant and ? is the Hodge-star operator (see §4.1 for relevant
definitions). A Hermitian structure on a manifold M with an almost complex structure J
is called a nearly Kähler structure if

(∇XJ)X = 0, for all X ∈ Γ(TM).

Nearly Kähler 6-manifolds and nearly G2 manifolds, apart from being interesting in their
own right, are also important as the Riemannian cones over them has holonomy contained
in G2 and Spin(7) respectively, both of which appear on Berger’s list. The first main result
in Chapter 4 is the following. The reader is urged to see the chapter for relevant definitions.

Theorem 4.1.2. Let M be an oriented hypersurface of a nearly G2 manifold (M,ϕ).
Then (M, g, ξ) is a nearly Kähler structure if and only if M is totally umbilic, i.e., for all
X ∈ Γ(TM)

AX = αX, (1.0.1)

where A is the shape operator of M in M and α ∈ C∞(M).

Since there are very few known examples of nearly Kähler 6-manifolds, Theorem 4.1.2 can
potentially be useful in finding some more examples.

The next main result in that chapter concerns the following question of Chern (cf.
[Yau82, pg.693])

Question 1.0.1. [Chern] Consider the set of all compact minimal hypersurfaces in Sn+1

with constant scalar curvature. Think of the scalar curvature as a function on this set. Is
the image of the scalar curvature function a discrete set of positive numbers ?

Since for any minimal hypersurfaceMn with scalar curvature R in Sn+1, R = n(n−1)−|A|2
(cf. (4.2.7) in §4.2), the above question asks whether the set of |A|2 for such hypersurfaces
M is a discrete set. The round unit sphere S7 has a nearly G2 structure, so a natural
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question is whether we can say anything about the values of |A|2 for compact minimal
hypersurfaces with constant scalar curvature in S7 by using the nearly G2 structure on it.
The second main result in the chapter concerns this.

Theorem 4.1.5. Let M6 be a compact minimal hypersurface of constant scalar curvature
in the unit sphere S7. If the shape operator A of M satisfies |A|2 > 6, then there exists an
eigenvalue λ > 12 of the Laplace operator on M such that |A|2 = λ− 6.

Chapter 3 is concerned with the study of solitons and almost solitons of the Ricci-
Bourguignon flow which is a flow of Riemannian metrics on an n-dimensional Riemannian
manifold.

A family of metrics g(t) on an n-dimensional Riemannian manifold (Mn, g) is said to
evolve by the Ricci-Bourguignon flow (RB flow for short) if g(t) satisfies the following
evolution equation

∂g

∂t
= −2(Ric− ρRg),

where Ric is the Ricci tensor of the metric, R is the scalar curvature and ρ ∈ R is a constant.
We notice that the Ricci flow is a special case of the RB flow for ρ = 0. Moreover, from
[LW17, eqn. (3.6)] we see that up to the leading order term, the metric along the Laplacian

flow of closed G2 structures evolves by RB flow for ρ =
2

3
. This was the original motivation

for the author to study the RB flow. We prove various rigidity results for the solitons and
almost solitons of the Ricci-Bourguignon flow. The first main result of this chapter is the
following

Theorem 5.1.3. Let (Mn, g,X, λ, ρ) be a RB soliton with n ≥ 3 and suppose that the
soliton vector field X is a conformal vector field.

1. If M is compact then X is a Killing vector field and hence (Mn, g,X, λ, ρ) is a trivial
RB soliton.

2. If M is non-compact, complete and gradient RB soliton then either X is a Killing
vector field or (Mn, g,X, λ, ρ) is isometric to the Euclidean space.

We characterize compact almost soliton (see Definition 5.1.1) of the Ricci-Bourguignon
flow in the following

Theorem 5.1.5. Let (Mn, g,X, λ, ρ) be a compact RB almost soliton with n ≥ 3. If X
is a nontrivial conformal vector field then Mn is isometric to an Euclidean sphere.
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We also obtain an integral formula for compact gradient RB almost soliton. Precisely, we
prove the following

Theorem 5.1.9. Let (Mn, g,∇f, λ, ρ) be a compact gradient RB almost soliton. Then∫
M

∣∣∣∇2f − ∆f

n
g
∣∣∣2 vol =

(n− 2)

2n

∫
M

g(∇R,∇f) vol, (1.0.2)

∫
M

∣∣∣Ric− R

n
g
∣∣∣2 vol =

(n− 2)

2n

∫
M

g(∇R,∇f) vol . (1.0.3)

The preceding theorem allows us to give some conditions when a compact gradient RB
soliton is isometric to an Euclidean sphere. More precisely, we prove the following

Corollary 5.1.10. A nontrivial compact gradient RB almost soliton (Mn, g,∇f, λ, ρ),
n ≥ 3 is isometric to an Euclidean sphere if any one of the following holds

1. Mn has constant scalar curvature.

2.
∫
M
g(∇R,∇f) vol ≤ 0.

3. Mn is a homogenous manifold.

In Chapter 6 we introduce and study a geometric flow of G2 structures all of which induce
the same Riemannian metric (see (6.2.8) for the precise expression). The isometric flow
of G2 structures is the negative gradient flow of a natural energy functional on the space
of isometric G2 structures, namely the the square of the L2 norm of the torsion of the G2

structure.

One possible motivation for studying this isometric flow of G2-structures is that it can be
coupled with “Ricci flow” of G2-structures, which is a flow of G2-structures that induces
precisely the Ricci flow on metrics. In effect, one may hope to first flow the 3-form in a
way that improves the metric, and then flow the 3-form in a way that preserves the metric
but still decreases the torsion. More generally, the isometric flow is a particular geometric
flow of G2-structures distinct from the Laplacian flow, and both fit into a broader class
of geometric flows of G2-structures with good analytic properties. A detailed study of
a general class of flows that includes both the Laplacian flow and the isometric flow is
undertaken in [DGK]. After some initial discussion about the flow we prove the first main
result of the chapter.

Theorem 6.2.12. Let (M7, ϕ0) be a compact manifold with G2-structure. Then the
isometric flow (6.2.8) has a unique solution for a short time t ∈ [0, ε).
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Afterwards, we discuss the solitons for the flow. We then proceed to prove Shi-type esti-
mates for the torsion T of the the G2 structure along the flow. More precisely, we prove
the following theorem.

Theorem 6.3.3. Suppose that K > 0 is a constant and ϕ(t) is a solution to the isometric
flow on a closed manifold M7 with t ∈ [0, 1

K2 ]. For all m ∈ N, there exists a constant Cm
depending only on (M, g) such that if

sup
M
|T (x, t)| ≤ K and |∇jRm| ≤ BjK

2+j for all j ≥ 0 on M7 × [0, 1
K2 ],

then for all t ∈ [0, 1
K2 ] we have

|∇mT | ≤ Cmt
−m

2 K.

We also prove the local version of the above theorem. Using the Shi-type estimates we give
a characterization of the singular time or the maximal existence time for any solution of
the isometric flow in terms of the norm of the torsion tensor. Roughly speaking, we prove
that a solution of the isometric flow exists as long as the torsion T remains bounded. We
then proceed to prove a Cheeger–Gromov type compactness theorem for the solutions of
the flow. We finish the chapter (and the thesis) by briefly summarizing other results we
obtained on the isometric flow of G2 structures.

1.1 Notations and conventions

Throughout the thesis, unless stated otherwise, we use the symbol ∗ to denote various
contractions between tensors whose precise form is not important, and thus we instead use
? for the Hodge star operator. When estimating the norms of various tensors, the symbol
C will be used to denote some positive constant, which may change from line to line in the
derivation of an estimate.

We very frequently use Young’s inequality

ab ≤ 1
2ε
a2 + ε

2
b2,

for any ε, a, b > 0.

Throughout the thesis, we do computations with respect to a local orthonormal frame, so all
indices are subscripts (unless stated otherwise) and any repeated indices are summed over
all values from 1 to 7. The symbol ∆ always denotes the analyst’s Laplacian ∆ = ∇k∇k

which is the negative of the rough Laplacian ∇∗∇.
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Our convention for labelling the Riemann curvature tensor is

Rijkm
∂

∂xm
= (∇i∇j −∇j∇i)

∂

∂xk
,

in terms of coordinate vector fields. With this convention, the Ricci tensor is Rjk = Rljkl,
and the Ricci identity is

∇k∇iXl −∇i∇kXl = −RkilmXm. (1.1.1)

Schematically, the Ricci identity implies that

∇m∆S −∆∇mS =
m∑
i=0

∇m−iS ∗ ∇iRm, (1.1.2)

for any tensor S, where as mentioned above, ∗ denotes the contraction between tensors.
Here Rm denotes the Riemann curvature tensor. Thus for instance, for a (0, 2)-tensor α
the Ricci identity is

∇i∇jαkl −∇j∇iαkl = −Rijkmαml −Rijlmαkm.

We also have the Riemannian second Bianchi identity

∇iRjkab +∇jRkiab +∇kRijab = 0,

which when contracted on i, a gives

∇iRibjk = ∇kRjb −∇jRkb. (1.1.3)

Contracting (1.1.3) on b and j gives the contracted second Bianchi identity

∇iRik =
1

2
∇kR.
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Chapter 2

Preliminaries on G2 geometry

In this chapter, we review the notion of a G2 structure on a 7-dimensional manifold. In
§2.2, we will discuss the associated decomposition of the space of forms on such a manifold.
We describe the torsion of a G2 structure and give an explicit description of the four
torsion tensors along with their expressions in local coordinates in §2.3. We then see the
relationship between the torsion of a G2 structures and the curvature of the induced metric
in §2.4. We list several identities which are used in later chapters. The main references
for this chapter are [Bry06], [Joy00], [Kar09] and [Kar19]. In particular, we use the sign
convention used in [Kar09] (which is opposite to that used in [Bry06] and [Joy00]).

2.1 Manifolds with a G2 structure

Let M7 be a smooth manifold. A G2 structure on M is a reduction of the structure group
of the frame bundle from GL(7,R) to G2 ⊂ SO(7). It is well-known that such a structure
exists on M if and only if the manifold is orientable and spinnable (i.e., M can be given
a spin structure), conditions which are respectively equivalent to the vanishing of the first
and second Stiefel-Whitney classes. Thus, the existence of a G2 structure on a manifold
is purely a topological problem. From the point of view of differential geometry, a G2

structure onM can also be equivalently defined by a 3-form ϕ onM that satisfies a certain
pointwise algebraic non-degeneracy condition, which we will now describe via the notion
of vector cross product.

Definition 2.1.1. Let (Mn, g) be a Riemannian manifold. An r-fold vector cross product
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(VCP, for short) is an alternating r-linear smooth bundle map

B : ∧rTM → TM (2.1.1)

satisfying the following conditions{
g(B(v1, ..., vr), vi) = 0, 1 ≤ i ≤ r

‖B(v1, ..., vr)‖2 = ‖v1 ∧ · · · ∧ vr‖2,

for any vi ∈ TM .

Such a cross product gives rise to a (r + 1)-differential form φ defined as

φ(v1, v2, ..., vr+1) = g(B(v1, ..., vr), vr+1).

The VCP is called parallel/closed if and only if the corresponding differential form is
parallel/closed.

Cross products on real vector spaces were classified by Brown and Gray in [BG67] and
global cross products on manifolds are discussed in Gray [Gra69]. The classification of
VCPs on a real vector space V with a positive definite inner product g is as follows:

1. r = 1. Then a 1-fold VCP B on V is equivalent to an almost complex structure on
V , i.e., B2 = −I on V . The associated VCP form is the Kähler form ω.

2. r = n − 1, where n is the dimension of V . An (n − 1)-fold VCP B on V is the
Hodge star operator ? given by g on Λn−1V and the VCP form of degree n is the
volume form on V . Thus B is equivalent to an orientation.

3. r = 2. A 2-fold VCP B on R7 is a cross product defined as B(u, v) = Im(u · v),
for u, v in R7 ∼= ImO, the set of imaginary octonions where O is an 8-dimensional
nonassociative real normed division algebra. Here · is the octonionic multiplication.
For coordinates {x1, ..., x7} on ImO, the VCP form of degree 3 can be written as
follows

φ0 = dx123 − dx167 − dx527 − dx563 − dx415 − dx426 − dx437, (2.1.2)

where dxijk = dxi ∧ dxj ∧ dxk. Bryant [Bry87] showed that the group of linear
transformations of O which preserves φ0 also preserves g and B and is the exceptional
Lie group G2 which is also the automorphism group of O.
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4. r = 3. A 3-fold VCP B on R8 is a cross product defined as B(u, v, w) = 1
2
(u(v̄w)−

w(v̄u)) for any u, v, w in R8 ∼= O. For coordinates x1, ..., x8 on O, the VCP form of
degree 4 can be written as

Ω0 = −dx1234 − dx5678 − (dx21+dx34)(dx65 + dx78)− (dx31 + dx42)(dx75 + dx86)

− (dx41 + dx23)(dx85 + dx67).

Bryant [Bry87] showed that the group of linear transformations of O preserving Ω0

also preserves g and B and is the group Spin(7) ⊂ SO(8).

In particular, the cross product on a 7-dimensional vector space induced by the octo-
nionic multiplication has the following properties. For all u, v, w ∈ (V, g)

g(u,B(v, w)) = g(B(u, v), w), (2.1.3)
B(u,B(u, v)) = −g(u, u)v + g(u, v)u, (2.1.4)

B(u,B(v, w)) +B(v,B(u,w)) = g(u,w)v + g(v, w)u− 2g(u, v)w. (2.1.5)

Let {e1, ..., e7} be the standard basis of R7 and {e1, ..., e7} be the dual basis. The VCP
form φ0 induced by the vector cross product on R7 is described in (2.1.2). The group G2

preserves φ0 and it also preserves the metric and orientation for which {e1, ..., e7} is an
oriented orthonormal basis. If ?φ0 denotes the Hodge star determined by the metric and
the orientation, then G2 preserves the 4-form

ψ0 = ?φ0φ0 = dx4567 − dx4523 − dx4163 − dx4127 − dx2637 − dx1537 − dx1526, (2.1.6)

where dxijkl = dxi ∧ dxj ∧ dxk ∧ dxl.

Let M be a 7-manifold. For x ∈M , we denote by

Λ3
+(M)x = {ϕx ∈ Λ3T ∗xM | ∃ isomorphism ρ : TxM → R7, ρ∗φ0 = ϕx}.

The fibre bundle Λ3
+(M) = tx∈MΛ3

+(M)x is an open subbundle of Λ3T ∗M . A section ϕ of
Λ3

+(M) is called a positive 3-form on M and the space of positive 3-forms on M is denoted
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by Ω3
+(M). Such a ϕ is also called a G2 structure on M . Thus, a G2 structure on

M is a positive 3-form ϕ.

To see that Λ3
+(M) is an open subbundle of Λ3T ∗M , observe that at any point x ∈M , the

space of all G2 structures Λ3
+(M)x can be identified with the orbit of φ0 in Λ3(R7)∗ by the

action of GL(7,R) quotiented by the stabilizer subgroup of φ0 which is the Lie group G2.
Thus, dim Λ3

+(M)x = 49− 14 = 35 = dim Λ3(T ∗xM). Hence Λ3
+(M)x is an open subset of

Λ3(T ∗xM). We emphasize that the fibre bundle Λ3
+(M) always exists for any 7-manifold but

it doesn’t always have a section. A section of Λ3
+(M) exists if and only if M is orientable

and spinnable which is equivalent to the vanishing of the first and second Stiefel–Whitney
classes respectively.

A G2 structure induces a unique Riemannian metric and orientation in a nonlinear way.
For a 3-form ϕ, we define

Sϕ(u, v) = −1

6
(uyϕ) ∧ (vyϕ) ∧ ϕ, (2.1.7)

for tangent vectors u, v on M , which is a Λ7(T ∗M)-valued bilinear form as 2-forms com-
mute. The 3-form ϕ is a positive 3-form if and only if Sϕ is the tensor product of a positive
definite bilinear form and a nowhere vanishing 7-form which defines a unique metric g with
volume form volg by

g(u, v) volg = Sϕ(u, v). (2.1.8)

The metric and orientation determine the Hodge star operator ?ϕ and we define ψ = ?ϕϕ,
the Hodge dual of ϕ.

Remark 2.1.2. Even though we used a vector cross product and a metric to define G2

structures on a manifold, one need only start with a positive 3-form and then obtain the
metric using (2.1.8).

Remark 2.1.3. The nonlinear map ϕ → g is not one-to-one. In fact, given a metric g
on M induced from a G2 structure ϕ, at each point p ∈ M , the space of G2 structures at
p inducing gp is diffeomorphic to RP7. Thus the G2 structures inducing the same metric
g correspond to sections of an RP7-bundle over M . See Chapter 6 for more details on
isometric G2 structures.

There are useful contraction identities involving the 3-form ϕ and the 4-form ψ of a G2

structure, which we collect here. Their proofs can be found in [Kar09, Appendix A].
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Contractions of ϕ with ϕ

ϕijkϕabk = giagjb − gibgja − ψijab, (2.1.9)
ϕijkϕajk = 6gia, (2.1.10)
ϕijkϕijk = 42. (2.1.11)

Contractions of ϕ with ψ

ϕijkψabck = giaϕjbc + gibϕajc + gicϕabj − gjaϕibc − gjbϕaic − gjcϕabi, (2.1.12)
ϕijkψabjk = −4ϕiab, (2.1.13)
ϕijkψaijk = 0. (2.1.14)

Contractions of ψ with ψ

ψijklψabkl = 4giagjb − 4gibgja − 2ψijab, (2.1.15)
ψijklψajkl = 24gia, (2.1.16)
ψijklψijkl = 168. (2.1.17)

2.2 Decomposition of the space of forms

The existence of a G2 structure ϕ onM (with no condition on ∇ϕ) determines a decompo-
sition of the spaces of differential forms on M into irreducible G2 representations. This is
analogous to the decomposition of complex-valued differential forms on an almost complex
manifold into forms of type (p, q).

Since the Lie group G2 stabilizes ϕ, all the tensors determined by ϕ will be invariant under
G2 and hence any subspaces of Ωk defined using ϕ, ψ, g and ? will be G2 representations.
The space Ωk is irreducible if k = 0, 1, 6, 7. However, for k = 2, 3, 4, 5 we have a nontrivial
decomposition.

The space of 2-forms Ω2(M) and 3-forms Ω3(M) decompose as

Ω2(M) = Ω2
7(M)⊕ Ω2

14(M), (2.2.1)
Ω3(M) = Ω3

1(M)⊕ Ω3
7(M)⊕ Ω3

27(M). (2.2.2)

where Ωk
l has pointwise dimension l. More precisely, we have the following description of

the space of forms:
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Ω2
7(M) = {Xyϕ | X ∈ Γ(TM)} = {β ∈ Ω2(M) | ?(ϕ ∧ β) = −2β},

Ω2
14(M) = {β ∈ Ω2(M) | β ∧ ψ = 0} = {β ∈ Ω2(M) | ?(ϕ ∧ β) = β}

(2.2.3)

and

Ω3
1(M) = {fϕ | f ∈ C∞(M)}, (2.2.4)

Ω3
7(M) = {Xyψ | X ∈ Γ(TM)}, (2.2.5)

Ω3
27(M) = {γ ∈ Ω3(M) | γ ∧ ϕ = 0 = γ ∧ ψ}

= {hijdxi ∧ (
∂

∂xj
yϕ) | hij = hji,Trg h = 0} (2.2.6)

in local coordinates {x1, ..., x7} onM . In (2.2.6), h is a symmetric 2-tensor. The decompo-
sitions of Ω4(M) = Ω4

1(M)⊕Ω4
7(M)⊕Ω4

27(M) and Ω5(M) = Ω5
7(M)⊕Ω5

14(M) are obtained
by taking the Hodge star of (2.2.1) and (2.2.2) respectively.

For doing explicit computations, it is convenient to write key quantities in local coor-
dinates. In local coordinates {x1, . . . , x7} on M , we write a k-form α as

α =
1

k!
αiii2···ikdx

i1 ∧ · · · dxik ,

where αiii2···ik is totally skew-symmetric in its indices. In particular, ϕ and ψ are locally
written as

ϕ =
1

6
ϕijkdx

i ∧ dxj ∧ dxk and ψ =
1

24
ψijkldx

i ∧ dxj ∧ dxk ∧ dxl

To describe Ω2 locally, consider the G2-invariant linear map P : Ω2 → Ω2 given by
Pβ = ?(ϕ ∧ β). If we write β = 1

2
βijdx

i ∧ dxj and Pβ = 1
2
(Pβ)abdx

a ∧ dxb, then one can
show [Kar09, §2.2] that

(Pβ)ab =
1

2
ψabcdβcd. (2.2.7)

If α is any 2-form then

〈Pβ, α〉 =
1

2
(Pβ)abαab

=
1

4
ψabcdβcdαab

=
1

4
ψcdabαabβcd

= 〈Pα, β〉.
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Thus, P is a self-adjoint map and hence is orthogonally diagonalizable with real eigenvalues.
To find the eigenvalues, we compute

(P 2β)ab =
1

2
ψabcd(Pβ)cd

=
1

4
ψabcdψcdijβij

=
1

4
(4giagjb − 4gibgja − 2ψabij)βij

= 2βab − (Pβ)ab,

where we have used the contraction identity (2.1.15) in the third equality. So P 2 = 2I −P
and hence the eigenvalues of P are −2 and +1, as described in (2.2.3). Notice that if
β ∈ Ω2

7 and we let βij = Xmϕmij for some X ∈ Γ(TM) then

(Pβ)ab =
1

2
ψabijXmϕmij =

1

2
(−4Xmϕabm) = −2βab

thus verifying that Ω2
7 is the −2 eigenspace of P . The condition that Ω2

14 = (Ω2
7)⊥ gives

that β ∈ Ω2
14 satisfies Xmϕmijβij = 0 for all X. This is equivalent to βijϕmij = 0. Thus,

we can describe the decomposition (2.2.3) of Ω2 in local coordinates as

βij ∈ Ω2
7 ⇐⇒ βij = Xmϕmij ⇐⇒ 1

2
ψijcdβcd = −2βij,

βij ∈ Ω2
14 ⇐⇒ βijϕijm = 0 ⇐⇒ 1

2
ψijcdβcd = βij.

(2.2.8)

Moreover, using (2.1.10), for β ∈ Ω2
7

βij = Xmϕmij ⇐⇒ Xm =
1

6
βijϕijm. (2.2.9)

Remark 2.2.1. Many authors prefer to use the opposite orientation than we do for the
orientation induced by ϕ (for example in [Bry06] and [Joy00]). This changes the sign of ?
and the eigenvalues (−2,+1) in (2.2.3) and (2.2.8) are replaced by (+2,−1).

To understand the local coordinate description of the decomposition (2.2.5) and (2.2.6)
of Ω3 we consider the infinitesimal action of (1, 1) tensors Γ(T ∗M ⊗ TM) on ϕ. Let
A = Ail ∈ Γ(T ∗M ⊗ TM). At each point p ∈M , we have eAt ∈ GL(TpM) and so we get

eAt · ϕ =
1

6
ϕijk(e

Atdxi) ∧ (eAtdxj) ∧ (eAtdxk). (2.2.10)
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We define A � ϕ ∈ Ω3 by

A � ϕ =
d

dt

∣∣∣
t=0

(eAt · ϕ).

From (2.2.10) we have

(A � ϕ) =
1

6
(Ailϕljk + Ajlϕilk + Aklϕijl)dx

i ∧ dxj ∧ dxk

and hence

(A � ϕ)ijk = Ailϕljk + Ajlϕilk + Aklϕijl. (2.2.11)

If we write S = Γ(S2(T ∗M)) for the space of smooth symmetric 2-tensors on M and S0

to denote those sections h of S that are traceless with respect to the metric g on M then

S ∼= Ω0 ⊕ S0 as for h ∈ S we have h =
(Trh)

7
g + h0 and so we have the decomposition

Γ(T ∗M ⊗ T ∗M) = Ω0 ⊕ S0 ⊕ Ω2,

where the splitting is pointwise orthogonal with respect to the metric on T ∗M ⊗ T ∗M
induced by g. Using (2.2.1) we can further decompose this as

Γ(T ∗M ⊗ T ∗M) = Ω0 ⊕ S0 ⊕ Ω2
7 ⊕ Ω2

14.

With respect to this splitting, we can write A =
(TrA)

7
g + A0 + A7 + A14, where A0 is

a traceless symmetric tensor. Thus from (2.2.11), we have a linear map A 7→ A � ϕ from
Ω0⊕S0⊕Ω2

7⊕Ω2
14 → Ω3. We describe the decomposition (2.2.5) and (2.2.6) in the following

Proposition 2.2.2. The kernel of A 7→ A � ϕ is Ω2
14 and Ω0, S0 and Ω2

7 are mapped

isomorphically onto Ω3
1, Ω3

27 and Ω3
7 respectively. Explicitly, if A =

(TrA)

7
g+A0 +A7 +A14

then

A � ϕ =
3

7
(TrA)g︸ ︷︷ ︸

Ω3
1

+A0 � ϕ︸ ︷︷ ︸
Ω3

27

+Xyψ︸︷︷︸
Ω3

7

where Xm = −1
2
Aijϕijm.

Proof. See [Kar09, Section 2.2].
Remark 2.2.3. If h is a symmetric 2-tensor then h � ϕ is a constant multiple of iϕ(h)
where iϕ is the map defined in [Bry06].
Remark 2.2.4. Since G2 preserves ϕ hence the kernel of A 7→ A � ϕ is isomorphic to g2

and at every point p ∈M , Λ2
14(T ∗pM) ∼= g2.
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2.3 Torsion of a G2 structure

Let (M,ϕ) be a manifold with a G2 structure. Let ∇ be the Levi-Civita connection of the
metric g induced by ϕ. Consider the tensor ∇ϕ ∈ Γ(T ∗M ⊗ Λ3T ∗M).

Definition 2.3.1. The G2 structure ϕ is torsion-free and M is a G2 manifold if ∇ϕ = 0.

We emphasize that ∇ϕ = 0 is a nonlinear partial differential equation as ∇ is induced
from g which itself is induced from ϕ in a nonlinear way. Thus, ∇ϕ is interpreted as the
torsion of the G2 structure. The fundamental observation about the torsion is the following
lemma whose proof can be found in [Kar09, Lemma 2.24]

Lemma 2.3.2. For a vector field X on M , ∇Xϕ lies in the subspace Ω3
7 of Ω3. Thus

∇Xϕ ∈ Γ(T ∗M ⊗ Λ3
7(T ∗M)).

Lemma 2.3.2 motivates the following

Definition 2.3.3. As ∇Xϕ ∈ Ω3
7, from (2.2.5) we can write

∇Xϕ = T (X)yψ

for some vector field T (X) on M . That is, there exists a tensor T ∈ Γ(T ∗M ⊗ T ∗M) such
that

∇iϕjkl = Tipψpjkl. (2.3.1)

T is called the full torsion tensor of ϕ.

Contracting (2.3.1) with ψajkl and using (2.1.16) we get

Tmn =
1

24
∇mϕabcψnabc. (2.3.2)

Moreover, taking the covariant derivative of (2.1.9) and using (2.1.12) and (2.3.1) we get

∇mψijkl = −Tmiϕjkl + Tmjϕikl − Tmkϕijl + Tmlϕijk. (2.3.3)
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We see from (2.3.1) and (2.3.2) that ∇ϕ = 0 ⇐⇒ T = 0 and hence ϕ is torsion-free
if and only if T = 0. Since T ∈ Γ(T ∗M ⊗ T ∗M) ∼= Ω0 ⊕ S0 ⊕ Ω2

7 ⊕ Ω2
14, therefore we can

decompose T further as

T = T1 + T27 + T7 + T14, (2.3.4)

where T1 = 1
7
(TrT )g and T27 = T0 is the traceless symmetric part of T .

Note that dϕ and d∗ϕ are linear in ∇ϕ and hence from (2.3.1) are linear in T . Since
dϕ ∈ Ω4 = Ω4

1 ⊕ Ω4
7 ⊕ Ω4

27 and d∗ϕ ∈ Ω2 = Ω2
7 ⊕ Ω2

14, by Schur’s Lemma, the independent
components of dϕ and d∗ϕ must be equal to the 1, 7, 14 and 27 components of T as in
(2.3.4), up to some constant factors. So if dϕ = 0 and d∗ϕ = 0 then T = 0 and ϕ is
torsion-free. If T = 0 then ϕ is parallel and since a parallel form is always closed and
co-closed, dϕ = 0 and d∗ϕ = 0. Thus we have proved the following theorem which was
originally proved by Fernández and Gray by a different method.

Theorem 2.3.4 (Fernández–Gray [FG82]). Let ϕ be a G2 structure on M . Then ϕ is
torsion-free if and only if dϕ = 0 and d∗ϕ = 0.

Remark 2.3.5. As d∗ϕ = − ? d ∗ ϕ = − ? dψ, Theorem 2.3.4 says that ϕ is torsion-free if
and only if dϕ = 0 and dψ = 0.

Remark 2.3.6. A differential form α on (M, g) is harmonic if ∆dα = (dd∗+d∗d)α = 0. If
M is compact then integration by parts yields that α harmonic ⇐⇒ dα = 0 and d∗α = 0.
Thus Theorem 2.3.4 says that for compact M , a G2 structure ϕ is torsion-free if and only
if it is harmonic with respect to its induced metric.

Since the torsion T of ϕ decomposes into four independent components as in (2.3.4),
each component can be zero or nonzero. This gives 24 = 16 distinct classes of G2 structures.
Some of the classes of G2 structures are given in the following table.

