
Non-Intrusive system behavior
tracing using power consumption

by

Adan Flores

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2020

c© Adan Flores 2020

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

This thesis presents a novel non-intrusive method of creating a map of black-box sys-
tems behavior to commands by observing the power consumption of the system. We
expand our method in the form of a flexible framework which supports communication
abstraction layer to send commands on different channels. The framework also integrates
data processing and the opportunity of adding a validation module that framework users
can utilize to detect anomalies in the system. The framework furthermore builds on the
idea of anomaly detection by providing two operating modes: one for generating training
data for machine learning models, and one for run-time validation of the systems behavior.
From the experiments, we confirm the effectiveness of the framework for creating a map
of the systems power consumption against a series of queries. Our experiments also show
some of the challenges presented with this method when different commands induce similar
behaviour in the system.

iii

Acknowledgements

I would like to begin by thanking my academic advisor Dr. Sebastian Fischmeister for
his guidance and for giving me the opportunity of being part of his research team.

Thanks to the ECE department and faculty, for providing me with the knowledge and
assistance I required during my studies.

Finally I would like to thank “Consejo Nacional de Ciencia y Tecnoloǵıa” for funding
my studies and making all of this possible.

iv

Dedication

This thesis is dedicated to my parents, Elva Ramirez and Alberto Flores, who have
always supported me and never stopped believing in me; and to my family and friends,
whom I left behind to pursue this opportunity.

v

Table of Contents

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Related Work . 2

1.2 Problem Statement and Assumptions . 3

1.3 Contributions . 4

1.4 Organization of the Thesis . 4

2 Background 5

2.1 Power Tracing . 5

2.2 Time series . 6

2.3 Statistical classification . 10

3 Framework 12

3.1 Software architecture . 14

3.2 Data acquisition . 15

3.3 Framework running modes . 17

3.3.1 Training mode . 18

3.3.2 Normal mode . 20

vi

3.4 Shared memory . 21

3.5 Communication Abstraction Layer . 23

3.6 Data processing . 25

4 Experiments 30

4.1 I2C devices . 30

4.1.1 Results . 33

4.2 Custom system . 34

4.2.1 Command space . 36

4.2.2 Results . 37

4.2.3 New command space . 41

4.2.4 Classification of traces . 43

4.3 EMP water pump . 43

4.3.1 Command space . 45

4.3.2 Results . 46

4.3.3 Classification of traces . 49

4.4 Sterling truck . 50

4.4.1 Command space . 51

4.4.2 Results . 52

4.4.3 Classification of traces . 55

5 Future Work and Conclusion 56

5.1 Lessons learned . 56

5.2 Future Work . 57

5.3 Conclusion . 58

References 60

vii

APPENDICES 63

A Additional plots for Section 4.2 . 63

A.1 Read accelerometer value . 64

A.2 Read temperature value from sensor 1 65

A.3 Read ambient temperature from infrared sensor 66

A.4 Read ambient light value . 67

A.5 Read temperature value from sensor 2 68

A.6 Read temperature from MCU sensor 1 69

viii

List of Tables

2.1 Distance comparison between Euclidean and DTW computations for time
series. 8

3.1 Default values for digitizer arguments. 16

4.1 Command space for custom system under test. 36

4.2 Map of traces to command space. 40

4.3 New command space after removing commands that generate repeated traces. 41

4.4 Map of traces to new command space. 43

4.5 Metrics for support vector machine classification of custom system’s data. . 43

4.6 Command space for pump ECU. 45

4.7 Map of traces to new command space. 49

4.8 Metrics for support vector machine classification for pump’s data. 50

4.9 Command space for truck. 51

4.10 Metrics for support vector machine classification using truck’s data. 55

4.11 Average DTW distances between command “Request engine temperature 1”
and the rest of the command space. 55

ix

List of Figures

2.1 Diagram showing where the resistor is added to the system. 5

2.2 Example of a trace from Section 4.2. 6

2.3 Euclidean distance vs DTW distance [22]. 7

2.4 Plots of time series to compare . 10

2.5 Example of a hyperplane dividing a set into classes. 11

3.1 System architecture. 12

3.2 Software architecture. 14

3.3 Digitizer card ATS9462 by AlazarTech. 15

3.4 Data acquisition setup. 17

3.5 Training mode sequence diagram. 19

3.6 Normal mode sequence diagram. 20

3.7 Interaction between processes using shared memory. 21

3.8 Communication Abstraction layer. 23

3.9 Screenshot of power trace from I2C device. 25

3.10 Plot of power trace using raw data. 26

3.11 Low pass filter based on fast Fourier transform [21]. 27

3.12 Plots of power traces after applying a rolling mean. 28

3.13 Plots of power traces after applying an iterative rolling mean with a window
size of 10. 29

4.1 Photo of I2C system for experiment. 31

x

4.2 System diagram for I2C experiment. 32

4.3 Screen captures of traces from each I2C device. 33

4.4 Photo of custom system for experiment. 34

4.5 System diagram for custom system experiment. 35

4.6 Plots of selected traces for each command sent to the system under test.
Only one iteration of the rolling mean with a window 10 was computed for
this step. 39

4.7 Plots of selected traces for new command space in Table 4.3. 1000 iterations
of the rolling mean with a window 10 was computed for this step. 42

4.8 Photo of EMP pump system for experiment. 44

4.9 Plots of traces for each command sent to the pump ECU. 1000 iterations of
the rolling mean with a window of 10 were computed for each trace 48

4.10 Photo of Sterling truck used in experiment. 50

4.11 Plots of traces for each command sent to the Sterling truck. 1000 iterations
of the rolling mean with a window of 10 were computed for each trace. . . 53

4.12 J1939 log showing request of PGN FEEE. 54

1 Plots from random samples of read accelerometer value command 64

2 Plots from random samples of read temperature value from sensor 1 command 65

3 Plots from random samples of read ambient temperature from infrared sen-
sor command . 66

4 Plots from random samples of read ambient light value command 67

5 Plots from random samples of read temperature value from sensor 2 command 68

6 Plots from random samples of Read temperature from MCU sensor 1 command 69

xi

Chapter 1

Introduction

With an estimated 93% market share for embedded hardware in 2015 [17] and with the
promise of a connected world through the Internet of Things (IoT) looming in the horizon,
it is not surprising that more and more attackers target embedded platforms in search
of potential vulnerabilities they can exploit for their advantage. In a paper published by
Vijeet M., and Ashish S. [11], the authors list some examples of frequent attacks used
on modern embedded systems that aim to steal information, damage the system, or take
control of the system. Those examples include:

• Tampering with the physical system, whereby the attacker aims to obtain data from
the system by tapping into a communication bus.

• Spoofing of data, whereby the attacker introduces tampered data packages into the
bus with the end goal of persuading the system into thinking that the source of the
package is valid.

• Malware attacks, in which the attacker introduces malicious pieces of code into the
system that run unnoticed by the user and the system itself, to steal data or manip-
ulate the behaviour of the system.

Attacks like the ones previously mentioned have serious economic repercussions for
individuals, companies, and governments. A report by the government of the United States
of America [14] estimates that cyber attacks took a toll on the U.S. economy of between
$57 and $109 billion dollars in 2016 alone. In 2019, businesses in the United Kingdom lost
around $243,000 per incident [10]. From the point of view of the average computer user,

1

victims lost, on average, $142 to hackers in 2017. In the USA alone, 143 million Americans
were affected by cybercrime in the same year [4].

Companies do not only see a loss of capital whenever they find themselves victims
of cybercriminals. they have to invest capital to minimize the exposure to the attacks.
In May 2019, Deloitte published the results of a survey [7] in which financial institutes
report their spending range towards cybersecurity. On average, financial institutions spend
10% of their IT budget on cybersecurity. From the point of view of company revenue,
financial institutions sometimes spend as much as 0.9% of their revenue in an aim to
protect themselves from attacks.

In 2015, security experts Charlie Miller and Chris Valasek hacked a Jeep vehicle by gain-
ing access through an infotainment ECU [6]. The attackers then updated the firmware of
a microcontroller (Renesas V850) with malware that allowed them access to the Controller
Area Network (CAN) bus, which they then used to gain remote control of the vehicle. In
2016, Researchers from Keen Security Lab were able to gain access to the CAN bus of a
Tesla Model S vehicle from a distance of about 19 km [19]. This attack was possible by
making the car connect to a malicious hotspot set up by the attackers. Once the vehicle
connects to the attackers’ hotspot, the attackers then exploit a vulnerability in the system
to get access to a shell and subsequently send commands through the CAN bus [18].

