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Abstract

Water distribution networks (WDNs) are complex systems that are subjected to stresses
due to a number of hydraulic and environmental loads. Small leaks can run continuously
for extended periods, sometimes indefinitely, undetected due to their minimal impact on
the global system characteristics. As a result, system leaks remain an unavoidable reality
and water loss estimates range from 10%-25% between treatment and delivery. This is a
significant economic loss due to non-revenue water and a waste of valuable natural resource.
Leaks produce perceptible changes in the sound and vibration fields in their vicinity and
this aspect as been exploited in various techniques to detect leaks today. For example,
the vibrations caused on the pipe wall in metal pipes, or acoustic energy in the vicinity
of the leak, have all been exploited to develop inspection tools. However, most techniques
in use today suffer from the following: (i) they are primarily inspection techniques (not
monitoring) and often involve an expert user to interpret inspection data; (ii) they employ
intrusive procedures to gain access into the WDN and, (iii) their algorithms remain closed
and publicly available blind benchmark tests have shown that the detection rates are quite
low.

The main objective of this thesis is to address each of the aforementioned three problems
existing in current methods. First, a technology conducive to long-term monitoring will
be developed, which can be deployed year-around in live WDN. Secondly, this technology
will be developed around existing access locations in a WDN, specifically from fire hydrant
locations. To make this technology conducive to operate in cold climates such as Canada,
the technology will be deployed from dry-barrel hydrants. Finally, the technology will be
tested with a range of powerful machine learning algorithms, some new and some well-
proven, and results published in the open scientific literature.

In terms of the technology itself, unlike a majority of technologies that rely on ac-
celerometer or pressure data, this technology relies on the measurement of the acoustic
(sound) field within the water column. The problem of leak detection and localization is
addressed through a technique called linear prediction (LP). Extensively used in speech
processing, LP is shown in this work to be effective in capturing the composite spectrum
effects of radiation, pipe system, and leak-induced excitation of the pipe system, with and
without leaks, and thus has the potential to be an effective tool to detect leaks. The rel-
atively simple mathematical formulation of LP lends itself well to online implementation
in long-term monitoring applications and hence motivates an in-depth investigation. For
comparison purposes, model-free methods including a powerful signal processing technique
and a technique from machine learning are employed. In terms of leak detection, three
data-driven anomaly detection approaches are employed and the LP method is explored
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for leak localization as well. Tests were conducted on several laboratory test beds, with
increasing levels of complexity and in a live WDN in the city of Guelph, Ontario, Canada.

Results form this study show that the LP method developed in this thesis provides a
unified framework for both leak detection and localization when used in conjunction with
semi-supervised anomaly detection algorithms. A novel two-part localization approach
is developed which utilizes LP pre-processed data, in tandem with the traditional cross-
correlation approach. Results of the field study show that the presented method is able to
perform both leak-detection and localization using relatively short time signal lengths. This
is advantageous in continuous monitoring situations as this minimizes the data transmission
requirements, the latter being one of the main impediments to full-scale implementation
and deployment of leak-detection technology.
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Chapter 1

Introduction

1.1 Background and motivation

The worldwide population is growing by roughly 80 million people each year [Worldometer,
2019]. The effects felt by increased population, and thereby water resources demand, are
compounded by the effects of climate change which produce a significant decrease in the
maximum annual spring river flows, as well as the frequency and extent of rainfall [Gupta,
2013]. The United Nations estimates that by 2025 30% of the world’s population residing
in 50 countries will face water shortages [The World Counts, 2020]. Similarly, by 2024,
the EPA predicts 40 out of 50 states will face similar shortages under average conditions
in some portion of their states [EPA, 2015]. In 2005, Canada withdrew approximately
42 km3 of water for economic and household activities; 90% of this water went to support
economic activity while 9%, 3.8 km3, went to the residential sector [Canada, 2013]. An
important factor adding to the significant amounts of water which is withdrawn, and in
turn the predicted shortages, is the loss of water via undetected leakages.

A significant portion of water is lost between treatment and delivery. Canadian mu-
nicipalities lose 13.3% of treated water [Canada, 2011], with some municipalities losing as
much as 22%, prior to delivery to residents [Canada, 2011]. Such non-revenue water, due
to leaks and bursts, is one of the main contributing factors to this increase [Canada, 2011].
Leaks also pose public health risks [Kirmeyer and Martel, 2001, Fox et al., 2015] due to
intrusion of contaminants from the surrounding environment [Deng et al., 2011]. Early
detection and remediation of leaks can prevent small leaks deteriorating into large bursts,
thus mitigating significant water loss and the associated risks thereafter. Reliable and
robust long-term continuous leak monitoring strategies which can detect and locate leaks
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in the initial stages so that early interventions can be put into action, are hence urgently
needed.

Detection of large bursts associated with pressure drops and visible consequences (e.g.,
surface flooding) is relatively straightforward. Such events generally produce large fluctu-
ations in the global parameters such a system pressure, which can be detected over large
distances with relatively sparsely located sensors. Sometimes, they can also be detected
through water balance calculations or simply through citizen reporting. On the other hand,
smaller burst events and leaks in water distribution systems are more difficult to detect.
They can remain underground and unnoticed for long periods of time. The general ap-
proach to deal with such leaks today is to periodically inspect pipe networks for signs of
leaks using what is commonly known as leak surveys. Such inspections, while effective, also
tend to be labour intensive, slow, and mostly used to react to known leaks or bursts. To
date, relatively little work exists in the literature in terms of being able to detect and locate
leaks using automated long-term monitoring technology, where the onset of new leaks can
be detected relatively quickly, as soon as they occur, with little to no user intervention.

The main aim of this dissertation is to develop and study the performance of a novel
long-term monitoring system which can detect leaks in water mains, while being robust
to changes or fluctuations due to other factors such as operational changes or seasonal
variations. The main scientific contribution of this work is in the development, testing
and evaluation of a new hydrant-mounted sensor system along with a suite of novel data-
driven decision-support tools for the purposes of leak detection. The hydrant-mounted
monitoring system was specifically selected for this application as this presents the most
viable means to access the hydraulic conditions using existing access points in the network
and can operate year-round in cold climates such as in Canada.

In terms of its impact, this work has strategic importance to Canada and beyond.
Even though Canada holds nearly 20% of the world’s fresh water supply, only 7% of this
is renewable, and a vast majority of that is not easily accessible as it is retained in lakes,
underground, or in glaciers. As a result, shortages still arise due to drought, infrastruc-
ture problems, and increased demand [NWRI and Meteorological Service of Canada, 2004].
Urban centers in Canada and worldwide, however, do not have such an abundance of avail-
able water. While the primary cause of leaks in water distribution pipelines are largely
speculative, it is widely assumed that the main contributing factors include temperature
(seasonal freeze-thaw), water demand stress, the occurrence of hydraulic transients, and
pipeline deterioration, as well as corrosion. As many municipalities work with water sys-
tems which are aging and deteriorating rapidly, this work is both timely and highlights the
strategic importance of minimizing water loss in water distribution networks (WDNs).
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1.2 Working principle of WDN

In a WDN, water is collected from various sources, such as wells, underground aquifers
and lakes and is subsequently transported to and held in outdoor water reservoirs. Upon
treatment of this water (now potable), it is then transported to ground level storage cham-
bers (primarily service reservoirs). This water is then distributed to various water tow-
ers (i.e.elevated storage tanks) via transmission mains and subsequently disseminated to
subsections of the WDN using a combination of gravity and pumps through the water
distribution mains. From the water distribution mains, services lines connect to individual
homes and buildings to deliver the water. Figure 1.1 illustrates a typical WDN.

Figure 1.1: Sample layout of a city’s water distribution network

Different cities have different pressure requirements for the distribution mains depend-
ing upon the gradient from the water towers and the number of pumps in the system. There
are distinct minimum requirements for fire safety for different cities as well. The minimum
requirement for fire safety is the amount of pressure required in the water network for the
supply of adequate water pressure at each fire hydrant for fire fighting purposes. For exam-
ple, the Fire Code in the province of Ontario specifies a minimum water flow of 140 kPa
pressure [Ministry of the Solicitor General, 2016]. Municipal fire codes also require that
fire hydrants be situated at minimum intervals: no more than 400 − 600 feet between
them, depending on zoning, and within 90 meters of the front of each house [National Fire
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Protection Association, 2015]; as well, fire hydrants must be placed in an unobstructed
position within 45 meters of where a fire truck would park [Building Code, 2018].

1.3 The need for monitoring WDNs

WDNs provide a convenience that most people in the developed world could not imagine
living without. Humans have been successfully channeling the flow of water since the
Neolithic age (c. 5700 - 2800 BCE), beginning with primitive agricultural irrigation systems
[Mays, 2010]. However, water is extremely difficult to contain, and system leaks have been
an ever-present complication. Frontinus (c. 40 - 103 CE), a Roman senator and engineer,
left detailed measurements of water flow in the aqueduct systems of ancient Rome. His
notes reveal a dramatic difference in intake and delivery, a phenomenon attributed to
“evident leaks” in the system. Frontinus dictated that the leaks and infrastructure damage
were caused by “the accumulation of deposit. . . the unlawful behavior of nearby owners, the
force of the elements, or faultiness of construction” [Evans, 1997]. Essentially, the state of
WDNs has not changed. The authors of a World Bank study estimated that in developing
countries, roughly 45 million cubic meters of water are lost daily, with an annual economic
value of over USD $3 billion [The World Bank, 2016].

This loss of water, besides having an impact on economy, also leads to a variety of
undesirable consequences. One of the main causes of water loss—deteriorating or damaged
infrastructure—not only leads to water contamination and health concerns, but could also
lead to a drop in pressure in that section of the network. The pressure drop causes signifi-
cant inconvenience to the residences experiencing its effects and likely filing complaints, as
well as, and much more importantly, causes a safety hazard as far as fire safety is concerned
[Yves Filion et al., 2004]. Not only this, excessive leakage adds to the overall cost and chal-
lenges in sourcing, abstracting, treating, and distributing water. These four dimensions
are further detailed in Table 1.1. These impacts include the waste of energy resources
in treating water after initial abstraction and again, once the water leaks and infiltrates
the storm water system, which unnecessarily strains the natural ecosystems and degrades
relationships between consumers, water utility operators, directors, and shareholders, as
well as government and regulatory bodies [European Commission, 2015]. Extreme cases
of excess leakage may also result in intermittent supply and, ultimately, a complete failure
by water utility to continue to provide the required service to the customers.
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Table 1.1: Impacts of Water Distribution System Leakage [European Commission, 2015]

Environmental Political and
Societal

Economic Legal and
Regulatory

• Unnecessary
removal of water
from ecosystems
impacts biodiver-
sity and increases
concentrations of
water pollutants.
• Wastes electricity
and chemicals used
for unnecessary
water treatment,
emitting ozone and
greenhouse gases.

• The current levels
of leakage are per-
ceived by the reg-
ulators, the public,
and the media as
too high for most
water utilities.

• Depletes water
supplies, limit-
ing infrastructure
capacity develop-
ment.
• Higher cost of
production and
distribution, higher
chemical usage,
higher energy us-
age, higher costs
of treatment for
waste disposal.
• Leak monitoring,
localization, and
repair are costly
investments that
must be balanced
with the other
impacts of leakage.

• Customers wish
to see water utility
operating effi-
ciently so that it
does not charge
them excessively
for leakage.
• Economic reg-
ulators expect
operating and in-
vestment costs to
be justified.
• Directors and
shareholders ex-
pect water utility
to run efficiently.
• Environmental
regulators seek
to avoid undue
abstractions of raw
water.
• National govern-
ment departments
aim to safeguard
future water sup-
plies.
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1.4 Impact

While leakage in WDNs can be associated with severe consequences as discussed above,
it is also important to understand what factors affect WDNs and the intensity of their
impact. The environmental impact on water distribution systems is a widely assessed
area, since the life cycle of the system is used to characterize its long-term sustainability.
The operation phase typically has the highest potential for inflicting environmental damage
on the system’s life-cycle [Bonton et al., 2012]. The pumping of raw and treated water is
directly correlated with water demand, and these processes are the most energy intensive
and greenhouse gas (GHG) intensive parts of the life cycle process [Vince et al., 2008]. The
processes of raw water treatment and pumping are the most directly correlated with water
demand and are the most intensive, in terms of energy usage and greenhouse gas emission.
[Vince et al., 2008]. The transportation and use of treatment chemicals in the system
are also noteworthy. However, their impact is minuscule in comparison to the pumping
of water. Consequently, the improvement of failing infrastructure can help reduce the
energy burden of water treatment systems [Racoviceanu et al., 2007]. The impact of the
factors listed can lead to the contamination of water, which might further lead to negative
consequences, the most important being the impact on the health of the consumers.

Significant importance should be given to the potential contamination of potable water
in the distribution system in the event of a leak. In cases where small leaks occur and are
present for extended periods of time, the possibility of contaminants entering the potable
water supply through leaks and being transported through the network to consumer taps is
of great concern. It is especially alarming given that the materials surrounding water pipes
can often contain harmful contaminants, including viruses and fecal bacteria [University
of Sheffield, 2015]. The intrusion of the contamination in the area surrounding a leak
is amplified with the occurrence of pressure transients, in which the negative pressure
in the system then pulls contaminants in from the area surrounding the pipe fracture
[LeChevallier et al., 2003]. This makes the timely identification and detection of a leak
even more important.

1.5 Leak detection technology landscape

In the context of leaks, large or small, most methods in use today are inspection techniques,
not methods intended for long-term monitoring. Leaks are often difficult to detect with
traditional methods. Large lengths of pipe are routinely excavated in order to find and
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repair small defective sections, often as a result of complaints, once a leak (or burst) surfaces
and is evident visually.

While effective, most current inspection methods tend to be manual, depend on an
expert to interpret data, and hence not conducive to long-term monitoring. The need to
rely on expert judgement is one which incurs added cost and limits wide-scale autonomous
deployment. Moreover, many of these techniques rely on the metal pipe surfaces to transmit
acoustic energy, which suffers from detection issues in materials such as plastic. Most
publicly available evaluation studies do not offer convincing results using commercially
available technologies in blind tests and field conditions. Hughes and Venkatesh [2016]
produced a study of Echologics water monitoring prototype, EchoShore, which is a system
that most closely resembles a long-term continuous monitoring strategy. This report found
issues related to battery-life and dependability, as replacements were needed for 15% of
the systems that were installed. However, directly relevant to this dissertation, of the 13
leaks that occurred throughout the duration of their study, only two of the leaks were
detected and reported by their system. The first was detected by inspectors who were
on site that day, and also stated that the leak was audible, so there was uncertainty
surrounding the systems ability to detect this leak without the presence of the inspectors.
The second leak was detected using inspection-level detection methods, after the leak had
already been reported and repaired. As stated in their executive summary, based on this 10
month long field deployment study, they were unable to conclude that there was significant
opportunity of major savings based on the implementation of this system. A similar study
was produced by Anguiano et al. [2016] using Echologics’ hydrophone suited LeakFinderRT
system which yielded a 54% weighted accuracy (with an 85% TPS and a 22% TNR) in a
laboratory test bed setting. However when it was tested in the field, Anguiano et al. [2016]
concluded there not only for LeakFinderRT but for ZoneScan Alpha as well, there was not
sufficient information to evaluate the systems performance since the reported leaks went
either unverified or the cause of observed water was never identified.

Aside from the two studies mentioned, to the author’s knowledge, there exists very
little in the public domain that documents and evaluates the performance and failure
rates of inspection technologies in blind tests and in live WDN, and none exist for long-
term monitoring technologies. In order for events—including leaks and bursts—to be
recognized as soon as they occur without an expert in the decision-making loop, long term
monitoring is the only feasible option. Furthermore, given the nature of the relatively
closed product landscape with very limited third-part validation tests available in the
open scientific literature, there is an urgent need to develop and evaluate new technology
in a rigorous and objective way in the open scientific domain.
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1.6 Long-term monitoring solution

Long-term continuous monitoring for events requires a fundamental re-thinking of both
technology as well as the application procedure. Such factors as, weather, WDN system-
integration, and connectivity and maintenance of the monitoring system must be taken
into account. Any alterations to existing water distribution infrastructure must be done
judiciously, so as not to disrupt the pipe system. The ongoing need for system modi-
fication and growth makes the use of model-based techniques inefficient, as the system
models would need to be accurately be configured and tested for similarity. Though the
effectiveness of model-based techniques has been proven in literature [Moser et al., 2015,
Goulet et al., 2013], ease of wide system-integration has always been a limitation. There
are many issues with purely data-driven techniques as well, the most important of which
being that they do not naturally obey physical constraints (that we may know to be true,
due to domain knowledge) due to their limited observation of the environmental dynam-
ics; hybrid approaches (e.g., graphical models, knowledge-injection via constrained neural
optimisation, etc.) have become popular for this reason. Most importantly, such a sys-
tem should be able to operate year-round, especially in cold climates such as in Canada.
In general, in cold-climate regions, even relatively large leaks that may be visible during
the warm-temperature months, may not surface during colder months due to the frozen
ground surface; preventing such leaks from being detected for extended periods of time.
While the cost may be higher for the initial installation compared to one-time inspection
methods, the long-term costs are significantly reduced when we consider the detrimental
effects of the aforementioned events and the cost of spot-inspections throughout the system
are taken into account.

In order to verify the effectiveness of different long-term monitoring methodologies,
testing and validation is an important step. Many of the current WDN laboratory experi-
mental setups are too simplistic and do not capture the complexity of actual WDNs. Many
laboratory experimental test-beds lack fundamental field representations. While some of
these systems are highly representative, such as by burying extended lengths of pipes [Co-
vas et al., 2006], others find ways to be representative indoors. Some account for elbows
and junctions, while others completely simplify to straight lengths. None of these systems
take all factors into account, such as pressure, elbows and Ts, realistic materials and pipe
diameters. While actual field conditions can be difficult to replicate in laboratory settings,
an attempt to better represent them still needs to be made. It is not reasonable to consider
simplified test setups to be representative of field conditions in order to validate proposed
methodologies —field deployment is the ideal validation case study.
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1.7 Research objectives and scope

The main objective of this dissertation is to develop a long-term, continuous, passive, WDN
monitoring and decision support system to detect leaks in live WDN. In principle, the same
technology can also aid in the detection of other events such as pressure transients and
vandalism, however these are not pursued in this dissertation. The development will focus
on a dry-hydrant based system which can operate year-round, which is crucial for operating
in cold climates such as here in Canada. The overarching objectives of this dissertation
are as follows:

• develop a long-term monitoring system requiring minimal modifications to and ca-
pable of continuously monitoring a WDN;

• develop the attendant decision support tools which can detect newly developed leaks
and bursts events based on acoustic sensor data from the developed monitoring sys-
tem, with minimal human expert intervention;

• test and validate the system using both laboratory experiments and field tests on a
live WDN.

The scope of this dissertation is limited to the detection of newly developing leak and
burst events assessing only changes in baseline conditions, and will not address the presence
of pre-existing leaks. The important distinction between the system developed during this
dissertation and existing inspection methods for leak detection is that the current system is
envisioned to be deployed as a long-term monitoring tool and not a short-term supervised
inspection system. As well, the work done in this dissertation is limited to those events
which can be detected using acoustic data. Unlike many previous studies, the use of
hydrophones in this dissertation to monitor acoustic data is motivated by the fact that
sound signatures have been shown to travel further inside water mains relative to the pipe
wall, even in traditionally challenging materials such as plastic. The main focus of this
dissertation is to evaluate the system experimentally in a live WDN to study, quantify
and validate the approach. To the knowledge of the author, this is the first effort where a
long-term monitoring system capable of being mounted from a fully functional hydrant has
been developed, tested, and validated in a live WDN. It is also important to acknowledge
that fouling and bio-films are inevitable in WDNs [Batté et al., 2003], potentially resulting
in affecting acoustic vibration characteristics within the system, e.g., due to a change
in diameter [Vassiljev et al., 2005, Lansey et al., 2001] and roughness along the pipe wall
[Shulemovich, 1986], or due to dislodging. However, such sources are not considered within
the scope of this dissertation.
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1.8 Organization of dissertation

The dissertation contains 7 chapters and is organized as follows:

• Chapter 1 provides a brief introduction to the need for water distribution system
event monitoring. It presents the overarching research goal and and specifies the
significance of the study, including its limitations.

• Chapter 2 presents a literature review on various traditional and current leak de-
tection methodologies for water distribution networks and reviews the types of leak
which can occur in the system. The research gap areas are identified and specific
research objectives are outlined.

• Chapter 3 provides background on relevant concepts which will be useful throughout
the dissertation.

• Chapter 4 presents the underlying principle of Linear Prediction and its analytical
application to leak signals.

• Chapter 5 presents results from the laboratory test bed for leak detection and
localization methodologies.

• Chapter 6 presents results for the field test bed for leak detection and enhanced
localization methodologies.

• Finally, a number of conclusions resulting from the dissertation work are discussed
in Chapter 7, followed by several recommendations for future study.
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Chapter 2

Literature Review

The main objective of this chapter is to present an overview of the different types of
detection and monitoring methods which exist today, from a technology standpoint, to
detect water main leaks and bursts. An effort is made to classify the technologies based
on their underlying working principle, with a relatively heavy focus on those methods
employing acoustic signals. It is important to note here that acoustic techniques refer
to methods that rely on accelerometers (vibrations) and sound propagation inside the
fluid (hydrophones). This chapter starts with a review on the types and causes of leaks
in WDN, followed by a discussion on the leak detection technology landscape today and
concluding with a brief summary of the gaps in both the literature and the technology. For
the purposes of this dissertation and the literature review, only a qualitative distinction is
made between leaks and bursts; often controlled tests are called leaks, although in practice
leaks are slow to develop while a burst is considered a sudden and dramatic loss of pipe
integrity. Qi et al. [2018] defined bursts are creating conditions such that nodal demands
can not be satisfied, defined by flows greater than 50 L/sec. Although pertinent to the
problem being studied, a review of the literature related to the economic impact of damage
incurred by various leaks, as well as other types of events such as contaminant intrusion,
is relatively limited in this chapter.

2.1 Types and causes of leaks in WDNs

Water distribution systems are complex conveyance systems that undergo varying pres-
sures, stresses, strains, and temperatures. As a result, they are a challenge to design,
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build, and maintain. Despite the best efforts in system design, leaks remain an unavoid-
able reality. A common misconception about water distribution leaks is that the majority
of water is lost as a result of large main breaks and catastrophic main failures. This is
because their dramatic impacts on the network and high flow rates receive most of the
attention from a public visibility standpoint, as such events cause the most disruption to
our daily lives and require disproportionate resources in order to address them. However,
well-run systems suffer the majority of their losses as a result of background leakage, long-
running unreported leaks, and reported leaks where the repair is delayed [Thornton, 2002].
Therefore, finding the sections of the network that contain leaks and then pinpointing the
exact locations of the leaks for repair, is central to leakage reduction as part of an active
leakage control policy. Although, for the purposes of this dissertation, it is not very im-
portant to delineate exactly which type of a leak we are dealing with, it is important to
put them into context when we discuss the relevant technology in this chapter.

Leaks are broadly classified into three categories [Thornton, 2002]:

• background (undetectable) leakage—low flow rate with perpetual duration; tends to
increase with increasing age of the network;

• reported breaks—high flow rate with a short duration, typically brought to the atten-
tion of the water utility by the general public when they surface or cause a disruption
in supply; and

• unreported breaks—moderate flow rate, the duration depends on the intervention
policies applied by the utility; many go undetected without some form of active
leakage control.

Different types of leaks result in different levels of impact on the system. This varia-
tion makes some leak types easier to detect than others. Bursts yielding immediate and
significant impact, while leaks, allowed to persist, can create equally significant impact
over longer periods of time. However with effective leak detection, leaks can be discovered
more quickly, thus limiting their overall impact. The most severe leak type, immediately
detected and causing the most obvious impact, being a main break caused by pipe frac-
ture, is easily detectable, by utilizing system or line pressure. A pinhole leak, caused by
corrosion or stress by stones after poor back-fill, can be harder to detect as they typically
induce only local changes in the hydraulic conditions. Seepage is another common type
of leakage caused by deteriorated asbestos cement pipes. Leakage can also be caused at
system opening, joints and appurtenances. Adding to these, a detailed study of leakages
and their causes can be found in Table 2.1.
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Table 2.1: Types and Causes of Water Distribution System Leaks [Thornton, 2002]

Main break of
pipe fracture

Used to describe a catastrophic pipe failure caused by pipe deteriora-
tion, fluctuating or excessive pressure, ground movement, or a combi-
nation of these factors. Main breaks are relatively easy to locate as
these failures usually become quickly and visually apparent at ground
surface level due to the massive volume of water released.

Crack A pipe failure mechanism occurring as circumferential or longitudinal
failure that usually results from pipe deterioration or ground move-
ment.

Pinhole Small circular failures in a pipeline usually caused by corrosion or
stress by stones after poor backfill. Steel pipes installed in a corrosive
environment without appropriate protection are particularly vulnera-
ble. Pipelines should always have some protective layer, or at the very
least a backfill layer of sand.

Seepage Most commonly observed on deteriorated asbestos cement pipes where
the pipe wall becomes semi-porous and water escapes slowly.

Leakage
on packing
glands of
pumps and
valves

Caused by deterioration as the system ages and usually occurs when a
valve is used after a long period of inactivity. Easily detected visually
at pumps or by valve chamber that is full of clear potable water.

Pipe joint
leaks

Many older couplings and weld joints are not corrosion-protected and
therefore deteriorate long before the pipe itself. When ground move-
ment occurs, most of the strain is experienced at the pipe joints, often
resulting in leakage and, eventually, a fracture.

Leaking
service con-
nection pipe

Service connection leaks are the most common type of leak. Between
the water main and the customer water meter there are often more
than one change in pipe size and material, which requires many joints
that are especially vulnerable. Service connections are also often in-
stalled shallow in the ground in close proximity to disturbance from
the traffic load above.

Leaking fire
hydrants, air
valves, and
scour valves

System openings and appurtenances also occasionally leak water.
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2.2 Leak Management

Broadly speaking, leak management consists of two main approaches: leak prevention
and leak detection. Leak prevention is performed mainly through managing the overall
pressures within the system through control devices and maintaining the overall physical
health of the WDN through capital investments and maintenance. Clearly, the effectiveness
of this approach depends on our ability to predict failure causes correctly (which is not
usually possible for other than pressure related) and the availability of capital budgets and
resources. Both these factors are not rooted in the technology aspect and hence not central
to this dissertation. Of particular interest in this dissertation is the technology necessary
to detect leaks that are otherwise not detectable within the system, which belongs to the
second category of leak management.

The management of excess pressure including pressure transients [Williams and Kucz-
era, 2014, Wu et al., 2010, Silva et al., 1996] requires an accurate and extensive knowledge
of system pipe layouts (this is explained in Section 2.3.4), as well as limiting the duration
of all detected leaks. In a WDN the pressure is not constant, it can vary across a system.
It varies throughout a given day, across a given week, and throughout the year. At times
this variation can include sudden changes, caused by changes in demand, sudden opening
or closing of valves, sudden shutdown of a pump in the system, among various other causes
[Budris, 2014]. The change in the steady state of motion of water can cause pressure tran-
sient waves to arise and propagate through the system, also known as a ”water hammers”
[Thorley, 1968]. The kinetic energy of the liquid moving through the fluid manifested in
the form of a pressure wave can cause significant damage to pipes and to pumps or fittings
[Budris, 2014]. Generally, damage to a large system occurs over repeated cycles of such
transients and hence if a system is adequately monitored, the repetition of these damaging
events can be mitigated through appropriate control devices, thereby limiting the potential
for system damage.

Pressure management can be achieved through techniques such as variable speed pump
control, tank regulation, and the implementation of pressure-regulating valves. Higher
system pressures are typically associated with higher levels of system leakage, and so the
central objective of pressure management, besides providing adequate service to customers,
is the reduction of background leakage by minimizing system pressures [Vicente et al.,
2016]. In addition to minimizing background leaks, the reduction of excess pressure and
pressure transients prevents avoidable bursts and mitigates the costly process of locating
and repairing them. For this purpose, the fixed and variable area discharge (FAVAD)
principles [May, 1994b], the burst and background estimates (BABE) concept [Lambert,
2004], as well as, the more recent, N1 exponent relationship [Thornton, 2002, Lambert,
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2004] are all popular tools for determining optimal pressures based on related leak flow
rates and burst probabilities. These are essentially management tools and can be used to
effect improvements in leakage management plans. A brief description of these concepts is
provided next for the sake of completeness.