T1 T27 T7 T14 G2 structure Name
0 0 0 0 ∇ϕ = 0 torsion-free
0 0 0 ? dϕ = 0 closed G2 structure
? ? 0 0 d∗ϕ = 0 co-closed G2 structure
? 0 0 0 dϕ = λψ, λ 6= 0 nearly G2 structure

Table 2.1
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2.4 Relation between curvature and torsion for a G2

structure

Let (M,ϕ) be a manifold with a G2 structure and gϕ be the induced metric on M . Let Rm
denote the Riemann curvature tensor of gϕ. There is an important relationship between
Rm and ∇T called the “G2 Bianchi identity” which was first proved by Karigiannis [Kar09,
Theorem 4.2] using the diffeomorphism invariance of the torsion tensor T . Another proof
using (2.3.2) and the Ricci identities was given by Lotay–Wei [LW17, Lemma 2.1]. We
review the latter proof here for completeness.

Theorem 2.4.1. On (M,ϕ), if T is the torsion and Rm is the Riemann curvature tensor
with Rabcd denoting the (4, 0) Riemann curvature tensor in local coordinates, then the G2

Bianchi identity is the following

∇iTjk −∇jTik = TiaTjbϕabk +
1

2
Rijabϕabk. (2.4.1)

Proof. Contracting (2.3.2) with ψmabc, using (2.1.16) and taking the covariant derivative,
we get

∇i∇jϕabc = ∇iTjkψkabc + Tjk∇iψkabc

= ∇iTjkψkabc + Tjk(−Tikϕabc + Tiaϕkbc − Tibϕkac + Ticϕkab)

where we used (2.3.3). Interchanging the roles of i and j and noting that TikTjk is symmetric
in i and j we have

∇i∇jϕabc −∇j∇iϕabc = (∇iTjk −∇jTik)ψkabc + Tjk(Tiaϕkbc − Tibϕkac + Ticϕkab)

− Tik(Tjaϕkbc − Tjbϕkac + Tjcϕkab).

Using the Ricci identity (1.1.1) for the left hand side we get

−Rijamϕmbc −Rijbmϕamc −Rijcmϕabm = (∇iTjk −∇jTik)ψkabc

+ Tjk(Tiaϕkbc − Tibϕkac + Ticϕkab)

− Tik(Tjaϕkbc − Tjbϕkac + Tjcϕkab)

which on contracting with ψsabc on both sides and observing that the left hand side and
each of the three terms on the right hand side are totally skew in i, j and k gives

−3Rijamϕmbcψsabc = (∇iTjk −∇jTik)ψkabcψsabc + 3TiaTjkϕkbcψsabc − 3TikTjaϕkbcψsabc.
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Using (2.1.13) and (2.1.16) we get

12Rijamϕams = 24(∇iTjs −∇jTis) + 12TiaTjkϕaks − 12TikTjaϕaks,

which on reindexing gives (2.4.1).

Contracting (2.4.1) with ϕmik on both sides and using (2.1.9) gives

(∇iTjk −∇jTik)ϕmik = TimTji − (trT )Tjm − TiaTjbψiamb +Rjm −
1

2
Rijabψabmi.

Using the fact that Rijabψabmi = 0 (see [Kar09, Lemma 4.9]) we get the following

Theorem 2.4.2. If ϕ is a G2 structure on M with the associated metric gϕ then the Ricci
curvature Rjk is given by

Rjk = (∇iTjm −∇jTim)ϕimk − TjiTik + (trT )Tjk + TiaTjbψkiab. (2.4.2)

In particular, (2.4.2) shows that the metric of a torsion-free G2 structure is Ricci-flat.
Taking the trace of (2.4.2) we get the expression for the scalar curvature R.

Proposition 2.4.3. The scalar curvature R of a metric gϕ induced by a G2 structure ϕ is

R = −2 div(T̂7) +
6

7
(trT )2 + 5|T7|2 − |T14|2 − |T27|2. (2.4.3)

where (̂T7)k = Tijϕijk is the vector field corresponding to T7 as described in (2.2.9).

Proof. We take the trace of (2.4.2) to get

R = (∇iTjm −∇jTim)ϕimj − TijTji + (trT )2 + TiaTjbψiajb.

Decomposing T into its components as in (2.3.4) and using (2.2.8) we get

R = −∇i(Tjmϕijm) + Tjm∇iϕijm −∇j(Timϕimj) + Tim∇jϕjim

− ((
trT

7
)gij + (T7)ij + (T14)ij + (T27)ij)((

trT

7
)gji + (T7)ji + (T14)ji + (T27)ji) + (trT )2

+ Tia((
trT

7
)gjb + (T7)jb + (T14)jb + (T27)jb)ψiajb

= − div(T̂7) + TjmTisψsijm − div(T̂7) + TimTjsψsjim −
(trT )2

7
+ |T7|2 + |T14|2 − |T27|2

+ (trT )2 + Tia(−4(T7)ia+ 2(T14)ia)
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where we have used (2.2.9), (2.3.1), the fact that the decomposition in (2.3.4) is point
wise orthogonal and the facts that T1 and T27 are symmetric whereas T7 and T14 are skew-
symmetric. Decomposing the torsion terms again in the second, fourth and the last terms
above and using (2.2.1) we get

R = −2 div(T̂7) +
6

7
(trT )2 + 5|T7|2 − |T14|2 − |T27|2

which completes the proof.
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Chapter 3

Preliminaries on geometric flows

Geometric flows are a powerful tool in the study of geometric structures on a manifold.
Loosely speaking, a geometric flow is a mechanism for “simplifying” a given geometric
structure to a “canonical” or “special” one. The flow will be different depending on the
context and some particular examples of flows are: Ricci flow of metrics where one starts
with an arbitrary Riemannian metric and the flow “deforms” that towards a metric which
is Ricci-flat; mean curvature flow of immersions, where the flow deforms a submanifold
towards a minimal submanifold; Yang-Mills flow where the flow deforms a connection on
a principal bundle over a manifold towards a connection with minimum L2-norm of the
curvature.

The existence of torsion-free G2 structures on a manifold is a challenging problem and given
the success of geometric flows in the study of other geometric structures, it is very natural
to attempt to do the same for G2 structures on manifolds. One hopes that a suitable flow
of G2 structures might help in establishing the existence of torsion-free G2 structures.

In this chapter we discuss the basic idea and importance of a geometric flow along with
the tools and techniques in the study of flow, which will be needed later. The idea of a
geometric flow is simple: one starts with an arbitrary geometric structure on a manifold
(for example a G2 structure) and then let it evolve in time by a certain rule (we will see
examples of such rules in later chapters). The hope is that the solution to the initial value
problem exists for all times and converges to a “special” structure (which for the case of G2

structures can be torsion-free G2 structures, or G2 structures with divergence free torsion
which is the subject matter of Chapter 6). However, if the geometric structure is evolving
then any other quantity associated to it will also evolve in time and their properties along
the flow become very important in analyzing the long-term behavior of the solutions.
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Given a family ϕ(t) of G2 structures, in §3.1 we derive the variation formulas of various
quantities associated to a G2 structure. They are used in Chapter 6 when we look at flows
of G2 structures. In §3.2 we review what parabolic partial differential equations are and
discuss DeTurck’s trick in the context of flows of G2 structures. Finally in §3.3 we discuss
maximum principles for scalar and tensor equations which are extremely useful in later
chapters. The main references for this chapter are the books by Chow–Knopf [CK04] and
Chow–Lu–Ni [CLN06] and the paper by Karigiannis [Kar09].

3.1 Variation formulas

In this section we derive variation formulas of quantities associated to a G2 structure.
Recall from §2.2 that using G2-equivariant isomorphism, a 3-form on a manifold with a G2

structure is given by a symmetric 2-tensor h and a vector field X on M . Thus, given a
manifold M7, the general flow of G2 structures is given by

∂

∂t
ϕ(t) = h(t) � ϕ(t) +X(t)yψ(t) (3.1.1)

where h(t) is a 1-parameter family of symmetric 2-tensors and X(t) is a 1-parameter
family of vector fields on M and � is the operation introduced in (2.2.11). In the following
subsections we derive the evolution of the quantities related to a G2 structure and hence
also the metric induced by the G2 structure. Most of what follows is from [Kar09] and
[CK04, Chapter 3].

3.1.1 Evolution of the metric and associated quantities

We start by stating the evolution of the induced metric g(t) along (3.1.1).

Lemma 3.1.1. The evolution of the metric gij under (3.1.1) is given by

∂

∂t
gij = 2hij. (3.1.2)

Proof. The proof follows from finding the evolution of the tensor Sϕ in (2.1.7) and the
relation (2.1.8). The precise details can be found in [Kar09, Theorem 3.1].

Lemma 3.1.2. The metric inverse g−1 evolves by

∂

∂t
gij = −2gikgjlhkl. (3.1.3)
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Proof. We have
δil = gikgkl

where δ is the Kronecker delta. Differentiating above with respect to t, we get

0 = ∂t(g
ik)gkl + gik∂t(gkl)

= ∂t(g
ik)gkl + gik(2hkl)

and hence
∂t(g

ij) = −2gikgjlhkl.

Lemma 3.1.3. The variation of the Christoffel symbols Γkij is given by

∂

∂t
Γkij = gkl(∇ihjl +∇jhil −∇lhij). (3.1.4)

Proof. In local coordinates {xi}

Γkij =
1

2
gkl(∂igjl + ∂jgil − ∂lgij)

where ∂i = ∂
∂xi

. Hence

∂

∂t
Γkij =

1

2

( ∂
∂t
gkl
)
· (∂igjl + ∂jgil − ∂lgij)

+
1

2
gkl
(
∂i

( ∂
∂t
gjl

)
+ ∂j

( ∂
∂t
gil

)
− ∂l

( ∂
∂t
gij

))
.

In normal coordinates at a point p ∈ M , we have Γkij(p) = 0 and hence ∂iAjk = ∇iAjk at
p for any tensor A and ∂igjk(p) = 0 for all i, j, k. So using (3.1.2) we get

∂

∂t
Γkij(p) =

1

2
gkl
(
∇i(2hjl) +∇j(2hil)−∇l(2hij)

)
.

Since both sides of the preceding equation are components of a tensor, the result holds in
any coordinates system and at any point, thus giving (3.1.4).

We now derive the evolution of the curvature tensors along (3.1.1). If we denote the
(3, 1) Riemann curvature tensor by Rl

ijk in local coordinates then we define the (4, 0)
Riemann curvature tensor by

Rijkl = glmR
m
ijk. (3.1.5)
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Lemma 3.1.4. The evolution of the (3, 1) Riemann curvature tensor along (3.1.1) is given
by

∂

∂t
Rl
ijk = glp

(
∇i∇jhkp +∇i∇khjp −∇i∇phjk −∇j∇ihkp −∇j∇khip +∇j∇phik

)
(3.1.6)

Proof. We recall that in local coordinates {xi} we have the standard formula

Rl
ijk = ∂iΓ

l
jk − ∂jΓlik + ΓpjkΓ

l
ip − ΓpikΓ

l
jp.

Thus

∂

∂t
Rl
ijk = ∂i

( ∂
∂t

Γljk

)
− ∂j

( ∂
∂t

Γlik

)
+
( ∂
∂t

Γpjk

)
· Γlip + Γpjk ·

( ∂
∂t

Γlip

)
−
( ∂
∂t

Γpik

)
· Γljp − Γpik ·

( ∂
∂t

Γljp

)
.

We again use normal coordinates at a point p ∈M to get

∂

∂t
Rl
ijk = ∇i

( ∂
∂t

Γljk

)
−∇j

( ∂
∂t

Γlik

)
.

The proof now follows from using (3.1.4) in the above equation.

Using (3.1.5) we get the following corollary of Lemma 3.1.4

Corollary 3.1.5. Along (3.1.1), the (4, 0) Riemann curvature tensor evolves as

∂

∂t
Rijkl = (∇i∇jhkl +∇i∇khjl −∇i∇lhjk −∇j∇ihkl

−∇j∇khil +∇j∇lhik) + 2Rm
ijkhlm. (3.1.7)

Remark 3.1.6. Using the Ricci identity (1.1.1) on the first and fourth term, (3.1.7) can
also be written as

∂

∂t
Rijkl = (∇i∇khjl −∇i∇lhjk −∇j∇khil +∇j∇lhik)

−Rq
ijkhql −R

q
ijlhkq + 2Rm

ijkhlm. (3.1.8)

Since the Ricci tensor is given by
Rjk = gilRijkl

contracting (3.1.7) on i and l and noting that there is an extra term due to the variation
of g−1 we get
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Lemma 3.1.7. The evolution of the Ricci tensor along (3.1.1) is given by

∂

∂t
Rjk = ∇i∇jhik +∇i∇khij −∆hjk −∇j∇k(trh). (3.1.9)

Similarly, we have the evolution of the scalar curvature R.

Lemma 3.1.8. The scalar curvature evolves by

∂

∂t
R = −2∆(trh) +∇i∇jhij − 2hjkRjk. (3.1.10)

We complete this subsection by computing the evolution of the volume form vol and the
total scalar curvature.

Lemma 3.1.9. The volume form vol evolves by

∂

∂t
vol = (trh) vol . (3.1.11)

Proof. In oriented local coordinates {xi}

vol =
√

detg dx1 ∧ · · · ∧ dx7.

Jacobi’s formula for a matrix A(t) in variable t states that

∂t(detA(t)) = det(A(t)) tr[A−1(t) · ∂tA(t)] (3.1.12)

hence

∂t(vol) =
1

2
√
detg

det(g(t)) tr[g−1(t) · ∂tg(t)] dx1 ∧ · · · ∧ dx7

= (trh) vol .

Corollary 3.1.10. The total scalar curvature
∫
M
R vol on a compact M evolves by

∂

∂t

(∫
M

R vol
)

=

∫
M

(
R trh− 2〈h,Ric〉

)
vol . (3.1.13)
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Proof. Using (3.1.10) and (3.1.11) we get

∂

∂t

(∫
M

R vol
)

=

∫
M

(∂tR vol +R∂t vol)

=

∫
M

(−2∆(trh) +∇i∇jhij − 2hjkRjk +R trh) vol

=

∫
M

(−2∆(trh) + div(div h)− 2〈h,Ric〉+R trh) vol

Since M is compact, integral of the first two terms on the right hand side of the last
equality is zero by the divergence theorem. Thus we get (3.1.13).

3.1.2 Evolution of the torsion tensor

In this subsection we will derive the evolution of the torsion tensor under (3.1.1). Recall
from (2.3.2) that the torsion tensor of a G2 structure is given by

Tij =
1

24
(∇iϕabc)ψjabc.

Thus to find the evolution of the torsion we need to find the evolution of the dual 4-form
ψ = ?ϕ and ∇iϕabc. We state the results here.

Lemma 3.1.11. The evolution of the 4-form ψijkl under (3.1.1) is given by

∂

∂t
ψijkl = himψmjkl + hjmψimkl + hkmψijml + hlmψijkm

−Xiϕjkl +Xjϕikl −Xkϕijl +Xlϕijk. (3.1.14)

Proof. The idea is to differentiate the contraction identity (2.1.9). The detailed proof can
be found in [Kar09, Theorem 3.5].

Lemma 3.1.12. The evolution of ∇lϕijk under (3.1.1) is given by

∂

∂t
∇lϕijk = him(∇lϕmjk) + hjm(∇lϕimk) + hkm(∇lϕijm) +Xm(∇lψmijk)

+ (∇mhil)ϕmjk + (∇mhjl)ϕimk + (∇mhkl)ϕijm

− (∇ihlm)ϕmjk − (∇jhlm)ϕimk − (∇khlm)ϕijm

+ (∇lXm)ψmijk. (3.1.15)
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Proof. This is proved in [Kar09, Lemma 3.7].

We derive the evolution of the torsion tensor.

Theorem 3.1.13. Along (3.1.1), the torsion Tpq evolves by

∂

∂t
Tpq = Tplhlq + TplXmϕmlq + (∇khip)ϕkiq +∇pXq. (3.1.16)

Proof. We know that

Tpq =
1

24
(∇pϕabc)ψqabc

and we know the evolution of all the quantities on the right hand side. Substituting the
expressions from (3.1.3), (3.1.14) and (3.1.15) and simplifying gives (3.1.16).

3.2 Parabolic equations and short-time existence

In this section we first see the notion of principal symbol of a linear partial differential
operator and then use it to define parabolic PDEs. We then see DeTurck’s trick for a
general flow of G2 structures. We start by describing a parabolic PDE of second order and
the existence and uniqueness of solutions of such PDEs.

Let Ω ⊂ Rn be an open, connected subset and consider a PDE for a function u : Ω→ R

∂u

∂t
= aij∂i∂ju+ bi∂iu+ cu, (3.2.1)

where ∂i = ∂
∂xi

and aij, bi, c : Ω → R are smooth coefficients. We say that (3.2.1) is
parabolic if aij is uniformly positive definite, i.e., if there exists λ > 0 such that

aijξiξj ≥ λ|ξ|2,

for all ξ ∈ Rn.

Suppose M is a closed manifold and consider the PDE for u : M → R given by

∂u

∂t
= L(u) (3.2.2)
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where L : C∞(M) → C∞(M) is a linear differential operator of second order and can be
written as

L(u) = aij∂i∂ju+ bi∂iu+ cu

in local coordinates {xi}. Here aij, bi, c are locally defined smooth real coefficients. We
say that (3.2.2) is parabolic if aij is positive definite for all x ∈ M . The importance of
parabolic PDEs is that they have a good theory of existence and uniqueness of solutions.
More precisely, given a smooth function u0 : M → R there exists a smooth solution
u : M × [0,∞)→ R to 

∂u

∂t
= L(u) on M × [0,∞)

u(0) = u0 on M.

Moreover, suppose that ∂u
∂t

= L(u) and ∂v
∂t

= L(v) on M × [0,∞). If either u(0) = v(0)
or u(T ) = v(T ) then u(t) = v(t) for all t ∈ [0, T ], i.e., given an initial or final data, the
solution to (3.2.2) is unique (see [Eva98, Chapter 7]).

To check whether a differential operator L is parabolic or not, we compute its principal
symbol which captures algebraically those analytic properties of L which only depend on
its highest derivative. For L as in (3.2.2), define its principal symbol σ(L) : T ∗M → R by

σ(L)(x, ξ) = aij(x)ξiξj. (3.2.3)

Thus the PDE (3.2.2) is parabolic if σ(L)(x, ξ) > 0 for all (x, ξ) ∈ T ∗M with ξ 6= 0.

Remark 3.2.1. Some authors use iξ in place of ξ in computing the principal symbol where
i =
√
−1.

We now generalize the above to partial differential equations of sections of vector bundles
and nonlinear PDEs of any order. Let E and F be vector bundles over M and Γ(E) and
Γ(F ) be the spaces of smooth sections of E and F respectively. For u ∈ Γ(E), consider
the equation

∂u

∂t
= L(u) (3.2.4)

where L is a linear differential operator of order k (and not necessarily 2), i.e., it is a map

L : Γ(E)→ Γ(F )
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given by
L(S) =

∑
|α|≤k

Lα∂
αS

where S ∈ Γ(E) and Lα ∈ Hom(E,F ) for every multi-index α. Let ξ ∈ Γ(T ∗M). The
principal symbol of L in the direction of ξ is the bundle homomorphism

σ[L] : E → F

given by

σ[L](ξ)S =
∑
|α|=k

ξαLαS. (3.2.5)

We say that (3.2.4) is parabolic if σ[L] is an isomorphism for all ξ 6= 0. The basic property
of the principal symbol which is used frequently is the following. Let G be another vector
bundle over M and let

K : Γ(F )→ Γ(G)

be another differential operator of order l. Then the symbol of K ◦ L in the direction ξ is
the bundle homomorphism

σ[K ◦ L](ξ) = σ[K](ξ) ◦ σ[L](ξ) : E → G

of degree at most k + l in ξ.

A nonlinear PDE is parabolic at a section w ∈ Γ(E) if its linearization is parabolic. If

∂u

∂t
= P (u)

is parabolic at w then there exist ε > 0 and a smooth family u(t) ∈ Γ(E) for t ∈ [0, ε],
such that 

∂u

∂t
= P (u) t ∈ [0, ε]

u(0) = w.

Moreover, we have uniqueness as well, as described before.

We now discuss DeTurck’s trick for a general flow of G2 structures. Consider the flow of
G2 structures

∂ϕ

∂t
= h � ϕ+Xyψ (3.2.6)
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where h is a family of time-dependent symmetric 2-tensors and X is a time-dependent
vector field on M . For an explicit flow of G2 structures, h and X will be associated to ϕ.
For example, in [DGK] we show that h could be the Ricci tensor of the metric induced by
the G2 structure and X could be the divergence of the torsion tensor div T . In such a case,
due to the diffeomorphism invariance of the quantities involved, i.e., h and X, the principal
symbol of (3.2.6) will have a non-trivial kernel and hence will not be parabolic. Thus the
standard theory of short-time existence and uniqueness of solutions cannot be applied to
(3.2.6). We can still prove the short-time existence and uniqueness of the solution by using
the DeTurck’s trick which was given by DeTurck [DeT83] for the Ricci flow of metrics
but we will adapt the same idea in the context of flow of G2 structures. We consider the
modified flow

∂ϕ

∂t
= h � ϕ+Xyψ + LWϕ (3.2.7)

where W is a time-dependent vector field.

Consider the family of diffeomorphism Φt : M →M by
∂Φt(p)

∂t
= −W (Φt(p), t)

Φ0 = idM .

If (3.2.7) is parabolic then it has a unique solution ϕ̄(t) for short time. Consider

ϕ(t) = Φ∗t (ϕ̄(t)).

Note from the definition of Φt that

∂

∂s

∣∣∣∣
s=0

(Φ−1
t ◦ Φt+s) = (Φ−1

t )∗

( ∂
∂s

∣∣∣∣
s=0

Φt+s

)
= −(Φ−1

t )∗W (t)

Then
∂

∂t
(Φ∗t (ϕ̄(t))) =

∂

∂s

∣∣∣∣
s=0

(Φ∗t+sϕ̄(t+ s))

= Φ∗t

( ∂
∂t
ϕ̄(t)

)
+

∂

∂s

∣∣∣∣
s=0

(Φ∗t+sϕ̄(t))

= Φ∗t (h � ϕ(t) +Xyψ(t) + LW (t)ϕ(t)) +
∂

∂s

∣∣∣∣
s=0

[
(Φ−1

t ◦ Φt+s)
∗Φ∗t ϕ̄(t)

]
= h � Φ∗t (ϕ(t)) +XyΦ∗t (ψ(t)) + Φ∗t (LW (t)ϕ(t))− L[(Φ−1

t )∗W (t)](Φ
∗
t ϕ̄(t))

= h � Φ∗t (ϕ(t)) +XyΦ∗t (ψ(t)).
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where we have used the definition of Φt to cancel the last two terms in the penultimate line.
Thus ϕ(t) = Φ∗t (ϕ̄(t)) is a solution of (3.2.6). The precise expression of W will depend on
the geometric flow under consideration.

In the above computation, we have also used the fact that in (3.1.1), h(t) and X(t) are
diffeomorphism invariant quantities related to a G2 structure in the sense that for any
diffeomorphism F of M we have

F ∗(h(ϕ)) = h(F ∗(ϕ)) and F ∗(X(ϕ)) = X(F ∗(ϕ)) (3.2.8)

For instance, in [DGK] we examine different possibilities for h and X and they all satisfy
(3.2.8).

3.3 Maximum principles

One of the most powerful tools in the study of any geometric flow are the maximum
principles. In this section, we review some of the maximum principles which are used in
later chapters. We start with the maximum principles for scalar equations both with a
linear and a non-linear reaction term. We will then discuss the maximum principles for
tensor equations.

3.3.1 Weak maximum principles for scalar equations

The prototype for parabolic equations is the heat equation and it satisfies the maximum
principle. Let M be a manifold and g(t) be a 1-parameter family of metrics, X(t) be a
1-parameter family of vector fields and β : Mn × [0, T ) → R is a given function. We first
give the following

Definition 3.3.1. We say u : M × [0, T ) → R is a supersolution to the linear heat
equation

∂v

∂t
= ∆g(t)v + 〈X,∇v〉+ βv (3.3.1)

at (x, t) ∈M × [0, T ) if

∂u

∂t
(x, t) ≥ (∆g(t)u)(x, y) + 〈X,∇u〉(x, t) + β(x, t)u(x, t).
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We have the following proposition.

Proposition 3.3.2 (Scalar maximum principle with linear reaction term). Let
u : M × [0, T )→ R be a C2 supersolution to (3.3.1) on a closed manifold. Suppose that for
each τ ∈ [0, T ), there exists a constant Cτ < ∞ such that β(x, t) ≤ Cτ for all x ∈ M and
t ∈ [0, τ ]. If u(x, 0) ≥ 0 for all x ∈M then u(x, t) ≥ 0 for all x ∈M and t ∈ [0, T ).

We do not prove Proposition 3.3.2, whose proof can be found in [CK04, Chapter 4, Theorem
4.2]. Instead, we use it to give a proof of the maximum principle for scalar equations with
a nonlinear reaction term. Consider the semilinear heat equation

∂v

∂t
= ∆g(t)v + 〈X,∇v〉+ F (v) (3.3.2)

where g(t) is a family of metrics on a closed manifold M , X(t) is a family of vector fields
and F : R→ R is a locally Lipschitz function. We say that u is a supersolution of (3.3.2)
if

∂u

∂t
≥ ∆g(t)u+ 〈X,∇u〉+ F (u)

and a subsolution if

∂u

∂t
≤ ∆g(t)u+ 〈X,∇u〉+ F (u).

Theorem 3.3.3 (Scalar maximum principle: ODE gives pointwise bounds for
PDE). Let u : M × [0, T ) → R be a C2 supersolution to (3.3.2) on a closed manifold.
Suppose that there exists C ∈ R such that u(x, 0) ≥ C for all x ∈ M and let α be the
solution to the associated ordinary differential equation

dα

dt
= F (α)

satisfying
α(0) = C.

Then
u(x, t) ≥ α(t),

for all x ∈M and t ∈ [0, T ) such that α(t) exists.
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Remark 3.3.4. We can state a similar theorem for subsolutions u of (3.3.2). If u(x, 0) ≤ C
for all x ∈M and α1(t) is a solution of the ODE

dα1

dt
= F (α1),

α1(0) = C.

Then u(x, t) ≤ α1(t) for all x ∈M and t ∈ [0, T ) such that α1(t) exists.

Proof. We follow the proof in [CK04, Theorem 4.4]. We observe that

∂

∂t
(u− α) ≥ ∆(u− α) + 〈X,∇(u− α)〉+ F (u)− F (α).

Since α(0) = C hence at t = 0, we have u − α ≥ 0 We want to prove that u − α ≥ 0 for
all t ∈ [0, T ). Let τ ∈ (0, T ) be a given time. Since M is compact, there exists a constant
Cτ < ∞ such that |u(x, t)| ≤ Cτ and |α(t)| ≤ Cτ for all (x, t) ∈ M × [0, τ ]. Since F is
locally Lipschitz, there exists a constant Lτ <∞ such that

|F (a)− F (b)| ≤ Lτ |a− b|

for all a, b ∈ [−Cτ , Cτ ]. Hence we have

∂

∂t
(u− α) ≥ ∆(u− α) + 〈X,∇(u− α)〉 − Lτ sgn(u− α) · (u− α)

onM×[0, τ ], where sgn(·) ∈ {−1, 0, 1} denotes the signum function. We apply Proposition
3.3.2 with β = −Lτ sgn(u− α) which is a linear function, to get that

u− α ≥ 0

on M × [0, τ ]. Since τ ∈ (0, T ) was arbitrary, the theorem follows.

3.3.2 Weak maximum principles for systems

One of the main advantages of the maximum principle is that it is extremely robust: it
applies to general classes of second-order parabolic equations. We apply it to the systems
of geometric flows of G2 structures in Chapter 6. We first state and prove the maximum
principle for symmetric 2-tensors which was originally proved in [Ham82]. Recall that a
symmetric 2-tensor A is said to be non-negative and write A ≥ 0 if the quadratic form
induced by A is positive semidefinite.
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Theorem 3.3.5 (Tensor maximum principle: non-negativity is preserved). Sup-
pose g(t) is a family of Riemannian metrics on a closed Riemannian manifold M and let
A(t) ∈ Γ(T ∗M ⊗S T ∗M) be a 1-parameter family of symmetric 2-tensors satisfying the
semilinear heat equation

∂

∂t
A ≥ ∆g(t)A+ β (3.3.3)

where β = β(A, g, t) is a symmetric 2-tensor which is locally Lipschitz in all its arguments
and satisfies the null eigenvector assumption that is

β(V, V )(x, t) = (βijV
iV j)(x, t) ≥ 0,

whenever V (x, t) is a null eigenvector of A(t), that is

(AijV
j)(x, t) = 0.

If A(0) ≥ 0 then A(t) ≥ 0 for all t such that the solution exists.

Proof. Given any τ ∈ (0, T ), we show that there exists δ ∈ (0, τ ] such that for all t0 ∈
[0, τ − δ], if A ≥ 0 at t0 then A ≥ 0 on M × [t0, t0 + δ]. Since [0, τ − δ] is compact and τ is
arbitrary, the theorem would follow.

