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Abstract

This thesis explores the application of multi-agent reinforcement learning in domains
containing asymmetries between agents, caused by differences in information and position,
resulting in a hierarchy of leaders and followers. Leaders are agents that have access to
follower agent policies and the ability to commit to an action before the followers. These
followers can observe actions taken by leaders and respond to maximize their own payoffs.
Since leaders know the follower policies, they can manipulate the followers to elicit a better
payoff for themselves.

In this work, we focus on the problem of training agents in a multi-agent setting with
continuous actions at different levels of hierarchy to obtain the best payoffs at their given
positions. To address this problem we propose a new algorithm, Stackelberg Multi-Agent
Reinforcement Learning (SMARL) that incorporates the Stackelberg equilibrium concept
into the multi-agent deep deterministic policy gradient (MADDPG) algorithm. This en-
ables us to efficiently train agents at all levels in the hierarchy. Since maximization over
a continuous action space is intractable, we propose a method to solve our Stackelberg
formulation for continuous actions using conditional actions and gradient descent.

We evaluate our algorithm on multiple mixed cooperative and competitive multi-agent
domains, consisting of our custom built highway driving environment and a subset of
the multi-agent particle environments. We show that agents trained using our proposed
algorithm outperform those trained with existing methods in most hierarchical domains,
and are comparable in the rest.
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Chapter 1

Introduction

There is a large class of real world problems which involve interactions between multiple
agents. This has resulted in growing interest in the domain of multi agent reinforcement
learning (MARL), and development of algorithms that aim to train agents to achieve their
goals in a shared environment. While there have been many advances in this domain
inspired from game theory, there is not much work making use of game theory to address
the hierarchies exhibited within these environments. In this thesis we study the hierarchy
among agents, imposed by the situation within an environment, and apply game theory
concepts to leverage these hierarchies for improved training.

The following sections describe hierarchical environments, present the problem descrip-
tion and summarize our thesis contributions.

1.1 Hierarchical Environments

Advances in reinforcement learning (RL) have been successfully applied to solve challenging
problems in single agent domains such as game playing [25, 30] and robotics [19]. However,
many real world problems involve interactions between multiple agents in domains such
as: discovery of communication channels and language [32, 27], multiplayer games [28],
analysis of social dilemmas [18] and social influence as intrinsic motivation [12]. Single
agent hierarchical reinforcement learning can also be treated as a multi-agent system where
multiple levels of the hierarchy are equivalent to multiple agents [6, 24].

In many multi-agent domains, hierarchies can arise due to asymmetric information
between agents, allowing agents with more information to enforce their strategies onto
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others. Asymmetry can also arise when all agents have equal information, but some have
the ability to commit to their action before the others. This ability to commit to an action
first forces other agents to react to the situation enforced onto them by reducing their
space of desirable actions. In such domains, agents at the top of the hierarchy are called
leaders and can influence the actions of agents at the bottom, called followers.

In non-cooperative multi-agent domains without hierarchies, it is possible to obtain a
Nash equilibrium given that agents know the equilibrium strategy of other players. While in
hierarchical domains, the Stackelberg equilibrium concept can be applied to obtain optimal
leader-follower strategies. The Stackelberg equilibrium has been extended to reinforcement
learning to solve asymmetric problems in multi-agent domains such as cognitive networks
[11, 5], sequential social dilemmas [18], security games [1] and pricing problems [15, 16].
Most of the successes of applying Stackelberg equilibrium to multi-agent domains have
utilized discrete action spaces, singular focused objectives or strategy mixing instead of
learning. We want to extend the Stackelberg game theoretic concept to cooperative and
competitive multi-agent domains with continuous action spaces.

1.2 Problem Description

Current Stackelberg approaches for multi-agent domains are not suited for environments
with continuous action spaces and co-evolving strategies. A critical challenge of adapting
the Stackelberg formulation is the need to maximize over the action space, which is in-
tractable for continuous spaces since there can be an infinite number of possible actions.
Another issue is that the environment becomes non-stationary from the perspective of any
individual agent as each agent’s policy changes during training. The non-stationarity is
a result of evolving policies which prevent any one agent from predicting the next state
based on their individual actions.

When multiple agents have goals that are interdependent on the actions performed
by each other, as in the case of hierarchical environments, it becomes very challenging to
learn robust policies. Recent works, such as counterfactual multi-agent policy gradients
[8] and Multi-Agent Deep Deterministic Policy Gradient (MADDPG) [24], have used the
centralized training of decentralized policies paradigm to overcome the non-stationarity
issue in multi-agent training. However, these methods do not consider hierarchies that
exist among agents in certain domains.

In this work, we focus on integrating the Stackelberg equilibrium concept into multi-
agent reinforcement learning to learn policies that take advantage of positions within an
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hierarchy for domains with continuous state and action spaces. We propose a new algo-
rithm, Stackelberg Multi-Agent Reinforcement Learning (SMARL), which is an extension
of the MADDPG algorithm [24] for hierarchical environments with asymmetric informa-
tion. The proposed algorithm requires formulating a new Stackelberg learning objective,
which conditions policies on actions of other agents. This in-turn requires a new method
for optimizing the Stackelberg learning objective for multi-agent continuous actions. Due
to the dynamics explored in the proposed SMARL algorithm, there are a lack of envi-
ronments available to test the proposed changes. This requires implementation of a new
environment that is also compatible with existing algorithms. The use of new and modified
environments allows for evaluation of our proposed changes and comparison to baselines,
on multiple mixed cooperative and competitive domains.

1.3 Summary of Contributions

This thesis aims to understand how hierarchical structures within environments, whether
they are naturally occurring or artificially induced, can lead to better methods for training
policies in multi-agent reinforcement learning.

• In chapter 2, we summarize some related works upon which we build our proposed
algorithm, along with background concepts required to understand the literature.

– We introduce the fundamental concepts in reinforcement learning such as Markov
decision processes, Q-learning, policy gradient and deterministic policy gradient
algorithms in section 2.1.

– Multi-agent actor-critic methods, which act as the base upon which we imple-
ment our changes are discussed in section 2.2.

– In section 2.3, we present prior works which have applied the Stackelberg equi-
librium model to MARL and discuss how they differ from our contributions.

• In chapter 3, we apply the Stackelberg equilibrium model to multi-agent reinforce-
ment learning domains with continuous action spaces.

– We formulate the Stackelberg learning objective in section 3.1. This includes
defining the concept of leaders and followers for multi-level hierarchies and in-
tegrating this idea into a solvable objective function.
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– In section 3.2, we detail the actor-critic policy updates using our Stackelberg
learning objective. We show the use of follower responses, resulting from leader
enforcement, in policy gradient and temporal difference methods for updating
actor and critic policies respectively.

• In chapter 4, we study the relation between total number of agents and stability of
learned policies.

– We discuss the problem of having multiple followers in section 4.1. We show
how increased followers add noise to the gradient of our Stackelberg learning
objective function.

– In section 4.2, we propose a method to reduce the noise in gradient updates,
caused by multiple followers, by normalizing follower contributions to the policy
gradient update.

– In section 4.3, we explore the use of schedules to vary the magnitude of follower
influence on gradient updates throughout training. This is done to improve
policy robustness and time to convergence.

• In chapter 5, we present experimental domains used to test the performance of our
algorithm, along with the results obtained from these experiments.

– We detail our custom highway driving environment and the modifications made
to two multi-agent particle environments in section 5.1. We also discuss the
observation and action spaces along with reward structures for all agents.

– In section 5.2, we present the results obtained and explain their significance
with comparisons to a baseline algorithm.

• In chapter 6, we conclude the thesis and provide actionable items for future directions.
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Chapter 2

Related Work and Background

This chapter provides an overview of the different sets of literature related to game theory
and multi-agent reinforcement learning, along with key algorithms existing methods and
our own are built upon. We focus on the algorithms used for training policies in single-agent
and multi-agent mixed cooperative and competitive settings, the Stackelberg equilibrium
concept and formulating it as a multi-agent reinforcement learning problem, and the use
of game theory in autonomous driving domains. We also comment on how the literature
relates to and differs from our work.

2.1 Reinforcement Learning Methods

In the following section we focus on the topics in reinforcement learning that are relevant
to understanding our contributions in formulating the Stackelberg equilibrium concept for
continuous multi-agent reinforcement learning with asymmetric information and structure.

2.1.1 Markov Decision Process and Markov Games

The standard reinforcement learning problems where the outcomes are a combination of
random chance and active choices can be analyzed and optimized using a Markov Decision
Process (MDP). We define a MDP with a state space S, real-valued action space A =
RN , initial state distribution p(s1), transition dynamics p(st+1|st, at) and reward function
r(at, at). A single-agent reinforcement learning setup contains an agent interacting with an
environment E in discrete time, where at each time step t the agent receives an observation
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ot, takes action at ∈ A and receives reward rt. A policy π is used to map states to a
probability distribution over actions π : S 7→ P(A) and is representative of the agent’s
behaviour [21]. The return from a state at time t is defined as the sum of discounted future
rewards Rt =

∑T
i=t γ

(i−t)r(si, ai), with time horizon T and a discount factor γ ∈ [0, 1].

In multi-agent reinforcement learning, an extension of Markov decision processes known
as partially observable Markov games [23] are used to reason about multi-agent environ-
ments. A Markov game consisting of N agents is defined by a set of states S describing
the possible configurations of all agents, a space of actions A1, . . . ,AN , and a set of obser-
vations O1, . . . ,ON for each agent. Each agent i selects its action using a stochastic policy
πθi : Oi×Ai 7→ [0, 1], parameterized by θi. These actions produce the next state according
to the state transition function T : S × A1 × . . . × AN 7→ S, while each agent receives a
private observation correlated with the state oi : S 7→ Oi. The reward for each agent is a
function of the state and the actions taken by all agents ri : S×A1× . . .×AN 7→ R. Initial
states are determined by a distribution ρ : S 7→ [0, 1]. Each agent i wants to maximize its
own total expected return Ri =

∑T
t=0 γ

trti with discount factor γ and time horizon T .

2.1.2 Q-Learning and Deep Q-Networks (DQN)

Q-learning [38] is an off-policy model-free reinforcement learning algorithm which uses an
action-value (Q) function for policy π as Qπ(s, a) = E[R|st = s, at = a], to learn the
optimal policy without learning a model of the environment. The Q function is a measure
of the overall expected reward given that the agent is in state st performing action at and
the optimal action-value function is given by Q∗(s, a) = maxπQ

π(s, a) . This Q function
can be written recursively as what is called the Bellman equation [3]:

Qπ(s, a) = Es′ [r(s, a) + γEa′∼π[Qπ(s′, a′)]], (2.1)

where s′ is the new state reached after taking action a in state s, while a′ is the action taken
in state s′. This method is widely used in single agent games and has also been previously
applied to multi-agent stochastic games [36] where agents choose the best mixed strategy
given the expected mixed strategy of all other agents.