The FAVAD principle, simply put, is an equation [May, 1994a] that describes the
pressure-leak relationship,

Q = Cd
√

2g(A0h
0.5 +mh1.5), (2.1)

in which Q is the flow rate through an orifice, Cd is the flow coefficient, g is acceleration
due to gravity (m/S2), A0 is the initial leak opening without any pressure in the pipe, h
is the pressure head (m), and m is the slope of the pressure head-area [Deyi et al., 2014].
This was the established ’best practice’ form of the equation for pressure. It states that
the leakage ratio will increase proportionally with the increase in pressure to the power of
0.5. This method was later expanded upon [van Zyl and Cassa, 2014], and a dimensionless
leakage number (LN) was introduced,

LN =
N1− 0.5

1.5−N1
. (2.2)

This created the N1 exponent relationship in which, instead of raising pressure to the
power of 0.5, it is raised to the power of N1. An accurate assumption for N1 will thus
influence the reliability of the predictions. Fanner et al. [2007] showed that N1 values close
to 0.5 is representative of leaks with small round holes, while N1 values closer to 1.5 is
representative of small leaks (typically undetectable) from corroded or misaligned joints
and fittings, as they are more sensitive to pressure. This concept is used to model the
sensitivity of different leaks to pressure in a system. It is effective for gaining insight into
the behavior of a system, however is not a detection tool.

The BABE concept is essentially a standardization for categorizing leaks in a sys-
tem. Broadly speaking, it considers water loss in three categories: background leakage
(undetectable and therefore unreported), reported leaks and bursts (i.e., > 0.5 m3/hr [Al-
Washali et al., 2019]), and unreported leaks and bursts (but detected by a City’s employed
manpower) [Lambert et al., 1999]. The concept states that leaks consist of multiple leak
events, each of which is a function of the average flow rate and run-times [Taha et al., 2016,
Al-Washali et al., 2019]. From this, the annual volume of water lost can be determined.
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2.3 Leak Detection

WDN leak-detection methods fall into five main categories: water balance [May, 1994b,
Wallace, 1987], acoustic leak-detection, non-acoustic leak-detection, hydraulic, and data-
drive, as depicted in Figure 2.1. This classification is arrived at solely for the purposes
of this dissertation and to the knowledge of the author there is no accepted taxonomy
for leak detection methods in the literature. The main principles underpinning each of
these methods and the relevant literature are explained in detail next, while emphasizing
data-driven techniques utilizing acoustic or other sensor means, which form the core of this
dissertation.

Figure 2.1: A classification of leak detection methods described in literature.

Within these five identified categories, there are general benefits and limitations associ-
ated with each. Water balance methods, while an intuitive approach, requires municipali-
ties to introduce district metered areas (DMAs) and real-time acquisition of basic hydraulic
parameters, in order to study the flow of water in and out of a system or sub-system, which
is not always feasible for older systems. However, for newer municipalities it can be a sim-
ple and cost effective way to identify general regions of significant water loss. In order to
achieve a more local identification of the source of water loss inspection methods can be
deployed. While highly effective, they can be very costly and time consuming, and have
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been proven to be most effective only if the presence of a leak is known and simply its
location is of interest. Leak detection equipment covers a wide range of technologies and
capabilities as summarized in Table 2.2. This table summarizes the effectiveness of finding
leaks in different types of mains in the WDN, the trunk main representing the central line
of the WDN, leading back to the city water supply, while the distribution mains are the
smaller pipe networks which creates a web providing water to all areas, and finally the ser-
vice pipe lines connections the distribution mains to the commercial and residential houses
for water consumption. Many of these inspection equipment require experienced operating
personnel to effectively execute and interpret the detection results. A good understanding
of the nature and occurrence of real leakage losses is crucial in order to make effective
choices about appropriate technology applications. Even highly sophisticated and expen-
sive leak detection equipment cannot solve a utility’s leakage problem if the utility does
not understand the real extent and nature of leakage occurrences in its distribution system
[Thornton, 2002]. Beyond the quality and sophistication of the equipment available, the
most important factor for success in detecting leaks is the experience of the leak detection
team in using the technology and interpreting the results received from the equipment
[Thornton, 2002].

Table 2.2: Leak-Detection Methods

Leak-Detection Methods
Effective for finding leaks in

Trunk mains distribution mains service pipes

Acoustic
Methods

Leak Noise Correlator Yes Yes
Noise loggers Yes

Listening stick Yes Yes
Multi acoustic sensor strip Yes Yes

In-pipe sounding Yes

Non-
Acoustic
Methods

Gas Injection Yes Yes
Ground penetrating radar Yes Yes Yes

Infrared photography Yes
In-Pipe hydraulic plug Yes

Hydraulic leak detection methods use hydraulic characteristics, such as flow and pres-
sure, to locate leaks in pipeline. While they have proven effective in many laboratory and
field tests, the typically require significant knowledge of the system layout and thus are
can not be easily deployed on a large scale. On the other hand, data driven leak detection
methods, given a general training period, can be deployed on a much larger scale without
many of the previously listed limitations. This chapter goes into more details on each
method.

17



2.3.1 Water Balance or Water Audit

The amount of water lost in a distribution system can be quantified using a water balance,
which is a tool used to study the flow of water in and out of a system or sub-system.
There are two dominant balance methodologies used for quantifying water losses: (1) the
IWA/AWWA standardized water balance methodology [Valentine, 2009], explained next
and (2) the UK water balance methodology [Lambert, 1994], as seen in Table 2.3. These
water balance methodologies were based on work performed by May [1994b] and the Water
Research Foundation [Wallace, 1987].

Table 2.3: The UK water balance methodology [Lambert, 1994]

Distribution Input (DI)

Water Taken (WT)
Distribution
Losses (DL)

Water Taken (WT)
Distribution
Operational
Use (DOU)

Distribution
Losses (DL)

Water Delivered Through Supply Pipes (WDS)
Miscellaneous Water Taken

(WTM)
Distribution
Losses (DL)

Measured
(WDSM)

Unmeasured
(WDSU)

Unmeasured
Supply
Pipe Losses
(WDSL)

Miscellaneous Water Taken
(WTM) [Legally and

illegal, Meter
under-registration]

Distribution
Losses (DL)

The IA/AWWA water balance methodology takes the system input volume (corrected
for known errors, such as possible inaccurate meter readings or inaccurate projected con-
sumption patterns) and divides this into two components [Mutikanga et al., 2013]: (1)
authorized consumption, and (2) water losses. The authorized consumption is then divided
into: (1a) billed authorized consumption (this encompasses all revenue water), which is
essentially made up of billed metered consumption, and billed unmetered consumption;
and (1b) unbilled authorized consumption, which is made up of unbilled metered con-
sumption and unbilled unmetered consumption. The water losses are divided into: (2a)
apparent losses, which are made up of unauthorized consumption, and costumer metering
inaccuracies and data handling errors; and (2b) real losses, which encompass leakage on
transmission and distribution mains, losses at utility’s storage tanks, and leakage on ser-
vice connections up to customer metering point. The total non revenue water (NRW) is
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all unbilled authorized consumption, apparent losses and real losses.

The challenges associated with measuring water flows in and out of the entire system
as well as the development of the aforementioned water balance methodologies lead to the
implementation of district meters areas (DMAs) within a municipalities water distribu-
tion network (WDN), in which utilities partition their distribution systems into smaller,
more manageable sub systems. DMAs typically represent between 500 and 3000 proper-
ties [Morrison et al., 2007]. The flows into and out of DMAs are closely monitored to
determine leakage as excess flow beyond legitimate customer usage. This flow monitoring
usually occurs in the middle of the night when legitimate customer use is at a minimum,
network pressures are high, and leakage is at its maximum percentage of total DMA inflow
[Mutikanga et al., 2013]. If a water system has already been established, implementing a
DMA system is not something that can easily be incorporated with existing infrastructure,
it is a costly and difficult task; while for newer systems it is a simple change in the pipeline
layout to implement.

2.3.2 Acoustic Leak Detection

Acoustic leak detection depends on the vibration (or, sound) generated by water leaking
from an orifice in a pressurized pipe. The vibration is transmitted through both the pipe
materials [Leslie-Milbourne et al., 2004] and the water within the pipe [Khalifa et al., 2010,
Khulief et al., 2011]. The frequencies produced by leaks vary depending on the type of
leak, pipe, and backfill. It is also important to note that not all leaks produce a detectable
vibration.

Qualitatively speaking, three types of vibration are generated from leaks in buried pipes
[Hennigar, 2013]: (1) friction vibration, (2) fountain vibration, and (3) impact vibration.
Friction vibration is a result of water forcing its way through the pipe wall and emanating
vibration through the pipe. It tends to be higher in frequency, ranging between 300 to
3000Hz. Fountain vibration is the lower frequency vibration (10 to 250Hz) generated
by turbulent, circulating water around the leak site. Impact vibration (10 to 250Hz) is
generated by the collision between the exiting jet of water and the backfill surrounding
the pipe [Hennigar, 2013]. Most studies have shown that frequencies above 300 Hz are
rarely recorded in acoustic measurements (passive) as the attenuation is generally high
and especially so in non-metallic pipes. Hence, most of the acoustic energy is concentrated
below 300 Hz and in most applications.
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Factors Affecting Leak Vibration Quality

A great degree of variation is possible within the pipe and the surrounding environment
when considering the details of an appropriate system to use. As a result, the acoustic
energy, quality and propagation of the emitted leak vibration are different from case-to-
case. A few of the factors that affect the quality of acoustic energy generated by leaks are
listed below:

• Water pressure within the pipe

Leak induced acoustic energy is proportional to pressure: the higher the pressure,
the better the leak induced energy intensity [Thornton, 2002]. Therefore, there is an
advantage to performing acoustic leak detection at night, when the water distribution
system pressure is typically at its peak.

• Type of pipe

Summarily, the harder the pipe material and the smaller the diameter, the better the
quality of the leak induced energy [Thornton, 2002]. On average, the pipe materials
and their associated sound qualities are as follows: good for leak noise sounding :
cast iron, steel, copper; average for leak noise sounding : ductile iron, asbestos ce-
ment. poor for leak noise sounding : PVC, MDPE, HDPE, internally lined/externally
wrapped.

• Type of backfill covering the pipe

Cavities and moisture in backfilled soil diminish the transmission of leak vibration
[Thornton, 2002]. Sandy soils and asphalt conduct vibration well whereas clay and
concrete do not.

• Sources of interference with leak noise

There are many sources of interfering noise in the process of acoustic leak detection
that may obfuscate the signal. These include: automobiles, aircraft, trains, pressure-
reducing valves, partially closed valves, and other vibrating mechanical equipment.

• Type of leak

As covered in Section 2.3.2, there are many types of leaks that could occur in a WDN.
Each type of leak typically produces a noise of a particular quality. Smaller leaks
often have a high frequency ”hissing” sound and larger leaks are characterized by a
low frequency ”rumble” [Thornton, 2002]. The details of the noise quality for the
leak types are covered in Section 2.3.2 as described next.
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Expected leak noise quality differs depending on the type of break. Main breaks caused
by pipe fracture create a low frequency rumble caused primarily in two cases: (1) sub-
stantial leak rate reduces the pressure in the pipe, weakening the acoustic energy (e.g.,
vibration of the pipe shell or acoustic waves within the water column), (2) the station-
ary water pocket created at the location of the leak site could dampens the leak-induced
acoustic energy. Cracks and pinhole leaks typically cause a large variety in noise quality,
but usually have a high audible frequency. Seepage will typically cause very poor noise
quality, therefore these leaks are usually categorized as undetectable background leakage.
On the other hand, leakage on packing glands of pumps and valves cause highly audible
frequency, detectable by direct sounding at the valve spindle. Pipe joint leaks cause a large
variety in quality, mainly dependent on pipe material. Finally, leaking service connection
pipes and leaking fire hydrants, air valves and scour valves are usually easy to detect and
access since close-proximity direct sounding is possible [Thornton, 2002].

Hunaidi and Chu [1999] performed an experimental investigation into the acoustic
signatures of different simulated leaks in plastic water distribution pipes and found that
most leak noise is concentrated at low frequencies. In their study the authors concluded
that the spectral region of interest for leaks in plastic pipes in water distributions systems
is between 5 and 200 Hz Distinct peaks are found at the low end of the spectrum from
5-40Hz which Hunaidi and Chu [1999] attributed to the simulated leak. Hunaidi and Chu
[1999] stated that typically little information is gained by including above 45Hz and thus
recommends low pass filtering at this point. As a note, it is important to recognize that
these recommendations may or may not applicable to general situations and should be
followed with caution.

Acoustic Leak Inspection Equipment

In order to perform acoustic leak detection, there are several types of inspection equipment
in use today. Each of these key approaches are discussed in the context of the literature
landscape, next.

• Mechanical or electrical listening stick

The listening stick is a traditional instrument used to systematically sound all mains
and service connections. The most common type is a simple steel shaft connected to
an ear piece with or without a sound amplifier. The listening stick is placed onto a
fitting, whereby any leak noise is transferred from the pipe, to the steel shaft, and
finally to the ear piece for interpretation by the technician. This poses a number
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of problems, but the most limiting of these is that of human listening. While the
human audible range is from 20-20,000Hz, humans have limitations in listening at
the lower end of the frequency spectrum. The frequency created by most reasonably
sized leaks range from approximately 20Hz to 250 Hz [Mutikanga, 2012]. While this
falls within the range, human error is more likely to occur, with people of slightly
older ages, within this range.The effect is amplified when plastic pipes are used, due
to the stronger attenuation rate of vibration, and most leak frequency signals are
below 50 Hz [Hunaidi et al., 2000]. The pipe burial depth also effects the accuracy of
this method’s detection capabilities, since pipes deeper beneath the ground generally
lead to more vibration attenuation.

• Ground microphone or geophones

Ground microphones are used to listen for leaks from the ground’s surface where
direct system contact points such as valves, hydrants, and service connection curb-
stops are spaced far apart, making other investigative tools less reliable. Ground
microphones can also be used to pinpoint the exact location of a leak using cross
correlation, described below.

This is a newer technology built off of the same principle of listening rod systems,
incorporating amplifiers to help alleviate the limitation of the human acoustic lis-
tening range [Smith et al., 2000]. However, this still leaves the limitations of system
effectiveness to the operator’s experience and subjectivity.

• Leak noise correlator

A leak noise correlator is comprised of a correlator unit made up of a receiver and
a processor, and two sensors equipped with radio transmitters. The two sensors
must be placed on exposed fittings, straddling a suspected leak. The leak noise
radiates out through the pipe and eventually collected at each sensor straddling the
leak. This process differs from the aforementioned methods because it uses the speed
of sound as opposed to acoustic energy level created by the leak. The correlator
uses the time difference between the two arrival times at the two sensor locations,
information about the pipe material, size, and the distance between the two sensors
to calculate the location of the leak [Gao et al., 2005]. The accuracy of the process
is highly sensitive to the operator’s inputs and the physical characterization of the
piping system. Tee and branching lines can similarly cause problems [El-Abbasy
et al., 2016, Bracken and Cain, 2012, Gao et al., 2004]. However, beyond a proper
assessment of the deployment location, the operator’s skill level required is relatively
low [Li et al., 2015]. This is by far the commonly employed method to localize leaks
within a pipe run where a leak is known to be present.
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Hunaidi [2000] found that while commercially available leak noise correlators can find
the location of leaks in controlled tests when the presence of a leak is known, the
detailed knowledge of the parameters for the site specific investigation need to be
measured at the time of the test to ensure accuracy. This type of system however
has only been proven effective experimentally in cases where a leak is known to
exist. Blind experimental test cases are limited, and with mixed results [Hughes and
Venkatesh, 2016, Anguiano et al., 2016].

• Digital correlating leak noise logger

A new distributed form of acoustic leak detection combines acoustic logging and
leak noise correlation, such as Eureka Digital [ADS, 2009] or ZCorr [SubSurface
Leak Detection, 2019]. It essentially consists of multiple acoustic loggers installed in
the vicinity of the suspected leak, on flooded hydrants, valves or other exposed or
accessible piping. A controller of these loggers is then used with a special software,
proprietary to the company of choice, to determine the location of the leak. It can
then create a multi-dimensional map to locate the leak more accurately than the
two point correlator systems. This method is also automated, minimizing the need
for experienced operators. These developed systems utilize proprietary algorithms
for leak detection and localization. Based on background knowledge of these types
of systems, it is likely they utilize cross correlation and automatic estimated wave
velocity in the system.

While these methods typically work effectively for larger metal pipes [Li et al., 2015],
it has yet to be proven in literature that smaller leaks in larger diameter plastic pipes
can effectively be detected. This is due, in part, to the low frequencies created by
smaller leaks in medium to large sized pipes. The current state of this detection
equipment’s accuracy is dependent on the number and arrangement of loggers, with
diminished accuracy in non metallic pipes.

• Sensor inserted into the transmission main

The difficulty with executing the acoustic detection of leaks on water mains is that
there is usually a long distance between fittings that can be used as sounding contact
points. With these long distances and the pipes’ large diameter, most of the sound
(vibration) energy from a leak will dissipate before it can be detected. One type
of leak detection equipment developed for transmission mains inserts a sensor into
the transmission main that then travels along with the flow in the pipe, picking up
any noise generated by a leak [Kurtz, 2007, 2006]. These free swimming acoustic
leak detection devices can more effectively survey much longer lengths of pipe with a
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simple deployment. Kurtz [2006] began review of this methodology with an isolated
field experiment, Khulief et al. [2011] continued further validating the procedure with
an simplified laboratory experiment, consisting of short lengths of pipes in sequence
attached to a metal configuration meant to hold it in place.

While this method certainly has merits, results from independent academic studies
are not available in literature to assess their performance in field studies. Further-
more, its effectiveness is directly tied to knowledge of its exact location at the exact
point in time, also known as odometry. Furthermore, due to their size and the need
to deploy roughly tennis-ball sized objects into pipes, their deployment is generally
considered practical for large diameter mains.

• Fiber optics

Another method for detecting leaks in water mains uses acoustic fiber optics [Jia
et al., 2015]. Fiber optics for leak detection rely on different types of light backscat-
tering in optical fibers in the presence of a leak within a system [Stajanca et al.,
2018]. A continuous fiber optic cable is installed along the main and connected to a
data acquisition system that allows permanent real-time acoustic monitoring. There
are two types of fiber optic monitoring systems, temperature sensing and acoustic
sensing. The changes in the optical characteristics due to the temperature changes
caused due to coming in contact with water is utilized for leak detection, while the
optical time delay is used for localization. Acoustic sensor cables (which rely on the
Rayleigh-based waves [Stajanca et al., 2018]) work in a similar way except, instead
of temperature differential, vibration induced by the occurrence of a leak is detected
[Jia et al., 2015] using a time-domain reflectometry (TDR). TDR is used for detec-
tion by assessing the partially back-scattered laser pulses within a fiber-optic cables
which occur in the presence of a leak.

While these types of systems rely on fairly well established technologies, deployment
at scale in geographically distributed systems is associated with prohibitively high
installation and maintenance costs.

2.3.3 Non-Acoustic Leak Inspection

In addition to acoustic leak detection methods, there are also a number of non-acoustic
methods that have been used by utilities and researchers. However, none of these meth-
ods are considered for wide scale use based on the current level of research and reported
effectiveness. A number of non-acoustic inspection methods are described herein.

24



• Video cameras

Tethered inline video inspection, while requiring a 2 inch or large tap, allows for real
time CCTV inspection. A parachute is attached behind the camera which carries it
down the pipeline. While results are reported mostly with regards to collecting useful
information rather than leak detection [Laven et al., 2010, Kuntze and Haffner, 1998,
Kirkham et al., 2000], it is an inspection method which can be utilized if a problem
is known but the cause is unknown. A major limitation lies in the inspection length
of the technology being limited by how far this flow can carry the hydrophone and
cable through the pipe before friction stops it [Laven et al., 2010].

Other researchers such as Nassiraei et al. [2006], Rome et al. [1999], use untethered
robots for inspection, however, many still require system maps for navigation [Kirch-
ner and Hertzberg, 1997]. They are typically used for sewer inspection [Nassiraei
et al., 2006, Rome et al., 1999]

• Tracer gas

A water-insoluble gas is injected into a pipe system and then detected at the surface
using a sensitive gas detector. The gas used is typically hydrogen, due in part to it
being lighter and easily detectable. This light-weight quality allows for small leaks to
be more easily detected [Hunaidi et al., 2000]. The gas detector is sensitive to even
small amounts of this gas. Due to the costly nature of this method, its application is
typically limited to small leaks, since this is the area in which it has out-performed
other more cost effective methods [Li et al., 2015].

• Ground penetrating RADAR

This is a non-invasive, non-destructive testing method in which a continuous cross-
section profile of the area is produced using high frequency electromagnetic waves,
with instrumentation such as the pulseEKKO radar [sensoft, 2020] system. These
radar waves are introduced into a system to map the location of the pipe. The
mapping is based on the reflected signal. Leaks typically create voids, which lend
themselves well to be detectable using radar. Alternatively, a reading of a change
in pipe depth may be detected where there is none, which would also be indicative
of a leak [Hunaidi and Giamou, 1998]. When the subsurface is frozen, as is typical
seasonable in cold climate locations, this inspection method has not yet been proven
effective [Eyuboglu et al., 2003].
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• Infrared technology

This method uses thermal infrared (IR) cameras to display emitted IR radiation
from pipe systems. The IR camera measures the emitted IR radiation of an object.
Thermal contrast exists and is detectable when a leak is present below the surface
[Fahmy and Moselhi, 2010]. This inspection method is highly effective and requires
minimal operational experience due to the rather simple visual nature of the captured
images. However, in cold climates and surface conditions can greatly affect the quality
of the image and thus the accuracy of this inspection method [Li et al., 2015].

The use of acoustic measurement sensors is more cost-effective and provide a more time
effective response of the occurrence of system events.

2.3.4 Hydraulic Leak Detection

Hydraulic leak detection methods (i.e., non-acoustic, non-inspection methods ) utilize hy-
draulic characteristics such as flow and pressure as a means to detect, locate and quantify
leaks in pipelines. A brief description of such methods found in the literature is summarized
next.

• Hydrostatic

Pressure management techniques have been cited as being included amongst the
primary factors required for leak management [Vicente et al., 2016]. This is common
practice in DMAs for leak detection using a process called ”step-test” [Mutikanga,
2012], which essentially involves the sequential closing of valves within a section of
the pipe, and then reviewing the corresponding effect of flow on the meter. A large
reduction would be indicative of that section of pipe harboring the leak. This method
is limited by the need for DMAs to be deployed, and the great inconvenience it would
cause to the locals in the surrounding area during periods of water shut off to their
region. While this method can accurately detect if there is unaccounted for water
being consumed within a DMA, identifying where and how it is being lost (theft,
leaks, etc.) is beyond the scope of this methodology.

• Steady State

Steady state hydraulic leak detection begins with the study of pressure across WDNs
and how the presence of leak signatures manifest under steady state conditions [Pudar
and Liggett, 1992]. Simply put, the expected pressure at a location is compared with
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the measured pressure, and if the discrepancy between the two becomes too large
a leak is identified as being in the vicinity. Pudar and Liggett [1992] addressed
the problem of localization by analytically solving the inverse problem of equivalent
orifice areas which could be creating the pressure signatures. This analytical method
was later replaced by the use of EPANET2 which, with the aid of computer numerical
derivatives, is able to obtain leak signatures [Perez et al., 2009].

Casillas Ponce et al. [2013] worked on an extended time horizon analysis of pressure
sensitivity using this method. However he reported significant uncertainty can be
present with the application of this method.

A major limitation with model based fault diagnosis methods largely centers around
the lack of accuracy in leak localization. As well, the accuracy of detection relies
heavily on sensor placement. Both of these limitations are heavily impacted by the
variation in nodal demand values[Jahanpour, 2019]. Jahanpour [2019] addressed
these issues however the methodology was never tested in a field setting.

• Transient based detection

Transient based leak detection has received significant attention—both with and
without attendant models—in both theoretical and experimental studies [Gong et al.,
2016, Ferrante et al., 2013, Brunone, 1999], and field [Jackson et al., 1977, Pa-
padopoulou et al., 2008, Nguyen et al., 2018] for over a decade.

The underlying principle is that a pressure change caused by a burst or leak creates a
transient (water hammer) to propagate from the leak location. The transient response
of the system without a leak is used to model the system in its ideal state; transients
are then induced to verify if a leak is present or the system is in the same state, since
the presence of a leak would manifest as a change in its transient response. This
methodology however requires accurate knowledge of the system pipe layout, since
these waves are reflected at boundaries, as well as the wave speed within the system.
Without accurate knowledge of all of these, parameter leaks can not be effectively
located [Ferrante et al., 207]. The magnitude of the pressure wave is indicative of
the magnitude of the leak, while arrival time of the reflected signal is related to its
location [Brunone, 2001].

One well studied method for leak localization is TDR, in which the time of arrival
of partially reflected signals are used to determine leak location. When an induced
transient signal meets a leak, and part of the energy is reflected back, the presence
of a leak is exposed and can be used for localization [Brunone, 1999]. This method
is rather simple conceptually, however detecting small changes in pressure caused by
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this leak reflection can be difficult if the change is not significantly large enough.
Furthermore, the presence of background transients and instrument noise can signifi-
cantly disrupt the signal [Colombo et al., 2009]. Brunone [1999] determined the pres-
ence of these leaks by visual inspection of the change in transient response between
leak and non leak cases, while other researchers continued reviewing this method in
order to automate this analysis process. This was done to automatically detect the
change in response without the need for visual inspection [Lee et al., 2007]. Misiunas
et al. [2005a] demonstrated good accuracy with the application of the cumulative
sum (CUSUM) algorithm [Basseville and Nikiforov, 1993] which detects changes in
the assumed mean of the signal in the ideal system, and the slightly increased mean
of the signal when a leak is present [Eliades and Polycarpou, 2012]. This procedure
was tested with field experiments. However for the most part, this method has only
been validated on very simple, single pipe set ups in laboratory settings.

These methods have been further expanded by Lee et al. [2005] with the development
of frequency domain analysis methods, in which transient analysis was done in the
frequency domain as opposed to previous works focused in the time domain.

• Inverse transient

This method generally involves inducing an acceptable sized transient, then measur-
ing the systems’ response at a selected location in the network in order to compare
the results with simulated pressure responses until a best fit is determined. The sim-
ulated case which most closely matches the actual data is then representative of the
most likely scenario to be occurring in the network. Pudar and Liggett [1992] was
among the first to advocate for transient based methods, and was the first to discuss
the application of an inverse problem, in which simulated responses are used as com-
parisons to determine the actual state of the system. This method was considered
an improvement on the transient method since a baseline was no longer required.

While this method works well in theory, the generation of accurate models and
knowledge of system details and representative leak simulations is a limiting fac-
tor. Researchers have experimentally validated inverse transient methods [Soares
et al., 2011], however this is at a small scale and controlled laboratory conditions, in
which all parameters are known and easily calculated.

2.3.5 Data Driven Leak Detection

The aforementioned inspection and monitoring methods all essentially rely on the data
collected to infer leaks. Once pertinent data has been amassed, it must be analyzed, either
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after the fact, or for immediate event detection. In general, the problem of data-driven
leak detection can be addressed as supervised [Terao and Mita, 2008, Rashid et al., 2015]
or semisupervised problems [Mounce et al., 2010]. In the supervised case, both leak data
samples and non-leak samples are needed to build a classification model, which is often
hard to obtain in full-scale field applications. Semi-supervised approach (also known as
anomaly detection) only requires the normal state (or non-leak) data to train the detection
model and hence is a more practical alternative in continuous leak detection monitoring
scenarios.

Literature pertaining to data-driven learning methods with water system applications is
limited. A number of machine learning methods can be applied to leak detection in pipes,
the most common and promising of which includes Support Vector Machines(SVM) [Sato
and Mitra, 2007, Mounce et al., 2011], artificial neural networks (ANN) [Mounce et al.,
2010, Aksela et al., 2009, Romano et al., 2011, Jin et al., 2010, Mounce et al., 2006, Caputo
and Pelagagge, 2003, Mounce and Machell, 2006], and Bayesian Learning[Poulakis et al.,
2003]. These methods yield effective classification, however their application is typically
limited to fully supervised training sets. These methods require specification of a finite
number of system states (i.e., classes), limiting applicability to case studies where data sets
during leak events are available. Pressure and water demand data are the predominant
data types used for leak detection studies [Misiunas et al., 2005b]. While these sensor types
are well suited for low resolution sampling, making them ideal for long term deployment,
this limits their detection to larger leaks at a greater spatial scale. The application of a
classification method involves knowing the number of classes prior to the simulation, which
involves an extensive supervised training period in order to implement these methodologies
in the field. However, to that extent these methods have been validated.