Let t0 ∈ [0, τ − δ] be fixed. For 0 < ε ≤ 1 consider the modified 2-tensor Aε given by

Aε(x, t) = A(x, t) + ε[δ + (t− t0)] · g(x, t)

where δ > 0 is to be chosen later. Note that the term εδg makes Aε strictly positive definite
at t = t0 as g is positive definite. Also

∂

∂t
Aε =

∂

∂t
A+ εδ∂tg + εg + ε(t− t0)∂tg.

So for t ∈ [t0, t0 + δ] choose δ > 0 sufficiently small, depending on

max
M×[0,τ ]

∣∣∣ ∂
∂t
g
∣∣∣

so that

∂

∂t
Aε >

∂

∂t
A.
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Since ∆Aε = ∆A and A satisfies (3.3.3) we get

∂

∂t
Aε ≥ ∆Aε + β + εg + ε[δ + (t− t0)]∂tg

which can be re-written as

∂

∂t
Aε ≥ ∆Aε + β(Aε, g, t) + [β(A, g, t)− β(Aε, g, t)] + εg + ε[δ + (t− t0)]∂tg. (3.3.4)

We first choose δ0 > 0 depending on g(t), t ∈ [0, τ ], to be small enough such that

∂tg ≥ −
1

4δ0

g

which implies that on M × [t0, t0 + δ0] we have

εg + ε[δ0 + (t− t0)]∂tg ≥
1

2
εg (3.3.5)

as ε[δ0 + (t− t0)]∂tg ≥ εδ0∂tg ≥ −1
4
εg. Since β is locally Lipschitz, there exists a constant

K depending on the bounds for A and g on M × [0, τ ] (and not on ε) which is large enough
so that on M × [t0, t0 + δ0]

β(A, g, t)− β(Aε, g, t) ≥ −Kε[δ0 + (t− t0)]g ≥ −2Kεδ0g.

Choose δ ∈ (0, δ0) small enough so that

δ <
1

4K

and so that on M × [t0, t0 + δ] we have

β(A, g, t)− β(Aε, g, t) > −
1

2
εg. (3.3.6)

Thus combining (3.3.4), (3.3.5) and (3.3.6) we get

∂

∂t
Aε > ∆Aε + β(Aε, g, t). (3.3.7)

We claim that Aε > 0 on M × [t0, t0 + δ]. Suppose the claim is false. Then there exists a
point (x1, t1) ∈ M × (t0, t0 + δ] and a non-zero vector v ∈ Tx1M such that Aε > 0 for all
times t0 ≤ t < t1 but

(Aε)ijv
j(x1, t1) = 0.
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We extend v to a vector field V defined in a space-time neighborhood of the (x1, t1) such
that V (x1, t1) = v and

∂V

∂t
(x1, t1) = 0, (3.3.8)

∇V (x1, t1) = 0, (3.3.9)
∆V (x1, t1) = 0. (3.3.10)

This can be done by parallel translating v with respect to g(t1) along geodesic rays em-
anating from x1 and then taking V to be independent of time. This construction gives
(3.3.8) and (3.3.9). To see (3.3.10), choose any frame {ei ∈ Tx1M}ni=1 which is orthonormal
with respect to g(t1) and parallel translate it in a space-time neighborhood along geodesic
rays emanating from x1. In this frame, we have

∆V (x1, t1) =
n∑
i=1

[∇ei(∇e1V )−∇∇eieiV ](x1, t1)

=
n∑
i=1

[∇ei
~0−∇~0V ](x1, t1) = 0

thus giving (3.3.10). So we have

(Aε)ijV
j(x1, t1) = 0.

Then (3.3.6) and the null eigenvector assumption imply that at (x1, t1), we have

0 ≥ ∂

∂t

(
(Aε)ijV

iV j
)

=
( ∂
∂t
Aε

)
ij
V iV j

>
[
(∆Aε)ij + βij(Aε, g, t)

]
V iV j

= ∆
(

(Aε)ijV
iV j
)

+ βij(Aε, g, t)V
iV j ≥ 0

which is a contradiction. Here the first inequality is due to the fact that for a fixed
point in M , Aε is decreasing in time, the equality in the last line is due to (3.3.10) and
the final inequality is due to the fact that since Aε = 0 for a vector in Tx1M , hence
∆((Aε)ijV

iV j) = 0 and β satisfies the null eigenvector condition.

This contradiction proves the claim. Since δ > 0 depends only on

max
M×[0,τ ]

∣∣∣ ∂
∂t
g
∣∣∣

and K and is independent of ε, we let ε↘ 0, thus proving the theorem.
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Chapter 4

Special hypersurfaces in nearly G2
manifolds

4.1 Introduction

Recall from Table 2.1 that a G2 structure on a manifold M is a nearly G2 structure if

dϕ = λψ

for some non-zero constant λ. In this case, (M,ϕ) is a nearly G2 manifold. In fact,
λ = 4

7
trT . To see that λ is indeed a constant when M is connected (if M is not connected

then we look at any of its connected component), differentiate the above equation and note
that dψ = 0 to get

0 = dλ ∧ ψ.

Since wedge product with ψ is an isomorphism between Ω1(M) and Ω5
1(M), we get dλ = 0

and hence λ is a constant. Nearly G2 manifolds were studied in detail in [FKMS97].
The authors in [FKMS97] call such structures nearly parallel G2 structures but we simply
call them nearly G2 structures. Since for nearly G2 manifolds, T1 is the only non-zero
component of the torsion tensor, from (2.4.2) and the fact that λ = 4

7
trT is a constant we

see that for a nearly G2 manifold

Rij =
6

49
(trT )2gjk =

6

7
|T1|2gjk (4.1.1)
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and hence nearly G2 manifolds are always positive Einstein. The scalar curvature is given
by

R = 6|T1|2. (4.1.2)

We remark that S7 with the round metric and also the squashed S7 are examples of
manifolds with nearly G2 structure (see [FKMS97] for more on nearly G2 structures.) In
particular, S7 with radius 1 has scalar curvature 42, so comparing with (4.1.2) we get that
|T1|2 = 7. In this chapter we will study hypersurfaces of a manifold with a nearly G2

structure. This chapter is based on [Dwi19].

Let (M
7
, g) be a Riemannian manifold with a vector cross product B. Then as we saw

in §2.1, they induce a G2 structure ϕ on M . Let M6 be a hypersurface of M with the
induced metric g from g and denote by N the unit normal vector field of M in M . If we
define ξ : TM → TM by ξ(X) = B(N,X), where X ∈ Γ(TM) and B is the vector cross
product, then ξ is a metric compatible almost complex structure on M (cf. Proposition
4.3.1). More generally, if (L, g, J) is an almost Hermitian manifold with an almost complex
structure J , then we have the following

Definition 4.1.1. Let (L, g, J) be an almost Hermitian manifold with an almost complex
structure J . Then L is called a nearly Kähler manifold if ∇J is a skew-symmetric tensor,
i.e.,

(∇XJ)X = 0, for all X ∈ Γ(TL). (4.1.3)

So a natural question is to find conditions on the oriented hypersurface M such that with
respect to the almost complex structure ξ, (M, g, ξ) is a nearly Kähler manifold. Our first
result is a characterization of nearly Kähler hypersurfaces of manifolds with a nearly G2

structure. In §4.3, we prove the following (cf. Theorem 4.3.8)

Theorem 4.1.2. Let M be an oriented hypersurface of a nearly G2 manifold (M,ϕ).
Then (M, g, ξ) is a nearly Kähler structure if and only if M is totally umbilic, i.e., for all
X ∈ Γ(TM)

AX = αX, (4.1.4)

where A is the shape operator of M in M and α ∈ C∞(M).

We note that Theorem 4.1.2 was already proved in [Gra69, Theorem 4.8]. However, for
our proof of Theorem 4.1.2, we define new quantities related to a manifold with a nearly
G2 structure which have analogs in the study of manifolds with a nearly Kähler structure
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and which we hope will be of further use in the study of submanifolds of manifolds with a
nearly G2 structure.

In a different but related direction, suppose Mn is a closed minimal hypersurface of con-
stant scalar curvature in the unit sphere Sn+1 and let A be its shape operator. A famous
rigidity theorem due to the combined works of Simons [Sim68], Lawson[Law69] and Chern–
doCarmo–Kobayashi [CdCK70] states that if |A|2 ≤ n then |A|2 = 0 or |A|2 = n, where
|A|2 is the squared length of the shape operator. If |A|2 = 0, then M is isometric to the
totally geodesic equatorial sphere Sn in Sn+1 and if |A|2 = n, then M is isometric to the
Clifford torus Sk

(√
k
n

)
×Sn−k

(√
n−k
n

)
. Following on his study of subsequent gaps for the

scalar curvature of such hypersurfaces M , Chern asked the following question (cf. [Yau82,
pg.693])

Question 4.1.3. [Chern] Consider the set of all compact minimal hypersurfaces in Sn+1

with constant scalar curvature. Think of the scalar curvature as a function on this set. Is
the image of the scalar curvature function a discrete set of positive numbers ?

Since for any minimal hypersurfaceMn with scalar curvature R in Sn+1, R = n(n−1)−|A|2
(cf. (4.2.7) in §4.2), the above question asks whether the set of |A|2 for such hypersurfaces
M is a discrete set.

The first two values of |A|2 are known to be 0 and n. For the third value of |A|2, Peng
and Terng [PT83] proved that if |A|2 > n, then there exists a positive constant δ(n) such
that |A|2 > n+ δ(n). Also, for n = 3 they proved that |A|2 ≥ 6 and they conjectured that
the third value of |A|2 should be equal to 2n. Yang and Cheng in [YC94] improved the
constant δ(n) by proving that δ(n) > 2

7
n − 9

14
and in [YC98] they further improved this

result by proving that if |A|2 > n then |A|2 > 1
3
(4n + 1). In [Des10], Deshmukh used the

nearly Kähler structure on S6 to prove the following theorem

Theorem 4.1.4. [Deshmukh, [Des10]] Let M be a compact minimal hypersurface of
constant scalar curvature in the unit sphere S6. If the shape operator A of M satisfies
|A|2 > 5, then there exists an eigenvalue λ > 10 of the Laplace operator on M satisfying
|A|2 = λ− 5.

The round unit sphere S7 has a nearly G2 structure, so a natural question is whether we
can say anything about the third value of |A|2 for compact minimal hypersurfaces with
constant scalar curvature in S7 by using the nearly G2 structure on it. Our next result is
an analog of Theorem 4.1.4 for minimal hypersurfaces with constant scalar curvature in
S7. More precisely we prove the following
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Theorem 4.1.5. Let M6 be a compact minimal hypersurface of constant scalar curvature
in the unit sphere S7. If the shape operator A of M satisfies |A|2 > 6, then there exists an
eigenvalue λ > 12 of the Laplace operator on M such that |A|2 = λ− 6.

This puts a restriction on possible examples of compact minimal hypersurfaces of constant
scalar curvature in S7 which have |A|2 > 6 as they must have an eigenvalue λ > 12 of the
Laplacian operator such that |A|2 = λ− 6.

In §4.2 we discuss some notions from the geometry of submanifolds. In §4.3 we start
by defining several quantities associated to a hypersurface of a nearly G2 manifold and
then prove various relations among them. Using that we prove Theorem 4.1.2. We note
that several of the results in §4.3 are already known. However, we prove them using our
notations to make the chapter self contained and give references to the original results
accordingly. Finally in §4.4, we prove Theorem 4.1.5.

4.2 Geometry of submanifolds

In this section, we briefly recall the geometry of submanifolds. More details can be found,
for example in [Lee97]. Let (M, g) be Riemannian manifold and (M, g) be an immersed
orientable submanifold of M with induced metric. Then for X, Y ∈ Γ(TM), we have

∇XY = ∇XY + II(X, Y ), (4.2.1)

where ∇ is the covariant derivative on M , ∇ is the covariant derivative on M and II :
TM × TM → NM is the second fundamental form of M . Here NM is the normal bundle
of M in M .

If M is an oriented hypersurface of M and we denote by N the unit normal vector field of
M in M corresponding to this orientation, then the second fundamental form is a multiple
of N and is given by the shape operator, which we denote by A. Here A : TM → TM is
a self-adjoint linear map and (4.2.1) becomes

∇XY = ∇XY + g(AX, Y )N. (4.2.2)

We also have the Weingarten equation

∇XN = −AX. (4.2.3)
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If Rm denotes the Riemann curvature tensor on (M, g) and Rm denotes the Riemann
curvature tensor on (M, g), then the Gauss equation for M is

Rm(X, Y, Z,W ) = Rm(X, Y, Z,W )− g(AX,W )g(AY,Z) + g(AX,Z)g(AY,W ). (4.2.4)

Now suppose M is the unit sphere S7 with the round metric. Then Rm as a (3, 1)−tensor
is given by Rm(X, Y )Z = g(Y, Z)X − g(X,Z)Y . In this case (4.2.4) becomes

Rm(X, Y )Z = g(Y, Z)X − g(X,Z)Y + g(AY,Z)AX − g(AX,Z)AY. (4.2.5)

If M is also a minimal hypersurface of S7 (i.e., the mean curvature vector H = 0 ) then
by taking the trace of (4.2.5), the Ricci and the scalar curvature of M are

Ric(X, Y ) = 5g(X, Y )− g(AX,AY ), (4.2.6)
R = 30− |A|2 (4.2.7)

where |A|2 is the square of the length of the shape operator ofM . We also have the Codazzi
equation, which in this case is

∇X(AY )−∇Y (AX) = A([X, Y ]). (4.2.8)

Finally, we define totally umbilic hypersurface.

Definition 4.2.1. A hypersurfaceM of a Riemannian manifoldM is called totally umbilic
at x ∈M if the shape operator A ofM is a multiple of the identity map of TxM . Moreover
M is called totally umbilic if it is totally umbilic at each of its points.

Remark 4.2.2. Throughout the chapter, all quantities associated to the ambient manifold
M will have a bar on them, for example the metric on M is g whereas those of the
hypersurface are written without any bar.

4.3 Proof of Theorem 4.1.2

We start this section by defining various quantities for hypersurfaces (not necessarily min-
imal) of a manifold with a nearly G2 structure which have analogs for hypersurfaces of a
manifold with a nearly Kähler structure. Being motivated from the notion of a character-
istic vector field on a manifold with an almost complex structure, we define a (1, 1) tensor
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ξ on M6, induced from the octonionic multiplication on a manifold with a G2 structure
(M

7
, ϕ), as follows

ξ(X) = B(N,X), (4.3.1)

where X ∈ Γ(TM) and B(., .) is the cross product and N is the unit normal to M6 in M .
We have the following

Proposition 4.3.1. The tensor ξ is a metric compatible almost complex structure on
(M6, g).

Proof. For X ∈ Γ(TM), we have

ξ2(X) = ξ(B(N,X)) = B(N,B(N,X))

= −|N |2X + g(N,X)N = −X

where the equality in the second line is from the identity (2.1.4) for the cross product.
Hence ξ2(X) = −X. Also,

g(ξ(X), ξ(Y )) = g(B(N,X), B(N, Y ))

= g(B(B(N,X), N), Y )

= −g(B(N,B(N,X)), Y ) = g(X, Y )

where we have used (2.1.3) in going from the first to the second line, the anti-commutativity
of B in the first equality and (2.1.4) and the fact that N is a unit vector in the second
equality of the third line.

Remark 4.3.2. The previous proposition is a special case of Theorem 2.6 in [Gra69].

Again, from the motivation from nearly Kähler geometry, we define a (3, 1) tensor field G
as follows

G(X, Y, Z) = (∇XB)(Y, Z) (4.3.2)

for X, Y, Z ∈ Γ(TM).

Now we prove some results about G and relationships between G and B for manifolds with
a nearly G2 structure. The next proposition is a special case of Lemma 3.7 in [Sem03].

Proposition 4.3.3. Let ψ = ?ϕ denotes the 4-form on (M,ϕ) with a nearly G2 structure.
Then for any vector fields X, Y, Z,W

g(G(X, Y, Z),W ) =
trT

7
ψ(X, Y, Z,W ) (4.3.3)

where T is the torsion tensor.
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Proof. If ϕ is a G2 structure then

ϕ(X, Y, Z) = g(B(X, Y ), Z) (4.3.4)

Then from (4.3.4) we have

g(G(X, Y, Z),W ) = g((∇XB)(Y, Z),W )

= g(∇X(B(Y, Z))−B(∇XY, Z)−B(Y,∇XZ),W )

= ∇X(ϕ(Y, Z,W ))− ϕ(∇XY, Z,W )− ϕ(Y,∇XZ,W )

− ϕ(Y, Z,∇XW )

= (∇Xϕ)(Y, Z,W )

=
trT

7
ψ(X, Y, Z,W )

where we have used g(∇X(B(Y, Z)),W ) = ∇X(g(B(Y, Z),W )) − g(B(Y, Z),∇X(W )) in
going from the second to the third equality, ∇iϕjkl = Timψmjkl and the fact that for a
nearly G2 structure, Tij = trT

7
gij in the last equality.

Remark 4.3.4. From (4.3.3), we see that G is skew-symmetric in all of its entries.

Proposition 4.3.5. For any vector fields X, Y, Z,W , we have

G(B(W,Z), X, Y ) =
trT

7
[g(X,Z)B(W,Y ) + g(Y, Z)B(X,W )− g(W,X)B(Z, Y )

− g(W,Y )B(X,Z) + ϕ(X, Y,W )Z − ϕ(X, Y, Z)W ]. (4.3.5)

Proof. We know from Proposition 4.3.3 that

G(X, Y, Z) =
trT

7
ψ(X, Y, Z, ·)

so
G(B(X, Y ), Z,W ) =

trT

7
ψ(B(X, Y ), Z,W, ·)#.

In local coordinates {x1, x2, . . . , x7}, we have g(B(∂k, ∂l), ∂n) = ϕkln. So

G(B(∂k, ∂l), ∂i, ∂j) =
trT

7
ψ(B(∂k, ∂l), ∂i, ∂j, ·)#

=
trT

7
ψ(ϕkl·

#, ∂i, ∂j, .)
#

= −trT

7
ψij·nϕkln. (4.3.6)
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Using the identity in (2.1.12)

ψijmnϕkln = gkiϕljm + gkjϕilm + gkmϕijl − gliϕkjm − gljϕikm − glmϕijk

we get the proposition.

Proposition 4.3.6. For any vector fields X, Y, Z,W , we have

B(G(X, Y, Z),W ) = −G(B(X, Y ), Z,W ). (4.3.7)

Proof. In local coordinates {x1, . . . , x7}, we have G(∂k, ∂l, ∂m) = trT
7
ψ#
klm· and B(∂k, ∂l) =

ϕ#
kl·, so

B(G(∂k, ∂l, ∂m), ∂n) =
trT

7
ϕ(ψ#

klm·, ∂n, ·)
# =

trT

7
ϕ#
n·pg

psψklms.

The proposition now follows from the last line of (4.3.6).

We require the expression for ∇Xξ later, so we have the following proposition which is a
special case of Proposition 4.7 of [Gra69] for the 2-fold VCP.

Proposition 4.3.7. Let M be an oriented hypersurface of (M,ϕ) and ξ be as defined in
(4.3.1). Then for any vector field X ∈ Γ(TM), we have

(∇Xξ)(Y ) = G(X,N, Y )− ϕ(N, Y,AX)N −B(AX, Y ). (4.3.8)

Proof. We calculate

(∇Xξ)(Y ) = ∇X(ξ(Y ))− ξ(∇XY )

= ∇X(B(N, Y ))− g(AX,B(N, Y ))N − ξ(∇XY )

= (∇XB)(N, Y ) +B(∇XN, Y ) +B(N,∇XY )− g(AX,B(N, Y ))N

− ξ(∇XY )

= G(X,N, Y )−B(AX, Y ) +B(N,∇XY ) + g(AX, Y )B(N,N)

− g(AX,B(N, Y ))N − ξ(∇XY )

= G(X,N, Y )− ϕ(N, Y,AX)N −B(AX, Y ) (4.3.9)

where we have used (4.2.2) in the second equality, (4.2.3) and (4.3.2) in the fourth equality
and the fact that B(N,N) = 0 in the last equality.
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Now we prove Theorem 4.1.2 mentioned in §4.1, namely, we give a necessary and sufficient
condition for an oriented hypersurface of a nearly G2 manifold to be nearly Kähler. We
restate the theorem.

Theorem 4.3.8. Let M be an oriented hypersurface of a nearly G2 manifold (M,ϕ).
Then (M, g, ξ) is a nearly Kähler structure if and only if M is totally umbilic, i.e., for all
X ∈ Γ(TM)

AX = αX, (4.3.10)

where A is the shape operator of M in M and α ∈ C∞(M).

Proof. We know from (4.1.3) that if J is a metric compatible almost complex structure on
M then (M,J, g) is nearly Kähler if and only if for all X ∈ Γ(TM), we have (∇XJ)X = 0.
From Proposition 4.3.1, we know that ξ is a metric compatible almost complex structure
on M . Denote by B(X, Y )T , the tangential component of B(X, Y ). Using (4.3.8) from
Proposition 4.3.7, for X ∈ Γ(TM)

(∇Xξ)(X) = 0 ⇐⇒
G(X,N,X)− ϕ(N,X,AX)N −B(AX,X) = 0 ⇐⇒

ϕ(N,X,AX)N +B(AX,X)T + g(B(AX,X), N)N = 0 ⇐⇒
B(AX,X)T + ϕ(AX,X,N)N + ϕ(N,X,AX)N = 0 ⇐⇒

B(AX,X)T = 0 (4.3.11)

where we used the fact that G is skew-symmetric in all of its entries in going from the
second line to the third.

If X = 0 then from (4.3.11), the theorem is true. So we assume that X 6= 0. Now if
AX = αX then

B(AX,X)T = B(αX,X)T

= 0. (4.3.12)

Thus (4.3.11) and (4.3.12) proves one direction of the theorem.

Now suppose B(AX,X)T = 0. Since AX is tangent toM so we write AX = αX+Y where
α is a function which might depend on X and g(X, Y ) = 0. So B(Y,X)T = 0. Suppose

B(Y,X) = fN

for some function f .
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Then from (2.1.4) we have

B(B(Y,X), X) = −|X|2Y,

Also, B(B(Y,X), X) = fB(N,X) = fξ(X), so we get

Y = − f

|X|2
ξ(X)

and hence

AX = αX + βξ(X), (4.3.13)

where β = − f

|X|2
. Now we prove that β = 0. Indeed, for any Z ∈ Γ(TM),

g(AX,Z) = g(αX + βξ(X), Z)

= αg(X,Z)− βg(X, ξ(Z))

and similarly g(X,AZ) = αg(X,Z) + βg(X, ξ(Z)). But since A is self-adjoint we get that
2βg(X, ξ(Z)) = 0. So choosing Z such that B(X,Z) = N , we get that β = 0. This proves
the other direction.

Remark 4.3.9. Note that the proof of Theorem 4.3.8 remains unchanged if G = 0. So the
above theorem also holds for hypersurfaces of G2 manifolds, i.e., manifolds with torsion
free G2 structures.

Remark 4.3.10. Theorem 4.3.8 was proved in [Gra69, Theorem 4.8] where Gray proved
that β = 0 by using the fact that any nearly Kähler structure J is quasi-Kähler, i.e., for
all X, Y ∈ Γ(TM), (∇XJ)(Y ) + (∇JXJ)(JY ) = 0. We gave a direct proof that β = 0.

Remark 4.3.11. Koiso proved in [Koi81, Theorem B] that if (M, g) is a totally umbilic
Einstein hypersurface in a complete Einstein manifold (M, g) and g has positive Ricci
curvature then both g and g have constant sectional curvature. This restricts the possibility
for new examples of hypersurfaces which are totally umbilic. It would be interesting to
find examples of hypersurfaces in a manifold with a nearly G2 structure which are nearly
Kähler with respect to ξ but are not totally umbilic.

We need the following lemma in §4.4 which is a special case of Theorem 4.10 in [Gra69].

Lemma 4.3.12. Let M be an oriented hypersurface of a nearly G2 manifold (M,ϕ) and
let ξ be as in (4.3.1). Then div ξ = 0.
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Proof. Since A is a self-adjoint operator, we choose an orthonormal frame {e1, ..., e6} at a
point p ∈ M which diagonalizes A, i.e., Aei = aiei, ∀ i. Then for v ∈ TpM we compute
using Proposition 4.3.7

(div ξ)p(v) =
6∑
i=1

g((∇eiξ)(v), ei)

=
6∑
i=1

g(G(ei, N, v)− ϕ(N, v,Aei)N −B(Aei, v), ei)

= −
6∑
i=1

g(B(Aei, v), ei) = −
6∑
i=1

ϕ(Aei, v, ei) = −
6∑
i=1

ϕ(aiei, v, ei)

= 0 (4.3.14)

where we used (4.3.8) in the second equality, Remark 4.3.4 in the third equality and the
fact that ϕ is a 3-from in the last equality.

4.4 Proof of Theorem 4.1.5

In this section we prove Theorem 4.1.5, stated in §4.1. Let (L, g) be a Riemannian manifold.
A vector field X on L is said to be a conformal vector field if

LXg = 2fg (4.4.1)

for some f ∈ C∞(L), which is called the potential of X. Here LXg denotes the Lie
derivative of g with respect to X. If f ≡ 0, then X is a Killing vector field. There are
many non-Killing conformal vector fields on the unit sphere Sn with the round metric g.
In particular, if Y is a non-zero constant vector field on Rn+1, N is the unit normal of
Sn in Rn+1 and Y = X + fN , where X is the tangential component of Y , then using
(4.2.2) and (4.2.3) and the fact that for Sn as a hypersurface in Rn+1, A = −I, we see that
∇f = X and ∇WX = −fW , and hence LXg = −2fg, so X is a conformal vector field
with potential −f . In fact, all non-Killing conformal vector fields on the unit Sn arise in
this manner. (see [MO])

Let M be an oriented compact minimal hypersurface of S7 satisfying the hypotheses of
Theorem 4.1.5, i.e., M is of constant scalar curvature and the shape operator A of M
satisfies |A|2 > 6. Let V, Ṽ be two non-Killing conformal vector fields on S7 with potential
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functions f, f̃ respectively, arising from two linearly independent constant vector fields on
R8. Let W, W̃ be the tangential components on M of V and Ṽ respectively. Then we have
V = W + sN and Ṽ = W̃ + s̃N , where s, s̃ : M → R.

Using (4.2.2) and (4.2.3), for X ∈ Γ(TM) we get

∇XW = ∇XV −∇X(sN)

= −fX + sAX, (4.4.2)
∇f = W, (4.4.3)
∇s = −AW. (4.4.4)

Similarly, we get

∇XW̃ = −f̃X + s̃AX, ∇f̃ = W̃ and ∇s̃ = −AW̃ . (4.4.5)

Now we define the function h : M → R as

h = g(ξW, W̃ ). (4.4.6)

We are interested in finding ∆Mh. Note that only in this section ∆M will denote the rough
Laplacian on M which is a negative operator and hence the spectrum of ∆M is positive.
We compute

∇Xh = ∇Xg(ξW, W̃ )

= g((∇Xξ)W, W̃ ) + g(ξ(∇XW ), W̃ ) + g(ξW,∇XW̃ )

= g
(
G(X,N,W )− ϕ(N,W,AX)N −B(AX,W )T , W̃

)
+ g(ξ(−fX + sAX), W̃ ) + g(ξW,−f̃X + s̃AX)

= −g(G(N,W, W̃ ), X)− g(B(W, W̃ )T , AX) + g(fξW̃ ,X)

− g(sξW̃ , AX)− g(f̃ ξW,X) + g(s̃ξW,AX),

(4.4.7)

so we get

∇h = −G(N,W, W̃ )− AB(W, W̃ )T + fξW̃ − sAξW̃ − f̃ ξW + s̃AξW. (4.4.8)

We use (4.4.2), (4.4.3), (4.4.4) and (4.4.5) to calculate the divergence of each term in
(4.4.8). For that, we choose a local orthonormal frame {e1, ..., e6} at p ∈ M such that
Aei = aiei, for each i.
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div(fξW̃ ) = g(∇f, ξW̃ ) + f
6∑
i=1

[g((∇iξ)W̃ , ei) + g(ξ(∇iW̃ ), ei)]

= g(W, ξW̃ ) +
6∑
i=1

g(ξ(−f̃ ei + s̃Aei), ei)

= g(W, ξW̃ ) +
6∑
i=1

[−fg(ξei, ei) + s̃aig(ξei, ei)]

= −h (4.4.9)

where we have used Lemma 4.3.12 in the second equality and the definition of ξ to eliminate
the terms inside the summation in the third equality.

