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Abstract

The problem of a few electronic level coupling to an environmental heat bath, such
as in quantum dots (QDs), is well-known in modern quantum physics. These systems
have been widely studied as they can dictate the dephasing properties in many practical
opto-electronic devices. In this thesis we focus on the electron-phonon (quantized lattice
vibrations) coupling in QDs that are embedded within semiconductor nanowires.

For interband optical transitions, the electron-phonon interactions are treated using
a cumulant expansion approach which includes the non-Markovian dynamics. Both the
longitudinal optical (LO) and longitudinal acoustic (LA) phonons are included, and struc-
tural variations of the QDs are investigated, which, typically the LO phonons and structural
asymmetry have been neglected in the literature. We find that the linewidth can have vari-
ations on three orders of magnitude when changing the QD geometry due to LO phonon
interactions, which obviously has significant implications in mitigating phonon-induced
dephasing. Comparison to experimental results is shown for validation of the theoretical
model. Finally, we elucidate these effects for single photon emitters composed of different
materials.

In the intersublevel regime, we study the electron transport dynamics in a quantum dot
cascade laser (QDCL), which is a promising candidate as the semiconductor gain medium
for THz lasing. The quantum kinetics are included by means of an intuitive and accurate
density matrix approach, valid for weak to intermediate e-phonon interaction strength. We
find that at low temperatures, the LA phonons can help to inject electrons into the upper
lasing state.

We believe these findings should be considered and utilized in future opto-electronic
device designs.
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Chapter 1

Introduction

1.1 Quantum Dots

Progress in nanofabrication techniques of low-dimensional semiconductor materials in the
past few decades have opened up opportunities for their fundamental research and appli-
cations. Starting around the 1970’s, development of Metalorganic vapour-phase epitaxy
and Molecular Beam Epitaxy techniques enabled the quantum confinement scenarios in
textbooks to be experimentally realized. This brought on a whole new era of bandgap
engineering and novel optoelectronic devices. Semiconductor quantum wells, which are
formed when materials of different bandgaps are layered together, results in the spatial
quantum confinement in one direction. These can be used in laser diodes which have
higher radiative efficiency than their bulk counterpart. Esaki and Tsu presented analysis
on the transport properties of quantum well superlattices [1, 2], which had now lead to the
advent of quantum cascade lasers. These are lasers emitting in the THz (1012 Hz) region
of the electromagnetic spectrum.

In the 1980’s, researchers naturally investigated the further reduction of dimensionality
– synthesizing quantum dots (QDs). QDs are small regions of semiconductor materials,
typically 2-100nm in size (see Figure 1.1 a). They can be embedded within a different
material, or dispersed in a different medium. The different band-gaps of the materials result
in spatial confinement of the charge carriers (electrons and holes) in all three dimensions.
First direct evidence demonstrating the 3-dimensional spatial confinement in QDs was by
Reed et al in 1986 [3]. Soon reports from other groups followed. The quantum confinement
results in discrete energy levels, and they share similar properties to atomic levels – such
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as optical selection rules, spd shells, etc., hence the name artificial atoms (see Figure 1.1
b).

Electrons in QDs can be excited from the valence band to the conduction band, leaving
holes in the valence band. The electron and hole then bind via the Coulomb attraction, to
form the electron-hole pair. If the interaction is strong enough, then a new charge carrier
the exciton is formed.

Figure 1.1: a) STM image of an InAs QD, reproduced from [4] b) Level diagram of a QD,
showing the spd levels and the associated wavefunctions, reproduced from [5]

One popular way to make quantum dots is using the (self-assembled) Stranski-Kransanov
method. In this method a layer of material is deposited on another substrate using molec-
ular beam epitaxy. The lattice mismatch of the different materials cause strain resulting
in QDs to form in random positions. Afterwards, another layer of material can be grown
on top.

For better control of size, geometry, and location of the QD, high quality single QDs
can be grown, bottom up, within nanowires (see Figure 1.2). One way to do this is to use
a metal catalyst particle combined with selective-area and Vapour-Liquid-Solid process.
The QD diameter is dictated by the size of the metal catalyst particle, and the QD is
incorporated into the nanowire by simply switching the precursor gases during the nanowire
growth.

The nanowire geometry has several advantages – the nanowire itself also acts as a
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waveguide, resulting in control of the emission direction, spontaneous emission rate, and
high extraction efficiencies. These structures also provide the possibilities for surface coat-
ings, reducing surface charge noise, which are due to the random trapping and de-trapping
of charges at the nanowire surface. However, even with coatings these QD in nanowires
structures are still fundamentally limited by the phonon decoherence – which is one of the
topics of study in this thesis.

Figure 1.2: TEM image of a QD in nanowire from [6]

These QD in nanowire structures have applications in many quantum technologies such
as lasers, photodetectors, and single photon emitters. Single photon emitters in particular
have applications in quantum key distributions. This requires that the probability of
emitting multiple photons are negligible, as well as being indistinguishable. In this regard,
understanding and engineering the optical emission properties is of crucial importance.

One of the main factors in determining the optical lineshape, at low temperatures, are
phonons. Phonon decoherence is present even at 0K and presents a fundamental limit. It
is well known that the optical lineshape for interband transitions in QDs follow an overall
non-Lorentzian spectrum, and this is different from its atomic analogue. There are broad
sidebands due to interactions with low energy (LA) phonons, which is superimposed on
a narrow Lorentzian zero phonon line (ZPL) – see Figure 1.3. This means that in the
time domain, the photoluminescence signal exhibits at short times scale a fast initial non-
exponential decay, followed by at longer time scales a slow exponential decay. For higher
temperatures these features become smeared out, with many other different processes con-
tributing to the linewidth broadening as well.
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Figure 1.3: A typical emission spectrum of InAs self-assembled QDs, broadened due to
interactions with LA phonons, reproduced from [7]

Early work to include phonon interactions in the emission spectrum include indepen-
dent boson models (IBM)[8, 9], which well accounts for the broad LA phonon sidebands.
However this had the issue of a residual coherence in the polarization and hence exhibited
an infinitely narrow ZPL. Mechanisms accounting for the broadening of the ZPL due to
phonons include taking account virtual transitions or 2 phonon interactions [10, 11, 12],
different dimensionality of the LA phonon modes [13, 14], and taking into account a fi-
nite phonon lifetime due to scattering from interfaces [15, 16] or reservoir anharmonicity
[17]. Approaches extending the IBM, such as correlation expansion [18] and the polaron
master equation approach [19, 20, 21, 22] can also account for ZPL broadening associ-
ated with other effects, such as radiative decay and pump induced broadening, as well
as the implementation of coherent driving which ultimately is needed to understand lim-
its of pulse-generated single photons [23]. Still, frequently the broadening of the ZPL
due to phonons have been included phenomenologically or with some fit function linearly
proportional to the temperature [24], although recently more detailed schemes have been
developed in Refs. [25, 26]. The seminal work by Muljarov et al [11] had included a second
order perturbation term to address the broadening of the ZPL, but the full solution relies
on a Fredholm integral eigen value problem. Recently [14] showed that inclusion up to
the second order in this term is a good approximation of the full solution, however no
experimental comparison is shown. For indistinguishable single photon sources the value
of the ZPL linewidth is even more crucial since the broad sidebands can be filtered out
[27]. Other relevant recent studies on the ZPL broadening include [7, 28, 29], however the
theoretical analysis of the ZPL broadening due to phonons was not included. Therefore
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fundamental studies solely comparing the experimental and theoretical emission spectra
of single QDs without other processes are needed for a careful evaluation of the linewidth
broadening.

Similar phenomenology have also been suggested for the intersublevel lineshape [30].
In this frequency regime (roughly 0.3-10THz or 30-1000um wavelength), one major area
of research is in the design of an ideal room temperature THz emitter [31]. Candidate
material systems include QDs, which have been proposed to serve as building blocks for
quantum dot cascade lasers (QDCLs). These are analogous to the traditional quantum-well
based quantum cascade lasers [32, 33], which operate based on intersubband transitions,
but with additional lateral quantum confinement. Although room temperature lasing has
been predicted in previous theoretical works [34, 35], its experimental realization at room
temperature has yet to be achieved. Nevertheless, practical routes utilizing top-down etch-
ing schemes [36, 37] have been successfully demonstrated. However, significant practical
challenges exist, such as leakage currents due to the presence of surface charges and the low
fill factor of the gain material. On the theoretical side, detailed but also intuitive modeling
schemes have not been well established either. In this thesis density matrix based model
is proposed to simulate for its operation characteristics.

1.2 Overview of thesis

This thesis consists of five chapters. Chapter 1 has introduced the topics covered in this
thesis. Chapter 2 presents foundational background material which are to be used in the
rest of this thesis. The basis or wavefunctions that are used for QD in nanowire structures
is explained, followed by the derivation of the Hamiltonians describing the interactions of
those states with the environment (photons and phonons). Basic transport formalisms are
reviewed. All the important equations are highlighted in boxes.

Chapter 3 explains the theoretical work on the spectral broadening of interband QD
transitions due to interactions with LA and LO phonons. Both the linear and quadratic
coupling terms are included. Comparison to the experimental results, and structural and
material variations are made. In contrast to the present literature, this work has several
contributions.

• The cylindrical basis is used in this work which is physically more similar to the shape
of typical QDs, while in most of the literature Gaussian spherical wavefunctions are
used.
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• The wavefunction calculation method in this thesis is also applicable to any arbitrary
potential variation in the radial direction, as well as in the growth direction.

• The LO phonon virtual interaction is included along with the LA phonons using the
cumulant expansion approach. Although the theory for the quadratic interaction for
LA and LO phonons is not new, it has not been implemented using wavefunctions in
a cylindrical basis before.

• Direct comparison to experimental data with single QDs in nanowires are made.

Chapter 4 presents the theoretical modelling done for an application in the intersublevel
regime – namely quantum dot cascade lasers, which are promising as the gain material for
emission in the THz regime. The model is a type of Redfield or otherwise also know
as Interaction transport model. Although the density matrix transport theories and the
Interaction approach are not new, this has never been applied to QDCLs before. Finally,
conclusions and possible future directions are presented in Chapter 5.

All the codes used to generate the results in this thesis are written in MATLAB, the
main codes will be provided on Github: https://github.com/kx-wang.
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Chapter 2

Fundamentals

This section reviews and derives some fundamental background necessary for the remainder
of this thesis. They are of interest / importance to those working in the fields of semi-
conductor quantum physics. Generally in quantum mechanics, there are two questions of
interest – what states there are, and how those states interact. I define the bandstructure
or basis used, derive the interaction Hamiltonians of the QD states with the environment
(phonons and photons), and review the quantum equations of motion.

2.1 Wavefunctions

In order to understand the transport properties of carriers in QDs, one needs to first find
the quantum states. There are different possible ways to calculate the wavefunctions of
quantum dots – such as k ·p [38], and tight binding [39] approaches. Although the accurate
modelling of the bandstructure in QDs requires those methods, here the envelope function
and effective mass approximations are used, because it is simple to employ and allows for
fast exploration of the geometric and materials design space.

Under the envelope function approach, it is assumed that the total wavefunction for
the electrons in the conduction band (c), or holes in the valence band (v) is given by

Φc/v(r) =
∑

n ψ
c/v
n (r)u

c/v
nk (r), where u is the periodic Bloch functions due to the atomic

potential, ψ
c/v
n is the slowly varying envelope function arising from quantum confinement

on the nanoscale, k is the wavevector, and r is the spatial coordinate. The sum over n
denotes the sum over the contributions of the other bands to the target one – for example
the conduction band is affected by contributions from the valence bands.
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For direct bandgap, the expansion of the Bloch function can be taken around the Γ
point (k=0),

umk =
∑
n

cn(k)un0 (2.1)

Substitution of this into the time independent Schrödinger equation yields the effective
envelope Schrödinger equation [40],∑

m

[Hnm(−i~∇) + V (r)]ψc/vm (r) = Eψc/vn (r) (2.2)

Restricting to an effective one band, which is assuming that the conduction band wavefunc-
tions are predominantly of conduction band character (the contribution of light-hole/heavy-
hole/split-off bands are small enough), and the valence band wavefunctions can be modeled
by one effective valence band. Adding the effect of the Coulomb attraction, finally the sin-
gle particle Hamiltonian is given by [41]

H =
∑
i=c,v

−~2∇2

2mi

+ Ui(r) +
q1q2ψe(r)ψh(r)ψh(r)ψe(r)

4πε|re − rh|
drdr′ (2.3)

where Ui(r) is the confinement potential from the conduction/valence band offsets, and
the third term is due to the Coulombic attraction between the electrons and holes. Now if
assuming the strong confinement regime, the Coulombic term can be ignored.