But even attacks like the ones previously mentioned can, in theory, be detected without
the need to install any additional software in the system. In a paper published by Bridges
et al. [2], the authors create power profiles of a CPU for fixed tasks. The authors then use
the profiles to detect any variations when malware is present in the system. We can use
a similar approach to detect anomalies in systems by creating power profiles of a system
when it responds to external requests.

In this thesis, we propose a non-intrusive technique to create a map of system behaviour
without the need to modify the firmware of the system under test. We will implement the
technique in the form of a framework that deploys on multiple systems. The framework
can also obtain training data or, with more development, detect anomalies in run-time.

1.1 Related Work

Power tracing, although novel, is already proving to be a good solution for creating profiles
of systems and aid in the detection of anomalies. Clark et al. researched run-time malware
detection by creating profiles of the power consumption of medical devices [3]. The authors
would gather traces of the system’s power consumption in an idle state and then infect the

2

system with malware. With an infected system, the authors can then create specific profiles
on how the system’s power consumption behaves when running with malware. Later these
profiles can aid in the detection of malware and identify known malware with good accuracy.
In [23], Wei et al., the authors’ research micro-architectural attacks and their impact in
power traces. In their work, the authors confirm that the attacks introduce noise in the
system, which proves useful to detect the anomalies with the power traces. In [2], Bridges
et al. detect anomalies in tasks by creating power profiles of several tasks before and after
infection. One important thing to notice is that for the approaches mentioned in [2] and
[3] depend on the systems running fixed processes. If the processes or systems were to
change not because of malware, but because of an update to the system, the models would
have to be retrained. In [13], Moreno et al. propose a framework for monitoring the power
consumption of a CPU and determine which block of source code is running. This method,
however, requires to reorder the instructions of the code to maximize distinguishability.
The framework adds a stage in the compilation process responsible for reordering the
instructions. Lamichhane et al. later expanded on the previous technique by adding
support for multitasking systems by using a control flow graph [9].

1.2 Problem Statement and Assumptions

As we saw on the Section 1.1, the different works focused on creating profiles that can be
used in anomaly detection. All of this shows that machine learning is being applied for
side-channel analysis. With our research, we aim to add a new methodology to gather data
with our framework to contribute in to machine learning side-channel analysis.

In this thesis, we want to address the following problem statement: Given a black-box
system with observable inputs, perform system identification to map system inputs to side
channel behaviour.

We established the following assumptions for this research:

• The command space is known beforehand: The purpose of this research is to show
that it is possible to create a map of the system’s inputs to side-channel behaviour.
Prior knowledge of the system’s messages has to be known. Finding or guessing the
command space is outside of the scope of this research.

• Systems under test are embedded systems: This assumption limits the scope of the
research to embedded systems. Although we can deploy the framework on general-
purpose computational systems, the complexity of said systems might introduce a lot

3

of noise in the traces. Thus, embedded systems are more desirable for our research
because of the recurring behaviour these systems have with a limited command space.

• System input channels use standard communication protocols: We assume that the
input channels of the systems under test use standard protocols such as I2C, Serial,
UDP, SPI, USB, CAN, J1939, etc. We do not consider cases where the system has
proprietary non-disclosed protocols used in the input channels. We only consider
standard protocols so we can take advantage of the already available drivers in Linux
and the information available online.

1.3 Contributions

The main contributions of this research are:

• A framework that can obtain power traces of a system under test in an autonomously
way by sending a series of commands to the system’s input.

• We provide a modular architecture to facilitate the integration of a validator module
to execute online anomaly detection.

• We give the framework the flexibility of being deployed on multiple systems by using
an abstraction layer to reconfigure the framework easily.

• We designed the framework to run in two modes: The first mode will collect data
that can train a model. The second mode could detect anomalies in run-time mode
with the addition of the validator module.

1.4 Organization of the Thesis

The rest of the thesis is organized as follows. Chapter 2 provides the reader with some
background of power tracing, time series, and machine learning. Chapter 3 presents the
proposed framework and its components. Chapter 4 contains the systems on which we ran
our experiments and the results we obtained for each system. Finally in Chapter 5 we
discuss the lessons learned from our research, the future work, and share our conclusions.

4

Chapter 2

Background

2.1 Power Tracing

A power trace is a collection of data samples showing the power consumption of a system
over time. We can use the samples to create a map of a system, as shown in the works
presented in Section 1.1. One approach to obtain the power traces is by placing a resistor
in series at the entrance of voltage to the system as shown in Figure 2.1. We can then
capture the voltage drop of the resistor over time to generate the trace. Said method was
used in [13]

system
under
test

Power
supply

system
under
test

Power
supply

R

Figure 2.1: Diagram showing where the resistor is added to the system.

In [8], the author describes how to calculate the average power consumption of a pro-
cessor. The author also explains how power consumption is a function of the instructions

5

the processor is executing. When we send a request to a system via a command through an
input channel, the processor will execute a set of instructions associated with that request.
To the power consumed by the processor, we can add the power consumed by other active
modules as part of the request sent to the system.

Figure 2.2: Example of a trace from Section 4.2.

2.2 Time series

Time series is a series of data points ordered in time [15]. Time series models are often
used to understand the causes that produce the data or to fit a model to create a forecast.
By this definition, we can see that our power traces described in Section 2.1 are time series.
This allows us to use standard time series analysis methods on the power traces.

One useful advantage of time series analysis is the measurement of similarity between
two time series. One method to calculate the similarity between two time series is to
calculate the Euclidean distance. The Euclidean distance between the two series is given
by the following equation described in [1]:

Ed (s1, s2) =
T∑
t=0

(s1(t) − s2(t))
2

We can say that s1 is equal to s2 if the Euclidean distance is zero. We can quickly see
that using the Euclidean distance would be a problem. In an ideal world, when capturing

6

the time series under the same scenarios, we will always get the same data points every
time. But in practice, that is not always the case. For instance, power traces contain power
consumption of the system in general. Although sending a command several times might
yield similar power traces, the power consumption of the CPU will vary depending on what
tasks are being executed by the operating system. Noise is also another factor to consider.
For example, noise can be caused by a probe or by the power supply of the system. If
one of the two time series is shifted or stretched, the Euclidean distance will be different
than what we expect every time. Dynamic time warping (DTW) helps in the situation
previously described. DTW computes multiple paths for a data point from one time series
to another and keeps the path that is the most similar to the first data point [22]. Using
DTW, we can calculate the similarity of different time series and create clusters using the
measurement. DTW gives us great flexibility but with the downside of over-fitting our
models.

Figure 2.3: Euclidean distance vs DTW distance [22].

To demonstrate the differences between the Euclidean and DTW distances, we created
some time series and a simple python script to compute the distances from one time series

7

to other eight time series. Time series 2 to 5 are similar to our time series used as a
reference. Time series 6 to 9 are different than our reference. Plots at the end of this
chapter show a visual representation of the data for each time series.

For our python script, we loaded the data into individual NumPy arrays. Then we
calculated the Euclidean distance from time series 1 to the rest of the time series by using
the equation previously mentioned in this section. To calculate the DTW distance, we
used the FastDTW library from author Kazuaki Tanida [20]. Table 2.1 shows the results
of the operations.

Time
series

Euclidean
distance

DTW
distance

Series 1 to series 2 3.4641 3.0
Series 1 to series 3 4.1231 3.0
Series 1 to series 4 3.3166 4.0
Series 1 to series 5 4.5823 2.0
Series 1 to series 6 5.0990 10.0
Series 1 to series 7 6.4031 11.0
Series 1 to series 8 6.7823 14.0
Series 1 to series 9 8.0 18.0

Table 2.1: Distance comparison between Euclidean and DTW computations for time series.

As we can see in Table 2.1, the Euclidean distance calculation yields similar results
across all of the time series, while the DTW distance gives us a greater distance for those
time series that are different than the reference. This might seem like a contradiction
to our previous statement, where we say that Euclidean distance could not accurately
compute a good distance for time series with data shifting. The reason why we get similar
values throughout all Euclidean computations is because of the low data sample for our
time series. In contrast, DTW can calculate greater distances between series that are not
similar to our reference than those that are similar but contain data shifting and data
variations. This is because DTW will try to look for the closest path for the current point
from our first time series. When the time series is different, the path will increase, adding
to the total distance between the two time series.

8

(a) “Series 1”. Data to compare. (b) “Series 2”.