In single-agent Deep Q-Networks (DQN) [25], the action-value function is represented
using a neural network parameterized by θ. It learns the optimal function Q∗ corresponding
to the optimal policy by minimizing the loss:

L(θ) = Es,a,r,s′ [(Q∗(s, a|θ)− y)2], (2.2)

where y = r(s, a) + γmax
a′

Q̄∗(s′, a′),
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where the target values y are computed using the target action-value function Q̄. These
two Q functions have the same network structure, but the parameters of Q̄ are updated pe-
riodically with the most recent θ corresponding to the optimal policy, which helps stabilize
learning. DQN also leverages an experience replay buffer D containing tuples (s, a, r, s′) to
stabilize learning by making more efficient use of previous experience. Experience replay
helps separate learning from experience gathering, since the learning is not restricted to
state-action pairs generated by the current policy. This is important because the limited
samples produced by a policy at an instance in time contain low variations in its states
and actions. The experience replay buffer helps preserve past experience containing large
variations in states and actions, enabling efficient use of samples for learning.

Q-learning can be applied to a multi-agent setting by having each agent i learn an
independent optimal function Qi [35]. However, as learning progresses the agents are
independently updating their policies which results in a non-stationary environment from
the view point of any one agent. This violates the Markov assumptions required for the
convergence of Q-learning. This non-stationarity issue is addressed by the centralized
training and decentralized execution framework discussed in section 2.2 below.

2.1.3 Policy Gradient (PG) Algorithms

The objective of reinforcement learning is to find the optimal behaviour strategy for an
agent to maximize its expected return. Policy gradient methods address this by mod-
elling and directly optimizing a policy π parameterized by θ. The policy is optimized by
maximizing the objective function which depends on the policy, this objective function is
defined as:

J(θ) =
∑
s∈S

dπ(s)
∑
a∈A

πθ(a|s)Qπ(s, a), (2.3)

where dπ(s) is the on-policy state distribution under π. Various algorithms can be used to
maximize the objective by directly adjusting parameters θ of policy π by taking steps in
the direction of the gradient ∇θJ(θ). Using the policy gradient theorem [34] the gradient
of the objective function is written as:

∇θJ(θ) ∝
∑
s∈S

dπ(s)
∑
a∈A

∇θπθ(a|s)Qπ(s, a)

= Es∼dπ ,a∼πθ [∇θ log πθ(a|s)Qπ(s, a)]. (2.4)

This is useful in continuous space environments where there are an infinite number of
action and states, which make it computationally intractable to maximize over the action
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space as done in section 2.1.2. Continuous policy parameterization also allows for smooth
changes to action probabilities through learned parameters, whereas in ε-greedy the action
probabilities may change dramatically for small changes in estimated action values [34].

There are multiple methods of estimating Qπ resulting in different algorithms. One
simple estimate is using the sample return Rt =

∑T
i=t γ

i−tri, which leads to the REIN-
FORCE algorithm [39]. A variation of REINFORCE if to subtract a baseline value from
Qπ to reduces the variance of gradient estimation while keeping the bias unchanged [29].
Reducing the variance is important since policy gradient methods are known to exhibit
high variance gradient estimates, which are made worse in multi-agent settings since an
agent’s reward depend on the actions of multiple agents. If the optimization process does
not consider the actions of other agents it leads to more variable returns, thereby increasing
the variance of its gradients. These algorithms are known as model-free algorithms because
they can learn a policy directly using policy gradients and do not require a representation of
their environment. Model-based algorithms try to understand the environment by creating
models which capture state transitions and the reward function.

Another approach for estimating Qπ is approximating the true action-value function
Qπ(s, a) known as the critic which leads to a class of actor-critic algorithms [33]. These
will be the focus of the next few sections and integral to our contributions.

2.1.4 Deterministic Policy Gradient (DPG) Algorithms

The methods described in previous sections have all used stochastic policy functions π(.|s)
which model the probability distribution over actions A given the current state. Determin-
istic policy gradient instead models policies as deterministic decisions a = µθ(s) : S 7→ A.
Given the discounted state distribution ρµ(s) the performance objective can be written as
an expectation:

J(θ) =

∫
S
ρµ(s)r(s, µθ(s))ds

= Es∼ρµ [r(s, µθ(s))] (2.5)

The gradient of the objective function J(θ) is computed using the Deterministic Policy
Gradient Theorem [31] and applying the chain rule as follows:

∇θJ(θ) =

∫
S
ρµ(s)∇θµθ(s)∇aQ

µ(s, a)|a=µθ(s)ds

= Es∼ρµ [∇θµθ(s)∇aQ
µ(s, a)|a=µθ(s)], (2.6)
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where the action-value function Qµ(s, a) is used to estimate the return. Since ∇θJ(θ) relies
on ∇aQ

µ(s, a), it is required that the action space A and consequently the policy µθ need
to be continuous. The deterministic policy gradient is a special case of the stochastic policy
gradient where the probability distribution contains one extreme non-zero value over one
action. More concretely, [31] shows that if stochastic policies πµθ,σ are parameterized by a
deterministic policy µθ and a variance parameter σ, then for σ = 0 the stochastic policy is
equivalent to the deterministic policy πµθ,0 ≡ µθ. As σ → 0 the stochastic policy gradient
converges to the deterministic gradient.

Deep deterministic policy gradient (DDPG) [21] is a model-free, off-policy actor-critic
algorithm that extends DPG by using deep neural networks to approximate the policy µ
and critic Qµ. DDPG also builds on the work done in DQN (Deep Q-Network) which
uses an experience replay buffer and target networks to stabilize Q-learning, but unlike
DQN which freezes the target networks for some period of time, DDPG does soft updates
which update the target networks slowly but consistently. This is done by updating the
parameters of both the actor and critic using τ � 1 : θ′ ← τθ+(1−τ)θ′. While the original
DQN worked with discrete space, DDPG extends it to continuous space while learning a
deterministic policy. The use of a deterministic policy is not good for exploration; to
address this DDPG uses an exploration policy µ′ that is constructed by adding noise N
to the deterministic policy: µ′(s) = µθ(s) +N . The next section looks at applying these
algorithms to multi-agent domains.

2.2 Multi-Agent Actor-Critic Methods

We look at the actor-critic [14] formulation from the perspective of policy gradient meth-
ods where the actor represents the policy and critic represents the value function. Value
functions help guide policy updates by reducing gradient variance seen in the vanilla pol-
icy gradient method discussed in section 2.1.3. The critic can be represented as either
an action-value function Qω(a|s) or a state-value function Vω(s) with parameters ω. The
actor can be represented as either a stochastic πθ(a|s) or deterministic µθ(s) policy with
parameters θ. Critics use temporal difference (TD) learning with a linear approximation
architecture [14] to perform updates, while the actors follow the gradient computed using
information provided by the critic. Learning rates, αθ and αω, are predefined for actor and
critic parameter updates respectively.

The actor-critic framework forms the basis of many multi-agent reinforcement learning
algorithms that we study and build our algorithm upon. In the following sections we discuss
current state of the art multi-agent algorithms that helped shape our contributions. This
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section is divided into three parts which discuss multi-agent actor-critic methods, methods
for communication between agents and influencing the policies of other agents.

2.2.1 Multi-Agent Deep Deterministic Policy Gradient

As stated previously, single-agent RL algorithms cannot be directly applied to a multi-agent
setting since they violate the Markov assumptions required for convergence. A main factor
being the non-stationarity of the environment from the viewpoint of any one agent. The
Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm [24] addresses this
issue by having each agent learn a centralized Q function which conditions on the global
information to mitigate the non-stationarity problem and stabilize training.

Consider a game consisting of N agents with continuous policies µθi
(abbreviated as

µi) parameterized by θ = {θ1, ..., θN}, and a set of all agent policies µ = {µ1, ...,µN}.
Then the gradient of the expected return for each agent i with policy µi, J(θi) = E[Ri],
can be written as:

∇θiJ(θi) = Ex,a∼D[∇θiµi(oi)∇aiQ
µ
i (x, a1, ..., aN)|ai=µi(oi)]. (2.7)

In this case, the Qµ
i (x, a1, ..., aN) is a centralized action-value function which takes as input

the actions of all agents, a1, ..., aN , along with some state information x, and outputs the
Q-value for each agent i. The state information x could contain the observations of all
agents, x = (o1, ..., oN), including additional state information if available. The experience
replay buffer D contains tuples (x,x′, a1, ..., aN , r1, ..., rN), where x′ denotes the next state
from x after taking action a1, ..., aN . The centralized action-value function Qµ

i is updated
by minimizing the loss function defined as:

L(θi) = Ex,a,r,x′ [(Qµ
i (x, a1, ..., aN)− y)2], (2.8)

y = ri + γQµ′

i (x′, a′1, ..., a
′
N)|a′j=µ′j(oj),

where µ′ =
{
µθ′1

, ...,µθ′N

}
is the set of target policies with delayed parameters θ′i. Since

the action-value function for each agent Qµ
i is learned separately, agents can have arbitrary

reward structures, including conflicting rewards in competitive settings.

The centralized Q function is only required during training. While during execution,
each agent’s policy µθi

only takes as input the local information oi to produce an action.
This method is presented below in Algorithm 1 since many other methods including our
contributions are built upon this centralized critic decentralized actor framework.
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Algorithm 1: Multi-Agent Deep Deterministic Policy Gradient for N agents [24]

for episode = 1 to M do
Initialize a random process N for action exploration
Receive initial state x
for t = 1 to max-episode-length do

for each agent i, select action ai = µθi
(oi) +Nt w.r.t. the current policy and

exploration
Execute actions a = (a1, . . . , aN) and observe reward r and new state x’
Store (x, a, r,x′) in replay buffer D
x← x′

for agent i = 1 to N do
Sample a random minibatch of S samples (xj, aj, rj,x′j) from D
Set yj = rji + γQµ′

i (x′j, a′1, . . . , a
′
N)|a′k=µ′

k(ojk)

Update critic by minimizing the loss

L(θi) = 1
S

∑
j

(
yj −Qµ

i (xj, aj1, . . . , a
j
N)
)2

Update actor using the sampled policy gradient:

∇θiJ ≈ 1
S

∑
j∇θiµi(o

j
i )∇aiQ

µ
i (xj, aj1, . . . , ai, . . . , a

j
N)|ai=µi(o

j
i )

end
Update target network parameters for each agent i:

θ′i ← τθi + (1− τ)θ′i

end

end

11



Figure 2.1: Overview of multi-agent decentralized actor, centralized critic approach [24].

2.2.2 Minimax Multi-Agent Deep Deterministic Policy Gradient

The Minimax Multi-Agent Deep Deterministic Policy Gradient (M3DDPG) [20] is an ex-
tension of MADDPG algorithm and is designed to improve the robustness of learned poli-
cies. This is done by introducing the minimax optimization from game theory into the
learning objective. M3DDPG proposes to update policies considering the worst situation
during training, by optimizing the accumulative reward for each agent i under the assump-
tion that all other agents act adversarially. This results in a minimax learning objective
maxθi JM(θi) where:

JM(θi) = Es∼ρµ [Ri]

= min
atj 6=i

Es∼ρµ
[ T∑
t=0

γtri(s
t, at1, . . . , a

t
N) |ati=µ(oti)

]
= Es0∼ρ

[
min
atj 6=i

Qµ
M,i(s

0, a0
1, . . . , a

0
N) |ati=µ(oti)

]
.

From this minimax learning objective we can see that for any agent i, none of the
adversarial actions depend on its parameters θi. This allows for the direct application of
the deterministic policy gradient theorem to compute ∇θiJM(θi) and off-policy temporal
difference to update the Q function. The minimization term in the above equation poses
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an issue since optimizing the minimax objective becomes computationally intractable in
continuous action spaces. M3DDPG addresses this optimization problem by approximat-
ing the non-linear Q functions by a locally linear function and replacing the inner-loop
minimization with single step gradient descent.