A number of studies, e.g., [Mounce et al., 2010], have applied artificial neural networks
(ANNs) to detect pipe bursts. This process yields effective timely classification, however,
significant historical data is generally needed for the training process. This is not always
available, limiting its application, or requiring an extended training period. Aksela et al.
[2009], Romano et al. [2011], Jin et al. [2010], Mounce et al. [2008], Caputo and Pelagagge
[2003] also reviewed the application of ANN method and yielded promising results for
pipe burst detection, however the same limitations were found. ANN is a good method for
obtaining reasonable predictions, however when applied to water distribution networks, ex-
tensive data history and extended training periods, generally on the order of many months,
is required, making this process very computationally expensive. Furthermore, ANNs need
constant updating to maintain their accuracy. In the realm of model-based data-driven
methods, Ye and Fenner [2011] found that the adaptive Kalman filtering improved the
performance of ANNs while reducing the training period time.
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SVMs as binary classification method has been reviewed by many researchers, including
Salam et al. [2014], Mashford et al. [2012], Zhang et al. [2016], Aksela et al. [2009]. Others,
such as Terao and Mita [2008], who reviewed traditional two-class SVM in the time domain,
in which leaks and non leak cases are trained and tested, yielded high accuracy of 97%.
This was done in a field case study situation and used an interesting PCA based feature
selection method. Rashid et al. [2015] reviewed the data in both time and frequency
domain, yielding similar results of 78%-94% accuracy when applying KNN, SVM and
GMM models for binary classification of leak and non-leak cases. The features selected
in the time domain were expected value, variance, gradient, and Kurtosis. The frequency
domain features included the selected pseudo spectrum, entropy, power spectral density,
and percentage of energy.

Another non-numerical modeling method, namely Bayesian inference, involves the prob-
abilistic classification of a current state belonging to one of the previously known cases;
the case in which the current state shares the highest probability. This has been reviewed
extensively by Leu and Bui [2016], Poulakis et al. [2003], Puust et al. [2008].

Data-driven methods relying on machine learning tools for leak detection in WDNs
have largely been applied to pressure or water demand measurements. For example, Wu
and Liu [2017] summarize a table of 21 past data-driven studies in their review paper
and all of these studies only utilize either demand or pressure data. Past studies using
hydro-acoustic data (collected in the water column) to detect leaks in pipelines are less
common and include Khulief et al. [2011], Almeida et al. [2014], Martini et al. [2017], Gao
et al. [2018]. Almeida et al. [2014], Gao et al. [2018] both review different techniques using
cross-correlation applied to leak detection in PVC pipe systems. Martini et al. [2017] uses a
hydrophone and accelerometer to denote the difference between the leak and leak-free cases.
While Khulief et al. [2011] applied a similar baseline deviation novelty detection assessment
based on the Fourier domain approach, they replaced deep learning for novelty detection
with simple statistical measures such as root mean-square (RMS). This reliance on simple
statistical data summaries requires the system to have minimal baseline variability and
noise. Similarly, the use of the cross-correlation approach in leak detection requires a fairly
quiet system with a number of variables known a-priori. Martini et al. [2017] also based
their novelty detection on basic statistical feature analysis.

A major challenge in all the aforementioned classification techniques is the necessity
of known classes. While studies have effectively classified cases with high accuracy, they
all require knowledge of all possible cases during the training period. This is not always
readily available. Furthermore, it is not robust or easily adaptable.
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Anomaly Detection

The application of anomaly detection algorithms involves modeling the normal state of
the system, enabling deviations from the known norm to be detected, i.e. the detection of
an event which strays from the system’s normal state. This is a benefit from traditional
classifications algorithms as it can detect previously unknown events. One drawback to this,
and any classification methodology, is the need for a training period. Anomaly detection
algorithms can be broadly classified as a semi-supervised learning algorithm.

There are a number of well established anomaly detection methods, including K nearest
neighbor (KNN) [Zhang and Zhou, 2005], correlation based outlier detection [Koh et al.,
2007], one class SVM [Cody et al., 2017, 2018], and many more. Mukkamala et al. [2002]
showed that for intrusion detection, the OCSVM methodology developed by Scholkopf
et al. [2001] generates models which not only process much shorter training periods but
often outperform ANNs. While a number of methods could successfully work for anomaly
detection, reviewing all of these is not feasible. Anomaly detection methods, however, have
been minimally applied to water distribution networks and their application has thus far
been primarily limited to water quality anomaly detection. Mounce et al. [2011] reviewed
machine learning based techniques for anomaly detection in time domain. However, the
study of instance-based, data driven methods for anomaly detection in water distribution
systems is limited.

2.4 Testing and validation

In order to verify the effectiveness of different long-term monitoring methodologies, testing
and validation is an important step. Many of the current WDN laboratory experimental
setups are too simplistic and do not capture the complexity of actual WDNs. While
actual field conditions can be difficult to replicate in laboratory settings, an attempt to
better represent them still needs to be made. Many laboratory experimental test-beds lack
fundamental field representations, which may include:

• typical field pipe diameters should be utilized, as opposed to much smaller pipes,
such as those used by Jia et al. [2015]

• representative materials and pressures,

• representative means of pressurizing the system [Khalifa et al., 2010] —that is avoid-
ing the use of pumps to pressurize the system as it saturates the low end of the

31



frequency spectrum (unlike Jia et al. [2015], Khulief et al. [2011]); the use of reser-
voirs [Soares et al., 2008, Lazhar et al., 2013, Mpesha et al., 2001, Lee et al., 2005]
can also cause an unrealistically quiet system,

• realistic hydrophone mounting within the test bed as opposed to mounting the sensor
in the middle of the pipe section along the main flow [Khulief et al., 2011, Ferrante
et al., 2013],

• sufficient complexity with the inclusion of bends and tees [Jia et al., 2015],

• and longer distances [Ferrante et al., 2013, Soares et al., 2008, Covas et al., 2006] as
opposed to very short pipe segments [Khalifa et al., 2010].

The use of laboratory test-beds as a means of methodological validation, however, often
present many challenges including: pressurizing the system via representative means; a
need for adequate space, resulting in over-simplified networks; and the required use o
realistic materials, since different materials possess different physical properties which can
greatly effect the outcome of a test. While laboratory test-beds are an adequate first step
in methodological validation, field deployment is the ideal validation case study.

2.4.1 Field implementation

Relatively few studies exist in the open scientific domain dealing with field implementation.
PIPENET [Stoianov et al., 2007] and WaterWise [Whittle et al., 2010, 2013] are notable
examples of such field implementations, especially dealing with monitoring technologies in
WDNs. These studies employed pressure and accelerometer measurements to detect large
transient events along with water-quality monitoring. The effectiveness of pressure sensors
are limited to the detection of large events associated with pressure transients; also, while
accelerometers provide more accuracy when in close proximity, they are not effective on
plastic pipes due to the attenuation associated with acoustic waves travelling on plastic
pipe walls. Moreover, their systems are focused solely on low frequency detection. While
this is consistent with the findings of Hunaidi and Chu [1999], due to the large amount
of noise inherent to any large scale system, the review of a larger portion of the spectrum
is imperative to ensure accurate results. In the event the noise in the system saturated a
region of the frequency spectrum, harmonics of the leak signatures can still be reviewed.
As well if a pump or electrical system is located in the vicinity of the sensors, the low
region of the frequency spectrum will be saturated.
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Sadeghioon et al. [2014] developed SmartPipes as a pressure monitoring system, depen-
dant on force-sensitive resistors that are mounted on the surface of the pipes. This system
measures the changing diameter of the pipe which results from internal pressure changes.
Thus, it requires excavation to expose pipe regions for installation. Also, Sadeghioon
et al. [2014] do not address the leak size that would cause a measurable pressure change
that is noticeably different from the pressure change associated with simple consumption
variability.

Current commercial acoustic technologies, such as Echologics, are generally limited to
metal pipes [Bracken and Cain, 2012, Wang et al., 2010, Hughes and Venkatesh, 2016].
As WDNs are updated, cities are more frequently opting for PVC pipes as opposed to
metal ones, limiting the effectiveness of technologies based on accelerometers and pressure
sensors. As well the majority of these commercially available technologies, when evaluated
in blind field tests were inconclusive or concluded low success rates [Hughes and Venkatesh,
2016, Anguiano et al., 2016].

2.5 Gaps in existing literature

The identified gap areas in the current state of event detection in water distribution systems
and the expected contributions in terms of specific research objectives from this dissertation
are summarized below.

1. Existing water distribution event detection systems such as those discussed previously
in this chapter are deployed either when there is already knowledge of a problem, or
more specifically the existence of a leak, or must be deployed in specific known regions
since they are only accurate when traced over every portion of the region of interest.
Long-term passive monitoring, in many cases, is either too expensive to install or
have unproven benefits over previously implemented maintenance procedures.

2. Nearly all leak detection laboratory test systems are unrepresentative of field condi-
tions, such that any results for systems described in the literature cannot reasonably
be compared to field conditions. There is often the use of either unrepresentative ma-
terials, very small ratios between the leak size and pipe diameter, as well a generally
very short pipe segments.

3. Fire hydrants remain the most common access points in a WDN; however, they
have only been used under flooded conditions to detect leaks. Such a method does
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not extend to long-term monitoring situations, especially in cold climates. To the
author’s knowledge, this is the first time where dry-barrel hydrants have been used
for leak detection and localization.

4. While the detection of anomalies using machine learning is well-established, current
passive monitoring systems utilize either feature and threshold methods for event
detection, without a good justification for the use of either, or methods far too
computationally intensive for realistic field deployment.

5. Many methods in the literature have employed acoustic methods for metal pipes and
those results cannot simply be extended to field settings, especially for PVC pipes,
which remain a commonly used material in WDNs today.

2.6 Specific Objectives

Based on the identified gap areas, the specific research objectives of this dissertation are
as follows:

1. To develop the sensor hardware and software specifications for a hydrant mounted
leak monitoring system. This entails:

(a) developing the requisite hardware with adequate capabilities for data sampling
and collection, and

(b) developing the software in order to enable passive data collection during desired
times of interest.

2. To develop an algorithmic framework to implement leak event detection based on the
acquired sensor data from the developed hydrant mounted system. This entails:

(a) reviewing the sensitivity of the prediction method to leak induced signals,

(b) developing a detection and localization methodology which is scalable to long-
term monitoring and to field conditions, and is robust to the natural variability
existing in the environment.

3. To experimentally test and validate the system using both laboratory experiments
and field tests on a live water distribution network. This entails:
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(a) developing a laboratory test best for proof of concept validation of the proposed
methodology which is reasonably representative of field conditions, and

(b) experimentally deploying the proposed system in a live water distribution net-
work and examining its performance.
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Chapter 3

Background

In line with the research objectives presented in the previous chapters, this chapter pro-
vides relevant background on concepts that will be useful throughout the dissertation. In
addition to a brief theory (linear) of sound propagation in pipes, this chapter includes
concepts within signal processing and dimensionality reduction method which are used in
the data processing phases of the analysis later presented; the theory behind the classifi-
cation algorithm used is described in detail; as well as a detailed description of the class
separability metric and various classification performance measures.

3.1 Sound Propagation in Water Pipes

Linear theory governs much of our understanding today regarding the propagation of sound
in water. The confinement provided by the pipe material has a significant effect on this
propagation, both in terms of the modes and attenuation. This section will briefly review
the basic equations of motion within a pipe along with the equation for a fluid borne wave,
which is expanded to derive the equation for the speed of sound in water used within this
dissertation.

Acoustic waves attenuate inside pipelines is largely due to the intrinsic absorption prop-
erties of the material the pipeline is constructed with. As such, larger diameters and more
flexible pipes (e.g., plastic) tend to attenuate acoustic energy significantly more compared
to their rigid counterparts such as cast iron. Previous studies have shown that signals in
the low-frequency end of the spectrum are the most reliable for leak detection suggesting
that these frequencies are both excited by the leak and propagate most effectively. Previ-
ous studies, e.g., by Hunaidi and Chu [1999], concluded that the region of interest for leaks
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in plastic pipes in water distributions systems is between 5 and 200 Hz (up to 1 kHz for
metal pipes [Ma et al., 2019]). Higher frequencies are attenuated through damping present
in the pipe walls and connections; as well, due to the coupling between the fluid and the
pipe wall in the radial direction is also responsible for the significant dampening which
occurs in plastic pipes [Muggleton et al., 2004]. Hence, only low frequency waves remain
and propagate in the pipes for long distances.

3.1.1 Wave Equation of Motion

The wave equation in one dimensional space can be derived using several physical analogs,
such as a vibrating string. Similarly for two dimensional space, the motion of a thin
membrane such as drum-head that is stretched uniformly in all directions can be used to
motivate the mathematical formulation.

The physical motion of (m,n) modes is derived in Appendix D [Kinsler et al., 1999] as
expressed in equation 3.1, for the fundamental mode shapes are shown in Figure 3.1.

ur,θ,t = AmnJm(kmnr)cos(mθ + γmn)cos(ωmnt+ φmn), (3.1)

where A is the amplitude of the mn mode, Jm(kr) is the Bessel function of order m of
the first kind, k is the wave number, m is mass, θ an angel for the equation in cylindrical
coordinates, φ is the phase angle, ω is the angular frequency, γ is the azimuthal phase
angle and t is time.

(a) Mode(0,1) (b) Mode(0,2)
(c) Mode(1,1)

Figure 3.1: Modes of wave propagation in a fluid inside a rigid pipe.

In Figure 3.1, the modes are denoted by the pair (m,n), where m represents the number
of radial nodal lines whereas the second integer n controls the number of nodal circles. The
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minimum value of n is 1 which corresponds to first mode with the nodal circle at fixed
boundary.

The rigid boundary at r = a also means that the normal component of the velocity
vector is equal to zero,

J ′m(j′mn) =
∂

∂r
[Jm(kmna)] = 0. (3.2)

For a wave to be a plane wave in the case of free-field (open water), the acoustic
variables have to be of constant amplitude and phase on any plane perpendicular to the
direction of propagation. For the case of fluid-filled pipes, mode (0, 1), which is the first
mode, is considered as the plane wave mode because the particles involved in the fluid
motion orthogonal to the direction of propagation are all in phase. The frequency below
which this mode occurs can be obtained by using the extrema of the first kind of Bessel’s
function [Kinsler et al., 1999] and this frequency is termed as the cut-off frequency. The
first few roots of Bessel function and its derivatives are listed in standard texts, including
Kinsler et al. [1999]. Therefore, the cutoff frequency obtained using extrema of Bessel’s
function can be obtained using,

fcmn =
1

2π

j′mnc

a
. (3.3)

It is safe to assume that leaks induce energy in the lower spectral regions. While there is
little in the published literature about what exactly the near field frequencies are, generally
it is believed that leak induced energy is in the hundreds of hertz range and not in the kHz,
especially a few centimeters away from the leak location. Hence, the modes associated with
(m,n) of (1,1) or (0,2) cannot theoretically exist in this case. This is because the lowest
cutoff frequency fcmn corresponds to (1, 1) and is equal to 1, 863 Hz for the 15 cm pipes
used in this study, and studies show that most leak energy is far lower than this value.
Stated differently, the only mode that can exist in this system is the (0, 1) mode and no
others. This is also evident from the the axial wave number given by,

kamn = kmn

√
1−

(
fcmn
f

)2

. (3.4)

which becomes imaginary for frequencies greater than the frequency associated with
the (0, 1) mode.
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3.1.2 Expression for a fluid borne wave

The pipe equation for n = 0 axisymmetric wave motion begins with the equilibrium of
forces in the axial and radial directions. These are given, with reference to Figure 3.2, in
equations 3.5 and 3.6 [Muggleton et al., 2002], respectively.

Figure 3.2: The co-ordinate system for a fluid filled pipe, surrounded by an infinite elastic
medium. The shell displacements are u, v and w in the axial (x), circumferential (θ), and
radial (r) directions respectively.

ρü =
∂σx
∂X

, (3.5)

(pf (a)− pm(a))(a/h) = σθ + ρaẅ, (3.6)

in which it is assumed there is no circumferential variation, evaluated at r = a. Where σ is
the stresses, ρ is the density of the shell material, and a and h are the radial and thickness
of the shell wall, respectively (h << a).

The travelling wave solutions in equation 3.7 [Kinsler et al., 1999] can be used to
describe the displacements,

u = Use
j(ωt+ksx), w = Wse

j(ωt+ksx), (3.7)

in which ω is the angular frequency, and ks is the axial wavenumber for the s wave. This
coupled with the shell equations can further be expanded to derive the expression for the
s wavenumbers [Muggleton et al., 2002].
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The expression for the wavenumber, k1 (plane wave mode) of the fluid borne wave of mo-
tion for a fluid filled pipe surrounded by an infinite elastic medium given by Muggleton et al.
[2002] and can be expressed as a ratio of the impedance of the fluid (zfluid = −2iBf/(aω) to
the pipe wall (zpipe = i(ρhω−Eh/(a2ω)) and surrounding medium (zrad) [Muggleton et al.,
2004], as shown in equation 3.8. Each impedance is the resistance defined as a function
of both the wavenumber in the external medium (frequency) and the radial component of
that wavenumber (wave angle).

k2
1 = k2

f (1 +
zfluid

(zpipe + zrad)
), (3.8)

in which

zrad = Rrad + iωMrad =
∑
m

−iρmcmkm
krm1

H0(krm1a)

H
′
0(krm1a)

, (3.9)

where Mrad and Rrad are the mass and resistance components of the radiation impedance of
the surrounding medium at the pipe wall; m is each wave type present in the surrounding
medium, ρm, cm and km are the density, wavespeed and wavenumber, respectively, for all
wavetypes present. (krm1)2 = k2

m − k2
1 is the radial component of the wavenumber in the

surrounding medium. Based on the assumption that the surrounding medium is infinite
(and thus no incoming waves are present), H0 is a Hankel function of the second kind,
representing outgoing waves (when the eiωt time dependence is adopted), the prime denotes
the differentiation [Muggleton et al., 2004].

Equation 3.8 can be expanded to,

k2
1 = k2

f (1 +

2Bf
a

Eh
a2
− ω2(ρh+Mrad) + iρRrad

), (h << a) (3.10)

where kf is the contained fluid wavenumber, Bf is the bulk modulus of the contained
fluid, a and h are the radius and thickness of the shell wall, respectively, E is the shell
material Young’s modulus, ω is the angular frequency, ρ is the density of the shell material
[Muggleton et al., 2004].

The Young’s modulus may be complex if the material is lossy (E → E(1 + iη) where
η) is the material loss factor), which is the case for PVC pipes [Knight, 2007].

For the in-vacuo case, zrad goes to zero, and thus equation 3.8 simplifies to [Muggleton
et al., 2004],

k2
1 = k2

f (1 +
zfluid
zpipe

) = k2
f (1 +

2Bf/a

(Eh/a2 − ωρh)
, (3.11)
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which at low frequencies simplifies to,

k2
1 = k2

f (1 +
2Bf/a

Eh/a2
). (3.12)

3.1.3 Speed of sound in water

The sound propagation velocity (also known as phase speed) is the speed at which a
pressure wave travels in a given medium, as a function of the fluid’s density and bulk
modulus. This parameter is useful when determining how long it will take a wave to
propagate through a system.

In order to derive the equation for the speed of sound from equation 3.12, the wavenum-
ber becomes a function of the angular frequency and the speed of sound, k1 = ω/c; similarly
kf = ω/cf where cf represents the free field speed of sound. Thus using the free field speed

of sound as cf =
√
K/ρ, and radius as a = 2D, equation 3.12 results in equation 3.13.

However equation 3.12 is based on the assumption that the pipe is thinned walled and thus
free to expand throughout, i.e. D/e > 10, therefore ψ = 1 and thus the term is omitted.

The speed of sound in circular elastic pipes is calculated using [Gao et al., 2004, Pin-
nington and Briscoe, 1994]:

c =

√
1

ρ( 1
K

+ Dψ
Ee

)
, (3.13)

in which ρ = 1000 kg/m3 is the density of the fluid, K = 2.18 ∗ 109 Pa is the isothermal
bulk modulus (Kt) of fluid fresh water, and E = 3.069 GPA is the elastic tensile modulus
of PVC pipes. D is the inner diameter of the pipe, while e is the pipe wall thickness, and
ψ is the pipe support factor.

3.2 Signal Processing Concepts

Signal processing broadly refers to the analysis, modification and synthesis of signals such
as vibration, sound, images, etc. Signal processing techniques can be used for many ap-
plications, such as to improve storage efficiency, improving some aspect of the quality of
the signal such as de-noising, and isolating, emphasizing or detecting certain components
within the measured signal. The field of signal processing is mature and is rich with tools
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that are able to extract pertinent information from time series data such as periodicity,
fundamental components and non-stationary elements to name a few.

Specific to the analysis covered within this dissertation is the use of discrete time signal
processing. That is, all signals reviewed are discrete time series which are obtained by
sampling a continuous acoustic signal at uniformly spaced time intervals, as depicted in
Figure 3.3. This uniformly spaced time interval is referred to as a sampling rate, that is the
number of samples taken from a continuous signal per one second interval. The ability to
represent the underlying continuous, but un-observable, function using a series of discrete
values opens up the potential to utilize extensive computing resources to interrogate them in
ways previously considered impossible. However, the process of digitization in itself results
in several numerical artifacts, which has to be understood and dealt with appropriately as
explained throughout this background section.
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Figure 3.3: Continuous acoustic signal sampled at uniformly spaced time intervals.
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3.2.1 Time Series Modelling

Although strictly not viewed only in the context of signal processing, fundamentally, this
dissertation deals with time series data and hence modeling is described here. Time series
data can be dealt with directly without an attendant model, or with an accompanying
model. This section deals with the modeling approach, which will come in handy later on
during the development of linear predictive models. The fundamental process in time series
modeling to model a deterministic system is an Auto Regressive Moving Average model
(ARMA model). This model is a combination of two simpler models, the Auto-Regressive
model (AR model), and the Moving Average model (MA model). Therefore the ARMA
model utilizes the flexibility of both these simpler models in order to model more complex
systems; utilizing both auto-regressive and moving average inputs.

The AR model describes a system in which each data point is a weighted combination
of its past values. It can be expressed as a time dependant linear function of a finite set of
its weighted past values and a white noise term.

AR(p) : y(t) = ϕ1y(t− 1) + ϕ2y(t− 2) + · · ·+ ϕpy(t− p) + a(t), (3.14)

in which y(t) is the data point being modeled and a(t) is the white noise term [Hipel and
McLeod, 1994].

The MA model describes a system which is represented by a series of identically dis-
tributed random variables. The MA model is expressed as a linear aggregation of previous
white noise.

MA(q) : y(t) = a(t)− θ1a(t− 1)− θ2a(t− 2)− · · · − θpa(t− p). (3.15)

White noise, or shock, is described as a normally distributed random variable with
mean 0 and variance σ2.

The ARMA model can therefore be expressed as a combination of these two models,

ARMA(p, q) :y(t)− ϕ1y(t− 1)− ϕ2y(t− 2)− · · · − ϕpy(t− p)
= a(t)− θ1a(t− 1)− θ2a(t− 2)− · · · − θpa(t− p).

(3.16)

Using the backshift operator (applied element wise to produce the previous element)
the ARMA model can be simplified to, ϕ(B)(zt − µ) = θ(B)a(t) in which y(t) = (zt − µ),
where zt is any given data point and µ is the mean of the series.
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In order to identify the (p, q) values for the ARMA model, i.e. the model order, the
given data must be generally explored, i.e. exploratory analysis must first be done. This
involves:

• checking for normality of the data set;

• ensuring stationarity in the data set, i.e. ensuring a mean of zero by differencing if
needed;

• ensuring homoscedasticity, i.e. removing any change in variance by applying the
Boxcox transformation [Box and Cox, 1964] to the data set if needed;

• and interpreting the autocorrelation plots. To do this the sample autocorrelation
function (ACF), sample partial autocorrelation function (PACF), sample inverse au-
tocorrelation function (IACF) and sample inverse partial autocorrelation function
(IPACF) must be calculated and visually represented from the data set for interpre-
tation.

The Boxcox transformation is a way of eliminating heteroscedasticity (creating ho-
moscedasticity), that is non-constant variance. It transforms non-normal dependent vari-
ables into a normal shape [Hipel and McLeod, 1994]. The transformation has the form,

zλt =

{
(zt+C)λ−1

λ
, if λ 6= 0x ≥ 1;

ln(zt + C), if λ = 0,
(3.17)

where zt + C > 0.

A sample data set and it’s equivalent Boxcox transform can be seen depicted in Figure
3.4 (a) and (b), respectively. As well, their respective normality plots can be seen shown
in Figure 3.4 (c) and (d), respectively. The latter show that the transform corrects for the
non-constant variance of the data which more correctly aligns with the underlying model
assumptions.The basic interpretations of the aforementioned graphs are outlined in Table
3.1.
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(a) Trace plot of the daily water demand data
in the town of Ayr, Ontario for the year 2001.

(b) Trace plot of the daily water demand data
in the town of Ayr, Ontario for the year 2001
with boxcox transform of λ = −0.91 applied.

(c) Normality distribution of data set, without
any transform applied.

(d) Normality distribution of data set with
λ = −0.91.

Figure 3.4: Normality distribution of data set.
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Table 3.1: Interpreting correlation function plots.

Model ACF PACF IACF IPACF
AR Attenuates Truncates Truncates Attenuates
MA Truncates Attenuates Attenuates Truncates
ARMA Attenuates Attenuates Attenuates Attenuates

Sometimes, it is insightful to observe time series without inherent seasonalities, e.g.,
daily or seasonal. In order to remove such seasonal effects (i.e. temporal dependence) in
the time series data additional techniques such as data differencing can be undertaken. For
example, the previous observation is subtracted from the current observation, resulting in
a series of differences. This can be seen demonstrated in Figure 3.5, where the distinct
temporal dependence is removed in the differenced data.

Figure 3.5: Bivariate trace plot of the boxcox transformed daily water demand data, i.e.
λ = −0.91, d = 0; and the differenced water data, i.e. λ = −0.91, d = 1.

These plots can be seen depicted in Figure 3.6, for the sample demand data normalized
depicted in Figure 3.5, with a λ = −0.91, d = 1. The IACF is simply the ACF with its
p, q parameters switched and is used to verify the PACF; while the IPACF is the PACF
with its p, q parameters switched and is used to verify the ACF. Table 3.2 summarizes the
interpretations that can be made from these plots shown in Figure 3.6.
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(a) Sample ACF. (b) Sample PACF.

(c) Sample IACF.
(d) Sample IPACF.

Figure 3.6: Water demand, sample ACF, PACF, OACF, IPACF, λ = −0.91, d = 1.
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Table 3.2: Exploratory data analysis - ACF, PACF, OACF, IPACF.

Plots Observation Interpretation
ACF Truncates at lag-1(Attenuates steeply) MA(1)(AR(1))
PACF Attenuates until lag-5 MA(5)
IACF Attenuates until lag-3 MA(3)
IPACF Truncates at lag-1 MA(1)

Multiple interpretations regarding adequate models can be concluded from the plots
in figure 3.6. While an initial interpretation can be seen in Table 3.2, the decision of
which model is the optimal choice, taking into account number of parameters and well
as accuracy of the model, is usually determined based on the minimum output Akaike
Information Criterion (AIC), calculated as follows,

AIC = −2 ln(ML) + 2k, (3.18)

in which ln(ML) is the maximum log likelihood function for the model fit to the given
data set, and k is the number of model parameters. Since the optimal model will have
the minimum AIC this decision criteria tends towards models with an increased fit, but
penalizes the use of additional parameters, this is ideal in order to avoid simply over
fitting the data with too many parameters in order to ensure better fit. Another option
for decision criterion the number of parameters are selected based off of is the Bayes
Information Criterion (BIC), explained later in Section 3.3.2.

After adequate exploratory data analysis has been completed, the general approach
to time series modelling involves three primary steps: (1) model identification, (2) model
parameter estimation, and (3) diagnostics check. Once the appropriate model is identi-
fied and the model parameters which best fit the data in question have been selected the
adequacy of the selected model should be verified, typically by assessing the residual cor-
relation function in order to ensure the residuals are white, and by reviewing statistical
properties such as skewness and kurtosis to determine normality.

3.2.2 Fourier Treatment

Fourier analysis of signals is by far the most commonly used signal representation in signal
analysis. The basic idea in this approach is to represent the signal in terms of periodic
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bases, specifically trigonometric bases consisting of sines and cosines. One can view Fourier
analyses as the outcome of correlating an underlying continuous function with a set of
sines and cosines with varying frequencies. The results of this correlation are in terms
of amplitudes, which can be seen as the degree to which individual sines and cosines are
correlated to the given signal.

