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Abstract 

We explore a novel design approach for accelerating schedulers for large scale clusters. Our approach 

follows a centralized design and leverages the programmability of recent programmable switches to 

accelerating scheduling operations. We demonstrate the feasibility and benefits of this approach by 

building two schedulers: one for accelerating data analytics scheduling and one for accelerating 

scheduling in key-value stores. 

First, we present a scheduler designed for low-latency data analytics workloads. The proposed 

scheduler receives job description, maintains a task queue in the switch memory, and schedules tasks 

on the next available worker at line-rate. The core of this design is a novel pipeline-based scheduling 

logic that can schedule tasks at line-rate. Our prototype evaluation on a cluster with a Barefoot Tofino 

switch shows that the proposed approach can reduce scheduling overhead by an order of magnitude 

compared to state-of-the-art schedulers. 

Second, we present a network-accelerated scheduler for linearizable key-value stores. The proposed 

design exploits programmable switches to keep track of write requests and responses, and to identify 

where the latest version of each object is stored. Our prototype evaluation shows that the proposed 

design achieves up to 42% higher throughput, and 35-97% lower latency than the current state-of-the-

art approaches. 
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Chapter 1 

Introduction 

Modern computer clusters consist of thousands of nodes that can perform millions of operations per 

second [1, 2]. A key to utilizing these large clusters is to assign tasks accurately and efficiently to nodes. 

An ideal scheduler can accurately dispatch tasks to free workers, maintain a low scheduling delay, scale 

to thousands of nodes, and incorporate complex scheduling policies, such as data location-aware 

scheduling.  

Realizing this ideal scheduler eluded the research community for decades, modern schedulers 

targeting large clusters adopted a centralized scheduling approach [3, 4]. In this design, a single 

scheduler monitors the load on all cluster nodes, maintains information about all the scheduled and 

ready-to-schedule tasks, and performs all scheduling decisions. As the central schedule has complete 

information about the cluster load, it is able to make accurate scheduling decisions. In particular, it can 

schedule the next task on the first node that becomes free. However, centralized schedulers have a 

major shortcoming; it cannot support large clusters because it cannot keep up with monitoring hundreds 

of cluster nodes and scheduling millions of tasks per second. Consequently, a centralized scheduler 

often presents a scalability bottleneck and imposes a high scheduling overhead. 

To overcome the limitation of centralized schedulers, a number of projects explored a decentralized 

scheduling approach [2, 5], in which multiple schedulers work on assigning tasks to worker nodes. To 

scale this approach to a large number of schedulers, this approach avoids coordinating the decisions of 

the different schedulers and avoids monitoring the cluster load. To facilitate making scheduling 

decisions, each scheduler depends on approximate information about the cluster load, which is collected 

through sampling or through lazily collecting status reports from workers. As a result, schedulers use 

incomplete or stale data to make their scheduling decisions, which leads to inferior scheduling 

decisions. 

In addition, a common scheduling optimization is to schedule a task on the node that stores the input 

data for that task. To enable the optimization, the scheduler needs to maintain accurate information 

about the location of the most recent version of every data object in the system. Unfortunately, 

maintaining this information in a timely manner is challenging in systems in which the data changes 

often (e.g., key-value storage systems).  
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In this thesis, we explore a new approach for designing a scheduler for large-scale clusters that can 

achieve the aforementioned goals. The proposed approach uses a centralized scheduling approach, in 

which a central scheduler monitors the system load and data location and uses this information to make 

accurate scheduling decisions. To overcome the limitations of a single node scheduler, we explore 

techniques to leverage programmable switches to accelerate the scheduler. Modern programmable 

switches present ideal candidates for accelerating scheduling for large-scale clusters. They can be 

programmed to run application-specific logic and can process billions of packets per second, a rate that 

is more than enough to support scheduling for a cluster with hundreds of nodes.  

To explore this frontier, we explored the design of two schedulers: Falcon (Chapter 3) and FLAIR 

(Chapter 4).  

Falcon is a network-accelerated scheduler for large-scale data analytics frameworks. In Falcon, we 

explore techniques to build a low-overhead scheduler for large clusters. Falcon uses a centralized design 

to identify which workers are free and, at line-rate, schedule tasks on free workers. The Falcon 

scheduler receives a task’s specification and queues tasks in a switch register. To eliminate head-of-

line blocking, workers poll the switch for new tasks. Despite its simplicity, implementing this approach 

is complicated due to the limitations of programmable switches (Chapter 2).  

To demonstrate the powerful capabilities of the proposed approach, we built a Falcon prototype 

based on Sparrow, a state-of-the-art low latency scheduler, and built the scheduler using P4. The 

evaluation on a cluster with a Barefoot Tofino switch [6] shows Falcon can reduce scheduling overhead 

by up to 23 times compared to Sparrow, and for short tasks, it improves the task execution time by 

25%. 

FLAIR is a network-accelerated scheduler for linearizable key-value storage systems. In FLAIR, 

we explore building a scheduler to keep track of where the latest version of each data item resides and 

balance read requests across consistent replicas. The core of FLAIR is a packet-processing pipeline that 

maintains compact information about all objects stored in the system. FLAIR tracks every write request, 

and the corresponding system reply, to identify which objects are stable (i.e., not being modified) and 

which nodes in the cluster hold a consistent value for each object. Then, it uses this information to 

forward reads of stable objects to consistent followers.  

To demonstrate the powerful capabilities of the proposed approach, we prototyped FlairKV, a key-

value store built atop Raft [7]. Our evaluation of FlairKV shows FLAIR brings up to 2.8 times higher 

throughput than an optimized Raft implementation; at least 4 times higher throughput compared to 
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Viewstamped Replication, Raft, and FastPaxos; and up to 42% higher throughput and up to 35–97% 

lower latency for most workloads compared to a state-of-the-art leases-based design [8, 9]. 

The rest of the thesis is structured as follows. Chapter 2 discusses programmable switch capabilities 

and limitations. Chapter 3 presents Falcon, showing its design, implementation; and an evaluation of 

Falcon against the state-of-the-art low-overhead scheduler. Chapter 4 presents the design, 

implementation, and evaluation of FLAIR. Chapter 5 surveys the related work. We conclude in    

Chapter 6.  
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Chapter 2 

Background 

The proposed approach leverages the capabilities of modern programmable switch to accelerate 

scheduling for large scale cluster. In this section, we present an overview of the capabilities of modern 

programmable switches and discuss their limitations. 

Programmable switches allow the implementation of an application-specific packet-processing 

pipeline that is deployed on network devices and executed at line-rate. A number of vendors produce 

network-programmable ASICs, including Barefoot’s Tofino [10], Cavium’s XPliant [11], and 

Broadcom   Trident 3 [12]. 

Figure 1 illustrates the basic data plane architecture of modern programmable switches. The data 

plane contains three main components: ingress pipelines, a traffic manager, and egress pipelines. A 

packet is first processed by an ingress pipeline before it is forwarded by the traffic manager to the egress 

pipeline that will finally emit the packet. 

A set of switch ports (say 16 ports) share one processing pipeline, and each pipeline is composed of 

multiple stages. At each stage, one or more tables match fields in the packet header or metadata; if a 

packet matches, the corresponding action is executed. Programmers can define custom headers and 

metadata as well as custom actions. Each stage has its own dedicated resources, including tables and 

register arrays (a memory buffer). Figure 2(a) shows a simple example of a pipeline that routes a request 

to a key-value store based on the key, and Figure 2(b) shows the details of the KV routing stage. The 

stage forwards the request based on the key in the packet’s custom L4 header. The programmer 

 

Figure 1. Switch pipelines 
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implements a forward() action that accesses the register array holding nodes’ IP addresses. An external 

controller can modify the register array and the table entries. 

Stages can share data through the packet header and small per-packet metadata (a few hundred bytes 

in size) that is propagated between the stages as the packet is processed throughout the pipeline      

(Figure 2 (a)). The processing of packets can be viewed as a graph of match-action stages. 

Programmers use domain-specific languages like P4 [13] to define their own packet headers, define 

tables, implement custom actions, and configure the processing graphs.  

Challenges. While programmable ASICs and their domain-specific languages significantly increase 

the flexibility of network switches, the need to execute custom actions at line speed restricts what can 

be done. To process packets at line speed, P4 and modern programmable ASICs have to meet strict 

resource and timing requirements. Consequently, modern ASICs limit (1) the number of stages per 

pipeline, (2) the number of tables and registers per stage, (3) the number of times any register can be 

accessed per packet, (4) the amount of data that can be read/written per-packet per register, (5) the size 

of per-packet metadata that is passed between stages. Finally, modern ASICs lack the support of loops 

or recursion. 

The restrictive memory model constitutes a particular challenge to building an in-network scheduler. 

A given memory register (the only memory that can preserve variables across packets) can only be 

accessed in a single stage and using a single operation. The operation can be either a simple read or 

write or an atomic operation (e.g., read and increment or read and set). 

 

  

 

(a)  Pipeline for routing based on a 

hash-based key. 

 

(b)  A simple match-action stage for routing based on a 

hash-based key for the KV routing table in subfigure (a) 

Figure 2. Switch data plane. 
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Chapter 3 

Falcon: Low Latency, Network-Accelerated Scheduling 

Recent increased adoption of real-time analytics [14, 15] is pushing the limits of traditional data 

processing frameworks [16]. Applications such as real-time object recognition [17], real-time fraud 

detection [14], IoT applications [14], and video quality prediction [18] require processing millions of 

events per second and aim to provide a processing latency of a few milliseconds. 

To support very short tasks that take tens of milliseconds, the scheduling throughput must be quite 

high. For a cluster of one thousand 32-core nodes, the scheduler must make more than 3 million 

scheduling decisions per second. Furthermore, for such tasks, scheduling delays beyond 1 ms are 

intolerable. 

Traditional data processing frameworks use a centralized scheduler [3, 4]. Although the centralized 

scheduler has the most accurate knowledge about the utilization of each node in the cluster and can 

make accurate scheduling decisions; that is, they will schedule the head of the queue task on the first 

worker that becomes available. Unfortunately, this approach cannot scale to process thousands of status 

reports from cluster nodes and millions of scheduling decisions [18, 19]. 

To overcome the limitations of a centralized scheduler, low-latency data analytics                          

engines [2, 5, 19, 20] have adopted a distributed scheduling approach. This approach employs tens of 

schedulers to increase scheduling throughput and reduce scheduling latency. As these schedulers do 

not have accurate information about the load in the cluster, they probe a randomly-selected subset of 

nodes to find nodes to run a given set of tasks [2, 5, 19]. The disadvantage of this approach is that the 

scheduling decisions are suboptimal, as they are based on partial information, and the additional 

probing step increases the scheduling delay. For instance, Sparrow [2], the state-of-the-art distributed 

scheduler, reports that, after excluding the queueing delay, the 50th percentile of the scheduling delay 

is 2 ms, and the 90th percentile is 10 ms. Our evaluation (Section 3.5) confirms Sparrow’s high 

scheduling overhead. While this overhead is negligible when scheduling 100-ms tasks [2, 16], it is 

intolerable for short, 10-ms, tasks [21]. 

We therefore present Falcon, a scheduling approach that can support large-scale clusters while 

significantly reducing scheduling latency. Unlike current low-latency schedulers, Falcon adopts a 

centralized scheduling approach to eliminate the probing overhead and make precise scheduling 

decisions. To overcome the processing limitations of a single-node scheduler, Falcon offloads the 

scheduler to a network switch. Recent programmable switches (e.g., Barefoot Tofino [6]) facilitate the 
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implementation of application-specific logic in network switches and can forward over 5 billion packets 

per second [6], making them ideal candidates for implementing a centralized scheduler. 

Falcon leverages the power and flexibility of the new generation of programmable switches [6, 22] 

to design an in-network scheduler. The Falcon scheduler receives a task’s specification and queues the 

task in a switch register. To eliminate head-of-line blocking, workers poll the switch for new tasks. 

This design leads to minimal scheduling overhead, as tasks are scheduled at a line-rate on the next free 

worker in the cluster. If no free worker exists, the task is queued at the switch. 

Despite its simplicity, implementing this approach is complicated by the limitations of 

programmable switches. Modern programmable switches have a restrictive pipeline-based 

programmable model with limited computing capability and a restrictive memory model (Chapter 2). 

In particular, the restrictive memory model allows for performing a single operation on a memory 

location once per packet. Consequently, even implementing a simple task queue is complicated, as 

standard queue operations will access the queue size twice: once to check whether the queue is empty 

or full, and once to increment or decrement its size. Section 3.3 presents Falcon’s novel task queue 

design. 

To demonstrate the powerful capabilities of the proposed approach, we built a Falcon prototype 

based on Sparrow and built the scheduler using P4. Our evaluation on a cluster with a Barefoot Tofino          

switch [6] shows that Falcon can reduce scheduling overhead by up to 23× compared to Sparrow and 

for short tasks it improves the task execution time by 25%. 