Similarly

div(f̃ ξW ) = h. (4.4.10)

We continue to calculate

div(sAξW̃ ) = g(∇s, AξW̃ ) + s
6∑
i=1

g(∇i(AξW̃ ), ei)

= −g(AW,AξW̃ ) + s
6∑
i=1

[∇ig(AξW̃ , ei)− g(AξW̃ ,∇eiei)]

= −g(AW,AξW̃ ) + s
6∑
i=1

[g(∇iξW̃ , Aei) + g(ξW̃ ,∇eiAei)

− g(ξW̃ , A∇eiei)]

= −g(AW,AξW̃ ) + s

6∑
i=1

[g((∇eiξ)W̃ , Aei) + g(ξ(∇eiW̃ ), Aei)]

= −g(AW,AξW̃ ) (4.4.11)

where in the third equality we have used that
∑

i(∇A)(ei, ei) =
∑

i(∇eiAei −A∇eiei) = 0
which follows from the Codazzi identity (4.2.8) and the fact that M is minimal, (4.3.8),
(4.4.5) and Aei = aiei to eliminate the terms inside the summation in the second last
equality.
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Similarly

div(s̃AξW ) = −g(AW̃ ,AξW ). (4.4.12)

For calculating div(AB(W, W̃ )T ), we repeatedly use (4.2.2) and (4.2.3) to first compute

(∇ZB)(X, Y ) = ∇Z(B(X, Y ))−B(∇ZX, Y )−B(X,∇ZY )

= ∇Z

(
B(X, Y )T + g(B(X, Y ), N)N

)
−B(∇ZX, Y )

− g(AZ,X)B(N, Y )−B(X,∇ZY )− g(AZ, Y )B(X,N)

= ∇Z(B(X, Y )T ) + g(AZ,B(X, Y )T )N + g(∇Z(B(X, Y )), N)N

− g(B(X, Y ), AZ)N − g(B(X, Y ), N)AZ −B(∇ZX, Y )

− g(AZ,X)B(N, Y )−B(X,∇ZY )− g(AZ, Y )B(X,N),

(4.4.13)

where we have written B(X, Y ) as a sum of its tangential and normal components in the
first term in second equality and then used (4.2.2) in the third equality. So we get

(∇ZB)(X, Y ) = ∇Z(B(X, Y )T ) + g((∇ZB)(X, Y ), N)N + g(B(∇ZX, Y ), N)N

+ g(AZ,X)g(B(N, Y ), N)N + g(B(X,∇ZY ), N)N

+ g(AZ, Y )g(B(X,N), N)N − g(B(X, Y ), N)AZ −B(∇ZX, Y )

− g(AZ,X)B(N, Y )−B(X,∇ZY )− g(AZ, Y )B(X,N)

= ∇Z(B(X, Y )T ) + g((∇ZB)(X, Y ), N)N + g(B(∇ZX, Y ), N)N

+ g(B(X,∇ZY ), N)N − g(B(X, Y ), N)AZ −B(∇ZX, Y )

−B(X,∇ZY )− g(AZ,X)B(N, Y )− g(AZ, Y )B(X,N), (4.4.14)

where we have used g(B(N, V ), N) = ϕ(N, V,N) = 0, for all V in going from fourth to
fifth equality. Now using (4.3.2), we see that (4.4.14) is

∇Z(B(X, Y )T ) = G(Z,X, Y )T − g(B(∇ZX, Y ), N)N − g(B(X,∇ZY ), N)N

+ g(B(X, Y ), N)AZ +B(∇ZX, Y ) +B(X,∇ZY )

+ g(AZ,X)B(N, Y ) + g(AZ, Y )B(X,N). (4.4.15)
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Using (4.4.15) we calculate

div(AB(W, W̃ )T ) =
6∑
i=1

[g((∇iA)(B(W, W̃ )T ), ei) + g(∇ei(B(W, W̃ )T ), Aei)]

=
6∑
i=1

g
(
(G(ei,W, W̃ )T − g(B(∇eiW, W̃ ), N)N

− g(B(W,∇eiW̃ ), N)N + g(B(W, W̃ ), N)Aei +B(∇eiW, W̃ )

+B(W,∇eiW̃ ) + g(Aei,W )B(N, W̃ ) + g(Aei, W̃ )B(W,N)), Aei
)

=
6∑
i=1

[g(B(N,W ), W̃ )g(Aei, Aei) + g(B(−fei + sAei, W̃ ), Aei)

+ g(B(W,−f̃ ei + s̃Aei), Aei) + g(ei, AW )g(B(N, W̃ ), Aei)

+ g(ei, AW̃ )g(B(W,N), Aei)]

= |A|2h+ g(AW,AξW̃ )− g(AW̃ ,AξW ) (4.4.16)

where we have used Remark 4.3.4 to eliminate the first term inside the summation in the
second equality, Proposition 4.3.3 in the third equality and the facts that g(B(a, b), c) =
ϕ(a, b, c) and Aei = aiei in going from the third to last equality.

For calculating div(G(N,W, W̃ )), we first of all note that due to Proposition 4.3.3, G(N,X, Y )
is tangent to M for any X, Y ∈ Γ(TM). We calculate

div(G(N,W, W̃ )) =
6∑
i=1

g(∇i(G(N,W, W̃ )), ei)

=
6∑
i=1

[∇i(g(G(N,W, W̃ ), ei))− g(G(N,W, W̃ ),∇iei)]

=
trT

7

6∑
i=1

[(∇iψ)(N,W, W̃ , ei) + ψ(∇iN,W, W̃ , ei) + ψ(N,∇iW, W̃ , ei)

+ ψ(N,W,∇iW̃ , ei) + ψ(N,W, W̃ ,∇iei)− ψ(N,W, W̃ ,∇iei)],

where we have used Proposition 4.3.3 in the third equality, (4.4.2), (4.4.5), Aei = aiei and
the fact that ψ is a 4-form to eliminate the ψ(N,∇iW, W̃ , ei) and ψ(N,W,∇iW̃ , ei) in the
last equality.
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Thus we get

div(G(N,W, W̃ )) =
trT

7

6∑
i=1

[(∇iψ)(N,W, W̃ , ei)− ψ(Aei,W, W̃ , ei)]

=
trT

7

6∑
i=1

[
trT

7
(−g(ei, N)ϕ(W, W̃ , ei) + g(ei,W )ϕ(N, W̃ , ei)

− g(ei, W̃ )ϕ(N,W, ei) + g(ei, ei)ϕ(N,W, W̃ ))]

=
(trT )2

49
[g(ξW̃ ,W )− g(ξW, W̃ ) +

6∑
i=1

g(ei, ei)g(ξW, W̃ )]

=
4(trT )2

49
h, (4.4.17)

where we used (2.3.3) (expression for ∇iψjklm) and the fact that for nearly G2 structures
Tij = trT

7
gij in the fifth equality.

Using the fact that for the unit S7, |T1|2 =
(trT )2

7
= 7, (4.4.8), (4.4.9), (4.4.10), (4.4.11),

(4.4.12), (4.4.16) and (4.4.17) we see that

∆Mh = −4h− |A|2h− g(AW,AξW̃ ) + g(AW̃ ,AξW )− h+ g(AW,AξW̃ )

− h− g(AW̃ ,AξW ), (4.4.18)

so
∆Mh = −(|A|2 + 6)h. (4.4.19)

We note that since M is a compact minimal hypersurface of constant scalar curvature in
S7, |A|2 is constant by (4.2.7) and hence |A|2 + h is an eigenvalue of ∆M . Now if h is a
constant function then (4.4.19) implies that h = 0, i.e., g(ξ(W ), W̃ ) = 0. Recall that W̃ is
the tangential component of a non-Killing conformal vector field Ṽ on S7 where Ṽ is the
tangential component of any constant vector field on R8. The vector field W was obtained
in a similar manner by taking the tangential component of a non-Killing conformal vector
field V on S7 which was obtained as the tangential component of a constant vector field
on R8 which was linearly independent from the constant vector field which gives Ṽ .

So if g(ξ(W ), W̃ ) = 0 for all W̃ , we get ξ(W ) = 0, i.e., B(N,W ) = 0. This is a contradiction
because ξ is invertible and N is a unit vector. Hence there exists W, W̃ such that h is
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not constant and (4.4.19) implies that h is an eigenfunction of ∆M corresponding to the
eigenvalue λ = |A|2 + 6. So if |A|2 > 6 then λ > 12 with |A|2 = λ − 6. The proof of
Theorem 4.1.5 is now complete.
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Chapter 5

Some results on Ricci-Bourguignon
solitons and almost solitons

5.1 Introduction

In this chapter we study some rigidity properties of the solitons and almost solitons of
the Ricci-Bourguignon flow. This chapter is based on [Dwi18]. The author was led to the
study of the Ricci-Bourguignon flow as a result of his study of the Laplacian flow for closed
G2 structures.

Ricci solitons play a major role in Ricci flow where they correspond to self-similar
solutions of the flow. Thus, given a geometric flow it is natural to study the solitons
associated to that flow.

A family of metrics g(t) on an n-dimensional Riemannian manifold (Mn, g) is said to
evolve by the Ricci-Bourguignon flow (RB flow for short) if g(t) satisfies the following
evolution equation

∂g

∂t
= −2(Ric− ρRg), (5.1.1)

where Ric is the Ricci tensor of the metric, R is the scalar curvature and ρ ∈ R is a constant.
The flow in equation (5.1.1) was first introduced by Bourguignon [Bou81], building on some
unpublished work of Lichnerowicz and a paper of Aubin [Aub70]. We note that (5.1.1) is
precisely the Ricci flow if ρ = 0. In particular, the right hand side of the evolution equation
(5.1.1) is of special interest for different values of ρ, for example
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• ρ = 1
2
, the Einstein tensor Ric− R

2
g,

• ρ = 1
n
, the traceless Ricci tensor Ric− R

n
g,

• ρ = 1
2(n−1)

, the Schouten tensor Ric− R
2(n−1)

g,

• ρ = 0, the Ricci tensor Ric.

A systematic study of the parabolic theory of the RB flow was initiated in [CCDMM17].
In that paper, the authors proved, along with many other results, the short time existence
of the flow (5.1.1) on any closed n-dimensional manifold starting with an arbitrary initial
metric g0 for ρ < 1

2(n−1)
. As in the Ricci flow case, we make the following

Definition 5.1.1. A Ricci-Bourguignon soliton (RB soliton for short) is a Riemannian
manifold (Mn, g) endowed with a vector field X on M that satisfies

Rij +
1

2
(LXg)ij = λgij + ρRgij (5.1.2)

where LXg denotes the Lie derivative of the metric g with respect to the vector field X
and λ ∈ R is a constant.

When X = ∇f for some smooth f : M → R then (M, g) is called a gradient RB soliton.
The soliton is called

1. expanding when λ < 0,

2. steady when λ = 0,

3. shrinking when λ > 0.

RB solitons correspond to self-similar solutions of the RB flow. An RB soliton is called
trivial if X is a Killing vector field, i.e., LXg = 0. We remark that even though the short
time existence result for the flow (5.1.1) is for ρ < 1

2(n−1)
, any value of ρ is possible for the

considerations of self-similar solutions of the flow.

Gradient RB solitons were studied in detail, for example in [CM16] and [CMM15] where
the authors called them gradient ρ-Einstein solitons. Various classification and rigidity
results about gradient RB solitons were proved in those papers and we refer the reader to
those papers for precise statements and proofs of the results.
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The notion of Ricci almost solitons was introduced in [PRRS11] where the authors
modified the definition of a Ricci soliton by considering the parameter λ in the definition
of a Ricci soliton to be a function rather than a constant. Motivated by the Ricci flow case
we make the following

Definition 5.1.2. A Riemannian manifold (Mn, g) is a Ricci-Bourguignon almost soliton
(RB almost soliton for short) if there is a vector field X and a soliton function λ : M → R
satisfying

Ric +
1

2
LXg = λg + ρRg. (5.1.3)

An RB almost soliton is called a gradient RB almost soliton if X = ∇f for some
smooth function f on M and is expanding, steady or shrinking if λ < 0, λ = 0 or λ > 0
respectively. We note that if X is a Killing vector field then a RB almost soliton is just a
RB soliton as it forces λ to be a constant.

Recall that a vector field Y on a Riemannian manifold (M, g) is called a conformal
vector field if there exists a function ψ : M → R such that

LY g = 2ψg.

The conformal vector field is non-trivial if ψ 6= 0.

Some characterization results for compact Ricci and Ricci almost solitons were obtained
in [ABR11] and [BR12] respectively. In this chapter we generalize the results obtained in
those papers to RB and RB almost solitons. More precisely, in §5.3 we prove the following
theorems.

Theorem 5.1.3. Let (Mn, g,X, λ, ρ) be a RB soliton with n ≥ 3 and suppose that the
vector field X is a conformal vector field.

1. If M is compact then X is a Killing vector field and hence (Mn, g,X, λ, ρ) is a trivial
RB soliton.

2. If M is non-compact, complete and gradient RB soliton then either X is a Killing
vector field or (Mn, g,X, λ, ρ) is isometric to the Euclidean space.

This generalizes Theorem 3 in [ABR11] and characterizes compact RB solitons when X is a
conformal vector field. The following corollary gives a lower bound for the first eigenvalue of
the Laplacian on a compact RB soliton when X is a conformal vector field and generalizes
Theorem 4 in [ABR11].
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Corollary 5.1.4. Let (Mn, g,X, λ, ρ) be a compact RB soliton with X a conformal vector
field. If n ≥ 3 and λ + ρR > 0 then the first eigenvalue λ1 of the Laplacian satisfies
λ1 ≥ (λ+ ρR) n

n−1
. Moreover, equality occurs if and only if Mn is isometric to a standard

sphere.

The next theorem characterizes compact RB almost solitons with X a conformal vector
field and generalizes Theorem 2 in [BR12].

Theorem 5.1.5. Let (Mn, g,X, λ, ρ) be a compact RB almost soliton with n ≥ 3. If X is
a nontrivial conformal vector field then Mn is isometric to an Euclidean sphere.

The next theorem generalizes Theorem 3 in [BR12] obtained for compact Ricci almost
solitons, which is the case when ρ = 0.

Theorem 5.1.6. Let (Mn, g,X, λ, ρ) be a compact RB almost soliton with n ≥ 3. If ρ 6= 1
n

and∫
M

[Ric(X,X) +
nρ

nρ− 1
∇X divX − 2ρg(∇R,X)− (n(2ρ+ 1)− 2)

nρ− 1
g(∇λ,X)] vol ≤ 0,

(5.1.4)

then X is a Killing vector field and Mn is a trivial RB soliton.

Since every RB almost soliton is also a RB soliton for constant λ, using ∇λ = 0 we get
the following corollary for compact RB soliton

Corollary 5.1.7. Let (Mn, g,X, λ, ρ) be a compact RB soliton with n ≥ 3. If ρ 6= 1
n
and∫

M

[Ric(X,X) +
nρ

(nρ− 1)
∇X divX − 2ρg(∇R,X)] vol ≤ 0, (5.1.5)

then X is a Killing vector field and Mn is a trivial RB soliton.

Remark 5.1.8. Corollary 5.1.7 is an analog of Theorem 1.1 in [PW09] which was for the
case of compact Ricci solitons. We obtain Petersen–Wylie’s result from ours by setting
ρ = 0. In fact, the condition in (5.1.5) is analogous to the condition in [PW09, Theorem
1.1], which is obtained when ρ = 0 in (5.1.5).
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Finally, we obtain an integral formula for compact gradient RB almost solitons gener-
alizing corresponding result for compact gradient Ricci almost solitons from [BR12]

Theorem 5.1.9. Let (Mn, g,∇f, λ, ρ) be a compact gradient RB almost soliton. Then

∫
M

∣∣∣∇2f − ∆f

n
g
∣∣∣2 vol =

(n− 2)

2n

∫
M

g(∇R,∇f) vol, (5.1.6)

∫
M

∣∣∣Ric− R

n
g
∣∣∣2 vol =

(n− 2)

2n

∫
M

g(∇R,∇f) vol . (5.1.7)

As an application of the previous theorem we state some conditions for a compact
gradient RB almost soliton to be isometric to an Euclidean sphere.

Corollary 5.1.10. A nontrivial compact gradient RB almost soliton (Mn, g,∇f, λ, ρ),
n ≥ 3 is isometric to an Euclidean sphere if any one of the following holds

1. Mn has constant scalar curvature.

2.
∫
M
g(∇R,∇f) vol ≤ 0.

3. Mn is a homogenous manifold.

This chapter is organized as follows. In §5.2 we state and prove some identities for RB
solitons and RB almost solitons which are used to prove the main results. The correspond-
ing analogs for Ricci and Ricci almost solitons can be found, for example, in [ABR11] and
[BR12] respectively. In §5.3 we prove the main theorems and their corollaries.

5.2 Preliminaries

In this section we prove some general results about RB and RB almost solitons. The
proofs of some of these results in the compact gradient case can also be found in [CM16]
or [CMM15]. Let us first recall the Ricci identities (1.1.1) for a (0, 2)-tensor α:

∇i∇jαkl −∇j∇iαkl = −Rijkmαml −Rijlmαkm

58



where Rijkl is the Riemann curvature tensor.

We start with the following

Proposition 5.2.1. Let (Mn, g,∇f, λ, ρ) be a gradient RB almost soliton. Then the fol-
lowing identities hold

(1− nρ)R + ∆f = nλ, (5.2.1)
(1− 2ρ(n− 1))∇iR = 2Ril∇lf + 2(n− 1)∇iλ, (5.2.2)
∇jRik −∇kRij = Rjkil∇lf + ρ(∇jRgik −∇kRgij)

+ (∇jλgik −∇kλgij), (5.2.3)
∇i

[
(1− 2ρ(n− 1))R + |∇f |2 − 2(n− 1)λ

]
= (2ρR + 2λ)∇if. (5.2.4)

Proof. For a gradient RB almost soliton we have

Rij +∇i∇jf = λgij + ρRgij. (5.2.5)

Taking trace of the above equation gives (5.2.1).

Taking the covariant derivative of (5.2.1) in an orthonormal frame gives

(1− nρ)∇iR +∇i∇j∇jf = n∇iλ.

Commuting covariant derivatives and using the contracted second Bianchi identity give

(1− nρ)∇iR = −∇j∇i∇jf +Ril∇lf + n∇iλ

= −∇j(−Rij + λgij + ρRgij) +Ril∇lf + n∇iλ

=
1

2
∇iR− ρ∇iR−∇iλ+Ril∇lf + n∇iλ

and hence (1

2
− ρ(n− 1)

)
∇iR = Ril∇lf + (n− 1)∇iλ (5.2.6)

which proves (5.2.2).
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For proving (5.2.3), we use (5.2.5) and commute covariant derivatives to get

∇jRik −∇kRij = (∇k∇i∇jf −∇j∇i∇kf) + ρ(∇jRgik −∇kRgij)

+ (∇jλgik −∇kλgij)

= (∇k∇j∇if −∇j∇k∇if) + ρ(∇jRgik −∇kRgij)

+ (∇jλgik −∇kλgij)

= Rjkil∇lf + ρ(∇jRgik −∇kRgij) + (∇jλgik −∇kλgij). (5.2.7)

Finally from (5.2.2) we get

(1− 2ρ(n− 1))∇iR = 2∇lf(−∇i∇lf + λgil + ρRgil) + 2(n− 1)∇iλ

= −2∇lf∇i∇lf + 2λ∇if + 2ρR∇if + 2(n− 1)∇iλ

= −∇i|∇lf |2 + 2λ∇if + 2ρR∇if + 2(n− 1)∇iλ,

so we get

∇i

[
(1− 2ρ(n− 1))R + |∇f |2 − 2(n− 1)λ

]
= (2ρR + 2λ)∇if (5.2.8)

which proves (5.2.4).

Remark 5.2.2. The analogous identities for gradient RB solitons (Mn, g,∇f, λ, ρ) are

(1− nρ)R + ∆f = nλ, (5.2.9)
(1− 2ρ(n− 1))∇iR = 2Ril∇lf, (5.2.10)
∇jRik −∇kRij = Rjkil∇lf + ρ(∇jRgik −∇kRgij), (5.2.11)

∇i

[
(1− 2ρ(n− 1))R + |∇f |2 − 2λf

]
= 2ρR∇if. (5.2.12)

The proofs of these identities are special cases of the previous result as ∇λ = 0.

We recall the following lemma from [PW09, Lemma 2.1]

Lemma 5.2.3. Let X be a vector field on a Riemannian manifold (Mn, g). Then

div(LXg)(X) =
1

2
∆|X|2 − |∇X|2 + Ric(X,X) +∇X divX. (5.2.13)

When X = ∇f and Z is any vector field then

div(L∇fg)(Z) = 2Ric(Z,∇f) + 2∇Z div∇f. (5.2.14)
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We use the preceding lemma to prove the following

Lemma 5.2.4. Let (Mn, g,X, λ, ρ) be a RB almost soliton. Then

(1− nρ)

2
∆|X|2 = (1− nρ)|∇X|2 + (nρ− 1)Ric(X,X) + nρ∇X divX

+ 2ρ(1− nρ)g(∇R,X)− (n(2ρ+ 1)− 2)g(∇λ,X) (5.2.15)

and

(1− nρ)

2
(∆−∇X)|X|2 = (1− nρ)|∇X|2 + λ(nρ− 1)|X|2 + ρ(nρ− 1)R|X|2

+ nρ∇X divX + 2ρ(1− nρ)g(∇R,X)

− (n(2ρ+ 1)− 2)g(∇λ,X). (5.2.16)

Proof. We first notice that (5.1.3) gives

2 div Ric + div(LXg) = 2∇λ+ 2ρ∇R. (5.2.17)

Taking the trace of (5.1.3) gives (1− nρ)R + divX = nλ and thus

(1− nρ)∇XR +∇X(divX) = n∇Xλ. (5.2.18)

So using (5.2.13), (5.2.17), (5.2.18) and the contracted second Bianchi identity, we get

∇X(divX) = (nρ− 1)∇XR + ng(∇λ,X)

= 2(nρ− 1) div Ric(X) + ng(∇λ,X)

= −(nρ− 1) div(LXg)(X) + 2ρ(nρ− 1)g(∇R,X) + 2(nρ− 1)g(∇λ,X)

+ ng(∇λ,X)

= (1− nρ)
(1

2
∆|X|2 − |∇X|2 + Ric(X,X) +∇X divX

)
+ 2ρ(nρ− 1)g(∇R,X) + (n(2ρ+ 1)− 2)g(∇λ,X)

=
(1− nρ)

2
∆|X|2 − (1− nρ)|∇X|2 + (1− nρ)Ric(X,X)

+ (1− nρ)∇X divX + 2ρ(nρ− 1)g(∇R,X) + (n(2ρ+ 1)− 2)g(∇λ,X)
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which gives

(1− nρ)

2
∆|X|2 = (1− nρ)|∇X|2 + (nρ− 1)Ric(X,X) + nρ∇X divX

+ 2ρ(1− nρ)g(∇R,X)− (n(2ρ+ 1)− 2)g(∇λ,X), (5.2.19)

thus proving (5.2.15).

Using (5.1.3) to write Ric(X,X) = −1
2
(LXg)(X,X) + λ|X|2 + ρR|X|2 in (5.2.15) we

get

(1− nρ)

2
∆|X|2 = (1− nρ)|∇X|2 + (nρ− 1)

(
− 1

2
(LXg)(X,X) + λ|X|2 + ρR|X|2

)
+ nρ∇X divX + 2ρ(1− nρ)g(∇R,X)− (n(2ρ+ 1)− 2)g(∇λ,X)

= (1− nρ)|∇X|2 +
(1− nρ)

2
∇X |X|2 + λ(nρ− 1)|X|2 + ρ(nρ− 1)R|X|2

+ nρ∇X divX + 2ρ(1− nρ)g(∇R,X)− (n(2ρ+ 1)− 2)g(∇λ,X)

which gives

(1− nρ)

2
(∆−∇X)|X|2 = (1− nρ)|∇X|2 + λ(nρ− 1)|X|2 + ρ(nρ− 1)R|X|2

+ nρ∇X divX + 2ρ(1− nρ)g(∇R,X)

− (n(2ρ+ 1)− 2)g(∇λ,X), (5.2.20)

proving (5.2.16).

If we consider the diffusion operator ∆X = ∆ − ∇X then the previous lemma with
X = ∇f and ∆f = ∆−∇∇f gives the following corollary

Corollary 5.2.5. For a gradient RB almost soliton (M, g,∇f, λ, ρ) we have

(1− nρ)

2
∆f |∇f |2 = (1− nρ)|∇2f |2 + λ(nρ− 1)|∇f |2 + ρ(nρ− 1)R|∇f |2

+ nρ∇∇f (∆f) + 2ρ(1− nρ)g(∇R,∇f)

− (n(2ρ+ 1)− 2)g(∇λ,∇f). (5.2.21)
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Remark 5.2.6. The analogs of (5.2.15) and (5.2.16) for a RB soliton (Mn, g,X, λ, ρ) are

(1− nρ)

2
∆|X|2 = (1− nρ)|∇X|2 + (nρ− 1)Ric(X,X) + nρ∇X divX

+ 2ρ(1− nρ)g(∇R,X) (5.2.22)

and

(1− nρ)

2
(∆−∇X)|X|2 = (1− nρ)|∇X|2 + λ(nρ− 1)|X|2 + ρ(nρ− 1)R|X|2

+ nρ∇X divX + 2ρ(1− nρ)g(∇R,X).

(5.2.23)

The proofs are special cases of the proof of Lemma 5.2.4 with ∇λ = 0.

5.3 Proofs of the results

We start this section by proving the following lemma which is used in the proof of Theo-
rem 5.1.3 and Theorem 5.1.5.

Lemma 5.3.1. Let (Mn, g,X, λ, ρ) be a RB almost soliton with n ≥ 3. If X is a nontrivial
conformal vector field with LXg = 2ψg then R and λ− ψ are constant.

Proof. The soliton equation is

Rij +
1

2
(LXg)ij = λgij + ρRgij (5.3.1)

where λ : M → R is a function. If X is a nontrivial conformal vector field then we have

LXg = 2ψg (5.3.2)

for some function ψ : M → R, ψ 6= 0. So (5.3.1) becomes

Rij = (λ− ψ + ρR)gij. (5.3.3)
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Taking the divergence of (5.3.3) we get

∇iRij = ∇i(λ− ψ + ρR)gij,

=⇒ (
1

2
− ρ)∇jR = ∇j(λ− ψ). (5.3.4)

On the other hand, tracing (5.3.3) and taking the covariant derivative we get

(1− nρ)∇jR = n∇j(λ− ρ). (5.3.5)

So from (5.3.4) and (5.3.5) we get

(1− nρ)∇jR = n(
1

2
− ρ)∇jR. (5.3.6)

So if M is connected then R is a constant and hence λ− ψ is a constant.

Remark 5.3.2. If (Mn, g,X, λ, ρ) is a RB soliton with n ≥ 3 and X is a conformal vector
field with LXg = 2ψg for some function ψ : M → R then the proof of Lemma 5.3.1 shows
that R and ψ are constant as in this case ∇λ = 0.

We now prove Theorem 5.1.3 which we restate here

Theorem 5.3.3. Let (Mn, g,X, λ, ρ) be a RB soliton with n ≥ 3 and suppose that the
vector field X is a conformal vector field.

1. If M is compact then X is a Killing vector field and hence (Mn, g,X, λ, ρ) is a trivial
RB soliton.

2. If M is non-compact, complete and a gradient RB soliton then either X is a Killing
vector field or (Mn, g,X, λ, ρ) is isometric to the Euclidean space.

Proof. Suppose X is a conformal vector field with potential ψ : M → R, i.e.,

LXg = 2ψg (5.3.7)

then from Remark 5.3.2 we know that R and ψ are constant.

Taking trace of (5.3.7) we get
2 divX = 2nψ
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which upon integration over compact M gives

0 =

∫
M

2 divX vol = 2nVol(M)ψ, (5.3.8)

i.e., ψ = 0. So X is a Killing vector field and hence (Mn, X, g, λ, ρ) is a trivial RB soliton.

If M is noncompact and a gradient RB soliton with X = ∇f , then X being conformal
implies

∇i∇jf = ψgij

and by Remark 5.3.2, ψ is constant. If ψ = 0 then X is a Killing vector field and M is
a trivial RB soliton. If ψ 6= 0, then from [Tas65, Theorem 2], we conclude that Mn is
isometric to the Euclidean space.

Next we prove Corollary 5.1.4.

Proof. Since Mn is compact, from Theorem 5.1.3 we know that X is a Killing vector field
and hence Ric = (λ + ρR)g. So we can apply a classical theorem due to Lichnerowicz
[Lic58] which states that if Ric ≥ k where k > 0 is a constant then the first eigenvalue of
the Laplacian λ1 satisfies λ1 ≥ n

n−1
k. So we get

λ1 ≥ (λ+ ρR)
n

n− 1
.

Moreover, for the equality case we can apply Obata’s theorem [Oba62] to conclude that
equality occurs in the above inequality if and only ifMn is isometric to a sphere of constant

curvature
λ+ ρR

n− 1
.

We now prove Theorem 5.1.5 which we restate here

Theorem 5.3.4. Let (Mn, g,X, λ, ρ) be a compact RB almost soliton with n ≥ 3. If X is
a nontrivial conformal vector field then Mn is isometric to an Euclidean sphere.
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Proof. Suppose X is a nontrivial conformal vector field with potential function ψ : M → R,
i.e.,

LXg = 2ψg

with ψ 6= 0. Since (Mn, g,X, λ, ρ) is a compact RB almost soliton with n ≥ 3, Lemma 5.3.1
tells us that R and λ− ψ are constant. So from Lemma 2.3 in [Yan70, pg.52] we conclude
that R 6= 0 or else ψ would be 0. Taking the Lie derivative of (5.3.3) we get

LXRic = LX(λ− ψ + ρR)g

and since (λ− ψ), ρ and R are all constant so we get

LXRic = 2(λ− ψ + ρR)ψg. (5.3.9)

Now we can apply Theorem 4.2 of [Yan70, pg. 54] to conclude that M is isometric to an
Euclidean sphere.

We proceed to the proof of Theorem 5.1.6.

Proof. We see from (5.2.15) of Lemma 5.2.4 that

(1− nρ)

2
∆|X|2 = (1− nρ)|∇X|2 + (nρ− 1)Ric(X,X) + nρ∇X divX

+ 2ρ(1− nρ)g(∇R,X)− (n(2ρ+ 1)− 2)g(∇λ,X).