(c) “Series 3”. (d) “Series 4”.

(e) “Series 5”. (f) “Series 6”.

9

(g) “Series 7”. (h) “Series 8”.

(i) “Series 9”.

Figure 2.4: Plots of time series to compare

2.3 Statistical classification

Statistical classification is a supervised learning approach that aims to categorize new,
unlabeled information based upon its relevance to known, labeled data. The algorithms
that sort the data are called classifiers [5]. Statistical classification follows a set of rules
established by the user ahead of time. It is essential to evaluate if the classification is
yielding successful results. For this we can check for different evaluation metrics. These
are some of the metrics we will be taking a look at in this research:

10

• Accuracy: Number of correct predictions divided by the total number of predictions
[12].

• Precision: Number of correct predictions divided by the sum of correct predictions
and false positives [12].

• Recall: Number of correct predictions divided by the sum of correct predictions and
false negatives [12].

For this research we will use support vector machines for obtaining classification metrics
from our data. Support vector machine is a supervised learning algorithm that is used
for classification, regression, and outliers detection [16]. We decided to use this approach
because of the support for high dimensional spaces and it is a supervised learning algorithm
which we can take advantage of since we will know the labels beforehand. Support vector
machines establish hyperplanes to separate two or more sets [24].

Figure 2.5: Example of a hyperplane dividing a set into classes.

11

Chapter 3

Framework

In this chapter, we will explain how the framework is structured and how the framework’s
main components work and interact with each other at a high level. We will begin by
introducing the system architecture shown in Figure 3.1.

System
Under
Test

Query Validator

Commands Answers

Compute
distance

Measure
answer

Probe
system

Distance
metric report

Select
question

Figure 3.1: System architecture.

The system architecture gives us a general idea of how the main components interact
with each other. The framework has access to a list of messages that are available to be
sent to the system under test. The framework probes the system by sending a message

12

selected from the list. The validator module then checks the behaviour of the system. The
validator module has a model of the system which we generate with data obtained from
previous controlled experiments. The validator can then compute a distance metric report
using data from previous experiments. The framework can utilize the metric report to
decide which message it should send next.

The scope of this thesis does not include the validator module, and it is mainly focused
on the development of the framework. The following sections of this chapter will explain
in more detail how the framework is structured and how the modules and components of
the framework work.

13

3.1 Software architecture

Abstraction
layer

I2C CAN J1939 ...

Kernel
drivers

I2C-tools Socket
CAN

ATS9462
drivers

Hardware Kvaser
I2C

controller
in AM3359

......

ATS9462

Applications Framework

Data
processing

File
processing

Digitizer
binaries

Figure 3.2: Software architecture.

The design of the framework’s architecture has the objective of being able to use the
framework on more than one system under test. Target systems that we want to create
power profiles might have different input bus protocols; therefore, the design included an
abstraction layer between the framework application and the kernel drivers. Using the
abstraction layer, we can swap communication protocols while setting up the framework
for an experiment without the need for significant changes in the framework’s code. Thus,
avoiding any unnecessary interaction by the user and minimizing the room for error while

14

preparing for an experiment. Another advantage of using an abstraction layer approach
is the flexibility that the framework possesses to integrate additional communication pro-
tocols. When a system under test requires the use of a communication protocol that is
not present in the framework, the framework maintainer can add a new communication
module to the abstraction layer. The new module will have to provide the required inter-
faces to the framework application and manually added to the framework. The user of the
framework can then change the protocol to the new one without knowing the internals of
the new module and without changing the application to call any new interface. Section
3.5 offers a more detailed look at the abstraction layer.

Another major focus of the design of the framework is modularity. By identifying the
main features of the framework, it is possible to break the features down into modules.
Such is the case of the data processing and file processing modules. The idea of creating
a module for each process is similar to that of the abstraction layer. The modules keep
the implementation of the feature hidden from the user and allows the maintainer of the
framework to add, change, or remove code from the module without having a big impact
on the application.

3.2 Data acquisition

Figure 3.3: Digitizer card ATS9462 by AlazarTech.

15

The framework captures the data from the system under test by utilizing a digitizer PCI
Express interface card. The card is a model ATS9462 manufactured by AlazarTech, which
allows the capturing of data from two simultaneous channels.

For the framework to be able to control the digitizer, the framework uses a binary file
that has the necessary code to configure the digitizer and begin the capturing of the data.
The binary takes as input the following arguments:

• Number of samples

• Range of sample

• Time of capture

• Number of channels

• Name of output file

The arguments previously mentioned are coded in the framework as part of the user
pre-configured settings. The values of the settings are set to default values, as shown in
the next table. These values will be part of the experiments throughout Chapter 4 except
for the number of channels that will vary.

Parameter Default value
Number of samples 10MS/s
Range of sample 400mV
Time of capture 1000s
Number of channels 1
Name of output file experiment

Table 3.1: Default values for digitizer arguments.

The time of capture is kept at a high value because the framework automatically stops
the capture once it finishes sending commands to the system. Ideally, we want to keep the
digitizer capturing data and have the framework stop the capture whenever we consider
that enough data was collected. Thus, we use a value such that the data capture will not
be interrupted when the framework is still issuing commands to the system under test.

16

system
under
test

Power
supply

ATS9462
Differential
Amplifier

channel AR

Figure 3.4: Data acquisition setup.

Figure 3.4 shows the connection between the digitizer card to the system under test.
It would be easy to assume that the card is connected directly to the system; however,
this presents a problem. By attaching a probe directly to the power line of the system,
we are effectively adding the probe to the overall circuitry. This additional circuitry can
lead to changes in the behaviour of the power consumption and thus introducing unwanted
noise to the traces[Reference]. To work our way around this issue, we introduce a resistor
(represented by R) between the power supply and the system under test. However, the
value of the resistor must be small so that the voltage drop caused by the resistor does
not affect the functionality of the system. Nevertheless, adding a small resistor leaves us
with a new issue. Because the value of the resistor is small, the voltage drop will be in the
order of millivolts. Since the digitizer card capture range starts at 200mV, we have to add
a circuit that outputs the voltage drop across the resistor and amplifies the signal so that
our digitizer card can capture the data. The solution is to add differential amplifier stage
at the input of the digitizer card.

3.3 Framework running modes

One of our objectives is that our framework can provide an easy way to gather data for
machine learning side-channel analysis. We also want the framework to allow researchers
to expand upon the current framework and use it as a platform to perform online side-
channel analysis. Thus, we designed two running modes for our framework: training mode
and normal mode. In training mode, the framework loads a list of commands to send to the
system under test. The framework then sends each command and captures the respective
trace while creating processes to convert the files and transform the data in parallel. The

17

framework will do this continuously without any input. In contrast, in normal mode, the
framework sends a command, waits for the file and data to be processed, and then it
proceeds to send the next command and repeat the process. The following subsections
offer a more detailed explanation for each mode.

3.3.1 Training mode

When running the framework in training mode, it is important to note that the main
objective is to capture data that will be useful to train a model. Thus, the framework does
not have to wait for any additional input or feedback before sending the next message.

Another difference between the training mode and the normal mode is the creation
of the monitor thread. The monitor thread’s objective is to monitor the availability of
files or data that need processing by checking two queues and the number of framework’s
host PC cores available for the framework to use. One queue contains files that need to
be processed, and the other queue contains data that needs to be processed. If any of
the queues are not empty, the monitor thread will check if there are PC cores not being
used by the framework. If there is a core available, the monitor thread will create the
corresponding process based on the queue’s contents.

The file processing process is in charge of converting the raw data to a text file. The
process then parses the file and splits the file into individual traces, or trims down the
data using user pre-configured parameters in the framework. Finally, the process saves the
resulting traces in the form of a CSV file. We decided to use the CSV format because its
human readable, it can be processed by almost all applications, and it is simple to parse.
Although CSV comes with some disadvantages such as: no distinction between text and
numeric values, no way to represent binary data, and poor support of special characters,
the data in the CSV files are only positive or negative decimal values that require no special
formatting.

The data processing process takes the CSV file generated by the file processing process
so it can apply a moving average to the data using user pre-configured parameters to clean
the noise from the data. Section 3.6 contains more information regarding this process.