3.1 Background 

In this section, we present an overview of the modern low-latency scheduler and discuss Sparrow’s 

design.  

3.1.1 Overview of Low-Latency Scheduling 

Modern low-latency data analytics engines [2, 3, 5] follow a distributed scheduling approach. Large 

clusters include thousands of worker nodes that execute tasks and tens of scheduling nodes. A job 

consists of m independent tasks (m is typically a small number between 8 and 64), and any of the 

schedulers can handle a job.  

In order to keep task execution cost low, real-time data analytics typically follow an executor model 

[2, 5]. Tasks are scheduled following a FIFO order. All workers have preloaded executables that 

represent different tasks. All workers have access to a shared storage system that hosts the input data. 
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To schedule a task on a worker the scheduler sends the task id that unique identifies the operation, and 

an input id, which identifies the input data. 

Figure 3 shows the scheduling steps in Sparrow. To schedule a job with m tasks, the scheduler 

submits probes to 2m randomly selected workers. For instance, if the job has 32 tasks, the scheduler 

probes 64 out of, potentially, hundreds of nodes in the cluster. The workers queue the probes. When a 

worker completes its current task, it dequeues a probe, retrieves the task from the scheduler, and 

executes it. This probing technique is necessary, as the scheduler does not have complete knowledge 

of the cluster utilization. After completing m tasks, the scheduler proactively cancels the extra probes 

or discards future requests for task retrieval for those probes. 

This approach has two shortcomings: first, as the scheduler only probes a small subset of nodes in 

the cluster, its scheduling decisions are inferior. Second, the probing step increases the scheduling 

latency. 

3.2 Falcon Overview 

Falcon is an in-network centralized scheduler that can assign tasks precisely to free workers with 

minimal overhead Figure 5 shows Falcon’s architecture, which consists of worker nodes, client nodes, 

and a centralized programmable switch. 

Client nodes. Similar to Spark [3] and Sparrow [2], clients group independent tasks into jobs and 

submit these jobs to the Falcon switch. Once all tasks in a particular job have finished executing, clients 

submit the next job. As in current data analytics frameworks, clients are responsible for tracking 

dependency between tasks and resubmitting failed tasks [2, 3]. 

 

 

Figure 3.  Sparrow’s scheduling timeline. Figure 4. Falcon’s scheduling timeline. 
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Worker nodes. Figure 4 shows the scheduling steps in Falcon. When a worker becomes free, it sends 

a message to the scheduler to request a new task. Thus, the scheduler only assigns tasks to free workers, 

effectively avoiding head-of-line blocking. If the scheduler has no tasks, it sends a no-op task to the 

worker, which requests a task after a short waiting period. 

Programmable switch. Falcon uses a centralized in-network scheduler. The switch receives job 

descriptions that include a list of tasks (Figure 5). The switch adds these tasks to a circular FIFO queue. 

The switch assigns a task in first-come-first-serve order to the next worker that requests a task.  

Despite its simplicity, implementing this design on modern programmable switches is challenging 

due to their restrictive programming model. 

3.3 Falcon Design 

3.3.1 Network Protocol 

Falcon introduces an application-layer protocol embedded in packets’ L4 payload. Similar to other 

systems that use programmable switches [23, 24, 25], Falcon uses UDP to reduce operation latency and 

simplify the scheduler design. 

Falcon introduces two new packet headers: job_submission, which is used to submit a new job to 

the scheduler, and task_assignment packet used to send a task to a worker. We briefly discuss these 

headers in this section. The next subsections detail our design. 

Figure 6 shows the main fields of the job_submission packet: 

• OP: the request type: job submission or task assignment. 

• UID: the user ID.  

• JID: the job ID. The <UID, JID> combination represents a unique job identifier. 

 
 

Figure 5. Falcon’s architecture. 
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• #TASKS: the number of tasks in the job. The switch uses this field to parse the job submission packet 

properly. 

• A list of TASK_INFO metadata for all the tasks in the job. 

The task information (TASK_INFO) includes the following: 

• TID: a task identifier within a job. The tuple <UID, JID, TID> is a unique identifier for all tasks 

submitted in the system. 

• TDESC: the task description that determines the task to be executed. 

To assign a task to a worker, the switch sends a task_assignment packet to the worker. The 

task_assignment header contains the TASK_INFO of a task, as well as the client IP address and port 

number. 

3.3.2 Scheduler Design 

Falcon stores tasks (i.e., TASK_INFO) in a switch register as a circular queue. Each queue entry has the 

following fields: TASK_INFO, client_IP, and client_port, as well as an is_valid flag that indicates whether 

the entry has been scheduled. The size of the queue in our implementation is 128K. The circular queue 

has two 32-bit pointers: add_ptr and retrieve_ptr. The add_ptr points to the next empty queue entry in 

which a new task can be inserted. The retrieve_ptr points to the next task to be scheduled in FIFO 

order. 

Each pointer comprises two parts: <round_num, index>. The 17-bit index points to an entry in the 

queue. The 15-bit round_num counts the number of rounds the pointer traversed the entire queue. This 

round number helps to resolve special cases when the queue is full or empty.  

To detect whether the queue is full or empty we subtract the retrieve_ptr from the add_ptr. If the 

difference is zero, the queue is empty. If the difference is equal to or larger than the queue size, the 

queue is full.  

 

 

Figure 6. Falcon’s job_submission header. 
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In some cases, the difference is negative, meaning the retrieve_ptr is larger than the add_ptr, in 

which case the pointers need an adjustment. We discuss this below. 

In the standard circular queue implementation, to enqueue a new task, one typically checks whether 

the queue is full by computing the difference between the pointers. If the queue is not full, the new task 

is added to the queue and add_ptr is incremented. Unfortunately, this design cannot be implemented 

on current switches because it accesses add_ptr twice; it checks the pointer, then possibly increments 

it. The dequeue operation faces a similar challenge. 

Because it can access a pointer only once per packet, Falcon uses an atomic 

read_and_increment(add_ptr) to read add_ptr and increment it in one access. It then checks whether 

the queue is full. If the queue is not full, Falcon uses the add_ptr value to retrieve a task from the queue. 

This approach increments add_ptr even when the queue is full. Similarly, to dequeue a task, Falcon 

calls read_and_increment(retrieve_ptr) and increments retrieve_ptr even when the queue is empty. In 

these cases, the pointers must be corrected, but because the pointer is accessible only once per packet, 

the correction must be made in some future packet. We discuss how to detect and correct queue pointers 

later in this section. 

3.3.3 Handling Job Submission 

 The client submits a job by populating the header of a job_submission packet (Figure 6) and sending 

the packet to the switch. The switch then enqueues the job’s tasks. 

Two switch limitations complicate adding a set of tasks to the queue: modern switches do not permit 

loops or recursion, and the scheduler can access a register (the queue) only once per packet. To work 

around these limitations, Falcon checks the #TASKS field in the packet. If it is larger than zero, it parses 

the first task in the packet’s list of tasks, calls read_and_increment(add_ptr), then adds the task to the 

queue.  

Adding Multiple Tasks. The job_submission packet (Figure 6) contains a list of tasks. To add multiple 

tasks to the queue, Falcon leverages packet recirculation, i.e., the ability to resubmit a packet from the 

egress pipeline to the ingress pipeline and process it as a new packet (Figure 1). The scheduler removes 

the first task from the task list in the job_submission packet, decrements the #TASKS field, and 

recirculates the packet. Falcon continues to recirculate the packet until #TASKS is zero.  

Handling a Full Queue. When enqueueing a new task, the scheduler calls 

read_and_increment(add_ptr), then compares add_ptr and retrieve_ptr to determine whether the 
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queue is full. If the queue is not full, the scheduler adds the task to the queue. If the queue is full, the 

scheduler does not add the task and sends an error message to the client. The error message contains 

the list of tasks not added to the queue. The client then retries submitting a new job after a while. 

Listing 1. Shows the pseudocode for job submission. We first extract a task from the packet (line 

1). Then, we atomically read and increment the add_ptr (Line 2), and read the retrieve_ptr (line 3). 

Next, we compare these two pointers to determine the queue status. If the queue has space (line 4), we 

push the task to the add_ptr location (line 5). If the queue is full (line 7), and since we have incremented 

the  add_ptr (line 2), we first set a boolean indicating that we detected that the add_ptr needs fixing 

(line 9), and we recirculate the packet to fix the pointer and set it where it was before this operation if 

the boolean was not already set (line 14). Similarly, if the retrieve_ptr needs fixing (line 17), we set a 

Boolean indicating that (line 19), and we recirculate a fixing packet to set it where to the add_ptr 

location if it was not already set (line 23). 

1:   on_job_submission(task) { 

2:       add_ptr_val = read_and_increment(add_ptr) 

3:       retrieve_ptr_val = read(retrieve_ptr) 

4:       if(queue has space) {  

5:           push(task, add_ptr_val) 

6:       } 

7:       else if(queue is full){ 

8:           // add_ptr needs fixing 

9:           a_fixing_val = read_and_set(is_repairing_add_ptr, true) 

10:          if(a_fixing_val == false){ 

11:              // there no other attempt to fix the pointer. 

12:              // set the add_ptr to its old value before the  

13:              // increment. 

14:              recirculate_fixing_packet(add_ptr, add_ptr_val) 

15:          } 

16:      } 

17:      if(retrieve_ptr_val > add_ptr_val ){ 

18:           // the retrieve_ptr needs fixing 

19:           r_fixing_val = read_and_set(is_repairing_retrieve_ptr, true) 

20:           if(r_fixing_val == false){  

21:              // there is no other attempt to fix the pointer. 

22:              // set the retrieve_ptr to equal the add_ptr 

23:              recirculate_fixing_packet(retrieve_ptr, add_ptr_val) 

24:           }        

25:       } 
26:   } 

 

Listing 1. Adding tasks pseudocode 
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3.3.4 Handling Task Retrieval 

To avoid head-of-line blocking, workers retrieve tasks only when they become free. A worker sends a 

request to the switch to retrieve a task. The scheduler calls read_and_increment(retrieve_ptr) and reads 

one task from the queue. If the task’s is_valid flag is true, the task is sent to the worker, and the is_valid 

flag is set to false (this is done in one access with read_and_set(is_valid, false)). Otherwise, if the 

is_valid flag is false, this indicates that the queue is empty. In this case, the retrieve request is ignored, 

and the worker repeats the request after a while. 

Listing 2. Shows the pseudocode for retrieving tasks. We first atomically read and increment the 

retrieve_ptr (line 2), if it is pointing to a valid task (line 3), we will pop it (line 4) and send it to the 

worker. If retrieve_ptr is pointing to an invalid task (line 6), it means that the queue is empty, and the 

retrieve_ptr needs to be fixed. The retrieve_ptr is fixed in the on_job_submission() function when the 

next job submission packet is received.  

1:    on_retrieve{ 

2:        rtrv_ptr_val = read_and_increment(retrieve_ptr) 

3:        if(tasks[rtrv_ptr_val] is valid){ 

4:            pop(tasks[rtrv_ptr_val]) 

5:        } 

6:        else{    

7:            // oops! The queue is empty 

8:            // retrieve_ptr needs fixing, it is done in 

9:            // on_job_submission() 

10:       } 

11:   } 

Listing 2. Retrieving tasks pseudocode 

4: 

5:     on_fixing_ptr{ 

6:         ptr = header.ptr 

7:         value = header.value 

8:         if(ptr == retrieve_ptr){ 

9:             retrieve_ptr =  value 

10:            is_repairing_retrieve_ptr = false 

11:         } 

12:        if(ptr == add_ptr){ 

13:            add_ptr = value 

14:            is_repairing_add_ptr = false 

15:         } 

16:    } 

Listing 3. Fixing pointers pseudocode 
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3.3.5 Correcting the Pointers 

When the scheduler receives a job submission packet, it executes read_and_increment(add_ptr) first, 

then checks whether the queue is full.  If the queue is full, incrementing the add_ptr was a mistake. To 

correct this mistake, the scheduler recirculates a repair packet to reset the add_ptr to its original value. 

To avoid a case in which multiple job_submission packets try to reset the add_ptr, we added a Boolean 

flag (is_repairing_add_ptr) to ensure the scheduler only recirculates one repair packet. 

Similarly, task retrieves operations call read_and_increment(retrieve_ptr), then check whether the 

retrieved task is valid. If the retrieved task is invalid (which indicates that the queue is empty), 

incrementing the pointer was a mistake. We leave this pointer until the next job_submission packet is 

received. On a job submission, if the retrieve_ptr is larger than add_ptr (which indicates that the 

retrieve_ptr needs repairing), the scheduler recirculates a packet and resets the retrieve_ptr to equal 

the index of the newly added task. We added a Boolean flag (is_repairing_retrieve_ptr) to ensure the 

scheduler only recirculates one repair packet.  