The Fourier series is a representation of a periodic function, f(t), in terms of har-
monically related sines and cosines, which when combined by a weighted summation will
reproduce the data set. The signal is represented with respect to frequency rather than
time. Fourier series make use of the orthogonality relationships of the sine and cosine
functions, and can be presented within a periodic time interval To as follows,

f(t) = ao +
∞∑
n=0

(an cos (2πt/To) + bn sin (2πt/To)) , t1 ≤ t ≤ t1 + To, (3.19)

where To is the period of the signal f(t),

ao =
1

To

∫ t1+To

t1

f(t)dt

an =
2

To

∫ t1+To

t1

f(t) cos 2πt/Todt, n = 1, 2, · · ·

bn =
2

To

∫ t1+To

t1

f(t) sin 2πt/Todt, n = 1, 2, · · ·

in which a0 represents the bias or the offset term.

Since sinusoids can also be represented by complex exponential functions, equation 3.19
can be described using complex exponential bases,

f(t) =
∞∑

n=−∞

Dne
jωon (3.20)

where ωo = 2π/To and,

Dn =
1

To

∫ To/2

−To/2
f(t)e−jωondt. (3.21)
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The Fourier transform is the extension of the Fourier series to a non-periodic function.
In order to represent the non-periodic signal the limits of the integration in equation 3.21
become ±∞ as opposed to (−To/2, To/2), and the Fourier transform in term becomes,

F (nωo) =

∫ ∞
n=−∞

f(t)ejnωot (3.22)

and,

Dn =
1

To
F (nωo). (3.23)

Discrete Fourier Transform

The discrete Fourier Transform (DFT) is a non-parametric frequency analysis technique
(i.e. it does not require any a priori information about the signal), used to represent the
original sequence in the frequency domain [Brandt, 2011b]. It is a method used to convert
measured samples of a function into a same-length sequence of complex valued function of
frequency.

Mathematically, it differs from a Fourier transform as it is computed from a finite
number of samples [Brandt, 2011b]. The DFT treats the data as if it were periodic, i.e.
f(N) to f(2N−1) is the same as f(0) to f(N−1). As such the DFT equation is evaluated
for the fundamental frequency ( 1

NT
Hz, 2π

NT
rad/sec) and its harmonics (not forgetting the

D.C. offset of ω = 0). The equation for a finite DFT is defined as [Brandt, 2011b],

F (n) =
N−1∑
k=0

f(k)e−i2πkn/N , (3.24)

where f(k) is now a sampled version of the function consisting of a sequence of N complex
numbers. This can be rewritten as the sum of the real and imaginary parts, respectively,
as seen in equation (3.25), this ensures the result will only be nonzero if some frequency
content exists in x(n) [Brandt, 2011b].

F (n) =
N−1∑
k=0

f(k) cos (2πkn/N)− i
N−1∑
k=0

f(k) sin (2πkn/N) (3.25)

The sampling rate at which the function is sampled is δf = 1
To

, in which To is the
sampled period in seconds. The sampling rate is chosen by first determining the highest
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frequency of interest present within the signal, and sampling at at least twice that rate.
This is referred to as the Nyquist frequency. The Nyquist theorem states that the signal
needs to be sampled at twice the rate of the highest frequency of interest in order to
accurately reproduce the signal that is being sampled. Typically oversampling a signal
is suggested in order to improve resolution and signal-to-noise ratio, as well as assist in
avoiding aliasing (and phase distortion when anti-aliasing filters are applied). A signal
should be sufficiently over-sampled to guarantee an accurate measure of amplitude. A
signal is said to be over-sampled by a factor of N if it is sampled at N times the Nyquist
frequency. Undersampling leads to aliasing, which is the distortion that results when the
signal reconstructed from samples is different from the original continuous signal. It is
the effect that causes different signals to become indistinguishable, aliases of one another,
when sampled. This can be seen depicted in Figure 3.7.

Figure 3.7: Aliasing- actual signal and aliased signal.

Several computationally efficient algorithms exist today to evaluate discrete Fourier
transforms and readers are referred to standard texts [Oppenheim et al., 2008] for a com-
plete treatment on the subject.

3.2.3 Filtering

In digital signal processing the process of filtering is used to either partially or completely
suppress the presence of unwanted components in a signal. This most often means removing
the relevant frequency content from the spectrum. It should be noted that while filters block
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energy in the band of frequencies that they are designed for, they also attenuate signals in
the pass band frequency range a swell. The most typical desired frequency response of the
signal can be classified into four basic band forms describing which frequency bands the
filter passes (the passband) and ones which it rejects (the stopband):

• Low-pass filter

This filter passes signals with a frequency lower than a selected cutoff frequency,
and attenuates signals with frequencies higher than the cutoff frequency. Digital low
pass filters are often used to smooth data sets, removing the short-term fluctuations
while maintaining the long-term trend. The ideal form of this filter completely elim-
inates all frequencies above the the cutoff frequency, while passing all those below
unchanged, essentially lacking any transition region. However in practical implemen-
tation, because the sample time series is not infinite, this is not the case, and this
ideal form is approximated and includes some roll-off. This filter is most commonly
used to remove the effect of aliasing.

• High-pass filter

The compliment of the low-pass filter, the high-pass filter passes signals with a fre-
quency high than a selected cutoff frequency, and attenuates signals with frequencies
lower than the cutoff frequency. This filter is most commonly used to remove DC
noise.

• Bandpass filter

When the high-pass and low-pass filters are used in conjuction they produce the
bandpass filter. This filter passes frequencies within the two cutoff frequencies, and
attenuated frequencies outside of this range. These filters are often used to isolate,
and thus amplify, desirable frequency ranges.

• Stopband filter

The compliment of the bandpass filter, the stopband filter passes most frequencies
unaltered, but attenuates those within the two cutoff frequencies. A notch filter is
the most extreme version of this, with a very narrow stopband, typically 1− 2 Hz.

The design of these linear digital filters involves information on the desired filter re-
sponse, as different filter families exist. Filter families can be selected based on maximal
phase response, steepest cutoff, etc., including anti-aliasing filters which provide a tradeoff
between bandwidth (freq range) and aliasing. Anti-aliasing filters are used before a signal
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to restrict the bandwidth to satisfy the Nyquist theorem over the band of interest. The
Butterworth filter is the most commonly used as it produces a maximal flat frequency
response. More details about the filter and its design can be found in standard texts, e.g.,
[Porat, 1997, Tan and Jiang, 2018].

Figure 3.8: Schematic of DSP Butterworth filters.

3.2.4 Windowing

Leakage occurs when the measured signal occurs at a frequency which does not lie on the
frequency increment, i.e. the signal frequency falling between two spectral lines in the
DFT, as well as any sinusoids with non-integer number of periods [Brandt, 2011b]. This
causes the frequency content to be allocated to other spectral regions and such artificial
discontinuities show up in the FFT as high-frequency components and can be much higher
than the Nyquist frequency and are aliased between 0 and half the sampling rate. Hence,
the resulting spectrum is not the actual spectrum of the original signal and appears as
if energy at one frequency leaks into other frequencies. This phenomenon is known as
spectral leakage. It is important to note that this leakage is an artifact introduced by the
DFT operation, which computes the FT in discrete frequency bins.

Windowing is a technique used to minimize spectral leakage. To understand how win-
dowing works, it is easier to interpret its effect in the frequency domain. The multiplication
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(b) Window function (W)
—Hanning window.
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(c) Windowed time series,
W(f(x)).

Figure 3.9: Windowing applied to sample time series.

operation in the time domain is convolution in the frequency domain. The FT of a window
resembles a sync function which, when convolved with a FT of a signal, accentuates the
main frequency, while attenuating the leaked frequencies.

Windows could involve multiplying the time signal with rectangular or a non-rectangular
weighting functions prior to digitally implementing the FT, which is called windowing. The
effect of time-windowing is that it causes the start and the end of the finite time signal
to fade towards zero [Brandt, 2011b]. The commonly used window for vibration signals is
called a Hanning window [Brandt, 2011b], this is depicted in Figure 3.9. The Hanning win-
dow’s Fourier transform has a main lobe that is wider than that of the rectangular window,
which causes the energy in the leaked frequency regions to dissipate more [Wickramarachi,
2003].

For the Hanning window the data is weighted higher in the middle than at the ends
following the function in equation (3.26):

w(n) =
1

2
(1− cos(2πn/N − 1)) (3.26)

where, N is the number of samples in the window.

The Hamming window is often the preferred window function for speech processing
(the traditional application of linear prediction which is used in this dissertation), as well
as generally preferred in signal processing literature, due to its significant suppression of
the first side lobe [Patel et al., 2013] and thus is less likely to cause individual peaks to be
lost in the spectrum. The equation for the Hamming window is given by,
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w(n) = 0.54− 0.46 cos(2πn/N)) (3.27)

in which the window length is L = N + 1. This can be seen visually depicted in Figure
3.10 (a).

Figure 3.10: Hamming and Hann windowing result in a wide peak but nice low side lobes.
Note the dip which occurs next to the main lobe in the Hamming window.

Hamming window is selected over the Hanning window since it is does not quite reach
zero and have shown to perform better at cancelling the nearest side lobes —while the
Hanning window performs better for cancelling other lobes [National Instruments]. The
comparison between these two can be seen depicted in Figure 3.10. The trade off between
the use of these windows as opposed to others is that while they yield better frequency
resolution, they perform moderately, as compared with other window functions, with side
lobes [National Instruments].

3.2.5 Spectrogram

A spectrogram [Cole et al., 1980] is a transform of a signal x(t) to its point wise Fourier
transform magnitudes. It can be computed by taking the Fourier spectrum of a short time
window as a function of time shift, this is called the short time Fourier transform (STFT).
It is useful to capture the changes in frequency with time [Randall, 2011], in other words
the non-stationarity of the signal. It is mathematically described as,

S(f, τ) =

∫ ∞
−∞

x(t)w(t− τ)e−i2πftdt, (3.28)
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where w(t) is a window which is shifted along the signal. The spectrogram is the amplitude
squared,

Spec =| S(f ; τ) |2, (3.29)

which produces a time-frequency image of the signal. In other words a one-dimensional
signal is converted into a two-dimensional image. The length of the signal and window
size are parameters of the spectrogram representation. If the window size is too short,
the spectrogram will fail to capture relevant spectral information; conversely if it is too
long, it loses temporal resolution. Hence, the right balance which is application-specific is
necessary in its application.

3.2.6 Correlation

Autocorrelation

Time series are correlated by their very nature. However, this dependence will decay over
time, and the extent of this decay is reflected in the autocorrelation coefficient. Autocor-
relation, simply put, is the correlation of the time series considered, with a copy of itself,
sliding along the x-axis (i.e. as a function of delay). The peak of the ACF will always occur
at lag zero as this is when the signal is an exact replica of itself. It is typically applied to
find repeating patterns within a time series signal, such as the presence of periodic signals
(harmonics) which may be less easily detected due to the presence of noise. White noise
is a term coined for a time series which is independent and identically distributed with a
mean of zero.

The autocorrelation function [Stevens, 1950] for a discrete series Xt is defined as,

RXX(τ) = E[XtXt+τ ], (3.30)

in which E[·] indicates the mathematical expectation, and τ is the lag. This can be
expanded to,

ρXX(τ) =
1

σ2
X(T − 1)

T−τ∑
t=1

[(Xt − µX)(Xt+τ − µY )] (3.31)

where, σ2
X is the sample variance used for normalization.

This can most simply demonstrated with the the ACF of white noise as compared to
one with a harmonic present, demonstrated in Figure 3.11. The presence of repeating
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patterns within the time series becomes visible in the ACF as compared with that of the
white noise.

(a) ACF of uniformly distributed white noise.
(b) 60 Hz Signal time series.

(c) ACF of 60 Hz signal time series.
(d) ACF of 60 Hz signal time series with white
noise.

Figure 3.11: Autocorrelations of white noise and 60Hz harmonic.

57



Crosscorrelation

The correlation between two series, X and Y, which represent measurements from two
separate sensors recording the data from the same signal source, is referred to as cross
correlation. It is the measure of similarity of two time series as a function of displacement
of one relative to the other, also termed the sliding dot product.

A sample cross correlation function (CCF) can be seen depicted in Figure 3.12. The
CCF of Figure 3.12 (a), depicted in Figure 3.12 (b), essentially slides the time shifted 60 Hz
signals (Y ) along the x-axis, calculating the cumulative of the product at each point. When
the functions overlap perfectly, this product is maximized. However when the signals are
less similar and corrupted by noise, then the CCF, as depicted in Figure 3.12 (c), decreases
rapidly.
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(c) CCF of 60 Hz signal time
series plus white noise, with
50 Hz signal time series plus
white noise.

Figure 3.12: Sample crosscorrelation of two phase-shifted 60Hz sinusoids and with additive
noise.

Mathematically, this relationship is represented as follows [Oppenheim et al., 2008],

ρXY (τ) =
1

σXσY

T−τ∑
t=1

[(Xt − µX)(Yt+τ − µY )], (3.32)

where µX and σX are the mean and standard deviation of the sensor Xt, and similarly
for sensor data Yt, and τ is the lag. τ is useful for determining the time delay between two
signals, e.g. the time delays for the propagation of acoustic signals, which is central to the
process of leak localization.
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The cross correlation can be expressed using the convolution operator ∗ as,

τdelay = arg max
t∈R

((X ∗ Y )(t)), (3.33)

where, the maximum delay can be related to phase delay between two signals. For
e.g., in Figure 3.12 the phase delay between the two 60 Hz signals can be seen as 18
sample time instants. In the context of leak localization, this time can be converted to
physical distance (location of the leak) through distance-velocity-time relationship, with
known speed of sound.

3.2.7 Singular Spectrum Analysis

Singular spectrum analysis (SSA) [Vautard and Ghil, 1989] is a non-parametric and adap-
tive method, able to decompose a signal into interpretable components without making
any normality, linearity or stationarity assumptions. The analysis of a time-series signal
using the spectrum of singular values of its trajectory matrix is called SSA . A trajectory
matrix consists of a time series broken into equal sized segments (a set window length),
each segment of which begins at a different lag. SSA is non-parametric, does not assume
stationarity or linearity properties in the data and has only one parameter (called the
embedding dimension) associated with its application [Golyandina, 2010].

SSA considers a finite length record of a time series s = {sn, n = 1 . . . N} and aims to
decompose s as a sum of components, each having a meaningful interpretation. This task
is completed through two successive steps detailed below.

Decomposition

Embedding This step consists of mapping the one-dimensional N -samples time series
into a sequence of K = N −L+ 1 lagged column vectors of length L, where L is called the
embedding dimension. As a result, a trajectory matrix is obtained, expressed as:

X =


s1 s2 . . . sK
s2 s3 . . . sK+1
...

...
...

...
sL sL+1 . . . sN

 (3.34)

where each column is a sliding window of length L of data belonging to the time series.
Thus, the trajectory matrix X is a Hankel matrix, meaning that it has equal elements
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on the secondary diagonals. The only parameter in this step is the window length L, an
integer ranging in the interval [2, N − 1]. L should be carefully selected because it directly
affects the decomposition. The optimal choice depends on the particularity of the time
series and the problem statement.

Singular value decomposition (SVD) The SVD of X (being a real L×K matrix with
rank R ≤ min(L,K)), expands this matrix into a sum of weighted orthogonal matrices that
are not necessarily Hankel, expressed as:

X = UΣV T =
R∑
i=1

Xi with Xi = σiuivi
T (3.35)

where Σ = diag(σ1, · · · , σR), σi are the singular values sorted in the descending order, ui
and vi are, respectively, the associated left and right singular vectors corresponding to the
columns of the orthogonal matrices U and V . The SVD expansion of X can be obtained
through the eigendecomposition of the lag-covariance matrix C = XXT . This matrix can
be factorized as C = U ΛUT where Λ is the diagonal matrix of eigenvalues. The i-th
eigenvalue is equal to σ2

i . The right singular vectors V = (v1, ..., vR) can be deduced
from X and U as vi = XT ui/σi. The energy contribution of the i-th eigentriple1 to the
trajectory matrix, given by the ratio σ2

i /
∑R

j=1 σ
2
j , is called the singular spectrum of the

time series.

Reconstruction

Grouping This step consists of splitting the set of elementary matrices Xi (i = 1, ..., R)
into r disjoint groups and summing the matrices within each group. The result of this
process is the expansion of the trajectory matrix X as X =

∑r
k=1XIk , where XIk =∑

i∈Ik Xi is the resulting matrix of group Ik (k = 1, ..., r).

Averaging If the signal components are separable, the resulting matrices after the group-
ing step are ideally Hankel . Thus, they correspond to the trajectory matrices of some
time series. For real-world signals, this seldom happens, thus the resulting matrices XIk

are almost Hankel and the components are approximately separable. The averaging along
cross-diagonals of the matrix XIk aims at solving the problem of finding the time series
x(k) for which the trajectory matrix of dimension (L × K) is the closest to XIk , in the

1The i-th eigentriple is defined by the collection (σi,ui,vi).
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least-squares sense. In other words, the cross-diagonal averaging of XIk = (xi,j) provides

the elements of the time series {x(k)
n , n = 1 . . . N} as:

x(k)
n =



1
n

n∑
m=1

xm,n−m+1 for 1 ≤ n<L

1
L

L∑
m=1

xm,n−m+1 for L ≤ n≤K

1
N−n+1

L∑
m=n−K+1

xm,n−m+1 for K + 1 ≤n≤N.

This cross-diagonal averaging, called Hankelization, can also be applied to each Xi matrix.
The resulting time series are referred to as elementary components. This process finally
provides an exact expansion of the time series s into L elementary components that sat-

isfies sn =
L∑
k=1

x(k)
n . The application of SSA to hydro-acoustic signals obtained from the

experimental test-bed is described later.

3.3 Statistical and Machine Learning Tools

3.3.1 Dimension Reduction

Discrete feature dimension reduction can be used as a method for feature selection, but it
can also be applied for the purpose of feature space reduction for visualization. To represent
features in a different coordinate system, dimensionality reduction is often implemented. It
is a lower-dimensional representation with as much of the information content as possible
about the original data set is preserved, a sample can be seen depicted in Figure 3.13.
It involves learning a target function from data where some features are irrelevant. This
is applied largely to cope with the curse of dimensionality, which encompasses all the
problems which arise from working in a higher dimension, as opposed to working in a
lower dimension. Fundamentally it states that as the number of features increases, so too
must be number of samples and model complexity, as well as an increased possibility of
overfitting.
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(a) 3-dimensional representation of a random
data set.
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dimensions.

Figure 3.13: Sample dimension reduction.

This can be applied in both a supervised and unsupervised manner.

• Supervised methods include well-known methods such as neural networks (in which
the number of hidden layers is often less than the number of inputs, thus performing
dimensionality reduction in which each hidden layer is a logistic function of its in-
puts), partial least squares [Arenas-Garćıa et al., 2007], canonical correlation analysis
[Hotelling, 1992], and Fisher’s linear discriminant analysis (LDA) method (in which
the ratio between between-class variance and within-class variance is maximized for
the projected data). While LDA is widely applied and found to be highly effective for
visualization purposes, this application focuses mainly on unsupervised cases since
the classification is learned, and not known a priori.

• Unsupervised methods include the principal component analysis (PCA), factor anal-
ysis & principal factor analysis [McDonald, 1970], project pursuit [Safavi and Chang,
2008], multidimensional scaling [Kruskal, 1964], independent component analysis
[Bell and Sejnowski, 1995], amongst others. Typically dimension reduction is only
applied as a visual aid method for ease of understanding to the user interface portion
of this system. However, it can also be applied as a means of feature projection, in
order to keep the information contained within the high-dimensional data, while pro-
ducing a more computationally efficient representation, i.e. lower-dimensional data
set.
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Principal Component Analysis

The PCA algorithm utilizes the eigenvalues of the covariance matrix [Bishop, 2006]. It can
deal with noise very well by discarding lowest eigenvalues and accurately represents the
variation in the data while minimizing computational cost. In the case of acoustic data
of interest in this dissertation, the data is represented as a selected number of features, k,
extracted from a chosen time interval.

PCA performs a linear mapping of any data to a lower-dimensional space by maximizing
the variance of the data in the low-dimensional representation. For the implementation of
this algorithm, the data sets are represented as an N by k matrix in which each column
represents a different feature layer, andN represents the number of time intervals.

The steps to perform the PCA analysis on the matrix A (N by p) is discussed below:

1. The mean of each column of A (µl) is subtracted from each value of its respective
column, where l = 1, . . . , k and i = 1, . . . , N :

Aadj = Ai,l − µl (3.36)

2. The covariance matrix can then be calculated as,

CA =
1

N − 1
Aadj ∗ ATadj (3.37)

This matrix is symmetric and indicates the spread of the component values around
the mean values.

3. By assuming distinct eigenvalues (λ) and finding the solution to the following char-
acteristic equation,

|CA − λI| = 0, (3.38)

the eigenvalues and their corresponding eigen-vectors can be calculated.

4. The eigenvalues are then sorted and the first m (< k) points are taken to represent
each instance, resulting in an N by m matrix, as opposed to the original N by k
input matrix.
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3.3.2 Gaussian Mixture models

Based on the central limit theorem, unimodal real world data is typically modeled as
a Gaussian distribution. Thus the use of a multimodal Gaussian distribution to model
a random variable of complex real-world data makes intuitive sense. GMMs are based
on a parametric probability density function. This can be seen depicted in Figure 3.14.
Generally when applied, it is used to cluster the feature represented data into k-groups,
where k represents each possible state of the system. However, this can also be applied
for anomaly detection, where k represents each possible known state of the system and the
any new instance can therefore be classified as the k + 1 state.
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Figure 3.14: Mixture of 1D Gaussians.

The normality model for anomaly detection uses the normal instances of the system
i.e., the baseline data set as a weighted sum of Gaussian component densities. For a GMM
with K components, this is given by [Bishop, 2006]:

p(x|w, µ,Σ) =
K∑
k=1

wkN (x|µk,Σk), (3.39)
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where x is a D dimensional data vector corresponding to the feature set. wk is the weights
associated with for kth mixture satisfying

∑K
k=1 wk = 1. µk and Σk are respectively the

mean vector and covariance matrix of a D-variate Gaussian density function, N (x|µk,Σk),
corresponding to kth component of the GMM, which is given by,

N (x|µ,Σ) =
1√

(2π)D|Σ|
e−

1
2

(x−µ)TΣ−1(x−µ), (3.40)

in which for each component k, µ and Σ are initialized.

The objective is to estimate the GMM parameters, represented as Λ = [w,µ,Σ] with
w = {wk, ..wK}, µ = {µk, ..µK} and Σ = {Σk, ..ΣK}, that best fit the input data set. The
optimized set of the parameters are estimated employing the expectation maximization
(EM) algorithm [Dempster et al., 1977], which is described below:

Suppose a set of D-dimensional observations [x1, . . . , xN ] is used, where N denotes the
number of observations. The data matrix X represents the N ×D data set in which the
nth row is given by xTn .

1. Initialization: Initialize µi, Σi and wi using µi =
∑N xj
N

,Σ = 1
N

∑N
j (xj−µi)(xj−µi)T

and wi = Ni
N

, in which Ni is the effective number of instances assigned to component
i, and N in the total number of samples in the data set.

2. Estimation step: Compute the posterior probability using Bayes rule for each
component of the GMM employing,

γ(znk) =
wkN (xn|µk,Σk)∑K
j=1wjN (xn|µj,Σj)

, (3.41)

in which zn represents the latent vector corresponding to xn, for each component k.

3. Maximization step: Update the GMM parameters using equations 3.44 to 3.43:

µ∗k =

∑N
n=1 γ(znk)xn∑N
n=1 γ(znk)

, (3.42)

Σ∗k =

∑N
n=1 γ(znk)(xn − µ∗k)(xn − µ∗k)T∑N

n=1 γ(znk)
, (3.43)

w∗k =

∑N
n=1 γ(znk)

N
. (3.44)
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4. For each iteration (∗) wk, µk and Σk can be used to evaluate the log likelihood
function,

lnP (X|Λ) =
N∑
n=1

ln
K∑
k=1

wkN (xn|µk,Σk). (3.45)

5. Steps 2 to 4 are repeated until equation (3.45) converges, in which the log likelihood
is maximized and result in the optimized set of parameters Λ.

Prior to the application of the EM algorithm, it is necessary to specify the configura-
tion of the GMM as there are several variants on the model represented in equation 3.39.
For instance, the covariance matrices, Σi can be full or constrained to be diagonal. A full
covariance matrix is useful to capture any correlation present within the features for a cer-
tain application. However, large dataset and significant number of GMM components to
build the model increase the computational complexity with full matrices. In such scenar-
ios, the matrix can be constrained to be diagonal for minimizing the computational time.
Hence the choice of full or diagonal matrices depends on the trade off between amount of
computational complexity and number of GMM components. As the models described in
this study use relatively few GMM components, a full covariance matrix is selected. In
addition, GMM parameters can be independent or shared among the components. While
independent parameters require individual covariance matrix for each component resulting
in increased computational cost for very large dataset, the model can be simplified through
shared parameters, i.e., having a single covariance matrix across all components. In the
current analysis, GMM parameters are assumed to be independent, as it is expected that
different components would be better represented by a different number of Gaussian distri-
butions to better capture the characteristics of the signal. Nevertheless, the choice of these
model configurations is often determined by the amount of data available for estimating
the GMM parameters and how the GMM is employed in a particular application. For very
large data sets with complex structure, the configuration can be simplified with a diagonal
covariance matrix and shared GMM parameters to increase the computational efficiency
of the model.

Model order selection criteria

The number of Gaussian components (K) is estimated through a sensitivity analysis, where
several values of K are tested, and the optimal value is estimated based on model selec-
tion criteria. Commonly known selection criteria are Akaike Information Criterion (AIC)
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[Akaike, 1974] (derived in Section 3.2.1) and Bayesian Information Criterion (BIC) [Abra-
ham and Box, 1979]. The trade off between these two criteria is that BIC penalizes model
complexity more heavily. Typically AIC is at risk of choosing larger model order despite
the sample size, while BIC does not run this risk with larger data set [Kuha, 2004]. More-
over, if both positive and negative misclassifications are equally important for a particular
application, BIC is chosen. But, AIC is a better option when negative misclassification is
more misleading for the application type. Since the data sets used in the current study
are sufficiently large and both types of misclassifications are expected to be avoided, BIC
is deemed to be a better criterion.

In order to determine the number of mixtures, the BIC is utilized (also known as
the Schwarz information criterion). It is derived using a Bayesian model comparison,
calculating the posterior probabilities using the full information over the priors [Schwarz
et al., 1978]. The evidence for a particular hypothesis is calculated using Laplace’s method,
as

p(D|M) =

∫
p(D|θ,M)π(θ|M)dθ, (3.46)

where θ are the parameters in the candidate model M , D represents the training data set,
and π(θ|M) is the prior.

p(D|M) =

∫
p(D|θMAP ,M)π(θMAP |M)δθ, (3.47)

where θ̂ are the optimal parameters that are assumed to maximize π(θ|M), p(D|θMAP ,M)
is the best-fit likelihood, and π(θMAP |M)δθ is the Occam factor. The BIC is defined as the
log-likelihood function and a penalty term as a criterion for model-selection (the Occam
factor).

If the assumption is made that the Gaussian prior distribution over parameters is broad,
and the Hessian is full rank, [Bishop, 2006] then the BIC can be approximated as,

BIC(D|M) = −2ln(L) + kln(n), (3.48)

where L is the maximized value of the likelihood function of the model (p(D|θMAP ,M)), n
is the sample size, and k = |θ| is the number of parameters estimated by the model. The
optimal value for the model order K is associated with the candidate model yielding the
minimum value of BIC.
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3.3.3 One-class Support Vector Machine

The one-class SVM (OCSVM) developed by Scholkopf et al. [2001] as an advancement to
the original two class SVM, converts the traditionally fully-supervised SVM methodology
to a semi-supervised classification methodology. The OCSVM training set only requires
data from the baseline state(s) of the system and new instances are classified as known or
unknown. Basically the baseline state(s) are considered the origin in feature space, and all
other data points are separated from the origin using a hyperplane which maximizes the
distances between the support vectors (i.e., the subset of points in the known and unknown
cases which lie closest to each other). This results in a binary function, returning +1 for
data which lie within the region recognized by the training data points, and −1 elsewhere.

There are a number of kernels which can be used in the OCSVM decision function.
A number of these include, but are not limited to: linear, polynomial, sigmoidal and
the Gaussian radial basis functions (RBF). The most popular of these, the RBF kernel,
described in equation 3.49:

K(x, x′) = exp(−||x− x
′||2

2γ2
) (3.49)

where K is the RBF kernel function, γ ∈ IR is a kernel parameter and ||x− x′|| is the
dissimilarity measure between the training data and the new data.

γ and ν can be tuned to increase accuracy. The γ variable defines the influence of a
single training point and its default value is typically set to a value equal to the inverse
of the number of features. The ν parameter is found through optimization as described in
equation 3.50 as follows:

min
ω,ξ,ρ

1

2
||ω||2 +

1

ρN

∑
i

ξi − ρ (3.50)

subject to (ω · Φ(xi)) ≥ ρ − ξi, ξi ≥ 0. ν represents an upper bound of the fraction of
training errors and a lower bound of the fraction of support vectors. Its default value is
typically chosen as 0.5.