The image below shows the sequence that the framework follows in this mode:

18

Fr
am

ew
or

k G
et

 n
ex

t
m

es
sa

ge

G
et

 n
ex

t
m

es
sa

ge

D
ig

iti
ze

r b
in

ar
ie

s
Bu

s
ab

st
ra

ct
io

n

M
on

ito
r

th
re

ad

C
he

ck
fo

r
fil

es

Fi
le

_p
ro

ce
ss

in
g

pr
oc

es
s

ex
it

D
at

a_
pr

oc
es

si
ng

pr
oc

es
s

R
un

 ro
llin

g
m

ea
n

C
re

at
e

th
re

ad

St
ar

t c
ap

tu
re

re
tu

rn

Se
nd

 m
es

sa
ge

St
op

 c
ap

tu
re

Fi
le

 a
va

ila
bl

e
fo

r
fil

e
pr

oc
es

si
ng

C
re

at
e

pr
oc

es
s

C
on

ve
rt

fro
m

bi
na

ry
 to

 te
xt

re
tu

rn

Fi
le

 a
va

ila
bl

e
fo

r
da

ta
 p

ro
ce

ss
in

g

C
re

at
e

pr
oc

es
s

Sp
lit

_t
ra

ce
s

sp
lit

 tr
ac

es
 a

nd

co
nv

er
t fi

le
s

to
 c

sv

re
tu

rn

sh
ut

do
w

n
th

re
ad

Sa
ve

 d
at

a
to

 fi
le

ex
it

W
ai

t f
or

 fi
le

s
to

 fi
ni

sh
 p

ro
ce

ss
in

g
an

d
fo

r p
ro

ce
ss

es
to

 e
xi

t

St
ar

t i
n

tra
in

in
g

m
od

e

re
tu

rn

F
ig

u
re

3.
5:

T
ra

in
in

g
m

o
d
e

se
q
u
en

ce
d
ia

gr
am

.

19

3.3.2 Normal mode

Running the framework in normal mode follows a similar sequence to that of the training
mode. The main difference of the running mode is that the application no longer creates
the monitor thread. The absence of the thread is because the data obtained from the
system under test must be fed to a distance calculator and compare against the database
to decide which message follows. In contrast, in training mode, we have a list of all the
messages to send to the system.

The absence of the monitor thread and the processes created by the thread does not
mean that the overall functionality and data obtained are any different. In fact, the same
code that is used by the processes is used by the framework in running mode. This is
the result of the modularity approach mentioned in Section 3.1. This approach allows us
to change how each module behaves with both training and normal modes being able to
benefit from the changes without the need for additional coding effort.

Figure 3.6 shows the interaction between the framework, the digitizer binaries, the
communication abstraction layer, and the data processing module.

Framework

Get next
message

Get next
message

Save data to file

Run rolling mean

Digitizer binaries Bus
abstraction

Start capture

return

Send message

Stop capture

Convert from
binary to text

return

Split_traces

split traces and
convert files to csv

return

Start in
online mode

return

Figure 3.6: Normal mode sequence diagram.

20

3.4 Shared memory

We designed our framework to use multi-threading and multiprocessing to take advantage
of the framework’s host PC multi-core CPU to reduce bottle-necking. Since some of the
operations are independent of each other, we split them into different from each other.
We used three processes: one for the framework, one for processing the files, and one for
processing the data. Furthermore, we added an additional thread to the framework’s main
process that is in charge of creating the necessary processes when necessary.

Child process

Process file

Child process

Process data

Parent process

Monitor
thread

Framework

File counter

Cores available

Process file queue

Process data queue

Figure 3.7: Interaction between processes using shared memory.

Processes need to transfer data between each other in the framework. The interaction
between processes in the framework uses blocks of shared memory. Locks control access to
shared resources. The framework uses one lock per memory block. When a process needs
to access the shared resource, its main thread must first acquire the lock. If some other
thread is already using the lock, the requester must wait for the lock to be released. The
process for acquiring and releasing the locks uses the synchronization APIs from Python’s
multiprocessing library, which are blocking function calls. In Figure 3.7, we can see the
blocks of shared memory. Next, we will talk about each memory block and its purpose.

21

• Cores available: This is a variable that contains the number of cores available to
create processes. When the monitor thread sees that some files or data needs to
be processed, the thread will read the value of the variable and see if the value is
greater than zero. If the value is different than zero, the monitor thread creates the
corresponding process and decreases the value of the counter by one. When a process
finishes (including the framework application), it releases the core it was using and
adds the free core to the counter by increasing the counter by one.

• Process file queue: This is a list that contains all the files that require to be
processed and trimmed down to a single power trace. This list is accessed by the
framework application and the file processing process. Looking at this from the point
of view of a producer-consumer problem, the application is in charge of producing a
raw file, and the monitor thread to create a process that will consume the file. When
no file is available, the monitor thread will skip the process creation.

• Process data queue: Much like the queue previously mentioned, this is a list that
contains all the files in which data needs to be processed. This list is accessed by the
file processing process and the data processing process. Following the example from
the previous queue, the file processing process creates the necessary data, and the
data processing process consumes the resource.

• File counter: This is a variable that contains the number of files that are yet to be
processed. This variable takes into account the moment the file containing the raw
data is generated by the application, till the moment the data processing processed
finishes and generates the processed data file. This variable main usage is to know
when there are no more files to process and safely exit the application.

22

3.5 Communication Abstraction Layer

Framework Abstraction
Layer

Send_Message

__del__

__init__

I2C

CAN

J1939

...

Figure 3.8: Communication Abstraction layer.

One of the framework’s objectives is to be able to be used to map inputs to side-channel
behaviour on any blackbox system with observable inputs and outputs. Since every system
under test might have different communication protocols for its inputs, the framework
must change between communication protocols without the need for major rework to the
framework. The solution to this problem is to create an abstraction layer. This layer
will provide the necessary interfaces to set up the communication bus, send a message,
and close the bus. These interfaces allow the user to choose the desired communication
protocol in the pre-configured parameter of the framework without changing any code or
functionality in the framework. Following this approach allows the user to focus only on
the design of the experiment rather than having to spend extra effort in modifying the
application itself.

Another advantage of this strategy is the fast integration of new communication pro-
tocols into the framework without needing to modify the application code. A framework
maintainer can add a new communication protocol by creating a new module that provides

23

the required interfaces. The maintainer is then free to add any processing that the module
might require before sending the message to the system under test.

The interfaces supported by the abstraction layer are the following:

• init : This interface initiates the bus. It contains the necessary code to set the
right interface, speed, etc. Note that this constructor interface is not accessed directly
by the user. When the framework creates the object, the constructor executes the
code in this method.

• Send Message: This interface sends a message out to the system under test. It
contains the code necessary to adjust the format of the arguments. It takes as
arguments the target device address, data to send, and register offset if supported.

• del : This interface closes the bus. It contains the code needed to clean up
the module and close down the communication with the bus. Note that like the
constructor interface, this destructor interface is not accessed directly by the user.
When the framework deletes the object, the destructor is invoked and runs the code
in this method.

24

3.6 Data processing

Figure 3.9: Screenshot of power trace from I2C device.

Our first results obtained during the first experiment in Section 4.1 were showing unique
power traces when sending commands to the system under test. The power traces obtained
were distinguishable from the power consumption of the system under test idle state. Figure
3.9 shows a screen capture of one of the early tests from Section 4.1. Channel B shows a
clear difference between the system in idle mode and when the system receives a command.
However, we stumbled across a new problem when performing the experiments in Section
4.2.

25

(a) Full plot. (b) Trimmed plot.

Figure 3.10: Plot of power trace using raw data.

Figure 3.10 shows the plot of the raw data obtained by the framework from a system
under test in an experiment from Section 4.2. On the left side, we can see the plot of
the entire data we collected, and on the right side, we can see a trimmed version of the
data showing only the first 50000 data samples. The trace shows no obvious discernable
features in the traces compared to the one in Figure 3.9. This is due to the fact that
some components of the system are producing high-frequency signals. Removing the high-
frequency signals results in a more defined signal of interest which in our case is the
overall power consumption of the system over longer periods of time than those of the
high-frequency signals. These longer periods of time can be interpreted as lower frequency
signals than the high-frequency dominating the time series. Figure 3.11 shows an example
of a low pass filter being applied to a signal.

26

Figure 3.11: Low pass filter based on fast Fourier transform [21].

There are several ways to filter out high-frequencies of a signal. The method we decided
to use in our research is a rolling mean calculation. The rolling mean is the result of
computing the mean of a subset of orderly sequential values where the subset size is defined
by a positive integer value called “window size”. The set of values is then shifted to the
right, adding a new value to the set and dropping the last value from the set. The process
repeats itself until all the values in the main set are covered.