Listing 3. Shows the pseudocode for fixing the pointers. Falcon uses recirculation to resubmit a 

packet to the switch pipeline (line 2). The resubmitted packet will determine the pointer that needs 

fixing and its value from the packet headers (lines 6-7). If the retrieve_ptr needs fixing, it will change 

its value (line 9), and set is_repairing_retrieve_ptr to false (line 10). If the add_ptr needs fixing, it will 

change its value (line 13), and set is_repairing_add_ptr to false (line 14).  

3.4 Implementation 

We implemented Falcon on top of Sparrow. We modified Sparrow to eliminate probing and to make 

workers send getTask() requests without having a prob. We implemented the Falcon pipeline and FIFO 

task queue using P4. Figure 7 Shows Falcon’s pipeline implementation. First, if the switch detects a 

Falcon’s packet, it checks the operation type (1). Depending on the operation, the switch will either 

change add_ptr or retrieve_ptr values (2-5). After that, the switch will check the status of the queue 

(6), and based on that, it performs pointers corrections if needed (7-9). Then, it will access the tasks 

buffer (either adding tasks or retrieving tasks) (10). Finally, if the packet is job submission, it will 

decrement the number of remaining tasks and will either recirculate it or drop it if there are no remaining 

tasks.  
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Figure 7. Falcon’s pipeline 
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3.5 Evaluation 

In this section, we compare the performance of Falcon against that of Sparrow, the current state-of-the-

art distributed scheduler, and Spark, the state-of-the-art data analytics engine with centralized 

scheduling. 

Testbed. We performed all experiments on a 12-node cluster. Each node had 48GB of RAM, an 

Intel Xeon Silver 10-core CPU, and a 100 Gbps Mellanox NIC. The nodes are connected by an 

Edgecore Wedge switch with a Barefoot Tofino ASIC. In all experiments, we used 10 nodes as worker 

nodes and 2 nodes as client nodes. Each worker node ran 6 executors (i.e., a total of 60 executors). For 

Sparrow, we ran two schedulers on the same client nodes, a configuration that is favorable to Sparrow 

because it reduces communication latency between the client and the collocated scheduler. 

Workload. We used a synthetic workload similar to the one used to evaluate Sparrow [2]. Each one 

of the two clients submitted a job every 10 ms (for a total of 200 jobs per second), and each job 

contained a set tasks. Each tasks takes sleeps for 10 ms. We varied the number of tasks per job to change 

the system utilization. 

Job Scheduling Delay. Figure 8 shows the job scheduling delays for various system utilization 

levels. Falcon significantly reduced the scheduling delay at all utilization levels. At the 95% utilization 

rate, Falcon reduced the median scheduling delay by 23 (0.09 ms compared to 2.22 ms for Sparrow) 

and the 95th percentile by 9.7 (0.25 ms compared to 2.68 ms for Sparrow). Even at 50% utilization, 

Falcon reduced the scheduling delay by up to 22. Furthermore, unlike Sparrow, Falcon’s median 

delays did not change as the utilization reaches 95% because Falcon can easily handle billions of packet 

and process requests at line-rate, whereas scheduling overhead increases in Sparrow with larger jobs 

and higher utilization.  
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We also evaluated Spark’s scheduling delay. Unfortunately, Spark did not scale well beyond 50% 

utilization: this confirms a similar observation made in the Sparrow paper [2]. The scheduling delay     

at 50% was 3 seconds. Above 50% utilization, the scheduler could not keep up and experienced infinite 

queueing. We did not include Spark in the figure for clarity. 

Breaking Down the Scheduling Overhead. To understand the performance differences between 

Falcon and Sparrow, we measured the time spent on each step of the protocols (see Figure 3                      

 

Figure 8. Job latency for various utilization rates. Error bars depict the 5th and 95th 

percentiles. 

 

Figure 9. Breakdown of Falcon’s 

scheduling delays. Note the difference in scale 

of the x-axis compared to Figure 10. 

Figure 10. Breakdown of Sparrow’s 

scheduling delays. 
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and Figure 4). Figure 9 and  Figure 10 show the CDF of every step of Falcon and Sparrow scheduling 

protocols, respectively, when running the system at 80% utilization. The figure shows the high impact 

of network acceleration. Falcon completed all scheduling steps in under 100 s, whereas Sparrow took 

up to 2.5 ms. Although the reservation delay is unique to Sparrow, task retrieval and queueing delays 

are unavoidable regardless of the scheduling approach. Comparing the delay of these two steps shows 

that network acceleration brings up to 42 performance improvement. This significant performance 

improvement eliminates the need for multiple schedulers and shows that a single central scheduler can 

scale to support large clusters. 

3.6 Summary and Future Work 

We presented Falcon, a centralized in-network scheduler that can assign tasks to the next available worker 

at line-rate and scale to process billions of requests per second. Our evaluation shows that Falcon can 

reduce scheduling overhead by an order of magnitude compared to current state-of-the-art low-latency 

schedulers. 

Compared to other projects that leverage programmable switches, Falcon explores the feasibility of 

offloading a complete service to the network. Falcon shows that, instead of running a scheduler on one or 

more servers, the complete scheduling service can be offloaded to the network.  

In our current work, we are extending the scheduler to support data locality-aware scheduling and 

common scheduling constraints, such as scheduling on nodes with specific resources. 
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Chapter 4 

FLAIR: Accelerating Reads with Consistency-Aware Network 

Routing 

Replication is the main reliability technique for many modern cloud services [8, 26, 27] that process 

billions of requests each day [27, 28, 29]. Unfortunately, modern linearizable replication protocols [30] 

– such as multi-Paxos [31], Raft [7], Zab [32], and Viewstamped replication (VR) [33] – deliver poor 

read performance. This is because these protocols are leader-based: a single leader replica (or leader, 

for short) processes every read and write request, while follower replicas (followers for short) are used 

for reliability only. 

Optimizing read performance is clearly important; for instance, the read-to-write ratio is 380:1 in 

Google’s F1 advertising system [34], 500:1 in Facebook’s TAO [29], and 30:1 in Facebook memcached 

deployments [35]. Previous efforts have attempted to accelerate reads by giving read leases [36] to 

some [37] or all followers [8, 9, 38], While holding a lease, a follower can serve read requests without 

consulting the leader; each lease has an expiration period. Unfortunately, this approach complicates the 

system’s design, as it requires careful management of leases, affects the write operation – as all granted 

leases need to be revoked before an object can be modified – and imposes long delays when a follower 

holding a lease fails [8, 37].  

We present the fast, linearizable, network-accelerated client reads (FLAIR), a novel protocol to 

serve reads from follower replicas with minimal changes to current leader-based replication protocols 

without using leases, all while preserving linearizability. In addition to improving read performance, 

FLAIR improves write performance by reducing the number of requests that must be handled by the 

leader and employing consistency-aware load-balancing. 

FLAIR leverages the power and flexibility of the new generation of programmable switches. The 

core of FLAIR is a packet-processing pipeline (§4.4) that maintains compact information about all 

objects stored in the system. FLAIR tracks every write request and the corresponding system reply to 

identify which objects are stable (i.e., not being modified) and which followers hold a consistent value 

for each object, then uses this information to forward reads of stable objects to consistent followers. 

Followers optimistically serve reads and the FLAIR switch validates read replies to detect stale values. 

If the switch suspects that a reply from a follower is stale, it will drop the reply and resubmit the read 

request to the leader. 
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An additional benefit of FLAIR is that it facilitates the building of novel consistency-aware load 

balancing techniques. In systems that grant a lease to followers [8, 9, 37, 38], clients send read requests 

to a randomly selected follower. If the follower does not hold a lease, it blocks the request until it 

obtains a lease, or it forwards the request to the leader; either way, this approach adds additional delay. 

FLAIR does not incur this inefficiency as FLAIR load balances read requests only among followers 

that hold a consistent value for the requested object. we designed three consistency-aware load 

balancing techniques (§4.4.2): random, leader avoidance, and load awareness. 

Despite its simplicity, implementing this approach is complicated by the limitations of 

programmable switches (Chapter 2) and the complexity of handling switch failures, network 

partitioning, and packet loss and reordering (§4.3.6). 

To demonstrate the powerful capabilities of the proposed approach, we prototyped FlairKV (§4.4), 

a key-value store built atop Raft [7]. We made only minor changes to Raft’s implementation [39] to 

enable followers to serve reads, make the leader order write requests following the sequence numbers 

assigned by the switch, and expose leader’s log information to the FLAIR layer. The packet-processing 

pipeline was implemented using the P4 programming language [40]. We implemented the three 

aforementioned load-balancing techniques. 

Our evaluation of FlairKV (§4.5) on a cluster with a Barefoot Tofino switch shows that FLAIR can 

bring sizable performance gains without increasing the complexity of the leader-based protocols or the 

write operation overhead. Our evaluation with different read-to-write ratios and workload skewness 

shows that FlairKV brings up to 2.8 times higher throughput than an optimized Raft implementation, 

at least 4 times higher throughput compared to Viewstamped replication, Raft, and FastPaxos, and up 

to 42% higher throughput and up to 35-97% lower latency for most workloads compared to state-of-

the-art leases-based design [8, 9]. 

The performance and programmability of the new generation of switches open the door for the 

switches to be used beyond traditional network functionalities. We hope our experience will inform a 

new generation of distributed systems that co-design network protocols with systems operations. 

4.1 Overview of Leader-based Replication Protocols 

Leader-based consensus (LC) protocols [1, 7, 32, 33, 41, 42] are widely adopted in modern systems 

[9, 26, 27, 28]. The idea of having a leader that can commit an operation in a single round trip dates 

back to the early consensus protocols [31, 43]. Having a leader reduces contention and the number of 

messages, which greatly improves performance [31, 41]. 
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LC protocols divide time into terms (a.k.a. views or epochs). Each term has a single leader; if the 

leader fails, a new term starts and a new leader is elected. 

Clients send write requests to the leader (1 in Figure 11). The leader appends the request to its local 

log (2) and then sends the request to all follower replicas (3). A follower appends the request to its log 

(4) before sending an acknowledgment to the leader (5). If the leader receives an acknowledgment from 

a majority of its followers, the operation is considered committed. The leader applies the operation to 

its local state machine (e.g., in memory key-value store in Figure 11)  in  (6), then acknowledges the 

operation to the client (7). The leader will asynchronously inform the followers that it committed the 

operation. Followers maintain a commit_index, a log index pointing to the last committed operation in 

the log; when a follower receives the commit notification, it advances its commit_index and applies the 

write to its local store.  

The replicated log has two properties that make it easy to reason about: it is guaranteed that if an 

operation at index i is committed, then every operation with an index smaller than i is committed as 

well; and if a follower accepts a new entry to its log, it is guaranteed that its log is identical to the 

leader’s log up to that entry.  

Client read requests are also sent to the leader. In Raft, the leader sends a heartbeat to all followers 

to make sure it is still the leader. If a majority of followers reply, the leader serves the read form its 

local store: it will check that all committed operations related to the requested object are applied to the 

local store before serving the request. 

A common optimization is the leader lease optimization. Instead of collecting a majority of 

heartbeats for every read request, a majority of the followers can give the leader a lease [7, 41]. While 

holding a lease, the leader serves reads locally without contacting followers. Unfortunately, even with 

this optimization, the performance of the leader-based protocols is limited to a single-node 

performance. 



 

 22 

4.2 FLAIR Overview 

FLAIR is a novel protocol that targets deployments in a single data center. Figure 12 shows the system 

architecture, which consists of a programmable switch, a central controller, and storage nodes. 

Typically, multiple FLAIR instances are deployed with each serving a disjoint set of objects. For 

simplicity, we present a FLAIR deployment with one replica set (i.e., one leader and its followers).  

FLAIR divides time into sessions (Figure 13). During a session the leader is bonded to a single 

switch that runs the FLAIR pipeline. Each session has a unique id that is assigned in a strictly increasing 

order. A session ends when a leader fails or the leader suspects that the switch has failed. An LC term 

may have one or more sessions, but a session does not span multiple terms. 

A session starts with the FLAIR module at the leader (dubbed the lflair module) incrementing the 

session id, committing it to the LC log, updating the switch information about the objects in the system, 

then activating the session at the switch. lflair module keeps the switch’s information up to date while 

in an active session. If the switch does not have an active session it drops all FLAIR packets. 

 

Figure 11.  The path for a write operation. 
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Clients. FLAIR is accessed through a client library with a simple read/write/delete interface. Read (get) 

and write (put) read or write entire objects. The library adds a special FLAIR packet header to every 

request, that contains an operation code (e.g., read) and a key (a hash-based object identifier).  