In order to approximate the non-linear Q function, M3DDPG interprets the mini-
mization of the Q function as seeking a set of perturbations ε, such that the perturbed
actions a′∗ = a′ + ε decrease the Q value the most. Linearizing the Q function at
Qµ
M,i(x, a

′
1, . . . , a

′
N), allows these perturbations to be locally approximated by the gradi-

ent direction at Qµ
M,i(x, a

′
1, . . . , a

′
N) w.r.t a′j:

∀j 6= i, ε̂j = −α∇ajQ
µ′

M,i(x
′, a′1, . . . , aj, . . . , a

′
N),

where α is a hyper-parameter representing the perturbation rate. Using these perturba-
tions, the gradient of the minimax objective is written as:

∇θiJ(θi) = Ex,a∼D


∇θiµi(oi)∇aiQ

µ
M,i(x, a

∗
1, . . . , ai, . . . , a

∗
N)|

ai = µi(oi)
a∗j = aj + ε̂j, ∀j 6= i

ε̂j = −αj∇ajQ
µ
M,i(x, a1, . . . , aN)

 (2.9)

The action-value function Qµ
M,i is updated using temporal difference as done in Eq. 2.8

with the addition of adversarial actions, resulting in a loss function whose parameters are
updated by minimizing the error defined as:

L(θi) = Ex,a,r,x′ [(Qµ
M,i(x, a1, . . . , aN)− y)2], (2.10)

y = ri + γQµ′

M,i(x
′, a′∗1 , . . . , a

′
i, . . . , a

′∗
N)

a′k = µ′k(ok), ∀1 ≤ k ≤ N

a′∗j = a′j + ε̂′j, ∀j 6= i

ε̂′j = −αj∇a′j
Qµ
M,i(x, a

′
1, . . . , a

′
N)

This method is relevant to our contributions since it shows that it is possible to apply a
game theoretic concept to multi-agent reinforcement learning with continuous action space.

2.2.3 Counterfactual Multi-Agent Policy Gradients

Counterfactual multi-agent (COMA) policy gradients [8] is another method for training
policies in a multi-agent setting using a centralized critic and decentralized actors. This
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method is more focused on cooperative settings as opposed to the competitive settings
in section 2.2.2 and the mixed cooperative and competitive settings in 2.2.1. In addition
to learning policies, this method addresses the multi-agent credit assignment problem [4]
encountered in cooperative settings due to the shared global rewards, which makes it
difficult for each agent to deduce its contributions to the overall goal.

COMA is based on three main ideas. The first idea is the use of a single centralized critic
as opposed to multiple centralized critics presented in previous sections. The second idea
is the use of counterfactual baselines, inspired by difference rewards [40, 37]. Third is the
use of critic representation that allows counterfactual baselines to be computed efficiently.
We focus on the second idea, as it is most relevant to our work.

Difference rewards compare the global reward to the reward received when an agent’s
action is replaced by a default action. In a similar theme, COMA uses its centralized critic
to compute an agent specific advantage function which compares the estimated return from
the current joint actions to a counterfactual baseline that marginalizes out a single agent’s
action while keeping the other agents’ actions fixed.

The centralized critic is used to implement these difference rewards. This centralized
critic is represented as Q(s,u), for joint action u conditioned on global state s ; its the same
as the previous sections but with different notation. The difference reward is represented
by the advantage function Aa(s,u) which compares Q-values for current action ua to a
counterfactual baseline that marginalizes out ua, while keeping the other agents’ actions
u−a fixed. This advantage function is defined as:

Aa(s,u) = Q(s,u)−
∑
u′a

πa(u′a)|τa)Q(s, (u−a, u′a)). (2.11)

Though the counterfactual baseline is dependent on the policy, its expected contribution
to the gradient is zero [8]; hence it does not introduce bias. Given this fact, the COMA
gradient is given by:

g = Eπ
[∑

a

∇θ log πa(ua | τa)Aa(s,u)

]
= Eπ

[∑
a

∇θ log πa(ua | τa)Q(s,u)

]
(2.12)

COMA uses the counterfactual baseline to address the multi-agent credit assignment
problem in cooperative environments. We show in Section 2.3 that the process of computing
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the counterfactual baseline is comparable to computing the Stackelberg actions in discrete
action spaces and provide the basis for extending the Stackelberg concept to continuous
action spaces.

2.3 Stackelberg Model

The Stackelberg equilibrium model is a concept from game theory used to model duopolies.
While there are other methods for modelling duopolies such as the Cournot and Bertrand
models [2], Stackelberg is unique in that it allows one player to commit to an action before
the other player. The player that is allowed to move first is called a leader and the other
agent is labeled a follower. An important assumption made in these models is that each
player knows the other players reaction function. This means that the leader knows how
the follower will react to its action, so it picks an action that maximizes its payoff using
the follower’s reaction function. Another point to note is that once the leader commits to
an action, it cannot be changed. After the leader has committed to an action, the follower
reacts to maximize its payoff under the strategy imposed on it by the leader. Simultaneous
execution of actions is allowed as long as the leader committed to their action before the
follower. This setup of leader and follower is the Stackelberg model/game and actions
resulting from solving this model is the Stackelberg equilibrium. To illustrate this model,
consider the following one iteration game with continuous actions.

Stackelberg Game Example:

Players: Firms Apex and Brydox
Order of Play:

1. Apex chooses quantity qa from the set [0;∞)

2. Brydox chooses quantity qb from the set [0;∞)

Payoffs:

Payoffs π are profits given by price times quantity minus cost of production.

• Cost: c = 12

• Total quantity: Q = qa + qb

• Price: p(Q) = 120− qa − qb
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πApex = (120− qa − qb)qa − cqa = (120− c)qa − q2
a − qaqb

πBrydox = (120− qa − qb)qb − cqb = (120− c)qb − q2
b − qaqb

Brydox’s best response resulting from maximizing πBrydox w.r.t qb:

qb = 60− qa + c

2

Apex substitutes Brydox’s reactions function into its payoff to obtain:

πApex = (120− c)qa − q2
a − qa(60− qa + c

2
)

Maximizing πApex w.r.t qa yields qa = 54 and consequently qb = 27. The Stackelberg
equilibrium resulting from solving this game is the strategy (qa = 54, qb = 27).

This model has been extended to multi-agent reinforcement learning settings to solve
various problems. In the following section we look at some works that have applied the
Stackelberg model to Q-learning and policy gradient methods and discuss how our contri-
butions are different.

2.3.1 Asymmetric Multi-Agent Reinforcement Learning

The work titled Asymmetric Multiagent Reinforcement Learning [15] applied the Stackel-
berg model to multi-agent Markov games with asymmetric information. In particular, two
agent matrix games are analyzed and Q-learning is used to learn policies for each agent.
In a Stackelberg game, asymmetry occurs when one agent has the ability to enforce their
strategy onto other agents. This results in a hierarchy where one agent acts as the leader
and the others as followers. Consider a two player finite game with discrete actions, where
player 1 is the leader and player 2 is the follower. The Stackelberg solution (a1

S, a
2
S(a1)) is

modeled by the following two equations:

a1
S = argmaxa1∈A1r1(a1, a2

S(a1))

a2
S(a1) = argmaxa2∈A2r2(a1, a2)

where aiS is the action corresponding to agent i, satisfying the Stackelberg equilibrium.
The follower’s response is expressed as a function of the leader’s action since the leader has
the ability to enforce its strategy onto the follower to elicit a more desireable outcome.

The work in [15] extends the Stackelberg model to multi-agent reinforcement learning
by representing agent strategies using policies and using Q-learning for training. More
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concretely, given a two player game with finite policies π1 and π2, the leader policy takes
as input the current state and produces a distribution over actions, π1 : S 7→ A1, while the
follower policy takes as input the current state and leader action, π2 : S × A1 7→ A2. The
action-value function Qi

π1,π2(s, a1, a2) = Eπ1,π2 [Ri|st = s, a1
t = a1, a2

t = a2] is updated using
three stages that solve a Stackelberg equilibrium solution for a state s ∈ S.

Stages:

1. Determine cooperation strategy ac = (a1c, a2c) that maximizes Q1
π1,π2 in state s.

arg max
a1 ∈ A1

a2 ∈ A2

Q1
π1,π2(s, a1, a2) (2.13)

2. Determine leader’s enforcement action a1
S = g(s, ac):

g(s, ac) = arg min
a1∈A1

‖ arg max
a2∈A2

(Q2
π1,π2(s, a1, a2)), ac ‖, (2.14)

where ‖ x, ac ‖ = |Q1
π1,π2(s, a1, x))−Q1

π1,π2(s, a1c, a2c))|.

3. Determine follower’s response a2
S

a2
S = arg max

a2∈A2
Q2
π1,π2(s, g(s, ac), a2) (2.15)

In Eq. 2.14 above, g(s, ac) is simply selecting an action a1
S such that player 2’s response

a2
S is close to the cooperative strategy ac, which benefits the leader. The resulting strategy

(a1
S, a

2
S) is in a Stackelberg equilibrium and used to update the Q-functions for the leader

and follower:

Q1
t+1(st, a

1
t , a

2
t ) = (1− αt)Q1

t (st, a
1
t , a

2
t ) (2.16)

+ αt[r
1
t+1 + γ max

a1t+1∈A1
Q1
t (st+1, a

1
t+1, π

2(st+1, a
1
t+1))],

Q2
t+1(st, a

1
t , a

2
t ) = (1− αt)Q2

t (st, a
1
t , a

2
t ) (2.17)

+ αt[r
2
t+1 + γ max

a2t+1∈A2
Q2
t (st+1, g(st+1, a

c
t+1), a2

t+1)]

where rt is the immediate reward at time step t, γ is the discount factor and α is the
learning rate. Note that only the leader needs a copy of the follower’s Q function to
compute its action a1

S = g(st, a
c), which is enforced onto the follower.
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The method proposed in [15] solves a Stackelberg game to determine the best return
in state st+1 resulting from taking actions (a1

t , a
2
t ) in state s, instead of simply taking the

greedy action as done in standard Q-learning. This is different from our work where we
are applying the Stackelberg model to continuous action spaces, which prevents us from
maximizing over a set of discrete actions. Our work also extends to environments with
more than two agents and leverages policy gradient methods to train policies. Though
our work differs from [15], we take into consideration the Q function update rule, which
modifies the target values to consider the Stackelberg equilibrium strategies.

2.3.2 Gradient Methods for Stackelberg Security Games

A gradient based approach for solving Stackelberg games in security settings is presented
in [1]. The game contains two players, where the leader is the defender who must allocate
resources R = {r1, . . . , rK}, to protect targets T = {t1, . . . , tN}, while the attacker (fol-
lower) has to determine which subset of the targets to attack. A defender’s pure strategy
is an assignment of resources to schedules s ∈ S = S1× · · · × SK , where a schedule sk rep-
resents the targets to which resource rk is assigned. An attacker’s pure strategy is simply
a target tn ∈ T to attack. A pure strategy is a set of moves that the player plays with
certainty throughout the game. There can be multiple pure strategies, but the player uses
only one throughout the game. In contrast, the defender plays a mixed strategy which is a
distribution D over pure strategies. A set of the defender’s mixed strategies are denoted ∆,
and an attacker’s response function g maps a mixed strategy to a set of targets g : ∆→ T .