The rolling mean can be described using the following formula:

RM =
x1 + ... + xn

n
(3.1)

Where RM is the rolling mean value or moving average value, x1 + ... + xn is the set
of values in the window, and n is window size value.

When we compute the rolling mean, we can see that the high-frequency elements starts
to minimize and details from the trace start to appear. Figure 3.12a shows the result of
a rolling mean with a window size of 100 points, and Figure 3.12b shows the results of
computing a rolling mean of 1000 points.

27

(a) Window size of 100. (b) Window size of 1000.

Figure 3.12: Plots of power traces after applying a rolling mean.

As we can appreciate in the Figure 3.12, the rolling mean can significantly reduce the
high-frequency components from the original data shown in Figure 3.10b compared to that
from Figure 3.12b.

Another approach that expanded on the use of the rolling mean was to repeat the
operation several times using the same window. This approach allows us to remove the
high-frequency elements while having smaller window sizes. As a result, we minimize the
loss of data and features present in the trace. The following figures show the results of
computing a rolling mean with a window size of 10 points. The figure on the left iterated
the computation 100 times, and the one on the right iterated the computation 1000 times.

28

(a) 100 iterations. (b) 1000 iterations.

Figure 3.13: Plots of power traces after applying an iterative rolling mean with a window
size of 10.

After experimenting with different window sized and iterations, we designed the rolling
mean method with flexibility in mind. The user can configure the number of iterations to
run the rolling mean on the data set, the window size of the rolling mean, and the number
of data points to keep.

29

Chapter 4

Experiments

In this chapter, we describe the experiments we conducted using the framework described
in Chapter 3 on various systems. We begin by gathering power traces from individual
I2C devices to confirm that different systems can generate distinct power traces. Next,
we collect power traces of a custom-built embedded system to verify that one system can
generate multiple distinct power traces when the framework sends different commands to
the system. Afterward, we gather power traces from a water pump system to confirm
that systems using ECUs and J1939 can generate distinct power traces. Finally, we gather
traces from a cargo truck to confirm that a system with multiple ECUs can generate distinct
power traces.

4.1 I2C devices

The purpose of the experiment in this section was to observe changes in the power con-
sumption of the system while sending commands to the system. We wanted to confirm
whether or not systems have distinct power traces that we can map to system inputs. To
do this, we gathered four different I2C sensors and sent I2C commands to each sensor and
captured the power consumption of the sensors individually.

30

Figure 4.1: Photo of I2C system for experiment.

The setup for this experiment consisted of a BeagleBone Black card, the digitizer card
(described in 3.3) with two differential amplifiers for two channels, a synchronization mod-
ule for the digitizer, and four I2C devices. The diagram in Figure 4.2 shows the connection
of all devices. One important thing to note in this experiment is that the framework re-
sides in the BeagleBone Black for this experiment. The framework is inside the board to
have direct access to the I2C bus. Because the framework is not running on the computer
where the digitizer card is, we created a synchronization module for this experiment. The
framework uses the synchronization module to start and stop the acquisition of data the
same way as if the framework is running in the digitizer workstation.

31

ATS9462 BeagleBone
Black

LSM303C MCP4725 MPL3115A

Differential
amplifier

MPU9250

Vcc - 5v

Differential
amplifier

I2C busGPIO
Channel A

Channel B

200 Ohms

12 Ohms

Digitizer
sync

UDP

Framework

System Under Test

Figure 4.2: System diagram for I2C experiment.

Our system under test in this experiment consists of four I2C devices:

• LSM303C: Six degree of freedom inertial measurement unit

• MCP4725: 12 bit digital to analog interface

• MPL3115A: Precision pressure sensor with altimetry

• MPU9250: 3-Axis gyroscope, accelerometer, and magnetometer

This experiment was repeated for each of the I2C devices to confirm that each I2C
device generated distinct power traces. For each measurement, we moved the 12 Ohms
resistor to the power line of the I2C device that we were testing. Figure 4.2 only shows
channel B measuring the power consumption of device LSM303C.

This experiment also used the second channel of the digitizer card. The purpose of this
channel is to allow the framework to know when a trace begins and when it ends more
precisely. The second channel is measuring the output of a GPIO pin from the BeagleBone
Black. The GPIO toggles once to indicate that the trace has begun and twice to indicate
the end. Figure 3.9 has labels showing where the start and end of the trace are. This
functionality is exclusive to the experiments using the BeagleBone Black card, and we
plan to port it to the framework as part of the future work.

32

4.1.1 Results

(a) Trace of LSM303C. (b) Trace of MCP4725.

(c) Trace of MPL3115A2. (d) Trace of MPU9250.

Figure 4.3: Screen captures of traces from each I2C device.

We selected one command per each I2C device by reading the datasheets of the devices.
These commands would prompt the I2C device to do a reading of its sensor and return

33

the computed value. Figure 4.3 contains a capture of the digitizer tool to see a live visual
representation of the power consumption of the system under test when we send the selected
command to the I2C device. As we can see, each of the traces generated is different from
each other. This confirms that we can generate distinct traces for different devices when
we send a command to the system.

4.2 Custom system

The purpose of this experiment is to determine if distinct power traces can be generated
for input commands when we take into account the power consumption of the system as a
whole. For this experiment, we have built a custom embedded system. This setup aims to
mimic a small and simple embedded system with a microprocessor and a microcontroller,
both accessing slave devices. Much like the experiment in Section 4.1, this experiment also
uses a second channel to generate reference points to mark the beginning and end of the
traces.

Figure 4.4: Photo of custom system for experiment.

The setup for the second experiment consisted of a custom-built system. Similar to
the setup in Section 4.1, there is a BeagleBone Black and I2C sensor. In addition to the

34

components previously mentioned, there is an Arduino Zero, a digital multiplexer, and a
voltage regulator. The biggest difference between this experiment and the last one is the
measuring point. For this experiment, the power consumption is measured at the entrance
point of the voltage for the system, as shown in Figure 4.5.

Vcc - 5v

200
Ohms

12 Ohms

GPIOGPIO

Serial

I2C bus I2C bus

Beaglebone
black

Voltage
regulator

5v -> 3.3v

MPU6050 MLX90614

BMP180MAX44009

Arduino
zero

MCP9080 MCP9080

MCP9080 MCP9080

Multiplexer

Digitizer Channel B

Digitizer Channel A

Framework

UDP
System Under Test

Figure 4.5: System diagram for custom system experiment.

35

4.2.1 Command space

Command to send
Read accelerometer value from sensor 1
Read temperature value
Read gyroscope value
Read ambient temperature from infrared sensor
Read object temperature from infrared sensor
Read ambient light value
Read temperature value from sensor 2
Read pressure value 1
Read pressure value 2
Read pressure value 3
Read pressure value 4
Calculate mean temperature value from MCU sensors
Read temperature from MCU sensor 1
Read temperature from MCU sensor 2
Read temperature from MCU sensor 3
Read temperature from MCU sensor 4

Table 4.1: Command space for custom system under test.

The command space for this system consists of reading values from multiple sensors. Some
of the values come from the same sensor. The framework will send the commands to the
system via UDP. The microprocessor will get the request and distribute it to the right
module. For this experiment, we set the framework for training mode, and we sent each
command 100 times to the system.

36

4.2.2 Results

(a) (b)

(c) (d)

(e) (f)

37

(g) (h)

(i) (j)

(k) (l)

38

(m) (n)

(o) (p)

Figure 4.6: Plots of selected traces for each command sent to the system under test. Only
one iteration of the rolling mean with a window 10 was computed for this step.

Figure 4.6 displays plots selected from the collection of data for each of the commands sent
to the system processed using a single iteration of the rolling mean with a window of 10.
Visual inspection of the plots indicates similar results to the ones obtained in the previous
experiment where the traces are mostly distinguishable from each other. Table 4.2 maps
the plots to their corresponding commands from the command space.

39

Command to send Trace
Read accelerometer value 4.6a
Read temperature value from sensor 1 4.6b
Read gyroscope value 4.6c
Read ambient temperature from infrared sensor 4.6d
Read object temperature from infrared sensor 4.6e
Read ambient light value 4.6f
Read temperature value from sensor 2 4.6g
Read pressure value 1 4.6h
Read pressure value 2 4.6i
Read pressure value 3 4.6j
Read pressure value 4 4.6k
Calculate mean temperature value from MCU sensors 4.6l
Read temperature from MCU sensor 1 4.6m
Read temperature from MCU sensor 2 4.6n
Read temperature from MCU sensor 3 4.6o
Read temperature from MCU sensor 4 4.6p

Table 4.2: Map of traces to command space.