Integrating above over compact M we get

0 =

∫
M

[(1− nρ)|∇X|2 + (nρ− 1)Ric(X,X) + nρ∇X divX

+ 2ρ(1− nρ)g(∇R,X)− (n(2ρ+ 1)− 2)g(∇λ,X)] vol . (5.3.10)

Since ρ 6= 1
n
, we get∫

M

|∇X|2 vol =

∫
M

[Ric(X,X) +
nρ

nρ− 1
∇X divX − 2ρg(∇R,X)

− (n(2ρ+ 1)− 2)

nρ− 1
g(∇λ,X)] vol, (5.3.11)

so if (5.1.4) holds then |∇X|2 = 0 and henceX is a Killing vector field. Thus (Mn, g,X, λ, ρ)
is trivial.
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The proof of Corollary 5.1.7 is a special case of the proof of Theorem 5.1.6 where we
use (5.2.22) of Remark 5.2.6.

Next, we prove Theorem 5.1.9 which we restate here

Theorem 5.3.5. Let (Mn, g,∇f, λ, ρ) be a compact gradient RB almost soliton. Then

∫
M

|∇2f − ∆f

n
g|2 vol =

(n− 2)

2n

∫
M

g(∇R,∇f) vol, (5.3.12)

∫
M

|Ric− R

n
g|2 vol =

(n− 2)

2n

∫
M

g(∇R,∇f) vol . (5.3.13)

Proof. For proving (5.3.12) we take the divergence of (5.2.4) of Proposition 5.2.1 to get

(1− 2ρ(n− 1))∆R + ∆|∇f |2 − 2(n− 1)∆λ = 2ρg(∇R,∇f) + 2g(∇λ,∇f)

+ (2ρR + 2λ)∆f. (5.3.14)

By commuting covariant derivatives we have

∇i∇i(g(∇jf,∇jf)) = 2∇i(g(∇i∇jf,∇jf))

= 2g(∇i∇i∇jf,∇jf) + 2|∇2f |2

= 2g(∇j∇i∇if −Rijil∇lf,∇jf) + 2|∇2f |2

= 2g(∇(∆f),∇f) + 2Ric(∇f,∇f) + 2|∇2f |2

so (5.3.14) becomes

(1− 2ρ(n− 1))∆R + 2g(∇(∆f),∇f) + 2Ric(∇f,∇f) + 2|∇2f |2 − 2(n− 1)∆λ =

2ρg(∇R,∇f) + 2g(∇λ,∇f) + (2ρR + 2λ)∆f. (5.3.15)

From (5.2.1) of Proposition 5.2.1 we know that ∆f = nλ+(nρ−1)R which on differentiation
and using (5.2.5) becomes
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0 = ∇i∆f + (1− nρ)∇iR− n∇iλ

= (1− nρ)∇iR +∇j∇i∇jf −Ril∇lf − n∇iλ

= (1− nρ)∇iR +∇j(−Rij + λgij + ρRgij)−Ril∇lf − n∇iλ

= (
1

2
− ρ(n− 1))∇iR−Ril∇lf + (1− n)∇iλ

and hence

2Ric(∇f,∇f) = (1− 2ρ(n− 1))g(∇R,∇f) + 2(1− n)g(∇λ,∇f). (5.3.16)

So using (5.3.16) and ∆f = nλ+ (nρ− 1)R, the left hand side of (5.3.15) becomes

(1− 2ρ(n− 1))∆R + 2|∇2f |2 − 2(n− 1)∆λ+ 2g(∇λ,∇f) + (2ρ− 1)g(∇R,∇f)

and hence (5.3.15) becomes

(1− 2ρ(n− 1))∆R + 2|∇2f |2 − 2(n− 1)∆λ = g(∇R,∇f) + (2ρR + 2λ)∆f. (5.3.17)

Since |∇2f − ∆f
n
g|2 = |∇2f |2 − (∆f)2

n
, equation (5.3.17) becomes

(1− 2ρ(n− 1))∆R + 2|∇2f − ∆f

n
g|2 = g(∇R,∇f) + (2ρR + 2λ)∆f − 2

(∆f)2

n
+ 2(n− 1)∆λ

= g(∇R,∇f) + (2ρR + 2λ)∆f

− 2
(∆f)

n
(nλ+ (nρ− 1)R) + 2(n− 1)∆λ

= g(∇R,∇f) +
2

n
R∆f + 2(n− 1)∆λ. (5.3.18)

Integrating (5.3.18) over compact M gives∫
M

2|∇2f − ∆f

n
g|2 vol =

∫
M

[
g(∇R,∇f) +

2

n
R∆f

]
vol

=
(n− 2)

n

∫
M

g(∇R,∇f) vol (5.3.19)
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where we have used integration by parts in the second equality. This proves (5.3.12).

For proving (5.3.13) note that

Ric− R

n
g = −∇2f + λg + ρRg − R

n
g

= −∇2f + (λ+ ρR− R

n
)g

= −∇2f +
∆f

n
g (5.3.20)

and then (5.3.13) follows from (5.3.12).

Remark 5.3.6. Since a gradient RB soliton is a special case of a gradient RB almost
soliton, the proof of Theorem 5.1.9, with ∇λ = 0, shows that the same integral formulas
(5.3.12) and (5.3.13) hold for a compact gradient RB soliton too.

Finally, using Theorem 5.1.9 we prove Corollary 5.1.10.

Proof. Observe that any of the assumptions of Corollary 5.1.10 enable us to conclude that
the right hand side of (5.3.13) is less than or equal to zero and hence Ric = R

n
g. So from

(5.2.5) we see that

∇i∇jf = (λ+R(ρ− 1

n
))g

and hence ∇f is a nontrivial conformal vector field so from Theorem 5.1.5 we get that Mn

is isometric to an Euclidean sphere.
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Chapter 6

A gradient flow of isometric G2
structures

6.1 Introduction

The existence of torsion-free G2-structures on a manifold is a challenging problem. Ge-
ometric flows are a powerful tool to tackle such questions and one hopes that a suitable
flow of G2-structures might help in establishing the existence of torsion-free G2-structures.
There has been a lot of work in this direction. General flows of G2-structures were con-
sidered by Karigiannis in [Kar09]. Earlier in [Bry06], Bryant introduced the Laplacian
flow of closed G2-structures. Several foundational results for the Laplacian flow for closed
G2-structures were established in a series of papers [LW17; LW19b; LW19a] by Lotay–Wei.
The Laplacian flow for co-closed G2-structures was introduced by Karigiannis–McKay–
Tsui in [KMT12] and a modified co-flow was studied by Grigorian [Gri13]. An approach
via gradient flow of energy-type functionals was introduced by Weiss–Witt [WW12] and
Ammann–Weiss–Witt in [AWW16].

In the present chapter, we study a different but related problem, in that we use a partic-
ular geometric flow to look for a G2-structure which is in some sense optimal. Specifically,
we consider a flow ϕ(t) of G2-structures on a manifold M that preserves the Riemannian
metric, which we call the isometric flow of G2-structures. This flow is the negative gradient
flow of a natural energy functional restricted to the set of G2-structures inducing a fixed
metric. The flow seeks a G2-structure amongst those G2-structures inducing the same fixed
metric which has minimal L2 norm of torsion.
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One possible motivation for studying this isometric flow of G2-structures is that it can
be coupled with “Ricci flow” of G2-structures, which is a flow of G2-structures that induces
precisely the Ricci flow on metrics, in contrast to the Laplacian flow which induces Ricci
flow plus lower order terms involving the torsion. In effect, one may hope to first flow
the 3-form in a way that improves the metric, and then flow the 3-form in a way that
preserves the metric but still decreases the torsion. More generally, the isometric flow is
a particular geometric flow of G2-structures distinct from the Laplacian flow, and both fit
into a broader class of geometric flows of G2-structures with good analytic properties. A
detailed study of a general class of flows that includes both the Laplacian flow and the
isometric flow is undertaken in [DGK].

We develop a comprehensive foundational theory for the isometric flow. A summary of
the main results of the chapter is as follows.

In §6.2 we discuss preliminary results on the isometric flow, including the gradient of
the energy functional, short-time existence, parabolic rescaling, and solitons.

In §6.3 we prove Shi-type estimates for the flow (Theorem 6.3.3). We also prove local
derivative estimates in Theorem 6.3.7. Using these we show that the flow (6.2.8) has a
solution as long as the torsion tensor T remains bounded along the flow (Theorem 6.3.8).
We also derive a compactness theorem for solutions along the flow (Theorem 6.3.13).

In §6.4, we briefly summarize the rest of the results from [DGK19].

We note that the paper by Grigorian [Gri19] studies the same flow and he obtained
similar results by using the theory of octonion bundles whereas in the present chapter we
use a more traditional geometric flows approach. Another closely related preprint is by
Loubeau–Sà Earp [LE19], in which they consider the more general context of harmonic
G-structures for a fixed Riemannian metric.

6.2 Preliminary results on the Isometric Flow

In this section we discuss several preliminary properties of the isometric flow. This includes
a derivation of the fact that it is the negative gradient flow of the energy functional, short-
time existence, and parabolic rescaling which we use frequently as a crucial tool. We also
discuss solitons for the isometric flow.
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6.2.1 The isometric flow of G2-structures

In this section we define the isometric flow, and establish that it is a negative gradient
flow.

Definition 6.2.1 (Isometric G2-structures). Two G2-structures ϕ1 and ϕ2 onM are called
isometric if they induce the same Riemannian metric, that is if gϕ1 = gϕ2 . We will denote
the space of G2-structures that are isometric to a given G2-structure ϕ by JϕK.

Remark 6.2.2. The space of torsion-free G2-structures that induce the same Riemannian
metric was studied by Lin [Lin18]. We do not restrict to torsion-free G2-structures in the
present paper.

Fix an initial G2-structure ϕ0 on M .

Definition 6.2.3. Define the energy functional E on the set Jϕ0K by

E(ϕ) =
1

2

∫
M

|Tϕ|2 volϕ (6.2.1)

where Tϕ is the torsion of ϕ.

Note that E is the same functional considered in [WW12], but here we only allow ϕ to
vary in the class Jϕ0K of isometric G2-structures, whereas in [WW12] the functional was
considered on the space of all G2-structures.

The functional E in (6.2.1) was considered by Grigorian in [Gri17] in the context of
“octonionic bundles” over M where he showed that the critical points of the functional
are precisely the G2-structures with divergence-free torsion, that is, div T = 0. Note that
the underlying metric here is the same for all G2-structures in Jϕ0K, so the divergence is
unambiguously defined. A very natural question arises: given any initial G2-structure ϕ0

on M what is the ‘best’ G2-structure in the class Jϕ0K. An obvious way to study this
question is to consider the negative gradient flow of the functional (6.2.1). (In fact it is
more convenient to take the negative gradient flow of 4E. See Proposition 6.2.5.)

Before we can describe this flow, recall from (2.2.11) that if h be a symmetric 2-tensor
on M then we can define a 3-form h � ϕ on M by the formula

(h � ϕ)ijk = hipϕpjk + hjpϕipk + hkpϕijp. (6.2.2)

Note from (6.2.2) that if h = g is the metric, we get

g � ϕ = 3ϕ. (6.2.3)
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Then from (3.1.1) the most general flow of G2-structures is given by

∂ϕ

∂t
= h � ϕ+X ψ (6.2.4)

where h is a time-dependent symmetric 2-tensor and X is a time-dependent vector field.
In this case the flow of the metric g is given by

∂g

∂t
= 2h. (6.2.5)

To begin we consider the first variation of the torsion T with respect to variations of
the G2-structure that preserve the metric.

Lemma 6.2.4. Let (ϕt)t∈(−δ,δ) be a smooth family of G2-structures in the class JϕK with
ϕ0 = ϕ. By equations (6.2.4) and (6.2.5), we can write ∂

∂t

∣∣
t=0

ϕt = X ψ for some vector
field X. Let Tt be the torsion of ϕt. Then we have

∂

∂t

∣∣∣∣
t=0

(Tt)ij = ∇iXj +XlTimϕlmj. (6.2.6)

Proof. Since gt = g for all t ∈ (−δ, δ), the covariant derivative ∇ is independent of T .
Since ∂

∂t

∣∣
t=0

ϕt = X ψ, by [Kar09, Theorem 3.5] we have ∂
∂t

∣∣
t=0

ψt = −X ∧ϕ. That is, we
have

∂

∂t

∣∣∣∣
t=0

(ϕt)ijk = Xpψpijk,

∂

∂t

∣∣∣∣
t=0

(ψt)ijkl = −Xiϕjkl +Xjϕikl −Xkϕijl +Xlϕijk.

From these observations and equation (2.3.2), we compute

24
∂

∂t

∣∣∣∣
t=0

(Tt)ij =
∂

∂t

∣∣∣∣
t=0

(∇i(ϕt)abc(ψt)jabc)

= ∇i

( ∂

∂t

∣∣∣∣
t=0

(ϕt)abc
)
ψjabc +∇iϕabc

( ∂

∂t

∣∣∣∣
t=0

(ψt)jabc
)

= ∇i(Xpψpabc)ψjabc +∇iϕabc(−Xjϕabc +Xaϕjbc −Xbϕjac +Xcϕjab).
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Using (2.3.1), (2.3.3) and the contraction identities (2.1.12) and (2.1.15), the above becomes

24
∂

∂t

∣∣∣∣
t=0

(Tt)ij = ∇iXpψpabcψjabc +Xp∇iψpabcψjabc

+ Tipψpabc(−Xjϕabc +Xaϕjbc −Xbϕjac +Xcϕjab)

= 24∇iXpgpj +Xp(−Tipϕabc + Tiaϕpbc − Tibϕpac + Ticϕpab)ψjabc

− 0 + 3TipXaϕjbcψpabc

= 24∇iXj − 0 + 3TiaXpϕpbcψjabc + 3TipXa(−4ϕjpa)

= 24∇iXj + 3TiaXp(−4ϕpja)− 12XaTipϕjpa

= 24∇iXj + 24XaTipϕapj,

which is precisely (6.2.6).

Now let E be the energy functional from Definition 6.2.3, restricted to the set JϕK of
G2-structures inducing the same metric as ϕ.

Proposition 6.2.5. The gradient of 4E : JϕK→ R at the point ϕ is − div T ψ, where T
is the torsion of ϕ and ψ = ?ϕ. That is, if (ϕt)t∈(−δ,δ) is a smooth family in the class JϕK
with ϕ0 = ϕ and d

dt

∣∣
t=0

ϕt = η, then

d

dt

∣∣∣∣
t=0

4E(ϕt) = −
∫
M

〈div T ψ, η〉 volg .

Proof. Using Lemma 6.2.4 compute

d

dt

∣∣∣∣
t=0

E(ϕt) =
d

dt

∣∣∣∣
t=0

1

2

∫
M

(Tt)ij(Tt)ij volg

=

∫
M

Tij(∇iXj +XlTimϕlmj) volg .

The second term vanishes because TijTim is symmetric in j,m and ϕlmj is skew in j,m.
We integrate by parts on the first term to obtain

d

dt

∣∣∣∣
t=0

E(ϕt) = −
∫
M

Xj∇iTij volg = −
∫
M

〈X, div T 〉 volg .

Equation (2.1.16) implies that 〈X ψ, Y ψ〉 = 1
6
XpψpabcYqψqabc = 4XpYp = 4〈X, Y 〉, so the

above equation becomes

d

dt

∣∣∣∣
t=0

4E(ϕt) = −4

∫
M

Xj∇iTij volg = −
∫
M

〈X ψ, div T ψ〉 volg . (6.2.7)
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The space of 3-forms decomposes into the pointwise orthogonal splitting

Ω3 = Ω3
1 ⊕ Ω3

7 ⊕ Ω3
27,

where Ω3
7 = {Y ψ : Y ∈ Γ(TM)}. Using this observation, the result follows immediately

from (6.2.7).

We can now define the isometric flow.

Definition 6.2.6 (The isometric flow). Let (M7, ϕ0) be a compact manifold with a G2-
structure. Consider the negative gradient flow of the functional 4E restricted to the class
JϕK. By Proposition 6.2.5, this evolution of ϕ is given by{

∂ϕ
∂t

= div T ψ,

ϕ(0) = ϕ0.
(6.2.8)

We call (6.2.8) the isometric flow of G2-structures. Note from (6.2.4) that h ≡ 0 for the
isometric flow and hence (6.2.8) is indeed a flow of isometric G2-structures.

6.2.2 Short time existence

The isometric flow (6.2.8) has short time existence and uniqueness, because it is equivalent
to a strictly parabolic flow. This was first proved by Bagaglini in [Bag19] using spinorial
methods. A proof is also given in Grigorian [Gri19, Section 5] using octonion algebra. In
this section we explain how to derive the equivalent strictly parabolic flow, avoiding the
use of spinors or octonions. The full details are quite laborious and unenlightening. We
need to make extensive use of the various contraction identities of ϕ with ϕ and ϕ with ψ.
We present just enough details so that the interested reader can fill in the gaps on their
own.

Note: In this section only, for brevity, we use Ȧ to denote the time derivative of A.

The starting point is the following result of Bryant.

Proposition 6.2.7 ([Bry06, Equation (3.6)]). Let (M,ϕ) be a manifold with G2-structure
such that ϕ induces the Riemannian metric g. Then all the other G2-structures on M
inducing the same metric g can be parametrized by a pair (f,X) where f is a function
and X is a vector field satisfying f 2 + |X|2 = 1. The explicit formula for the G2-structure
ϕ(f,X) corresponding to the pair (f,X) is

ϕ(f,X) = (f 2 − |X|2)ϕ− 2fX ψ + 2X ∧ (X ϕ), (6.2.9)
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where ψ = ?gϕ and the norm of X is taken with respect to g. Note that the pair (−f,−X)
induces the same G2-structure as (f,X) so in fact the G2-structures on M inducing the
metric g correspond to sections of an RP7-bundle over M .

Fix a pair (f,X) with f 2+|X|2 = 1 and write ϕ̃ for ϕf,X . In terms of a local orthonormal
frame, equation (6.2.9) is

ϕ̃ijk = (1− 2|X|2)ϕijk − 2fXmψmijk

+ 2XiXmϕmjk + 2XjXmϕimk + 2XkXmϕijm.
(6.2.10)

Since ϕ̃ induces the same metric g as ϕ, they have the same Hodge star operator ?, so we
have ψ(f,X) = ?ϕ(f,X). Using equation (6.2.9) and the identity ?(X ∧ α) = (−1)kX ?α for
α a k-form, we obtain

ψ(f,X) = (1− 2|X|2) ? ϕ− 2f ? (X ψ) + 2 ? (X ∧ (X ϕ))

= (1− 2|X|2)ψ + 2fX ∧ ϕ+ 2X ?(X ϕ)

= (1− 2|X|2)ψ + 2fX ∧ ϕ+ 2X (X ∧ ψ).

Using the fact that is a derivation, this becomes

ψ(f,X) = (1− 2|X|2)ψ + 2fX ∧ ϕ+ 2|X|2ψ − 2X ∧ (X ψ)

= ψ + 2fX ∧ ϕ− 2X ∧ (X ψ).

In a local frame this is

ψ̃qjkl = ψqjkl + 2f(Xqϕjkl −Xjϕqkl +Xkϕqjl −Xlϕqjk)

− 2(XqXmψmjkl +XjXmψqmkl +XkXmψqjml +XlXmψqjkm).
(6.2.11)

Note that all the contractions above are taken with respect to the fixed metric g that is
induced by both ϕ and ϕ̃.

Now suppose that ϕt is evolving by the isometric flow (6.2.8). Since the metric is
constant, this time-dependent G2-structure will correspond by (6.2.9) to a time-dependent
pair (f,X). We write ϕ̃ for ϕt, with torsion T̃ = Tt. The initial condition ϕ0 = ϕ
corresponds to initial conditions f0 = 1 and X0 = 0.

Proposition 6.2.8. Under the isometric flow, the pair (f,X) evolves by

ḟ =
1

2
〈X, div T̃ 〉,

Ẋ = −1

2
f div T̃ +

1

2
(div T̃ )×X,

(6.2.12)
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where × is the cross product with respect to the initial G2-structure ϕ, given by (Y ×X)k =
YaXbϕabk, and 〈·, ·〉 is the inner product given by the metric g.

Proof. Let γ = ϕ̇t. Since ϕ and ψ in equation (6.2.10) are constant in time, differentiating
with respect to t we get

γajk = −4〈X, Ẋ〉ϕajk − 2ḟXmψmajk − 2fẊmψmajk

+ 2ẊaXmϕmjk + 2ẊjXmϕamk + 2ẊkXmϕajm

+ 2XaẊmϕmjk + 2XjẊmϕamk + 2XkẊmϕajm.

Let σ = div T̃ ψ̃. Using (6.2.11) we have

σajk = (div T̃ )mψ̃majk

= (div T̃ )mψmajk + 2f(div T̃ )m(Xmϕajk −Xaϕmjk +Xjϕmak −Xkϕmaj)

− 2(div T̃ )m(XmXpψpajk +XaXpψmpjk +XjXpψmapk +XkXpψmajp).

Under the flow we have γ = ϕ̇t = div T̃ ψ̃ = σ, so we must have γajk = σajk. Contracting
both sides of this equation with ϕijk gives an equivalent equation, as the map αajk 7→
ϕijkαajk is a linear isomorphism from Λ3 = Λ3

1 ⊕ Λ3
7 ⊕ Λ3

27 onto Sym2 ⊕ Λ2
7, the space of

2-tensors with no Λ2
14 component. (See [Kar09] for details.) Now using the contraction

identities (2.1.9) and (2.1.12), one can compute that

ϕijkγajk = −16〈X, Ẋ〉gia + 8(XiẊa +XaẊi)− 8(ḟXp + fẊp)ϕpia, (6.2.13)

and similarly that

ϕijkσajk = 4(div T̃ )pϕpia + 8f〈X, div T̃ 〉gia − 8f(div T̃ )iXa + 4f(div T̃ )pXqψpqia

4(div T̃ ×X)iXa + 4(div T̃ ×X)aXi − 4〈X, div T̃ 〉Xpϕpia − 4|X|2(div T̃ )pϕpia.
(6.2.14)

Thus from γ = σ, the right hand sides of equations (6.2.13) and (6.2.14) must be equal. If
we take the trace of both sides, we find that

〈X, Ẋ〉 = −f
2
〈X, div T̃ 〉. (6.2.15)

On the other hand, if we contract both sides with ϕiak, we find that

ḟXk + fẊk = −f
2

2
(div T̃ )k +

f

2
((div T̃ )×X)k +

1

2
〈X, div T̃ 〉Xk. (6.2.16)
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Multiplying (6.2.16) with Xk and summing over k, we get

ḟ |X|2 + f〈X, Ẋ〉 = −f
2

2
〈div T̃ , X〉+ 0 +

1

2
〈X, div T̃ 〉|X|2.

Substituting (6.2.15) into the above, we obtain the first equation in (6.2.12). Then sub-
stituting that back into (6.2.16) gives the second equation in (6.2.12). Thus the two
equations in (6.2.12) are necessary consequences of γ = σ. However, substituting both
equations in (6.2.12) back into (6.2.13) and (6.2.14) shows that these are in fact sufficient
to ensure γ = σ. Thus the proof is complete.

In fact, from f 2 = 1 − |X|2, it is easy to check that the first equation in (6.2.12)
is a consequence of the second equation in (6.2.12). Thus the isometric flow (6.2.8) is
completely determined by the single equation Ẋ = −1

2
f div T̃ + 1

2
(div T̃ ) × X. In order

to establish that this equation is strictly parabolic, we need to express the torsion Tt = T̃
and its divergence in terms of (f,X).

Lemma 6.2.9. The torsion T̃ of ϕ̃ = ϕ(f,X) is

T̃pq = (1− 2|X|2)Tpq + 2TpmXmXq + 2fTpmXlϕmlq

− 2∇pXmXlϕmlq + 2∇pfXq − 2f∇pXq.
(6.2.17)

Proof. Taking ∇p of (6.2.10) gives

∇pϕ̃ijk = −4∇pXmXmϕijk + (1− 2|X|2)∇pϕijk

− 2∇pfXmψmijk − 2f∇pXmψmijk − 2fXm∇pψmijk

+ 2∇pXiXmϕmjk + 2∇pXjXmϕimk + 2∇pXkXmϕijm

+ 2Xi∇pXmϕmjk + 2Xj∇pXmϕimk + 2Xk∇pXmϕijm

+ 2XiXm∇pϕmjk + 2XjXm∇pϕimk + 2XkXm∇pϕijm.

We now substitute the expressions for ∇ϕ and ∇ψ from (2.3.1) and (2.3.3) into the above
expression, and use (2.3.2) to write

24T̃pq = ∇pϕ̃ijkψ̃qijk.

After an extremely lengthy computation using the various identities in (2.1.9)-(2.1.12), one
indeed obtains the result (6.2.17). We omit the details.
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Corollary 6.2.10. The divergence div T̃q = ∇pT̃pq of the torsion T̃ of ϕ̃ = ϕ(f,X) is

div T̃q = (1− 2|X|2)(div T )q − 4Xm∇pXmTpq + 2(div T )mXmXq + 2Tpm∇pXmXq

+ 2TpmXm∇pXq + 2∇pfTplXmϕlmq + 2f(div T )lXmϕlmq + 2fTpl∇pXmϕlmq

− 2∇p∇pXlXmϕlmq − 2∇pXlXmTpsψslmq + 2∇p∇pfXq − 2f∇p∇pXq.
(6.2.18)

Proof. This again follows by applying ∇p to equation (6.2.17) and using the various iden-
tities in (2.1.9)-(2.1.12). We omit the details.

We can now apply the above result as follows.

Proposition 6.2.11. Under the isometric flow, the vector field X evolves by

Ẋq = ∆Xk + fXm∇pXmTpq − fTpm∇pXmXq − Tpl∇pXmϕlmq

+ |∇f |2Xq + |∇X|2Xq − |X|2∇pfTpq + Tpl∇pfXlXq

+ Tps∇pXlXaXqϕsla −
f

2
(div T )q +

1

2
(X × (div T ))q.

(6.2.19)

Proof. Once again this follows from equations (6.2.12) and (6.2.18) after a lengthy calcu-
lation, using also the relation f 2 + |X|2 = 1.

Equation (6.2.19) is just a heat equation for the vector field X with lower order terms,
and is thus strictly parabolic. Using classical parabolic theory, we have therefore established
the following result.

Theorem 6.2.12. Let (M7, ϕ0) be a compact manifold with G2-structure. The flow (6.2.8)
has a unique solution for a short time t ∈ [0, ε).

6.2.3 Parabolic rescaling

As is usual for geometric evolution equations, the natural ‘parabolic rescaling’ of the prob-
lem involves scaling the t by c2t when we scale the space variables by c. In this section we
make this precise, as we will crucially use this property frequently later in the chapter.

Lemma 6.2.13. Let c > 0 be a constant. If ϕ(t) is a solution of the isometric flow (6.2.8)
with ϕ(0) = ϕ, then ϕ̃(t̃) = c3ϕ(c2t) is a solution of (6.2.8) with ϕ̃(0) = c3ϕ.
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Proof. Define a new G2-structure ϕ̃ = c3ϕ. Then it follows [Kar09, Theorem 2.23] that
g̃ = c2g and ψ̃ = c4ψ. Hence from (2.3.2) we have T̃ = cT . (Recall that we are suppressing
the writing of the g−1 terms because we are using an orthonormal frame.) Therefore as a
1-form, divg̃ T̃ = c−1 divg T , and so converting to vector fields using the metric, we have
(divg̃ T̃ ) ψ̃ = c−1c−2c4(divg T ) ψ = c(divg T ) ψ. But then it is clear from (6.2.8) that
with t̃ = c2t, we obtain the desired conclusion.

We note here for later use that if ϕ̃ = c3ϕ, then we also have

|∇̃jR̃m|g̃ = c−(2+j)|∇jRm|g, |∇̃jT̃ |g̃ = c−(1+j)|∇jT |g. (6.2.20)

6.2.4 Solitons for the isometric flow

In this section we study the relation between self-similar solutions and solitons for the
isometric flow.

Let LY denote the Lie derivative with respect to Y . Consider the identity

(LY ϕ)ijk = (∇Y ϕ)ijk +∇iYpϕpjk +∇jYpϕipk +∇kYpϕijp.

Using equations (2.3.1) and (6.2.2) we can rewrite the above as

(LY ϕ)ijk = YlTlpψpijk +
(
(∇Y ) � ϕ

)
ijk
.

The second term above can be written as h�ϕ+Z ψ where hij = 1
2
(∇iYj+∇jYi) = 1

2
(LY g)ij

and Z is a vector field on M such that Zpψpijk is the Ω3
7 component of (∇Y ) � ϕ. Because

Ω3
1⊕Ω3

27 is the kernel of γ 7→ γijkψmijk, from the contraction identities (2.1.15) and (2.1.12)
we deduce that

24Zm = Zlψlijkψmijk = (∇iYpϕpjk +∇jYpϕipk +∇kYpϕijp)ψmijk

= 3∇iYpϕpjkψmijk = −12∇iYpϕpmi.

Thus we have Zm = −1
2
∇iYjϕijm = −1

2
(curlY )m. (See [Kar10] for more about the curl

operator.)