As mentioned in Chapter 1, the geometry under study in this thesis are QDs in
nanowires. For the InAs QDs that are compared to experimental results in Chapter 3,
the Bohr radius of bulk InAs is 34nm [42] while the radius/height of our QD is 9nm/5nm,
and hence the Coulombic term can be ignored. The QDs take on a disk-like shape, and
to model this type of system, it is natural to start by writing the Schrödinger equation in
cylindrical coordinates

H(z) =
−~2

2

(
∂

∂z

1

mz
c,v

∂

∂z

)
+ Vc,v(z) (2.4)

H(r, θ) =
−~2

2

(
1

r

∂

∂r

(
r

1

mr
c,v

∂

∂r

)
+

1

mr
c,v

1

r2

∂2

∂θ2

)
+ Vc,v(r, θ) (2.5)

where mz
c,v and mr

c,v are the effective masses of electrons or holes in the z and in plane
directions respectively - z is along the axis of the nanowire. Since the total potential can
be separated into the sum of the radial and z components, the separation of variables can
be used and the envelope wavefunctions are factorized to be
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Wavefunctions

ψc,v(z, r, θ) =
1√
2π
Z(z)R(r)eimθ (2.6)

The solution for the angular direction is 1√
2π

exp(imθ), where m is the angular quantum
number taking on values of 0,±1,±2... Wavefunction components in the z direction can be
calculated using conventional numerical methods – either transfer matrix or finite difference
[43]. The transfer matrix approach [43] was used to calculate the wavefunction components
in the radial direction, but with Bessel functions being the basis functions. Specifically
these are Bessel functions of the first and second kind in regions where the eigen energy
is greater than the potential, and modified Bessel functions of the first and second kind
when the eigen energy is less than the potential:

AJv(kr) +BYv(kr), if Ei > V (r)

CIv(kr) +DKv(kr), if Ei < V (r)
(2.7)

The normalization on Z(z) and R(r) was taken as
∫
dzZ2 = 1 and

∫∞
0
drrR2 = 1, so

that the spatial integration of the total wavefunction over all space is equal to 1. Non-
parabolicity effects were not included in this thesis.

2.2 Interaction Hamiltonians

The interactions with photons and phonons are treated in this thesis, and this section gives
a first principles derivation to explain the Hamiltonians used.

2.2.1 Electron phonon interaction

For the interaction of electrons with phonons (quantized lattice vibrations), fundamentally
they are just coupling between the electronic densities and the displaced lattice potential.
This section follows Ref [8]. Starting with the fact that the total Hamiltonian is the sum
of the free electron and phonon parts (Hp +He) and the interaction part Hei,

Htot = Hp +He +Hei (2.8)

9



Hei is the interaction Hamiltonian between the electrons and lattice ions or atoms. It
describes the potential function of the electrons and is given by

Hei =
∑
i,j

Vlatt(ri −Rj) (2.9)

where ri are the positions of the electrons, and Rj are the positions of the atoms. After

a small displacement of the lattice away from the original position R
(0)
j , one can Taylor

expand the interaction potential

Vlatt(ri −Rj) = Vlatt(ri −R(0)
j )−Qj · ∇Vlatt(ri −R(0)

j ) +O(Q2). (2.10)

The first term is responsible for the Coulombic interaction, and second term is the well
known electron-phonon interaction term, where Qj = Rj −R(0)

j is the displacement of the
atom. The potential Vlatt can then be decomposed using the Fourier transform,

Vlatt(r) =
1

N
Vlatt(q)e

iq·r (2.11)

where N is the number of atoms or ions. Then taking the spatial derivative yields

∇Vlatt(r) =
i

N

∑
q

qVlatt(q)e
iq·r (2.12)

and substituting back into the first term in Q yields∑
j

Qj · ∇Vlatt(ri −R(0)
j ) =

i

N

∑
q

∑
j

qVlatt(q)e
iq·riQj · e−iq·R

(0)
j (2.13)

Using the relation between the position operator and the creation and annihilation opera-
tors (see Ref. [8])

i

N

∑
j

Qje
−iq·R(0)

j = −
∑
q

√
~

2mωqN
η(aq + a†q) (2.14)

where η is a polarization vector, yields

Vlatt(r) = −
∑
q

eiq·rVlatt(q)

√
~

2mωqN
η(aq + a†q) (2.15)
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Finally the total interaction Hamiltonian, this is obtained by integrating the potential
energy over the spatial charge density ρ(r), which are the energy eigenstates. Finally the
electron-phonon Hamiltonian is given by:

Hep =

∫
d3rρ(r)Vlatt(r) (2.16)

Hep is related to the original electron-ion Hamiltonian Hei by associating it with the change
in the lattice potential. Hence in general, the matrix element or coupling strength depends
on two parts. One is from the electron-ion potential and is determined by the specific
interaction mechanism. The other part depends on the overlap between the electronic
wavefunctions and the wavefunctions of the phonons – this is the so-called form factor [44].

There are different vibrational modes of the lattice. Different phonon branches are
shown in Figure 2.1 a) for bulk GaAs. The optical phonons are modes where the atoms
oscillate opposite to eachother, and the acoustic modes are oscillating in the same direction
(see Figure 2.1 b). For deformation potential coupling to LA phonons, the coupling matrix
element is given by

Mmm′

a (q) =

√
~ωq

2ρMu2
sV

Da

∫
d3rψ∗ma(r)e

iq·rψm′a(r) (2.17)

where Da is the deformation of the band a, ωq is the energy of the LA phonon with
wavevector q, ρM is the mass density, us is the speed of sound, V is the normalization
volume, and ψ(r) are the total electronic wavefunctions. The deformation potential is a
volume deformation potential, giving the energy change of the potential offset due to the
volume change (δE = D δV

V
) [47].

The interaction matrix element for LO phonons are given by the Fröhlich electron
phonon interaction

Mab(q) = i

√
e2~ωLO
2V ε0κ

1

q

∫
d3rψ∗a(r)e

iq·rψb(r) (2.18)

where ωLO is the LO phonon frequency, κ = 1
ε∞
− 1

εstatic
. Since the phonon energy around

the Γ-point, which is the most revelvant region of wavevectors, does not vary much, it is
generally sufficient to approximate using a constant energy ~ωLO.

11



Figure 2.1: a) The phonon dispersion of bulk GaAs. The red lines are the acoustic branches,
and blue are the optical branches. The k vector is plotted in units of 2π/a where a = 5.653Å
the lattice constant of GaAs, reproduced from [45]. b) Schematic of the optical vs acoustic
phonon vibrations, reproduced from [46].

2.2.2 Electron photon interaction

The Hamiltonian of electrons in the prescence of an electromagnetic field is given by

H =
(p− qA)2

2m
(2.19)

where

A(r) =
∑
σ,q

√
~

2ε0ωcav(q)
(aσ,quσ,q(r) + a†σ,qu

∗
σ,q(r)) (2.20)

is the vector potential [48]. Here the a, a† are the photon creation and annihilation opera-
tors, and u are the mode profiles. σ are the polarizations and q are the wavevectors of the
electromagnetic wave. In general one can write u = eeiq·r.
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Expanding out the Hamitonian yields the free electron term, a linear interaction term
accounting for the coupling between the electron momentum and the electromagnetic field,
and a term that is proportional to the vector potential squared.

H =
p2

2m
+

e

m
A · p +

e2

2m
A2 (2.21)

If the coupling strength/potential is small, then the squared term can be ignored. Substi-
tuting A into the linear electron-light interaction part of the Hamiltonian yields,

He−l =
e

m

∑
σ,q

√
~

2ε0ωcav(q)
(aσ,quσ,q · p+ a†σ,qu

∗
σ,q · p)

=
e

m

∑
σ,q

√
~

2ε0ωcav(q)
(aσ,qe

iq·re · p+ a†σ,qe
−iq·re · p)

(2.22)

Let’s consider the e±iq·r terms. If the photon wavelength is much larger than the spa-
tial extent of the QD, then the electrons see a constant electromagentic field, and the
approximation that eiq·r ≈ 1 can be made. This is called the dipole approximation.

The electric field strength is related by

E = −i
√

~ω
2ε0V

u(r = 0) = −i
√

~ω
2ε0V

e (2.23)

and using the relation between the momentum and the position operator that zba =
~

iEbam
pba, the familiar dipole interaction Hamiltonian is obtained, given by

H = −ezba · E0

= µE0

(2.24)

2.3 Basic quantum transport formalisms

In this section basic quantum transport concepts are introduced. References include [49,
8, 50]. The Dyson’s equation is presented, which is at the heart of the cumulant expansion
(linked cluster) approach used in the interband QD dyanmics in Chapter 3. The concept
of the density matrix and its time evolution and different pictures of quantum mechanics,
as well as common approximations are explained. These are the background knowledge for
the scattering transport for the QDCL section (Chapter 4). Lastly, relations to the more
widely known concepts such as rate equations are made for some intuitive understandings.
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2.3.1 Time Evolution

Given a state |ψ(t)〉 at initial time t0, its time evolution follows the time-dependent
Schrödinger equation,

i~
d

dt
|ψ(t)〉 = H |ψ(t)〉 (2.25)

This has the solution U(t, t0)

|ψ(t)〉 = U(t, t0) |ψ(t0)〉 (2.26)

where U(t, t0) is the time evolution operator. If the Hamiltonian of the system H is inde-
pendent of time, then the solution is trivial and the unitary evolution operator U(t, t0) =

exp(−iH(t−t0)
~ ). For the most general case, if the Hamiltonian is time-dependent and do not

commute with itself at different times, then

U(t, t0) = T
(
e
−i
~

∫ t
t0
dt′H(t′)) (2.27)

Here T is the time ordering operator which orders operators with increasing time from
right to left. This time operator is an abbreviation for the following series:

= 1 +
∞∑
n=1

(−i
n

)n ∫ t

t0

dt1

∫ t1

t0

dt2...

∫ tn−1

t0

dtnH(t1)H(t2)...H(tn) (2.28)

this is also known as the Dyson series.

2.3.2 Density Matrix

To keep track of the states of the system, the density matrix formalism is used. Given a
basis set

|ψ(t)〉 =
∑
n

cn(t) |n〉 (2.29)

The density operator is defined by

ρ ≡ |ψ(t)〉 〈ψ(t)| =
∑
nm

cn(t)c∗m(t) |n〉 〈m| (2.30)

hence the density matrix elements are ρnm(t) = cn(t)c∗m(t). The diagonal elements are the
populations while the off-diagonals are the coherences. Its time evolution is given by

ρ(t) = U(t, t0)ρ(t0)U †(t, t0) (2.31)
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Figure 2.2: The paradigm problem of a few level system coupled to a heat bath. Repro-
duced from Ref. [51]

The density matrix has the properties that Tr(ρ(t)) = 1. The density matrix has is an
observable and hence it is Hermitian. It is also positive semi-definite (meaning that it has
positive eigen-values).

There are three different pictures of quantum mechanics; the Schrodinger picture where
the states evolve in time but operators do not, the Heisenberg picture where only the
operators evolve in time, and the interaction picture where both states and operators
evolve in time. From the Schrödinger’s equation, the Liouville von-Neumann equation can
be derived (which is just the equations of motion in the Schrodinger picture)

d

dt
ρ(t) = − i

~
[H, ρ(t)] (2.32)

In comparison, the Heisenberg’s equation of motion says that

d

dt
ρ(t) =

i

~
[H, ρ(t)] (2.33)

If one has enough resources to model the entire many body system, then the use of either
of these approaches do not have a difference in the final observables. However typically one
cannot model the entire system and this is where approximations come in. For example, one
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of the common steps is to assume the density matrix can be factorized as a tensor product
of the system and reservoir part, which is valid if there are no correlations between those
subsystems.

ρ = ρS ⊗ ρR (2.34)

One can also assume that the reservoir remains unchanged for all times during which the
system evolves, because the reservoir is so large that a tiny perturbation from the system
does not make a noticeable change in the bath, and hence

ρ(t) = ρS(t)⊗ ρR(t0) (2.35)

This is the so-called Born approximation. Now if there are correlations between those
subsystems, typically the Heisenberg picture is used to arrive at correlation expansion
based approaches. This is used in for example in systems where there are strong correlations
between a few electron and photon states, and one needs to keep track of the correlations
between those.