In order to solve the Stackelberg model using gradient methods, this work [1] assumes
a probabilistic model for the attacker and restricts the set of strategies available to the
defender. This probabilistic model is a categorical distribution over the set of targets T ,
which selects an element i with probability ση(x, i) the softmax distribution, with some
vector x ∈ RN . The attacker selects its target according to a softmax distribution over
its utilities, where utility function Uλ, corresponding to attacker type λ, generates the
payoff given a mixed strategy D and some target t. uλ(D) is a vector of expected attacker
payoffs for each choice of target t ∈ T . The attacker selects target tn with probability
ση(uλ(D), n).

The defender is restricted to select distributions from a parameterized class ∆Θ ⊂ ∆,
where Θ is a set of parameters, and for each θ ∈ Θ, there is a corresponding distribution
Dθ ∈ ∆Θ. The probability mass function of Dθ over the schedules S is denoted by p(·|θ).
These approximations produce a stochastic optimization problem from the perspective of

18



the defender. The goal of the defender is to maximize its expected payoff given by:

Ũd(θ) = E
[
Ud(cn(s), tn)

]
, (2.18)

where tn is the target selected by the attacker according to ση(uλ(Dθ), ·), and cn(s is the
coverage of target n under schedule s, where s ∼ Dθ.

We do not focus on the solution to this formulation since it is not relevant to our
contributions. The main takeaway from the work in [1] is the use of a probabilistic model
for the attacker which conditions on the parameterized distribution Dθ of the defender,
which allows the defender to update its parameters θ using gradient ascent while taking
the attacker response into account. Our work uses this idea of having followers condition
of the leader parameters, but it differs from this work as our system is formulated as a
multi-agent reinforcement learning problem.

2.4 Summary

This chapter looked at some of the fundamental algorithms in reinforcement learning used
to train policies in Section 2.1, multi-agent reinforcement learning methods that train
multiple agents in cooperative and competitive settings in Section 2.2 and works that ap-
plied reinforcement learning methods to represent and solve Stackelberg models in Section
2.3. Works that have extended the Stackelberg model to be solved using reinforcement
learning methods have limited the applicability of the model to two agent discrete action
domains. Our work aims to extend the Stackelberg model to any number of agents with
continuous action spaces. This requires us to study and build on the work done in multi-
agent reinforcement learning. We use the Multi-Agent Deep Deterministic Policy Gradient
(MADDPG) algorithm, detailed in section 2.2.1, as our base upon which we implement
our changes. Work in M3DDPG from section 2.2.2, the minimax version of MADDPG,
demonstrated a method for approximating minimization over a continuous action space
and scaling the gradient to control noise. This is useful to our work as it allows us to con-
trol the impact of follower responses on leader policy updates. The counterfactual baseline
method in section 2.2.3 allows the Q-learning Stackelberg formulation from section 2.3.1 to
generalize to a group of agents. In our work we extend the Stackelberg models formulated
for discrete action spaces to multi-agent reinforcement learning with multiple hierarchies,
agents and continuous action spaces.
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Chapter 3

Stackelberg Multi-Agent
Reinforcement Learning

In this chapter, we focus on the problem of applying the Stackelberg equilibrium model
to multi-agent reinforcement learning domains with continuous action spaces. Previous
works have extended the Stackelberg model to domains with a restricted number of agents
and discrete action spaces. We present a general formulation which can be applied to any
number of agents operating in continuous domains with mixed cooperative and compet-
itive objectives. Our new algorithm used to solve this formulation is called Stackelberg
Multi-Agent Reinforcement Learning (SMARL). The following sections present our new
Stackelberg learning objective which takes into account influence from multiple followers
as well as the method for maximizing this objective, since existing solutions are intractable
for continuous action spaces.

3.1 Stackelberg Learning Objective

In many multi-agent domains, there are hierarchies within the environment which give
some agents an advantage over the others. Agents at the top of the hierarchy are known
as leaders and have the ability to commit to an action before other agents. Agents lower
in the hierarchy are known as followers and observe the actions selected by the leaders.
The Stackelberg model discussed in section 2.3 assumes that all agents have knowledge
of other agent reaction functions. Given this knowledge of reaction functions and the
ability of leaders to commit their actions before followers results in asymmetry within the

20



environment. In order to account for these asymmetries and learn policies for leaders and
followers, we employ the Stackelberg equilibrium formulation.

3.1.1 Multi-Level Hierarchy

The strategies and reaction functions in multi-agent reinforcement learning (MARL) set-
tings are represented by the agent’s policy. These policies µ are function approximators
represented by neural networks whose weights are parameterized by θ. During training, we
optimize the expected return for the leaders by having them condition on follower policies.
The leaders’ actions at each step are communicated to the followers and become part of
their observations. The process of communicating leader actions to the followers enables
the followers to observe the leader commitments. This communication mechanism is il-
lustrated using Figure 3.1, which contains three levels of hierarchy from highest to lowest
starting at the top. The observations for each agent are as follows:

Figure 3.1: Three levels of hierarchy where followers observe leaders’ actions

a1 = µ1(o1)

a2 = µ2(o2, a1), a3 = µ3(o3, a1)

a4 = µ4(o4, a1, a2, a3), a5 = µ5(o5, a1, a2, a3)

where ai,µi, oi are the action, deterministic policy and private observation, respectively,
for agent i. Agent 1 is at the top of the hierarchy and does not have any leader; hence, its
policy only takes as input its private observation. Agents 2 and 3 observe agent 1’s action
in addition to their private observations, while agents 4 and 5 observe actions a1, a2 and
a3. We use deterministic policies since they allow us to apply policy gradient methods for
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continuous action values as discussed in section 2.1.4. We can generalize this notation for
any number of hierarchies H, where Ĥ = {1, . . . , H} is a set of hierarchy levels, and each
level h ∈ Ĥ contains some non-zero set of agents.

In order to generalize the above notation, consider a set of N agents, N̂ = {1, . . . , N},
where each value in the set N̂ corresponds to an agent id. Let F(i) ⊆ N̂ represent the
set of followers and L(i) ⊆ N̂ the set of leaders for agent i. The set of agents at level h
in the hierarchy is given by H(h). Assuming agent i is at some hierarchy level h, then its
follower set contains all agents from lower hierarchy levels, which corresponds to a higher
h value, F(i) = {H(h + 1), . . . ,H(H)}. Similarly, the leader set contains all agents from
higher levels, L(i) = {H(1), . . . ,H(h − 1)}. The intersection of leader, follower sets for
any agent i is an empty set F(i) ∩ L(i) = ∅, since all other agents can only occupy one of
H hierarchy levels at any given time. This means that each agent in the set N̂ can be a
leader, follower or equal in hierarchy, with respect to a given agent i.

3.1.2 Stackelberg Learning Objective

Each of the N agents has a continuous policy µθi
parameterized by θ = {θ1, . . . , θN}. We

omit θ from the subscript of µθi
to minimize notation resulting in the abbreviated form

µ = {µ1, . . . ,µN}. We are considering agents with mixed cooperative and competitive
objectives, hence each agent has its own objective it is trying to optimize. Given agent i,
its leaders’ actions, al = µl(ol),∀l ∈ L(i), are computed using private observations ol and
are unaffected by agent i’s action since the leaders are already committed to their actions.
The leaders of agent i may contain their own leaders whose actions are considered by µl,
but these are considered to be part of ol to minimize notation. The set of leader actions is
aL = {al1 , . . . , alK}, where K = |L(i)| < N .

The follower responses, af = µf (of , ai),∀f ∈ F(i), are computed using private obser-
vations of and agent i’s action ai. Each follower f ∈ F(i) may have other leaders whose
actions aL, where ai ∈ aL are part of the input to µf , but these actions are omitted to
minimize notation and considered to be part of of . We explicitly indicate ai as an input
to µf since we are formulating the objective function with respect to agent i. The set of
follower actions is aF = {af1 , . . . , afM}, where M = |F(i)| < N . This formulation shows
that the followers of agent i take into account ai when selecting an action that maximizes
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their objective. The resulting Stackelberg learning objective is maxθi J(θi) where

J(θi) = Es∼ρµ [Ri]

= Ex0∼ρ


Qµ
S,i(x

0, a0
L, a

0
i , a

0
F ) |

a0
i = µi(o

0
i ),

a0
L = µl(o

0
l ) ∀l ∈ L(i)

a0
F = µf (o

0
f , a

0
i ) ∀f ∈ F(i)

 (3.1)

where ρµ denotes the discounted state visitation distribution for deterministic policy µi,
parameterized by θi. The follower responses a0

F at time-step 0 are conditioned upon a0
i .

This is an actor-critic setup where the deterministic policy µi is the actor and the central-
ized action-value function Qµ

S,i is the critic for each agent i ∈ N̂ .

The modified centralized action-value function Qµ
S,i(x, aL, ai, aF ) in Eq. 3.1 can be

rewritten recursively as:

Qµ
S,i(x, a1, . . . , aN) =ri(x, a1, . . . , aN)+

γEx′


Qµ
S,i(x

′, a′L, a
′
i, a
′
F ) |

a′i = µi(o
′
i),

a′L = µl(o
′
l) ∀l ∈ L(i)

a′F = µf (o
′
f , a
′
i) ∀f ∈ F(i)

 (3.2)

where the resulting Q function accounts for both the leaders and followers as it conditions
on the current global state x = (o1, . . . , oN) and actions {a1, . . . , aN}. The Q-value resulting
from this function represents the current reward ri, plus the discounted future return
starting from next state x′, discounted by γ. Eq. 3.2 is equivalent to the MADDPG Q
function in section 2.2.1, but with the addition of leader-follower dynamics. This definition
allows us to apply off-policy temporal difference learning [25] to derive the update rule for
Qµ
S as done for DQN.

3.2 Actor Critic Updates

As mentioned previously, action-value functions Qµ
S are updated using off-policy temporal

difference learning as seen in section 2.1.2, while deterministic policies µ are updated using
the Deterministic Policy Gradient Theorem [31] described in section 2.1.4. In the related
works, none of the actions taken by other agents depended on action ai by agent i and
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consequently θi. On the other hand, our Stackelberg learning objective described above
contains followers whose responses depend on action ai and θi. This dependence on ai
affects the gradient of the objective ∇θiJ(θi). Note that the Stackelberg objective function
in Eq. 3.1 represents the expected return which we want to maximize, so we also refer to
∇θiJ(θi) as the gradient of the expected return.