Controller. Our design targets data centers that use an SDN network following a variant of the multi-

rooted tree topology [44, 45]. A central controller uses OpenFlow [46] to manage the network by 

installing per-flow forwarding, filtering, and rewriting rules in switches.  

As with previous projects that leverage SDN capabilities [47, 48, 49, 50], the controller assigns a 

distinct address for each replica set. The controller installs forwarding rules to guarantee that every 

client request for a range of keys served by a single replica set is passed through a specific switch 

(dubbed FLAIR switch); that switch will run the FLAIR logic for that range of keys. The controller 

typically selects a common ancestor switch of all replicas and installs rules to forward the system replies 

 

Figure 12. System architecture. The solid arrow shows a client request, while the dashed arrow 

show control messages. 

 

Figure 13. FLAIR sessions. Time is divided into terms. Each term starts with a leader election. 

Each term has one or more sessions that start with updating the switch data. 
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through the same switch. Only client requests/replies are routed through the FLAIR switch, leader-

follower messages do not have the FLAIR header nor are necessarily routed through the FLAIR switch. 

While this approach may create a longer path than traditional forwarding, the effect of this change 

is minimal. Li et al. [47] reported that for 88% of cases, there is no additional latency, and the 99th 

percentile had less than 5 µs of added latency. This minimal added latency is due to the fact that the 

selected switch is the common ancestor of target replicas and client packets have to traverse that switch 

anyway. 

On a switch failure, the controller selects a new switch and updates all the forwarding rules 

accordingly. The controller load balances the work across switches by assigning different replica sets 

to different switches. 

Storage Nodes. The storage nodes run the FLAIR and LC protocols. For read requests, before serving 

a read, followers verify that all committed writes to the requested object have been applied to the 

follower’s local storage. 

Write requests are processed by the leader. After a successful write operation, the leader passes to 

the lflair module the log index at which the write was committed and the list of followers that accepted 

the write operation and have a consistent log up to that log index. The lflair encodes this list into a 

compact bitmap and uploads it and the log index to the switch (piggybacked on the write reply).  

Programmable Switch. The switch is a core component of FLAIR: it tracks every write request and 

the corresponding reply to identify which objects are stable (not being modified) and which replicas 

have a consistent value of each object (encoded in the bitmap provided by the lfair module). If a read 

is issued while there are outstanding writes for the target object (i.e., writes without corresponding 

replies), the read is forwarded to the leader. If a read request is processed by the switch when there are 

no outstanding writes to the requested object, the switch forwards the request to one of the followers 

included in the last bitmap for the object sent by the lflair module. Followers optimistically serve read 

requests. The switch inspects every read reply; if it suspects that a follower returned stale data      

(Section 4.3.6), it will conservatively drop the reply and forward the request to the leader. FLAIR 

forwards all writes to the leader. 

FLAIR also includes techniques to handle multiple concurrent writes to the same object            

(Section 4.3.3), packets reordering (Section 4.3.6) and tolerating switch, node, and network failures 

(Section 4.3.6). 
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4.3 FLAIR DESIGN 

4.3.1 Network Protocol 

Packet format. FLAIR introduces an application-layer protocol embedded in the L4 payload of 

packets. Similar to many other storage systems [47, 49, 50], FLAIR uses UDP to issue client requests 

in order to achieve low latency and simplify request routing. Communication between replicas uses 

TCP for its reliability. A special UDP port is reserved to distinguish FLAIR packets; for UDP packets 

with this port, the switch invokes the FLAIR custom processing pipeline. Other switches do not need 

to understand the FLAIR header and will treat FLAIR packets as normal packets. In this way, FLAIR 

can coexist with other network protocols. 

Figure 14 shows the main fields in the FLAIR header. We briefly discuss the fields here (a detailed 

discussion of the protocol is presented next):  

• OP: the request type. Clients populate this field in the request packet (e.g., read, or write); replicas 

populate this field in the reply packets (e.g., read_reply, write_reply).  

• KEY: hash-based object identifier.  

• SEQ: a sequence number added by the switch. The switch increments the sequence number on every 

write operation. 

• SID: a unique session id. The <SID, SEQ> combination represents a unique identifier for every write 

request. 

• LOG_IDX: a log index. In a write_reply, the log index indicates the index at which the write was 

committed. For reads, the switch populates LOG_IDX to make sure the followers’ logs are committed 

and applied up to that index. 

• CFLWRS: In write_reply, the CFLWRS is a map of the followers that have a consistent log up to 

LOG_IDX. 

 

Figure 14. FLAIR packet format. 
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Following the FLAIR header is the original LC protocol payload, which includes the value for 

read/write operations. 

4.3.2 Switch Data Structures 

To process a read request, the switch performs two specific tasks (Section 4.3.4). First, it forwards 

read requests to consistent followers while balancing the load among them. Second, it verifies the read 

replies to preserve safety. To perform these tasks, the switch maintains two data structures: a session 

array and a key group array. 

Session array. A single switch typically supports multiple replica sets (i.e., FLAIR+LC instances) 

with each set storing a disjoint set of keys. Each entry in the session array maintains the session status 

for a single replica set. An entry contains an is_active flag, session id, leader IP address, current session 

sequence number, and the timestamp of the last heartbeat received from the lflair module (Table 1). 

When is_active is true, we say the session is active, which indicates that the session entry and kgroup 

array are consistent with the leader’s information. The switch processes packets using the FLAIR 

custom pipeline only if the session is active; otherwise, it will drop all FLAIR packets, rendering the 

system unavailable to clients until the switch can reach the lflair module and sync its session entry and 

key group array. 

Key group (KGroup) array. To decide if followers can serve a certain read request, the switch needs 

to maintain information about which followers have the latest committed value of every object. 

Maintaining such information in the switch ASIC’s memory is not feasible; instead, FLAIR groups 

objects based on their key and maintains aggregate information per group. We use the most significant 

k bits of the key to map an object to a key group (kgroup).  

Every FLAIR+LC instance has a dedicated kgroup array. Each entry in the array (Table 1) contains 

the status of a single kgroup, including an is_stable flag that indicates if all objects in the kgroup are 

stable. If a kgroup is not stable (is_stable is false), this indicates that at least one object in the kgroup 

is being modified (i.e., has an outstanding write in the system). The array entry also includes the 

sequence number (seq_num) of the last write request processed by the switch for any object in the 

Table 1 Session and kgroup entries.  The numbers indicate the field size in bits. 

SessionArrayEntry { 

bit<1>   is_active; 

bit<32> session_id; 

bit<32> leader_ip; 

bit<64> session_seq_num; 

bit<48> heartbeat_tstamp;  } 

KGroupArrayEntry { 

bit<1>   is_stable; 

bit<64> seq_num; 

bit<64> log_idx; 

bit<8>   consistent_followers;    

} 
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kgroup, the log index (log_idx) of the last successful write to any object in the kgroup, and the 

consistent_followers bitmap pointing to all followers that have a consistent log up to log_idx. 

4.3.3 Handling Write Requests 

To issue a write request, a client populates the OP and KEY fields of the FLAIR packet header and puts 

the value in the payload, then sends the request.  

When the switch receives the request, it will mark the corresponding kgroup entry as unstable. The 

switch will increment the session_seq_num in the session array and use it to populate the sequence 

number (seq_num) in the kgroup entry and the sequence number (SEQ) in the request header. Finally, 

the switch populates the session id (SID) field in the header and forwards the request to the leader. 

The lflair module will verify that the session id is valid, and will pass the write request to the leader. 

The leader verifies that the <SID, SEQ> combination is larger than the <SID, SEQ> number of any 

previous write request it ever received, else it will drop the packet. The LC leader will process the write 

request following the LC protocol: it will replicate the request to all followers, and when a majority of 

followers acknowledge the operation, the write operation is considered committed. A follower will 

acknowledge a write operation only if its log is identical to the leader’s log up to that entry. 

For the write reply, the leader will pass the following to the lflair module: the LC protocol payload 

for the write_reply, the log index at which the write was committed, and the list of followers that 

acknowledged the write. The lflair module will create the write reply packet with the leader provided 

payload and will populate the LOG_IDX and the bitmap of the consistent followers (CFLWRS) using the 

information provided by the leader. lflair module populates the sequence number (SEQ) in the 

write_reply header using the SEQ of the corresponding write request. The lflair module then sends the 

write_reply packet. 

The switch will process the write_reply header and verify its session id. The switch will compare 

the sequence number (SEQ) of the reply to the sequence number (seq_num) in the kgroup entry; if they 

are equal, this signifies that no other write is concurrently being processed in the system for any object 

in the kgroup. Consequently, it will update the log_idx and the consistent_followers fields in the kgroup 

entry using the values in the write reply. Then it will mark the kgroup stable and forward the reply to 

the client.  

If the sequence number in the reply is smaller than the sequence number in the kgroup entry, this 

indicates that a later write to an object in the same kgroup has been processed by the switch. In this 
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case, the switch forwards the write reply to the client without modifying the kgroup entry. The kgroup 

entry remains unstable until the last write to the kgroup (with a SEQ number in the write_reply equal to 

the seq_num in the kgroup entry) is acknowledged by the leader. 

In a nutshell, the switch acts as a look-through metadata cache. Write requests invalidate the switch 

metadata related to the accessed kgroup, and write replies update the kgroup metadata at the switch. As 

we see next, the kgroup metadata is used to consistently load balance reads. 

4.3.4 Handling Read Requests 

Clients fill the OP and KEY fields of the FLAIR header and send the request. When the switch receives 

the request, it will check the kgroup entry. If the entry is stable, the switch will fill the sequence number 

(SEQ) and log index (LOG_IDX) header fields using the values in the kgroup entry. Then it will forward 

the request to one of the followers indicated in the consistent_followers bitmap. Section 4.4.2 details 

our load balancing techniques.  

If the kgroup entry is not stable, the switch forwards the read request to the leader. We note that 

there is a chance for false positives in this design, as a single write will render all the objects in the 

same kgroup unstable. This is a drawback of maintaining information per group of keys. This 

inefficiency is incurred by leases-based protocols as well, as they maintain a lease per group of objects. 

When a follower receives a read request, the follower’s FLAIR module validates the request, then 

calls  advance_then_read(LOG_IDX, key) routine, which compares the follower’s commit_index to 

LOG_IDX. If the commit_index is smaller, the follower advances its commit_index to equal LOG_IDX, 

apply all the log entries to the local store, then serve the read request. The FLAIR module will populate 

the read_reply header; for the SEQ and SID fields, it will use the values found in the read request header.  

We note that it is safe to advance the follower’s commit_index to match the LOG_IDX in the read 

request, as the switch forwards read requests to a follower only if the leader indicates that all entries in 

the log up to that log index are committed and that this specific follower is one of the replicas that have 

a log consistent to the leader’s log up to that index.  

When the switch receives a read_reply from a follower, it validates the session id, then verifies that 

the SEQ number of the read_reply equals the seq_num of the kgroup entry. If the sequence numbers are 

not equal, this signifies that a later write request was processed by the switch and there is a chance the 

follower has returned stale value. In this case, the switch drops the read_reply, generates a new read 

request using the KEY field from read_reply packet, and submits the read request to the leader. If the 
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sequence number of the read_reply equals the sequance number in the kgroup entry, the switch forwards 

the reply to the client. 

If a read request is forwarded to the leader, the lflair module verifies the session id, then calls                               

advance_then_read(LOG_IDX, key). The switch verifies that the leader reply is valid (i.e., has the correct 

session id) before forwarding it to the client, without checking the seq_num in the kgroup entry. 

4.3.5 Session Start Process 

On the start of a new session, the lflair module reads the last session id from the LC log, increments 

it, and commits the new session id to the LC log. Then the lflair module asks the central controller for 

a new switch. The central controller neutralizes the old switch (making it drop all FLAIR packets) and 

reroutes FLAIR packets to a new switch, then confirms the switch change to the lflair module. This 

step guarantees that at any time at most one FLAIR switch is active. The lflair module updates the 

session entry (Table 1) at the switch with the current leader IP and session id. For each new session, 

session_seq_num is reset to zero.  

Populating the kgroup array. The lflair module maintains a copy of the kgroup array similar to the 

one maintained by the switch. If the leader did not change between sessions (e.g., the session change is 

due to switch failure), the kgroup array at the lflair module is up to date. The lflair module will set the 

seq_num entry in all kgroup entries to zero (equal to the session_seq_num in the session entry)., and 

upload it to the switch. 

If the kgroup array at the lflair module is empty – for instance, after electing a new leader – the lflair 

module will query the leader for three pieces of information: its commit_index, the list of followers 

with the same commit_index, and a list of all uncommitted operations in the log (i.e., the operations 

after the commit_index in the log). The list of uncommitted operations is typically small, as it only 

includes operations that were received before the end of the last term but were not committed yet. The 

lflair module will traverse the list of uncommitted writes and mark their target kgroup entries unstable. 