In the interaction approach one starts with the Liouville-von Neumann equation, then
transform it to the interaction picture, yielding

dρI(t)

dt
=
−i
~

[HI(t), ρI(t)] (2.36)

Integrating this yields

ρI(t) = ρI(t0)− i
∫ t

t0

dt′[HI(t
′), ρI(t)] (2.37)

Substitution back into the derivative and taking the trace over the bath yields the equation
in integro-differential form

dρS(t)

dt
=
−1

~2

∫ t

0

dt′TrR[HI(t), [HI(t
′), ρ(t′)⊗R0]]. (2.38)

Subsequently, one can go to higher orders in the memory kernal, or one can make Markov
approximations. For example if one makes the approximation that t′ = t, then the time
evolution of ρ only depends on its current state and not its past states – some of the
memory features are elminated. This is the first Markov approximation. A second Markov
approximation can be made if the upper limit of the integral is extended to infinity. Equa-
tion 2.38 is the starting point for many different forms of the time evolution equations,
including Redfield/time convolutionless master equations, as well as Lindblad equations.
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2.3.3 Intuitive Associations to Semiclassical Concepts

Although there are many different quantum kinetic approaches, they should all recover
the semiclassical Boltzmann (rate) equations. The rate equations state that the change of
population in time is equal to that incoming minus that outgoing from the said state.

dni
dt

= −
∑
j

ni
τi→j

+
∑
j

nj
τj→i

(2.39)

In this equation the transport times are given by the famous Fermi’s Golden rule, which
says that

Γi→f =
∑
f

2π

~
| 〈f |Hint |i〉 |2gf (E)δ(Ef − Ei ± ~ω) (2.40)

where gf (Ei) is the density of final states for which the energy conservation is satisfied, and
Hint is the interaction matrix element. This is also known as a T1 time in the literature. T1

times describe a population change, and is associated with a loss of energy. There are also
T2 times, which describe the dephasing, i.e. the loss of coherence. It is how the off-diagonal
elements of the density matrix decay. This is usually implemented as

1

T2

=
1

τ ∗
+

1

2τlifetime

(2.41)

where τ ∗ is a pure dephasing time, and τlifetime are the level lifetimes which include the
total loss of populations in the said state. The pure dephasing time describes a loss of
coherence without a net change in the populations.

For strong interactions, Fermi’s Golden Rule (FGR) and rate equations approaches
are not enough. This is because FGR describes irreversible dynamics. Whether or not
the interaction is considered strong is determined by comparison to the other decoherence
channels in the system. For example, consider a two level system in the prescence of
phonons, as illustrated in Figure 2.3. The electron starts in the excited state. Then
through interaction with the phonon it transitions down to the ground state, emitting a
phonon. Now since the phonon is still in the system, it can be reabsorbed, promoting
the ground state electron to the excited state again. This back and forth reabsorption
and emission creates the quasi-particle called a polaron. On the other hand, if the optical
phonon has fast decay to phonons of lower energy (e.g. acoustic phonons) then it cannot
be absorbed, and this is the weak interaction regime.
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Figure 2.3: Illustration of transitions in the strong coupling regime. The black lines denote
the excited and ground state of the electron, ΩR is the interaction strength to the reservoir,
Γ is the decay rate of the reservoir particle, and the red wavepackets are the reservoir
particles. Modified from Ref [52].
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Chapter 3

Interband Dynamics

This chapter presents work on the spectra of interband optical transitions from QDs in
semiconductor nanowires, broadened due to interactions with phonons. The theory follows
the Independent Boson model with additional quadratic broadening. It is now well known
that the diagonal coupling results in broad phonon sidebands in the emission spectra
of QDs. However, it was discovered early on that the diagonal coupling has residual
coherence that does not decay out. This then leads to an infinitely sharp ZPL which
is not physically correct. Physical mechanisms that lead to the decay of the ZPL include
spontaneous emission, non-radiative recombination, anharmonicity, virtual interactions etc.
The broadening of the ZPL is included through the virtual interactions. Essentially, it
accounts for the decoherence due to back and forth emission and re-absorption of phonons
by the QD. This interaction is derived by performing a Schrieffer and Wolff transformation
on the non-diagonal part of the interaction, which results in a coupling that is quadratic
in the phonon displacement operators. This Hamiltonian can either be approximated or
solved numercially exact by using a Fredholm integral eigenvalue approach. The theory
is compared to experimental data, and structural and material variations of the QD are
investigated.
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3.1 Time evolution of the microscopic coherence

Let’s follow the dynamics of the QD coherence as it’s coupled to the phonon environment.
The polarization for an excited QD exciton after a delta pulse excitation is given by

P (t) = i〈σ+(t)σ−(0)〉
= i〈eiHtσ+(0)e−iHtσ−(0)〉,

(3.1)

Where H is the model Hamiltonian H = H0 + Ve−ph consisting of the free evolution and
interaction parts

H0 = He +Hph =
∑
i

~ωi |i〉 〈i|+
∑
q

~ωqb†qbq

Ve−ph =
∑
nm

∑
q

Mnm |n〉 〈m| (bq + b†−q) = Hd +Hnd

(3.2)

Ve−ph is the electron phonon interaction term, and the sum over n and m is for all electrons
in valence band and conduction band. It contains both diagonal (Hd) and non-diagonal
(Hnd) interactions. From an optical excitation, an electron from the valence band is excited
to the conduction band. Due to the optical transition, the surrounding lattice ions undergo
deformations to a new equilibrium position, resulting in the electron phonon interactions.

Now restricting ourselves to just the one exciton He = ~ωx |1〉 〈1|, and substituting the
total Hamiltonian into the time evolution of the coherence term yields

= i〈σ+(0)σ−(0)〉〈ei(Hph+He+Ve−ph)te−iHpht〉
= iρee(0)ei(ωx+∆p)t〈ei(Hph+Ve−ph)te−iHpht〉

= iei(ωx+∆p)t

〈
T exp(− i

~

∫ t

0

dτVe−ph(τ))

〉 (3.3)

Where ∆p is an energy (polaron) shift, and ρee(0) = 1. The assumption of just one
exciton (electron-hole) in our system is valid at low temperatures and low excitation powers,
however virtual or intermediate states are included in the KQ interaction.

The next sections will present the evaluation of this time ordered integral – first for
diagonal interactions and then the non-diagonal interactions.
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3.2 Independent Boson Model

The Independent Boson Model (IBM) is the exact solution to the e-phonon diagonal cou-
pling, after a delta-pulse excitation. In this case only the loss of the microscopic coherence
is analyzed and not the change of the occupations in the system.

First, to define the ground state as being non-interacting, the displaced phonon opera-
tors (Weyl operators) are used. This is also called performing a Huang Rhys transformation
bq → bq − Mgg

~ωq , and yields

H ′ =
∑
i

Ẽic
†
ici +Hph +

∑
i

∑
q

M̃i |i〉 〈i| (bq + b†−q) (3.4)

where M̃ii = Mii −Mgg, and Mgg is the interaction matrix element of the ground states.
Here the ground state is defined as the s state in the valence band. The electronic energies

are renormalized by 2
∑

q(M
q
ii −M q

gg)
Mq
gg

~ωg due to this transformation. [53]

Next this is plugged into equation 3.3 and evaluate the time-ordered exponential oper-
ator. This can be written in the following form:

∞∑
n=0

(−i)nλ
n

n!

∫ t

0

dt1

∫ t

0

dt2...

∫ t

0

dtn〈T A(t1)...A(tn)〉 (3.5)

where A(t) = be−iωt + b†eiωt, and λ = M̃ii is the interaction strength [8]. The Wick’s
theorem is then used to find that the pairs of A operators 〈T A(t1)A(t2)〉 evaluate to
the phonon Green’s function iDq(|t1 − t2|) = [(Nq + 1)e−iωq |t1−t2| + Nqe

iωq |t1−t2|], where
Nq = 1/(e~ω/kT − 1) the thermal Bose distribution. Analytically carrying out the double
time integral over the phonon Green’s function∫ t

0

dt1

∫ t

0

dt2[(Nq + 1)e−iωq |t1−t2| +Nqe
iωq |t1−t2|] (3.6)

defines a function

Φ(t) =
2

ω2
q

[(Nq + 1)(1− e−iωqt) +Nq(1− eiωqt)− iωqt]. (3.7)

Now for each pair of phonons, or in other words n = 2m number of phonons, there are
a possible (2m)!

2mm!
combinations of them to pair up, and this factor gets multiplied infront.

Putting everything together into equation 3.5,∑
m

λ2m

m!

[Φ(t)

2

]m
(3.8)
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which is just the Taylor series expansion for an exponential function. In the literature this
is known as the linear cumulant term, written as

exp
[
− λ2

2
Φ(t)

]
= exp(KL(t)) (3.9)

where

KL(t) =
−i
2~

∫ t

0

dt1

∫ t

0

dt2
∑
q

|Mq|2Dq(t1 − t2)

=
−1

~2

∑
q

|Mq|2
1

ω2
q

[(Nq + 1)(1− e−iωqt) +Nq(1− eiωqt)− iωqt].
(3.10)

This equation is valid for both LA and LO phonons. From this it is clear that the cumulant
is over an infinite sum and this solution is exact.

The next step is substitute the specific interaction potentials, and carry out the sum-
mation over q for numerical evaluation. For the deformation potential coupling to LA
phonons, the coupling matrix elements is given by

Mmm′

qa =

√
~ωq

2ρMu2
sV

Da

∫
d3rψ∗ma(r)e

iq·rψm′a(r) (3.11)

where Da is the deformation potential for the conduction or valence band (a = c for
electrons or v for holes), ρM is the mass density, us is the longitudinal speed of sound, and
V is a normalization volume. The subscript c or v on the matrix elements correspond to
either the electron or hole wavefunctions. LO phonons were not included in the diagonal
interaction in this thesis, since this should be small contribution.

The math for the LA phonon interaction is treated as follows:∑
q

|Mq|2 =
∑
q

|Mqe −Mqh|2

=
∑
q

~ωq
2ρu2

sV
|De

∫
d3rψ∗1ee

i~q·~rψ1e −Dv

∫
d3rψ∗1he

i~q·~rψ1h|2
(3.12)

Converting the sum over q to an integral
∑

q →
∫
d3q V

(2π)3
and using cylindrical coordinates

yields,

=

∫
d3q

V

(2π)3

~ωq
2ρu2

sV
|De

∫
d3rψ∗1ee

i~q·~rψ1e −Dv

∫
d3rψ∗1he

i~q·~rψ1h|2

=
~

(2π)22ρus

∫ ∞
0

dqrqr

∫ ∞
−∞

dqzq|De

∫
d3rψ∗1ee

i~q·~rψ1e −Dv

∫
d3rψ∗1he

i~q·~rψ1h|2
(3.13)

22



where q =
√
q2
r + q2

z the magnitude of the total wavevector of the LA phonons. Evaluation
of the form factor of the type

∫
d3rψ∗1e

i~q·~rψ2 proceeds by expanding plane wave in cylindrical
coordinates [34], and is explained in Appendix 3.7. Converting the integration over qr to
E leads to the final equation implemented for KL:

KL for LA phonons

KL(t) =
−1

8π2~2u4
sρM

∫ ∞
0

dE

∫ E/~us

−E/~us
dqz|Dc

∫
d3rψ1ee

i~q·~rψ1e −Dv

∫
d3rψ1he

i~q·~rψ1h|2

× [(Nq + 1)(1− e−iωqt) +Nq(1− eiωqt)− iωqt].
(3.14)

3.3 Quadratic coupling

This section presents the treatment of the non-diagonal interactions, which mainly follows
Refs [8, 54].

First a Schrieffer and Wolff transformation H
′

= eSHe−S is performed on the non-
diagonal part of the interaction Hamiltonian. The purpose of this is to write the non-
diagonal interaction in a diagonal form so that the cumulant expansion can be evaluated.
The trick is to choose the transformation operator S such that [S,H0] = −Hnd, and is
given by [54]

S =
∑
n,m,q

|n〉 〈m|Mnm

(
bq

En − Em − ωq
+

b†−q
En − Em + ωq

)
, (3.15)

where En,m are the electronic eigen energies and ωq is the LA or LO phonon energy. In
this way, H ′ = eSHe−S ≈ H0 + 1

2
[S,Hnd], which, upon adding in the diagonal interaction

results in the total model Hamiltonian,

H ′ =
∑
i

Ẽic
†
ece +

∑
q

~ωqb†qbq +
∑
m,qp

Mnm(q)Mmn(p)

∆nm

|n〉 〈n| (bq + b†q)(bp + b†p)

+
∑
q

M(q) |e〉 〈e| (bq + b†−q)

= He +Hph + VL + VQ.

(3.16)
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From this one sees that there are terms that are linear (VL) and quadratic (VQ) in phonon
displacement operators. Here 1/∆nm = (En − Em)/((En − Em)2 − (~ωLO)2). In addition,
Ẽi is now renormalized due to the quadratic term,

∑
m,q

MimMmiωq
(Ei−Em)2−ω2

q
.