One thing to note is that some of the traces are similar to each other, as it is the
case with Figures 4.6. The similarity between traces is due to the fact that similar traces
are generated by commands triggering a reading from the same module in the system.
Although the commands access different registers from the module and the type of data
sent back by the module is different, it is possible that the module treats all requests in
the same way but only sends back the data corresponding to the request.

If we filter out the repeated traces, we are left with the following command space that
will guarantee distinct traces for each command:

40

4.2.3 New command space

Command to send
Read accelerometer value
Read temperature value from sensor 1
Read ambient temperature from infrared sensor
Read ambient light value
Read temperature value from sensor 2
Read pressure value 1
Read temperature from MCU sensor 1

Table 4.3: New command space after removing commands that generate repeated traces.

The resulting data shown in Figure 4.6 still contain a lot of noise and has to be removed. To
remove the noise, the data processing module described in Section 3.6 runs 1000 iterations
of the rolling mean computation with a window of 10 and generates new data files. Figure
4.7 shows the new plots for the new data.

(a) (b)

41

(c) (d)

(e) (f)

Figure 4.7: Plots of selected traces for new command space in Table 4.3. 1000 iterations
of the rolling mean with a window 10 was computed for this step.

The plots in the Figure 4.7 show a more clean and defined plot. We have included more
samples of plots for each command in the appendix for a visual confirmation that each
command generates reproducible traces.

42

Command to send Trace
Read accelerometer value 4.7a
Read temperature value from sensor 1 4.7b
Read ambient temperature from infrared sensor 4.7c
Read ambient light value 4.7d
Read temperature value from sensor 2 4.7e
Read temperature from MCU sensor 1 4.7f

Table 4.4: Map of traces to new command space.

4.2.4 Classification of traces

Using the data collected in Subsection 4.2.2, we can proceed to classify the traces. We
chose to use support vector machines for our classification method. We decided to use
support vector machines because the method is effective in high dimensional spaces. The
method also uses supervised learning, which we can use to our advantage since we know
the labels of each data sample.

We used 100 data samples for each of our commands from the command space in table
4.4. Out of our pool of samples, we randomly selected 70% of samples per command for
training our model and 30% of samples per command for testing our model.

Using the support vector machines algorithm from the scikit-learn library for python,
we obtain the metrics in Table 4.5.

Metric Percentage
Accuracy 97.78%
Precision 98.00%
Recall 97.76%

Table 4.5: Metrics for support vector machine classification of custom system’s data.

4.3 EMP water pump

The purpose of this experiment is to confirm if by using a command space of J1939 mes-
sages, the system can generate distinct power traces. For this experiment we are using a
system that has an ECU with a J1939 bus. Since the ECU is used to control an actuator,

43

we focused our command space on messages that change the behaviour of the actuator
which we then mapped to the power traces we obtained using the framework.

Figure 4.8: Photo of EMP pump system for experiment.

The setup for the third experiment consisted of an ECU-controlled fluid pump system
which is used to train students in vehicle penetration testing and reverse engineering of
automotive ECUs. For our experiment, we only consider the ECU and disregard any other
components of the system.

44

4.3.1 Command space

Command to send
Motor: off — speed: 1000 RPM
Motor: off — speed: 500 RPM
Motor: off — speed: 100 RPM
Motor: off — speed: 0 RPM
Motor: off — speed: 1250 RPM
Motor: off — speed: 1375 RPM
Motor: off — speed: 1626 RPM
Motor: off — speed: 3000 RPM
Motor: on — speed: 1000 RPM
Motor: on — speed: 500 RPM
Motor: on — speed: 100 RPM
Motor: on — speed: 0 RPM
Motor: on — speed: 1250 RPM
Motor: on — speed: 1375 RPM
Motor: on — speed: 1626 RPM
Motor: on — speed: 3000 RPM
Motor: reverse — speed: 1000 RPM
Motor: reverse — speed: 500 RPM
Motor: reverse — speed: 100 RPM
Motor: reverse — speed: 0 RPM
Motor: reverse — speed: 1250 RPM
Motor: reverse — speed: 1375 RPM
Motor: reverse — speed: 1626 RPM
Motor: reverse — speed: 3000 RPM

Table 4.6: Command space for pump ECU.

The command space for this system consists of changing the system’s actuator speed. The
actuator of the system has three modes: off, on, reverse. We have defined a set of eight
commands to change the actuator’s speed to different values. This set of eight speeds has
been repeated for each one of the actuator modes for a total of 24 commands to send.

45

4.3.2 Results

(a) (b)

(c) (d)

(e) (f)

46

(g) (h)

(i) (j)

(k) (l)

47

(m) (n)

(o)

Figure 4.9: Plots of traces for each command sent to the pump ECU. 1000 iterations of
the rolling mean with a window of 10 were computed for each trace

The plots in Figure 4.9 show clear plots for each command. One thing to notice is that
only one plot for when the motor is off is shown in Figure 4.9a since all of the traces for
when the motor is off are the same.

When selecting the values for the actuator’s speed, the values will have to vary by
a minimum factor to produce traces that are significantly different, otherwise when at-
tempting to classify the traces, the classifier will not be able to calculate a good distance
between traces and will end up grouping similar traces. The following pair of plots show
the previous issue: 4.9c resembles 4.9d, 4.9e resembles 4.9f, 4.9j resembles 4.9k, and 4.9l

48

resembles 4.9m.

Command to send Trace
Motor: off — speed: 1000 RPM 4.9a
Motor: off — speed: 500 RPM 4.9a
Motor: off — speed: 100 RPM 4.9a
Motor: off — speed: 0 RPM 4.9a
Motor: off — speed: 1250 RPM 4.9a
Motor: off — speed: 1375 RPM 4.9a
Motor: off — speed: 1626 RPM 4.9a
Motor: off — speed: 3000 RPM 4.9a
Motor: on — speed: 1000 RPM 4.9b
Motor: on — speed: 500 RPM 4.9c
Motor: on — speed: 100 RPM 4.9d
Motor: on — speed: 0 RPM 4.9a
Motor: on — speed: 1250 RPM 4.9e
Motor: on — speed: 1375 RPM 4.9f
Motor: on — speed: 1626 RPM 4.9g
Motor: on — speed: 3000 RPM 4.9h
Motor: reverse — speed: 1000 RPM 4.9i
Motor: reverse — speed: 500 RPM 4.9j
Motor: reverse — speed: 100 RPM 4.9k
Motor: reverse — speed: 0 RPM 4.9a
Motor: reverse — speed: 1250 RPM 4.9l
Motor: reverse — speed: 1375 RPM 4.9m
Motor: reverse — speed: 1626 RPM 4.9n
Motor: reverse — speed: 3000 RPM 4.9o

Table 4.7: Map of traces to new command space.

4.3.3 Classification of traces

We used 5 data samples for each of our commands from the command space in table 4.4.
We randomly selected 70% of the samples for training our model and 30% of the samples
for testing our model.

49

Metric Percentage
Accuracy 92.10%
Precision 89.89%
Recall 93.33%

Table 4.8: Metrics for support vector machine classification for pump’s data.

4.4 Sterling truck

The purpose of this experiment is to gather power traces of a true black-box system. We
decided to use a cargo truck to expand on the ECU and J1939 results from Section 4.3.
Another factor for deciding to use the truck is how attackers are targeting automotive
vehicles in recent years as discussed in [6] and [19].

Figure 4.10: Photo of Sterling truck used in experiment.

The setup for the final experiment consisted of a Sterling truck. We connected a resistor
in the fuse box of the vehicle to measure the power consumption, and we connected the
framework to the J1939 bus of the vehicle.

50

4.4.1 Command space

Command to send
Request engine temperature 1
Request engine fluid level
Request dash display
Request vehicle electrical power 1
Request air supply pressure

Table 4.9: Command space for truck.

The command space selected for this system consists of general requests using PGN 59904.
By using PGN 59904, we can request the ECUs to send specific PGNs to the bus even if
the message is not scheduled or requested by the system itself. For this experiment we
chose five PGNs with various information of the vehicle.

51

4.4.2 Results

(a) (b)

(c) (d)

52

(e)

Figure 4.11: Plots of traces for each command sent to the Sterling truck. 1000 iterations
of the rolling mean with a window of 10 were computed for each trace.