Combining these observations we can write

(LY ϕ)ijk = (Y T )pψpijk − 1
2
(curlY )pψpijk + 1

2
(LY g) � ϕ. (6.2.21)
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Definition 6.2.14. Let (ϕ(t))t∈(α,β) be a solution of the isometric flow (6.2.8) where 0 ∈
(α, β). We say that it is a self-similar solution if there exist a function a(t) with a(0) = 1,
a G2-structure ϕ0, and a family of diffeomorphisms ft : M →M with f0 = idM such that

ϕ(t) = (a(t))3f ∗t ϕ0

for all t ∈ (α, β). Since ϕ(t) is a solution to the isometric flow, we have

g(t) := gϕ(t) = gϕ(0) = f ∗0 gϕ0 = g(0).

Lemma 6.2.15. Given a self-similar solution (ϕ(t))t∈(α,β) of the isometric flow, there is a
family X(t) of vector fields such that

div Tϕ(t) = −1

2
curlϕ(t)(X(t)) +X(t) Tϕ(t).

In particular, there is a vector field X0 such that ϕ0 satisfies

div Tϕ0 = −1

2
curlϕ0(X0) +X0 Tϕ0 .

Proof. Set ϕ0 = ϕ(0) and g0 = gϕ0 , and let W (t) be the infinitesimal generator of ft. That
is,

∂

∂t
ft = W (t) ◦ ft.

With X(t) = (f−1
t )∗W (t) we compute

∂

∂t
ϕ(t) = 3a′(t)(a(t))2f ∗t ϕ0 + (a(t))3f ∗t (LW (t)ϕ0)

= 3a′(t)(a(t))2f ∗t ϕ0 + (a(t))3L(f−1
t )∗W (t)f

∗
t ϕ0

= 3a′(t)(a(t))−1ϕ(t) + LX(t)ϕ(t). (6.2.22)

From (6.2.21) we also have

LX(t)ϕ(t) =
1

2
LX(t)g(t) � ϕ(t) +

(
−1

2
curlϕ(t) X(t) +X(t) T

)
ψ(t). (6.2.23)

On the other hand, since g(t) = gϕ(t) = (a(t))2f ∗t g0 we find that

0 =
∂

∂t
g(t) = 2a′(t)a(t)f ∗t g0 + (a(t))2f ∗t (LW (t)g0)

= 2a′(t)a(t)f ∗t g0 + (a(t))2L(f−1
t )∗W (t)g0

= 2a′(t)(a(t))−1g(t) + LX(t)g(t). (6.2.24)
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Hence, combining (6.2.23) and (6.2.24), and using also (6.2.3), the expression (6.2.22)
becomes
∂

∂t
ϕ(t) = div Tϕ(t) ψ(t)

= 3a′(t)(a(t))−1ϕ(t) +
1

2
LX(t)g(t) � ϕ(t) +

(
−1

2
curlϕ(t) X(t) +X(t) T

)
ψ(t)

= 3a′(t)(a(t))−1ϕ(t)− a′(t)(a(t))−1g(t) � ϕ(t) +
(
− 1

2
curlϕ(t) X(t) +X(t) T

)
ψ(t)

=
(
− 1

2
curlϕ(t) X(t) +X(t) T

)
ψ(t)

as claimed.

Definition 6.2.16. An isometric soliton on (M, g0) is defined to be a triple (ϕ0, X0, c)
where ϕ0 is a G2-structure on M inducing the Riemannian metric g0, and X0 is a vector
field satisfying

LX0g0 = cg0

for some constant c ∈ R and

div Tϕ0 = −1

2
curlϕ0 X0 +X0 Tϕ0 .

Moreover, it is called shrinking, steady, or expanding, depending on whether c is positive,
zero, or negative, respectively.

We now relate isometric solitons to self-similar solutions of the isometric flow.

Lemma 6.2.17. Let ϕ0 be a G2 structure on M with gϕ0 = g0, let c ∈ {−1, 0, 1}, and let
X be a vector field such that

LXg0 = cg0,

divg0 Tϕ0 = −1

2
curlϕ0 X +X Tϕ0 ,

(6.2.25)

That is, (ϕ0, X0, c) is an isometric soliton.

• If c = 1, let t < 0 and let ft : M → M be a 1-parameter family of diffeomorphisms
such that

∂

∂t
ft = −1

t
X ◦ ft,

f−1 = idM .
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Then
ϕ(t) = |t|

3
2f ∗t ϕ0

is a self-similar solution of the isometric flow, with ϕ(−1) = ϕ0. Moreover, (ϕ(t), |t|−1X)
satisfies

L|t|−1Xg0 = |t|−1g0,

divg0 Tϕ(t) = −1

2
curlϕ(t)

(
|t|−1X

)
+
(
|t|−1X

)
Tϕ(t).

• If c = 0, let t ∈ R and let ft : M → M be a 1-parameter family of diffeomorphisms
such that

d

dt
ft = X ◦ ft,

f0 = idM .

Then
ϕ(t) = f ∗t ϕ0

is a self-similar solution of the isometric flow, with ϕ(0) = ϕ0. Moreover, (ϕ(t), |t|−1X)
satisfies

L|t|−1Xg0 = 0,

divg0 Tϕ(t) = −1

2
curlϕ(t) X +X Tϕ(t).

• If c = −1, let t > 0 and let ft : M →M be a 1-parameter family of diffeomorphisms
such that

d

dt
ft =

1

t
X ◦ ft,

f1 = idM .

Then
ϕ(t) = |t|

3
2f ∗t ϕ0

is a self-similar solution of the isometric flow, with ϕ(1) = ϕ0. Moreover, (ϕ(t), |t|−1X)
satisfies

L|t|−1Xg0 = −|t|−1g0,

divg0 Tϕ(t) = −1

2
curlϕ(t)

(
|t|−1X

)
+
(
|t|−1X

)
Tϕ(t).
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In particular, the vector fields X(t) in Lemma 6.2.15 are |t|−1X or X, in the shrink-
ing/expanding or steady case respectively.

Proof. We only prove the case c = 1, t < 0, since the other cases are similar. In this case
we have

∂

∂t
f ∗t ϕ0 = −f ∗t (Lt−1Xϕ0),

∂

∂t
f ∗t g0 = −f ∗t (Lt−1Xg0).

Now g(t) = |t|f ∗t g0 satisfies

∂

∂t
g(t) = −f ∗t g0 − |t|f ∗t (Lt−1Xg0)

= −f ∗t g0 + f ∗t g0 = 0.

Moreover, if ϕ(t) = |t| 32f ∗t ϕ0 then

∂

∂t
ϕ(t) = −3

2
|t|

1
2f ∗t ϕ0 + |t|

3
2
∂

∂t
f ∗t ϕ0

= − 3

2|t|
ϕ(t) + |t|

1
2f ∗t (LXϕ0).

Using (6.2.21), (6.2.3) and LXg = g from (6.2.25), we get

∂

∂t
ϕ(t) = − 3

2|t|
ϕ(t) + |t|

1
2f ∗t

(1

2
LXg � ϕ0 +

(
− 1

2
curlϕ0 X +X Tϕ0

)
ψ0

)
= − 3

2|t|
ϕ(t) + |t|

1
2f ∗t

(3

2
ϕ0 +

(
− 1

2
curlϕ0 X +X Tϕ0

)
ψ0

)
= − 3

2|t|
ϕ(t) +

3

2|t|
ϕ(t) + |t|

1
2f ∗t

((
− 1

2
curlϕ0 X +X Tϕ0

)
ψ0

)
.

From the hypothesis (6.2.25) and the rescaling Lemma 6.2.13 we thus obtain

∂

∂t
ϕ(t) = |t|

1
2f ∗t (div Tϕ0 ψ0)

= div Tϕ(t) ψ(t).

We conclude that ϕ(t) is a self-similar isometric flow, with ϕ(−1) = ϕ0.
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Finally, again by Lemma 6.2.13 and the hypothesis (6.2.25) we have

divg0 Tϕ(t) = div|t|f∗t g0 T|t|
3
2 f∗t ϕ0

= |t|−
1
2f ∗t (divg0 Tϕ0)

= |t|−
1
2f ∗t

(
− 1

2
curlϕ0 X +X Tϕ0

)
= |t|1/2f ∗t

(
−1

2
curlϕ0|t|−1X + |t|−1XyTϕ0

)
= −1

2
curlϕ(t)((f

−1
t )∗|t|−1X) + ((f−1

t )∗|t|−1X) Tϕ(t).

(6.2.26)

We observe that
∂

∂t
(f−1
t )∗X = (f−1

t )∗
(
L|t|−1XX

)
= 0,

hence (f−1
t )∗X = X for all t < 0. This, together with (6.2.26), gives that

divg0 Tϕ(t) = −1

2
curlϕ(t)(|t|−1X) + (|t|−1X) Tϕ(t),

completing the proof.

Remark 6.2.18. If M is compact then every steady soliton in fact satisfies

div T = 0.

This is because ϕ(t) = f ∗t ϕ0 satisfies E(ϕ(t)) = E(ϕ0) for all t, and therefore by Proposi-
tion 6.2.5 we have

d

dt
4E(ϕ(t)) = −

∫
M

| div T |2dµg = 0.

It is unclear if there exist any nontrivial expanding or shrinking solitons in the compact
case. This is an important question for future study.

We now restrict to the special case when M = R7 and g = gEucl.

Proposition 6.2.19. Let (ϕ, Y, c) be a soliton for the isometric flow on R7 with the Eu-
clidean metric gEucl. Then Y = c

2
x + Y0, where x = xi ∂

∂xi
is the position (radial) vector

field on R7 and Y0 is a Killing vector field on (R7, gEucl). That is, Y0 induces an isometry
of Euclidean space.
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Proof. In terms of the global coordinates x1, . . . , x7 on R7, the equation LY gEucl = cgEucl

becomes ∂iYj + ∂jYi = cδij. It is straightforward to verify that the only solutions are
Yi = c

2
xi + aijx

j + bi where aij is skew-symmetric. Thus Y0 = aijx
j ∂
∂xi

+ bi
∂
∂xi

generates a
rigid motion of (R7, gEucl).

A special class of solitons on (R7, gEucl) are those for which Y0 = 0. In this case, we
have Y = x

2
= xi

2
∂
∂xi

, so (curlY )m = 1
2
∇ix

jϕijm = 1
2
δijϕijm = 0. Hence, by Lemma 6.2.17

the special class of isometric shrinking solitons (ϕ, Y ) on (R7, gEucl) for which Y0 = 0 are
precisely those ϕ which satisfy the equation

div T =
x

2
T. (6.2.27)

The particular special case of shrinking isometric solitons of the form (6.2.27) arises in
Theorem 6.4.2 when we prove the almost monotonicity formula for the quantity Θ.

It would be interesting to investigate whether any nontrivial examples of this special
type of isometric soliton on R7 actually exist. One would need to solve the underdetermined
equations (6.2.27) on R7 under the additional constraint that gϕ = gEucl. Such solitons are
important in the study of Type I singularities for the isometric flow. See Theorem 6.4.9
for more details.

6.3 Derivative estimates, blow-up time, and compact-
ness

In this section we first derive the global and local derivative estimates for the torsion T (also
known as Bando–Bernstein–Shi estimates) for the flow. We prove a doubling time estimate
for the torsion (Proposition 6.3.2), under the isometric flow which demonstrates that the
assumption of a torsion bound is reasonable. Using the derivative estimates, in §6.3.3, we
prove that any solution of the isometric flow exists as long as the torsion remains bounded,
and we obtain a lower bound for the blow-up rate of the torsion. Finally, in §6.3.4 we prove
a Cheeger–Gromov type compactness theorem for the solutions of the isometric flow.

6.3.1 Global derivative estimates of torsion

Let (M7, ϕ) be a compact manifold with G2-structure and consider the evolution of ϕ by
the isometric flow (6.2.8)

∂ϕ

∂t
= div T ψ.
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We first determine the evolution of the torsion under the flow (6.2.8).

Lemma 6.3.1. Let ϕ(t) be an isometric flow on M . Then the torsion evolves by

∂Tpq
∂t

= ∆Tpq −∇iTpbTiaϕabq + F (ϕ, T,Rm,∇Rm) (6.3.1)

where

F (ϕ, T,Rm,∇Rm)pq = ∇aRbpϕabq +RipqmTim −
1

2
RipabTimψmabq −RpmTmq. (6.3.2)

Proof. Recall from (3.1.16) that for a general flow of G2-structures

∂ϕ

∂t
= h � ϕ+X ψ

we have

∂Tpq
∂t

= Tplhlq + TplXkϕklq +∇khipϕkiq +∇pXq.

Hence for (6.2.8), where h = 0 and X = div T , we get

∂Tpq
∂t

= Tpl(div T )kϕklq +∇p(div T )q

= Tpl∇iTikϕklq +∇p∇iTiq. (6.3.3)

We first compute ∆Tpq. Using the G2-Bianchi identity (2.4.1) and the fact that TiaTim is
symmetric in a,m, we get

∇i∇iTpq = ∇i(∇pTiq + TiaTpbϕabq +
1

2
Ripabϕabq)

= ∇i∇pTiq +∇iTiaTpbϕabq + Tia∇iTpbϕabq + TiaTpbTimψmabq

+
1

2
∇iRipabϕabq +

1

2
RipabTimψmabq

= ∇i∇pTiq +∇iTiaTpbϕabq + Tia∇iTpbϕabq +
1

2
∇iRabipϕabq +

1

2
RipabTimψmabq.
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Applying the Riemannian second Bianchi identity to the fourth term above, we get

∇i∇iTpq = ∇i∇pTiq +∇iTiaTpbϕabq + Tia∇iTpbϕabq +
1

2
(−∇aRbiip −∇bRiaip)ϕabq

+
1

2
RipabTimψmabq

= ∇i∇pTiq +∇iTiaTpbϕabq + Tia∇iTpbϕabq +
1

2
(∇bRap −∇aRbp)ϕabq

+
1

2
RipabTimψmabq

= ∇i∇pTiq +∇iTiaTpbϕabq + Tia∇iTpbϕabq −∇aRbpϕabq +
1

2
RipabTimψmabq.

Commuting covariant derivatives for the first term above with the Ricci identity (1.1.1),
we get

∆Tpq = ∇p∇iTiq +RpmTmq −RipqmTim +∇iTiaTpbϕabq + Tia∇iTpbϕabq

−∇aRbpϕabq +
1

2
RipabTimψmabq.

(6.3.4)

Combining equations (6.3.4) and (6.3.3), we deduce that

∂Tpq
∂t

= ∆Tpq −∇iTpbTiaϕabq +∇aRbpϕabq +RipqmTim −
1

2
RipabTimψmabq −RpmTmq,

(6.3.5)

as claimed.

We write equation (6.3.5) schematically as

∂

∂t
T = ∆T +∇T ∗ T ∗ ϕ+∇Rm ∗ ϕ+ Rm ∗ T + Rm ∗ T ∗ ψ. (6.3.6)

For a solution ϕ(t) of the isometric flow (6.2.8), define

T (t) = sup
M
|T (x, t)| (6.3.7)

where T (t) is the torsion of ϕ(t). We next prove a doubling time estimate for the quantity
T (t), which roughly says that T (t) cannot blow up too quickly and therefore the assumption
that |T | is bounded for a short time is a reasonable one. Note that if T (0) = 0, then ϕ(0)
is torsion-free, and does not flow under (6.2.8). Thus in the following proposition we can
assume that T (0) > 0.
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Proposition 6.3.2 (Doubling-time estimate). Let ϕ(t) be a solution to (6.2.8) on a com-
pact 7-manifold M for t ∈ [0, τ ]. Then there exists δ > 0 such that

T (t) ≤ 2T (0) for all 0 ≤ t ≤ δ.

Moreover, δ satisfies δ ≤ min{τ, 1
CT (0)2

} for some C > 0.

Proof. If |T | ≤ 1 at time 0, then by continuity we have |T | ≤ 1 + ε for some small ε for
0 ≤ t ≤ δ < τ , and since 1 + ε ≤ 2, the assertion holds. Thus we can assume that |T | > 1
at time 0, and thus by continuity we can assume that |T | > 1 for all 0 ≤ t ≤ δ′ for some
0 < δ′ < τ .

We first compute a differential inequality for T (t) and then use the maximum principle.
Since the metric is not evolving under (6.2.8), we have

∂

∂t
|T |2 =

∂

∂t
(TijTpqg

ipgjq) = 2Tpq
∂Tpq
∂t

,

so using (6.3.6), we obtain

∂

∂t
|T |2 = 2〈T, ∂

∂t
T 〉

≤ ∆|T |2 − 2|∇T |2 + C|∇T ||T |2 + C|∇Rm||T |+ C|Rm||T |2 (6.3.8)

where C is a constant. Now since the metric is not evolving and M is compact, both |Rm|
and |∇Rm| are bounded by some constant which we still call C. Thus we have

∂

∂t
|T |2 ≤ ∆|T |2 − 2|∇T |2 + C|∇T ||T |2 + C|T |+ C|T |2. (6.3.9)

Notice from (6.3.5) that the third term in (6.3.9) is due to the T ∗ (∇T ∗ T ∗ ϕ) term.
We need to estimate this term by using the explicit expression for ∇T ∗ T ∗ ϕ rather than
the schematic expression. Using the skew-symmetry of ϕabq in a, q and the G2-Bianchi
identity (2.4.1), we have

Tpq∇iTpbTiaϕabq =
1

2
Tpq(∇iTpb −∇pTib)Tiaϕabq

=
1

2
Tpq(TimTpnϕmnb +

1

2
Ripmnϕmnb)Tiaϕabq,

and hence (6.3.9) becomes

∂

∂t
|T |2 ≤ ∆|T |2 − 2|∇T |2 + C|T |4 + C|T |+ C|T |2. (6.3.10)
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Since we have |T | > 1 for all 0 ≤ t ≤ δ′, we have |T | < |T |4 and |T |2 < |T |4 and
hence (6.3.10) becomes

∂

∂t
|T |2 ≤ ∆|T |2 − 2|∇T |2 + C|T |4. (6.3.11)

Recall that T (t) = sup
M
|T (x, t)| is a Lipschitz function, so applying the maximum principle

to (6.3.11), we get
d

dt
T ≤ C

2
T 3

in the sense of the lim sup of forward difference quotients. Thus we have T −3 ∂
∂t
T ≤ C

2
.

Integrating the inequality above from 0 to t we deduce that

T (t) ≤
T (0)√

1− CT (0)2t
(6.3.12)

and hence T (t) ≤ 2T (0) for all 0 ≤ t ≤ δ if we take δ = min
{
δ′,

3

4CT (0)2

}
.

Next we derive the Shi-type estimates for the flow in (6.2.8).

Theorem 6.3.3. Suppose that K > 0 is a constant and ϕ(t) is a solution to the isometric
flow on a closed manifold M7 with t ∈ [0, 1

K2 ]. For all m ∈ N, there exists a constant Cm
depending only on (M, g) such that if

T ≤ K and |∇jRm| ≤ BjK
2+j for all j ≥ 0 on M7 × [0, 1

K2 ], (6.3.13)

then for all t ∈ [0, 1
K2 ] we have

|∇mT | ≤ Cmt
−m

2 K. (6.3.14)

Before we give the proof of Theorem 6.3.3, we remark that the form of the assumed
bounds on ∇jRm in (6.3.13) is precisely as required by the rescaling properties of the
curvature in equation (6.2.20).

Proof of Theorem 6.3.3. Since the proof is quite long, we first summarize the strategy of
the proof. The proof is by induction on m. We first define a function fm(x, t) (see (6.3.36)
for the precise expression) for each m, just as in the case of Ricci flow, which satisfies a
parabolic differential inequality, and then we use the maximum principle.
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For m = 1 case, we define
f = t|∇T |2 + β|T |2 (6.3.15)

where β is a constant to be determined later. Note that f(x, 0) ≤ βK2. To calculate the
evolution of f , we first need to calculate the evolution of |∇T |2.

Because the metric is not evolving, by differentiating (6.3.6) we have that

∂

∂t
∇T = ∇(∆T +∇T ∗ T ∗ ϕ+∇Rm ∗ ϕ+ Rm ∗ T + Rm ∗ T ∗ ψ)

= ∇∆T +∇(∇T ∗ T ∗ ϕ) +∇2Rm ∗ ϕ+∇Rm ∗ ∇ϕ+∇Rm ∗ T + Rm ∗ ∇T
+∇Rm ∗ T ∗ ψ + Rm ∗ ∇T ∗ ψ + Rm ∗ T ∗ ∇ψ

= ∆∇T +∇(∇T ∗ T ∗ ϕ) +∇2Rm ∗ ϕ+∇Rm ∗ ∇ϕ+∇Rm ∗ T + Rm ∗ ∇T
+∇Rm ∗ T ∗ ψ + Rm ∗ ∇T ∗ ψ + Rm ∗ T ∗ ∇ψ

where we have used the Ricci identity in the last equality. Thus we have
∂

∂t
|∇T |2 = 2〈∇T, ∂

∂t
∇T 〉 = ∇T ∗

(
∆∇T +∇(∇T ∗ T ∗ ϕ) +∇2Rm ∗ ϕ+∇Rm ∗ ∇ϕ

+∇Rm ∗ T + Rm ∗ ∇T +∇Rm ∗ T ∗ ψ + Rm ∗ ∇T ∗ ψ

+ Rm ∗ T ∗ ∇ψ
)

= ∆|∇T |2 − 2|∇2T |2 +∇(∇T ∗ T ∗ ϕ) ∗ ∇T +∇T ∗ ∇2Rm ∗ ϕ
+∇Rm ∗ ∇ϕ ∗ ∇T +∇Rm ∗ T ∗ ∇T + Rm ∗ ∇T ∗ ∇T
+∇Rm ∗ T ∗ ψ ∗ ∇T + Rm ∗ ∇T ∗ ∇T ∗ ψ
+ Rm ∗ T ∗ ∇ψ ∗ ∇T. (6.3.16)

From (2.3.1) and (2.3.3) we have

∇ϕ = T ∗ ψ, ∇ψ = T ∗ ϕ

and hence
|∇ϕ| ≤ CK, |∇ψ| ≤ CK. (6.3.17)

Using (6.3.17) and the hypotheses (6.3.13) of the theorem, the estimate (6.3.16) becomes

∂

∂t
|∇T |2 ≤ ∆|∇T |2 − 2|∇2T |2 + C|∇2T ||T ||∇T |+ C|∇T |3 + C|∇T |2|T |2

+ C|∇T ||∇2Rm|+ C|∇Rm||∇ϕ||∇T |+ C|∇Rm||T ||∇T |+ C|Rm||∇T |2

+ C|Rm||T ||∇ψ||∇T |
≤ ∆|∇T |2 − 2|∇2T |2 + CK|∇2T ||∇T |+ C|∇T |3 + CK2|∇T |2 + C|∇T |K4

(6.3.18)
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for some constant C depending only on the dimension and the order of the derivative.
Consider the third term in the right hand side of the inequality (6.3.18). By Young’s
inequality, for all ε > 0, we have

2K|∇2T ||∇T | ≤ 1

ε
K2|∇T |2 + ε|∇2T |2.

Substituting this into (6.3.18) gives

∂

∂t
|∇T |2 ≤ ∆|∇T |2 − (2− Cε)|∇2T |2 + CK4|∇T |+ CK2|∇T |2 + C|∇T |3. (6.3.19)

We pause here for an important remark. In the Shi-type estimates for the Laplacian
flow of Lotay–Wei [LW17], they assume a bound on |∇T |. In contrast, we only assume a
bound on |T |, not |∇T |. This remark has the following consequence. It turns out that the
third and fourth terms in (6.3.19) can be dealt with easily, which we do below. However,
the presence of the |∇T |3 term on the right hand side of (6.3.19) would cause problems in
trying to apply the maximum principle to the function f and cannot be dealt with easily,
so we have to work harder. Notice from (6.3.16) that the |∇T |3 term comes from the
∇T ∗ ∇(∇T ∗ T ∗ ϕ) term. We get rid of the problematic term by considering the explicit
expression for ∇T ∗∇(∇T ∗T ∗ϕ) rather than the schematic one, and using the G2-Bianchi
identity (2.4.1) to get a lower order term. Specifically, the expression for ∇T ∗ T ∗ ϕ is
∇iTpbTiaϕabq. So we have

∇T ∗ ∇(∇T ∗ T ∗ ϕ) = ∇jTpq∇j(∇iTpbTiaϕabq)

= ∇jTpq∇j∇iTpbTiaϕabq +∇jTpq∇iTpb∇jTiaϕabq

+∇jTpq∇iTpbTia∇jϕabq.

Since the first and the last term in the above equation do not cause any problems in (6.3.19),
we focus on the second term. Using the fact that ϕabq is skew-symmetric in a, q, and the
G2-Bianchi identity (2.4.1), we have

∇jTpq∇iTpb∇jTiaϕabq =
1

2
∇jTpq∇jTia(∇iTpb −∇pTib)ϕabq

=
1

2
∇jTpq∇jTia(TimTpnϕmnb +

1

2
Ripmnϕmnb)ϕabq. (6.3.20)

Thus from (6.3.19) and (6.3.20) and using Young’s inequality as before we get

∂

∂t
|∇T |2 ≤ ∆|∇T |2 − (2− Cε)|∇2T |2 + CK4|∇T |+ CK2|∇T |2. (6.3.21)
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Hence, with a suitably chosen ε we have

∂

∂t
|∇T |2 ≤ ∆|∇T |2 + CK2|∇T |2 + CK4|∇T |. (6.3.22)

From (6.3.8) and (6.3.22), we get

∂f

∂t
≤ ∆f + t(CK4|∇T |+ CK2|∇T |2)

+ β(−2|∇T |2 + C|∇T ||T |2 + C|∇Rm||T |+ C|Rm||T |2).

Using the hypotheses that T = sup
M

T (x, t) ≤ K, |∇jRm| ≤ K2+j, and tK2 ≤ 1, and

using Young’s inequality on the |∇T ||T |2 term, the above inequality becomes

∂f

∂t
≤ ∆f + CK2|∇T |+ C|∇T |2 − (2− ε)β|∇T |2 + CβK4.

Using Young’s inequality again on the second term above we get

∂f

∂t
≤ ∆f + (C − (2− ε)β)|∇T |2 + CβK4.

Now choose β large enough so that C − (2− ε)β ≤ 0, so we have

∂f

∂t
≤ ∆f + CβK4.

From (6.3.15) we have f(x, 0) ≤ βK2. Thus, applying the maximum principle to the above
inequality and using tK2 ≤ 1, we get

sup
x∈M

f(x, t) ≤ βK2 + CβtK4 ≤ CK2. (6.3.23)

From the definition (6.3.15) of f , we conclude that

|∇T | ≤ CKt−
1
2

and thus the base case of the induction is complete.

Next we prove the estimate for m ≥ 2 by induction. Suppose |∇jT | ≤ CjKt
− j

2 holds
for all 1 ≤ j < m. Looking at the definition of fm in (6.3.36) below, it is clear that we need
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to first determine the evolution equation for |∇mT |2. Since the metric is not evolving, by
differentiating (6.3.6) we have that

∂

∂t
∇mT = ∇m(∆T +∇T ∗ T ∗ ϕ+∇Rm ∗ ϕ+ Rm ∗ T + Rm ∗ T ∗ ψ)

= ∇m∆T +∇m(∇T ∗ T ∗ ϕ) +
m∑
i=0

∇m+1−iRm ∗ ∇iϕ

+
m∑
i=0

∇m−iT ∗ ∇iRm +
m∑
i=0

∇m−i(Rm ∗ T ) ∗ ∇iψ.

Using the identity (1.1.2) with S = T , we can write the above equation as

∂

∂t
∇mT = ∆∇mT +

m∑
i=0

∇m−iT ∗ ∇iRm +∇m(∇T ∗ T ∗ ϕ)

+
m∑
i=0

∇m+1−iRm ∗ ∇iϕ+
m∑
i=0

∇m−i(Rm ∗ T ) ∗ ∇iψ. (6.3.24)

Thus we find that

∂

∂t
|∇mT |2 = 2〈∇mT,

∂

∂t
∇mT 〉 = ∆|∇mT |2 − 2|∇m+1T |2 +

m∑
i=0

∇mT ∗ ∇m−iT ∗ ∇iRm

+∇mT ∗ ∇m(∇T ∗ T ∗ ϕ)

+
m∑
i=0

∇mT ∗ ∇m+1−iRm ∗ ∇iϕ

+
m∑
i=0

∇mT ∗ ∇m−i(Rm ∗ T ) ∗ ∇iψ. (6.3.25)

Using the induction hypothesis, we estimate each term in (6.3.25) as follows.

Consider the third term
∑m

i=0∇mT ∗ ∇m−iT ∗ ∇iRm. When i = 0 we get

|∇mT ∗ ∇mT ∗ Rm| ≤ CK2|∇mT |2.
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When 1 ≤ i ≤ m, using K2t ≤ 1 and the induction hypothesis, we get∣∣∣ m∑
i=1

∇mT ∗ ∇m−iT ∗ ∇iRm
∣∣∣ ≤ C|∇mT |

m∑
i=1

|∇m−iT ||∇iRm|

≤ C|∇mT |
m∑
i=1

Kt−
(m−i)

2 Ki+2

≤ CK3t−
m
2 |∇mT |.

Thus the third term in (6.3.25) can be estimated as∣∣∣ m∑
i=0

∇mT ∗ ∇m−iT ∗ ∇iRm
∣∣∣ ≤ CK2|∇mT |2 + CK3|∇mT |t−

m
2 . (6.3.26)

For the moment we skip the fourth term in (6.3.25) and consider the fifth and sixth terms.
We need to first estimate the quantities ∇iψ and ∇iϕ. From (2.3.3) we have ∇ψ = T ∗ ϕ,
and thus

|∇ψ| ≤ CK.