Again, the ground state may be re-defined as being non-interacting, by performing the
Huang Rhys transformation bq → bq − Mgg

~ωq , to obtain

H ′ =
∑
i

Ẽic
†
ici +Hph +

∑
n

∑
q

M̃n |n〉 〈n| (bq + b†−q)

+
∑
q,q′

∑
nm,n 6=m

MnmMmn

∆nm

|n〉 〈n| (bq + b†−q)(bq′ + b†−q′)
(3.17)

where M̃nn = Mnn−Mgg, and the electronic energies are renormalized again by 2
∑

q(M
q
ii−

M q
gg)

Mq
gg

~ωg . To summarize, the form of the equations which are valid for both the LO and

LA phonon interactions are,

VL =
∑
q

Mq(bq + b†−q),

Mq = M11
qe −M11

qh ,

VQ =
∑
q,q′

Qq,q′(bq + b†−q)(bq′ + b†−q′),

Qq,q′ =
∑
a=c,v

∑
m6=1

(M1m
qa M

m1
q′a )(Ea

m − Ea
1 )

(Ea
m − Ea

1 )2 − w2
q

,

(3.18)

Note that the ωq in Qq,q′ was ignored in [11] for LA phonons, which is valid if the energy
spacings are relatively large.

Now let’s proceed to see how the quadratic interaction affects the time evolution of the
polarization. The quadratic interaction part of the time ordered exponential (KQ) is given
by

KQ(t) =
∞∑
n=1

(−i
~

)n 1

n!

∫ t

0

dt1

∫ t

0

dt2...

∫ t

0

dtn

〈
T VQ(t1)VQ(t2)...VQ(tn)

〉
conn

(3.19)

which is equivalent to

=
∞∑
n=1

λ′n

2n

∫ t

0

dt1

∫ t

0

dt2...

∫ t

0

dtnD(t1 − t2)D(t2 − t3)...D(tn − t1) (3.20)
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To carry out this infinite series of integrals, it is recognized that this is in the form of
a Fredholm eigenvalue problem, given by [55]∫ t

0

dτ ′D(τ − τ ′)uj(τ ′; t) = Λj(t)uj(τ ; t). (3.21)

Rewriting this as a matrix eigenvalue problem,D(t0, t0) D(t0, t1) D(t0, t2)...
D(t1, t0) D(t1, t1) D(t1, t2)...

...

uj(t0)
uj(t1)
...

 dt = Λj

uj(t0)
uj(t1)
...

 . (3.22)

The eigenvalues of the matrix in magenta is summed to give the value of the series of
integrals over D. This gives

KQ(t) =
∑
j

∞∑
n=1

λ′n

2n
Λn
j (t) (3.23)

where λ′ = 2λ and Λ are the eigen values from the Fredholm problem. Using the identity
that −1

2
ln(1− x) =

∑
n
xn

2n
, one can relate to eqn 7 of Ref [55]:

KQ for LO phonons

KQ(t) = −
∑
j,v

1

2
ln(1− iλ′vΛj) (3.24)

where λ′v are the eigenvalues of the interaction matrix. To summarize, the quadratic
interaction is

VQ =
∑
m

|n〉 〈n|MnmMmn
(En − Em)

(En − Em)2 − ω2
0

(bq + b†−q)(bp + b†−p) (3.25)

and the Kernel for which the Fredholm problem is solved for is

D(t1, t2) =
(−i
~

)[
(Nq + 1)e−iωq |t1−t2| +Nqe

iωq |t1−t2|
]
e−γ|t1−t2| (3.26)

where γ is the decay rate of the LO phonons [56]. The coupling strength is

λ′ =
1

∆

e2~ωq
4π2κ

∫ ∞
0

dqrqr

∫ ∞
−∞

dqz
F1jj1(qr, qz)

q2
(3.27)
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and the eigenvalues of this is used.

For LA phonons, approximation of its quadratic interaction at the second order in the
summation is sufficient, while for LO phonons the full series of time integrals needs to
be solved via the Fredholm integral eigenvalue equation. This is most likely due to the
presence of a range of the phonon energies for LA phonons, thus causing more interference
effects.

For LA phonons, the function KQ is given by

Kn=2
Q (t) =

1

4

∫ t

0

dt1

∫ t

0

dt2DQ(t1 − t2)DQ(t2 − t1)

=
−1

42~2

∑
q1

|M12
q1 |2

∑
q2

|M12
q2 |2D̃(q1, q2, t)

(3.28)

where

DQ(t) =
−2

4
∑
q

|M12
q |2
(−i
~
)
[(Nq + 1)e−iωq |t| +Nqe

iωq |t|] (3.29)

and

D̃(q1, q2, t) =

∫ t

0

dt1

∫ t

0

dt2[(Nq1 + 1)e−iωq1 |t1−t2| +Nq1e
iωq1|t1−t2|]

×[(Nq2 + 1)e−iωq2 |t2−t1| +Nq2e
iωq2|t2−t1|]

(3.30)

The first term n = 1 does not contribute [14]. For the evaluation of the matrix elements

|M12
q |2 =

~q
2ρMusV

D2
a|
∫
d3rψ∗1ae

i~q·~rψ2a|2 (3.31)

The integral evaluates to (see Appendix 3.7 for details)

|
∫
d3rψ∗1ae

i~q·~rψ2a|2 = |F 12
z (qz)|2|F 12

r (qr)|2

|F 12
z (qz)|2 = |

∫ +∞

−∞
dzeiqzzZ1Z2|2

|F 12
r (qr)|2 = |

∫ ∞
0

drrR1R2Jn(qrr)|2

(3.32)
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where n is the change in angular momentum. Substitution of these form factors and turning
the sums into integrals yield

Kn=2
Q (t) =

−~2D4
a

42~2(2π)6(2ρMus)2

∫
d3q1q1|F 12

r (qr1)|2|F 12
z (qz1)|2

×
∫
d3q2q2|F 12

r (qr2)|2|F 12
z (qz2)|2 × D̃(q1, q2, t)

(3.33)

After converting to cylindrical coordinates, and changing integration variables from qr to
E,

Kn=2
Q (t) =

−D4
a

42(2π)4(2ρMus)2

∫ ∞
0

dE1

∫ E/~us

−E/~us
dqz1

E2
1

(~us)3
|F 12
z (qz1)|2|F 12

r (qr1)|2

×
∫ ∞

0

dE2

∫ E/~us

−E/~us
dqz2

E2
2

(~us)3
|F 12
z (qz2)|2|F 12

r (qr2)|2 × D̃(q1, q2, t).

(3.34)

Now if ignoring contributions from terms describing emission of two phonons or absorption
of two phonons, ignoring imaginary terms, and taking the long time limit, D̃(q1, q2, t)
integrates to [14]

D̃(q1, q2, t) ' 2(2Nq1Nq2 +Nq1 +Nq2)π~δ(E1 − E2)t. (3.35)

The energy conserving delta is illustrative of the physical mechanism behind this KQ term
- the simultaneous emission and absorption of phonons of the same energy results in a
change in the phase of the dipole and hence broadening of the spectrum [57].

The final equation for KQ of LA phonons is

KQ for LA phonons

Kn=2
Q (t) =

−D4
a

4224π3ρ2
Mu

8
s~5

∫ ∞
0

dE

∫ E/~us

−E/~us
dqz1

∫ E/~us

−E/~us
dqz2E

4|F 12
z (qz1)|2|F 12

r (qr1)|2

|F 12
z (qz2)|2|F 12

r (qr2)|2Nq(Nq + 1)t

= −Γ3Dt

(3.36)

This is nothing but an exponential decay of the coherence, resulting in a Lorentzian
broadening of the ZPL.
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3.4 Simulation Flow

Constructing everything together, the polarization evolves as

P (t) = exp(−iω0t+KLA
L (t) +KLA

Q (t) +KLO
Q (t)) (3.37)

There is also a mixed term KM , which comes from mixing of VL and VQ [14]; for our calcula-
tions, KM is neglected, which is valid for parity symmetric wavefunctions and environments
[14]. It has been ignored in other related works as well [55, 14].

The basic simulation flow is shown in Figure 3.1. First the simulation parameters and
conditions are input. Then the band structure is calculated. Obviously, if the wavefunctions
appear to have the expected shape (e.g. not diverging) then it is probable that they are
calculated correctly. One way to establish some confidence in the wavefunctions calculated
is to compare to the experimentally obtained energy spacings. Once satisfied with the
calculated wavefunctions, these can then be used to calculate for the KQ and KL of the LA
and LO phonons. During these steps one should make sure that a large enough range of
the phonon energy or wavevector is used in calculating the formfactors. The polarization
should also be calculated to long enough of a time such that it has decayed enough to take
a Fourier transform. Finally, the emission spectrum can be calculated using the Fourier
transform of the polarization of time. The spectra are also normalized such that their
maximum value is 1.

3.5 Results

3.5.1 Structural Variations

In this subsection, the numerical results in which the radius and height of QDs in wells
are varied are shown. First the effect of only the LA phonons is shown , then with the LO
phonons as well. This also serves as somewhat of a fitting procedure to the experimental
data for the structure shown in Fig. 3.2, which will be analyzed in section 3.5.2. Figure 3.3
shows the calculated wavefunctions for this type of geometry. The factorization of the
wavefunctions leads to the quantum numbers nz in the z direction, and (m,nr) for the
radial direction. These are labeled in Fig. 3.3; m is the angular momentum quantum
number, and nr denotes the nthr eigenenergy level associated with m. The total eigenenergy
is given by E = Enz + Em,nr .

28



Figure 3.1: The basic simulation flow is illustrated.

The structural variations including only LA phonons are shown in Figure 3.4. The
radius and height (hdot in Figure 3.2) of the QD are varied. Only the state closest in
energy to the ground state in the conduction and valence bands were taken into account
in the calculations in order to highlight the main trends. Equations 3.14 and 3.36 are the
main equations used to calculate the spectrum. Comparing the spectra of 4-nm (Figure 3.4
a) and 9.5-nm radius (Figure 3.4 c), smaller QDs can be coupled to phonons with larger
energies and hence result in the wider sidebands. In the case of 4-nm radius, the first
excited state in the valence band is the nz=2, m=0 state for all the heights shown. As
shown in Fig. 3.4 b), in the height range of 4-7 nm, the first excited state in the conduction
band is the p state, and in the height range of 8-10 nm height, the first excited state is
the nz=2,m=0 state. The decrease in energy spacing in the z direction with increasing
QD height resulted in a net increase in the ZPL broadening and hence effectively higher
height of pedestals as well. In the case of 9.5-nm radius [see Fig. 3.4(c) and (d)], the first
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Figure 3.2: Schematic of the QD in a nanowire, courtesy of Dr.Shazzad Rassel

excited state is the p state in both the conduction and valence bands for heights 4-6 nm,
so while the energy spacing of the virtual interaction stays the same, a decrease of the
height of the QD leads to an increased strength of the QD-phonon coupling. In the range
of 7-12 nm, the first excited state is the p state in the conduction band and nz=2,m=0
state in the valence band, thus leading to the eventual slight increase in the FWHM of the
ZPL. This example shows the complex interplay in the QD energy spacings and QD size
which governs the QD-phonon coupling strength and is clearly an important consideration.
The comparison of the spectra under variation of the radius and height of the QD at 100 K
and including both LA and LO phonons are shown in Fig. 3.5. The thickness of the well
was kept fixed at 11 nm. The radius has a larger effect on the linewidth than the height.
There are oscillations in the FWHM as a function of the radius, when there’s an energy
spacing in resonance with the LO phonon energy. Around 8-9nm the peak occurs because
the m=1 state in the VB is in resonance with the LO phonon energy. Around 11nm it’s
the m=1 state in CB. At around 14 nm the peak is due to the nz = 1,m = 0, nr = 2 state
in the VB. The 3 orders of magnitude difference in the linewidth from structural variation
clearly indicates its importance in the design.
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Figure 3.3: Calculated electron/hole wavefunctions in the conduction and valence bands.
(a) Electron wavefunctions in the radial direction; (b) electron wavefunctions in the z
direction; (c) hole wavefunctions in the radial direction; (d) hole wavefunctions in the z
direction. For the radial component m=0 is shown in solid lines and m=1 is shown in
dashed lines. The quantum numbers (m, nr) in the radial direction, and (nz) are indicated
by the numbers in the brackets

In connection to other works, typically the QD wavefunctions have been modeled by
spherical Gaussian wavefunctions, which simplifies down to an easy to implement equation
[14, 58].

γP =
αµ

v4
c

∫
v10e−2v2/v2cn(v)(n(v) + 1)dv (3.38)
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Figure 3.4: Simulated linewidth broadening at T=100 K, where the ZPL broadening is
entirely due to phonon interactions (e.g., radiative broadening and other mechanisms are
neglected). (a) Emission spectra for QD of radius 4 nm and various heights as indicated
in the legend in nm. (b) ZPL broadening for radius of 4 nm and various heights. (c)
Emission spectra for QD of radius 9.5 nm and various heights indicated in the legend. (d)
ZPL broadening for radius of 9.5 nm and various heights. The labeling CB represents the
conduction band and VB represents the valence band. “total” gives the sum of the CB
and VB contributions plotted.
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Figure 3.5: Total FWHM including the LO phonon interactions. At T=100K, assuming
LO phonon lifetime of 5ps.