3.2.1 Actor Update

In an environment with multiple hierarchies an agent i can have multiple followers with
actions aF . Each action af ∈ aF impacts the gradient ∇θiJ(θi) used to update agent i’s
policy µi. To determine the impact of each follower response, consider a two agent system
with agents A1, A2 as leader and follower respectively. The Stackelberg objective for the
leader A1 is given by:

J(θ1) = Ex∼ρ

 Qµ
S,1(x, a1, a2) |

a1 = µ1(o1),

a2 = µ2(o2, a1)

 (3.3)

The gradient ∇θ1J(θ1) for A1 with respect to θ1, considering the impact of A2’s response:

∇θ1J(θ1) = Ex,a∼D


∇θ1µ1(o1)∇a1Q

µ
S,1(x, a1, a2)

+∇θ1µ1(o1)∇a2Q
µ
S,1(x, a1, a2)∇a1µ2(o2, a1) |

a1 = µ1(o1),

a2 = µ2(o2, a1)

 (3.4)

where ∇θ1µ1(o1)∇a2Q
µ
S,1(x, a1, a2)∇a1µ2(o2, a1) is the contribution of follower A2 to the

gradient ∇θ1J(θ1), resulting from the chain rule. These three partial derivative terms make
intuitive sense. The first term ∇θ1µ1(o1) describes the updates to θ1 needed to modify the
output of µ1 to increase the expected return. Modifying the output of µ1 also affects the
follower response since it conditions on the leader’s action. This impact on the follower
response due to changes in a1 is represented by ∇a1µ2(o2, a1). Finally, ∇a2Q

µ
S,1(x, a1, a2)

describes how changes to the follower response affect the resulting action-value Qµ
S,1.

In the general case, the contribution of a follower j ∈ F(i) with action aj = µj(oj, ai)
given ai = µi(oi), to the gradient of the expected return of agent i is given by:

∂Qµ
S,i

∂aj

∂µj

∂ai
=

 ∇ajQ
µ
S,i(x, a1, . . . , aj, . . . , aN)∇aiµj(oj, ai) |

ai = µi(oi),

aj = µj(oj, ai)

 (3.5)
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Computing the partial contributions of all the follower responses aF according to Eq. 3.5
with respect to ai yields:

∇aiQ
µ
S,i(x, aF ) =

M∑
j=1

[
∂Qµ

S,i

∂aj

∂µj

∂ai

]
(3.6)

where M = |F(i)| ≤ N . The resulting gradient value from Eq. 3.6 allows us to generalize
our method to a cooperative or competitive setting since we do not have to make any
prior assumptions about the type of agents in the environment. This also removes the
need to maximize over the entire action space as done by prior Stackelberg reinforcement
learning models in section 2.3, as it would be computationally intractable in continuous
action spaces.

Eq. 3.6 illustrates how a change to ai impacts follower responses, which are conditioned
on ai and consequently affect the output of Qµ

S,i. Taking the follower contributions into
account, the gradient of the expected return for each agent i can be written as:

∇θiJ(θi) = Ex,a∼D


∇θiµi(oi)∇aiQ

µ
S,i(x, a1, . . . , ai, . . . , aN)

+∇θiµi(oi)∇aiQ
µ
S,i(x, aF ) |

ai = µi(oi),

aF = µf (of , ai) ∀f ∈ F(i)

 (3.7)

where the experience replay buffer D contains tuples (x,x′, a1, ..., aN , r1, ..., rN). Each tuple
contains the current global state x, next global state x’, all agent actions and rewards. Note
that each agent contains its own objective function and it is trying to maximize its expected
return. The return depends on each agent’s action-value function Qµ

S,i which also needs to
be updated.

3.2.2 Critic Update

The centralized action-value function Qµ
S,i is updated using off-policy temporal difference

learning as defined in DQN in section 2.1.2. Though this is a centralized action-value func-
tion, each agent in our formulation maintains its own critic network as done in MADDPG
in section 2.2.1. Therefore, there are a total of 2N neural networks being trained which
include N actors and critics, represented by deterministic policies µ = {µ1, . . . ,µN} and
action-value functions Qµ

S = {Qµ
S,1, . . . , Q

µ
S,N} respectively. Having each agent learn a sep-

arate Q function allows agents to have arbitrary reward structures, including conflicting
rewards in competitive settings [24]. In contrast, having a single centralized critic is limited
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to cooperative settings as seen in section 2.2.3. Note that the centralized critic is required
for the environment to remain stationary, since the policies change over time as training
progresses. If the critics did not explicitly condition on the actions of all agents and the
global state, then the environment would be non-stationary from the view point of any
one agent. This would result in the critics being unable to make sense of the changing
behaviour of other agents and consequently be unable to guide the policy training.

The Q function update is identical to the MADDPG update with the added constraint
of leaders committing to their actions before followers, and allowing followers to observe
and respond to this commitment. Accommodating these constraints, the Q-function is
updated by minimizing the temporal difference error:

L(ωi) = Ex,a,r,x′∼D[(Qµ
S,i(x, a1, . . . , aN)− y)2], (3.8)

y = ri + γQµ′

S,i(x
′, a′L, a

′
i, a
′
F )

a′i = µ′i(oi),

a′L = µ′l(ol), ∀l ∈ L(i)

a′F = µ′f (of , a
′
i),∀f ∈ F(i)

where µ′ = {µ′L,µ′i,µ′F} = {µθ′1
, . . . ,µθ′N

} is the set of target policies with delayed param-

eters θ′, and Qµ′

S = {Qµ′

S,1, . . . , Q
µ′

S,N} is the set of target critics with delayed parameters
ω′. These target networks are updated periodically with the most recent θ and ω, which
helps stabilize learning [25]. Combining Eq. 3.7 and Eq. 3.8 yields the main components
of our proposed Stackelberg learning framework for hierarchical multi-agent systems, the
overall algorithm is presented in Alg. 2. In its current form this algorithm struggles to
learn stable policies when there are more than one followers. This challenge of learning
with multiple followers is addressed in the Chapter 4, and the final updated algorithm is
presented in Alg. 2.

3.2.3 Position Based Hierarchy

Our formulation thus far and the related works in section 2.3 have assumed that all agents
have fixed positions within the hierarchy. This assumption does not always hold and in
certain domains the hierarchy between agents can periodically change over the course of a
run. One instance of this is when the hierarchy between agents is enforced by the agents’
position within the environment. For example, in a racing domain the leading vehicle
acts as the leader and can learn to position itself such that it prevents the tailing vehicles
(followers) from overtaking its lead, while the followers are learning to overtake the leader

26



Algorithm 2: Stackelberg Multi-Agent Reinforcement Learning (SMARL) for N
agents

for episode = 1 to M do
Initialize a random process N for action exploration
Receive initial state information x
for t = 1 to max-episode-length do

for h = 1 to max-hierarchy-depth do
for each agent i ∈ H(h) in the current level h do

select action ai = µθi
(oi, aL) +Nt w.r.t. the current policy,

exploration and a set of leader actions aL
end

end
Execute actions a = (a1, . . . , aN) and observe reward r and new state x′

Store (x, a, r,x′) in replay buffer D, and set x← x′

for agent i = 1 to N do
Sample a random minibatch of S samples (xk, ak, rk,x′k) from D
Set yk = rki + γQµ′

i (x′k, a′1, . . . , a
′
N)|a′j=µ′

j(o
k
j ),a′f=µ′

f (okf ,a
′
i),∀f∈F (i)

Update critic by minimizing the loss

L(θi) = 1
S

∑
k

(
Qµ
i (xk, ak1, . . . , a

k
N)− yk

)2

Update actor using the sampled policy gradient with ∇aiQ
µ
i (x, aF )

defined in Eq. 3.6

∇θiJ ≈ 1
S

∑
k∇θiµi(o

k
i )
(
∇aiQ

µ
i (xk, a1, . . . , aN) +

∇aiQ
µ
i (x, aF )

)∣∣
ai=µi(o

k
i ),af=µf (okf ,ai),∀f∈F (i)

end
Update target network parameters for each agent i : θ′i ← τθi + (1− τ)θ′i

end

end
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[22]. This creates a problem where agents collect a disproportionate amount of samples
for one position over another within the hierarchy, resulting in the algorithm being sample
inefficient. This inefficiency is with respect to the experience replay buffer D, described
in section 3.2.1. If an agent collects the majority of its experience from a hierarchy level
h ∈ Ĥ, then it may only perform well on level h. Agents may even fail to learn any decent
policies and require many more samples to converge to a good policy.

We address this issue by mapping policies to positions within the hierarchy instead
of individual agents in the environment. More concretely, we set |µ| = H ≤ N , where
µ = {µ1, . . . ,µH} is a set of deterministic policies for each level in the hierarchy set Ĥ,
and the experience replay buffer stores samples based on hierarchy instead of individual
agents. This allows for efficient use of samples during training and learning specialized
policies for each position in the position based hierarchy. In addition, this method scales
well when the total number of agents greatly exceeds the total levels of the hierarchy
N � H since the set of policies stays fixed |µ| = H.

3.3 Summary

In this chapter we present the Stackelberg learning objective for continuous action spaces
with multiple levels of hierarchy, along with the method to optimize this objective. We
first detail the different inputs to the policies based on positions within the hierarchy
in section 3.1.1. Hierarchies in our model relate to the ability to commit to an action
before others; agents higher in this hierarchy can commit their actions before agents lower
within the hierarchy. We also discuss position based hierarchies, their impact on policy
training and methods to deal with agents periodically transitioning between the different
hierarchy levels in section 3.2.3. The main contributions in this chapter are the formulation
of the Stackelberg learning objective in sectoin 3.1.2, followed by the actor-critic updates
in sections 3.2. Our Stackelberg learning objective demonstrates a method for handling
multiple leaders and followers with continuous action spaces. We also detail our method
for optimizing the Stackelberg learning objective with asymmetric information using policy
gradients and temporal difference learning.
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Chapter 4

Follower Influence on Gradient
Updates

The Stackelberg Multi-Agent Reinforcement Learning (SMARL) algorithm we formulated
in Chapter 3 struggles to learn stable policies as the number of followers increase. In this
chapter, we look at the cause of this issue and propose methods to resolve this problem,
while learning policies which are consistent with the Stackelberg model. In addition to
addressing the main issue, we also investigate the effect of follower influence on leader
policy convergence.

4.1 Multiple Followers Problem

In the previous chapter we demonstrated the relation between leaders and followers, where
leaders commit to their actions before the followers, but followers get to observe this
commitment. We illustrate this process in section 3.1.1, where followers’ policies take as
input the leader action µf (of , ai) for some leader i. Using this setup, we formulate the
Stackelberg learning objective and use actor-critic methods to train policies which optimize
their objectives. The actor update requires computing the gradient of the objective function
with respect to each agent’s policy parameters, ∇θiJ(θi). Now since our learning objective
had follower policies condition on leader actions, the gradients of each leader’s objective
is dependent on those follower policies. Specifically, as we detailed in section 3.2.1, the
contribution of a follower j ∈ F(i) with action aj = µj(oj, ai) given ai = µi(oi), to the
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gradient of the expected return of agent i is given by:

∂Qµ
S,i

∂aj

∂µj

∂ai
=

 ∇ajQ
µ
S,i(x, a1, . . . , aj, . . . , aN)∇aiµj(oj, ai) |

ai = µi(oi),

aj = µj(oj, ai)


The partial contributions of all the follower responses aF with respect to ai yields:

∇aiQ
µ
S,i(x, aF ) =

M∑
j=1

[
∂Qµ

S,i

∂aj

∂µj

∂ai

]
(4.1)

This above term describes the change in output of Qµ
S,i due to changes in follower response

with respect to ai. Since ∇aiQ
µ
S,i(x, aF ) holds the cumulative updates corresponding to

each follower f ∈ F(i), as the number of followers increase, this term starts to dominate
the primary update term ∇aiQ

µ
S,i(x, ai, a−i), where a−i is the set of all actions not including

ai. The primary update describes the change in Qµ
S,i with respect to ai and is equivalent to

the MADDPG actor update seen in section 2.7. The average of the actor loss throughout
training, represented by Lf , Lp to compute gradients ∇aiQ

µ
S,i(x, aF ) and ∇aiQ

µ
S,i(x, ai, a−i)

respectively are shown in Table 4.1 below for different number of total agents:

avg. Lp avg. Lf % diff.