3.3.4 Neural Network

Neural networks are approximation functions, often used for binary and multi-class classi-
fication Hessel et al. [1999]. In order to perform the classification, the neural network acts
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as a data structure storing models of the classes it has been trained to recognize. Cer-
tain neural network based algorithms can be used for anomaly detection, identifying input
samples as falling outside the scope of the class models it is storing Torok et al. [2013].

Convolutional Neural Network

A convolutional neural network (CNN) is a class of deep, feed-forward ANNs [Le Cun et al.,
1990, Yegnanarayana, 2009]. CNNs [Skansi, 2018] consist of an input and an output, with
multiple hidden layers. The hidden layers of the CNN typically include a combination of
convolutional layers and pooling layers.

During the forward pass, the convolutional layer applies a set of filters (or kernels) to the
input in a sliding-window manner, generating a value for each filter at each window location.
These values are aggregated in the next layer producing a 2-dimensional activation map for
every filter. These activation maps can then be stacked to form the full output volume of
the convolution layer. The convolution of each window is meant to emulate the receptive
field of an individual neuron to visual stimuli.

Convolution networks usually include max pooling layers which condense a neighbour-
hood of neurons at one layer into a single neuron in the next layer, summarizing the
neighbourhood by its maximum value. This leads to the output layer being smaller than
the input layer.

Variational Autoencoder

Autoencoders are a dimensionality reduction tool often used to find efficient data represen-
tations [Hinton and Salakhutdinov, 2006]. Spectral anomaly detection techniques try to
find a lower dimensional embedding, coined latent variables, of the original data set, where
anomalies and normal data are expected to separate. These latent variables can be brought
back to their original space via reconstruction. With this encoding and decoding it is ex-
pected that the network will not be good at reconstructing features outside the statistical
gamut of its training set. The difference between the original data and the reconstructed
data is referred to as reconstruction error, and can be used as an anomaly score to detect
outliers. The encoding and decoding in autoencoders is done in a deterministic way such
that the original data map to a single value for each latent variable.

A variational autoencoder (VAE) [Kingma and Welling, 2014] is an autoencoder in
which the distributions of each latent variable are approximately unit-variance Gaussian
distributions. As such, the original data now maps to a probability distribution for each
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latent variable. The encoder process of a VAE depends on a NN and such as a CNN.
The loss function in this case is the average of the mean squared error which measures
how accurately the network reconstructs the original data, and a latent loss, the Kullback-
Leibler (KL) divergence, which measures how closely the latent variables match a unit
Gaussian.

3.3.5 Hypothesis testing

Hypothesis tests can be broadly classified as: statistical hypothesis tests, and statistical
model hypothesis tests [Peruggia, 2003, Lumley, 2000]. The statistical model based hypoth-
esis test proposes alternative candidate hypothesis which uses a model selection method
to choose the appropriate model. The more common of the two methods however, is the
statistical hypothesis test, which is a method of statistical inference. It is applied most
commonly when two statistical data sets are compared, or a data set obtained by sampling
is compared against a synthetic data set from an idealized model. A hypothesis is proposed
for the statistical relationship between the two data sets, as an alternative to an idealized
null hypothesis. The comparison is deemed statistically significant if the null hypothesis
is proven to be untrue according to a threshold probability (the significance level), i.e. the
null hypothesis can be rejected at a determined significance level. Based on the statistical
assumptions made about the sample, a number of different tests are available and an ap-
propriate one must be selected. As well the significance level, i.e. threshold under which
the null hypothesis will be rejected, must be selected. Tests can either be one-tailed or
two-tailed depending on where the region of rejection lies.

There are two conceptual types of errors which are worth considering from a hypothesis
test:

• Type I error occurs when the null hypothesis is wrongly rejected. The probability
of committing a Type I error is called the significance level, often denoted as α.

• Type II error occurs when the null hypothesis is wrongly not rejected, often denoted
as β. The probability of not committing a Type II error is referred to as the Power
of the test.

T-test

The one-sample t-test is used to compare central values of two independent groups of data,
and is most commonly applied when the test statistic would follow a normal distribution.
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This test is used for small sample sizes (n < 30). In order to test the null hypothesis the
statistic t score is calculated as,

t =
x̄− µ0

s/
√
n
, (3.51)

where x̄ is the sample mean, µ0 is the population mean, s is the sample standard deviation,
and n is the sample size. The degrees of freedom used are n− 1. While µ0 need not follow
a normal distribution, it is assumed that distribution of x̄ is normal.

The standard error of the mean is calculated as SEM = s√
n
.

Z-test

In contrast to the t-test, a z-test is used for large sample sizes (n > 30), in which the
distribution of the test statistic can be approximated by a normal distribution, and for
which the population variance is known. In order to test the null hypothesis the statistic
z score is calculated as,

z =
x̄− µ0

SEM
. (3.52)

Wilcoxon Rank-Sum test

The Wilcoxon Rank-Sum test is a non-parametric alternative to the two-sample t-test,
used to compare two independent groups of data. The rank-sum test does not make any
underlying assumptions about the nature of the two cases, and tests for whether one group
tends to produce larger or smaller observations than the second group [Helsel and Hirsch,
1997]. This is in contrast with the use of the t-test and z-test which are applied based on
the assumption that the true distribution of the baseline data is known a-priori and are
sufficiently large that a normal distribution is observed.

This test is based on ranking the observations of the combined samples, the joint ranks
Rk. The test statistic, Wrs, is calculated as the sum of the ranks of the group having the
smaller sample size [Helsel and Hirsch, 1997]. The null hypothesis,

H0 : Prob[µxs > µxp ] = 0.5, (3.53)
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stated that if µxs (of size n) is from µxp (of size m), about half of the time, an observation
from either group should be expected to be higher than that from the other, so the null
hypothesis applies [Helsel and Hirsch, 1997]. While the alternative hypothesis,

H1 : Prob[µxs > µxp ] 6= 0.5, (3.54)

is a 2-sided test in which µxs might be larger or smaller than µxp , in which H0 is rejected if
Wrs ≤ x∗α/2,n,m or Wrs ≥ xα/2,n,m, otherwise H0 is not rejected. When the null hypothesis
is rejected, it must be assumed that the alternative hypothesis is true, the two groups differ
only in their central values [Helsel and Hirsch, 1997].

Two versions of the one-sided test are as follows:

• The smaller data set has higher values than the larger data set the majority of the
time, making the alternate hypothesis H1 : Prob[µxs > µxp ] > 0.5, in which H0 is
rejected if Wrs ≥ xα,n,m.

• The smaller data set has lower values than the larger data set the majority of the
time, making the alternate hypothesis H1 : Prob[µxs > µxp ] < 0.5, in which H0 is
rejected if Wrs ≤ x∗α,n,m.

3.3.6 Bhattacharya Distance

The Bhattacharya distance is a statistical measure that has been used as a class separability
metric for feature selection [Choi and Lee, 2003]. As well, the coefficient can be extracted
to determine the separability of two samples being considered [Khalid et al., 2006].

The Bhattacharya distance is defined as the negative natural logarithm of the Bhat-
tacharya coefficient. For discrete probability distributions p and g this is given by,

Bd = − ln (ρ(p, q)) , (3.55)

where 0 < Bd < ∞. The higher the value of Bd, the more dissimilar the distributions
and the more separate the corresponding classes. This measure is computed between the
histograms of two case sets of feature values in order to quantify the histograms’ similarity.

The Bhattacharya coefficient [Bhattacharyya, 1943] is then given by,

ρ(p, q) =

(
N∑
x=1

√
p(x)q(x)

)
. (3.56)
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The Bhattacharya coefficient was originally interpreted geometrically [Derpanis, 2008],
as the cosine of the angle between the N -dimensional vectors p and q, i.e., ρ(p, q) = cos θ.
Thus if two populations are identical [Kashyap, 2019],

cos θ =
N∑
x=1

√
p(x)q(x) =

N∑
x=1

√
p(x)p(x) =

N∑
x=1

p(x) = 1, (3.57)

corresponding to θ = 0.

The value of the limiting case,

ρ(p, q) =
N∑
x=1

q(x)

√
p(x)

q(x)
, (3.58)

since f(x) =
√
x is a concave function,

∑N
x=1 q(x) = 1⇒ q(x) ≥ 0, and therefore based on

Jensen’s inequality [Cover and Thomas, 2012],

ρ(p, q) ≤

√√√√ N∑
x=1

q(x)
p(x)

q(x)
, (3.59)

which simplifies to,

ρ(p, q) ≤

√√√√ N∑
x=1

p(x), (3.60)

and since
∑N

x=1 p(x) by construction, ρ(p, q) ≤ 1. Thus the coefficient lies between 0 and
1 (hence 0 < Bd <∞, since ln(0) = −∞).

Jensen’s inequality

Jensen’s inequality generally states that the average value of a convex function is greater or
equal to the function of the average. Therefore if f is a concave function, and

∑N
i=1 p(i) =

1⇒ p(i) ≥ 0,

N∑
i=1

p(i)f(x(i)) ≤ f

(
N∑
i=1

p(i)x(i)

)
. (3.61)
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3.3.7 KL-divergence

The Kullback–Leibler (KL) divergence [Kullback and Leibler, 1951] is a measure of how
one probability distribution is different from a reference probability distribution. KL-
divergence has its origins in information theory, in which the higher the probability of an
event, the lower its information content. This is the same as saying information is inversely
related to the probability of an event. Thus, since log p(x) is directly related to p(x), it
follows that − log p(x) is inversely related to p(x). Therefore the information content of
event x with respect to p can be expressed as,

Ip(x) = − log p(x). (3.62)

The value of information if defined as the expected utility of the best action chosen
with the new information minus the expected utility of the best action chosen without the
new information. Therefore the difference of information between q(x) and p(x) is,

∆I = Ip − Iq = − log p(x)) + log q(x) = log(
q(x)

p(x)
). (3.63)

KL-divergence is the expectation of the difference shown in equation 3.63,

E q[∆I] =

∫
(∆I)q(x)dx =

∫
q(x) log(

q(x)

p(x)
)dx. (3.64)

The KL-divergence from P to Q is generally calculated as DKL[Q(z|X)||P (z|X)], where
Q(z|X) discrete probability distribution of the projected data X into the latent variable
space, and P (z|X) is the true distribution [Kullback, 1997].

DKL[Q(z|X)||P (z|X)] =
∑
z

Q(z|X) log
Q(z|X)

P (z|X)

= E[log
Q(z|X)

P (z|X)
]

= E[logQ(z|X)− logP (z|X)].

(3.65)

By Bayes Theorem P (z|X) = P (X|z)P (z)
P (X)

, therefore equation 3.65 can be expressed as,
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DKL[Q(z|X)||P (z|X)] = E[logQ(z|X)− log
P (X|z)P (z)

P (X)
]

= E[logQ(z|X)− (logP (X|z) + logP (z)− logP (X))]

= E[logQ(z|X)− logP (X|z)− logP (z) + logP (X)].

(3.66)

3.3.8 Performance Measures

In general, the performance of anomaly detection algorithms can be assessed using the
following performance measures, which are described next [Bishop, 2006].

• Accuracy: It represents the ratio of correctly predicted observations with respect
to the total number of observations and can be calculated as:

Ac =
TP + TN

TP + FP + FN + TN
, (3.67)

where TP , TN , FP and FN are the true positive, true negative, false positive, and
false negative rates, respectively. In the current study, positive and negative are
associated with, respectively, the leak free and leak states of the system.

• Precision: It represents the ratio of correctly predicted positive or normal observa-
tions with respect to the total predicted positive observations. A value closer to 1 is
ideal, representing a low false positive rate (FP ). It can be calculated as,

Pc =
TP

TP + FP
. (3.68)

• Recall: Also known as the true positive rate (TPR), is estimated as the ratio of
correctly predicted positive observations with respect to all positive instances. A
value closer to 1 is ideal leading to fewer false alarms. It is calculated using,

Rc =
TP

TP + FN
. (3.69)

• F1-score: It represents the weighted average of precision and recall and is a version
of accuracy. It is best used when the number of normal to anomaly instances are not
even. F1-score is estimated as,

Fs =
2 ∗R ∗ P
R + P

. (3.70)
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• ROC graph and AUC: The receiver operating characteristic (ROC) graph rep-
resents the probability of correctly predicted anomaly event (also called sensitivity)
versus the probability of false positive alarms. The area under the curve (AUC) is
an indicator of accuracy of the anomaly detection methodology [Güvenir and Kurt-
cephe, 2013]. AUC values closer to 1 represents an effective predictor, while values
closer to 0.5 points towards worthless, or random, predictors.

3.3.9 Time Domain Statistical Features

Some basic time domain statistical features which can be used as traditionally employed
features when first performing a technical analysis of time series data. These features can
help in reducing the dimension of signals and to gain a more compact representation of the
structure and information contained within the data. For a time series represented by xi
Some of these features include [Li et al., 2017],

• Peak: The peak can be calculated as,

xmx = max(|xi|).

• Mean: The mean can be calculated as,

xme =
∑
xi
n

.

• Standard deviation: The standard deviation can be calculated as,

xsd = ( 1
n−1

∑n
i=1(xi − xme)2)1/2.

• R-mean-square: The RMS can be calculated as,

xrm = ( 1
n

∑n
i=1 x

2
i )

1/2.

• Crest factor: The crest factor refers to the ratio of peak values to the effective
value. It can be calculated as,

xcf = xmx
xrm

.

• Energy: The energy, often referred to as entropy, is used to describe the randomness
in the system. It can be calculated as,

xse = −
∑
pi ∗ log2(pi).
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Chapter 4

Details of linear prediction (LP)

This chapter provides the theoretical details of linear prediction, which is central to the
approach taken in this dissertation. The context and application of the theory of linear pre-
diction to leaks is described, where the sensitivity of its coefficients to variation is reviewed.
Although linear prediction is a well established concept, especially in speech recognition,
its relevance to water pipes and leak inducted signals has not been established. LP is pre-
sented as a method which can be used to detect and locate small leaks in pressurized water
pipes using the cepstral version of LP model coefficients [Ai et al., 2006]. However, unlike
speech applications, the short-time spectral information alone is insufficient for both leak
detection and localization. This chapter starts with a general overview of the underlying
concepts of LP, followed by specific application aspects of the LP principles for the problem
of leak detection.

4.1 Linear Prediction

LP has been extensively used to extract the spectral envelope from signals in applications
related to speech coding, speech synthesis, speech recognition, speaker recognition and
verification, and for speech storage [Fujisaki and Sato, 1973] —LP embodies strong theo-
retical underpinnings in the field of linear dynamic systems [Makhoul, 1975]. In one of the
most interesting and extensively studied applications, the process of generating voiced and
unvoiced sounds in the vocal tract has been modeled using LP [Rabiner et al., 2007].

Fundamentally, linear models describe a response variable as a function of predictor
variables, as depicted in Figure 4.1. The underlying principle of LP is that the formative
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(resonances) response of a linear system can be captured through modeling measurement
data and such model parameters contain pertinent information regarding the system prop-
erties. This simple central idea is developed further as explained in this chapter.

Figure 4.1: Time varying linear predictor p.

The basic idea of LP can be described mathematically as follows [Makhoul, 1975],

x(n) =

p∑
k=1

αkx(n− k) +G

q∑
l=0

blu(n− l), (4.1)

where αk, bl and G are all parameters of a hypothesized system; all of which generate a
linear combination of past outputs, and present and past inputs which produce a prediction
x(n). In this equation, b0 = 1, G is the gain factor. The same mathematical expression
can be expressed in the frequency domain by taking H(z) to represent the z-transform (as
described in Section 3.2.2), and transforming both sides of equation 4.1,

H(z) =
X(z)

U(z)
=

∑inf
n=− inf x(n)z−n

U(z)
= G

1 +
∑q

l=1 blz
−l∑p

k=1 αkz
−k , (4.2)

where equation 4.2 is the general pole-zero model, or the ARMA model. Two special cases
of this model exist: the first of which is the all-zero (MA) model in which αk = 0, 1 ≤ k ≤ p;
the second being the all-pole (AR) model in which bl = 0, 1 ≤ l ≤ q.

LP models for stationary and ergodic time series processes are also referred to as AR
models. This holds approximately true for many applications where only short duration of
data are considered, which can individually be assumed to be quasi-stationary. If a system
is adequately modeled, this model can capture the underlying eigenstructure of a linear
time invariant system. With application to complex systems, Von Storch [1999] discusses
an AR(1) model’s ability to provide information both of the first order approximation
of the second moments and of the linear dynamics using their eigen decomposition for
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analysis. They demonstrate that the full spectral and spatial features of a complex system
can be described by principal oscillatory patterns and their eigenvalues. This work was
continued by Neumaier and Schneider [2001] who further demonstrate the effective use of
eigen decomposition for structural analysis of an AR(p) model.

In the problem of probing the eigen structure of the signal, the spectral envelope is
of primary interest, i.e. the smoothed envelope curve of the amplitude spectrum pre-
serving the broad structure while not sensitive to the minor local variations. Hence, for
compuational simplicity, the discrete-time linear system is described by an all-pole model
[Makhoul, 1975]:

H(z) =
G

1−
∑p

k=1 αkz
−k , (4.3)

with αk being the kth coefficient of the pth order linear model and G being the gain factor
as described earlier. Here, H(z) represents the Z-transform of the impulse function of the
system (also called as transfer function) and z is, in general, a complex number from the
z-domain.

4.1.1 Parameters estimation

For the system model in equation 4.3, the signal x(n) is a linear difference model, which
is a combination of past samples of the signal (x(n − k)) and the excitation u(n), and is
given in the form of:

x(n) =

p∑
k=1

αkx(n− k) +Gu(n), (4.4)

The prediction of x(n) with the predictor coefficients ak, denoted by x̂(n), is given by:

x̂(n) =

p∑
k=1

akx(n− k). (4.5)

The prediction error, e(n) then becomes:

e(n) = x(n)− x̂(n) = x(n)−
p∑

k=1

akx(n− k). (4.6)

The predictor coefficients (ak) are calculated by minimizing the total squared error (E)
estimated using:

E =
∑
n

e2
n =

∑
n

[
x(n)−

p∑
k=1

akx(n− k)

]2

, (4.7)
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in which E is minimized by setting,

∂E

∂ak
= 0, 1 ≤ k ≤ p, (4.8)

and resulting in:

p∑
k=1

ak
∑
n

x(n− k)x(n− i) =
∑
n

x(n)x(n− i), 1 ≤ i ≤ p. (4.9)

Equation 4.9 is a set of p equations, which can be solved for p unknowns (ak, 1 ≤ k ≤ p)
leading to a minimum E in equation 4.7. The minimum mean squared error can be
expressed as,

En =
∑
n

(x(n))2 −
p∑

k=1

ak
∑
n

x(n)x(n− k). (4.10)

The parameters ak are estimated through one of two methods [Makhoul, 1975]:

• The autocorrelation method

The parameters ak are estimated through the autocorrelation method [Makhoul, 1975]
by assuming that the error in equation 4.7 is minimized over an infinite duration
−∞ < n <∞ so that equation 4.9 and 4.10 reduce, respectively to:

p∑
k=1

R(i− k)ak = R(i), 1 ≤ i ≤ p, (4.11)

and,

En = R(0)−
p∑

k=1

akR(k), (4.12)

where,

R(i) =
∞∑

n=−∞

x(n)x(n− i). (4.13)

In equation 4.11, the auto-correlation matrix is a symmetric Toeplitz matrix, which
can be solved efficiently through the Levinson-Durbin algorithm [Durbin, 1960].
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Levinson-Durbin algorithm

For a matrix that is a symmetrix positive definite Toeplitz matrix, i.e. all the ele-
ments on a given diagonal in the matrix are equal, it can be solved effectively using
the Levinson-Durbin algorithm [Levinson, 1946, Durbin, 1960]. To solve for the pre-
diction coefficients a = [a1, a2, . . . , ap]

T , equation 4.11 can be expanded in matrix
form as, 

R0 R1 · · · Rp−1

R1 R0 · · · Rp−2
...

...
. . .

...
Rp−1 Rp−2 · · · R0



a1

a2
...
ap

 =


R1

R2
...
Rp


which can be expanded to a system of equations (in which the order is denoted by
a superscript), from which the last expression can be subtracted resulting in the
following for the first p− 1 rows,

R0a
(p)
1 +R1a

(p)
2 + · · ·+Rp−2a

(p)
p−1 = R1 −Rp−1a

(p)
p

...

Rp−2a
(p)
1 +Rp−3a

(p)
2 + · · ·+R0a

(p)
p−1 = Rp−1 −R1a

(p)
p ,

(4.14)

and an equation containing the last row,

Rp−1a
(p)
1 +Rp−2a

(p)
2 + · · ·+R1a

(p)
p−1 = Rp −R0a

(p)
p . (4.15)

By defining R̃ = [R(p), R(p − 1), · · · , R(1)]T , and ã(p) = [a
(p)
p , a

(p)
p−1, · · · , a

(p)
1 ]T , and

exploiting the symmetry in equation 4.11, equations 4.14 can be rewritten as,
a

(p)
1

a
(p)
2
...

a
(p)
p−1

 = ap−1 − appã(p−1). (4.16)

This can be written to calculate for the single coefficients as,

a
(p)
i = a

(p−1)
i − a(p)

p a
(p−1)
p−i , i = 1, · · · , p− 1. (4.17)

The one missing coefficient a
(p)
p , referred to as the partial correlation coefficient (PAR-

COR), can be calculated using equations 4.16 and 4.15. By isolating for a
(p)
p the
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PARCOR can be calculated as,

a(p)
p =

Rp − (R̃(p−1))Ta(p−1)

R0 − (R̃(p−1))T ã(p−1)
. (4.18)

• The covariance method

The parameters ak are estimated through the covariance method [Makhoul, 1975] by
assuming that the error in equation 4.7 is minimized over a finite interval 0 ≤ n ≤
N − 1 so that equation 4.9 and 4.10 reduce, respectively to:

p∑
k=1

akϕki = ϕ0i, 1 ≤ i ≤ p, (4.19)

and,

En = ϕ00 −
p∑

k=1

akϕ0k, (4.20)

where the covariance of the signal x(n) in the given intervals is,

ϕki =
N−1∑
n=0

x(n− i)x(n− k). (4.21)

Since the covariance matrix is a symmetric positive-semidefinite matrix, it can be
solved efficiently through the Cholesky decomposition (as described in Appendix B)
of the covariance matrix [Benoıt, 1924, Higham, 2009].

If a matrix is a Hermitian —a complex square matrix that is equal to its own conju-
gate transpose —positive-definite, it can be effectively decomposed into the product
of a lower triangular matrix, and its conjugate transpose, using the Cholesky de-
composition [Parker, 2017]. However, the covariance matrix is Hermitian, positive
semi-definite and thus the diagonal entries of the triangular matrix are not equal and
allowed to be zero [Parker, 2017].

If signal x(n) obeys the model described by equation 4.4 exactly, i.e., ak = αk, then
e(n) = Gu(n). This implies that the input signal is proportional to the error signal. Since
the filter H(z) is fixed, the total energy in the input signal (Gu(n)) must equal the total
energy in the error signal and thus the Gain factor G is estimated as,

G2 = En. (4.22)

82



Once G is obtained, the LP spectrum can be estimated using,

H(ejω) =
G

1−
∑p

k=1 ake
−jωk =

G

A(e−jω)
, (4.23)

where, j is the complex number with value as
√
−1 and ω is the frequency of the system.

4.2 Leak characterization

Acoustic signatures caused by leaks can be assumed to follow the assumptions of plane
wave theory sufficiently away from the source and this makes linear prediction a powerful
tool to capture the primary resonant responses of the fluid-pipe coupled linear system. The
source/system model for linear predictive analysis of hydro-acoustic signals in water filled
pipes is illustrated in Figure 4.2, where the acoustic signal x(n) is modeled as the output
of a linear, slowly time-varying system excited by u(n).

Figure 4.2: Model for linear predictive analysis of leak signals.

With reference to Figure 4.2, the acoustic leak signature x(n) is assumed to be the
output of a discrete-time linear system, which is time-invariant within a relatively short
time segment. A leak is assumed to introduce excitation characterized by a narrow-band
spectrum which is convolved with the impulse response of the fluid-filled pressurized pipe.
Such a model, represented by the dashed bounding box in Figure 4.2, mimics the composite
spectrum effects of radiation, pipe system, and leak-induced excitation pulse shape over a
relatively short measurement period. In the absence of a leak, this system represents the
composite effects assuming that the ambient (leak-free) fluid excitation is of broad-band
nature (flat spectrum).
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Given these assumptions, the auto-correlation function obtained from a short segment
of an acoustic signal contains crucial information regarding the presence of a leak. Assume
that the system impulse response of a linear system is given by h(n), then the output is
obtained through the convolution,

x(n) = u(n) ∗ h(n). (4.24)

It can then be shown that the autocorrelation follows,

Rx(τ) = Ru(τ) ∗Rh(τ), (4.25)

where Rx(τ) is the autocorrelation of x(n), which can be calculated as the convolution of
the autocorrelation functions Ru(τ) and Rh(τ) corresponding to u(n) and h(n) respectively.

When a leak is characterized by a narrow-band spectrum, the autocorrelation of the
response is also narrow-banded, but is shaped by the composite effects of the leak-induced
spectrum as well as the impulse response of the fluid-filled pipe system. On the other
hand, the auto-correlation for the case when u(n) is white (seen as an extreme case for the
broad-band case) is zero everywhere except for τ = 0. Hence (for the leak-free case),

Rx(τ) = Rh(τ). (4.26)

These results show that the presence of a leak significantly changes the nature of the
short-term Fourier spectrum (short-term autocorrelation and short-term Fourier spectrum
contain the same information) the spectral peaks are shaped by its presence. The autocor-
relation functions taken over relatively short finite time segments could potentially reveal
distinct system characteristics in leak versus no-leak scenarios, even for finite-length seg-
ments, as shown later. It is interesting to note that a similar idea has been proposed in the
context of leak detection earlier [Yang et al., 2013], however their methodology involved
directly extracting features from the autocorrelation rather than being model-based.

In this LP model according to equation 4.3, the excitation u(n), which is unknown, but
can be assumed as being broad-band for the leak-free case and quasi-periodic pulses for the
leak-case [Ferrante and Elghobashi, 2004], is treated in an indirect way; the excitation is
whatever is needed to produce x(n), which is the acoustic signal. Linear predictive analysis
allows for the excitation gain, G, and the filter coefficients αk, to be estimated in a very
computationally efficient manner, as described in Section 4.1.1.

4.2.1 LP application to leak-induced signals

The basic premise of this work is that a leak introduces quasi-periodic pulse excitation to
the system, which means the time lapse between two consecutive pulses is time-varying
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(jitter), but within a fixed interval. This assumption is supported by previous observations
of non-random coherent structures present in turbulent boundary layers [Ferrante and
Elghobashi, 2004]. Such a spectrum can be characterized by a distribution of energy across
a narrow band of frequencies and low-pass, which is convolved with the pipe system. The
absence of a leak renders the leak-induced spectrum flat, i.e., broad-band with respect to
the pipe system dynamics.

To test these assumptions, acoustic signals are acquired from a straight polyvinyl chlo-
ride (PVC) water-filled pipe, 12.4 m in length and 15.2 cm in diameter, using hydrophones
with −175dB sensitivity and an LMS SCADAS data acquisition system. The pipe is pres-
surized to approximately 345 kPa using a service inlet and a simulated leak of 0.6 cm
diameter is located at 5.3 m from the service inlet end of the pipe section, while the hy-
drophone is located 7.3 m away from the same end. A schematic diagram of the test bed
is presented in Figure 4.3. Data frames of 500 ms duration are selected for analysis. A
hamming window is applied to the data frames prior to estimating the auto-correlation
functions and the Fourier spectra.

Figure 4.3: The single pipe laboratory setup showing components used in the study (not
to scale).