It was found that the approach in this work is generally consistent with the Gaussian
model, for the lowest energy spacings, if one finds wavefunctions such that the energy
spacings are the same. A comparison of the linewidths calculated from both models are
show in Figure 3.6, where reference data are from [58]. The energy spacings from spherical
geometry is given by ~2

d2m∗
, where d is the spatial confinement length of the QD and m∗

is the effective mass. Using the same effective masses as the reference, for d = 10nm,
the energy spacings are 11.37meV and 1.49meV for the conduction and valence bands
respectively. In the quantum disk wavefunctions model, structures were found to match
those energy spacings of the spherical model. In the valence band, a 20nm radius and
36nm height were used, and for the conduction band 17nm radius and 31nm height were
used. The two models show roughly the same dependence on the temperature – since both
equations were derived using the quadratic cumulant to the second order in time. This
numerical experiment suggests that for eigen state pairs with the same energy spacing, the
coupling strength to LA phonons is approximately the same.
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Figure 3.6: Comparison of the results from the spherical Gaussian wavefunctions model
(black solid line and circles – reproduced from [58]), and the Quantum disk-like wavefunc-
tions in this thesis (blue stars). The LA phonon material parameters used are the same as
that from Ref [58].

3.5.2 Comparison to Experiment

The simulation results are compared to experiment. It was found that LA phonons alone
cannot describe the trend in the linewidth broadening with respect to the temperature
– LO phonons are required to match to the higher temperature data. The spontaneous
emission plus non-radiative recombination rates should be negligible. In Ref [59], the
shortest exciton lifetime measured at 10K is around 0.33µeV.
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A QD height of 5 nm, radius of 9.5 nm, and well thickness of 11 nm was used in the
simulations (see Figure 3.3 for the band structure). A slightly larger radius of 9.5 nm (in-
stead of the targeted experimental value of R=9 nm) was employed as to better match to
the experimentally obtained sp energy spacing (see Figure 3.9 in Appendix 3.8). Energy
spacings of of 35 and 20 meV are calculated in the conduction and valence bands respec-
tively for the sp spacings. Figure 3.7 shows comparison of the simulated and experimental
spectra at 100-nW excitation power. The experimental data was shifted such that the
emission peak is at zero energy detuning (ZPL peak). The experimental resolution was
taken into account through convolution of the simulated data with a Gaussian lineshape
of 170µeV FWHM - meaning that the new spectrum taking into account the resolution is
S ′(ω) =

∫
dω′S(ω′)L(ω − ω′), where L is a Gaussian function with peak at ω′. A good

match of the general lineshape to the experimental is found at all temperatures.

Figure 3.8(a) shows the simulated temperature behaviour of the FWHM of the ZPL.
The orange curve shows that the calculated points have a Nq(Nq + 1) dependence on the
temperature. Here a small energy for Nq (2 meV) is used, multiplied with a scaling constant
to fit the data. Figure 3.8 (b) shows the comparison of the simulated FWHM of the total
spectrum, taking into account the experimental resolution, to the experimental FWHM
from three different samples. Multiple data points are from different excitation powers.

In connection to other experimental results, the correct order of magnitude and trends
are obtained. Typically the experimental data have been fit with a single phonon activation
model γ0 + γ1

1
eE1/kBT−1

+ γ2
1

eE2/kBT−1
dependence, where γ0 is the linewidth broadening at

0K, γ1,2 is indicative of the exciton-phonon coupling strength, and E1,2 is an activation
energy [7, 60]. In our model, the Nq(Nq + 1) factor is representative of the underlying
physical mechanism of KQ - the product of phonons being absorbed Nq and the phonons
being emitted Nq + 1. This is also the variance of the phonon distribution.

3.6 Conclusions

In summary, theory on the optical lineshape broadened by LA and LO phonon interactions
was presented for QDs of cylindrical geometry in this Chapter. Analytical formulae were
derived accounting for both the broadband and ZPL. For the calculations, the QD radius
and height were varied, demonstrating the possibility for optimization of the QD shape
to mitigate the linewidth broadening by three orders of magnitude. To reconcile with
the widely used spherical wavefunctions model for QDs, it was found that similar ZPL
broadening is obtained for LA phonons if wavefunctions are found such that the energy
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spacings from both models are the same. Hence, it is recommended that more attention
should be paid in matching to the experimental energy spacings.

Given the large uncertainly in many simulation parameters such as the effective mass,
band offsets, and LA phonon parameters, our study concludes that the trends obtained are
in reasonable agreement with the experimental PL spectra. The PL spectra are of high
quality single dots, with low charge noise – which compared to previous literature allows us
to really probe the fundamental linewidth broadening due to decoherence from phonons.
The model is useful in providing guidelines for future wavefunction engineering of QDs in
a wide range of optoelectronic devices.

3.7 Appendix: Evaluation of the form factors

The form factors are evaluated following [34]. The phonon plane wave can be written in
cylindrical coordinates using the Jacobi-anger expansion,

ei~q·~r = eiqzz
∞∑

n=−∞

inJn(qrr)e
in(θ−φq) (3.39)

where Jn is the Bessel function of the first kind of order n, qz, qr and φq are the z, radial
and angle coordinates of the phonon wavevector respectively.

Then substituting the total wavefunction ψ = 1√
2π
Z(z)R(r)eimθ into the form factor,

and using cylindrical coordinates yield∫
d3rψ∗1e

i~q·~rψ2 =
1

2π

∫ +∞

−∞
dz

∫ ∞
0

drr

∫ 2π

0

dθZ1Z2R1R2e
i(m2−m1)θeiqzz

+∞∑
n=−∞

i−nJn(qrr)e
in(θ−θ~q)

=
i−n

2π

∫ +∞

−∞
dzeiqzzZ1Z2

∫ ∞
0

drrR1R2Jn(qrr)

∫ 2π

0

dθe−inθ~q

= i−ne−inθ~q
∫ +∞

−∞
dzeiqzzZ1Z2

∫ ∞
0

drrR1R2Jn(qrr)

(3.40)

where it is assumed that the only n that is kept is n = m1 − m2 from conservation of
angular momentum. For KL, then n = 0.

In regards to the Bloch part of the wavefunction, the relation that∫
dr3u∗cψ

∗
ce
i~q·~rucψc ≈

∫
dr3u∗cuc

∫
dr3ψ∗ce

i~q·~rψc, (3.41)
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Table 3.1: Parameters used for simulated structures
Parameter Expression/Value Ref.
Electron effective mass of InP in
units of m0

me(r) = 0.1183, me(z) = 0.0947 [61]

Electron effective mass of InAs in
units of m0

me(r) = 0.0416, me(z) = 0.037 [61]

Heavy hole effective mass of InP
in units of m0

mhh(r) = 0.2091, mhh(z) = 1.0646 [61]

Heavy hole effective mass of InAs
in units of m0

mhh(r) = 0.0795, mhh(z) = 0.9738 [61]

Band gap of InP 1.49eV [62]
Band gap of InAs 0.481eV [63]
Band gap Eg(InAsP) = 1.49 + (0.481− 1.49− c)x+ cx2 [64]
bowing parameter c = 0.12eV [64]
Conduction band offset 0.6dEg *
Valence band offset 0.4dEg *
Deformation Potentials Dc = −12.6eV, Dv = −7.1eV *
Material density ρM = 5.667g/cm3 [65,

11]
Speed of sound us = 4200m/s *
LO phonon energy ~ωLO = 28meV [66]
static permittivity εs = 15.15ε0 [67]
high frequency permittivity ε∞ = 12.3ε0 [67]

is used, since the envelope functions are more slowly varying.

3.8 Appendix: Simulation parameters

Table 3.1 lists the simulation parameters used for the interband simulations, and the items
with * for the references are justified in this Appendix. There is no general consensus on
the conduction and valence band offsets in the literature; these values are complicated by
the strain, size, as well as the crystal structure type. These have varied from 0.32 to 0.75 for
the fraction of conduction band offset [68, 64, 69]. However our calculated energy spacings
are within the expected range - experimental PL data at 180 K shows another peak that
is 54meV higher than the main peak (see Fig. 3.9), which should be corresponding to
the p exciton. Our calculated p peak is 55 meV higher than main transition, which is in
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good agreement to the experimental. In evaluating KQ the states with the smallest energy
differences from the first eigenenergy state should be taken into account, up to a certain
cutoff in energy. Only the first excited states are taken into account for the KQ term due
to LA phonons while a few are included for LO phonons. The energy gap for InAs0.5P0.5

from our calculation is 955.5meV, which results in an emission energy too high compared
to the experimental - however the exact value of the transition energy is not the focus of
this work and any energy shifts from the phonon interaction are ignored anyways.

Regarding the phonon simulation parameters, for comparison the phonon coupling pa-

rameter often cited in literature [21], αp = (Dc−Dv)2

4π2~u5sρM
here would be 0.025ps2. It has also

been previously mentioned that the longitudinal sound velocity in QDs should be smaller
than that of the bulk [65], which has a significant effect on the final lineshape due to the
factors of 1/u4

s and 1/u8
s in KL and KQ respectively. Values of 2960 to 4600m/s have been

reported in the literature [65, 70, 11, 71]. Note that values of Dc=-13.6eV and Dv=-7.1eV
were used in [11], and Dc = -5.08eV and Dv = -1eV were used in [70]. It is possible to
obtain similar spectra using different sets of (Dc,Dv,us). The LO phonon energy is ex-
pected to be around 27-29meV, and was decided upon through fitting to the experimental
results.
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Figure 3.7: Comparison of the experimental and simulated emissions spectra at (a) 40 K,
(b) 70 K, (c) 100 K, and (d) 150 K. The blue curve is the as simulated spectrum (labeled as
“sim”), orange is the simulated spectrum convolved with 170µeV spectrometer resolution
(labeled as “conv”), and green curve is the experimental data (“exp”). LO phonons at
40 and 70K were not included, because it is expected to be not significant at these low
temperatures, and the LO phonon lifetime is a fitting parameter. 7ps was used for the LO
phonon lifetime. Experimental data are from the National Research Council.
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Figure 3.8: (a) Simulated FWHM of the ZPL as a function of temperature. (b) Comparison
of the simulated FWHM of the whole spectrum (with the experimental resolution taken
into account) to the experimental data with different excitation powers, as a function of
temperature. The r10c6, r12c4, r13c3 are the the names of the different samples, provided
by our collaborators at the National Research Council. The number in bracket indicate the
estimated experimental resolution of the experimental data. The simulation is convolved
with 170µeV resolution. Note that LO phonons were excluded for temperatures lower than
50K.
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Chapter 4

Intersublevel Dynamics

In the intersublevel regime, the application of quantum dots towards the realization of
a THz quantum cascade laser (quantum dot cascade laser, QDCL) is investigated. This
section begins by presenting a background on the QDCL – how it works, and what are
the prospects and challenges for this device. Then the dynamical method that is used to
model this type of laser is explained, and finally the simulation results are presented.

4.1 Introduction to quantum dot cascade lasers

The main problem in THz QCL research that researchers are trying to solve is the issue of
high temperature operation, and this is important as it would be easier for these kind of
lasers to enter the consumer market. Obviously, the higher the operating temperature the
better and the ideal laser should operate at room temperature with high output powers.
Intermediate milestones towards room temperature operation would include going from
liquid nitrogen temperatures to those obtainable by thermoelectric coolers. Since the
cryogenics are eliminated, then there’s more device mobility and less mechanical vibrations
which may help in some optical setups. Thermoelectric cooling setups have been developed
recently in Refs. [72, 73].

The current maximum operating temperature is 210K, and has only been slowly im-
proving as of recent years (200K in 2012 and 210K in 2019). In these traditional well-based
QCLs, the presence of subbands and continuum of states means that there are lots of de-
coherence and non-radiative losses, and thermally activated LO phonon emission processes
– such as thermal backfilling of the lower laser state. This is the current consensus for
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the main mechanism limiting the high temperature operation in traditional THz QCLs.
State lifetimes are on the order of sub-ps or ps, linewidth broadening is high at room
temperatures, and there are many parasitic transitions to take care of.

The quantum dot cascade laser (QDCL) provides promise that room temperature lasing
at THz frequency could be reached. Operating principles of a QDCL is the same as a
traditional well based QCL, except the gain medium will be replaced with the nanowires
(see Figure 4.1), which offer advantages due to the additional quantum confinement. There
is a top electrode and bottom electrode, which also serve as waveguides. The light is emitted
from the front facet, similar to a typical ridge laser. The gap space will have to be filled
with a low loss material.