N = 3 109.61 ± 55.4 123.12 ± 59.96 11.60

N = 4 132.04 ± 70.04 148.15 ± 71.18 11.47

N = 5 146.31 ± 141.71 169.52 ± 147.24 14.70

Table 4.1: Primary avg. loss Lp and follower response avg. loss Lf for Particle Tag
environment from the leader’s perspective using fixed size actor-critic networks.

This table shows the average actor loss with respect to a single leader throughout
training. Primary average loss is equivalent to the MADDPG actor loss, while the follower
response average loss results from our SMARL objective 3.1. If the followers did not
condition on the leader’s action ai, the two values would be equal since the critics would
produce the same output. This is not the case, since followers do react to the leader’s
enforcement, resulting in varying critic outputs. Using a fixed size actor and critic network,
the loss values and their standard deviation increase as the total number of agents increase.
This is mainly due to the increase in state space, but the follower response loss has a
larger overall increase compared to the primary loss due to the increase in total number of
followers. This has a direct impact on the gradient computation as shown in Table 4.2.
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‖∇Qp‖1 ‖∇Qf‖1 % diff.

N = 3 1.5784E-02 7.7025E-03 68.82

N = 4 2.099E-02 7.8176E-03 91.45

N = 5 3.5345E-02 9.1062E-03 118.06

Table 4.2: L1 norm of primary and follower response gradients computed using Lp and Lf .

These values in Table 4.2 are used to illustrate the overall magnitude of the gradient
updates throughout training. They are computed by taking the mean of the gradient,
used to update the actor network, at each time-step and computing the L1 norm across
all training steps. The resulting values show that increasing total number of agents leads
to, on average, larger changes in the weights of the actor network. This is expected since
the average loss also increased with total number of agents as shown in Table 4.1. Note
that the norm of the follower response gradient update is also fairly significant and will
dominate the primary update as the number of followers increase. In an effort to soften
the influence of the follower response we propose scaling its gradient.

4.2 Scaling Follower Gradient Contribution

In order to soften the follower gradient contributions, we propose scaling the follower
gradient component ∇aiQ

µ
S,i(x, aF ) by α/M , where M = |F(i)|, and α ∈ [0, 1] is a tunable

coefficient. We first normalize the gradient by dividing by the max number of followers for
agent i. This is important because each leader could have different number of followers and
a fixed α value would not achieve consistent effect across different leader updates. This
hyper-parameter α gives us more control over how much of the follower response we want
to consider during actor policy updates. The updated but shortened version of the actor
update from Eq. 3.2.1 is presented below:

∇θiJ(θi) = Ex,a∼D

 ∇θiµi(oi)
[
∇aiQ

µ
S,i(x, ai, a−i) + α

M
∇aiQ

µ
S,i(x, aF )

]
...

 (4.2)

Note that when α = 0 the gradient update ∇θiJ(θi) is equivalent to the MADDPG actor
update, but it is not exactly equal to the MADDPG update since our agent policies are
modified to incorporate the Stackelberg model. Using this scaling factor attenuates the
effect of follower policies on the leader’s policy gradient updates, but still leads to unstable
learning behaviour due to the changing scale of the gradients.
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4.2.1 Normalizing Follower Gradient Contribution

When policies are being trained, the scale of the gradient changes based on the expected
return J(θi). Updates to θi could result from a small change in ∇aiQ

µ
S,i(x, ai, a−i) with

respect to ai, but a relatively large change in ∇aiQ
µ
S,i(x, aF ). This is evident in the leader

and follower losses presented in Table 4.1. In such scenarios, the follower contributions
to the gradient can still overwhelm the primary update, even with a scaling factor α/M .
This problem of varying gradient scales was encountered in M3DDPG [20, 9] described in
section 2.2.2, where their suggested workaround was to normalize the gradients. Using this
suggestion, we propose normalizing the follower gradient contributions as follows:

g = ∇θiµi(oi)∇aiQ
µ
S,i(x, aF )

ĝ =
α

M

g

‖g‖

where g is the original follower gradient from Eq. 3.7 and ĝ is scaled and normalized
version. We use the L2 norm ‖g‖ to normalize g in order to prevent sparsity in ĝ, since we
simply want to soften the impact of g and not filter any of its parameter updates. Using
ĝ the final updated version of the actor update from Eq. 3.7 is as follows:

∇θiJ(θi) = Ex,a∼D


∇θiµi(oi)∇aiQ

µ
S,i(x, ai, a−i) + α

M
g
‖g‖ |

g = ∇θiµi(oi)∇aiQ
µ
S,i(x, aF ),

ai = µi(oi),

aF = µf (of , ai) ∀f ∈ F(i)

 (4.3)

Normalizing these follower gradient contributions allows us to attenuate their impact
on the overall gradient update of the actor networks. This gives us more freedom to
experiment with the scaling factor α introduced in the previous section. This value does
not have to remain fixed during training and can be updated to control the amount of
influence the follower contributions have on the actor network updates.

4.3 Investigating Follower Influence

In our proposed SMARL algorithm and related works discussed in section 2.2, all agent
policies are trained from scratch. This means that all agents start with policies which con-
tain randomly initialized parameters θi. This allows them to explore the environment and
collect samples in a wide range of states which might lead to better decisions in the future
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that benefit policy training. On the other hand, when followers are performing such explo-
ration, their actions are not always in response to the leader’s enforcement. In such cases,
follower responses act as noise to the leader’s policy update and slow convergence. The
follower responses only become beneficial to the leader policy updates when the followers
start reacting rationally to the leader enforcement as required by the Stackelberg model.
This occurs later during training when the agents start exploiting the action-value function
by selecting the best action suggested at each timestep and avoiding random actions for
exploration.

Using this understanding of how the policy training evolves over time, we propose
adjusting the gradient scaling coefficient α throughout the training. Specifically, we propose
five different schedules for the α coefficient which start low and increase as policy training
progresses. These schedules include a linear, step, exponential, logarithmic and sigmoid
functions; they are illustrated in Fig. 4.1 below. Most of the schedules are designed
to minimize the effect of follower gradient contribution to the leader policy update early
during training, and increase the follower contributions at different rates as the training
progresses. This allows leader policies to be updated while minimizing the noise from
follower responses. The logarithmic update is different from other schedules as it has a
faster increase early during training before slowly approaching the max α value. The
exponential and linear schedules are fixed at 1.0 near the end of training since they do not
have an upper limit. These schedules enable actor networks to be trained using information
from multiple follower responses.

4.4 Summary

This chapter addressed the problem of learning stable policies while accounting for multiple
followers. We first discuss how a leader’s policy update is affected by the number of followers
due to our Stackelberg learning objective in section 4.1. The gradient contribution of the
follower responses starts to dominate the primary update signal as the number of followers
increases. To address this problem we propose scaling the follower gradient contribution in
section 4.2. This is done by first normalizing the follower contribution by the total number
of followers for a given leader and then scaling by a tunable coefficient α. Since the scale of
the gradient changes throughout training based on the expected return, we also normalize
the follower gradient using the L2 norm. Lastly in section 4.3, we investigate how varying
α throughout the training process could lead to better convergence and propose different α
update schedules for testing. The next chapter presents environments to test our proposed
SMARL algorithm against the baseline MADDPG algorithm along with the results.
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Figure 4.1: Variable α update schedules for controlling magnitude of follower influence on
gradient updates.
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Chapter 5

Experiments

This chapter presents some multi-agent experimental domains in which we test our pro-
posed Stackelberg Multi-Agent Reinforcement Learning (SMARL) algorithm. We compare
our proposed algorithm to MADDPG [24] which acts as the baseline. The environments
used include a subset of the multi-agent particle environments [26, 24] and a custom multi-
agent highway driving environment. The particle environments were originally used in [24]
to test their MADDPG algorithm. We only use a subset of these, which have clear leader-
follower dynamics. The following sections discuss details of the test domains, training
configuration and performance results.

5.1 Environments

The proposed SMARL algorithm is only applicable in multi-agent domains due to the use
of the Stackelberg model. Specifically, the use of this algorithm is only relevant to domains
where the interaction between agents can be modeled by leader-follower dynamics. Without
the presence of such a hierarchy all agents would be treated as leaders and the algorithm
would be equivalent to MADDPG. To test our proposed method in a hierarchical setting we
built a new multi-agent highway driving simulator as it has clear definitions for leaders and
followers based on position and also allows us to test general sum coordination scenarios.
In addition, we also tested using the Predator-Prey and Keep-Away scenarios from the
particle environments by assigning certain agents to be leaders and others to be followers.
These three environments are detailed in the following subsections.
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5.1.1 Multi-Agent Particle Environments

Particle environments contain N agents and L landmarks in a two-dimensional world with
continuous observation and action spaces. The time between states is discretized with time-
steps of 0.1 seconds. We focus on two environment called Keep-Away and Predator-Prey
and provide details of each below.

Predator-Prey

In our experiments this scenario consists of three cooperative predator agents whose goal
is to chase a faster adversary (prey) around a randomly generated environment with two
landmarks impeding the way. This setup is illustrated in Fig. 5.1. The predators receive a
negative reward proportional to the sum of the total Euclidean distance of all predators to
the prey and a larger positive reward for every predator colliding with the prey. Since each
predator’s reward depends on the actions of other predators, their rewards are shared,
which promotes cooperative behaviour. On the other hand, the prey is given a small
reward proportional to the sum of total Euclidean distance from each predator, but a large
negative reward for each collision with a predator. The prey is also penalized for leaving
the target area to prevent it from exploiting soft boundaries in the particle environment.
These soft boundaries exist to prevent the predators from cornering the prey and promote
movement.

The original scenario setup does not contain any hierarchies since the private obser-
vations for each agent are equivalent and rewards enforce a zero-sum game. We add
asymmetry into the scenario by allowing the prey to tune its action based on anticipated
reactions from the predators. This is done by modifying the objective function as detailed
in Section 3.1. We designate the prey as the leader by allowing it to commit to its action
before the predators. Predators are appointed as followers who can observe the prey’s ac-
tion and react accordingly. This results in a two level hierarchy with the prey on one level
and all the predators on a level below the prey. Each agent’s private observation contains
velocity, position, relative landmark positions, relative positions and velocities of other
agents; predators also observe the prey’s action in addition to the default observation.

Keep-Away

In our configuration of this scenario we use two landmarks to represent a target and
placeholder, one agent whose goal is to reach the target landmark and two cooperative
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Figure 5.1: Predator-Prey environment containing two obstacles, three predators (follow-
ers) and a prey (leader).

adversary agents whose goal is to prevent the lone agent from reaching the target landmark
while also remaining close to the target. This is illustrated in Fig. 5.2. We setup a two
level hierarchy by designating the lone agent as the leader, allowing it to commit to its
action before the adversaries. Consequently, the adversaries are labeled as followers and can
observe the leader’s action. The leader is rewarded the negative of its Euclidean distance
to the goal, hence it tries to reduce this distance. The followers’ reward is composed of the
leader’s distance to the target minus their own distance to the target landmark; it is not
shared as is done in Predator-Prey.