Figure 4.4 shows the short-term autocorrelation function (STACF) and the short-time
Fourier spectra (STFS) for the leak-free and leak cases. Subplot (a) and subplot (b) show
the STACF and STFS for the leak-free case. The peaks in the STFS correspond to the
impulse responses and other disturbances (common to the two cases) of the system. Subplot
(c) and (d) show the same for the case when a leak is present and the introduction of leak
dynamics into the overall system is evident in the shape of the spectral peaks and the
STACF. For instance, the STACF for the leak case in subplot (c) is narrow band in nature
with distinct periodicity as compared to the broad band nature of the STACF for the leak
free case in subplot (a). The change in the spectral shape is clearly evident in Figure 4.5,
which shows the LP spectra generated using four model orders, p = 50, 100, 200, 500.
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As seen in Figure 4.5, the leak energy is contained in the low-frequency region, which is
consistent with previous studies [Muggleton and Brennan, 2004]. As shown in the Figure
4.4 (b) and (d), model order p = 50 matches the general shape of the STFS, but does not
represent all its local peaks and valleys, while as the model order increases (for example,
p = 500) the LP spectrum converges towards the true spectrum. For the purposes of leak
detection, finer details of the true spectrum is not required to be captured and a lower
model order representing the gross spectrum is sufficient as shown in Figure 4.5. While
there is no constraint in choosing a higher model order for the current application, too
large of the model is not advantageous with respect to computationally efficiency. With
reference to the literature on commonly adopted model orders, for speech signals, this is
around 20 [Oirere et al., 2015]. An exploratory analysis revealed a model order of 50 as
sufficient for this application.
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Figure 4.4: STACF and STFS and corresponding LP spectrum for hydro-acoustic signals
in cases of normal or leak-free and leak events
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Figure 4.5: LP spectrum for leak-free and leak cases, for LP order: (a) p = 50, (b) p = 100,
(c) p = 200 and (d) p = 500

4.3 Leak sensitive features

The coefficients representing predictive models for an acoustic signal are meant to approx-
imate closely the key spectral information in the original signal. Such coefficients can be
regarded as distinctive features for the data set, on the condition that they provide rea-
sonable representation of the acoustic signals. In the current study, LP coefficients are
used as features from acoustic signals as they capture the underlying eigenstructure of a
linear time invariant system. This has been shown in the context of linear models of the
LP type with applications to both simple (univariate) and complex (multi-variate) systems
[von Storch and Zwiers, 2002]. While in the univariate case (single sensor measurement)
the eigen values are of primary interest, for the multi-variate case (when multiple sensor
measurements are used simultaneously), the eigen vector contains additional spatial infor-
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mation regarding the underlying oscillatory patterns of the time series. In the case of an
uni-variate model of order p, it can be shown that the eigen value decomposition of the
p× p transition matrix results in an inference of the eigen structure of the underlying time
series. The transition matrix can be constructed through representing the linear model in
equation 4.4 in the state space.

By introducing the p-dimensional state vector y(n) = [x(n), x(n− 1), .... x(n− p+ 1)]′

for all n, the LP model can be re-expressed as [West and Harrison, 2006],

x(n) = A′y(n) (4.27)

y(n) = By(n− 1) + Ae(n) (4.28)

where, A =


1
0
0
.
.
0

 and B =



α1 α2 . . αp−1 αp
1 0 . . 0 0
0 1 . . 0 0
. . . . . .
. . . . . .
0 0 . . 0 0
0 0 . . 1 0


.

The state evolution or transition matrix B has an eigen decomposition as B = DΛD−1.
The eigen vector matrix D of size p × p has columns that are the eigen vectors of the
corresponding eigen values in the diagonal of the matrix Λ. Since B is real valued, either
the eigen values are real or complex, which may occur in conjugate pairs. While real eigen
values represent only scalar scaling of eigen vectors, complex eigen values represent scaling
as well as rotation of the eigen vectors. In general, the eigenvalues are precisely the char-
acteristic roots of the predictive model and hence a stationary LP model is characterized
by the transition matrix B, which has all eigenvalues of less than unit modulus, whether
real or complex.

Using the LP coefficients (p = 50) estimated from the data set collected from the
simplified single pipe system described in the previous section, the transition matrix B is
constructed for both leak free and leak cases. All the eigen values estimated for B matrix
are shown in Figure 4.6 along with the 6 largest eigen values. These results show that the
overall eigen structure of the transition matrix for leak free and leak signals are distinctively
different. It should be noted that the leak free and leak signals are distinguishable as long
as the leak signatures are not dissipated before reaching the sensor location.

In order to project the important characteristics of the time series into a lower dimen-
sion, principal component analysis (PCA) [Bishop, 2006] is performed on the p values of
ak and the three fundamental PCA are taken as the representative feature set. The steps
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Figure 4.6: All eigen values for leak-free and leak cases along with the six largest values

to perform the PCA analysis on the N by p matrix A is described in 3.3.1. The features
extracted from the data set by estimating the LP coefficients and subsequently applying
PCA on the coefficients are denoted as LP-PCA features. The application of PCA on the
LP coefficients not only helps in projecting the key characteristics of the acoustic data onto
three principal components, but also allows for a dimensionality reduction of the feature
vector.
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Chapter 5

Lab Results

5.1 Introduction

This chapter presents a laboratory case study for the application of both model free
and model based methods for semi-supervised leak detection in WDNs. The model free
methods employed in this chapter are SSA—it was used as a key step in processing the
data—followed by the application of a OCSVM classification methodology; and, a NN uti-
lizing a deep autoencoder. The model based method employed later in the chapter utilizes
LP, coupled with a GMM classification methodology, and is extended for localization.

In order to identify an ideal method for the field case study described in Chapter 6,
three methods were considered. First, typical time domain features were reviewed, an in
an effort to increase the detection accuracy of these common statistical features, SSA was
selected as a pre-processing methodology. While this method yielded promising results,
the amount of tuning required made wide scale deployment difficult. Following this, a NN
approach was assessed. Once the results of simple statistical features were reviewed, it was
evident that without SSA pre-processing detection accuracy was poor, while including SSA
as a pre-processing step required more parameter tuning than can be effectively deployed
for wide scale field studies. As such an effort to address the need for feature engineering was
made. In utilizing spectrograms of the leak free data, the proposed NN extracted features
and good classification was obtained. However this method was far too computationally
intensive for a wide scale deployment. Finally an LP methodology was reviewed which
focused on computational efficiency, as well as expanding the proposed methodology to
localization.
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This chapter is organized as follows: first, the laboratory test bed and it’s associated
data sets are reviewed; then, the results for the proposed SSA methodology for leak detec-
tion are reported; followed by a deep autoencoder based methodology for leak detection
; next, the results for the proposed LP methodology are reported, including leak detec-
tion, and leak localization results; and finally a comparative summary of these results is
discussed. The results of this laboratory exercise is intended to guide the selection of the
method employed for field implementation subsequently.

5.2 Laboratory Test Bed

The laboratory experimental set up simulates a small portion of a typical full-scale water
distribution system in North America. This test-bed is by no means meant to fully mimic
actual distribution systems, but intended to capture the geometry of the pipes, typical
noise and the operational pressure and the associated variations. While a simple single
pipe network, depicted in Figure 4.3 was used for a review of leak characteristics, in order to
experimentally validate the proposed methodologies, the system required added complexity.
Two iterations of the laboratory network exist as this dissertation progressed and more
complexity was added. First the single pipe was augmented to a tee network including a
service valve to simulate noisy conditions. Once the first proposed methodology was proven
on this set up, an attempt to incorporate added complexity was made. The network was
then augmented to include more tees as well as multiple loops. These two laboratory
networks are described in detail next.

5.2.1 First Iteration

The first iteration of the test bed consists of a relatively simple roughly orthogonal layout
of PVC pipes, tees and a fire hydrant. The pipes are made of ’Grey Scale 80 PVC’ pipes
with a 15.24 cm inner diameter, typically used in Canadian and US full-scale networks. A
total length of approximately 20 m of pipes comprised the system along with three simu-
lated leaks created at different locations, one service connection valve and a fire hydrant
monitoring station where the sensor is mounted. The fire hydrant location was specifically
chosen as it mimics actual implementation in the field for this dissertation. One end of
the pipe is directly connected to the building’s water supply distribution system, one is
a retrofitted fire hydrant, the remaining are terminated with end caps (one of them has
a valve which opens to simulate the flow case or a larger leak). The three small leaks
are simulated using a 6.35 mm inner diameter valve, which simulated 0.25 L/sec flow,
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while the service line is simulated using a 2.54 cm valve. Figure 5.1 illustrates the system
layout at scale. Leak 1 is located approximately 3 m from the sensor, while leaks 2 and
3 are located approximately 2 m from the sensor. The acoustic data was collected using
a hydrophone located at the base of the fire hydrant, mounted using a specially designed
hydrant valve stem. This type of arrangement where the sensors are placed at the base of
the hydrant allows for continuous operation of the hydrant without the need to flood the
hydrant during data collection.

Figure 5.1: First iteration of the laboratory pipe network showing key components used in
the experimental study (not to scale).

5.2.2 Second Iteration

The second iteration of the test bed consists of a series of grey scale 80 PVC pipes with
15.24 cm inner diameter, two tees, a fire hydrant, one service connection valve, four simu-
lated leaks at different locations and a city line inlet. The total length of the pipe system is
approximately 30 m. A schematic diagram of the test bed is presented in Figure 5.2. The
hydrophone used for the laboratory monitoring system was the Teledyne Reson TC4013,
which was selected for its high sensitivity in order to determine the region of the spectrum
required for analysis.

Leaks are simulated by opening a 0.64 cm valves at four locations, each of which results
in flows ranging from 18 − 20 L/min when fully opened. Two hydrophones, represented
by Sensor 1 and Sensor 2, are used to measure the acoustic characteristics. The first leak
(Leak 1) is located 496.6 cm from Sensor 1 (taking the most direct path). The second and
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Figure 5.2: Second iteration of the laboratory pipe network showing key components used
in the experimental study (not to scale).

third leaks, i.e., Leak 2 and Leak 3, are situated at 360.7 cm and 292.1 cm from Sensor 1,
respectively. The fourth leak (Leak 4) is located at 562.6 cm from Sensor 1 and 911.9 cm
from Sensor 2. The simulated leaks create different acoustic signatures at various locations
due to the different impedance changes in the acoustic wave propagation path resulting
from bends and tees in the system and this configuration yields a rich set of test cases to
evaluate the proposed approach.

A service line is incorporated in the test bed by installing a 2.54 cm valve located
288.3 cm from the branch which leads to the fire hydrant, which simulates typical water
usage demand from the system. During the experiments, Flow and No flow cases are
generated in the pressurized water pipe system by opening and closing this service line.
The No flow case represents a relatively less noisy environment, while the Flow case is
associated with the presence of very high background noise in the pipe system caused
by this service line. The inlet (Figure 5.2) is connected to the City of Waterloo’s main
distribution system. The system is pressurized to an average value of 345 KPa, but was
observed to fluctuate between 310 KPa to 380 KPa, mainly depending on the building
usage. This fluctuation is representative of head tank pressures, as detailed by a brief
study of the head tank pressure found in the city of Guelph, as outlined in Appendix C.
Sensor 1 is installed at the base of the hydrant through a specially designed hydrant valve
stem as shown in Figure 6.1a, while Sensor 2 is inserted into the end cap.
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The laboratory test bed in this research has characteristics in the range of past studies
discussed in Section 2.4. These laboratory test-beds consisted of total pipe network lengths
between 10 m - 100 m with leak sizes ranging from a quarter inch to four inches, in a
variety of typical and atypical pipe diameters for WDNs [Jia et al., 2015, Lazhar et al.,
2013, Ferrante et al., 2013, Khulief et al., 2011, Khalifa et al., 2010, Soares et al., 2008,
Covas et al., 2006, Lee et al., 2005, Mpesha et al., 2001]. These studies reviewed different
methodologies on vastly different test-beds, as such there is a large diversity in performance,
depending on the specific laboratory test-bed’s characteristics (i.e. material, diameter,
pressurization method). The performance measure is only meaningful in the context of
the specific laboratory test bed’s characteristics. This lack of standardization makes direct
comparison to other methods difficult.

5.2.3 Data Collection

From a data-driven algorithmic stand-point, leak detection in noisy conditions is a challeng-
ing problem, especially when the leak occurs concurrently within the variability associated
with service conditions, such as opening of a neighboring valve. For this reason two baseline
scenarios are considered. Experiments and data acquisition were conducted under a total
of four scenarios: (1) ambient, which means there is no leak and the valve is closed; (2)
under leak condition, where a leak is present and the valve is closed; (3) valve, where the
network is leak-free and the valve is open, (4) valve & leak, where a leak is present and the
valve is open. For each scenario, the acoustic signals were acquired at different times over
a month with a sampling frequency of 1.35 kHz. This sampling frequency corresponds to
the maximum frequency that can be achieved by the 16—bit A/D custom DAQ system
used. This DAQ system consists of a custom micro-controller board, local storage and
a communications module supporting wireless communications. The power was provided
using an external battery. This DAQ was consciously chosen in order to mimic the system
to be deployed in the field in full-scale tests. A newer generation supporting 24-bit A/D
and a more powerful micro-controller was developed and used in the field tests as described
in Chapter 6.

The data acquisition rate used is deemed adequate for the purpose of this study since
the leak information is typically found towards the lower end of frequency spectrum, under
300 Hz [Hunaidi et al., 2000]. The data was collected for up to two minutes in 10 to
30 second intervals at different times throughout a given day and repeated for nearly a
month. This was done in order to ensure variability in the data as well as minimize the
effects of overfitting to the system conditions. Since the pipes are connected directly to the
building water distribution system, the experimental test bed also reflects the supply and
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demand patterns typical of full-scale WDNs. Acoustic pressure data was collected using a
hydrophone (SensorTech SQ26-13) of sensitivity −193 dB re 1V/µPa with the raw voltage
signal having an added pre-amplification of 20 dB gain prior to data-acquisition. Sample
time histories of the acquired signals for the second iteration of the laboratory setup are
shown in Figure 5.3 for the four scenarios previously described.
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Figure 5.3: Hydrophone measurements without and with the presence of a leak when the
service line valve is (a) closed, and (b) opened.

Leak signals from different leak locations (L1, L2, L3 shown in Figure 5.2) were col-
lected to form one dataset. The frequency spectra associated to signals in noisy and quiet
conditions are illustrated in Figure 5.4. The variability in the leak versus leak free cases
can be seen in Figure 5.2. For certain segments of the collected data set the baseline, or
leak-free, and leak events differ visibly, e.g., time stamp 300 to 500 seconds in sub-figure
(b) (having an RMS value of 14 Pa for the leak case, as compared to 8 Pa for the baseline
case). Conversely, for other segments the baseline and leak events signals appear similar
in the time series (as well as yielding nearly identical RMS values, e.g., time stamp 600
to 800 seconds in sub-figure (b) yield and RMS value of 13.01 Pa for the leak case and
12.90 Pa for the baseline case). This variability is likely caused by the different leak loca-
tions contained throughout the leak case data set, how similar the leak case data is to the
baseline is likely influenced by the proximity and impedances present between the sensor
and the leak. The different locations of the leak allow for variability in the travel time
and exposure to different impedance changes in the system, thus inducing different levels
of energy attenuation and noise. While one would assume that the leak located furthest
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from the sensor would produce the most difficult to detect leak, experimentally the data
has shown that this is not the case and is a function of the number and type of elements
which cause impedance changes. This observation is also consistent with findings by oth-
ers [Jia et al., 2015]. The effect of bends or tees on dissipating leak signatures is equal
or more significant than straight line distance for low frequencies, as the low frequency
signals have been shown to travel relatively large distances in fluid filled pipes with very
little attenuation [Aristegui et al., 2001]. Thus, the incorporation of bends and tees in the
pipe network was an important aspect in this test bed in order to produce a data set with
adequate variability and complexity mimicking field conditions.

Figure 5.4: Spectra of acoustic signals in the absence and presence of a leak; (a) valve
closed, (b) valve open

The leaks located in different areas of the pipe create different leak signatures, leaks
located along the length of the pipe produce leak signatures which are much more easily
detected, however, leaks located perpendicular, or after a Tee, produce leak signatures
which are more difficult to see visibly in the frequency domain, as well as more difficult
to classify. Thus while analysis was done for all leak cases, this chapter presents the re-
sults for the worse case of leak, which is leak 3 (Figure 5.2). It can be seen in Figure 5.4
that most of the energy in the spectrum—for both leak and ambient cases—are limited
to under 250 Hz. This is consistent with previous reports, for e.g., [Hunaidi and Chu,
1999]. Furthermore, there is a visible lifting of the spectral energy in Figure 5.4(a) across
the aforementioned frequencies, which means that delineating leak versus ambient cases
should be fairly straight-forward, even using basic feature sets derived directly from the
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time series. On the other hand, opening the valve increases the amplitude of the signal con-
siderably (nearly 5-10 times across key regions of the spectrum) and changes the inherent
structure and frequency content of the acoustic signals. From a classification standpoint,
this increases the overlap of features obtained from the two scenarios and obfuscates leak
detectability.

5.3 SSA Results

This section proposes the use of a non-parametric method, called the Singular Spectrum
Analysis (SSA) Vautard and Ghil [1989], Harmouche et al. [2018] as a tool for pre-processing
hydroacoustic signatures. SSA is chosen for its simplicity, as it has only one tunable
parameter, does not require stationarity, linearity or normality assumptions about the
processed data and has seen widespread use in other fields, including biology Yufeng and
Saniie [2015], Celka and Colditz [2002], Sanei and Hassani [2015]. While time-frequency
methods such as wavelet transforms have been used in the context of burst event detection
and localization Srirangarajan et al. [2013], SSA is more directly related to the eigen
structure of the signal and will form excellent comparison with model based method (LP)
described later.

SSA on its own can only decompose the signal into its constituent parts and is a pre-
processing technique to extract leak components from complex measurements. For leak
detection, the decomposed signals are combined with an ensemble one-class support vector
machine Scholkopf et al. [2001] in an unsupervised approach. As will be shown in this
study, leaks buried in high non-stationary background noise results in a change of the
frequency structure of the signal, which are readily discernible once pre-processed using
SSA. Significant improvement in the detection performance can achieved compared to using
raw features alone.

5.3.1 Data Processing

Enhancing the ability of descriptive features to discriminate between leak and non-leak
data is essential for the purposes of leak detection. Utilizing the first iteration of the
laboratory set up the experimental hydro-acoustic signals are partitioned into consecutive
segments of 5000 samples each. Entropy, effective value and spectral peak are computed
for each segment.
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SSA with an embedding dimension L = 500 is then applied to each frame. In general,
L is empirically chosen according to the particularity of the time series [Golyandina, 2010].
As a rule of thumb, in order to extract a given oscillation, L is recommended to be larger
than its fundamental period. More importantly, a large L (L < N/2) is recommended to
decompose an arbitrary signal of length N . Here, it is selected large enough so that the
window embeds the entire signal spectrum (3Hz-300Hz). Each frame of 5000 samples is
hence decomposed into 500 independent elementary components.

The use of SSA to increase the discrimination capability of the features is validated
using a OCSVM methodology [Yin et al., 2014] described in Section 3.3.3 , which is used
to model the features computed from leak-free SSA-processed data. The procedure is as
follows:

1. Leak-free hydro-acoustic signals are collected under different conditions.

2. The signals are segmented into frames and SSA is applied. The SSA parameter L is
selected based on the prior analysis of the frequency content of the signals.

3. Each frame gives two components which are reconstructed from the pre-selected SSA
elementary components, one corresponds to group I1 and the second corresponds to
group I2.

4. Features are then computed from the obtained components. Thirty percent of the
computed feature values are randomly selected and used for testing. A OCSVM
model with Gaussian kernel is trained using the remaining 70% of feature values.

Leak detection accuracy is evaluated by estimating the ROC curve (described in Section
3) using leak and leak-free data.

5.3.2 Features analysis

Using the proposed SSA based approach, a group of elementary components is assumed
to be carrying the signatures related to the leak, while the remaining components form
the background variation which are insensitive to the leak. The leak sensitive group is
identified and used to compute the features. The identification of the sensitive elementary
components is straightforward by referring to the singular spectrum. Figure 5.5 shows the
box plot of the first 10 singular values computed for the data frames that correspond to
the open valve case. The intervals of singular values for leak (filled box plot) and non-
leak data are illustrated. For a particular component of order I (where order follows the
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decreasing sequence of singular values), a high overlap in the box plot means the component
is not sensitive to the leak presence, since the overlap indicates that the distribution of
the singular value in question is not perfectly separated. This is the case of the first two
singular values for example. However, the fifth and sixth singular values show minimal
intersection between the box plots for the leak and leak-free data, and therefore are more
sensitive to the presence of leaks.

Figure 5.5: Box plot of the first 10 singular values computed for the data frames of open
valve case, the filled box plot refers to leak data

This procedure, applied to the data corresponding to the quiescent water system (valve
closed), leads to the selection of elementary components of orders in I1 = {21, ..., L} to
reconstruct the signal carrying the leak signature. When applied to the data corresponding
to the noisy water system (valve open), it leads to the selection of elementary components
of orders in I2 = {5, ..., 20} to reconstruct the leak signal. The leak signal is the sum
of those chosen elementary components; features are computed using the obtained SSA
components, instead of the raw signals.

Figure 5.6 shows the features histograms computed on the reconstructed leak signals.
In the left-hand column (valve closed), the leak signals are reconstructed using group
I1, while group I2 is used to reconstruct leak signals in the right-hand column (valve
open) of Figure 5.6. It is clear from the histograms that the Bhattacharya distance of
the leak signals obtained through SSA decomposition is large and hence should enhance
discrimination capability.
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Figure 5.6: Histograms and Bhattacharya distance corresponding to the entropy, the effec-
tive value and the spectral peak, computed on the SSA components of leak and non-leak
time-series (a) valve closed, (b) valve open

The AUC is evaluated for different parameters (ν, γ) of the SVM model, and several
runs are performed, where at each iteration 70% of leak-free data are randomly selected
for training and 30% for testing. Figure 5.7 shows the AUC averaged over multiple runs,
for different values of the SVM model parameters. It is clear that the SVM parameters
have a large impact on the detection performance and large values of both ν and γ are
favorable in the data set used in this study. In practice, however, due to the possible lack
of historical and leak data, the model is trained using the current set of data in order to
maximize a given metric of the detection quality. With the availability of new data the
model can be readjusted to achieve better accuracy. In the current case, it is shown that
for a given value of ν, the AUC increases with γ and reaches a maximum which is in the
range [0.85, 0.92]. As a comparison, the maximum AUC values range from [0.67, 0.83] if
SSA is not used and the same features are computed from raw time series data.
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Figure 5.7: Evaluation of leak detection accuracy using the AUC of a OCSVM model based
on SSA components.

5.3.3 Leak detection

Where leak data are absent or minimal, the selection of components based on the analysis
of their sensitivity to leaks is impractical. However, under the assumption that the set of
elementary components can be divided into two disjoint subsets of sensitive and insensitive
components, an OCSVM can be trained for each elementary component and L separate
models can be obtained. Over time, poor models will be recognized by their randomly
varying predictions, while efficient models based on the highly sensitive components are
likely to make consistent predictions. Training and continuously tuning L models can be
costly especially when L is large. This number can be reduced based on the following
characteristics of SSA decomposition.

The elementary components can be separated into signal and noise components. The
signal components are the first few ones and their number, denoted by d, can be determined
using information criteria [Kumar et al., 2006]. On the one hand, after the signal dimension
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is selected, (L − d) residual elementary components can be combined in order to form
one noise component. On the other hand, generally speaking, the signal components are
expected to represent trends and oscillations. In the case of the hydro-acoustic signals, they
mainly consist of oscillations. In this case, each pair of elementary components corresponds
to an oscillation and those can be combined to form one component. This reduces d into
d/2 components, thus leading to d/2 + 1 components in total including the residual one.

Figure 5.8: Evaluation of leak detection accuracy using the AUC of a OCSVM model when
the valve is closed

This approach is based on the assumption that SSA components can be separated into
a set of sensitive and less sensitive (to leak) components. For experimental validation, with
L = 500, the signal dimension used is 40. 21 components are extracted according to the
previously described procedure, and a OCSVM is learned for each component using the
leak-free data. All models are treated equally with the same parameter values, which are
inferred from the previous performance results. In order to validate the stated assumption,
the models are tested against leak and leak-free data. ROC curves, along with AUC values,
are estimated for each model and the results are shown in Figure 5.8-5.9. When the valve
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Figure 5.9: Evaluation of leak detection accuracy using the AUC of a OCSVM model when
the valve is open

is closed and the network is relatively quiet, the 21st component results in an AUC of
0.90 (dashed line in Figure 5.8), meaning a high detection accuracy, while the remaining
components lead to AUC values around 0.5, which mean they perform almost random
predictions. The models are also tested against leaks that occur when the valve is open.
It is shown that many components are expected to perform poorly (AUC < 0.6) while few
components (2, 9, 21) result in good predictions. However, the components 3, 4, 5, 6, 7,
8 (marked lines in 5.9) lead to AUC > 0.8, with 4, 5, 6 have AUC > 0.85. Once a leak
occurs, those latter components (4, 5, 6) give deterministic and constant alarms leading to
a robust decision making process.

The experimental results from this proposed nonparametric algorithm based on SSA
decomposition of raw measurements has many advantages. The approach is fully data-
driven and only requires the availability of sensor data. It has the potential to detect small
leaks, while signature are hidden in background noise, thanks to the decomposition of the
raw signals into elementary components. While this method allows for significant insight
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into the data, exploratory analysis is required to identify the leak sensitive components.
As well, the use of some leak data is required for parameter tuning. The tuning of these
parameters can greatly affect the classification accuracy of the results. These not only make
the proposed methodology difficult to deploy on a wide scale, but it is also important to
note that this study is limited to the task of leak detection and not localization, which is
a requirement for useful field deployment.

5.4 Results of using NN

In addition to being problematic in situations where there is significant variability in base-
line conditions, hydroacoustic-based leak detection studies require some feature engineer-
ing. Feature engineering is the application of domain knowledge in order to identify and
select a subset of case sensitive features from a data set (e.g., mean, variance) to be used as
input for machine learning algorithms. While feature engineering can identify appropriate
features in the context of laboratory-based leak detection studies [Cody et al., 2017, 2018,
Khulief et al., 2011], it is not clear if the set of relevant features will be the same or even
constant across an actual WDN. Repeating the feature selection step prior to applying
the classification algorithm for every new monitoring location in a WDN would be time-
consuming and potentially problematic. One deep learning technique that is free from the
need for feature engineering and new in the context of leak detection is the autoencoder.
Deep autoencoders have typical application in image classification [Geng et al., 2015, Chen
et al., 2014] and speech recognition [Principi et al., 2017], as well as in fraud detection [Var-
touni et al., 2018]. Since hydro-acoustic data can also be represented as a spectrogram,
autoencoders could be applied as another novelty detection approach for leak detection.

This section proposes a semi-supervised method using autoencoders for leak detection
in water distribution systems based on spectrograms of hydro-acoustic data. The proposed
spectogram-based novelty detection method combines a deep 2D convolutional neural net-
work (CNN) within a variational autoencoder (VAE). The deep VAE will include 2D CNN
layers for pre-processing the spectrograms, followed by a variational autoencoder layer to
reach the latent layer. The proposed data-driven methodology is, to the best of the au-
thors knowledge, the first application of autoencoders to hydro-acoustic leak monitoring
of WDNs. This contribution is significant because the approach does not require training
with leak data sets and thus eliminates the need for the feature engineering/selection pro-
cess, overcoming a key limitation of current data driven approaches applied to the problem
of leak detection in pipe networks. Results from this implementation will serve as a good
reference for the model based LP method to be described later.
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5.4.1 Data Processing

The data utilized for the proposed methodology are spectrograms of hydro-acoustic mea-
surements collected using the first iteration of the laboratory test bed. Spectrogram images
are used to train the deep learning tool so typical frequencies expected within the system
can be recognized. The presence of a leak is expected to cause a change in the energy
distribution in the transform. While for smaller leaks this difference may be difficult to
discern visually, it is expected that the proposed methodology will be able to detect the
change. Preprocessing was applied to the data prior to the spectrogram calculation. In
order to minimize aliasing caused by the Fourier Transform a Hanning window was applied
to each data subset prior to spectrogram calculation.

A normalized sample of the baseline data is shown in the example spectrogram in Figure
5.10 (with mathematical description derived in Section 3.2.5) to provide readers an idea
of each observation that is generated. However it should be noted that, for analysis, the
data was not normalized.

Figure 5.10: An example normalized spectrogram of baseline —leak-free case. Visualization
of the input training data. With sampling rate = 1350Hz, window = Hann, window size
= 4050 and overlap length of 50%.

The hydrophone signals are partitioned using a 4,050-sample window segment with
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50% overlap into adjacent frames, that is 3 seconds of data is used for each instance. The
subjective choice of a three second window was based on an inspection of the raw data
collected. This is done to both the leak-free and leak scenarios. As well a parametric
study was conducted to understand the effect of various window lengths on classification
accuracy using simple statistical features as a OCSVM methodology, and it was concluded
that between 1 second and 4 seconds the change in results were negligible, however when
segment lengths exceeding 5 seconds the accuracy was reduced significantly.