Due to the additional confinement in QDs, there is an absence of continuum of states.
Intuitively one would think that this would lead to longer state lifetimes. For instance,
if the energy spacing between two states is detuned from the LO phonon energy, then
the energy conservation requirement cannot be satisfied and, according to Fermi’s Golden
rule, the transition cannot take place – this is what is referred to as a phonon bottleneck.
However, despite this discrete density of states, there is also stronger e-phonon interactions.
The smaller the quantum dot, the stronger coupling strength with phonons, which leads
to coherent interactions. This is especially true for LO phonons as they have a continuum
of the same energy (meaning that each of the different wavevector states have the same
energy), which increases the coupling strength. This needs a special treatment, beyond
what is described by Fermi’s Golden rule. Nevertheless, Zibik et al have measured ultra-
long lifetimes of 1.5ns in quantum dots for energy spacings of 14meV, to 2ps for energy
spacings of 30meV at 10K [74]. The concept of using more confinement also include using
a magnetic field, which was successfully demonstrated to increase the Tmax (maximum
operating temperature) of a QCL to 225K using a field strength of 19T [75].

Figure 4.1: Schematic of the QDCL device, modified from [34]
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On the experimental side, previous attempts at realizations of a QDCL include work
presented in Refs. [36, 37], which utilize top-down etching procedures after the MBE
growth. It is not easy to obtain a high aspect ratio of the nanowires through etching tech-
niques, however, surface level Fermi pinning may result in smaller effective diameters [36].
There are several other issues with the QDCL approach in general; surface charges, low
filling factor of the gain material, and high losses are of concern. The surface charges are
present because of dangling bonds. Recombination of surface charges do not hinder the de-
vice operation, however the number of electrons contributing to the laser action is reduced,
being wasted as current density flowing on the surfaces. Bottom up growth approaches
will result in better side-walls, however one can only obtain a few well and barrier layers,
which would probably not be enough for the QCL operation. Filling factors of at least 36%
should be aimed for, as random lasing in THz frequencies was demonstrated with this fill-
ing factor [76]. The space in between the nanowires should be filled with a nonconducting
material with low losses in the THz range. One option is to use benzocyclobutene (BCB)
along with nanoparticles to tailor the refractive index [76, 77].

Nevertheless a possible model to use for the design of QDCLs is presented, which can be
used in the future when the technology has advanced enough to realize this experimentally.

4.2 Transport

In this section the form of the scattering superoperator that is used is derived. First the
different models that there are to describe the electronic transport is reviewed and the ap-
proach taken is justified. In general when creating a new model, it is important to consider
the accuracy needed vs the numerical cost. Possible models to include are NEGF [35, 78],
correlation expansion, polaron density matrix [79], quantum master equations (e.g. in Red-
field or Lindblad forms), and rate equations. The main feasible options are summarized
in Table 4.1. NEGF is obviously the most accurate, because it is resolved in energy and
k, as well as taking into account self consistently the lamb shifts due to interations with
the environment. However this comes at the cost of numerical complexity. Correlation
expansion approaches essentially write equations of motion for correlation terms such as
phonon assisted or impurity-assisted density matrices while cutting off the expansion at
some order. However this would be too complicated to implement for QCL systems, as it
would require too many states. Rate equations do not work for strong coupling phenomena,
as they are relying on Fermi’s Golden rules and describe irreversible transitions.

This work is using a density matrix method, having the form of Redfield equations.
This method has the risk that it may not be valid for strong coupling, because it is a
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Table 4.1: Comparison of transport models
Model Pros Cons
NEGF [35] Valid for all interaction strengths Numerical complexity
Interaction (this
work)

Easy to enumerize Not valid for strong coupling,
however still experimentally rele-
vant

Polaron density
matrix [79]

Valid for strong coupling Difficult to enumerize for many
transitions

perturbative approach in nature – in-fact it is cut off at the second order in time. However
this approach should still be applicable for the experimentally feasible range of nanowire
diameters.

The coupling strengths can be organized depending on the diameter of the nanowire.
The smaller the diameter of the nanowire, then the stronger the coupling effects, and the
less accurate our model will be (see Figure 4.2). I expect the strong coupling regime to
be only relevant for very thin nanowires with less than around 40nm in diameter. This
is actually likely to not be experimentally realizable anyways – it would be difficult to
etch down to this precision and there won’t be enough mechanical stability. For bottom
up grown nanowires, it would be very difficult to achieve the precision that MBE systems
offer for the well and barrier lengths.

In the regimes of around 40nm to 100nm diameter is where I expect the Interaction
model to exhibit an advantage. This model is also easy to enumerize; because a scattering
superoperator was derived in indicial form which is simple to put into code. It is a general
model applicable for all different QDCL designs. For diameters larger than 100nm, there are
enough states in the lateral direction that one can use traditional quantum well simulation
models. Of course, the NEGF approach is valid for all regimes. In the literature, there are
only the NEGF[35, 78], polaron density matrix [79], and rate equations model [80] which
have been used. The contribution of this work is the development and application of a
new model to simulate for the transport dynamics in a QDCL. Although the interaction
approach is not new, it has not yet been applied to QDCLs.

The next section derives the format of the scattering superoperator.

4.2.1 Scattering superoperator

The derivation follows that of Refs [82, 83, 84].
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Figure 4.2: Schematic of the different regimes of transport, depending on the diameter of
the nanowire. a) > 100nm b) and c) are 40 to 100nm d) < 40nm diameter. The dashed
lines represent example paths of electron movement, going from the diffusive regime to
ballistic. Reproduced from Ref [81]

.

Let us denote the interaction Hamiltonian in the interaction picture by

HI(t) =
∑
i

Si(t)Ri(t) (4.1)

where the S and R denote the system and reservoir operators, and the sum over i is
accounting for different kinds of interactions, such as with LA and LO phonons, different
q, and with different system states. For example, the reservoir component can be

Rq = b†q + bq (4.2)

with the system part
Snm(q) = Mnm(q) |n〉 〈m| (4.3)

Starting with the equation of motion for the reduced density operator, which has used
the Markov approximation that ρ(t′) ≈ ρ(t)

dρ(t)

dt
= − 1

~2
TrB

{[
HI(t),

[ ∫ t

0

dt′HI(t
′), ρ(t)ρB

]]}
(4.4)
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This is valid if the timescale at which ρ changes is slow compared to that of the interaction.
The simplification allows for easier numerical implementation, since the time dependence
of ρ only depends on its present value.

To transform into the interaction picture, the following is applied:

Si(t) = eiHst/~Sie
−iHst/~

Ri(t) = eiHrt/~Rie
−iHrt/~.

(4.5)

Physically, by using the interaction picture the time evolution arising from H0 is separated
from that of the interaction Hamiltonians. The sum over the wavevectors q is dropped
for now. Then plugging these into the integro-differential form of the equations of motion
yields

dρ(t)

dt
=
−1

~2
TrB{[S(t)R(t), [

∫ t

0

dt′S(t′)R(t′), ρ(t)ρB]]}

=
−1

~2

∫ t

0

dt′TrB{R(t)R(t′)ρB}S(t)S(t′)ρ(t)− TrB{R(t)ρBR(t′)}S(t)ρ(t)S(t′)

− TrB{R(t′)ρBR(t)}S(t′)ρ(t)S(t) + TrB{ρBR(t′)R(t)}ρ(t)S(t′)S(t)

(4.6)

To transform back to the Schrodinger picture, e−iHt/~XeiHt/~ is applied to obtain

dρ

dt
=

1

i~
[H0, ρ] + Γ(t)ρ(t) (4.7)

where

Γ(t)ρ(t) =
−1

~2

∫ t

0

dτTrB{Re−iHrτ/~ReiHrτ/~ρB}Se−iHsτ/~SeiHsτ/~ρ(t)

− TrB{RρBe−iHrτ/~ReiHrτ/~}Sρ(t)e−iHsτ/~SeiHsτ/~

− TrB{e−iHrτ/~ReiHrτ/~ρBR}e−iHsτ/~SeiHsτ/~ρ(t)S

+ TrB{ρBe−iHrτ/~ReiHrτ/~R}ρ(t)e−iHsτ/~SeiHsτ/~S

(4.8)

where I let τ = t − t′. It was assumed that the system and reservoir operators commute
with eachother but not necessarily between themselves. The next step is to carry out the
trace over the bath, from which the density matrix of the target electronic system (i.e.
reduced density matrix) is obtained. And in doing so, it is assumed that the bath is large
such that it remains in thermal equilibrium, despite the interactions with the system.
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Making use of the invariance of the trace from cyclic permutation, I obtain

Γ(t)ρ(t) =
−1

~2

∫ t

0

dτ
∑
±

e∓iωqτ (Nq +
1

2
± 1

2
)[Se−iHsτ/~SeiHsτ/~ρ(t)]

−
∑
±

e±iωqτ (Nq +
1

2
± 1

2
)[Sρ(t)e−iHsτ/~SeiHsτ/~]

−
∑
±

e∓iωqτ (Nq +
1

2
± 1

2
)[e−iHsτ/~SeiHsτ/~ρ(t)S]

+
∑
±

e±iωqτ (Nq +
1

2
± 1

2
)[ρ(t)e−iHsτ/~SeiHsτ/~S]

(4.9)

Now in order to implement this in code, the above is written in indexing notation[
Γ(t)ρ(t)

]
ab

=
−1

~2

∫ t

0

dτ
∑
±

e∓iωqτ (Nq +
1

2
± 1

2
)[Sac(e

−iHsτ/~Sie
iHsτ/~)cdρdb(t)]

−
∑
±

e±iωqτ (Nq +
1

2
± 1

2
)[Sacρcd(t)(e

−iHsτ/~Sie
iHsτ/~)db]

−
∑
±

e∓iωqτ (Nq +
1

2
± 1

2
)[(e−iHsτ/~Sie

iHsτ/~)acρcd(t)Sdb]

+
∑
±

e±iωqτ (Nq +
1

2
± 1

2
)[ρac(t)(e

−iHsτ/~Sie
iHsτ/~)cdS

s
db]

(4.10)

This scattering superoperator goes into the time evolution of the density matrix as

dρab
dt

=
1

i~
[H0, ρ]ab +

(
Γ(t)ρ(t)

)
ab

(4.11)

This scattering superoperator is describing the incoherent time evolution of ρab due to
interactions with other ρ mediated by Γ. Terms like (e−iHsτ/~Sie

iHsτ/~)cd are evaluated as

e−i
∑
i ωi|i〉〈i|τ |c〉 〈d| ei

∑
i ωi|i〉〈i|τ

= e−iωcτ |c〉 〈d| eiωdτ

= |c〉 〈d| eiωdcτ
(4.12)

Now I let SabScd = Vab,cd to be consistent/compare to the equations in [85]. Putting
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everything together,(
Γ(t)ρ(t)

)
ab

=
−1

~2

∫ t

0

dτ
∑
±

e∓iωqτ (Nq +
1

2
± 1

2
)[Vac,cde

iωdcτρdb(t)]

−
∑
±

e±iωqτ (Nq +
1

2
± 1

2
)[Vac,dbρcd(t)e

iωbdτ ]

−
∑
±

e∓iωqτ (Nq +
1

2
± 1

2
)[Vac,dbe

iωcaτρcd(t)]

+
∑
±

e±iωqτ (Nq +
1

2
± 1

2
)[ρac(t)Vcd,dbe

iωdcτ ]

(4.13)

Next, it is desirable to write the whole equation in terms of ρcd. The last two terms become

Vcddbe
iωdcτρac = δac

∑
f

Vdffbe
iωfdτρcd (4.14)

and
Vaccde

iωdcτρdb = δbd
∑
f

Vaffce
iωcf τρcd (4.15)

To summarize, the final equation is

Γab,cd(t)ρcd(t) =
1

~2

∑
±

(Nq +
1

2
± 1

2
)
[ ∫ t

0

dτVac,dbe
i(ωca∓ωq)τρ(t)cd +

∫ t

0

dτVac,dbe
i(ωbd±ωq)τρ(t)cd

− δbd
∑
f

∫ t

0

dτVaf,fce
i(ωcf∓ωq)τρ(t)cd − δac

∑
f

∫ t

0

dτVdf,fbe
i(ωfd±ωq)τρ(t)cd

]
(4.16)

Note that this is the same format as the interaction approach in Ref [85] when taken
to the long time limit.

To illustrate what this scattering superoperator does, it is shown below that it does
reduce down to simpler models. For example, after taking the long time limit, I find by
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construction for the occupation dynamics:

dna
dt

=
∑
cd

Γaa,cdρcd

≈
∑
cc

Γaa,ccρcc

=
∑
c

Vac,ca(δ(Ea − Ec) + δ(Ea − Ec))ρcc

−
∑
c

∑
f

[
δa,cVcf,faδ(Ef − Ec) + δa,cVaf,fcδ(Ef − Ec)

]
ρcc

=
∑
c

2Vac,caδ(Ea − Ec)ρcc −
∑
f

[
2Vaf,faδ(Ef − Ea)

]
ρaa

=
∑
c

Rc→anc −
∑
c

Ra→cna.