The original scenario used by [24] already contains asymmetric information between
agents prior to our labels of leader and followers. This is because the leader knows its
distance to the target while the followers need to infer it from the movement of that agent.
The leader’s reward also provides information about the target destination, while followers
obtain mixed feedback. However, we want to test how asymmetry in the environment can
be exploited by agents at the top of the hierarchy to influence the actions of agents at the
bottom; this requires controlling the source of asymmetry in the scenario. We do this by
making the leader and followers receive similar information in their private observations,
with the addition of leader’s action to the followers’ observation. All agents only see their
current physical states, and relative positions of other agents and landmarks, but followers
also observe the leader’s action.
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Figure 5.2: Keep-Away environment with two adversaries, two landmarks and a leader.

5.1.2 Highway Driving Environment

In order to test general sum games and positions based hierarchies, we propose our new
multi-agent highway driving environment. This environment contains a straight three lane
driving area, three obstacles and two agents. The obstacles are vehicles that are not
being trained, but are initialized with a random position and velocity. The agents are
also vehicles, but are controlled by their respective policies. The main goal for each agent
is to travel as fast as possible while avoiding crashing into others. This general setup
is illustrated in Fig. 5.3. There are two levels of difficulty in this environment labeled
as Driving Easy and Driving Hard. The easier scenario always keeps the obstacles in
the centre of the lane, while the harder scenarios have obstacles initialized with random
positions within the lane. This small change makes training more difficult since agents
cannot learn a policy which simply travels between the lanes. Agents control their actions
using two continuous values ranging from [−1, 1], which represent acceleration and steering.
Each run is 60 simulated seconds long and the agents can perform four actions per second
(4Hz); this gives 240 steps per run. We use a clock rate of 36Hz which gives a discretized
time-step of 27 milliseconds. This specific time-step size is used to allow for fast and smooth
simulation. If we were to use a step-size of 0.1 seconds as in the particle environments, the
simulated vehicles would not have smooth transitions.

In this environment all agents are trying to maximize their rewards and do not benefit
from hindering the other agent’s progress. The reward function is simply the normalized
velocity of the agent offset by 1 and ranges from [−1, 0]. A reward of −1 corresponds to
vehicle not moving, and 0 when it is moving at max velocity. A negative reward is used to
motivate the agents to move at their max velocity. Agents need to learn to coordinate their
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Figure 5.3: Highway driving environment with three obstacles and two agents.

actions in certain situations so that they do not crash into one another. This results in a
position based hierarchy where agents physically in the lead act as the leader and agents
tailing are the followers. We limit the scope of our experiments to two agents as it allows
us to test the convergence between leader and follower without the overhead of training
numerous agents. Leading agents have more freedom to take aggressive actions since they
know followers are rational and would modify their action to maintain their positive reward.
Each agent’s private observation contains acceleration, steering, position, velocity, other
agents’ relative positions and velocities, the follower also observes the leader’s action. We
present the setup and results of our experiments in the next section.

5.2 Results

The actor-critic networks in our experiments use a standard multi-layered perceptron
(MLP) with fully-connected layers; the network architecture for the particle and high-
way environments are summarized in Table 5.1. We use ReLU activation, batch norm
with a batch size of 1440, discount factor of 0.99, actor learning rate of 0.0001 and critic
learning rate of 0.001. Adaptive noise is added to the network weights during training to
encourage exploration, but not used during testing. Particle environments are rolled out
for 75 steps, while highway driving simulations run for 240 steps to simulate one minute of
driving. Particle environment networks are the same size as those used in MADDPG. We
use larger networks for driving environments since they contain more dynamic elements
with the added constraint of coordination without collision, and larger networks were found
to have better returns during our experiments.

We measured the number of training steps performed per second for each environment
using the baseline (MADDPG), SMARL with static α and SMARL with variable α models;
these results are presented in Table 5.2. This table shows that there was no significant
change in training time between the models for particle environments. Our model resulted
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Highway Env Predator-Prey Keep-Away
Input Layer 6N + 2 4N + 6 2N + 8

Hidden Layers 4 2 2
Num. Neurons/Layer 256 128 128

Activation ReLU ReLU ReLU
Output Layer 2 2 2

Table 5.1: Actor-Critic network architecture summary for all environments with N agents.

in longer training time for the easy driving scenario, but faster training time for the hard
driving scenario. The main reason SMARL is slower to train than the baseline is because
the agents need to be sorted by position at each step since the hierarchy is position based.
On the other hand, SMARL is faster than the baseline for the hard driving scenario. This
occurs because the follower agent struggles to learn a stable policy early during training
using the baseline model; this causes the follower to lag behind the leader resulting in
multiple obstacles being present in the simulation and hence slowing down computation.
The follower agent in the easy scenario does not suffer from this issue and is able to keep a
closer distance to the leader; hence, reducing the number of obstacles present which result in
faster computation. The cause of these differences is visible in the learning plots presented
in the next section. We also demonstrate the inverse relation between the total number of

Baseline Static α Variable α
Particle Tag 73.90 ± 0.88 74.74 ± 1.00 71.30 ± 0.79

Particle Push 104.39 ± 1.70 106.43 ± 1.44 100.90 ± 1.41

Driving Easy 121.43 ± 4.23 105.14 ± 3.04 101.28 ± 2.75

Driving Hard 74.74 ± 3.28 103.12 ± 3.55 101.35 ± 3.33

Table 5.2: Average training steps/second

agents N and the training time in Figure 5.3. We use the Particle Tag environment as it
always has a fixed number of entities in the environment during the simulation. The next
section details the results obtained during the experiments.

N = 3 N = 4 N = 5
Particle Tag (Static α) 103.64 ± 0.94 74.74 ± 1.00 50.23 ± 1.27

Table 5.3: Particle Tag average training steps/second for total agents N = [3, 5]
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5.2.1 Highway Driving Environment Results

This section presents the reward plots for all the leader and follower agents trained to
maximize reward in the driving environments. Each figure displays the means and stan-
dard deviation of the reward curves over three runs. The reward curves are used as the
performance metric because the policies are trained to maximize their expected reward de-
scribed by the objective function detailed in section 3.1.2. Actor policies that can achieve
higher average reward over the course of a simulation run are thus better than policies
which receive a lower average reward. There are three different figures for each experiment
which consist of SMARL with static alpha values, SMARL with variable alpha values and
a comparison between the baseline and two SMARL experiments.

Driving Easy

The performance of SMARL using static alpha values ranging from α = [0.0, 1.0] with
increments of 0.25 for the easy driving scenario are shown in figure 5.4. The reward curves
for SMARL using variable alpha schedules are shown in figure 5.5 and figure 5.6 shows
the best reward curves comparing the MADDPG baseline with SMARL. In figure 5.4 we
can see that the leader’s reward curves are practically identical and converge to a reward
around −50. This tells us that regardless of the follower gradient scaling factor α, the
leaders learned a policy which on average obtained a reward of −50. The follower policies
are not directly affected by α, but are included for the completeness of the results. There
is more variance in the rewards obtained by the followers, but they are all on average less
than those achieved by the leaders.

The reward curves for the leader using variable α schedules in figure 5.5 were similar
to the results achieved by leaders in figure 5.4 using the static α values with respect to the
converged reward value. A noticeable difference between the schedules is that the sigmoid
and step update curves resulted in higher variance before converging to a stable leader
reward value. As for the follower curves in figure 5.5, the rewards were steadily increasing
but did not have time to converge in the allocated episodes; the follower reward curve
for step schedule diverged near the end of training. Though the follower policies are not
directly dependant on α, they are forced to react to the leader’s action which is a function
of α. A sudden increase in α due to the step schedule can result in a sudden change in the
leader’s action which the follower policy was not trained to handle, leading to diverging
behaviour. Such divergence is more prevalent in later training episodes, when policies are
moving from exploring to exploiting the environment dynamics, and a sudden change in
the leader’s action is equivalent to adding noise to the follower policy observations.
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The follower policies trained using SMARL with variable α schedules performed better
than those with static α values. We can see in figure 5.5 that most of the curves are
comparable to each other and close to the same value as opposed to the larger spread in
figure 5.4. Follower policies trained under the sigmoid and linear schedules also achieved
average rewards comparable to the reward achieved by the leaders.

A comparison between the baseline MADDPG, SMARL with static and variable α is
presented in figure 5.6 for the easy driving scenario. We plotted the three best runs out of
five for each algorithm, and can see that SMARL policies achieved better average rewards
for leader curves than the baseline. SMARL with linear α update schedule performed best
overall with a significant advantage over the baseline and a smaller gain over static α = 1.0.
In terms of follower policies, SMARL[Linear] also achieved better performance than the
baseline, but SMARL[α = 1.0] did not. This result in figure 5.6 supports our reasoning for
including schedules that varied α over the course of training as described in section 4.3,
since this method was able to train better policies in this instance.

Driving Hard

The reward curves for SMARL with static and variable α along with a comparison to the
baseline, for the hard driving scenario, are presented in figures 5.7, 5.8 and 5.9 respectively.
Looking at figure 5.7, it is clear that this difficult environment resulted in lower overall
average rewards across all runs compared to those in figure 5.4 for the easier scenario.
There was also more variance and policy divergence for both leader and follower runs. The
majority of the follower runs diverged and were unable to show any signs of convergence.

In comparison, policies trained using variable α were more stable with respect to the
leaders, as shown in figure 5.8, where only the step schedule diverged. The use of variable
α allowed the leader policies to show signs of stability and convergence earlier than those
in figure 5.7. Follower policies on the other hand were more sensitive to the changes
introduced by these schedules. The step schedule performed poorly, which was consistent
with the results in figure 5.5 for the easier driving scenario. Exponential and sigmoid
schedules also performed poorly closer to the end of training. The commonality between
these three schedules is their sudden increase in α.

The easy driving scenario was not affected by the sudden but smooth rise in α caused
by exp and sig, but the hard driving scenario was more sensitive to these sudden changes
and resulted in divergence during training. Note that in figure 5.8, the follower step and
exp runs both start to diverge around a point during the training which corresponds to the
schedules being capped at α = 1.0 in figure 4.1. This act of capping α does not negatively
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Figure 5.4: Driving Easy average rewards using SMARL with static α values
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Figure 5.5: Driving Easy average rewards using SMARL with variable α values
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Figure 5.6: Driving Easy Baseline vs. SMARL static α vs. SMARL variable α
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impact the linear schedule because a steady increase of α introduced by this linear schedule
allows policies to adapt to changing signals over the course of training. A sudden increase
in α caused by exp, sig and step leave the policies in a fragile state sensitive to changes
and prone to divergence. Follower policies also take longer to converge than leader policies
since they are learning to react to the leader’s enforcement, which is changing over time.