For all other kgroup entries, the lflair module will mark them stable and set their seq_num to zero, 

log_idx to the leader’s commit_index, and consistent_followers to include all the followers that have 

the same commit_index as the leader’s. After updating the session entry and the kgroup array at the 

switch, the lflair module activates the switch session (sets is_active to true). 
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4.3.6 Fault Tolerance 

Follower Failure. We rely on the LC protocol to handle follower failures. To avoid sending read 

requests to a failing follower, the leader notifies the lflair module when it detects the failure of a 

follower. The lflair module removes the follower from the switch-forwarding table (Section 4.3.6). 

Leader Failure. On leader failure, a new leader is elected and a new term starts. The new leader informs 

the lflair module of the term change; and the lflair module starts a new session. 

The lflair module sends periodic heartbeats to the switch. Upon receiving a heartbeat, the switch 

determines whether it is from the current session. If the heartbeat is valid, the switch updates the 

heartbeat_timestamp in the session array and replies to the lflair module.  

Switch Failure. If the lflair module misses the switch heartbeats for a switch_stepdown period of       

time (3 heartbeats in our prototype), the lflair module will suspect that the switch has failed and will 

start a new session. For efficiency (i.e. does not affect safety), if the switch misses three heartbeats from 

the leader, it will deactivate the session. 

Network Partitioning. If a network partition isolates the switch from the leader, the leader treats it as 

a failed switch, as detailed above. If a network partition isolates the switch from a follower, read 

requests forwarded to the follower will time out and the client will resubmit the request. This failure 

affects performance, but not correctness. Upon determining that a follower is not reachable, the leader 

removes it from the forwarding table, as in the case of the failed follower described above. 

Packet Loss. If a read or write request is lost, the client times out and resubmits the request. If a write 

reply is lost before reaching the switch, the kgroup entry will remain unstable until a new write 

operation to any key in the kgroup succeeds. While the kgroup entry is not stable, all read requests are 

forwarded to the leader. 

Packet Reordering. It is critical for FLAIR correctness that the leader processes write requests in the 

same order that they are processed by the switch. Every write operation gets a unique <SID, SEQ> 

number. The switch marks a kgroup entry unstable until the leader replies to the last write issued for a 

key in the kgroup. Consequently, if the leader processes the requests out of order, the switch will 

incorrectly mark a kgroup stable while the out-of-order writes are modifying its objects. To prevent this 

scenario, the leader keeps track of the largest <SID, SEQ> it has ever processed and drops any write 

request with a smaller number. While session numbers (SIDs) are maintained in the log, the largest 

processed sequence number is retained in memory. If the leader fails, the new leader starts a new 

session, increments the session id (SID), and sets the session sequence number (SEQ) to zero. 
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4.4 FLAIR Implementation 

To demonstrate the benefits of the new approach, we prototyped FlairKV, a FLAIR-based key-value 

store built atop Raft [39]. We chose Raft due to its adoption in production systems [51, 52, 53, 54, 55], 

and the availability of standalone production-quality implementations [56]. 

4.4.1 Storage System Implementation 

We have implemented FlairKV, including all switch data plane features, the FLAIR module, leaders’ 

and followers’ modifications, and the client library. We extended the Raft’s follower code to implement 

an advance_then_read() function. We extended the leader to notify the lflair module as soon as it gets 

elected, and to extract its commit_index, the list of followers with a commit_index equal to the leader’s 

commit_index, and the list of uncommitted writes. We extended the write reply with the list of followers 

which acknowledged the write. We implemented the leader lease optimization [7, 41] and modified 

Raft’s client library to add the FLAIR header to client requests. 

4.4.2 Switch Data Plane Implementation 

The switch data plane is written in P4 v14 [40] and is compiled for Barefoot’s Tofino ASIC [10], with 

Barefoot’s P4Studio software suite [57]. Our P4 code defines 30 tables and 12 registers: six for the 

session array and six for the kgroup array. The kgroup array has 4K entries. Larger number of kgroups 

had negligible effect on performance. In total, our implementation uses less than 5% of the on-chip 

memory available in the Tofino ASIC, leaving ample resources to support other switch functionalities 

 

Figure 15.  Logical view of the forwarding logic. The stability bitmap matches an entry in the 

translation table and executes the corresponding action, generating an index of the selected 

destination’s IP address. Using the index, the IP address table sets the destination’s IP address in the 

metadata. 
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or more FlairKV instances. The rest of this section discusses optimizations implemented in FlairKV to 

cope with the strict timing and memory constraints of P4 and switch ASIC. 

Heartbeats implementation. The leader and the switch exchange periodic heartbeats. If the 

switch_stepdown period passes without receiving a leader heartbeat, the switch deactivates the session. 

Instead of running a process in the controller to continuously track heartbeats, the switch monitors 

missed heartbeats as part of the validation step in the processing pipeline. The switch keeps track of the 

timestamp of the last heartbeat received in the session array (Table 1). When processing any FLAIR 

packet, the switch computes the difference between the current time and the last heartbeat timestamp; 

if the difference is larger than switch_stepdown, the switch deactivates the session, making the system 

unavailable until the leader starts a new session. 

Forwarding logic translates the consistent followers’ bitmap to follower IP addresses. Storing the IP 

addresses of consistent followers for every entry in the kgroup array significantly increases the memory 

footprint. Moreover, randomly selecting a follower from the list while avoiding inconsistent ones is 

tricky given the P4 and current ASIC challenges (Chapter 2). Instead, the FlairKV leader encodes the 

follower status in a one-byte consistent_followers bitmap (Table 1). Replicas are ordered in a list. If 

the least significant bit in the consistent_follower bitmap is set, this indicates that the first replica in the 

list is consistent, and so forth. 

When forwarding a read request, the switch translates the encoded bitmap of consistent followers to 

select one follower; Figure 15 shows the translation process. The consistent_followers bitmap is used 

 

Figure 16.   Register access table. P4 code aggregates access information that is used by a 

dedicated register access table. 
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as an index to the translation table. Each entry in the table has an action that randomly selects a number 

that is then used as an index to the IP addresses table.  

This design has two benefits: it significantly reduces the memory footprint of the kgroup array, and 

it can be accelerated using P4 “action profiles” [58]. 

Load balancing. In addition to the aforementioned random load-balancing technique (Figure 15), we 

implemented two load-aware techniques: 

• Leader avoidance. Our benchmarking revealed that the write operation takes 35 times longer than a 

read operation; most of this overhead is borne by the leader. Consequently, this load-balancing 

technique avoids sending read requests to the leader for stable kgroups if there are any writes in the 

system. The aim is to reduce the leader load, as it is already busy serving writes and serving reads for 

unstable kgroups. 

To implement this technique, we compare the sequence number of a write_reply with the 

session_seq_num. If they are not equal, then there are pending writes in the system and the leader 

should not be burdened with any reads to stable kgroups. 

• Follower load awareness. This technique distributes the load across followers proportionally to their 

load in the last n seconds. This technique is especially useful for deployments that use heterogeneous 

hardware, experience workload variations, or deploy more than one replica (i.e., replicas for different 

ranges of keys) on the same machine. 

In our design, followers report the length of the request queue in every heartbeat. Every second, 

the leader calculates the average queue length for each follower and assigns proportional weights to 

each follower. The leader updates the translation table to reflect these weights. For instance, if 

follower 1 should receive double the load of any other replica, the action for a bitmap 00111 will be 

rand(1, 1, 2, 3), doubling the chance replica 1 is selected.  

Register access logic. Each stage has its own dedicated registers, and a register can be accessed only 

once in a stage. This restriction complicates FlairKV’s logic, as different packet types (e.g., read and 

write_reply) must access the same registers at different stages in the pipeline. To cope with this 

restriction, FlairKV adds a dedicated table to access each register. Figure 16 shows an example of an 

action table for accessing register r1. Our code aggregates the information about all possible modes of 

accessing r1 in the packet’s metadata, including the access type (read or write), the index, and which 

data should be written or where the value should be read to. We then use a dedicated match-action table 
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(Figure 16) to perform the actual read or write operation to/from the register in a single stage with a 

single invocation of the table. This approach has the additional benefit of reducing the number of stages. 

Processing concurrent requests. The switch processes packets sequentially in a pipeline. Each 

pipeline stage processes one packet at a time. The switch may have multiple pipelines, each serving a 

subset of switch ports. FLAIR uses a single ingress pipeline and all egress pipelines. If a FLAIR packet 

is received on a different ingress pipeline, the packet is recirculated [58] to the FLAIR pipeline. 
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Figure 17. Logical view of the FlairKV switch data plane. 
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4.4.3 Putting the Switch Pipeline Together 

Figure 17 shows the pipeline layout in the switch data plane and the flow for a FlairKV packet. The 

pipeline starts by reading the session information (1 in Figure 17) and adding it to the packet metadata. 

Then the it extracts the operation type (2) and validates the request (3) by verifying the session id. If 

the packet has an older session id the packet is dropped. Further, in the validation stage the switch 

confirms that it did not miss leader heartbeats in the last switch_stepdown period (Section 4.3.5), else 

it deactivates the session.  

Read requests access the kgroup array (6), and if the group is stable, the request is forwarded to a 

load-balancing logic (10) that implements the forwarding logic (Section 4.4.2); otherwise, it is sent to 

the leader. 

If a read reply is from the leader, it is forwarded to the client (12). If it is from a follower, the pipeline 

performs the safety check (9) and, if it suspects the reply is stale, drops the reply, then resubmits the 

read request to the leader (11).  

Write requests update the session_seq_num (4) and the kgroup entry (6), then are sent to the           

leader (11). 

Write replies compare the sequence number of the reply to the one in the kgroup entry (5); if they 

match, the kgroup entry is updated (6) and the pipeline forwards the reply to the client (12). 

The egress pipeline (13) has one logical stage that populates the header fields (e.g., SEQ number, 

SID, etc.) using the data available in the packet’s metadata. 

4.5 FLAIR Evaluation 

We compare our prototype with previous approaches in terms of throughput and latency (§4.5.1) with 

different workload skewness (§4.5.2) and read/write ratios (§4.5.3).  

Testbed. We conducted our experiments using a 13-node cluster. Each node has an Intel Xeon                   

Silver 10-core CPU, 48GB of RAM, and 100Gbps Mellanox NIC. The nodes are connected to an 

Edgecore Wedge 100 ×32BF switch with 32 100Gbps ports. The switch has Barefoot’s Tofino ASIC, 

which is P4 programmable. Unless otherwise specified, three machines ran the server code, while the 

other 10 machines generated the workload.  

Alternatives. We compare the throughput and latency of the following designs and optimizations: 

• Leader-based. We used two leader-based protocol implementations: LogCabin, the original 

implementation of Raft (Raft), and an implementation of Viewstamped replication (VR) [59]. Raft 
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and VR implement a batching optimization which batches and replicates multiple log entries in a 

single round trip.  

• Optimized Leader-based (Opt. Raft). Our benchmarking revealed that the original Raft 

implementation could not utilize the resources of our cluster. We implemented two main 

optimizations: first, we changed the request-processing logic from an event-driven to a thread-pool 

design, as our benchmarking indicated a thread-pool performs better; second, we implemented the 

leader-lease optimization. These changes significantly improved Raft’s performance.  

• Quorum-based reads (Fast Paxos). An alternative to the leader-based design is the quorum                

design [47, 48, 60]. Typically, client read requests are sent to all followers, and each follower 

responds directly to the client. The client waits for a reply from a supermajority [60] before 

completing a read. We used a Fast Paxos implementation that implements only the normal case [59]. 

• Follower-lease optimization (FLeases). Similar to MegaStore [8], the leader grants read leases to 

all followers. Before serving a write, the leader revokes all leases, processes the write operation, and 

then grants a new lease to followers. The lease’s grant/revoke messages are piggybacked on the 

consensus protocol messages. However, writes should be processed by all followers before replying 

to the client. In our experiments, if a follower receives a read request for an object for which it does 

not have an active lease, it forwards the request to the leader. MegaStore applications typically 

partition the keys into thousands of groups, each group contains logically-related keys [8] (e.g., a key 

group per blog [8]). We partitioned the keys into 4K groups (the same number of kgroups in FlairKV), 

and followers get a lease per group. Clients randomly select a follower for each read request and send 

the request directly to it. 

• Unreplicated/NOPaxos (Unrep.). As a baseline, the unreplicated configuration deploys Optimized-

Raft (discussed above) on a single node. The single node stores the data set and serves all operations 

without replication.  

This configuration also represents the best possible performance of the network-optimized 

NOPaxos [47] protocol. NOPaxos uses a network switch to order and multicast read and write 

operations to all replicas. An operation is successful if the majority accepts a write or returns the 

same value for a read. Consequently, NOPaxos read performance is limited by the slowest node in 

the majority of nodes. NOPaxos evaluation shows that the best throughput and latency the protocol 

can achieve are within 4% that of an unreplicated system [47]. 
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• FlairKV. Unless otherwise specified, we used FlairKV with the leader-avoidance load-balancing 

technique. 