5.4.2 Implementation of proposed ANN

Tensorflow [Abadi et al., 2016] is an open source software library for high performance
numerical computation. It is used extensively for developing ANNs. Keras is a high-level
ANN application program interface, written in Python and runs on top of Tensorflow. An
ANN was constructed using a CNN and VAE combination using Keras as a wrapper for
TensorFlow. For this, batch sizes of 30 were selected and the neural network was trained for
30 epochs. The training set consisted of only baseline data, this included 990 spectrograms
for training with a validation set of 630 spectrograms. The test sets of 1000 spectrograms
consisted of equal parts baseline and leak cases. The general classification methodology of
the proposed work is summarized in Figure 5.11 and the variational autoencoder/decoder
framework is visually depicted in Figure 5.12.

Implementation of CNN

A spectrogram is passed through a CNN consisting of convolutional layers and max pooling
layers. The output of the CNN is then fed into the variational autoencoder, described in
Section 5.4.2. The CNN is then repeated in reverse to reconstruct the original image. The
loss function is taken as the mean of the loss using a Mean Squared Error (MSE) between
the original and reconstructed image, as seen in equation (5.1), and KL divergence of the
input image and latent layer, as seen in equation (5.5) described in Section 5.4.2.

The MSE is the performance measure most widely selected for regression applications.
The standard form of the MSE loss function is,

L(ŷ, y) =
1

N

N∑
i

[yi − ŷi]2, (5.1)

where (yi − ŷi) is the residual which the MSE loss function targets to minimize, where y
represents the element-wise L2 loss.
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Figure 5.11: Overall structure of the proposed novelty detection methodology.
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Figure 5.12: Convolutional Neural Network structure —the encoder segment applied in
this dissertation includes a sequence of convolutional and max pooling layers. Flattening
is applied, in which the elements are reordered from a multi-dimensional array into a 1-D
array. The Conv2D layers use a 3 x 3 window size with a rectified linear unit (ReLU)
activation function. The output layer uses a Sigmoid (logistic) activation function. The
MaxPooling2D layers use a 2 x 2 window size (indicated by the 4 in the figure). The
framework for variational autoencoder/decoder is also depicted. The latent space has an
assigned dimension of 2, and is then passed to a dense (fully connected) layer with a linear
activation function, outputting a vector. The decoder network is an exact inverse of the
encoder network.

During the reconstruction portion of the CNN, up sampling is applied in the place of
max pooling. Up sampling is the process of duplicating the original sample to increase the
sampling rate, or, in this case, window size. This is referred to as the nearest-neighbour
interpolation method for up sampling. Three two dimensional convolutional (Conv2D)
layers were used with a 3 x 3 window size, padding applied to the original image, a rec-
tified linear unit (ReLU) activation function within the network and a Sigmoid (logistic)
activation function of the output layer. The first layer created 16 filters while the following
two produce 8 filters. Between each of these layers max pooling (and subsequently up
sampling) is applied [Yang et al., 2018], as previously described, using a 2 x 2 window size.
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Implementation of VAE

The encoder takes input X and outputs µ(X) and Σ(X), which are used as parameters
of a Gaussian of the projection of X into the latent variable space [Kingma and Welling,
2014]. The latent variable space can thus follow a unit Gaussian distribution. This is
done using the reparameterization trick, by assuming the original data is Gaussian with
some mean and standard deviation and then restandardizing it so that the mean is now
0 with a standard distribution of 1. With this assumption in mind, when sampling from
this standard normal distribution in which the mean and standard deviation is known, the
sampling operation can be implemented as,

z = µ(X) + Σ(X)ε, (5.2)

where, ε ∼ N(0, 1). A latent variable dimension of 2 was selected for the proposed method-
ology.

The second half of the loss function is the KL loss (described in Section 3.3.7) from
each data point in the mini-batch.

Since P (z) = N(0, 1), and Q(z|X) is Gaussian with parameters µ(X) and Σ(X), the
KL-divergence between these two can be computed in closed form,

DKL[N(µ(X),Σ(X))||N(0, 1)] =
1

2
(tr(Σ(X)) + µ(X)Tµ(X)− k − log det(Σ(X))), (5.3)

in which k is the dimension of the Gaussian, tr(X) is the trace function (the sum of the
diagonal of matrix X), and det(Σ(X)) is the determinant of the standard deviation matrix
of X. The determinant of a diagonal matrix can be computed as the product of its diagonal.
Since Σ(X) is a diagonal matrix it can be considered a vector. Thus equation (5.3) can be
simplified to,

DKL =
1

2

∑
k

(Σ(X) + µ2(X)− 1− log Σ(X)). (5.4)

While mathematically equation (5.4) is correct, in practice Σ(X) is modeled as log Σ(X)
as it is more numerically stable. Hence the second half of the loss function is calculated
using,

DKL =
1

2

∑
k

(exp(Σ(X)) + µ2(X)− 1− Σ(X)). (5.5)
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The overall loss function, or reconstruction error, used for the described model takes
into account both equation 5.5 and equation 5.1, and is defined as,

Loss =
DKL + L(ŷ, y)

2
. (5.6)

This loss is first minimized during the training phase to calibrate the network weights.
The training phase reconstruction errors are also analyzed to determine the reconstruction
error threshold given an application specific allowable type I error (false positive rate).
The loss equation is then used in the testing phase where the error values are used for
classification.

5.4.3 Leak detection

For this section once the data is prepared, the evaluation is performed through the following
steps:

1. The overall data set is divided into 3 second windows with 50% overlap. Spectrograms
of each of the 3 second windows are then created. This creates an image of size 256
x 3600

2. The set of spectrograms of the leak-free baseline case is divided into three parts:
training, validation and test sets.

3. The CNN-VAE network is built using the training and validation sets from the base-
line, leak-free scenario, thus creating a semi-supervised system.

4. The classification error and accuracy of the obtained model is evaluated using the
test set of the leak-free case, as well as the 0.25 L/sec leak scenario. The accuracy is
contingent on selecting a threshold reconstruction error related to the baseline case.

The training, validation and test sets consisting of 60%, 20% and 20% of the available
2121 leak-free spectograms, respectively; while the test set also included an equal number
of leak cases to the 20% leak-free data. The test set utilized insured an equal number
of ambient and leak case data thus the accuracy reported is a weighted accuracy. The
data used during training and validation were not used for testing, as well no leaky data
samples were used to select a threshold, the threshold was determined statistically based
on the training data assuming an allowable Type 1 error percentage. Only the test set
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is used to determine the classification accuracy. Using the training and validation sets,
the connection weights of our network are adjusted. During the model fitting, a function
was added that saved the weights yielding the lowest loss value. These weights were only
updated if the loss value was smaller than the previously saved loss (associated with the
weights saved).

The CNN-VAE spectogram reconstruction model is then used to generate the recon-
structed spectrograms using the test set described. Leak detection performance is evaluated
by estimating the receiver operating characteristics (ROC) curve. An ROC curve using
various thresholds was constructed, and can be seen in Figure 5.13. The area under ROC
curve (AUC), is an indicator for the accuracy of leak detection [Domingues et al., 2018,
Güvenir and Kurtcephe, 2013]. The AUC value ranges from [0, 1], in which values closer
to 0.5 indicate performance comparable to chance and values closer to 1 OR 0 indicate an
almost perfect predictor. The AUC score for the ROC curve in Figure 5.13 is 0.974.
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Figure 5.13: ROC curve of 0.25 L/sec leak (6.35 mm valve). Showing the Sensitivity (True
Positive Rate) versus 1-Specificity (False Positive Rate).

The mean and standard deviation of an assumed normal distribution of the recon-
struction error of the training data is computed and a threshold is set at two standard
deviations from the mean, thus encompassing 97% of the training data. That is, an as-
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sumed false detection rate of 3% is permitted. A reconstruction error threshold of 299.85
was selected, which represents two standard deviations above the mean of the training data
reconstruction error distribution.

Using the test set and model described, an accuracy of 97.2% was observed. Further-
more, a precision of 92% and F1-score of 96% were observed. The overall classification
sensitivity, specificity, etc. can be found in the confusion matrix outlined in Table 5.1. The
low type I and type II errors are indicative of the effectiveness of the proposed methodology
for leak detection.

Table 5.1: Confusion matrix of proposed network classification rates for 0.25 L/sec leak
(6.35 mm valve).

True Class
Predicted Class
Leak Non-leak

Leak 100% 0%
Non-leak 4% 96%

Figure 5.14 demonstrates the responsiveness of the classification accuracy with leak size
and selected threshold (e.g., one through four standard deviations higher than the mean
reconstruction error of the training data). The second, larger leak case, produced with a
valve diameter approximately four times the size of the smaller leak. Results demonstrate
that using a threshold of two standard deviations is a robust choice.

The selected threshold lies on the upper end of the training data reconstruction error
distribution and thus calibration using leak scenario data is not necessarily needed if the
reconstruction error is modeled as a statistical distribution and the threshold taken as
two standard deviation above the mean, thus encompassing 97% of the baseline class
reconstruction error. The threshold can be varied depending on the importance of type I
vs. type II error associated with the desired application.

While the proposed autoencoder methodology is a useful in determining leak sensitive
features within the spectrograms, with results achieving high accuracy (97% classification
accuracy), it is important to note that this study is limited to the task of leak detection
for environments with noise levels comparable to the test bed. If the baseline system is
sufficiently noisy, such as during high demand hours, detection of minimal changes to this
scenario would not be distinguishable with the proposed framework. As well, this method
is very computationally taxing and significant processing and time is required for large scale
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Number of standard deviations the threshold is above the mean

Figure 5.14: Accuracy of ANN model in detecting anomalies for different detection thresh-
olds for two leak sizes. Overall accuracy represents the percentage of correctly labeled test
instances (since the test set is equally weighted with leak and leak-free data this value
equates a weighted accuracy score).

deployment. Finally this method is also limited to detection and can not be expanded to
localization, which is a requirement for useful field deployment.
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5.5 LP Results

While the previously described methodologies yielded adequate results, when field deploy-
ment is considered, the need for significant parameter tuning in the proposed SSA method,
and the computational inefficiency of the NN method must be addressed. Long-term
continuous monitoring applications require tools which balance noise robustness and com-
putational complexity so that the process of generating leak sensitive features is relatively
simple, while providing good robustness to background noise and good detectability.

In Chapter 4 LP was presented as a parametric modeling technique to detect and lo-
cate small leaks in pressurized water pipes. This section proposes the use of LP as a semi-
supervised data-driven anomaly detection approach utilizes the features extracted from the
LP coefficients representing the underlying acoustic signals. LP was selected because of its
computational efficiency, as well as it’s ability to be expanded to localization. In terms of
leak localization, correlation techniques generally rely on having access to relatively long
time segments. However, transmitting large data samples for online monitoring applica-
tions is expensive and not feasible for wide scale field deployment. Compared to correlation
techniques employing raw signals, it is shown that shorter segments of LP reconstructed
signals can achieve similar levels of accuracy as those employing longer segments of raw
time series, which is a key advantage in long term online implementation applications.

5.5.1 Data Processing

The acoustic signals collected using the second iteration of the laboratory test bed are first
separated into a series of individual time-segments, of approximately 3.5 seconds duration,
with 50% overlap between adjacent frames. Each segment of the measurement signal
generates one sample in the feature matrix. Hence, the number of samples used for the
analysis is equal to the number of frames. To avoid aliasing, a hamming window is applied
to each time frame prior to extracting the p = 50 order LP-PCA features.

The overall analysis consists of two steps. In the first step, a feature analysis is per-
formed employing features from both normal and leak data samples. The second step
involves anomaly detection where the model is trained based only on the normal data and
the trained model is validated from both normal and leak data samples. Upon extracting
features from each frame, the feature samples are thus divided into different subsets of
samples accordingly. For the feature analysis, it is assumed that sample of leak data are
available; hence, 20% of both the normal and leak data are randomly chosen for feature
analysis and the remaining samples are retained for anomaly detection. The anomaly
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detection methodology is performed in two phases, training and testing, through a boot-
strapping approach with 100 iterations, in which the data samples for each phase are
chosen randomly. For the training phase, the normal data is employed, in which 70% of
the remaining data samples (after feature analysis) are used, and the remaining 30% of
the samples are employed for testing. For an unbiased testing of the trained model, an
equivalent number of leak samples are added to the normal samples. The current study
investigates the No flow and Flow cases separately, thus creating two scenarios for leak de-
tection: i) No flow-normal and No flow-leak; and ii) Flow-normal and Flow-leak. For the
purposes of comparison, peak, mean, standard deviation, root mean square, crest factor
and energy [Li et al., 2017] (collectively referred to as time-domain (TD) features hereafter)
are also extracted from the time segments.

Leak localization in WDNs has been widely reviewed in literature [Candelieri et al.,
2014, Farley et al., 2013, De Silva et al., 2011, Bracken and Johnston, 2009, Osama Hunaidi,
2006, Hunaidi et al., 2004, Bond et al., 2004, Ozevin and Yalcinkaya, 2013]. One major
limitation of these methods is that significant data transmission is required for processing.
Leak localization is achieved by applying the LP method to filter the signals from two
sensor locations followed by application of the correlation method. This method allows
for a reduction in the transmission requirements by approximating the signal with a lower
dimensional model. The LP filter corresponding to the prediction model in equation 4.5 is
represented as,

P (z) =

p∑
k=1

akz
−k (5.7)

where the output and the input of the filter is respectively, x̂(n) and x(n) as shown in Figure
5.15. First, the model coefficients ak for a given signal x(n) are estimated employing the
auto-correlation method, followed by estimating the reconstructed signal x̂(n) through the
application of the LP filter as shown in equation 5.7.

Figure 5.15: Application of LP filter in reconstruction of signal

The cross correlation (described in Section 3.2.6) of two signals (i.e., the two sensor
locations S1 and S2) is applied to the two filtered measurements to determine the the time
lag (τ).
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The location of a leak, D1 from a reference sensor, is calculated using Gao et al. [2004]

D1 =
D − cτ

2
, (5.8)

where, c is the sound propagation velocity derived in Section 3.1.3 in the pipe and D is
the distance between the two sensor locations, as depicted in Figure 5.16.

Figure 5.16: Localization parameters for cross-correlation based distance from a reference
sensor.

5.5.2 Feature analysis

Prior to detecting anomalies, a feature analysis is performed in order to investigate the
performance of the LP-PCA features in separating the baseline and leak data sets. Feature
analysis plays an important role before building an anomaly detection model, as the selec-
tion of strong features alleviates the need for any preprocessing of the data, thus reducing
the computational complexity of the problem. In general, if the separating capacity of the
features is weak (i.e. the distributions are not sufficiently separable), the detection model
would have poor performance and vice versa. It should be noted that for detection data
from Sensor 1 is used.

The histogram plots of the first LP-PCA features for baseline and leak events are pre-
sented in Figure 5.17 with respect to No flow and Flow scenarios. A general observation on
the LP-PCA features in the figure is that the LP-PCA features perform well in separating
the two events for both scenarios, though it is clearly more separable for the Flow scenario
as compared to the NO flow scenario. This is a distinct advantage when dealing with field
data, which is typically associated with high background noise and more closely simulated
by the Flow case. The measure of similarity of the two probability distributions is also
clearly shown from the estimated Bhattacharyya distances (Bd), described in Section 3.3.6,
on the histogram plots. The values of Bd ranges from 0 to ∞, where 0 represents no sep-
aration between two distributions and ∞ points towards no similar instances between the
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samples. It can be seen that in case of No flow scenario, two of the three LP-PCA features
possess relatively higher values of Bd (−6.86 and −1.82) showing the capability of these
features for separating the leak event from the baseline or leak free event. In case of Flow
scenario, all the features perform very well, specifically the two features with Bd value as
−∞ (subplots (b) and (f)) implying no overlap between the two events.

It should be noted that with different data sets, the observations may be different;
that is to say the above observation for the No flow and Flow scenarios is dependent on
the sample sizes for feature analysis and the particular data sets available for analysis.
The results are expected to vary based on the noise level and structure of the data sets.
Nevertheless, the current study pursues the performance of the feature sets coupled with
the GMM in detecting leaks for both scenarios independently, rather than comparing them
against one another.
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Figure 5.17: Histograms for the first three principal components of LP coefficients i.e.,
LP-PCA(i) with component i = 1, 2, 3 for No flow and Flow scenarios

5.5.3 Leak detection

For this stage of analysis, training and test sets of data samples are prepared as discussed
in Section 5.5.1. Both the training and testing sets are selected randomly for the 100
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bootstrapping iterations and the average of performance measures in predicting leak events
are estimated. Prior to the construction of the predictive model of leak detection, the
optimal number of components are selected based on the training data set. As shown
in Figure 5.18, the K values corresponding to the minimum BIC values are 2 and 1 for
the LP-PCA features in case of No flow and Flow scenarios, respectively. The number of
components K depends on the data structure and complexity. With more complex and
non-normal nature of the data set, the number of GMM components to best fit the data
increases. Since the data structures corresponding to the two scenarios studied here are not
similar, they require different K values to best fit the data. Following this, the parameters
of the K Gaussian mixture components (Λ = [w,µ,Σ]) are obtained using EM algorithm
and the GMM model is constructed for detection.
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Figure 5.18: Sensitivity analysis of number of components based on BIC for LP coefficients
as features

Once the GMM model is constructed from the training data set, the probability density
of the test data set (ptest(x

test|Λ)) is determined using equation 3.39 with the estimated
number of components and GMM parameters from the training data set. In order to
determine if a test sample is normal (i.e., corresponding to baseline), ptest is compared with
a threshold value, which is established based on different percentile values of the probability
density function (pdf) of the training data set (ptrain estimated through equation 3.39).
The 2.5, 5.0, 7.5, 10.0, 12.5 and 15.0 percentile values are adopted in the current study and
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the detection accuracies are investigated based on different threshold values. Nevertheless,
the detection threshold can be adjusted according to the users’ preferences and based on
the availability of training data. Upon establishing the threshold value (dt), each test set
instance is then flagged as leak or an anomaly if ptest < dt.

First, both the No flow and Flow scenarios are studied by adopting a 5.0 percentile value
for the detection threshold. Then the accuracy of the detection methodology is reviewed for
different thresholds. For demonstration, the histogram of probability densities of samples
being normal (i.e., ptrain) and the estimated threshold value is presented in Figure 5.19
for LP-PCA features in case of No flow scenario. The overall accuracy (Ac), precision
(Pc), recall (Rc) and f1-score (Fs) are estimated, and reported in Table 5.2 for the No flow
and Flow scenarios. A general observation from the detection results is that the GMM
with LP-PCA features perform very well in detecting leaks with accuracies of 97.62% and
97.32% for the No flow and Flow scenarios, respectively.

An in-depth discussion of the performance measures under these scenarios is presented
below along with comparing the performance of LP-PCA features to the traditionally
employed TD features, which include peak, mean, standard deviation, root-mean-square,
crest factor and energy [Li et al., 2017], as defined in Section 3.3.9. The normality model
for the TD features are built following a similar methodology as described for the LP-PCA
features (Section 5.5.1), in which the number of components are calculated to be 6 and 3
respectively for the No flow and Flow scenarios.

In the case of the No flow scenario, the LP-PCA based features result in higher accuracy
of 97.62% (Table 5.2) as compared to the TD features with accuracy of 81.89%. Similar
observations are also made for the other performance measures. For example, the precision,
which implies what proportion of positive identifications are actually correct, is 100% for
LP-PCA features as compared to the value of 75.54% for TD features. However, the recall
estimates return close values for both feature sets. This can be explained through the
confusion matrix as reported in Table 5.3, where the first row represents values of TP and
FN and second row has the values of FP and TN. As defined in Section 3.3.8, precision
depends on TP and FP. While the TP reported for both feature sets are almost the same,
FP is very high for TD features leading to lower estimates of precision. On the other
hand, recall depends on TP and FN (Section 3.3.8), which are very similar for both the
feature sets yielding close recall values (95.46% and 93.23% respectively). Another way
of evaluating the performance of the detection framework is through the ROC curves as
shown in Figure 5.20(a). By comparing the two ROC curves, it can be concluded that
the proposed approach of anomaly detection based on integrating LP-PCA features with
GMM significantly enhances the leak detection performance resulting in AUC value of 0.99
as compared to 0.93 for TD features in No flow scenario.
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Figure 5.19: (a) Histogram of ptrain and (b) threshold of samples being normal in case of
LP-PCA features under No flow scenario

Similar observations are also made for the Flow scenario from the performance measures
as reported in Tables 5.2 and 5.4. In the case of the Flow scenario, the TD features perform
very poorly with an accuracy of 55.12% as compared to 97.38% for LP-PCA features. In
specific, TD features yield a very high FP (83.63%) as shown in Table 5.4, which is reflected
through very low precision measure (52.91%). On the other hand, the LP-PCA features
significantly increases performance of the leak detection methodology resulting in 0% FP
which leads to precision measure of 100%. The ROC curves for both feature sets in Figure
5.20(b) and subsequent AUC values also point towards the high performance of LP-PCA
features as compared to the TD features in this scenario.

Table 5.2: Performance of GMM in detecting leaks

Performance No flow Flow
measure (%) LP-PCA TD LP-PCA TD

Accuracy 97.62 81.89 97.38 55.12
Precision 100 75.54 100 52.91

Recall 95.46 93.23 95.06 72.94
F1-score 97.56 84.09 97.3 67.65

120



Table 5.3: Confusion matrix for No flow scenario

True Class
Predicted Class

LP-PCA features TD features
Normal Anomaly Normal Anomaly

Normal 95.24% 4.76% 95.04% 4.96%
Anomaly 0% 100% 31.26% 68.74%

Table 5.4: Confusion matrix for Flow scenario

True Class
Predicted Class

LP-PCA features TD features
Normal Anomaly Normal Anomaly

Normal 94.76% 5.24% 93.86% 6.14%
Anomaly 0% 100% 83.63% 16.37%
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Figure 5.20: ROC curves for TD and LP-PCA based features in cases of (a) No flow and
(b) Flow scenarios

It should be stressed that the above observations and conclusions are based on the
choice of detection threshold and the performance of the GMM in detecting leaks is likely
to be sensitive to this threshold value. A sensitivity study is conducted based on threshold
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values in accordance with different percentiles of the PDF of samples being normal and
the overall accuracy of the GMM is shown in Figure 5.21. As shown, the accuracy of the
GMM in detecting anomaly depends on the choice of the threshold level. For example, the
highest accuracy for TD features are associated with higher percentile values, such as 10.0
and 25.0 for the No flow and Flow scenarios, respectively. In case of these features, the
highest accuracy primarily depends on the relative decrease and increase in TP and TN
values based on the threshold levels. On the other hand, LP-PCA features requires very
low percentile values such as 2.5 for both scenarios. Nevertheless, the LP-PCA features
performs very well in detecting leaks with accuracy ranging from 92% to 99% while the
accuracy of TD features range from 51% to 88% depending on the detection threshold
value and background noise. These differences in the performances of the TD and LP-
PCA features are mainly due to the poor separation between the two events by the TD
features leading to significant sensitivity of the model accuracy to the threshold levels as
compared to the LP-PCA features. Based on large amount of baseline data and small
amount of leak data in the overall data set, the threshold can be calibrated in the future
to yield the maximum accuracy for the detection algorithm.
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Figure 5.21: Accuracy of GMM model in detecting anomalies for different detection thresh-
olds based on different percentiles of the PDF of the normal samples
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5.5.4 Leak localization

Leak localization based on correlation techniques generally rely on having access to rela-
tively long time segments. However, transmitting large data samples for online monitoring
applications is expensive and has often been viewed as one of the main hurdles in cost-
effective leak monitoring applications. The computational simplicity as well as the ability
of LP method to be deployed locally to reduce the overall volume of data transmitted can
be advantageous for long-term applications. The current study proposes the LP method
as a filtering tool, where the reduced filtered data is used to localize leaks. One of the sig-
nificant advantages of this approach is that reasonably good level of accuracy in terms of
localization can be achieved with relatively short segments of LP filtered data, as described
next.

The cross correlation method is applied, as described in Section 5.5.1, on both raw and
LP filtered signals of time lengths ranging from 5 s to 30 s. Using parameters specific to the
laboratory test bed, the theoretical value of the sound propagation velocity (c) in water-
filled PVC pipe is first calculated following Section 3.1.3, as 458 m/s [Neutrium, 2014].
This is consistent with the experimentally observed velocity range of 450 m/s to 520 m/s
for PVC pipes by Hunaidi and Chu [1999]. It is important to note that acoustic velocity,
which plays a central role in localization, is affected by variabilities in both physical,
environmental and sensor elements. Hence, errors in localization are to be expected as
a result of this stochasticity. For this study, the theoretically determined value of c is
employed with the the experimentally determined τ from the cross correlation between
the two sensor measurements for localization. Results shown are from ten trials, where
D1 is estimated using equation 5.8 descibed in Section 5.5.1, with D = 1474.5 cm, and
the deviation of the estimated leak location from the true location (i.e. percent error) for
several cases is reported in Table 5.5. The true D1 value is 911.9 cm.

As expected, the estimated D1 in Table 5.5 shows that there is a general trend where
longer duration samples produce more accurate results, reflected in a reduction of local-
ization errors. Using raw data alone, the average errors are relatively high for shorter time
segments, especially for 5 sec. However, the average localization errors are reduced for
shorter time segments (5 sec) with the use of even low order LP filters. Most notably, the
error in estimating D1 is decreased from 31.43% to 13.45% after applying an LP filter of
order 10. The application of higher order LP filters however does not improve the local-
ization estimates in terms of average localization errors. Also, importantly, the correlation
technique is shown here to produce acceptable results even in more complex geometries,
especially when long-term monitoring techniques are viewed as a first step yielding coarse
localization information prior to deploying more accurate inspection methods.
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Table 5.5: Comparison of average estimated D1 (in cm, without parenthesis) and percent-
age error (within parenthesis) for raw and LP filtered signals for different signal duration

Time length (s) Raw signal
Filtered signal using LP of order p
p = 10 p = 25 p = 50

5
1198.4 1030.4 1026.7 1026.7

(31.4%) (13.5%) (13.3%) (13.3%)

10
1011.2 1021.3 1020.1 1015.7

(12.9%) (12.7%) (12.5%) (12.4%)

15
1012.3 1019.0 1022.4 1013.4

(11.8%) (12.1%) (12.4%) (11.7%)

This section presents a computationally efficient method of semi-supervised leak detec-
tion as well as localization of water distribution systems using the concept of LP. Results
from this study show that LP can be used to extract leak-sensitive features to facilitate
reliable leak detection, while at the same time can be used effectively for leak localization.
Application of a computationally simple GMM model for leak detection shows that this
method can be employed for leak detection in long-term monitoring field applications. In
addition to using it as an effective leak detection tool, results show that LP is able to
achieve good signal approximation based on the underlying model coefficients, thereby re-
ducing the length of time traces required for correlation. Laboratory experimental studies
show that the resulting LP spectral envelope captures the overall behaviour of system,
while being able to differentiate between various leak and no-leak cases in both low and
high background noise cases.

5.6 Summary

This chapter presents a laboratory case study for the application of both model free and
model based methods for semi-supervised leak detection in WDNs. While both methods
of data collection provide important insights and results pertaining to leak detection, there
are a few key differences between the two. Model free methods in general can be helpful
in providing insight into the underlying structure and information contained within the
data itself. The first method employed that is model free in this chapter are SSA, which
is used as a key step in pre-processing the data, following by the application of a OCSVM
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classification methodology. If only the best results are reported for this method, i.e. the
optimal parameters are chosen, the results from this method are reasonably good (0.8 <
AUC < 0.9). However, if these parameters are not appropriatelyy selected the results
are quite poor, approaching random (0.3 < AUC < 0.6). This coupled with the need for
adequate selection of SSA components, and the fact that this methodology was tested on
only the first iteration of the laboratory set up, not incorporating the added complexity of
the updated system, demonstrates the difficulties this method would face in a large scale
field deployment.

The other model free method reviewed is a deep autoencoder methodology. While this
yielded extremely high accuracy (97% classification accuracy), and effectively eliminated
the need for feature engineering, it is associated with significant computational overhead.
As well, this high accuracy was obtained using only low noise data tested on the simpli-
fied first iteration of the laboratory test bed. While this method is promising, the large
computaitonal overhead also demonstrates significant limitations with regards to field de-
ployment.

One of the main limitation of these two methods is that they are only applicable for
leak detection and cannot extended to leak localization within the same methodological
framework. In contrast, the model based LP method coupled with a GMM classification
methodology can be a computationally efficient alternative for leak detection, while being
able to extend effectively to leak localization as well. The results demonstrate the benefits
of the proposed LP based methodology for wide scale autonomous field deployment over
the model-free methods, while providing similar accuracies in detection and being able
to localize as well. As well, emphasis should be made on the application of LP for leak
localization, for which these model-free based methods could not be extended.