(4.17)

where the δ(Efinal − Einitial) denotes the energy conservation. This is the same as rate
equations, that the time evolution of populations in state a is the sum of that coming into
state a minus that going out. For the lifetime of a coherence it is found that:

Γab,ab = 2Vaa,bb −
∑
f

[
Vbf,fbδ(Ef − Eb) + Vaf,faδ(Ef − Ea)

]
= 2Vaa,bb − Vbb,bb − Vaa,aa −

∑
f 6=b,a

[
Vbf,fbδ(Ef − Eb) + Vaf,faδ(Ef − Ea)

]
= 2Vaa,bb − Vbb,bb − Vaa,aa −

∑
f 6=b,a

1

2

[
Rb→f +Ra→f

] (4.18)

Which is half of the level lifetimes, plus another pure dephasing component. Interestingly
this is the same as the definition from the commonly used Ando/Unuma [86] model in
the QCL community, and this is also the same format as the diagonal electron phonon
interaction in the independent boson model (when ignoring the energy shifts). However,
in the more commonly used tight binding basis approaches in the THz QCL community,
the use of this definition is known to still yield large spikes in the IV curve, which does
not match with the experiment. This general lack of dephasing in the previous models is
mainly due to the inconsistencies in the choice of basis.
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4.2.2 Periodicity

The QCL is composed of hundreds of repeats of the same modules, and obviously, it is
not feasible to simulate all of them. Therefore I simulate for one module and use periodic
boundary conditions. This affects the format of the density matrix and the scattering
superoperator [85], which is explained in this section.

If blocks of density matrices ρµ,v are written describing the states in modules µ and v,
and only the next nearest neighbours are included,

...
ρ−1,−2 ρ−1,−1 ρ−1,0 0 0

0 ρ0,−1 ρ0,0 ρ0,1 0
0 0 ρ1,0 ρ1,1 ρ1,2

...

 (4.19)

then the periodicity means that the values of the density matrix elements in module 0 is
the same as that of module -1 and module 1 etc. ( ρ0,0 = ρ−1,−1 = ρ1,1). The density
matrix elements describing the coherence between modules 0 and -1 is also the same as
that describing modules 1 and 0, since the only change is a shift down a module. Thus
only the difference between the modules matter, and the notation can then be shortened
by using ρµ,v = ρv−µ, to write 

...
ρ0 ρ1 0
ρ−1 ρ0 ρ1

0 ρ−1 ρ0

...

 (4.20)

For the scattering matrix elements however only the shift property applies. To include
periodicity in the scattering superoperator, the trick is to sum over the indices of the
neighbouring modules, for example σ = −1, 0, 1 (many thanks to Andrew Pan and Ben-
jamin Burnett for providing notes regarding how to implement the periodicity in their
scattering superoperator in [85]). For a ΓAB

µ;
,CD
v

describing the transfer of ρCD of type v to

ρAB of type µ, this is implemented as

ΓAB
µ;
,CD
v

=
∑
σ

ΓA
0
B
µ;
,C
σ
D
σ+v (4.21)
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However in practice, u and v are set to zero, and 3 modules are treated as an effective one
module in the simulation. This way, I am only solving for coherences that are extending
within one (effective) module but important coherences in the system of equations will not
be neglected. In the end, one can take the results from the middle module to compute
the observables. Now carrying out the above equation 4.21 with µ, v = 0 the follwing is
obtained:

Scattering Superoperator

ΓAB
0;
,CD

0
=

∑
σ

∑
±

(Nq +
1

2
± 1

2
)

[
VAC

0,σ;
,DB
σ,0

ei(ωCA+σU∓ωq)te−γt − 1

i(ωCA+σU ∓ ωq)− γ
+ VAC

σ,0;
,DB
0,σ

ei(ωBD+σU±ωq)te−γt − 1

i(ωBD+σU ± ωq)− γ

− δB,D
∑
F

VAF
σ,0;

,FC
0,σ

ei(ωCF+σU∓ωq)te−γt − 1

i(ωCF+σU ∓ ωq)− γ
− δA,C

∑
F

VDF
0,σ;

,FB
σ,0

ei(ωFD+σU±ωq)te−γt − 1

i(ωFD+σU ± ωq)− γ

]
(4.22)

where γ is the inverse lifetime of the phonon. For LO phonons the lifetime was approx-
imated using 8 − T

54.5
ps [34], where T is the temperature. For LA phonons it is assumed

that they have infinite lifetime. U is the energy drop per module, and A,B,C,D, F are
indices of the states in one module.

Additional pure dephasing can be added into the scattering superoperator. This gener-
ally helps with the numerics. Physically additional dephasing is justified by other scattering
mechanisms other than LA and LO phonons, as well as virtual interactions. The dephasing
contribution is added on by using

ΓAB,CD = ΓAB,CD +
δA,DδB,C

τ ∗
− δA,CδB,D

τ ∗
(4.23)

where τ ∗ is a pure dephasing time, and δi,j is the kronecker delta.

In reality there may be electrical field domains which break the periodicity, which
would cause the different modules to be biased at different voltages. It is expected to be
an important factor to consider in the design of QDCLs. Its treatment in traditional QCLs
have been investigated in Ref [87]. However that is beyond the scope of this thesis.
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4.2.3 Scattering Mechanisms

The specific equations used for the LO and LA phonon scattering for QDCLs is similar to
that of the interband case.

For LA phonons,

Vac,db =
∑
q

~ωq
2ρMu2

sV
D2
c

∫
d3rψ∗a(r)e

iq·rψc(r)

∫
d3rψ∗d(r)e

−iq·rψb(r) (4.24)

For LO phonons,

Vab,cd =
∑
q

e2~ωLO
2V ε0κ

1

q2

∫
d3rψ∗a(r)e

iq·rψb(r)

∫
d3rψ∗c (r)e

−iq·rψd(r) (4.25)

To evaluate the form factor component, again, the key is to use the Jacobi-anger expan-
sion which is the same as the interband case (see Appendix 3.7). In the spatial integrals
over r, n1 = ma−mb (for ein1θe−imaθeimbθ = 1), and n2 = md−mc (for e−in2θe−imcθeimdθ = 1)
have to be satisfied. Then carrying out the sum over phonon wavevectors q,

=
∑
q

[ ∫
drr

∫
dzZaRaZbRbe

iqzzin1Jn1(qrr)e
in1(−φq)

]
×
[ ∫

drr

∫
dzZcRcZdRde

−iqzzi−n2Jn2(qrr)e
in2φq

]
=

V

(2π)3

∫ ∞
0

dqrqr

∫ ∞
−∞

dqz

∫ 2π

0

dφq

[ ∫
drr

∫
dzZaRaZbRbe

iqzzin1Jn1(qrr)e
−in1φq

]
[ ∫

drr

∫
dzZcRcZdRde

−iqzzi−n2Jn2(qrr)e
in2φq

]
(4.26)

Now the integral over φq will be zero unless if n2 − n1 = 0, or in other words the selection
rule is that ma −mb + mc −md = 0. The factor of i disappears and all scattering rates
are real for the allowed transitions. For the order of the Bessel function, I chose to use |n|
according to T.Grange’s work [35]

4.2.4 General Remarks and Summary

Some general remarks in the actual implementation of the scattering superoperator are as
follows. The imaginary part of occupations are in theory zero, but in practice one will
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typically obtain the imaginary part to approximately numerical precision, hence typically
if the occupations of the density matrix are sensible then one knows that the scattering
superoperator has been implemented correctly. One recommendation is to check for sym-
metries in the scattering superoperator (e.g. is it of tetradic form). Also note that this
scattering superoperator is not in Lindblad form, so it does not guarantee positivity, and it
is possible to obtain negative occupation terms which are obviously not physically correct.
However, in the Lindblad equations the energy shifts cannot be included.

To summarize, a set of quantum master equations have been derived, accurate to the
second order in the Born-Markov approximations. It is fairly intuitive as one can draw
connections between this model and the semiclassical rate equations. This model is valid
for weak perturbations (e.g. weak e-phonon couplings). When the interaction is strong,
this needs e.g. the phonons to be in the system. The main characteristics of this transport
model is that it does not have strict energy conserving deltas and the periodicity of the
QCL structure is included. Both LO and LA phonons are included, as well as a finite
lifetime of LO phonons in the scattering rate. The two-phonon mechanisms (KQ) can also
be accounted for, through a simple addition of time-independent pure dephasing rate.

4.3 Observables

4.3.1 Gain

In this approach the procedure is to introduce the ac electric field

E(t) = Eac cos(ωt) (4.27)

This gives the electron-light interaction Hamiltonian

Hopt(t) = |e|zijEac cos(ωt) (4.28)

The corresponding gain was calculating through

g(ω) =
|e|ωN3D

nrcε0
Im
( P (ω)

|E(ω)|

)
(4.29)

where

P (ω) =

∫
dtρije

iωtzij

E(ω) =

∫
dtEac cos(ωt)eiωt

(4.30)
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are the polarization and optical field strength in the frequency domain, respectively. In the
implementation of this method, it is assumed that the steady state is first established by
the scatterings, and then use that as the initial condition for which the ac field is applied.

The advantage of this approach is that there’s no need to assume Fourier expansion
of frequencies or RWA (as was done in Ref. [85]), or rely on the accuracy or validity of
the calculated current densities (as was done in Ref. [51]). The only drawback is that one
would have to solve the density matrix equations in time, which may run into divergency
issues – especially for strong scattering conditions. The other approach that I have found
to be robust, easy to implement, and reliable in the weak lasing field strength regime is
Ref. [85]. Both methods are used in this thesis.

4.3.2 Current Density

Options for calculating the current density include using the quantum mechanical prob-
ability current which is related to the wavefunctions and the coherence values: J ∝
ρbaψ

∗
a(z) ~

im
∂ψb(z)
∂z

, or using the expectation value of the coherent velocity. The former
has the advantage that it may offer a better pictorial view of the underlying transport,
however has the drawback that it is spatially varying. Many levels, including those that
are quasi-bound and are ill-defined, may have to be included to obtain a converged value.
Note that one can also calculate an incoherent current density through defining a velocity
scattering superoperator [85], however this is ignored for the QDCL calculation due to
the already long calculation time. If done correctly, the incoherent contribution should be
small [88], especially so in these quantum dot systems.

In this thesis the expectation value of the coherent current density is used, in which
the accuracy only depends on the values of the density matrix elements calculated. The
coherent current density is given by

J = Ndq〈vcoh〉

vcoh =
i

~
[H, z]

(4.31)

H is the energy eigenstates Hamiltonian with the eigen-energies on the diagonals, Nd is
the 3D doping concentration, and z is the position operator. The expectation value is
evaluated as Tr(ρvcoh), for the target states.
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4.4 Simulation Flow

A schematic of the simulation workflow is shown in Figure 4.3. The simulation is started by
inputting the simulation conditions such as the temperature, electric field, doping concen-
tration, materials and quantum design. Then the wavefunctions (eqn 2.6) are calculated.
With the wavefunctions one can then calculate the form factors and the scattering matrix
elements, this is the time consuming part of the calculation. However these form factors
can be stored and re-used at different temperatures. Next the scattering superoperator
(eqn 4.22) is constructed, it is sufficient to calculate the scattering superoperator at some
arbitrary long enough of a time, and use the matrix inverse to solve for the steady state
ρ. When calculating the form factors one should be careful to use fine enough of a dis-
cretization for the LA phonon energy, such that it is sufficient for the effective infinite time.
Finally, once the scattering superoperator and the entire density matrix is obtained, one
can calculate the output characteristics such as the current density (eqn 4.31) and gain
(eqn 4.29). The calculation time on a i7-8700K CPU @3.70GHz desktop for one electric
field, if starting from scratch, and not including calculation of the gain, is around one hour.
The LA phonon scattering is only included for the transport in one module in order to
save computation time. The calculation time depends on the number of states that are
included – this is for 54 states.

4.5 Results

4.5.1 Original Design

The model is tested on the simplest QDCL design possible, with three states per operation
module. The quantum design is shown in Figure 4.4. Starting from the injector barrier, the
design layer thicknesses are 3.7/8.2/3.8/16.8 nm GaAs/Al0.2Ga0.8As [79]. It is a two well
design; the two well operation scheme has shown record high temperature performance in
the traditional quantum well based THz QCL systems [73]. The operation mechanism is
as follows: starting from the injector state “I”, electrons are injected into the upper lasing
state “U”. Then through both radiative and non-radiative scattering electrons from state
“U” can be transported to state “L” the lower lasing state. The state L is then depopulated
through LO phonon scattering to states I and U of the next module. Figure 4.4 b) also
shows other sublevels that are present in the in-plane direction.

First the gain spectra at T=0K is shown in Figure 4.5. Only the s states are included.
The peak around 12meV is due to the I to L transition and peak around 10meV is due to
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Figure 4.3: Flowchart of the simulation program.

the U to L transition. The absorption peak is due to the U to I transition. To investigate
the effect of the different types of phonons on the transport, the LA phonon interactions is
turned on and off in the code, while the LO phonon interaction is kept on as this particular
lasing mechanism is mainly dependent on this. It was found that the LA phonon emission
helps to inject electrons into the upper lasing state – increasing the population from of
state U from 0.501 to 0.688. This resulted in a higher peak gain.