Figure 4.11 shows a sample of a trace for each of the commands in the command space.
The traces are zoomed to a section where the message should have been received by the
system. Although the framework was able to capture traces, the results for this experiment
are inconclusive as there is no visual indication that the traces obtained are distinguishable
from each other. An explanation as to why we do not get the desired outcome in the
traces could be given by the fact that we have a large time window from the moment
the framework starts capturing the data, to the moment when we send the message to
the system. Another factor to consider is that the framework itself is running in a Linux
machine and the context switching of the system must be taken into account, making it
more difficult to calculate the start of the trace.

In addition to the power traces we obtained from this experiment, a capture of the
J1939 log shows the system answering to the requests.

53

Figure 4.12: J1939 log showing request of PGN FEEE.

In Figure 4.12 we can see that PGN FEEE is broadcasted on the bus periodically
before being sent multiple times in a row as a result of the requests by the framework.
This confirms that the system is responding to our requests. We can assume that the trace
might contain the behaviour we expect, but we are unable to pinpoint the exact start of
the trace. In Section 5.2 we propose a solution to have a better method of delimiting the
power traces more accurately.

54

4.4.3 Classification of traces

For the classification of power traces that we obtained in this experiment, we used 25 data
samples for each of our commands from the command space in table 4.9. As in Subsections
4.2.4 and 4.3.3, we randomly selected 70% of samples per command for training our model
and 30% of samples per command for testing our model. We obtained the following metrics
in Table 4.10.

Metric Percentage
Accuracy 38.22%
Precision 36.80%
Recall 40.74%

Table 4.10: Metrics for support vector machine classification using truck’s data.

The low metrics that we obtained are expected since the power traces are really similar
to each other. This can be calculated by computing the DTW distance of the traces. Table
4.11 shows the DTW distances of the power trace of the first command from Table 4.9 to
all of the commands that we sent to the system. We used five different samples for each
command and calculated the average.

Command
to

compare

Average
DTW

Distance
Request engine temperature 1 1161217.5988
Request engine fluid level 1045310.2158
Request dash display 1076973.2522
Request vehicle electrical power 1 1177055.2404
Request air supply pressure 1272766.7989

Table 4.11: Average DTW distances between command “Request engine temperature 1”
and the rest of the command space.

As we can see, the DTW distances in Table 4.11 are all similar which can explain
why the classifier metrics are so low. One way we can aid the classifier is by making the
data capture more accurate with the addition of a second channel to mark the start and
end points of the power trace to avoid having power traces with noise generated by other
components of the system.

55

Chapter 5

Future Work and Conclusion

5.1 Lessons learned

In this thesis, we presented four different experiments in Chapter 4. We designed a fifth
experiment that did not provide the expected results, but it is important to highlight the
results of this experiment.

The setup for the fifth experiment consisted of a DSLR CANON T3i camera with a
modified USB power adapter with a resistor that allowed us to monitor the power con-
sumption of the camera. The purpose of this experiment was to see if, by using different
firmware for the camera, we could obtain different power traces for the same commands in
the command space.

One of the main challenges of the experiment using the DSLR camera was to find
the right resistor to capture the power traces. At first, we tried using the same resistor
values as those used in experiments in Sections 4.1 and 4.2, but the camera would have
trouble taking pictures as the shutter would not close. As a result, the camera would
lockout, forcing us to remove the power source from the camera and reapply power to get
it working again. Later we found that the camera was sensitive to voltage drops caused
by the resistor. Therefore, we used a resistor of 0.1 Ohms for this experiment to avoid a
significant voltage drop that could affect the camera’s operations.

The traces obtained from this system were not helpful and seem only to contain back-
ground noise. The only visible change in the traces is when the camera opens and closes
the shutter, but other than that, the rest of the commands from the command space were

56

not generating distinct power traces. Our explanation for this behaviour is low compu-
tational complexity of the system’s logic to address command requests. When we send
a command to the camera to change the settings of the camera, the resources needed to
change the settings are not complex enough to be distinguished by the operations being
carried by the OS in the background, which are more complex than saving variables for
later use. Once the actuator of the camera is triggered, the camera draws more power, and
the variables that we previously set come into play. This leaves us with only one command
that generates a somewhat defined trace, and the only other variable we can control is how
long the shutter remains open. We could have obtained better results if we could isolate
the power consumption of only the processor without the peripherals of the device.

One important detail to point out is that although the power traces did not generate the
expected results, the data captured by the framework did vary from firmware to firmware.
By using a custom firmware found online, the trace for the “take photo” command was
slightly bigger in size than when using official firmware from the manufacturer. This by
itself is not enough proof that our experiment was successful, but it could be an indicator
that traces might change from firmware to firmware when issuing the same commands.

5.2 Future Work

Some of the next steps to extend on the work presented in this thesis are:

• Increase the accuracy of the power traces with the help of a second channel. Much
like the experiments in Sections 4.1 and 4.2 where a GPIO pulse delimits the traces,
the framework can take advantage of this approach and integrate a module that can
add references to the starting and ending of a trace. An approach like this might
yield better results for experiments like the one in 4.4.

• Add an abstraction layer for the digitizer. The intention of moving the digitizer
APIs behind an abstraction layer is to provide the framework with the flexibility to
switch between digitizer tools or effectively move the framework to another system
and having a remote connection to the computer where the digitizer resides.

• Implement and integrate anomaly detection module. With the addition of a vali-
dation module, the framework can become a powerful tool to aid in the detection
of anomalies by comparing a power trace gathered from a system to those from a
database

57

5.3 Conclusion

In this thesis, we presented a framework which is used to obtain power profiles to aid in
mapping system inputs to side-channel behaviour. We reviewed the architecture of the
framework and discussed the main features of the framework. We also demonstrated the
effectiveness of the framework through a series of experiments from which we learned the
following:

• Systems can produce distinct power traces when we send different commands to the
system.

• Classification of the obtained traces is possible as shown in the classification metrics
with accuracy, precision, and recall values of 90% or more for experiments in sections
4.2 and 4.3

• Different firmware might produce different results.

Some considerations to keep in mind when designing experiments using the framework
are:

• Some commands will trigger functionality that shares power consumption with other
commands. Therefore it is important to limit the command space to commands that
will only generate distinct traces.

• When using commands to set an actuator value, define the test in such a way that
the values will produce traces with sufficient distance between each other to avoid
classification issues.

• The commands sent to the unit must trigger some complex behaviour in the system
to induce a higher power consumption that can produce distinct traces.

Finally, some of the properties of the framework and the traces obtain are discussed
next:

• The framework has the flexibility of being deployed in multiple systems thanks to
the abstraction layer that allows for new communication modules to be developed
and integrated with ease.

58

• With the map of the power profiles to the command space, it is possible to detect
anomalies by capturing a power trace and comparing it to the database of known
profiles.

• Given a power trace obtained while the system received a request, it is possible to
know which command was requested by comparing the power trace to the profile
map.

59

References

[1] Michael R. Berthold and Frank Höppner. On clustering time series using euclidean
distance and pearson correlation. 2016.

[2] Robert A. Bridges, Jarilyn M. Hernández Jiménez, Jeffrey Nichols, Katerina Goseva-
Popstojanova, and Stacy J. Prowell. Towards malware detection via CPU power
consumption: Data collection design and analytics (extended version). 2018.

[3] Shane S. Clark, Benjamin Ransford, Amir Rahmati, Shane Guineau, Jacob Sorber,
Wenyuan Xu, and Kevin Fu. Wattsupdoc: Power side channels to nonintrusively
discover untargeted malware on embedded medical devices. 2013.

[4] Jamie Condliffe. Hackers stole $172 billion from people in 2017, 2018
(accessed March 12, 2020). https://www.technologyreview.com/f/610043/

hackers-stole-172-billion-from-people-in-2017/.

[5] DeepAI. Statistical classification, 2019 (accessed April 21, 2020). https://deepai.

org/machine-learning-glossary-and-terms/statistical-classification.

[6] Alex Drozhzhin. Black hat usa 2015: The full story of how that jeep was
hacked, 2015 (accessed March 12, 2020). https://www.kaspersky.com/blog/

blackhat-jeep-cherokee-hack-explained/9493/.

[7] Sam Friedman and Nikhil Gokhale. Pursuing cybersecurity matu-
rity at financial institutions, 2019 (accessed March 12, 2020). https:

//www2.deloitte.com/us/en/insights/industry/financial-services/

cybersecurity-maturity-financial-institutions-cyber-risk.html.