Schematically have
∇2ψ = ∇T ∗ ϕ+ T ∗ T ∗ ψ

and hence
|∇2ψ| ≤ C(|∇T |+ |T |2) ≤ C(Kt−

1
2 +K2) = CK(t−

1
2 +K).

Using the same equations again, we have

∇3ψ = ∇2T ∗ ϕ+∇T ∗ T ∗ ψ + T ∗ T ∗ T ∗ ϕ

and therefore

|∇3ψ| ≤ C(|∇2T |+ |∇T ||T |+ |T |3) ≤ CK(t−1 +Kt−
1
2 +K2).

Similarly, we have

∇4ψ = ∇3T ∗ ϕ+∇2T ∗ T ∗ ψ +∇T ∗ ∇T ∗ ψ +∇T ∗ T ∗ T ∗ ϕ+ T ∗ T ∗ T ∗ T ∗ ψ

thus yielding, using the induction hypothesis, that

|∇4ψ| ≤ C(|∇3T |+ |∇2T ||T |+ |∇T |2 + |∇T ||T |2 + |T |4)

≤ CK(t−
3
2 +Kt−1 +K2t−

1
2 +K3).
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A straightforward induction argument which we omit then shows that for i ≥ 1 we have

|∇iψ| ≤ C

i∑
j=1

Kjt
j−i
2 . (6.3.27)

Because ϕ is the Hodge star of ψ, and the Hodge star is both parallel and an isometry, we
deduce the same estimates for |∇iϕ| for i ≥ 1. That is, we have

|∇iϕ| ≤ C
i∑

j=1

Kjt
j−i
2 . (6.3.28)

Using the hypotheses (6.3.13) on |∇jRm|, equation (6.3.28), and K2t ≤ 1, the fifth term
in (6.3.25) can thus be estimated as∣∣∣ m∑

i=0

∇mT ∗ ∇m+1−iRm ∗ ∇iϕ
∣∣∣ ≤ CK3|∇mT |t−

m
2 . (6.3.29)

Next consider the expression ∇m−i(Rm∗T ), which is part of the sixth term of (6.3.25).
Using the induction hypothesis and |Rm| ≤ K2, for i = 0 we get

|∇m(Rm ∗ T )| =
∣∣∣ m∑
j=0

∇m−jRm ∗ ∇jT
∣∣∣ ≤ CK2|∇mT |+ CK3t−

m
2

and for 1 ≤ i ≤ m we get

|∇m−i(Rm ∗ T )| ≤
∣∣∣m−i∑
j=0

∇m−i−jRm ∗ ∇jT
∣∣∣ ≤ CK3t

(i−m)
2 .

Hence, using (6.3.27) and the above two estimates, we get∣∣∣ m∑
i=0

∇mT ∗ ∇m−i(Rm ∗ T ) ∗ ∇iψ
∣∣∣ ≤ CK2|∇mT |2 + CK3|∇mT |t−

m
2

+ C|∇mT |
m∑
i=1

(
K3t

(i−m)
2

i∑
j=1

Kjt
(j−i)

2

)
.

Using K2t ≤ 1 on the above, the sixth term in (6.3.25) can be estimated as∣∣∣ m∑
i=0

∇mT ∗ ∇m−i(Rm ∗ T ) ∗ ∇iψ
∣∣∣ ≤ CK2|∇mT |2 + CK3|∇mT |t−

m
2 . (6.3.30)
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Finally we return to the fourth term in (6.3.25). We have

|∇mT ∗ ∇m(∇T ∗ T ∗ ϕ)| =
∣∣∣∇mT ∗

m∑
i=0

∇m+1−iT ∗ ∇i(T ∗ ϕ)
∣∣∣.

We break up the sum over i into four terms: i = 0, i = 1, 1 < i < m, and i = m. Thus we
have

|∇mT ∗ ∇m(∇T ∗ T ∗ ϕ)| ≤ |∇mT ∗ ∇m+1T ∗ T ∗ ϕ|+ |∇mT ∗ ∇mT ∗ (∇T ∗ ϕ+ T ∗ T ∗ ψ)|

+
∣∣∣∇mT ∗

m−1∑
i=2

∇m+1−iT ∗ (
i∑

j=0

∇i−jT ∗ ∇jϕ)
∣∣∣

+
∣∣∣∇mT ∗ ∇T ∗

m∑
i=0

∇m−iT ∗ ∇iϕ
∣∣∣.

Using the induction hypothesis and equation (6.3.28) on the above, the fourth term in (6.3.25)
can be estimated as

|∇mT ∗ ∇m(∇T ∗ T ∗ ϕ)| ≤ CK|∇mT ||∇m+1T |+ CKt−
1
2 |∇mT |2 + CK2|∇mT |2

+ CK2t−
(m+1)

2 |∇mT |. (6.3.31)

Combining the estimates (6.3.26), (6.3.29), (6.3.30), and (6.3.31), equation (6.3.25) thus
becomes

∂

∂t
|∇mT |2 ≤ ∆|∇mT |2 − 2|∇m+1T |2 + CK2|∇mT |2 + CK|∇m+1T ||∇mT |

+ CK3|∇mT |t−
m
2 + CKt−

1
2 |∇mT |2 + CK2t−

(m+1)
2 |∇mT |. (6.3.32)

Using Young’s inequality for the fourth term in (6.3.32), we know that for any ε > 0
we have

K|∇m+1T ||∇mT | ≤ K2

2ε
|∇mT |2 +

ε

2
|∇m+1T |2

and hence

∂

∂t
|∇mT |2 ≤ ∆|∇mT |2 − (2− Cε

2
)|∇m+1T |2 + CK2|∇mT |2

+ CK3|∇mT |t−
m
2 + CKt−

1
2 |∇mT |2 + CK2t−

(m+1)
2 |∇mT |. (6.3.33)

97



Hence for suitably chosen ε, we deduce that

∂

∂t
|∇mT |2 ≤ ∆|∇mT |2 − |∇m+1T |2 + CK2|∇mT |2 + CK3|∇mT |t−

m
2

+ CKt−
1
2 |∇mT |2 + CK2t−

(m+1)
2 |∇mT |. (6.3.34)

The derivation of (6.3.34) in fact holds for m replaced by m − k for any 1 ≤ k ≤ m − 1.
That is, we also have

∂

∂t
|∇m−kT |2 ≤ ∆|∇m−kT |2 − |∇m+1−kT |2 + CK2|∇m−kT |2 + CK3|∇m−kT |t−

m−k
2

+ CKt−
1
2 |∇m−kT |2 + CK2t−

(m+1−k)
2 |∇m−kT |

for 1 ≤ k ≤ m−1. Using the induction hypothesis that (6.3.14) holds for all 1 ≤ k ≤ m−1,
the above inequality becomes

∂

∂t
|∇m−kT |2 ≤ ∆|∇m−kT |2 − |∇m+1−kT |2 + CK4t−(m−k) + CK3t−

1
2 t−(m−k) (6.3.35)

for all k < m. We emphasize here that we needed to use the induction hypothesis to get
our simplified evolution inequality (6.3.35) when 1 ≤ k ≤ m− 1.

With these computations in hand, we define

fm = tm|∇mT |2 + βm

m∑
k=1

αmk t
m−k|∇m−kT |2 (6.3.36)

for some positive constants βm to be chosen later, where αmk = (m−1)!
(m−k)!

.

98



Using (6.3.34) and (6.3.35) we compute that

∂

∂t
fm = tm

∂

∂t
|∇mT |2 +mtm−1|∇mT |2 + βm

m∑
k=1

αmk t
m−k ∂

∂t
|∇m−kT |2

+ βm

m∑
k=1

(m− k)αmk t
m−k−1|∇m−kT |2

≤ tm
(

∆|∇mT |2 − |∇m+1T |2 + CK2|∇mT |2 + CK3|∇mT |t−
m
2

+ CKt−
1
2 |∇mT |2 + CK2t−

(m+1)
2 |∇mT |

)
+mtm−1|∇mT |2 + βm

m∑
k=1

(m− k)αmk t
m−k−1|∇m−kT |2

+ βm

m∑
k=1

αmk t
m−k(∆|∇m−kT |2 − |∇m+1−kT |2 + CK4t−(m−k) + CK3t−

1
2 t−(m−k)).

Observe that in the first summation above, the term for k = m vanishes. We reindex the
second term in the last line above to sum from k = 0 to k = m − 1, and throw away the
negative term corresponding to k = 0. Collecting terms, the above then becomes

∂

∂t
fm ≤ ∆fm + (CK2tm +mtm−1 + CKt

(2m−1)
2 − βmαm1 tm−1)|∇mT |2 + CK3|∇mT |t

m
2

+ CK2t
(m−1)

2 |∇mT |+ βm

m−1∑
k=1

(
(m− k)αmk − αmk+1

)
tm−k−1|∇m−kT |2

+ Cβm

m∑
k=1

αmk (K4 +K3t−
1
2 ).

Using Young’s inequality on the third and the fourth terms above, we have

CK3|∇mT |t
m
2 ≤ CK4 + CK2|∇mT |2tm

and
CK2t

(m−1)
2 |∇mT | ≤ Ctm−1|∇mT |2 + CK4,

and hence we obtain
∂

∂t
fm ≤ ∆fm + (CK2tm +mtm−1 + CKt

(2m−1)
2 + Ctm−1 − βmαm1 tm−1)|∇mT |2

+ βm

m∑
k=1

(
(m− k)αmk − αmk+1

)
tm−k−1|∇m−kT |2 + Cβm

m∑
k=1

αmk (K4 +K3t−
1
2 ).
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Now we choose βm sufficiently large and use the fact that (m − k)αmk − αmk+1 = 0 for
1 ≤ k ≤ m− 1 to deduce that

∂

∂t
fm ≤ ∆fm + CK4 + CK3t−

1
2 . (6.3.37)

Since m ≥ 1, from the definition (6.3.36) of fm we have that fm(0) = βmα
m
m|T |2 ≤

βmα
m
mK

2, so applying the maximum principle to (6.3.37) and using K2t ≤ 1 gives

sup
x∈M

fm(x, t) ≤ βmα
m
mK

2 + CK4t+ CK3t
1
2 ≤ CK2.

From the definition (6.3.36) of fm, we finally conclude that

|∇mT | ≤ CKt−
m
2 ,

and the inductive step is complete.

One of our goals is to study the long-time existence of the flow. We seek a criterion that
characterizes the blow-up time for the flow. This will be established in Theorem 6.3.8 later.
In order to prove Theorem 6.3.8 later, we require the following corollary to Theorem 6.3.3,
whose proof is an adaptation of the argument in the case of Ricci flow, and can be found
in [CK04, §6.7].

Corollary 6.3.4. Let (M7, ϕ(t)) be a solution to the isometric flow. Suppose there exists
K > 0 such that

|T (x, t)|g ≤ K for all x ∈M and t ∈ [0, τ ],

where τ > 1
K2 and |∇jRm| ≤ CjK

2+j for all j ≥ 0. Then for all m ∈ N there exists a
constant Cm depending only on (M, g) such that

|∇mT (x, t)|g ≤ CmK
1+m for all x ∈M and t ∈ [ 1

K2 , τ ]. (6.3.38)

Proof. Fix t0 ∈
[

1
K2 , τ

]
and let τ0 = t0 − 1

K2 . Let t̄ = t− τ0 and let ϕ̄(t̄) solve the Cauchy
problem

∂

∂t
ϕ̄(t̄) = div T̄ ψ̄,

ϕ̄(0) = ϕ(τ0).
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Then by the uniqueness of solutions to the isometric flow given in Theorem 6.2.12, we
deduce that ϕ̄(t̄) = ϕ(t̄ + τ0) = ϕ(t) for t̄ ∈ [0, 1

K2 ]. So by the hypothesis on the solution
ϕ(t), we have

|T̄ (x, t̄)| ≤ K for all x ∈M and t̄ ∈ [0, 1
K2 ].

Applying Theorem 6.3.3 we have constants C̄m depending only on m such that

|∇̄mT̄ (x, t̄)| ≤ C̄mKt̄
−m

2

for all x ∈M and t̄ ∈ (0, 1
K2 ].

Now when t̄ ∈ [ 1
2K2 ,

1
K2 ] then

t̄
m
2 ≥ 2−

m
2 K−m,

so taking t̄ = 1
K2 , we find that

|∇mT (x, t0)| ≤ 2
m
2 C̄mK

1+m for all x ∈M .

Since t0 ∈ [ 1
K2 , τ ] was arbitrary, we obtain (6.3.38).

6.3.2 Local estimates of the torsion

In this section we prove the local estimates on the derivatives of the torsion. The proof is
similar to the local bounds on the higher derivatives of a solution of the harmonic map heat
flow by Grayson–Hamilton [GH96] and to the local derivative estimates of the curvature for
the Yang-Mills flow which was proved by Weinkove [Wei04]. We first define the parabolic
cylinder

Pr(x0, t0) = {(x, t) ∈M × R | d(x, x0) ≤ r, t0 − r2 ≤ t ≤ t0}.
We need the following lemma, which is proved in [GH96, Lemma 2.1]. We state the
particular version that is given in [Wei04, Lemma 2.1].

Lemma 6.3.5. Let M be a compact manifold and F be a smooth function on M × [0,∞).
Let x0 ∈M and t0 ≥ 0. There exists a constant s > 0 and for every γ < 1 a constant Cγ,
such that the following holds. Let r ≤ s. If at any point in the parabolic cylinder Pr(x0, t0)
for which F ≥ 0, we have

∂F

∂t
≤ ∆F − F 2,

then
F ≤ Cγ

r2

on the smaller parabolic cylinder Pγr(x0, t0).
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Remark 6.3.6. From the proof of [GH96, Lemma 2.1] we deduce that Lemma 6.3.5 in fact
also holds when M is complete, noncompact, with bounded geometry. That is, we require
that there are Dm < +∞ for m ≥ 0, and i0 > 0 such that

|∇mRm| ≤ Dm in M,

inj(M, g) ≥ i0.

This observation is used for the noncompact case of the almost monotonicity of Θ. See
[DGK19, §5] for more details.

We now state and prove the local estimates for the derivatives of the torsion.

Theorem 6.3.7. Let ϕ(t) be a solution to the isometric flow onM7. Let x0 ∈M and t0 ≥ 0
such that ϕ(t) is defined at least up to time t0. There exists a constant s > 0 and constants
Cm for m ≥ 1 such that the following holds. Whenever |T | ≤ K and |∇jRm| ≤ BjK

2+j

for all j ≥ 0 in some parabolic cylinder Pr(x0, t0) with r ≤ s and K ≥ 1
r2
, then we have

|∇mT | ≤ CmK
m+1 (6.3.39)

on the much smaller parabolic cylinder P r
2m

(x0, t0).

Proof. The proof is similar to the proof of Theorem 6.3.3 and is by induction on m. We
have already derived all the evolution equations required for the proof in §6.3.1. By the
discussion between the statement and the proof of Theorem 6.3.3, we can assume that
K ≥ 1.

We first prove the m = 1 case. Define the function

h = (8K2 + |T |2)|∇T |2. (6.3.40)

Applying Young’s inequality to the third term of (6.3.21), we get

∂

∂t
|∇T |2 ≤ ∆|∇T |2 − (2− Cε)|∇2T |2 + CK2|∇T |2 + CK6. (6.3.41)

Now using (6.3.41) and (6.3.11), and the fact that |T | ≤ K, we find from (6.3.40) that

∂h

∂t
≤ (∆|T |2 − 2|∇T |2 + CK4)|∇T |2

+ (8K2 + |T |2)(∆|∇T |2 − (2− Cε)|∇2T |2 + CK2|∇T |2 + CK6). (6.3.42)
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Observe that
∇|T |2 = 2〈T,∇T 〉 ≤ 2|T ||∇T | ≤ 2K|∇T |

and similarly
∇|∇T |2 = 2〈∇T,∇2T 〉 ≤ 2|∇T ||∇2T |.

Combining the above two estimates and Cauchy-Schwarz gives

〈∇|T |2,∇|∇T |2〉 ≥ −|∇|T |2| |∇|∇T |2| ≥ −4K|∇T |2|∇2T |.

Using the above we compute directly from (6.3.40) that

∆h = (∆|T |2)|∇T |2 + (8K2 + |T |2)∆|∇T |2 + 2〈∇|T |2,∇|∇T |2〉
≥ (∆|T |2)|∇T |2 + (8K2 + |T |2)∆|∇T |2 − 8K|∇T |2|∇2T |. (6.3.43)

From (6.3.42) and (6.3.43) and |T | ≤ K, we get

∂h

∂t
≤ ∆h− 2|∇T |4 + CK4|∇T |2 + (8K2 + |T |2)(−(2− Cε)|∇2T |2 + CK2|∇T |2 + CK6)

+ 8K|∇T |2|∇2T |
≤ ∆h− 2|∇T |4 + CK4|∇T |2 − (2− Cε)(8K2 + |T |2)|∇2T |2 + CK8 + 8K|∇T |2|∇2T |.

(6.3.44)

We want to use Young’s inequality on both the CK4|∇T |2 and the 8K|∇T |2|∇2T | terms
above, so that the net amount of |∇T |4 terms that remain are still strictly negative and
the net amount of |∇2T |2 terms that remain are also negative and can be discarded. This
is a delicate balancing act. Explicitly, let δ, γ > 0 and write

CK4|∇T |2 ≤ Cδ

2
|∇T |4 +

C

2δ
K8,

8K|∇T |2|∇2T | ≤ 4

γ
K2|∇T |4 + 4γ|∇2T |2.

Then (6.3.44) becomes

∂h

∂t
≤ ∆h− 2|∇T |4 +

Cδ

2
|∇T |4 +

C

2δ
K8 − (2− Cε)(8K2 + |T |2)|∇2T |2 + CK8

+
4

γ
K2|∇T |4 + 4γ|∇2T |2

≤ ∆h+
(
− 2 +

Cδ

2
+

4K2

γ

)
|∇T |4 +

(
4γ − (2− Cε)(8K2 + |T |2)

)
|∇2T |2 + C̃K8.
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We want to ensure that

− 2 +
Cδ

2
+

4K2

γ
< −1

2
, and 4γ − (2− Cε)(8K2 + |T |2) < 0. (6.3.45)

The second inequality in (6.3.45) is satisfied if we choose

γ < (2− Cε)2K2. (6.3.46)

Then, assuming Cδ < 3, the first inequality in (6.3.45) and (6.3.46) can be combined to
yield

8K2

3− Cδ
< γ < (2− Cε)2K2.

It is clear that if δ and ε are chosen sufficiently small then γ will exit satisfying the above
condition.

With these choices of ε, γ, and δ, we can discard the |∇2T |2 term (which now has a
negative coefficient), and we are left with

∂h

∂t
≤ ∆h− 1

2
|∇T |4 + CK8. (6.3.47)

From (6.3.40) and |T | ≤ K, we have h ≤ 9K2|∇T |2, so (6.3.47) finally becomes

∂h

∂t
≤ ∆h− h2

CK4
+ CK8. (6.3.48)

Now define, for the same constant C as above, the function

F =
h

CK4
−K2. (6.3.49)

We compute using (6.3.49) and (6.3.48) that

∂F

∂t
≤ 1

CK4
(∆h− h2

CK4
+ CK8)

= ∆F − (F +K2)2 +K4

≤ ∆F − F 2. (6.3.50)

Let (x, t) ∈ Pr(x0, t0). If F (x, t) ≤ 0, then by the definition of F in (6.3.49) we have
|∇T |2 ≤ C

8
K4 ≤ CK4 at such a point. If F (x, t) ≥ 0, then since (6.3.50) holds, by

Lemma 6.3.5 with γ = 1
2
we have

F ≤ Cγ
r2
≤ CγK on P r

2
(x0, t0).
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Using the above, along with equation (6.3.49) and our assumption that K ≥ 1, we deduce
that

h ≤ CK4(CγK +K2) ≤ C̃K6

and thus from (6.3.40) that

|∇T | ≤ CK2 on P r
2
(x0, t0),

which establishes the base case of the induction.

Now assume inductively that (6.3.39) holds for all k < m. We prove the theorem for
m. Choose B to be a constant such that

Km ≤ B ≤ CKm and |∇m−1T | ≤ B (6.3.51)

for some C > 1. (We can take B = Cm−1K
m if we take Cm−1 > 1.) Using this B, define a

function hm by
hm = (8B2 + |∇m−1T |2)|∇mT |2. (6.3.52)

We estimate each term in the evolution (6.3.25) of |∇mT |2 using the induction hypothe-
sis (6.3.39) for k < m. For the third term on the right hand side of (6.3.25), we get∣∣∣ m∑

i=0

∇mT ∗ ∇m−iT ∗ ∇iRm
∣∣∣ ≤ |∇mT ∗ ∇mT ∗ Rm|+

∣∣∣ m∑
i=1

∇mT ∗ ∇m−iT ∗ ∇iRm
∣∣∣

≤ CK2|∇mT |2 + CKm+3|∇mT | (6.3.53)

where we have used the hypothesis on |∇jRm| and the induction hypothesis in the last
inequality. Note that following the same procedure that lead to (6.3.27) with assump-
tion (6.3.39) instead we get

|∇iϕ| ≤ CKi and |∇iψ| ≤ CKi. (6.3.54)

Thus for the fourth term on the right hand side of (6.3.25) is

∇mT ∗ ∇m(∇T ∗ T ∗ ϕ) =
m∑
i=0

∇m+1−iT ∗ ∇i(T ∗ ϕ).

We decompose the sum above into four parts, corresponding to i = 0, i = 1, 2 ≤ i ≤ m−1,
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and i = m. Then using (6.3.54) we compute

|∇mT ∗ ∇m(∇T ∗ T ∗ ϕ)| = |∇mT ∗ ∇m+1T ∗ T ∗ ϕ|+ |∇mT ∗ ∇mT ∗ (∇T ∗ ϕ+ T ∗ T ∗ ψ)|

+
∣∣∣∇mT ∗

m−1∑
i=2

∇m+1−iT ∗ (
i∑

j=0

∇i−jT ∗ ∇jϕ)
∣∣∣

+
∣∣∣∇mT ∗ ∇T ∗

m∑
i=0

∇m−iT ∗ ∇iϕ
∣∣∣

≤ CK|∇mT ||∇m+1T |+ CK2|∇mT |2 + CKm+3|∇mT |.
(6.3.55)

For the fifth term on the right hand side of (6.3.25), using (6.3.54) we have∣∣∣∇mT ∗ ∇m+1−iRm ∗ ∇iϕ
∣∣∣ ≤ CKm+3|∇mT |. (6.3.56)

Similarly, for the last term on the right hand side of (6.3.25) we have

m∑
i=0

∇mT ∗ ∇m−i(Rm ∗ T ) ∗ ∇iψ =
m∑
i=0

∇mT ∗
(m−i∑
j=0

∇m−i−jRm ∗ ∇jT
)
∗ ∇iψ.

We split the double sum above into two parts, the first part corresponding to i = 0, j = m
and the second part corresponding to the rest. Then using the hypothesis on |∇jRm|, the
induction hypothesis, and (6.3.54) we have∣∣∣ m∑

i=0

∇mT ∗ ∇m−i(Rm ∗ T ) ∗ ∇iψ
∣∣∣ ≤ CK2|∇mT |2 + CKm+3|∇mT |. (6.3.57)

Substituting the estimates (6.3.53), (6.3.55), (6.3.56) and (6.3.57) into (6.3.25) we get

∂

∂t
|∇mT |2 ≤ ∆|∇mT |2 − 2|∇m+1T |2 + CK|∇mT ||∇m+1T |+ CK2|∇mT |2 + CKm+3|∇mT |.

Now we use Young’s inequality on the third term and the last term above to write

K|∇mT ||∇m+1T | ≤ K2|∇mT |2

2ε
+
ε|∇m+1T |2

2
,

Km+3|∇mT | ≤ K2m+4

2
+
K2|∇mT |2

2
.
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Substituting these into the expression for ∂
∂t
|∇mT |2 above gives

∂

∂t
|∇mT |2 ≤ ∆|∇mT |2 − (2− Cε)|∇m+1T |2 + CK2|∇mT |2 + CK2m+4. (6.3.58)

The derivation of (6.3.58) in fact holds for m replaced by m− 1. That is, we also have

∂

∂t
|∇m−1T |2 ≤ ∆|∇m−1T |2 − (2− Cε)|∇mT |2 + CK2|∇m−1T |2 + CK2m+2.

Using the induction hypothesis, the above inequality becomes

∂

∂t
|∇m−1T |2 ≤ ∆|∇m−1T |2 − (2− Cε)|∇mT |2 + CK2m+2. (6.3.59)

From (6.3.58) and (6.3.59) and the definition (6.3.52) of hm, we have

∂

∂t
hm ≤ (8B2 + |∇m−1T |2)(∆|∇mT |2 − (2− Cε)|∇m+1T |2 + CK2|∇mT |2 + CK2m+4)

+ |∇mT |2(∆|∇m−1T |2 − (2− Cε)|∇mT |2 + CK2m+2).

Using (6.3.51) and throwing away some but not all of the negative terms, this inequality
becomes

∂

∂t
hm ≤ (8B2 + |∇m−1T |2)∆|∇mT |2 + |∇mT |2∆|∇m−1T |2 − (2− Cε)8B2|∇m+1T |2

− (2− Cε)|∇mT |4 + CK2m+2|∇mT |2 + CK4m+4. (6.3.60)

Observe that from the inductive hypothesis (6.3.39) for k < m and (6.3.51) we have

∇|∇m−1T |2 = 2〈∇m−1T,∇mT 〉 ≤ 2|∇m−1T ||∇mT | ≤ 2B|∇mT |

and also that
∇|∇mT |2 = 2〈∇mT,∇m+1T 〉 ≤ 2|∇mT ||∇m+1T |.

Combining the above two estimates and Cauchy-Schwarz gives

〈∇m−1|T |2,∇m|∇T |2〉 ≥ −|∇m−1|T |2| |∇|∇mT |2| ≥ −4B|∇mT |2|∇m+1T |.

Using the above we compute directly from (6.3.52) that

∆hm = (∆|∇m−1T |2)|∇mT |2 + (8B2 + |∇m−1T |2)∆|∇mT |2 + 2〈∇|∇m−1T |2,∇|∇mT |2〉
≥ |∇mT |2∆|∇m−1T |2 + (8B2 + |∇m−1T |2)∆|∇mT |2 − 8B|∇mT |2|∇m+1T |. (6.3.61)
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From (6.3.60) and (6.3.61) we get

∂

∂t
hm ≤ ∆hm − (2− Cε)8B2|∇m+1T |2 − (2− Cε)|∇mT |4 + CK2m+2|∇mT |2 + CK4m+4

+ 8B|∇mT |2|∇m+1T |.

Applying Young’s inequality on the final term we have

∂

∂t
hm ≤ ∆hm − (2− Cε)8B2|∇m+1T |2 − (2− Cε)|∇mT |4 + CK2m+2|∇mT |2 + CK4m+4

+ 4B2δ|∇m+1T |2 +
4

δ
|∇mT |4.

Just as in the base case, we now have a delicate balancing act. We want to choose δ and
ε above that the net amount of |∇mT |4 terms that remain are still strictly negative and
the net amount of |∇m+1T |2 terms that remain are also negative and can be discarded.
Explicitly, we demand that

−(2− Cε)8B2 + 4B2δ < 0, and − (2− Cε) +
4

δ
< −3

4
.

These can be rearranged to yield

16

5− 4Cε
< δ < 4− 2Cε.

It is clear that if ε is chosen sufficiently small then δ will exit satisfying the above condition.

With these choices of ε and δ, we are left with

∂h

∂t
≤ ∆hm −

3

4
|∇mT |4 + CK2m+2|∇mT |2 + CK4m+4.

Using Young’s inequality on the third term, the above becomes

∂h

∂t
≤ ∆hm −

1

2
|∇mT |4 + CK4m+4. (6.3.62)

From (6.3.52) and |∇m−1T | ≤ B ≤ CKm in (6.3.51), we have hm ≤ CK2m|∇mT |2,
so (6.3.62) finally becomes

∂

∂t
hm ≤ ∆hm −

h2
m

CK4m
+ CK4m+4. (6.3.63)
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As in the m = 1 case, for the same constant C as above, define the function

F =
hm

CK4m
−K2. (6.3.64)

We compute using (6.3.64) and (6.3.63) that

∂F

∂t
≤ 1

CK4m
(∆hm −

h2
m

CK4m
+ CK4m+4)

= ∆F − (F +K2)2 +K4

≤ ∆F − F 2. (6.3.65)

Let (x, t) ∈ Pr(x0, t0). If F (x, t) ≤ 0, then by the definition of F in (6.3.64) and
Km ≤ B in (6.3.51) we have |∇mT |2 ≤ B−2

8
hm ≤ CK−2mK4m+2 = CK2m+2 at such a

point. If F (x, t) ≥ 0, then since (6.3.65) holds, by Lemma 6.3.5 with γ = 1
2
we have

F ≤ Cγ
r2
≤ CγK on P r

2
(x0, t0).

Using the above, along with equation (6.3.64) and our assumption that K ≥ 1, we deduce
that

hm ≤ CK4m(CγK +K2) ≤ C̃K4m+2

and thus from (6.3.52) and Km ≤ B in (6.3.51) that

|∇mT | ≤ CKm+1 on P r
2m

(x0, t0),

which establishes the inductive step.