Next the effect of the optical field is shown in Figure 4.6, still at T=0K. As expected the
gain decreases with increasing field strength, due to increasing stimulated emission which
depopulates the upper lasing state. It was also found that due to the stronger interaction
of the U to L transition with the optical field, its peak gets reduced down first.
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Figure 4.4: a) Schematic of the nanowire (top) and the band structure diagram at elec-
tric field of 16kV/cm (bottom) – colored lines indicate the states included in the sim-
ulation. b) Simplified energy diagram of a few of the energy levels. The numbers in
brackets are (m,nr). The s state is indicated in thicker lines. The doping concentration
was 3.25x1010cm−2.

The effect of with/without LA phonons is then investigated at higher temperatures
(50K and 300K) in Figure 4.7. There are 18 states per period that are included: there’s
the 3 states in the z direction, and each of these have (m,nr) = (0,1), (±1,1), (±2,1),
and (0,2) states – see Figure 4.4 b) for the energy level diagram. This results in a total
of 18x3=54 states when effectively treating three modules as one. The energy difference
between the lowest and highest intersublevels for the same type of nz state is 19.2meV.

At both 50K and 300K, there are multiple peaks, which are from all the different in-
tersublevels (e.g. different m, nr). It is also found that this mechanism of LA phonon
assisted injection is less pronounced at higher temperatures, due to the increasing amount
of thermal backfilling (LA phonon absorption). The peak positions are different at the dif-
ferent temperatures due to the phonon interactions being stronger at higher temperatures,
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Figure 4.5: With / without LA phonons at T=0K, 16kV/cm. The populations for with
and without LA phonons is indicated in the text. This is calculated in the limit of no
optical field, using the method of Ref. [85].

resulting in varying amounts of Lamb shifts. The features in the gain curve are generally
broader as well, due to the stronger phonon interactions.

Finally, the IV characteristic is shown in Figure 4.8, at 50K. The values are within the
expected range. Previous literature have shown that the current density in these devices are
orders of magnitude smaller than their quantum well counterpart. It also shows that there
will be electrical instabilities/ electric field domains, in agreement with previous literature
[79]. In practice, this design cannot be experimentally realized. The design electric field
cannot be reached.

4.5.2 Modified Design

A modified design was tested, The well and barrier layers are, starting from the phonon
well 21.3/3.7/10.7/3.8 nm of GaAs /Al0.2Ga0.8As. The band structure is shown in Figure
4.9. Compared to the original design, only the well lengths are widened. This is the same
design strategy as proposed in Ref [34]. By widening the wells, the energy spacing between
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Figure 4.6: Gain spectra with increasing optical field strengths, calculated at 0K and
16kV/cm, with LA phonons.

the resonant states at the first IV peak (see Figure 4.10) is decreased to 26.5meV, away
from the LO phonon energy. This results in smaller peak current density. The design
electric field (9.2kV/cm) in this case can be experimentally realized.

The gain at 50K and 9.2kV/cm is shown in Figure 4.11. It features a relatively high
peak gain of 600cm−1, despite the energy difference between the upper and lower lasing
states being close to the LO phonon energy. The maximum gain at 300K is around 57cm−1.
In comparison to other simulation results in the literature, it is within the expected range.
For example T. Grange obtained around 20-30cm−1 at 300K for nanowire diameter around
50nm, however for a different material system and different design scheme. Burnett ob-
tained order of 100cm−1 in the region of stability for his modified design at 300K.

4.6 Conclusions

This section has presented the work done on the modeling of QDCLs. A transport model
in the Interaction picture or also known as Redfield equations has been derived and imple-
mented. This model is intuitive, as one can deduce from it the semiclassical rate equations.
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Figure 4.7: Gain spectra at 50K and 300K, for with and without LA phonons. At electric
field of 16kV/cm, and is calculated in the limit of no optical field, using the method of Ref.
[85].

It includes the periodicity in the QCL structure, and it is also general enough to be used
on all different QCL designs. Scattering mechanisms included are the LO and LA phonons,
however one can easily include other scattering mechanisms such as ionized impurities and
interface roughness scattering as well.

The gain and IV were calculated for a two well design. This was based on traditional
well based THz QCLs where the depopulation channel is tuned to the LO phonon energy.
It was found that the LA phonons can help to inject carriers into the upper lasing state,
at low temperatures. At temperature of 0K, this was an additional 0.187 amount of
carriers injected into the upper lasing state. However, the design electric field cannot
be experimentally reached in this particular quantum design due to early NDR issues,
and the well layers were widened in order to overcome this problem. The range of values
obtained for the gain (57cm−1 at 300K) and current density in this design are in agreement
with previous literature.

Future work could include the addition of more scattering mechanisms such as ionized
impurities and interface roughness. This would add additional dephasing and may help
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Figure 4.8: IV at 50K. Note however that the values calculated in the region shaded in
blue are not reliable, because negative occupations were present in the results of the middle
module for some of the data points.

with the numerics as well. The code could also be improved in terms of speed, which would
be helpful when including more states and scattering mechanisms in the simulation.
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Figure 4.9: Band diagrams at a) 6.7kV/cm and b) 9.2kV/cm which are at the two reso-
nances in the IV. The states included in the simulation are plotted in thick colored lines.
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Figure 4.11: Gain at 9.2kV/cm for the modified design, at temperatures of 50K and 300K.
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4.7 Appendix: Simulation Parameters

Table 4.2 lists the simulation parameters used in this Chapter.

Table 4.2: Parameters used for the QDCL structure.
Parameter Expression/Value Ref.
Electron effective mass of
AlxGa1−xAs in units of m0

me(r, z) = 0.067 + 0.083x [89]

Conduction band offset 0.65(1.36 + 0.22x)x [90]
Deformation potential Dc = −14.6eV [14]
Material density ρM = 5.37g/cm3 [14]
Speed of sound us = 4780m/s [14]
LO phonon energy ~ωLO = 36.7meV [91]
static permittivity εs = 12.9ε0 [91]
high frequency permittivity ε∞ = 10.9ε0 [91]
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Chapter 5

Conclusions

We are now in the second quantum revolution where we are designing the properties of
optoelectronic devices using quantum mechanical principles. This thesis for a large part
dealt with how the geometry of the QD affects its interactions with the environment, and
by understanding this, one can engineer the desired properties.

For the interband part, this thesis developed the theory for the emission spectra from
QDs in nanowires being broadened due to interactions with phonons. In addition to the
well known Independent Boson model, which accounts for the broad phonon sidebands,
the quadratic interaction due to both LO and LA phonons are also included. The theory
is compared to experimental results, from which a good agreement with the general trends
is found. Furthermore, structural and material variations in the simulation are performed.
It was found that the linewidth broadening can range over three orders of magnitude due
to the structural variations, which can tune the energy spacing(s) in resonance with the
LO phonon energy. These are clearly important considerations for the design of future
optoelectronic devices.

For the intersubband part, a quantum transport model was derived and implemented
to simulate for the operation characteristics of a quantum dot cascade laser (QDCL). This
model includes the periodicity, and uses a delocalized basis. This model is valid for in-
termediate to weak radial confinement strengths (roughly diameters greater than 40nm).
Nevertheless this is even more so of experimental interest than the strong confinement
regime – too small of a diameter would be difficult for fabrication, would encounter high
surface currents, and low mechanical stability. It was found that at low temperatures, LA
phonons assist the electron injection into the upper lasing state to obtain higher net gain.
At higher temperatures this process is less significant due to the thermal backfilling. Sim-
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ulation of the IV suggests strong early negative differential resistance issues, in accordance
with previous literature. In order to circumvent this problem, a modified design scheme
according to previous literature was investigated.

Future work could include speeding up all of the numerical codes developed in this
thesis, which would involve interfacing with C/C++, as well as making use of high capa-
bility computational resources. On the theoretical side of things, one could add in more
scattering mechanisms in the QDCL model. This additional dephasing would also help
with the numerics.

In conclusion, theories have been presented to model the band structure and electron
transport in quantum dots, with a focus on LO and LA phonon interactions. Trends
between the QD geometry and its interband emission properties have been elucidated. In
the intersublevel regime, with the continuous advancement of fabrication technologies, I
am optimistic that this transport model will be useful for the design of QDCLs.
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Bakkers, Leo P Kouwenhoven, and Valery Zwiller. Spontaneous emission control of
single quantum dots in bottom-up nanowire waveguides. Applied Physics Letters,
100(12):121106, 2012.

[60] Paola Borri, W Langbein, U Woggon, V Stavarache, D Reuter, and AD Wieck. Exciton
dephasing via phonon interactions in inas quantum dots: Dependence on quantum
confinement. Physical Review B, 71(11):115328, 2005.

[61] Paulo E Faria Junior, Tiago Campos, Carlos MO Bastos, Martin Gmitra, Jaroslav
Fabian, and Guilherme M Sipahi. Realistic multiband k· p approach from ab initio
and spin-orbit coupling effects of inas and inp in wurtzite phase. Physical Review B,
93(23):235204, 2016.

[62] Dan Dalacu, Khaled Mnaymneh, Jean Lapointe, Xiaohua Wu, Philip J Poole, Gabriele
Bulgarini, Val Zwiller, and Michael E Reimer. Ultraclean emission from inasp quantum
dots in defect-free wurtzite inp nanowires. Nano letters, 12(11):5919–5923, 2012.

[63] Amrit De and Craig E Pryor. Predicted band structures of iii-v semiconductors in the
wurtzite phase. Physical Review B, 81(15):155210, 2010.

[64] M Beaudoin, A Bensaada, R Leonelli, P Desjardins, RA Masut, L Isnard, A Chennouf,
and G L’Espérance. Self-consistent determination of the band offsets in in as x p 1-
x/inp strained-layer quantum wells and the bowing parameter of bulk in as x p 1- x.
Physical Review B, 53(4):1990, 1996.

73



[65] S Hughes, P Yao, F Milde, A Knorr, D Dalacu, K Mnaymneh, V Sazonova, PJ Poole,
GC Aers, J Lapointe, et al. Influence of electron-acoustic phonon scattering on off-
resonant cavity feeding within a strongly coupled quantum-dot cavity system. Physical
Review B, 83(16):165313, 2011.

[66] NSM Archive. Optical properties of indium arsenide (inas). http://www.ioffe.ru/

SVA/NSM/Semicond/InAs/optic.html, 2019. Accessed 05/01/19.

[67] NSM Archive. Basic parameters of indium arsenide (inas). http://www.ioffe.ru/

SVA/NSM/Semicond/InAs/basic.html, 2019. Accessed 05/01/19.

[68] Ming Gong, Kaimin Duan, Chuan-Feng Li, Rita Magri, Gustavo A Narvaez, and Lixin
He. Electronic structure of self-assembled in as/ in p quantum dots: Comparison with
self-assembled in as/ ga as quantum dots. Physical Review B, 77(4):045326, 2008.

[69] VK Dixit, Sh D Singh, S Porwal, Ravi Kumar, Tapas Ganguli, AK Srivastava, and
SM Oak. Determination of band offsets in strained inasxp1- x/inp quantum well by
capacitance voltage profile and photoluminescence spectroscopy. Journal of Applied
Physics, 109(8):083702, 2011.

[70] I Favero, Guillaume Cassabois, R Ferreira, D Darson, C Voisin, J Tignon, C Delalande,
G Bastard, Ph Roussignol, and JM Gérard. Acoustic phonon sidebands in the emission
line of single inas/gaas quantum dots. Physical Review B, 68(23):233301, 2003.

[71] Hussein M Ayedh and Andreas Wacker. Acoustic phonons in nanowires with embedded
heterostructures. Journal of Nanomaterials, 2011:10, 2011.

[72] Martin A Kainz, Mykhaylo P Semtsiv, Georgios Tsianos, Sergii Kurlov, W Ted Mas-
selink, Sebastian Schönhuber, Hermann Detz, Werner Schrenk, Karl Unterrainer, Got-
tfried Strasser, et al. Thermoelectric-cooled terahertz quantum cascade lasers. Optics
express, 27(15):20688–20693, 2019.

[73] Lorenzo Bosco, Martin Franckié, Giacomo Scalari, Mattias Beck, Andreas Wacker,
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[78] Nenad Vukmirović, Zoran Ikonić, Dragan Indjin, and Paul Harrison. Quantum trans-
port in semiconductor quantum dot superlattices: Electron-phonon resonances and
polaron effects. Physical Review B, 76(24):245313, 2007.

[79] Benjamin A Burnett and Benjamin S Williams. Density matrix model for polarons in
a terahertz quantum dot cascade laser. Physical Review B, 90(15):155309, 2014.
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