[8] Kauffman, Sean. Static transformation of power consumption for program tracing and
software attestation, 2017 (accessed March 12, 2020).

60

https://www.technologyreview.com/f/610043/hackers-stole-172-billion-from-people-in-2017/
https://www.technologyreview.com/f/610043/hackers-stole-172-billion-from-people-in-2017/
https://deepai.org/machine-learning-glossary-and-terms/statistical-classification
https://deepai.org/machine-learning-glossary-and-terms/statistical-classification
https://www.kaspersky.com/blog/blackhat-jeep-cherokee-hack-explained/9493/
https://www.kaspersky.com/blog/blackhat-jeep-cherokee-hack-explained/9493/
https://www2.deloitte.com/us/en/insights/industry/financial-services/cybersecurity-maturity-financial-institutions-cyber-risk.html
https://www2.deloitte.com/us/en/insights/industry/financial-services/cybersecurity-maturity-financial-institutions-cyber-risk.html
https://www2.deloitte.com/us/en/insights/industry/financial-services/cybersecurity-maturity-financial-institutions-cyber-risk.html

[9] Kamal Lamichhane, Carlos Moreno, and Sebastian Fischmeister. Non-intrusive pro-
gram tracing of non-preemptive multitasking systems using power consumption. In
Design, Automation and Test in Europe Conference and Exhibition (DATE), 2018.

[10] Hiscox Ltd. Hiscox cyber readiness report 2019, 2019 (accessed March 12, 2020).
https://www.hiscox.com/documents/2019-Hiscox-Cyber-Readiness-Report.

pdf.

[11] Vijeet H. Meshram and Ashish B. Sasankar. Security in embedded systems : Vulner-
abilities , pigeonholing of attacks and countermeasures. 2016.

[12] Shervin Minaee. 20 popular machine learning metrics. part
1: Classification & regression evaluation metrics, 2019 (ac-
cessed April 21, 2020). https://towardsdatascience.com/

20-popular-machine-learning-metrics-part-1-classification-regression-evaluation-metrics-1ca3e282a2ce.

[13] Carlos Moreno, Sean Kauffman, and Sebastian Fischmeister. Efficient program tracing
and monitoring through power consumption – with a little help from the compiler.
2016.

[14] The United State’s Council of Economic Advisers. The cost of ma-
licious cyber activity to the u.s. economy, 2018 (accessed March 11,
2020). https://www.whitehouse.gov/wp-content/uploads/2018/03/

The-Cost-of-Malicious-Cyber-Activity-to-the-U.S.-Economy.pdf.

[15] National Institute of Standards and Technology. Nist/sematech e-handbook of statisti-
cal methods, 2012 (accessed March 12, 2020). https://www.itl.nist.gov/div898/
handbook/pmc/section4/pmc41.htm.

[16] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[17] Inc. QY Research. Global embedded systems market trends, survey, growth and anal-
ysis by 2018-2025!!!, 2018 (accessed March 11, 2020). http://www.digitaljournal.
com/pr/4006746.

[18] Ling Liu Sen Nie and Yuefeng Du. Free-fall: Hacking tesla from wireless to can bus.
2017.

61

https://www.hiscox.com/documents/2019-Hiscox-Cyber-Readiness-Report.pdf
https://www.hiscox.com/documents/2019-Hiscox-Cyber-Readiness-Report.pdf
https://towardsdatascience.com/20-popular-machine-learning-metrics-part-1-classification-regression-evaluation-metrics-1ca3e282a2ce
https://towardsdatascience.com/20-popular-machine-learning-metrics-part-1-classification-regression-evaluation-metrics-1ca3e282a2ce
https://www.whitehouse.gov/wp-content/uploads/2018/03/The-Cost-of-Malicious-Cyber-Activity-to-the-U.S.-Economy.pdf
https://www.whitehouse.gov/wp-content/uploads/2018/03/The-Cost-of-Malicious-Cyber-Activity-to-the-U.S.-Economy.pdf
https://www.itl.nist.gov/div898/handbook/pmc/section4/pmc41.htm
https://www.itl.nist.gov/div898/handbook/pmc/section4/pmc41.htm
http://www.digitaljournal.com/pr/4006746
http://www.digitaljournal.com/pr/4006746

[19] Olivia Solon. Team of hackers take remote control of tesla model s from 12 miles away,
2016 (accessed March 12, 2020). https://www.theguardian.com/technology/2016/
sep/20/tesla-model-s-chinese-hack-remote-control-brakes.

[20] Kazuaki Tanida. Dynamic time warping (dtw) algorithm with an o(n) time and
memory complexity, 2019 (accessed March 12, 2020). https://pypi.org/project/

fastdtw/.

[21] Berghout Tarek. Low pass filter based fft, 2019 (accessed April 22,
2020). https://www.mathworks.com/matlabcentral/fileexchange/

71002-low-pass-filter-based-fft.

[22] Alexander Tolpygo. Dynamic time warping: Time series analysis ii, 2016 (ac-
cessed March 12, 2020). https://sflscientific.com/data-science-blog/2016/

6/3/dynamic-time-warping-time-series-analysis-ii.

[23] Shijia Wei, Aydin Aysu, Michael Orshansky, Andreas Gerstlauer, and Mohit Tiwari.
Using power-anomalies to counter evasive micro-architectural attacks in embedded
systems. 2019 IEEE International Symposium on Hardware Oriented Security and
Trust (HOST), pages 111–120, 2019.

[24] Peter Wittek. Support vector machine, 2014 (accessed April 21, 2020). https://www.
sciencedirect.com/topics/computer-science/support-vector-machine.

62

https://www.theguardian.com/technology/2016/sep/20/tesla-model-s-chinese-hack-remote-control-brakes
https://www.theguardian.com/technology/2016/sep/20/tesla-model-s-chinese-hack-remote-control-brakes
https://pypi.org/project/fastdtw/
https://pypi.org/project/fastdtw/
https://www.mathworks.com/matlabcentral/fileexchange/71002-low-pass-filter-based-fft
https://www.mathworks.com/matlabcentral/fileexchange/71002-low-pass-filter-based-fft
https://sflscientific.com/data-science-blog/2016/6/3/dynamic-time-warping-time-series-analysis-ii
https://sflscientific.com/data-science-blog/2016/6/3/dynamic-time-warping-time-series-analysis-ii
https://www.sciencedirect.com/topics/computer-science/support-vector-machine
https://www.sciencedirect.com/topics/computer-science/support-vector-machine

APPENDICES

A Additional plots for Section 4.2

In this section, we have included additional plots for the experiments executed in Section
4.2. We have randomly chosen four samples of power traces for each command from Table
4.4 to show the reader the similarities between power traces for each command.

63

A.1 Read accelerometer value

(a) (b)

(c) (d)

Figure 1: Plots from random samples of read accelerometer value command

64

A.2 Read temperature value from sensor 1

(a) (b)

(c) (d)

Figure 2: Plots from random samples of read temperature value from sensor 1 command

65

A.3 Read ambient temperature from infrared sensor

(a) (b)

(c) (d)

Figure 3: Plots from random samples of read ambient temperature from infrared sensor
command

66

A.4 Read ambient light value

(a) (b)

(c) (d)

Figure 4: Plots from random samples of read ambient light value command

67

A.5 Read temperature value from sensor 2

(a) (b)

(c) (d)

Figure 5: Plots from random samples of read temperature value from sensor 2 command

68

A.6 Read temperature from MCU sensor 1

(a) (b)

(c) (d)

Figure 6: Plots from random samples of Read temperature from MCU sensor 1 command

69

	List of Tables
	List of Figures
	Introduction
	Related Work
	Problem Statement and Assumptions
	Contributions
	Organization of the Thesis

	Background
	Power Tracing
	Time series
	Statistical classification

	Framework
	Software architecture
	Data acquisition
	Framework running modes
	Training mode
	Normal mode

	Shared memory
	Communication Abstraction Layer
	Data processing

	Experiments
	I2C devices
	Results

	Custom system
	Command space
	Results
	New command space
	Classification of traces

	EMP water pump
	Command space
	Results
	Classification of traces

	Sterling truck
	Command space
	Results
	Classification of traces

	Future Work and Conclusion
	Lessons learned
	Future Work
	Conclusion

	References
	APPENDICES
	Additional plots for Section 4.2
	Read accelerometer value
	Read temperature value from sensor 1
	Read ambient temperature from infrared sensor
	Read ambient light value
	Read temperature value from sensor 2
	Read temperature from MCU sensor 1