We benchmarked every system and selected a configuration that maximized its performance. We 

stored all data in memory. In all experiments, all systems’ performance (with the exception of 

FastPaxos) was stable with a standard deviation less than 1%. 

Workload. We used synthetic benchmarks and the YCSB benchmark [61] to evaluate the 

performance of all systems. In our evaluation, we considered both uniform and skewed workloads. The 

skewed workload follows the Zipf distribution with a skewness parameter of 0.99. We also used the 

YCSB benchmark. We experimented with 100,000 and 1 million keys. We present the results               

 

 

                    (a) Throughput – Uniform                                              (b) Throughput -Zipf     

 

                               (c) Latency-Uniform                                         (d)   Latency-Zipf 

Figure 18. Throughput and Latency while varying the number of clients. The figures show 

the throughput and the average latency for different number of clients for workload B for the uniform 

distribution (a, c), and for the Zipf distribution (b, d).   
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with 100,000 keys as, in skewed workloads, the fewer number of hot keys increased the chance of 

having concurrent requests accessing the same key (i.e. is less favorable for FlairKV). FlairKV brings 

slightly higher performance benefit when using 1 million keys than 100,000 keys. The key size is 24 

bytes and the hash of the key string is used as the key in the FLAIR protocol. The value size is 1KB. 

4.5.1 Performance Evaluation 

We compared the seven systems using YCSB workload B (95:5 read:write ratio) while varying the 

number of clients, with uniform and skewed workload distribution. Figure 18 shows the throughput and 

average latency with a uniform and skewed distributions. With the uniform distribution (Figure 18 (a) 

and (c)), FlairKV achieves up to 42% higher throughput and 23.7% lower average latency than FLeases, 

and 1.3 to 2.1 times higher throughput and 1.5 to 2.4 times lower latency compared to optimized Raft 

and unreplicated setup. Fast Paxos, Raft, and VR, achieve the lowest throughput and highest latency as 

these systems contact the majority of nodes for every read.  

FlairKV achieved better performance than FLeases for three reasons. First, FlairKV uses the leader-

avoidance load-balancing technique, which reduces the load on the leader when there are writes, 

thereby accelerating writes and shortening the time period in which kgroups are marked unstable. This 

approach is effective as writes take almost 35 times longer than reads in Opt.Raft, and 30 times longer 

in the unreplicated setup. We recorded the number of read requests served by the leader. For instance, 

with 300 clients (Figure 18.a) the leader served 2% of the reads in FlairKV (those are reads to unstable 

kgroups), while it served 34% of the reads in FLeases. We note that the leader-avoidance technique 

cannot be applied to FLeases which tasks the clients with selecting a follower to send the read request 

to. This technique requires accurate information about the current load of the leader and which 

followers are stable which are not available to clients. 

Second, in FLeases, when an object is not stable, if a client sends a request to a follower, the follower 

will redirect the request to the leader, increasing overhead and incurring extra latency. Unlike FLeases, 

FlairKV switch knows if an object is not stable and forwards read requests for that object directly to 

the leader. The third reason which had a minor impact when using 3 replicas is that the write operation 

in FLeases need to reach all followers, while FlairKV writes only need a majority.  

Optimized-Raft’s performance is better than that of Raft, VR, and FastPaxos. The unreplicated 

deployment slightly improves throughput and latency over Optimized-Raft by avoiding the replication 

overhead for write operations. These two systems still lag behind FlairKV as they only utilize a single 

node (the leader) for serving all reads and writes. 
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Figure 18 (b) and (d) show the throughput and average latency with a skewed workload (Zifpian 

constant of 0.99). The skewed workload results in higher contention and an increased frequency at 

which a read request finds a kgroup unstable. This contention reduces the chances of reading from 

followers. FlairKV leader served 21% of reads of which 1% are redirected from followers, while 

FLeases leader served 37% of reads. Even under the skewed workload, FlairKV still achieves the 

highest performance, up to 26% higher throughput and 18.1% lower latency than FLeases,                                

and 1.5 to 1.8 times higher throughput and 2 to 2.4 times lower latency than optimized Raft and the 

unreplicated setup.   

Latency evaluation. Figure 21.a shows the latency CDF of FlairKV, FLeases, OptRaft, and Raft. 

Under the uniform workload B with 300 clients (other workloads had similar results). FlairKV lowered 

the latency for the slowest 40% requests by at least 38% relative to FLeases. Under the Zipf workload 

(Figure 21.b), FlairKV lowered the slowest 50% of request by up to 35% relative to FLeases.  

FLeases has higher latency as it incurs extra delay due to the load imbalance between nodes (e.g., 

the leader serves 41% of requests for workload B with Zipf distribution) and due to followers 

redirecting 4% of requests to the leader. 

Under all workloads, FlairKV significantly improved operation’s latency relative to OptRaft and 

Raft. The median latency of FlairKV is 2% of Raft’s latency and 2-8% of OptRaft’s latency. 

4.5.2 Workload Skewness 

We measured the impact of the workload skewness on throughput (Figure 19.a) and average latency 

(Figure 19.b) by varying the Zipfian constant from 0.5 to 0.99. FlairKV consistently achieves better 

performance: 1.26 to 2.25 times higher throughput and 1.13 to 2.48 times lower average latency 

compared to all other systems. We notice that as the skewness increases FlairKV and FLeases 

performance decreases as higher skewness increases contention on the few popular kgroups, making 

them unstable for longer time, and increases the number of requests the leaders have to process. Other 

systems performance is not noticeably affected by skewness. 

We noticed high workload skewness affects FlairKV’s performance more than FLeases. This is due 

to a subtle side effect of FlairKV. When there are concurrent writes to the same kgroup, FlairKV will 

mark a group unstable from the moment the first request is processed by the switch until the last request 

to the kgroup is replied to ([t1, t2] in Figure 22). In FLeases, the lease revocation is piggybacked on the 

write replication step (black diamonds in Figure 22). Once the leader commits a write, it sends a commit 
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notification and grants a new lease to the followers (white diamonds). Hence, FLeases may grant a 

lease between concurrent writes, creating more opportunity for serving reads from followers.  

To further understand this effect, we tracked leases and the stability of kgroups under the skewed 

(factor of 0.99) write heavy YCSB workload A (1:1 read:write ratio). We noticed that while 29% of 

reads found the kgroup unstable in FlairKV, only 4% of reads in FLeases reached a follower that did 

not have a lease. We further profiled the write operation path and found that FLeases revokes leases       

for 75% of the write operation time (Figure 22) 25% shorter than the period FlairKV marks a kgroup 

unstable. Despite this subtle effect FlairKV leader still has lighter load, it served 29% of reads compared 

to 37% served by the FLeases leader. Notwithstanding this effect FlairKV still brings 17% to 26% 

performance improvement even under skewed workloads. 
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4.5.3 Read/Write Ratio 

Figure 20 shows the effect of the ratio of reads to writes on systems’ performance with a uniform 

workload B. Compared to FLeases, FlairKV has up to 1.5 times higher throughput for all read to write 

ratios, with the exception of the read-only workload in which their performance is comparable. FlairKV 

has 1.25 to 2.8 times higher throughput compared to the Opt. Raft. Compared to the unreplicated setup, 

FlairKV has up to 2.8 times higher throughput for workloads with 70% reads or more and a comparable 

performance under write heavy workloads (read ratio 50-70%). 

 

 

              (a) Throughput          (b) Read latency 

Figure 19. Throughput and Latency while varying skewness. The figures show the throughput 

(a) and the average latency (b) for different zifpian constants for a uniform workload B with 300 

clients. 

 

Figure 20. Throughput while varying the read ratio. Using uniform workload B. 
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4.5.4 Fault Tolerance 

To demonstrate FlairKV fault tolerance techniques, we measured the system throughput using 

workload C under three failure scenarios: switch, leader, and follower failure.  

 Switch Failure. We ran FlairKV at peak throughput for 35 seconds (Figure 23). At the 10s mark, the 

controller emulated a switch failure by wiping out the switch registers and installing rules to drop switch 

heartbeats. After missing 3 heartbeats, the leader suspects that the switch has failed and starts a new 

 

(a) B-Uniform (b) B-Zipf 

Figure 21. Latency CDF. The figures show the latency CDF for reads under workload B using 

300 clients with a uniform distribution (a), and a Zipf distribution with skewness of 0.99 (b). The 

lines for Opt. Raft and Unrep. almost overlap. 

 

Figure 22.  Subtle effect of FLAIR. FLeases may grant leases for up to 25% more time compared 

to FlairKV.  Bars mark the time  from the moment a switch receives a write request (w1 or w2) until 

it receives a corresponding reply. 
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session. During this process, the switch is inactive, which causes the throughput to drop to zero               

for 750ms. Afterwards, the switch resumes normal operations. 

Leader Failure. Figure 24 shows FlairKV throughput during the leader failure. We ran FlairKV at 

peak throughput for 35 seconds. At the 10s mark, we kill the leader process. Write requests fail, but the 

switch continues to forward read requests to followers. After missing 3 heartbeats the switch deactivates 

the session, and the throughput drops to zero. After 6 heartbeats, the followers elect a new leader that 

starts a new session. The system resumes its operation with one leader and one follower. 

Follower Failure. We ran FlairKV at peak throughput for 35 seconds (Figure 25). At the 10s mark, we 

kill a follower process. This causes a drop in throughput as fewer replicas are available to serve read 

requests. The switch keeps forwarding client requests to the failed follower until the leader updates the 

switch. The dip in throughput at the second 10 is because we use closed-loop clients and some of the 

clients block waiting for the failed replica before timing out and retrying. Afterwards, the system 

throughput drops by 33% due to the loss of one follower. 

   
Figure 23.   FlairKV throughput 

during a switch failover. 
Figure 24.   FlairKV throughput 

during leader failover. 
Figure 25.   FlairKV throughput during 

a follower failure. 
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(b) 

 

Figure 26. Throughput using different load-balancing techniques. (a) Uses workload B without slowing any 

follower and (b) uses workload C and slows one of the followers. 
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4.5.5 Scalability 

To demonstrate FlairKV scalability, we measured the system throughput using a read-only YSCB 

workload C while varying the number of replicas (Figure 27). The figure shows that FlairKV 

throughput scales linearly with the number of replicas, reaching 5.4 million request per second with 6 

followers. We notice that the system achieves much higher performance under the read-only workload 

mainly due to the lower operation overhead (as writes take 30 times longer even without accounting 

for the replication overhead). 

4.5.6 Load-balancing Performance Evaluation 

We measured the system throughput using the following three configurations of FlairKV (detailed         

in 4.4.2) 

• FlairKV-Rand selects a follower or the leader at random. Consequently, read requests for stable 

kgroups are uniformly spread across the followers and the leader.  

• FlairKV-LA applies the leader-avoidance technique. 

• FlairKV-LA+FL uses both leader-avoidance and follower load-awareness techniques. 

Figure 26.a shows the performance improvement produced by the leader-avoidance technique. In 

this experiment, we used workload B with uniform key popularity distribution. The results show that 

FlairKV-LA throughput is higher by 40% than FlairKV-Rand throughput, as it accelerates writes and 

reduces the period in which kgroups are marked unstable. FlairKV-LA+FL had comparable 

performance to FlairKV-LA as nodes are homogenous. 

Figure 26.b evaluates the benefits of using the follower-load awareness technique (4.4.2). This 

technique helps in deployments with heterogeneous hardware and with load variance. To emulate such 

 

Figure 27. FlairKV scalability with different number of replicas 
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scenarios, we manually reduced the CPU frequency for one follower by 10%. We used the read-only 

workload C with uniform distribution to avoid write operations (as those give advantage to the leader-

avoidance technique). FlairKV-LA+FL had 17% higher throughput relative to the other configurations, 

as it distributes the load proportionally to the node’s request queue length. Furthermore, we noticed that 

FlairKV-LA+FL reduces latency by 10%. FlairKV-LA and FlairKV-Rand are equivalent under the 

read-only workload. 

4.6 Summary 

We present FLAIR, a novel protocol that leverages the capabilities of the new generation of 

programmable switches to accelerate read operations without affecting writes or using leases. FLAIR 

identifies, at line rate, which replicas can serve a read request consistently, and implements a set of 

load-balancing techniques to distribute the load across consistent replicas. We detailed our experience 

building FlairKV and presented a number of techniques to cope with the restrictions of the current 

programmable switches. We hope our experience informs a new generation of systems that co-design 

network protocols with system operations. 
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Chapter 5 

Related Work 

Centralized Scheduling. Spark [3] uses a centralized scheduler which works by pushing tasks to 

worker nodes whenever they are free to run them. However, as we have shown previously, it is 

inadequate for low latency tasks because centralized schedulers become the bottleneck in larger 

clusters. 