6.3.3 Characterization of the blow-up time

LetM be a compact 7-manifold and let ϕ0 be a G2-structure onM . Then starting with ϕ0,
there exists a unique solution ϕ(t) of the isometric flow on a maximal time interval [0, τ)
where maximal means that either τ = ∞ or τ < ∞. The case τ < ∞ means that there
does not exist any ε > 0 such that ϕ̄(t) is a solution of the isometric flow for t ∈ [0, τ + ε)
with ϕ̄(t) = ϕ(t) for t ∈ [0, τ). We call τ the singular time for the flow.

In this section, we use the global derivative estimates (6.3.14) to prove that the quantity
T (t) defined in (6.3.7) must blow up at a finite time singularity along the flow. Explicitly,
we prove the following result.

109



Theorem 6.3.8. Let M7 be compact and let ϕ(t) be a solution to the isometric flow (6.2.8)
in a maximal time interval [0, τ). If τ <∞, then T satisfies

lim
t↗τ
T (t) =∞ (6.3.66)

and there is a lower bound on the blow-up rate of T (t) given by

T (t) ≥
1√

C(τ − t)
(6.3.67)

for some constant C > 0.

Proof. We prove the contrapositive of the theorem. That is, we show that if T remains
bounded along a sequence of times approaching τ , then the solution can be extended past
τ . Let ϕ(t) be a solution to the isometric flow which exists on a maximal time interval
[0, τ ]. We first prove by contradiction that

lim sup
t↗τ

T (t) =∞. (6.3.68)

Suppose that (6.3.68) does not hold, so there exists a constant K > 0 such that

sup
M×[0,τ ]

T (t) = sup
M×[0,τ ]

|T (x, t)|g ≤ K. (6.3.69)

Note that since the metric does not evolve along the flow, we use the metric g induced by
the initial G2-structure. We have from (6.3.14) and (6.3.69) that∣∣∣ ∂

∂t
ϕ
∣∣∣
g

= | div T ψ|g ≤ CKt−
1
2 (6.3.70)

for some uniform positive constant C. For any 0 < t1 < t2 < τ , we have

|ϕ(t2)− ϕ(t1)|g ≤
∫ t2

t1

∣∣∣ ∂
∂t
ϕ
∣∣∣dt ≤ CK(

√
t2 −
√
t1) (6.3.71)

which implies that ϕ(t) converges to a 3-form ϕ(τ) continuously as t→ τ . Since ϕ(t) is a
G2-structure, we know that for all t ∈ [0, τ) we have

g(u, v) volg = −1

6
(u ϕ(t)) ∧ (v ϕ(t)) ∧ ϕ(t) (6.3.72)
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where volg is the volume form of g. Since g and volg do not change along the flow, as
t→ τ the left hand side of (6.3.72) tends to a positive definite 7-form valued bilinear form
and thus the limit 3-form is a positive 3-form and so is a G2-structure. Moreover from the
right hand side of (6.3.72) we see that the limit ϕ(τ) induces the same metric g. Thus, the
solution ϕ(t) of the isometric flow can be extended continuously to the time interval [0, τ ].
We now show that the extension is actually smooth, which gives our required contradiction.

We pause to prove the following.

Claim 6.3.9. For all m ∈ N, there exist constants Cm such that

sup
M×[0,τ)

∣∣∣∇mϕ(t)
∣∣∣
g
≤ Cm.

Proof of Claim 6.3.9. The proof is by induction onm. Form = 1, at any (x, t) ∈M×[0, τ),
we have

∂

∂t
∇ϕ = ∇ ∂

∂t
ϕ = ∇(div T ψ) = ∇(div T ) ∗ ψ + div T ∗ T ∗ ϕ.

Here we are again using the fact that the metric does not evolve along the flow. We know
from (6.3.69) and Corollary 6.3.4 that both |∇(div T )| ≤ A and | div T | ≤ A on the time
interval ( 1

K2 , τ) for some A = A(m,K). Since |∇(div T )| and | div T | are bounded on [0, 1
K2 ]

by some constant B = B(K) we get that∣∣∣ ∂
∂t
∇ϕ
∣∣∣ ≤ max (CA,CB) = C̃,

and thus by integration we have

|∇ϕ(t)|g ≤ |∇ϕ(0)|g +

∫ τ

0

∣∣∣ ∂
∂t
∇ϕ(t)

∣∣∣dt ≤ |∇ϕ(0)|g + C̃τ ≤ C1

because τ <∞. (This is where we crucially use that the maximal existence time is finite.)
We have thus established the m = 1 case of the claim.

For the general case of the claim, we have∣∣∣ ∂
∂t
∇mϕ

∣∣∣
g

= |∇m(div T ψ)|g ≤ C
m∑
i=0

|∇m−i(div T )||∇iψ|. (6.3.73)

By the induction hypothesis, we may assume that
∣∣∣ ∂∂t∇pϕ

∣∣∣ and hence |∇p(div T ψ)| has
been estimated for all 0 ≤ p < m. Since ∇iψ contains ∇i−1T as the highest order term,
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we just need to estimate the |∇m(div T )| term. But again it follows from (6.3.69) and
Corollary 6.3.4 that |∇m(div T )| ≤ A for some A = A(m,K) on ( 1

K2 , τ) and |∇m(div T )| ≤
B for some B(m,K) on [0, 1

K2 ]. Thus from (6.3.73) we get that∣∣∣ ∂
∂t
∇mϕ

∣∣∣
g
≤ C ′m, (6.3.74)

and the inductive step now follows from (6.3.74) by integration. This completes the proof
of Claim 6.3.9.

We now return to the proof of Theorem 6.3.8. Let U be the domain of a fixed local
coordinate chart. We know that ϕ(τ) is a continuous limit of G2-structures and in U it
satisfies

ϕijk(τ) = ϕijk(t) +

∫ τ

t

(div T (s) ψ(s))ijkds. (6.3.75)

Let α = (a1, ..., ar) be any multi-index with |α| = a1 + · · · + ar = m ∈ N. We know from
Claim 6.3.9 and (6.3.74) that

∂m

∂xα
ϕijk and

∂m

∂xα
(div T ψ)ijk

are uniformly bounded on U × [0, τ). So from (6.3.75) we have that ∂m

∂xα
ϕijk(τ) is bounded

on U and hence ϕ(τ) is a smooth G2-structure. Moreover, from (6.3.75) we have∣∣∣ ∂m
∂xα

ϕijk(τ)− ∂m

∂xα
ϕijk(t)

∣∣∣ ≤ C(τ − t)

and thus ϕ(t)→ ϕ(τ) uniformly in any Cm norm as t→ τ , for m ≥ 2.

Now, since ϕ(τ) is smooth, Theorem 6.2.12 gives a solution ϕ̄(t) of the isometric flow
with ϕ̄(0) = ϕ(τ) for a short time 0 ≤ t < ε. Since ϕ(t) → ϕ(τ) smoothly as t → τ , it
follows that

ϕ̄(t) =

{
ϕ(t) 0 ≤ t < τ

ϕ̄(t− τ) τ ≤ t < τ + ε

is a solution of the isometric flow which is smooth and satisfies ϕ̄(0) = ϕ(0). This contra-
dicts the maximality of τ . Thus we indeed have

lim sup
t↗τ

T (t) =∞, (6.3.76)

which is equation (6.3.68). Thus, if limt↗τ T (t) exists, it must be ∞.
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Next we show that in fact (6.3.66) is true. Suppose not. Then there exists K0 < ∞
and a sequence of times ti ↗ τ such that T (ti) ≤ K0. By the doubling time estimate in
Proposition 6.3.2, we get that

T (t) ≤ 2T (ti) ≤ 2K0

for all times t ∈ [ti,min{τ, ti + 1
CK2

0
}]. Since ti ↗ τ as i→∞, there exists i0 large enough

such that ti0 + C
K2

0
≥ τ . (Here again we crucially use the fact that τ is assumed to be finite.)

But this implies that
sup

M×[ti0 ,τ ]

T (x, t) ≤ 2K0

which cannot happen as we have already shown above that this leads to a contradiction to
the maximality of τ . This completes the proof of (6.3.66).

To obtain the lower bound of the blow-up rate (6.3.67), we apply the maximum principle
to (6.3.11). We get

d

dt
T (t)2 ≤ CT (t)4

which implies that
d

dt
T (t)−2 ≥ −C. (6.3.77)

Since we proved above that limt→τ T (t) =∞, we have

lim
t→τ
T (t)−2 = 0.

Integrating (6.3.77) from t to t0 ∈ (t, τ) and taking the limit as t0 → τ , we get

T (t) ≥
1√

C(τ − t)
.

This completes the proof of Theorem 6.3.8.

Combining Proposition 6.3.2 and Theorem 6.3.8, we deduce the following result about
the minimal existence time.

Corollary 6.3.10. Let ϕ0 be a G2-structure on a compact 7-manifold M with

T ≤ K

for some constant K. Then the unique solution of the isometric flow with initial G2-
structure ϕ0 exists at least for time t ∈ [0, 1

CK2 ] where C is the uniform constant from
Proposition 6.3.2.
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6.3.4 Compactness

In this section, we prove a Cheeger–Gromov type compactness theorem for solutions to the
isometric flow for G2-structures. We also give a local version of the compactness theorem.
Recall the following definition from [LW17].

Definition 6.3.11. Let (Mi, ϕi, pi) be a sequence of 7-manifolds with G2-structures ϕi
and pi ∈ Mi for each i. Suppose the metric gi on Mi associated to the G2-structure ϕi is
complete for each i. Let M be a 7-manifold with p ∈ M and ϕ be a G2-structure on M .
We say that the sequence (Mi, ϕi, pi) converges to (M,ϕ, p) in the Cheeger–Gromov sense
and write

(Mi, ϕi, pi)→ (M,ϕ, p) as i→∞

if there exists a sequence of compact subsets Ωi ⊂ M exhausting M with p ∈ int(Ωi) for
each i, a sequence of diffeomorphisms Fi : Ωi → Fi(Ωi) ⊂Mi with Fi(p) = pi such that

F ∗i ϕi → ϕ as i→∞

in the sense that F ∗i ϕi − ϕ and its covariant derivatives of all orders (with respect to any
fixed metric) converge uniformly to zero on every compact subset of M .

Lotay–Wei proved the following very general compactness theorem for G2-structures
in [LW17, Theorem 7.1].

Theorem 6.3.12. LetMi be a sequence of smooth 7-manifolds and for each i we let pi ∈Mi

and ϕi be a G2-structure on Mi such that the metric gi on Mi induced by ϕi is complete
on Mi. Suppose that

sup
i

sup
x∈Mi

(
|∇k+1

gi
Ti(x)|2gi + |∇k

gi
Rmgi(x)|2gi

) 1
2 <∞ (6.3.78)

for all k ≥ 0 and
inf
i

inj(Mi, gi, pi) > 0,

where Ti, Rmgi are the torsion and the Riemann curvature tensor of ϕi and gi respectively
and inj(Mi, gi, pi) denotes the injectivity radius of (Mi, gi) at pi.

Then there exists a 7-manifold M , a G2-structure ϕ on M and a point p ∈ M such
that, after passing to a subsequence, we have

(Mi, ϕi, pi)→ (M,ϕ, p) as i→∞.
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The idea of the proof is to use Cheeger–Gromov compactness theorem [Ham95, Theorem
2.3] for complete pointed Riemannian manifolds to get a complete Riemannian 7-manifold
(M, g) and p ∈M such that, after passing to a subsequence

(Mi, gi, pi)→ (M, g, p) as i→∞.

That is, there exist nested compact sets Ωi ⊂ M exhausting M with p ∈ int(Ωi) for all i
and diffeomorphisms Fi : Ωi → Fi(Ωi) ⊂ Mi with Fi(p) = pi such that F ∗i g → g smoothly
as i→∞ on any compact subset of M . We then use the diffeomorphisms from the above
convergence to pull-back the G2-structure to get G2-structures ϕi on Ωi and using (6.3.78)
we show that covariant derivatives of all orders of ϕi are uniformly bounded. The Arzelá–
Ascoli theorem [AH11, Corollary 9.14] then implies that there is a 3-form ϕ such that after
passing to a subsequence, ϕi → ϕ as i → ∞. We then show that ϕ is a G2-structure and
it induces the metric g and hence we get that (Mi, ϕi, pi)→ (M,ϕ, p) as i→∞.

We note that if all the metrics in the sequence (Mi, ϕi, gi) are the same then the limiting
G2-structure ϕ induces the same metric.

We now state and prove the compactness theorem for the isometric flow of G2-structures.

Theorem 6.3.13. Let Mi be a sequence of compact 7-manifolds and let pi ∈ Mi for each
i. Let ϕi(t) be a sequence of solutions to the isometric flow (6.2.8) for G2-structures on
Mi for t ∈ (a, b), where −∞ ≤ a < 0 < b ≤ ∞. Suppose that

sup
i

sup
x∈Mi,t∈(a,b)

|Ti(x, t)|gi <∞ (6.3.79)

where Ti denotes the torsion of ϕi(t), and the injectivity radius satisfies

inf
i

inj(Mi, gi(0), pi) > 0. (6.3.80)

Suppose further that there are uniform constants Ck, for all k ≥ 0, such that

sup
i
|∇kRmi|gi ≤ Ck. (6.3.81)

Then there exists a 7-manifold M , a point p ∈M and a solution ϕ(t) of the flow (6.2.8)
on M for t ∈ (a, b) such that, after passing to a subsequence,

(Mi, ϕi(t), pi)→ (M,ϕ(t), p) as i→∞.
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The proof is similar in spirit to the compactness theorem for the Ricci flow by Hamil-
ton [Ham95]. See also the compactness theorem for the Laplacian flow for closed G2-
structures by Lotay–Wei [LW17]. The idea is to show that the bounds on the G2-structure
and on covariant derivatives and time derivatives of the G2-structure at time t = 0 extend
to bounds on the G2-structures and covariant derivatives of the G2-structures at subsequent
times in the presence of bounds on the torsion and covariant derivatives of the torsion for
all time.

Proof of Theorem 6.3.13. From the derivative estimates (6.3.14), Corollary 6.3.4 and (6.3.79),
we have

|∇m
gi(t)

Ti(x, t)| ≤ Cm. (6.3.82)

SinceMi is compact for each i, we know |Rmi|gi is bounded. Assumption (6.3.80) allows us
to use Theorem 6.3.12 for t = 0 to extract a subsequence of (Mi, ϕi(0), pi) which converges
to a complete limit (M,ϕ∞(0), p). So there exist compact subsets Ωi ⊂ M exhausting M
with p ∈ int(Ωi) for each i and diffeomorphisms Fi : Ωi → Fi(Ωi) ⊂ Mi with Fi(p) = pi
such that F ∗i gi(0)→ g∞(0) and F ∗i ϕi(0)→ ϕ∞(0) smoothly on any compact subset Ω ⊂M
as i → ∞. Fix a compact subset Ω × [c, d] ⊂ M × (a, b) and let i be sufficiently large so
that Ω ⊂ Ωi. Let ḡi(t) = F ∗i gi(t). Now since ϕi(t) are all solutions to the isometric flow,
we have gi(t) = gi(0) for each i. Thus we trivially have

sup
Ω×[c,d]

|∇m
ḡi(0)ḡi(t)|ḡi(0) = 0.

Since the limit metric g∞(0) is uniformly equivalent to gi(0), we get

sup
Ω×[c,d]

|∇m
ḡi(∞)ḡi(t)|ḡi(∞) ≤ Cm

for some positive constants Cm and similarly

sup
Ω×[c,d]

∣∣∣ ∂l
∂tl
∇m
ḡ∞(0)ḡi(t)

∣∣∣
ḡ∞(0)

≤ Cm,l

for some positive constants Cm,l.

Now let ϕ̄i(t) = F ∗i ϕi(t). Then ϕ̄i(t) is a sequence of solutions of the isometric flow on
Ω ⊂ M for t ∈ [c, d]. Using (6.3.82) and proceeding in a similar way as in the proof of
Claim 6.3.9, we deduce that there exist constants Cm, independent of i, such that

sup
Ω×[c,d]

|∇m
ḡi(0)ϕ̄i(t)|ḡi(0) ≤ Cm (6.3.83)
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and since ḡi(0) and ϕ̄(0) converge uniformly to g∞(0) and ϕ̄∞(0) with all their covariant
derivatives on Ω, we have

sup
Ω×[c,d]

|∇m
ḡ∞(0)ϕ̄i(t)|ḡ∞(0) ≤ Cm. (6.3.84)

Moreover, because the time derivatives can be written in terms of the spatial derivatives
using the evolution equations of the isometric flow, we get for some uniform constants Cm,l
that

sup
Ω×[c,d]

∣∣∣ ∂l
∂tl
∇m
ḡ∞(0)ϕ̄i(t)

∣∣∣
ḡ∞(0)

≤ Cm,l. (6.3.85)

It now follows from the Arzelá–Ascoli theorem that there exists a subsequence of ϕ̄i(t)
that converges smoothly on Ω× [c, d]. A diagonal subsequence argument then produces a
subsequence that converges smoothly on any compact subset of M × (a, b) to a solution
ϕ̄∞(t) of the isometric flow.

The compactness theorem for the Ricci flow has natural applications in the analysis
of singularities of the Ricci flow. We would also like to have a similar application for
the isometric flow. The idea is to consider shorter and shorter time intervals leading up
to a singularity of the isometric flow and to rescale the solutions on each of these time
intervals to obtain solutions with uniformly bounded torsion. By doing this we hope that
the limiting manifold will tell us something about the nature of the singularity and more
information, such as whether the singularity is modelled on a soliton.

More precisely, suppose M7 is a compact manifold and let ϕ(t) be a solution to the
isometric flow on a maximal time interval [0, τ) with τ < ∞. Theorem 6.3.8 then implies
that T (t) defined in (6.3.7) satisfies limt↗τ T (t) =∞. Consider a sequence of points (xi, ti)
with ti ↗ τ and

T (xi, ti) = sup
x∈M, t∈[0,ti]

|T (x, t)|g.

Define a sequence of parabolic dilations of the isometric flow

ϕi(t) = T (xi, ti)
3ϕ(ti + T (xi, ti)

−2t) (6.3.86)

and define
Tϕi(x, t) = |Ti(x, t)|gi . (6.3.87)

If ϕ̃ = c3ϕ then, as explained in the proof of Lemma 6.2.13, we have

d̃ivT̃ ψ̃ = c3 div T ψ.
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Hence, for each i, we have that (M,ϕi(t)) is a solution of the isometric flow (6.2.8) on the
time interval [−tiT (xi, ti)

2, (τ− ti)T (xi, ti)
2]. Note that for each i and for all t ≤ 0 we have

sup
M
|Tϕi(x, t)| =

|Ti(x, t)|gi
T (xi, ti)

≤ 1

by the definition of T (xi, ti). Thus by the doubling time estimate Proposition 6.3.2 and
Corollary 6.3.10, there exists a uniform b > 0 such that

sup
i

sup
M×(a,b)

|Tϕi(x, t)| ≤ 2

for any a < 0. Thus, if we have infi inj(M, gi(0), xi) > 0, then using the compactness
Theorem 6.3.13, we can extract a subsequence of (M,ϕi(t), xi) that converges to a solution
(M∞, ϕ∞(t), x∞) of the isometric flow.

Just as in the Ricci flow (see [CCGGIIKLLN07, §3.1]), from the proof of the compact-
ness theorem for the isometric flow, we can prove a local version of Theorem 6.3.13 without
much difficulty.

Theorem 6.3.14 (Local compactness). Let {(Mi, ϕi(t), xi)}i∈N, xi ∈ Mi and t ∈ (a, b) be
a sequence of compact pointed solutions of the isometric flow. If there exist ρ > 0, C0 <∞
independent of i such that

|Ti|gi ≤ C0 in Bgi(xi, ρ)× (a, b)

and
injgi(xi) > 0,

and if there exist uniform constants Ck, for all k ≥ 0, such that

|∇kRmi|gi ≤ Ck in Bgi(xi, ρ)× (a, b),

then there exists a subsequence such that {(Bgi(xi, ρ), ϕi(t), xi)}i∈N converges as i → ∞
to a pointed solution (B∞, ϕ∞(t), x∞), t ∈ (a, b) of the isometric flow, smoothly on any
compact subset of B∞× (a, b). Furthermore, B∞ is an open manifold and the metric g∞(t)
of ϕ∞(t) is complete on the closed ball Bg∞(x∞, r) for all r < ρ.

6.4 Summary of remaining results from [DGK19]

In this section we briefly summarize the remaining results from [DGK19]. These include
the following.
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(1) An Uhlenbeck-type trick which together with a modification of the underlying connec-
tion yields a nice reaction-diffusion equation for the torsion along the flow.

(2) Defining a quantity Θ for any solution of the flow and proving that it is almost mono-
tonic along the flow. We also prove an ε-regularity result associated to Θ.

(3) Inspired by work of Colding–Minicozzi in [CM12] and Boling–Kelleher–Streets on the
harmonic map heat flow [BKS17] and work of Kelleher–Streets on the Yang–Mills
flow [KS16] we define an entropy functional and use it to establish that, if we have
sufficiently small entropy, then we have long time existence and convergence of the flow
to a G2-structure ϕ∞ with small divergence-free torsion.

(4) When the entropy is not small the flow may develop singularities in finite time. How-
ever, we prove that we can only have singularities of co-dimension at least 2. Finally,
we prove that if the singularity is of Type-I then a sequence of blow-ups of the flow
has a subsequence that converges to a shrinking soliton of the flow.

We elaborate on (2), (3) and (4) below.

Given a complete Riemannian manifold (M, g) with bounded curvature and (x0, t0) ∈
M ×R, we denote by u(x0,t0) the kernel of the backwards heat equation on M starting with
δx0 at time t0. Explicitly, for t ∈ (−∞, t0) we have( ∂

∂t
+ ∆g

)
u(x0,t0) = 0,

lim
t→t0−

u(x0,t0) = δx0 .
(6.4.1)

We also define the smooth function f(x0,t0) by the relation

u(x0,t0) =
e−f(x0,t0)

(4π(t0 − t))
7
2

· (6.4.2)

Definition 6.4.1. Let (ϕ(t))t∈[0,t0) be an isometric flow on M inducing the metric g and
define

Θ(x0,t0)(ϕ(t)) = (t0 − t)
∫
M

|Tϕ(t)|2u(x0,t0) volg . (6.4.3)

From the discussion in Section 6.2.3, it follows that the quantity Θ(x0,t0) is invariant under
parabolic rescaling. In what follows we will simply write u for u(x0,t0).
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One can think of Θ as a kind of “localized energy”, but we will not use this terminology.

An almost monotonicity formula for Θ(x0,t0)(ϕ(t)) was proved in [DGK19, Theorem 5.3]
which we state below.

Theorem 6.4.2 (Almost monotonicity formula). This theorem has two versions, as fol-
lows.

(1) Let (M7, g) be compact and let (ϕ(t))t∈[0,t0) be an isometric flow inducing the metric
g. Then for any x0 ∈ M and max{0, t0 − 1} < τ1 < τ2 < t0, there exist K1, K2 > 0
depending only on the geometry of (M, g) such that the following monotonicity formula
holds:

Θ(x0,t0)(ϕ(τ2)) ≤ K1Θ(x0,t0)(ϕ(τ1)) +K2(τ2 − τ1)(E(ϕ(0)) + 1). (6.4.4)

(2) Let (M, g) = (R7, gEucl) and let (ϕ(t))t∈[0,t0) be an isometric flow inducing gEucl. Then
for any x0 ∈ R7 and 0 ≤ τ1 < τ2 < t0 we have strict monotonicity

Θ(x0,t0)(ϕ(τ2)) ≤ Θ(x0,t0)(ϕ(τ1))

with equality if and only if for all t ∈ [τ1, τ2]

div Tϕ(t) =
x− x0

2(t0 − t)
Tϕ(t).

Remark 6.4.3. We note that in Theorem 6.4.2 (2), the case of equality corresponds to a
particular special type of shrinking isometric soliton on (R7, gEucl), as described in (6.2.27).

The energy functional, although quite natural, has the disadvantage that it is not scale
invariant. As a result, it is not strong enough to control the small scale behaviour of a G2-
structure ϕ. In this section, motivated by analogous functionals for the mean curvature
flow [CM12], the high dimensional Yang-Mills flow [KS16] and the harmonic map heat
flow [BKS17], we introduce an entropy functional, and use it and the almost monotonicity
formula above to establish an ε-regularity result, as well as to prove long time existence
and convergence given small entropy.

Definition 6.4.4. Let (M,ϕ) be a compact manifold with G2-structure inducing the Rie-
mannian metric g. Let u(x,t)(y, s) = ug(x,t)(y, s) denote the backwards heat kernel, with
respect to g, that becomes δ(x,t) as s→ t. For σ > 0 we define

λ(ϕ, σ) = max
(x,t)∈M×(0,σ]

{
t

∫
M

|Tϕ|2(y)u(x,t)(y, 0) volg(y)

}
. (6.4.5)
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We call λ(ϕ, σ) the entropy of (M,ϕ). The precise value of σ is not important, only that
σ > 0. One should think of σ as the “scale” at which we are analyzing the flow.

We prove the following ε-regularity theorem in [DGK19, Theorem 5.7].

Theorem 6.4.5 (ε-regularity). Given (M, g) compact and E0 < +∞ there exist ε, ρ̄ > 0
such that for every ρ ∈ (0, ρ̄] there exist r ∈ (0, ρ) and C < +∞ such that the following
holds:

If (M,ϕ(t))t∈[0,t0) is an isometric flow with gϕ(t) = g and E(ϕ(0)) ≤ E0, and if x0 ∈M
is such that

Θ(x0,t0)(ϕ(t0 − ρ2)) < ε

then
Λr(x, t)|Tϕ(x, t)| ≤ Cr−1

in B(x0, r)× [t0 − r2, t0], where

Λr(x, t) = min
(
1− r−1dg(x0, x),

√
1− r−2(t0 − t)

)
.

The following long time existence theorem for the isometric flow is proved in [DGK19,
Theorem 5.15].

Theorem 6.4.6 (Low entropy convergence). Let (M7, ϕ0) be a compact manifold with G2-
structure inducing the metric g. Then, there exist constants Ck < +∞ depending only on
(M, g) such that for every small δ > 0 and σ > 0, there exists ε(g, δ, σ) > 0 such that if

λ(ϕ0, σ) < ε, (6.4.6)

then the isometric flow starting at ϕ0 exists for all time and converges smoothly to a G2-
structure ϕ∞ satisfying

div Tϕ∞ = 0,

|Tϕ∞| < δ,

and
|∇kTϕ∞ | ≤ Ck,

for all k ≥ 1.
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If the entropy λ is not small then the flow may develop finite time singularities. Fixing
the constants ε, ρ̄ > 0 of the ε-regularity Theorem 6.4.5 we define the singular set

S = {x ∈M : Θ(x,τ)(ϕ(τ − ρ2)) ≥ ε, for all ρ ∈ (0, ρ̄]}. (6.4.7)

The following theorem (cf. [DGK19, Theorem 5.18]) establishes an upper bound on the
“size” of the singular set S.

Theorem 6.4.7 (Singularity structure). Let ϕ0 be a G2-structure inducing the metric g
with

E(ϕ0) =
1

2

∫
M

|Tϕ0|2 volg ≤ E0 (6.4.8)

and consider the maximal smooth isometric flow (ϕ(t))t∈[0,τ) with ϕ(0) = ϕ0.

Suppose that τ < +∞. Then as t → τ the flow converges smoothly to a G2-structure
ϕτ outside a closed set S with finite 5-dimensional Hausdorff measure satisfying

H5(S) ≤ CE0,

for some constant C < ∞ depending on g. In particular the Hausdorff dimension of S is
at most 5.

Remark 6.4.8. Theorem 6.4.7 says that the singular set S is at most 5-dimensional.
It would be interesting to find a geometric interpretation of the singular set S in terms
of G2 geometry. If such a description exists, then it is likely that S would be at most
4-dimensional, as there are no distinguished 5-dimensional subspaces in G2 geometry.

Finally, we proved in [DGK19, Theorem 5.20] that if a singularity is of Type-I then a
sequence of blow-ups of the flow admits a subsequence that converges to a shrinking soliton
of the flow.

Theorem 6.4.9 (Type-I singularities). Let ϕ0 be a G2-structure inducing the metric g
on a compact 7-manifold M , and consider the maximal smooth isometric flow (ϕ(t))t∈[0,τ),
with ϕ(0) = ϕ0. Suppose that τ < +∞ and the flow encounters a Type I singularity. That
is,

max
M
|Tϕ(t)| ≤

C√
τ − t

.

Let x ∈ M and µi ↘ 0 and consider the rescaled sequence ϕi(t) = µ−3
i ϕ(τ − µ2

i t). Then,
after possibly passing to a subsequence, (M,ϕi(t), x) converges smoothly to an ancient iso-
metric flow (ϕ∞(t))t<0 on (R7, gEucl) induced by a shrinking soliton. That is,

div Tϕ∞(x, t) = − x
2t

Tϕ∞ .
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Moreover x ∈ M \ S if and only if ϕ∞(t) is the stationary flow induced by a torsion-free
G2-structure ϕ∞ on (R7, gEucl).

Remark 6.4.10. It is an interesting open problem whether there exist any nontrivial
shrinking solitons on the Euclidean R7. If there do not exist any such solitons, then
Theorem 6.4.9 would imply that no Type-I singularities can occur along the isometric
flow.
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