The best run from figure 5.7 and 5.8 is compared against the best baseline (MADDPG)
run and presented in figure 5.9. The plots clearly show that SMARL was able to train
better leader policies that achieved higher average rewards than the baseline. SMARL
with linear α update schedule was able to achieve a higher reward faster than the policies
trained using static α, but they were comparable near the end of the training. One of
the downsides of SMARL is that the algorithm takes longer to converge than the baseline;
this is visible in the leader reward curves of figure 5.9 where the baseline has a fast rise
and is steady while SMARL continues to increase. This is expected since SMARL makes
use of more information made accessible through the leader follower dynamics. Analysing
the follower policies we see a similar trend were the baseline converges to some value and
SMARL slowly catches up to this threshold. SMARL follower policies manage to surpass
the baseline average reward, but very late in the training and with high variance.

Based on these highway driving environments, we demonstrate that SMARL can out-
perform the baseline algorithm but require longer training time to converge to some local
optimal policy. Specifically, SMARL with a linear α update schedule obtained the best
performance in both the easy and hard driving scenarios, while SMARL with static α = 1.0
was a close second in most cases. These environments tested SMARL’s ability to train good
policies in position based hierarchies, described in section 3.2.3, particle environments test
the algorithm in fixed hierarchies.

5.2.2 Particle Environments

In this section, we present the reward plots for all leader and follower agents trained to
maximize rewards for the particle environments. Similar to section 5.2.1, we present the
mean and standard deviation of rewards computed over three training runs. Three plots
are included for each environment illustrating the performance of SMARL with static and
variable α, along with a comparison of these two methods to a baselines model.
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Figure 5.7: Driving Hard average rewards using SMARL with static α values
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Figure 5.8: Driving Hard average rewards using SMARL with variable α values
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Figure 5.9: Driving Hard Baseline vs. SMARL static α vs. SMARL variable α
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Predator-Prey

This section discusses the results obtained by leader and follower policies trained using
SMARL in the predator-prey particle environment [26, 24]. Specifically, we look at results
obtained using SMARL with static and variable α values, along with a comparison to the
baseline in figures 5.10, 5.11 and 5.12 respectively. The leader and follower reward curves
in figure 5.10 are not cleanly separated as they were in the driving environment and contain
more overlap. The leader reaches its convergence value very early during the training since
it is simply learning to run away from the predators. While the follower policies, who share
a global reward, learn to coordinate their actions and settle around a similar reward value
for all variations of α. Different values of α experience large variance at different points
during the training, but lower α values show less overall variance than those with higher
α. Specifically, α = [0.5, 0.75, 1.0] contain large swings during training for both leader and
follower policies, with α = 0.75 diverging near end of training.

The rewards for predator-prey policies trained using SMARL with variable α are pre-
sented in figure 5.11. These reward curves have much more separation than those obtained
with static α for both leader and follower. We can see that the log and exponential update
schedules struggled with high variance and were unable to converge. This can be attributed
to the fast rise in α values, similar to the effect seen in the driving environments. The
negative relation between the fast rise in α and instability in policy behaviour can also be
seen in the sigmoid and step reward curves. This relationship is very noticeable with the
step schedule, since its reward curves contain pockets of high variance corresponding to a
sudden increase in α. In comparison, the variation in rewards for linear schedule is more
stable throughout training.

The policies trained using SMARL with α = 1.0 and a sigmoid schedule are compared to
the MADDPG baseline method in figure 5.12. The figures show that SMARL outperforms
the baseline for both leader and follower policies by a large margin. Specifically, we can
see that the baseline leader policy gets worse reward as training progresses while the
SMARL leader policies stay consistently higher. This is because the SMARL leaders
have knowledge about follower reaction functions through our SMARL objective function
described in section 3.1. Additionally, followers observe the actions taken by leaders and
react accordingly to maximize their return; hence, follower policies are able to obtain higher
rewards than policies trained using MADDPG. The performance of both SMARL methods
is comparable as they achieve similar average rewards. However, SMARL with α = 1.0
performed well for both leader and follower policies, while the variable sigmoid schedule
obtained better leader policies than follower policies.

These results for the predator-prey particle environment show that SMARL can outper-
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form the MADDPG baseline in its own test domain. These results were obtained using the
default parameters for both sets of algorithms without additional hyper-parameter tuning
apart from the follower gradient scaling factor α. Our results show that exploiting the hier-
archies within the environment by making use of follower reactions and leader enforcement
can help train better policies.

Keep-Away

This section presents the results obtained in the keep-away particle environment [26, 24]
described in section 5.1.1. We present the average reward curves obtained using variable
α update schedules in figure 5.13, along with a comparison between SMARL and baseline
in figure 5.14. We do not present the static α results for this environment, as done for
environments in previous sections, since most did not perform well; instead, we present
the best static α run in the comparisons figure. In this environment the rewards were not
shared between followers, therefore, each figure contains the reward curves for a leader
and two followers. These reward curves start at episode 5000 because prior to this point
during training the rewards were significantly lower and their inclusion would obfuscate
the distinction between separate runs.

Recall from section 5.1.1 that the goal of a leader in this environment is to reach the
target landmark, while cooperative adversaries have to prevent the leader from getting
close to the landmark while still remaining close to the target themselves. The first plot
in figure 5.13 shows reward curves for leaders where the step schedule outperforms other α
update schedules. Though the step update performs well for leader policies it struggles for
both follower policies. Similarly, the log update shows similar patterns to the step update
where it performs relatively well for leader policies but struggles for follower policies. The
linear update contains large variance throughout training and negative rewards across all
policies as the previously mentioned schedules. The exp schedule seems to perform well for
leader policies but its follower policies average to zero reward, indicating that the followers
do not learn to exploit the leader’s first move. Finally, the sigmoid α update schedule
performs fairly poorly with respect to leader policies, but its follower policies indicate that
one follower learns to stay close to the target landmark while another follower tries to push
the leader away. This is illustrated by follower 2 obtaining a positive reward, while follower
1 receiving lower reward with higher variance.

A comparison between SMARL with α = 0.75, sigmoid update and the MADDPG
baseline is presented in figure 5.14. As mentioned earlier, the static α runs did not perform
well as illustrated by the α = 0.75 average reward curves. This is apparent due to the
extremes between leader and follower reward curves. The leader performed very poorly
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Figure 5.10: Predator Prey average rewards using SMARL with static α values
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Figure 5.11: Predator Prey average rewards using SMARL with variable α values
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Figure 5.12: Predator Prey Baseline vs. SMARL static α vs. SMARL variable α

54



while both followers obtained high positive rewards. This indicates that the leader clearly
diverged and did not learn a strategy to get closer to the target landmark, while followers
learned to remain near the target and were never challenged. In contrast, SMARL with
sigmoid α updates was able to learn follower policies which took advantage of knowing the
leader’s action. Follower 2 in the sig case learned to remain near the target, while follower 1
ensured the leader was kept away. This is visible in our reward curves as follower 1 needed
to move away from the target landmark, resulting in lower reward with high variance. The
leader was unable to get close to the target since follower 2 maintained its position near this
landmark. The baseline performed very well with respect to leader policies, and maintained
similar rewards between the followers. This indicates that both followers took initiative in
trying to keep the leader away from the target, but this created an opening in the defence
which allowed the leader to get closer to the target. This behaviour is understandable since
the baseline followers did not have knowledge about the leader’s action.

Overall, it is hard to determine which algorithm is superior in this environment. The
baseline trains better attackers, while SMARL trains better defenders. This distinction
results from the hierarchical assumption used as our basis for SMARL. Our proposed algo-
rithm trains better follower policies in this environment because followers have knowledge
about the leader’s action and the ability to exploit this information by relying on their co-
operative partner. This is not the case in other environments where leaders are not forced
into a bottleneck to obtain rewards. This environment highlights the consequences of using
a hierarchical assumption in an environment that was not designed for such cases. The
use of our assumption in this particle environment resulted in one group learning policies
which exploited their position instead of learning general policies which attempt to solve
the problem as illustrated by the baseline.

5.3 Summary

In this chapter we presented experimental environments used to test the performance of
SMARL along with the results obtained by leader and follower policies in each environment.
Section 5.1.2 described our custom built highway driving environment used to test position
based hierarchies, while section 5.1.1 described the predator-prey and keep-away multi-
agent particle environments. The network architecture and timing analysis for SMARL
and the MADDPG baseline is presented in section 5.2. Highway driving average reward
curves, in section 5.2.1, for the easy and hard scenarios show that SMARL leader-follower
policies with variable α update schedules outperform MADDPG in both scenarios. Particle
environment results are presented in section 5.2.2 where SMARL is shown to outperform
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Figure 5.13: Keep Away average rewards using SMARL with variable α values
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Figure 5.14: Keep Away Baseline vs. SMARL static α vs. SMARL variable α
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the baseline for both leader and follower policies. The keep-away particle environment
shows that using the hierarchical assumption, exploited by SMARL, can lead to very
specialized policies that are not indicative of the desired learning objective. Overall, this
chapter highlighted the benefits of using hierarchies within an environment to learn good
policies through the use of our SMARL algorithm while also being conservative with its
application to the general class of multi-agent environments.
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Chapter 6

Conclusions & Future Directions

6.1 Conclusion

In this thesis, we introduced a new method for training policies in multi-agent domains
containing hierarchies among agents. Our method integrated the concept of leaders and
followers defined in the Stackelberg game theoretic model into reinforcement learning. We
leveraged the idea of centralized learning with decentralized execution to train policies in
environments with multiple agents. This involved formulating learning objectives which
took advantage of hierarchies within an environment while working with continuous state
and action spaces. In an effort to work with a larger number of follower agents, we proposed
methods to control the impact of follower actions on leader policy updates. This resulted in
two variants of our algorithm, one where the influence of follower actions on leader policies
was fixed, and another where this influence increases over the course of training. Our
algorithm containing gradual increase in follower influence outperformed one with static
and rapidly increasing follower influence. We tested our method using multi-agent particle
environments and our custom built highway driving environment. The results show that
our method outperformed the baseline with respect to all agents in most domains by taking
advantage of leader-follower dynamics within the environment.

6.2 Future Directions

As our work is based on policy gradient methods, it benefits from the use of domains with
continuous state and action space. It would be very beneficial to reproduce this work
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with discrete action domains, since existing methods rely on searching the full action space
[15]. This would involve developing a method to work with non-deterministic policies that
contain a softmax output unit. Our algorithm also benefited from the use of a variable
hyper-parameter α, used for controlling follower influence on leader policies. This α can be
dynamically updated during training, by taking into account leader’s policy performance,
instead of following a fixed schedule, to make better use the follower influence.

Another direction of interest is studying how the Stackelberg model can be applied to
the training process introduced in Learning with Opponent-Learning Awareness (LOLA)
[7]. LOLA allowed each agent to shape the anticipated learning of its opponents, but
optimized its expected return using opponent parameters which were updated using a
naive learning step. This optimization can be improved for hierarchical environments by
using leader actions and follower responses to update opponent parameters in an informed
manner instead of relying on naive learning steps.

Our proposed algorithm used the Q-value for actor-critic training, but it could benefit
from the use of an advantage function given a good baseline. This advantage function can
be computed using a counterfactual baseline described in Counterfactual multi-agent policy
gradients [8]. These counterfactual baselines could help address the multi-agent credit
assignment problem faced in the particle environments where followers need to cooperate
and share a global reward.

We hope our proposed approach to learning policies in multi-agent hierarchical envi-
ronments can lead to development of new multi agent reinforcement learning algorithms
which are inspired by game theory and applicable to real world multi agent problems.
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