To address these issues, Drizzle [18] and Hopper [19] proposed techniques to improve centralized 

scheduler performance. Drizzle [18] explored reusing scheduling decisions across jobs and leveraging 

data dependency between jobs to collocate dependent tasks. Hopper [19] uses speculation to reduce the 

effect of straggler tasks and demonstrates that this technique can be used with centralized and 

distributed schedulers. However, such systems are still unable to address the scalability challenge and 

tend to become the performance bottleneck at large cluster configurations, which Falcon avoids despite 

being centralized as it can make scheduling decisions at line-rate. 

Distributed Scheduling. Sparrow [2], Hopper [19], and Apollo [20] present a distributed scheduling 

approach. Sparrow addresses the scalability issue by having multiple stateless schedulers that do not 

communicate with each other. To improve scheduling accuracy, Sparrow combines late-binding with 

the power-of-two techniques. However, for very high cluster utilization rate, the scheduling accuracy 

gets worse, as it becomes much more difficult to send probes to the nodes that will become free soon. 

Although Sparrow is the state-of-the-art low-overhead scheduler, it still adds a few milliseconds of 

scheduling overheads, making it unfeasable to use with tasks that take tens of millisecond to execute. 

Hopper tries to incorporate speculation, which is the primary defense mechanism against stragglers, 

in synergy with its scheduling policy. It tries to estimate the “virtual size” of each job empirically and 

via real-time measurements to determine the threshold past which allocating additional resources to a 

job will have diminishing returns. Hopper has been implemented in both centralized and decentralized 

fashion with the decentralized implementation remaining very close to the centralized implementation 

in terms of overall performance. It does this by using late binding mechanisms similar to Sparrow but 

by replacing the power of two choices with the “power of many choices” since this is better suited for 

heavy tailed jobs which are likely to generate stragglers. Apollo [20] uses multiple schedulers that 

access a shared metadata service. The metadata service offers approximate cluster status. However, 

because the metadata is not accurate, this may lead to suboptimal scheduling decisions.  
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Lock-free FIFO queues. There are many proposed lock-free algorithms to implement a shared 

FIFO queue. Michael et al. [62] and Valios [63] proposed simple lock-free algorithms for a shared 

queue using compare-and-swap (CAS) primitive for both adding and retrieving tasks. Prakash et al. 

[64] proposed an algorithm that takes snapshots to the current queue status, this information helps 

threads to determine if there is any blocked thread, and completes its job. However, all these queue 

designs access some variable multiple times (e.g. one time to read the tail pointer, and another time to 

make sure that it is still valid before adding a task), which makes these designs not suitable for modern 

programmable switches.   

Hybrid Scheduling. Finally, a few scheduling systems use a hybrid approach. Hawk [5] uses 

centralized scheduling for long-running tasks and distributed scheduling for low-latency tasks. It 

devides the cluster into two partitions responsible for short and long running tasks in order to avoid 

head-of-line blocking. Mercury [65] uses a hybrid model and provides an API to allow the client to 

choose the scheduling approach for its jobs. These distributed schedulers provide a low-latency 

scheduling but are based on approximate cluster information. 

Network-Accelerated Systems. Recent projects have utilized programmable switches to implement in-

network caching [66], DNN training and inferencing [67], in-network aggregation operations [68], 

provide load balancing [69, 70, 71], access control [72], seamless virtual machine migration [73], and 

improving system security, virtualization, and network efficiency [74]. NetCache [66] exploits the fact 

that programmable switches can access their memory at line-rate and built an in-network look-through 

caching layer for key-value stores layer. DAIET [68] uses programmable switches in order to accelerate 

aggregation operations. It uses a tree of programmble switches that performs aggregation operations while 

packets are traversing the network. This reduces the bandwidth taken to perform aggregation, and reduces 

the latency. SwitchKV [49] uses SDN capabilities to route client requests to the caching node serving 

the key. A central controller populates the forwarding rules to invalidate routes for objects that are 

being modified and installs routes for newly cached objects. However, none of these previous projects 

handled a scheduling problem for data analytics or built a pipeline-based task queue. 

Network-accelerated consensus. A number of recent efforts leverage SDN’s capabilities to optimize 

consensus protocols. Speculative Paxos [48] builds a mostly ordered multicast primitive and uses it to 

optimize the multi-Paxos consensus protocol. Network-ordered Paxos (NOPaxos) [47] leverages 

modern network capabilities to order multicast messages and add a unique sequence number to every 

client request. NOPaxos uses these sequence number to serialize operations and to detect packet loss. 

Speculative Paxos and NOPaxos are optimized for operations that update the log but not for read 
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operations. NetChain [75] and NetPaxos [76] implement replication protocols on a group of switches.  

These protocols are suitable for systems that store only a few megabytes of data (e.g., 8MB in the 

NetChain prototype). Unlike FLAIR, these efforts do not optimize for read operations. Reads are still 

served by the leader or a quorum of replicas. 

Consensus protocols optimized for the WAN. A number of consensus protocols are optimized for 

WAN deployments. Quorum leases [37] proposes giving a read lease to some of the followers; Unlike 

Megastore leases, when an object is modified, only the followers that have the lease are contacted. 

Quorum leases has a better performance than Megastore leases in WAN setups, but do not bring benefits 

when deployed in a single cluster [37]. Mencius [77] is a multi-leader protocol in which each leader 

controls part of the log. EPaxos [78] is a leaderless protocol where clients can submit request to any 

replica. Non-conflicting write can commit in one round trip, while conflicting writes will be resolved 

using Paxos. 

CURP [79] optimizes the write operation through exploiting commutativity between concurrent 

writes. In data center deployments, CURP reads are served by the leader and hence are limited to a 

single node performance, in WAN deployment CURP applies a technique similar to FLeases. 
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Chapter 6 

Conclusion 

In this thesis, we exploited data-plane programmable network devices in order to accelerate scheduling 

in compute clusters. Offloading scheduling to the network help to improve throughput, latency, and 

scalability. 

We presented Falcon, a centralized in-network scheduler that can assign tasks to the next available 

worker at line-rate and scale to process billions of requests per second. Our evaluation shows that Falcon 

can reduce scheduling overhead by an order of magnitude compared to current state-of-the-art low-latency 

schedulers. 

Compared to other projects that leverage programmable switches, Falcon explores the feasibility of 

offloading a complete service to the network. Falcon shows that, instead of running a scheduler on one or 

more servers, the complete scheduling service can be offloaded to the network.  

Moreover, we utilized programmable switches to perform consistency-aware load-balancing for key-

value stores. We built FLAIR, a novel protocol that allows for serving and load balancing read requests 

among follower replicas. Our evaluation shows that FLAIR brings significant performance                      

gains: up to 42% and lowered 35-97% of the latency compared to the current state-of-the-art approaches. 

In summary, this thesis presents a new design paradigm for building accurate scheduler for large 

scale clusters. We demonstrate the feasibility and the benefits of this approach through two systems 

that target diverse application domains and workloads. Our evaluation shows the feasibility of this 

approach and invites further research for offloading other scheduling techniques to programmable 

switches. 

 



 51 

References 

[1]  M. Poke and T. Hoefler, "DARE: High-Performance State Machine Replication 

on RDMA Networks," in Proceedings of the International Symposium on High-
Performance Parallel and Distributed Computing, Portland, Oregon, USA, 
2015, 2749267: ACM, pp. 107-118, doi: 10.1145/2749246.2749267.  

[2]  K. Ousterhout, P. Wendell, M. Zaharia et al., "Sparrow: distributed, low latency 
scheduling," in Proceedings of the Twenty-Fourth ACM Symposium on 
Operating Systems Principles, 2013, pp. 69-84.  

[3] M. Zaharia, M. Chowdhury, M. J. Franklin et al., "Spark: Cluster computing with 
working sets," HotCloud, vol. 10, no. 10-10, p. 95, 2010. 

[4]  J. Dean and S. Ghemawat, "MapReduce: Simplified data processing on large 
clusters," in Proceedings of the 6th conference on Symposium on Operating 
Systems Design & Implementation, 2004, vol. 6: USENIX Association, pp. 137-
-150.  

[5]  P. Delgado, F. Dinu, A.-M. Kermarrec et al., "Hawk: Hybrid datacenter 
scheduling," in 2015 USENIX Annual Technical Conference (USENIX ATC 15), 
2015, pp. 499-510.  

[6] "Tofino-2 Second-generation of World’s fastest P4-programmable Ethernet 
switch ASICs." https://www.barefootnetworks.com/products/brief-tofino-2/ 
(accessed 16-03-2020). 

[7]  D. Ongaro and J. Ousterhout, "In search of an understandable consensus 
algorithm," in Proceedings of the USENIX Annual Technical Conference, 
Philadelphia, PA, 2014: USENIX Association.  

[8]  J. Baker, C. Bond, J. C. Corbett et al., "Megastore: Providing scalable, highly 
available storage for interactive services," in Proceedings of the Conference on 
Innovative Data system Research (CIDR), 2011.  

[9]  M. Burrows, "The Chubby lock service for loosely-coupled distributed 
systems," in Proceedings of the Symposium on Operating Systems Design and 
Implementation (OSDI), Seattle, Washington, 2006: USENIX Association.  

[10] "Barefoot Tofino." https://www.barefootnetworks.com/products/brief-tofino/ 
(accessed April 14, 2019. 

[11] "Cavium / XPliant." https://origin-
www.marvell.com/documents/netpxrx94dcdhk8sksbp/ (accessed April 14, 
2019. 

[12] "High-Capacity StrataXGS® Trident 3 Ethernet Switch Series." 
https://www.broadcom.com/products/ethernet-
connectivity/switching/strataxgs/bcm56870-series (accessed September 9, 
2019. 

[13] P. Bosshart, D. Daly, G. Gibb et al., "P4: programming protocol-independent 
packet processors," SIGCOMM Comput. Commun. Rev., vol. 44, no. 3, pp. 87-
95, 2014, doi: 10.1145/2656877.2656890. 

[14] M. Stonebraker, U. Çetintemel, and S. Zdonik, "The 8 requirements of real-time 
stream processing," ACM Sigmod Record, vol. 34, no. 4, pp. 42-47, 2005. 

https://www.barefootnetworks.com/products/brief-tofino-2/
https://www.barefootnetworks.com/products/brief-tofino/
https://origin-www.marvell.com/documents/netpxrx94dcdhk8sksbp/
https://origin-www.marvell.com/documents/netpxrx94dcdhk8sksbp/
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56870-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56870-series


 

 52 

[15]  S. Wang, J. Liagouris, R. Nishihara et al., "Lineage stash: fault tolerance off 
the critical path," in Proceedings of the 27th ACM Symposium on Operating 
Systems Principles, 2019, pp. 338-352.  

[16]  K. Ousterhout, A. Panda, J. Rosen et al., "The case for tiny tasks in compute 
clusters," in Proceedings of the 14th Workshop on Hot Topics in Operating 
Systems, 2013.  

[17]  T. Zhang, A. Chowdhery, P. Bahl et al., "The design and implementation of a 
wireless video surveillance system," in Proceedings of the 21st Annual 
International Conference on Mobile Computing and Networking, 2015, pp. 426-
438.  

[18]  S. Venkataraman, A. Panda, K. Ousterhout et al., "Drizzle: Fast and adaptable 
stream processing at scale," in Proceedings of the 26th Symposium on 
Operating Systems Principles, 2017, pp. 374-389.  

[19]  X. Ren, G. Ananthanarayanan, A. Wierman et al., "Hopper: Decentralized 
speculation-aware cluster scheduling at scale," in Proceedings of the 2015 
ACM Conference on Special Interest Group on Data Communication, 2015, pp. 
379-392.  

[20]  E. Boutin, J. Ekanayake, W. Lin et al., "Apollo: Scalable and coordinated 
scheduling for cloud-scale computing," in 11th USENIX Symposium on 
Operating Systems Design and Implementation (OSDI 14), 2014, pp. 285-300.  

[21]  S. Hendrickson, S. Sturdevant, T. Harter et al., "Serverless computation with 
openlambda," in 8th USENIX Workshop on Hot Topics in Cloud Computing 
(HotCloud 16), 2016.  

[22] P. Bosshart, D. Daly, G. Gibb et al., "P4: Programming protocol-independent 
packet processors," ACM SIGCOMM Computer Communication Review, vol. 
44, no. 3, pp. 87-95, 2014. 

[23]  J. Li, E. Michael, N. K. Sharma et al., "Just say NO to paxos overhead: 
Replacing consensus with network ordering," in 12th USENIX Symposium on 
Operating Systems Design and Implementation (OSDI 16), 2016, pp. 467-483.  

[24]  X. Li, R. Sethi, M. Kaminsky et al., "Be fast, cheap and in control with 
SwitchKV," in 13th USENIX Symposium on Networked Systems Design and 
Implementation (NSDI 16), 2016, pp. 31-44.  

[25]  S. Al-Kiswany, S. Yang, A. C. Arpaci-Dusseau et al., "NICE: Network-
integrated cluster-efficient storage," in Proceedings of the 26th International 
Symposium on High-Performance Parallel and Distributed Computing, 2017, 
pp. 29-40.  

[26]  P. Hunt, M. Konar, F. P. Junqueira et al., "ZooKeeper: wait-free coordination 
for internet-scale systems," in Proceedings of the USENIX annual technical 
conference, Boston, MA, 2010.  

[27]  B. Calder, J. Wang, A. Ogus et al., "Windows Azure Storage: a highly available 
cloud storage service with strong consistency," in Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles (SOSP), Cascais, 
Portugal, 2011, doi: 10.1145/2043556.2043571.  



 

 53 

[28]  J. C. Corbett, J. Dean, M. Epstein et al., "Spanner: Google's globally-
distributed database," in Proceedings of the USENIX conference on Operating 
Systems Design and Implementation (OSDI), Hollywood, CA, USA, 2012: 
USENIX Association.  

[29]  N. Bronson, Z. Amsden, G. Cabrera et al., "TAO: Facebook's distributed data 
store for the social graph," in Proceedings of the USENIX Technical 
Conference, San Jose, CA, 2013: USENIX Association.  

[30] H. Attiya and J. Welch, Distributed Computing: Fundamentals, Simulations and 
Advanced Topics. John Wiley & Sons, Inc., 2004. 

[31] L. Lamport, "Paxos made simple," ACM Sigact News, vol. 32, no. 4, pp. 18-25, 
2001. 

[32]  F. P. Junqueira, B. C. Reed, and M. Serafini, "Zab: High-performance 
broadcast for primary-backup systems," in Proceedings of IEEE/IFIP 
International Conference on Dependable Systems&Networks, 2011: IEEE 
Computer Society, doi: 10.1109/dsn.2011.5958223.  

[33] B. Liskov and J. Cowling, "Viewstamped replication revisited," Technical Report 
MIT-CSAIL-TR-2012-021, MIT, 2012.  

[34] J. Shute, R. Vingralek, B. Samwel et al., "F1: a distributed SQL database that 
scales," Proc. VLDB Endow., vol. 6, no. 11, pp. 1068-1079, 2013, doi: 
10.14778/2536222.2536232. 

[35] B. Atikoglu, Y. Xu, E. Frachtenberg et al., "Workload analysis of a large-scale 
key-value store," presented at the Proceedings of the 12th ACM 
SIGMETRICS/PERFORMANCE joint international conference on 
Measurement and Modeling of Computer Systems, London, England, UK, 
2012. 

[36]  C. Gray and D. Cheriton, "Leases: an efficient fault-tolerant mechanism for 
distributed file cache consistency," in Proceedings of the ACM Symposium on 
Operating Systems Principles (SOSP), 1989: ACM, doi: 10.1145/74850.74870.  

[37]  I. Moraru, D. G. Andersen, and M. Kaminsky, "Paxos Quorum Leases: Fast 
Reads Without Sacrificing Writes," in Proceedings of the ACM Symposium on 
Cloud Computing, Seattle, WA, USA, 2014: ACM, doi: 
10.1145/2670979.2671001.  

[38] J. Terrace and M. J. Freedman, "Object storage on CRAQ: high-throughput 
chain replication for read-mostly workloads," presented at the Proceedings of 
the 2009 conference on USENIX Annual technical conference, San Diego, 
California, 2009. 

[39] "LogCabin storage system." https://logcabin.github.io (accessed April 14, 2019. 
[40] "P4." https://p4.org (accessed April 14, 2019. 
[41]  T. D. Chandra, R. Griesemer, and J. Redstone, "Paxos made live: an 

engineering perspective," in Proceedings of the annual ACM symposium on 
Principles of distributed computing, Portland, Oregon, USA, 2007: ACM, doi: 
10.1145/1281100.1281103.  

[42] D. Mazieres, "Paxos made practical," ed, 2007. 

https://logcabin.github.io/
https://p4.org/


 

 54 

[43] L. Lamport, "The part-time parliament," ACM Trans. Comput. Syst., vol. 16, no. 
2, pp. 133-169, 1998, doi: 10.1145/279227.279229. 

[44] "Data Center: Load Balancing Data Center." 
https://learningnetwork.cisco.com/docs/DOC-3438 (accessed April 14, 2019. 

[45] L. A. Barroso and U. Hoelzle, The Datacenter as a Computer: An Introduction 
to the Design of Warehouse-Scale Machines. Morgan and Claypool Publishers, 
2009, p. 120. 

[46] N. McKeown, T. Anderson, H. Balakrishnan et al., "OpenFlow: enabling 
innovation in campus networks," SIGCOMM Comput. Commun. Rev., vol. 38, 
no. 2, pp. 69-74, 2008, doi: 10.1145/1355734.1355746. 

[47]  J. Li, E. Michael, N. K. Sharma et al., "Just say no to paxos overhead: replacing 
consensus with network ordering," in Proceedings of the USENIX conference 
on Operating Systems Design and Implementation (OSDI), Savannah, GA, 
USA, 2016: USENIX Association.  

[48]  D. R. K. Ports, J. Li, V. Liu et al., "Designing distributed systems using 
approximate synchrony in data center networks," in Proceedings of the 
USENIX Conference on Networked Systems Design and Implementation 
(NSDI), Oakland, CA, 2015: USENIX Association.  

[49]  X. Li, R. Sethi, M. Kaminsky et al., "Be fast, cheap and in control with 
SwitchKV," in Proceedings of the Usenix Conference on Networked Systems 
Design and Implementation (NSDI), Santa Clara, CA, 2016: USENIX 
Association.  

[50]  S. Al-Kiswany, S. Yang, A. C. Arpaci-Dusseau et al., "NICE: Network-
Integrated Cluster-Efficient Storage," in Proceedings of the International 
Symposium on High-Performance Parallel and Distributed Computing, 
Washington, DC, USA, 2017: ACM, doi: 10.1145/3078597.3078612.  

[51] "etcd: Distributed reliable key-value store for the most critical data of a 
distributed system." https://github.com/etcd-io/etcd (accessed April 14, 2019. 

[52] "RethinkDB: the open-source database for the realtime web." 
https://www.rethinkdb.com/ (accessed April 14, 2019. 

[53] "Open Network Operating System (ONOS) - Cluster Coordination." 
https://wiki.onosproject.org/display/ONOS/Cluster+Coordination (accessed. 

[54] "Apache Kudu - Fast Analytics on Fast Data." https://kudu.apache.org/ 
(accessed April 14, 2019. 

[55] "Hashicorp Raft implementation." https://github.com/hashicorp/raft (accessed 
April 14, 2019. 

[56] "The Raft Consensus Algorithm." https://raft.github.io/ (accessed April 14, 
2019. 

[57] "Barefoot P4 Studio." https://www.barefootnetworks.com/products/brief-p4-
studio/ (accessed April 14, 2019. 

[58] "P4 v16 Portable Switch Architecture (PSA)." https://p4.org/p4-spec/docs/PSA-
v1.0.0.html (accessed April 14, 2019. 

[59] "NOPaxos consensus protocol." https://github.com/UWSysLab/NOPaxos 
(accessed April 14, 2019. 

https://learningnetwork.cisco.com/docs/DOC-3438
https://github.com/etcd-io/etcd
https://www.rethinkdb.com/
https://wiki.onosproject.org/display/ONOS/Cluster+Coordination
https://kudu.apache.org/
https://github.com/hashicorp/raft
https://raft.github.io/
https://www.barefootnetworks.com/products/brief-p4-studio/
https://www.barefootnetworks.com/products/brief-p4-studio/
https://p4.org/p4-spec/docs/PSA-v1.0.0.html
https://p4.org/p4-spec/docs/PSA-v1.0.0.html
https://github.com/UWSysLab/NOPaxos


 

 55 

[60] L. Lamport, "Fast paxos," Distributed Computing, vol. 19, no. 2, pp. 79-103, 
2006. 

[61] "Yahoo! Cloud Serving Benchmark in C++, a C++ version of YCSB." 
https://github.com/basicthinker/YCSB-C (accessed April 14, 2019. 

[62]  M. M. Michael and M. L. Scott, "Simple, fast, and practical non-blocking and 
blocking concurrent queue algorithms," in Proceedings of the fifteenth annual 
ACM symposium on Principles of distributed computing, 1996, pp. 267-275.  

[63]  J. D. Valois, "Implementing lock-free queues," in Proceedings of the seventh 
international conference on Parallel and Distributed Computing Systems, 1994, 
pp. 64-69.  

[64] S. Prakash, Y. H. Lee, and T. Johnson, "A nonblocking algorithm for shared 
queues using compare-and-swap," IEEE Transactions on Computers, vol. 43, 
no. 5, pp. 548-559, 1994. 

[65]  K. Karanasos, S. Rao, C. Curino et al., "Mercury: Hybrid centralized and 
distributed scheduling in large shared clusters," in 2015 USENIX Annual 
Technical Conference (USENIX ATC 15), 2015, pp. 485-497.  

[66]  X. Jin, X. Li, H. Zhang et al., "Netcache: Balancing key-value stores with fast 
in-network caching," in Proceedings of the 26th Symposium on Operating 
Systems Principles, 2017, pp. 121-136.  

[67]  D. R. Ports and J. Nelson, "When Should The Network Be The Computer?," in 
Proceedings of the Workshop on Hot Topics in Operating Systems, 2019, pp. 
209-215.  

[68]  A. Sapio, I. Abdelaziz, A. Aldilaijan et al., "In-network computation is a dumb 
idea whose time has come," in Proceedings of the 16th ACM Workshop on Hot 
Topics in Networks, 2017, pp. 150-156.  

[69]  B. Cully, J. Wires, D. Meyer et al., "Strata: High-performance scalable storage 
on virtualized non-volatile memory," in Proceedings of the USENIX Conference 
on File and Storage Technologies (FAST), 2014, pp. 17-31.  

[70]  N. Handigol, M. Flajslik, S. Seetharaman et al., "Aster* x: Load-balancing as a 
network primitive," in GENI Engineering Conference (Plenary), 2010, pp. 1-2.  

[71]  R. Wang, D. Butnariu, and J. Rexford, "OpenFlow-based server load balancing 
gone wild," in Proceedings of the USENIX conference on Hot topics in 
management of internet, cloud, and enterprise networks and services, Boston, 
MA, 2011: USENIX Association.  

[72]  A. K. Nayak, A. Reimers, N. Feamster et al., "Resonance: dynamic access 
control for enterprise networks," in Proceedings of the ACM workshop on 
Research on enterprise networking, Barcelona, Spain, 2009: ACM, doi: 
10.1145/1592681.1592684.  

[73]  A. J. Mashtizadeh, M. Cai, G. Tarasuk-Levin et al., "XvMotion: unified virtual 
machine migration over long distance," in Proceedings of the USENIX Annual 
Technical Conference, Philadelphia, PA, 2014: USENIX Association.  

[74] A. Lara, A. Kolasani, and B. Ramamurthy, "Network innovation using openflow: 
A survey," IEEE communications surveys & tutorials, vol. 16, no. 1, pp. 493-
512, 2014. 

https://github.com/basicthinker/YCSB-C


 

 56 

[75]  X. Jin, X. Li, H. Zhang et al., "Netchain: scale-free sub-RTT coordination," in 
Proceedings of the USENIX Conference on Networked Systems Design and 
Implementation (NSDI), Renton, WA, USA, 2018: USENIX Association.  

[76]  H. T. Dang, D. Sciascia, M. Canini et al., "NetPaxos: consensus at network 
speed," in Proceedings of the ACM SIGCOMM Symposium on Software 
Defined Networking Research, Santa Clara, California, 2015: ACM, doi: 
10.1145/2774993.2774999.  

[77] Y. Mao, F. P. Junqueira, and K. Marzullo, "Mencius: building efficient replicated 
state machines for WANs," presented at the Proceedings of the 8th USENIX 
conference on Operating systems design and implementation, San Diego, 
California, 2008. 

[78] I. Moraru, D. G. Andersen, and M. Kaminsky, "There is more consensus in 
Egalitarian parliaments," presented at the Proceedings of the Twenty-Fourth 
ACM Symposium on Operating Systems Principles, Farminton, Pennsylvania, 
2013. 

[79]  S. J. Park and J. Ousterhout, "Exploiting commutativity for practical fast 
replication," in 16th USENIX Symposium on Networked Systems Design and 
Implementation (NSDI 19), 2019, pp. 47-64.  

 