While the results from this study are promising, it is important to acknowledge the
limitations of the study. First, despite all the efforts taken to ensure data acquired from the
system is adequately representative of data in an actual field setting, given the laboratory
constraints it is not possible to simulate actual field conditions. This study focuses on
detecting and localizing the presence of relatively small and single leak cases (one at a
time) within a given section of the distribution system. It does not consider the effects of
different leak opening sizes and multiple breaks within a given section, nor the effects of
surrounding soil medium.
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Chapter 6

Field Results

6.1 Introduction

Building off the conclusions drawn from the previous chapter, this chapter shows that LP
performs well for leak detection in a field test-bed case study of a WDN. As well, a new
multi-step localization method is able to achieve reliable localization results. This therefore
shows that the resulting LP spectral envelope captures the overall behaviour of the system,
while being able to differentiate between various leak and no-leak cases. The data analyzed
int his chapter is obtained through an extensive field instrumentation program, which took
over an year to complete; starting the summer of 2017 through fall of 2018. The field test
bed consists of a subsection of a DMA which is unisolated and for whom the variables which
may be affecting the baseline of the system are unknown. The data used in this chapter is
acquired from hydrophones located at various hydrant locations, using retrofitted hydrant
stems, thus eliminating the need to flood the hydrant; this enables the proposed method
to be viable for long-term monitoring. The data is then processed and analyzed using the
LP method described in the previous chapters.

The proposed retrofitted hydrant system aims to overcome many challenges and limita-
tions associated with long-term passive monitoring of WDN systems. It offers a convenient
and affordable solution for event-detection in WDNs, while maintaining minimal installa-
tion cost. The hydrant retrofitting aspect of the proposed system allows it to be installed
easily in many locations without incurring the expensive installation costs associated with
excavating pipes for installation and more invasive monitoring approaches. By simply
retrofitting a fire hydrant, the installation can be completed within hours and water dis-
tribution in that area would not be affected. The computational efficiency of the proposed
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methodology allows for long-term monitoring in field applications. In addition, the lo-
calization methodology allows for two granularities of localization, while using relatively
short time signal lengths. The short time signal lengths minimizes the data-transmission
requirements, which is one of the main impediments in other full-scale implementations of
leak-detection technology.

This chapter is organized as follows: first, the hardware system used in the field data
collection is described, which includes the both the hardware used to retrofit hydrants and
the data collection system; next the field test bed and it’s associated data set are outlined;
the data is then analyzed in order to better characterize the baseline and determine the
need for advanced classification methods; next, the overall methodology used for the field
study is described, including signal pre-processing, the algorithmic steps involved, and the
results for the leak-detection and localization tasks using LP; finally a summary of the
main conclusions and limitations are reported.

6.2 Sensors and Data-Acquisition System

The proposed sensors and the full data-acquisition system were developed during the course
of this project; a commercial version of this system is currently being offered as an off-the-
shelf product, partly resulting from the activities undertaken as a part of this research.1

The state of WDN is monitored using the following four sensors: (i) hydrophone, (ii)
pressure, (iii) accelerometer, and (iv) temperature. The data is acquired, stored, and
transmitted using a custom-designed data-acquisition system. For this study, only those
results obtained using the hydrophone are reported as this sensor type was specifically
designed for this end application and has been incorporated into the commercial product,
informed by the activities conducted during the course of this dissertation.

Access to the water column within the WDN is often an intrusive exercise, as are not
many locations where access is readily available. Previous studies have resorted to inserting
hydrophones into the main lines, using access points such as valves, or drilling into the pipe
wall directly [Whittle et al., 2010, 2013]. In cold climates, such access is often restricted
and avoided, mainly due to risk of freezing, and hence a specially-designed retrofit which
can be inserted into existing fire hydrants was used. This is depicted in Figure 6.1a, where
the retrofitted sensor housing can be installed easily in existing hydrant locations without
the need to excavate pipes or the need to access valve stems.

1Digital Water Solutions - https://digitalwater.solutions/
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(a) Cross-sectional view of hydrophone mounting on the hydrant stem.

(b) ADC board
housing and sensor
mount.

Figure 6.1: Hydrophone mounting unit

The data-acquisition system was designed in house to enable analog-to-digital con-
version, processing, storage and wireless communication. Basic signal-processing is also
enabled at the sensor locations, in order to minimize data transfer overhead and to maxi-
mize battery life. Data-acquisition is achieved using a custom analog-to-digital Conversion
(ADC) board, with 24-bit resolution. The four sensors depicted in Figure 6.1 are located
within a stainless steel unit at the base of the hydrant, with the hydrophone and pressure
sensors exposed to the water column. A 24-bit resolution was chosen compared to less
complex 16 or 12 bit primarily because there of a large uncertainty and potentially signif-
icant range in the acoustic noise levels within WDNs. Power (battery), data storage, and
communication modules are located at the top of the hydrant (street level) and the data is
transferred along the height of the hydrant using a single Cat5e power-over-ethernet (PoE)
cable to the ADC. The processing, storage and communication modules include a Teensy
3.6 micro-processor board located on a custom designed printed circuit board (PCB), a
flash memory storage module, a GPS chip receiver with an antenna, and a 2G cellular
modem. The firmware was written in C++ with serial peripheral interface (SPI) com-
munications between the storage, communications, and the ADC modules. The software
architecture was designed such that diagnostic data is transmitted at set intervals during
low demand hours, primarily during the night. Raw data values are stored in the flash
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storage module for post-processing and analysis, as required. Data visualization and user
alerts are made possible using a web-interface, however this aspect is not described here
as it is considered not relevant for this dissertation.

6.3 Field Test Bed

The field test-bed represents a small section of the WDN within a city’s distribution system.
The test-bed is part of a residential area in south-western Ontario (Guelph), Canada and
consists of approximately 1, 500 m of grey scale 80 PVC pipe. The full test-bed is illustrated
in Figure 6.2.

Figure 6.2: Flow and sensor locations in the test-bed; circles indicate sensor locations while
the diamonds indicate flow locations.

Approximately 930 m of the test-bed consists of pipes with 15.24 cm diameter, while the
remaining 570 m of the pipes have a diameter of 30.48 cm. The test region includes two full
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hoops, three intersections, and two tees. A total of five fire hydrants were retrofitted with
a specially-designed data-acquisition system, while two additional hydrants were selected
to simulate leaks. Typical system pressures range from 360 − 380 kPa within the test
area, depending on various factors such as demand and pump statuses. The system was
not controlled in any way and the typical usage characteristics were not modified during
the course of testing. Furthermore, all the hydrants remained fully operational throughout
the testing period, despite them being retrofitted with new sensor attachments and data-
acquisition systems.

The locations of the simulated leaks were selected to simulate different acoustic impedance
characteristics and distances from the sensor locations (SLs). Various combinations of
intersections and bends between the flow locations (FLs) and SLs encapsulate different
possible configurations the sensors may face with possible leaks in the system.

6.3.1 Data Collection

Controlled distribution flow events were created by attaching a 2.5 inch valve to a hydrant
flow location, at which the flow rate is measured. Three dates were selected in the Fall
of 2018 for leak simulation tests: October 13th, October 21st, and November 3rd. On
each of these test-dates, flow locations, described in Figure 6.2, were simulated between
midnight and 4-AM local time. At each of these flow locations, four flow amounts were
simulated: 200 L/min, 100 L/min, 50 L/min, and 25 L/min. This test procedure spanned
the full three-day period, where, on each of these test days, the two hydrants were flowed in
sequence spanning nearly three hours, starting at midnight through to 3AM. These times
were selected based on historical information of low-demand hours. Figure 6.3 shows a
graph model of the water distribution system, with sensor locations and flow locations 1
and 2 (hereafter referred to as FL 1 and FL 2, respectively) identified.

On the first field test-day data collected at SL 1, 2, 4 and 6; on the second test day,
data collected at SL 1, 2, 4, 5 and 6; and finally on the third day data collected at SL 1,
2, 4, 3, 5 and 6. For each hydrant location, the sequence in which data was collected was
as follows: (1) leak-free data, (2) 200 L/min leak, (3) 100 L/min leak, (4) 50 L/min leak,
(5) 25 L/min leak, (6) leak-free data. The collection of leak-free data, before and after
the leak cases were simulated, allowed for the underlying variability in the system to be
sufficiently encapsulated and thus the baseline models could be adequately calibrated.

During the course of all the field tests, spanning a period of nearly two months, between
four and six sensor locations (hydrants) were instrumented. Leaks were simulated at the
two locations described earlier and shown in Figure 6.3, wherein time was synchronized
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Figure 6.3: Graph model for portion of pipe network layout of the WDN in Figure 6.2.
The thicker lines indicate 300 mm diameter lines, while the thinner lines indicate 150 mm
diameter lines.

using a FONA 808 MiniGSM + GPS module via cellular network. In order to ensure
sufficient variability in the data set, the acoustic signals were acquired on different days
and with different flow sizes. Data was collected at a sampling frequency of 4 kHz, and the
voltage signals were pre-amplified with 20 dB gain, prior to storage and transmission. The
data-acquisition rate was set based on laboratory tests and preliminary signal processing
was conducted.

6.4 Baseline Characterization

Before a complete analysis is undertaken, it is informative to understand the variability that
exists in the acoustic fields within a live WDN. There are several such factors that cause
such variability and are mostly uncontrollable from a monitoring program standpoint:
automatic pumps, usage and repairs to name a few. The exercise to be described next
attempts to study the variability in the acoustic pressure measured by the hydrophones
from the retrofitted hydrant systems. The objective is to enquire whether relatively well
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established statistical hypothesis tests are adequate to determine the presence of the leak
within the natural variability which exists in the acoustic field environment.

The short-time auto-correlation function (STACF) and its counterpart, the short-time
Fourier spectrum (STFS), capture the leak-induced resonances through the estimated LP
coefficients. This is evident, e.g., in the STACF corresponding to FL 1 for two flow cases,
200 and 50 L/min, at all sensor locations (see Figure 6.4).

Leak-free

Leak

Figure 6.4: STACF for all sensor locations for 200 L/min and 50 L/min. In which (a), (b)
represent SL 1; (c), (d) represent SL 2; (e), (f) represent SL 3; (g), (h) represent SL 4; (i),
(j) represent SL 5; and (k), (l) represent SL 6.

A general trend can be observed in the STACFs; a distinct periodicity is introduced
into the system when the leak is present and this periodicity is prominent at larger flow
amounts. The difference in the magnitude of the leak energy is predominantly visible in
the low-frequency region of the spectrum, which is consistent with laboratory findings and
previous studies from [Muggleton and Brennan, 2004]. The periodicity in the correlation
functions is more evident for leak cases involving larger flow amounts (the 200 L/min case
versus the 50 L/min case) and for sensors located closer to the leak location, compared to
those further away. It can be seen that for the smaller leak case of 50 L/min flow, when the
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sensor is located further from the leak source (such as Figure 6.4 (f), (h), (l)), the STACF
of the leak-free and leak cases are practically indistinguishable. In contrast, sensors very
close to the leak source produce clearly distinguishable STACFs, even for smaller leak sizes
(such as Figure 6.4 (b), (d)).

While the strength of STACFs reduce further from the source and such differences not
visually distinguishable, the Bhattacharya distance (which shows the divergence of two
statistical distributions obtained from LP-PCA features) indicted good separability for the
same data set (FL 1), wherein five out of the six sensor locations have a Bhattacharya
distance that is indicative of little to no overlap for at least one of the LP-PCA features.
This is the case for the 200 L/min flow case, as well as for all six sensor locations for
the 50 L/min flow case. This shows that LP-PCA features are capable of being able to
separate the leak event from the leak-free case for both large (200 L/min) and smaller (50
L/min) flow cases.

6.4.1 Hypothesis testing

Prior to describing the LP method for leak-detection, it is instructive to understand the
issues in applying standard statistical tests as a means of leak-detection. Although simple
statistical tests would be the most ideal, they are prone to significant amounts of Type I
error. As such more sophisticated methods must be considered.

T-test

Assuming that the historical baseline condition for the system is available a priori, upon
measuring new test samples, a hypothesis test can be conducted to determine the presence
of a leak. The null hypothesis is posed as follows:

H0 : µxp = µxs , (6.1)

where µx(n) =
∑N
√

1
n

(x21+x22+···+x2n)

N
is the average of N signal root mean squares (RMS),

each computed based on n observations, produced in the same test area. Given a large
historical sample set, µxp can be regarded as the population mean; µxs constitutes the
sample mean. Generally, it is easy to obtain µxp under baseline (leak-free) conditions.
By simulating leak and leak-free cases, the corresponding sample averages can be used to
check against the null hypothesis to assess Type I (falsely rejecting H0 when there is no
leak) and Type II (failing to reject H0 when there is a leak) errors.
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A test statistic, T (µxs), is a function of the desired confidence interval. Therefore, the
critical region (CR) is defined as,

CR = [|T (µxs)− µxp | > zα ∗
σxp√
nxs

] (6.2)

The null hypothesis is rejected when equation 6.2 does not hold true. The threshold of
µ±zα∗ σn can be adjusted by changing zα, therefore changing the probability of false alarm,
i.e., the Type I error.

The hypothesis tests, as formulated above, are prone to Type I errors. In order to
demonstrate this, 1,500 5-second average RMS samples were randomly drawn from nearly
13,000 samples to estimate µxp , which constitutes the baseline acoustic data that is spread
over two months of a measurement campaign. This yielded µxp = 1.63 Pa to be used in
the hypothesis test. On three separate dates, outside the period used to create the baseline
statistics, µxs was calculated by randomly drawing 10 samples corresponding to each day.
The results of the null hypothesis tests are as follows:

Day1 : t(9) = 20.109, SEM = 0.102, p < .00001

Day2 : t(9) = 1.045, SEM = 0.389, p = .323

Day3 : t(9) = −4.872, SEM = 0.102, p < .001

It is clear that these results are associated with Type I errors, for two out of three days
tested. Since the leak-free data is more often being classified as falsely rejecting H0 despite
there being no leak.

Z-test

Similarly, these three dates can be considered a single data set, wherein 40 of the 150
samples are randomly selected. A z-test is applied, which yielded z = 1.772, SEM =
0.244, p = .0767. This means, given that H0 is true, the probability of observing something
less likely than what was observed is 7.7%. This is just around the threshold (p ≤ 0.05),
which is consistent with the results produced by the t-test. Given that one of the three
dates was not rejected, when all three test dates are randomized, it is reasonable that these
results would lie close to α. If the confidence intervals on the null hypothesis are widened,
Type II error increases significantly before the Type I error can be reduced.
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Wilcoxon Rank-Sum test

The use of the t-test and z-test are based on the assumption that the true distribution of
the baseline data is known a-priori and are sufficiently large, so that a normal distribution
is observed, however the lack of years of data make this simply an assumption. Therefore,
if the leak and leak-free data sets are simply taken as two independent data sets (i.e.
assuming the underlying distribution of the two data sets is unknown and there are no
pairings between the observation groups) the Wilcoxon rank-sum test can be applied.

The 2-sided Wilcoxon Rank-Sum test, when applied to the hydro-acoustic data, results
in either Type I, Type II error, or both. In order to demonstrate this, 3-second RMS
samples were generated for the data set associated with each date and case (baseline
acoustic data and leak acoustic data). Two versions of this null hypothesis test were run,
and the results at the 5% significance level are as follows:

1. The baseline data on each date was compared with the leak data from that same
date:

Day1 : Wrs = 64091, z = −17.9622, p < .00001

Day2 : Wrs = 145435, z = 0.2530, p = .8003

Day3 : Wrs = 360571, z = −0.3595, p = .7192

2. Two subsets of baseline data taken approximately a half hour apart are compared
for each date:

Day1 : Wrs = 19691, z = 4.8137, p < .00001

Day2 : Wrs = 7818, z = −13.9417, p < .00001

Day3 : Wrs = 43090, z = −11.4859, p < .00001

Based on the results of the first set of Wilcoxon Rank-Sum tests run it is clear that these
results are associated with Type II errors, for two out of three days tested. Conversely,
based on the results of the second set of tests run, for all three days tested the results are
associated with Type I errors. These results indicate that for two of the three test dates
both Type I and Type II errors occur, while on the remaining test date Type I error is
observed.
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These tests were repeated using baseline data from the day prior as well as three days
prior leading up to the leak test date and the similar trends were observed. Specifically
when the data from the day prior to the leak date, but during the same time frame, was
used the results were clearly associated with Type I errors. As well, when multiple days
prior, but at the same time of day, was used the results were also clearly associated with
Type I errors. The significant variability of the systems baseline day to day leads to this
significant association with Type I errors. Similarly, it is expected that as the baseline is
increased to include more days the Type II errors will also become more prominent.

Due to the inevitably high Type I error, simple statistical tests are inadequate. To
address this issue, more sophisticated signal-processing methods should be considered,
further substantiating the proposed approach.

6.5 Data Processing

Prior to performing leak-detection, key data-preparation steps are discussed. In order to
determine the length of the time segments used, a brief study of the autocorrelation of a
time segment is done to ensure each segment is adequately uncorrelated, as is necessary
for the application of the leak detection methodology. This if then followed by the steps
outlined to pre-process the data for classification.

6.5.1 Autocorrelation

A general assumption of GMM is that the data set must be independent and identically
distributed (IID) [Bishop, 2006]. When time series data is considered, the property con-
sidered to be representative of this is the system’s stationarity. For an ergodic Gaussian
process, the underlying mean and auto-correlation does not change over time. Ensuring
IID for classification is not possible in the context of time-series data, however weak er-
godicity can be assumed if the data is mean-centered (to zero) and the time windows are
sufficiently spaced apart. The latter is due to the rapidly decaying correlation over time.

The autocorrelation for a sample ambient case for measurements given by X(t) de-
scribed in equation (3.31), is shown in Figure 6.5a. The correlation in Figure 6.5a decays
rather quickly and this decay can be better represented compared to a standard reference.
The standard reference used here is the largest value of the autocorrelation, which occurs
at the lag, τ = 0. The decay rate graph can be seen in Figure 6.5b.
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Figure 6.5: Autocorrelation analysis of sample hydro-acoustic time series.

It can be seen that the auto-correlation decays by nearly 90% in under a second. The
red line shown is a 97% decay, which occurs after 3 seconds. Several tests were done with
different time frames and the results showed negligible differences. Thus the LP features
calculated are taken from 1 second time frames with a 50% overlap between adjacent
frames.

6.5.2 Leak-detection

For each flow trial and sensor location, the training data sets are created for baseline
comparisons. They consist of data acquired immediately prior and following each test,
as they are assumed to contain the most relevant baseline spectral characteristics of the
system near the measurement period. Details regarding the data-preparation process, the
estimation of LP coefficients, and the detection of anomalous events consist of the following
steps:

1. The acoustic signals for both the leak-free and leak case are first segmented into
approximately 1 second time frames, with a 50% overlap between adjacent frames.
Each frame generates one sample of the feature matrix. Hence, the number of samples
for the analysis is equal to the number of frames.
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2. LP features are estimated using a model order of p = 50 for both leak-free and
leak cases. A Hamming window is applied to each frame prior to extracting the LP
coefficients. The three principal components of these 50 coefficients are taken for
each sample.

3. Anomaly-detection is undertaken in two phases: training and testing, where 40% of
the baseline (simulated leak-free) samples are used for the training phase and the
remaining 60% are used for the testing phase. The unconventional use of a smaller
training set in comparison with the test set was done in order to better mimic the
typically large amount of baseline instances the system will likely encounter. Thus by
not over fitting to the training data, the results can better reflect how the model will
classify baseline instances. A 10-fold cross-validation procedure is applied to validate
the stability of the model and, thus, accurately estimate its performance. Average
performance measures are reported in all cases.

4. The overall anomaly-detection results are then reviewed using the performance mea-
sure described previously (Ac) and reported and discussed.

Training and test sets were randomly selected for the 10-fold cross validation iterations.
The training sets were used to determine the optimal number of mixtures (K). For the
majority of cases, values of K ranged from 1 to 3. Different K values were required to
best fit the baseline training data, because each sensor location has distinctly different
characteristics and the system has significant day-to-day usage variability. The calculated
K values, along with the EM algorithm, were then used to determine the Gaussian mixture
parameters, θ.

After the GMM is constructed, a threshold was selected based on an assumed allowable
Type II error of 5% (two standard deviations away from the mean). This threshold value
can be adjusted based on preferences of Type I versus Type II error. Finally, the overall
accuracy of the detection methodology was determined using the test samples.

6.5.3 Leak localization

Two-step field localization

Correlation-based localization techniques require the transmission of high resolution raw
time series data, usually collected over relatively long periods of time, which is of order of
several seconds followed by the calculation of statistical averages. As the number of sensor
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nodes increase (typical city-scale installations could potentially have dozens or hundreds
of such nodes), transmitting data from all the nodes would not be cost-effective. Filtering
methods have shown to reduce transmission overhead in laboratory settings [Cody et al.,
2019] and could alleviate this burden to some extent; however, this does not eliminate the
need to transmit data from all the nodes to a central location completely. In this chapter,
a new approach is described, where localization is performed in two steps. The first step
(Step 1) localizes at a coarse resolution, where the main result is to determine the general
area of the leak and the most pertinent sensor streams required for correlation analysis.
In the subsequent step (Step 2), localization is performed using cross-correlation, using
filtered sensor time-series data identified in Step 1. Such a two-step process eliminates the
need for transmitting all the data streams, thereby reducing transmission volume and cost
in full-scale applications. These two steps are explained next in detail.

Step 1: Coarse localization

Using statistical features such as root-mean-square (RMS) for this specific application is
associated with large Type II error [Cody et al., 2019]. However, as shown in this chapter,
RMS could provide a simple means to localize the leak region to a subset of sensors.
Features such as RMS involve relatively simple mathematical operations and can easily
be implemented at the sensor node level, while achieving substantial data compression
(lossy) when used as a screening step. Figure 6.6 shows the distribution of RMS values
corresponding to flow generated at FL 1 and sensor data at SL 2. It is clear that the
distributions are clearly separable for the larger flow amount (200L/min) (the Bhattacharya
distance [Cody et al., 2018] for this case Bd = 1.33. However, RMS appears less useful as
a direct means to delineate smaller leaks from the baseline cases, such as those around 100
L/min or less (Bd values are substantially less, Bd = 0.07− 0.3).

While RMS is not a reliable leak-detection indicator on its own, it is found to be a
good screening tool for leak-localization. It is found that while RMS does not perform
well in terms of inter-distribution separability, i.e. between the baseline and leak distribu-
tions, RMS provides an effective measure of proximity when sorted by magnitude (intra-
distribution of RMS); the true order of the magnitude of RMS at the sensor locations can
be sorted and typically follows the order of distance from the simulated leak location. It
is important to note here that the leak detection step precedes the leak localization and is
not triggered when a leak is not detected.

The following pre-processing steps summarize the overall process of determining the
most pertinent sensor locations to be selected for correlation analysis:

1. The average baseline RMS is calculated using leak-free data collected prior to simu-
lated leaks.
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Figure 6.6: Histogram of RMS (Pa) for different flow amounts using Field Trial 2 data at
SL 2 for FL 2. RMS shows good inter-distribution separability for the large flow case (200
L/min), however this is not the case for lower flow amounts.

2. A filter consisting of three 2nd-order Butterworth notch filters applied at 30, 60 and
120 Hz using a 2 Hz stopband, in order to remove electrical noise noted in the
system, likely caused by the presence of large pumps in the system; is applied for
each 3 second sample.

3. At every instance, the intensity of the acoustic signal for each sensor location, as
described by its RMS value, is calculated and normalized by subtracting the baseline
RMS associated with the SL.

4. These values are then ranked from largest to smallest.

Step 2: Fine localization

The conclusion of Step 1 results in the two closest locations to the leak to be identified
for further processing. Once the sub-set of sensor locations closest to the leak location
have been identified, fine leak localization is achieved by applying the LP method to filter
the signals, followed by applying the correlation method. The LP filter corresponding to
the predictor model is shown in equation 4.5. First, the model coefficients ak are estimated
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by employing the auto-correlation method, followed by estimating the reconstructed signal
x̂(n) through the application of the LP filter of model order p = 50 on signals that are
≈ 2 second in length. Followed by the use of the same filter described in Step 1.

The location of a leak, at a distance D1 from a reference sensor, is calculated using
equation 5.8. The sound propagation velocity for the 15.24 cm and 30.48 cm diameter
pipes (with a pipe wall thickness of 1.1 cm and 1.75 cm, respectively) are calculated using
well-known relationships, as seen in equation 3.13 [Gao et al., 2004, Pinnington and Briscoe,
1994], in which a pipe is considered thin-walled if D/e > 10, which is the case for both
the pipe diameters considered, thus the current case is considered thin-walled and free to
expand throughout, assigning a value of ψ = 1. This results in sound propagation speeds
of 458 m/s and 403 m/s, respectively.

6.6 LP Results

The general detection and localization methodology of the proposed work is summarized
in Figure 6.7.

6.6.1 Leak-detection

The performance measures for all sensor locations produced by all leak amounts at FL 1
and 2 are visually represented in Figure 6.8, with a detailed account of these results found
in Tables 6.1 and 6.2. Due to the nature of data collection and establishing a baseline,
the data set is equally weighted. While the occurrence of a leak versus a leak free case in
reality would never approach equal weight within a data set, the information required to
accurately weight the data set was unavailable. Since the conclusions that would have been
drawn by assessing the uneven data set would be based on assumptions without adequate
information, this assessment was omitted. For this reason, and due to its popularity as
the most commonly used performance metric for classifiers [Garćıa et al., 2009], Accuracy
(Ac) as the measure of performance in Figure 6.8 is selected.
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Figure 6.7: Overall structure of the detection and localization methodology implemented
on the field data.
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(a) Flow Location 1

(b) Flow Location 2

Figure 6.8: Accuracy of detection for all flow cases at (a) FL 1 and (b) FL 2 for all sensor
locations. The locations can be seen in Figure 6.2. Thick solid lines represent larger
diameter pipes and thin lines represent the smaller diameter ones.
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Table 6.1: Detailed results for leak detection at flow location 1.

200 L/min Flow Case
Sensor Location 1 2 3 4 5 6
Accuracy 0.76 0.83 0.97 0.82 0.76 0.57
Precision 0.78 0.85 0.99 0.83 0.79 0.60
Recall 0.72 0.84 0.95 0.90 0.82 0.61
AUC 0.81 0.82 0.98 0.79 0.97 0.53

100 L/min Flow Case
Sensor Location 1 2 3 4 5 6
Accuracy 0.85 0.83 0.98 0.76 0.66 0.96
Precision 0.87 0.87 1.00 0.80 0.66 0.98
Recall 0.89 0.81 0.95 0.73 0.81 0.93
AUC 0.85 0.82 0.98 0.78 0.77 0.94

50 L/min Flow Case
Sensor Location 1 2 3 4 5 6
Accuracy 0.97 0.55 0.98 0.75 0.90 0.97
Precision 1.00 0.60 1.00 0.78 0.90 1.00
Recall 0.92 0.57 0.95 0.83 0.92 0.93
AUC 0.97 0.63 0.98 0.80 0.98 0.69

25 L/min Flow Case
Sensor Location 1 2 3 4 5 6
Accuracy 0.97 0.55 0.98 0.75 0.90 0.97
Precision 1.00 0.60 1.00 0.78 0.90 1.00
Recall 0.92 0.57 0.95 0.83 0.92 0.93
AUC 0.97 0.63 0.98 0.80 0.98 0.69

Figure 6.8a details the detection accuracy across the system for all considered flow
amounts due to the simulated leak at FL 1. As SLs 1 and 2 are nearly equidistant to FL 1,
their detection accuracy is similar across all flow amounts. It is likely the inconsistent low
detection accuracy at SL 3 for the 200 L/min case is the result of a large flow occurring at
the junction of two different size pipes—mimicking typical flow direction variation—and
thus making detection more challenging. It should be noted that SL 3 was only installed
for one of the three test dates and unlike the other SLs, the test set at this location was
not repeated.
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Table 6.2: Detailed results for leak detection at flow location 2.

200 L/min Flow Case
Sensor Location 1 2 3 4 5 6
Accuracy 0.82 0.85 0.56 0.96 0.98 0.59
Precision 0.85 0.87 0.58 1.00 1.00 0.61
Recall 0.81 0.88 0.73 0.92 0.95 0.76
AUC 0.82 0.73 0.58 0.96 0.96 0.56

100 L/min Flow Case
Sensor Location 1 2 3 4 5 6
Accuracy 0.79 0.70 0.98 0.82 0.98 0.97
Precision 0.82 0.74 1.00 0.88 1.00 1.00
Recall 0.76 0.77 0.94 0.81 0.95 0.94
AUC 0.65 0.67 0.83 0.83 0.96 0.97

50 L/min Flow Case
Sensor Location 1 2 3 4 5 6
Accuracy 0.80 0.83 0.71 0.84 0.76 0.66
Precision 0.84 0.85 0.69 0.87 0.84 0.68
Recall 0.70 0.85 0.89 0.85 0.76 0.58
AUC 0.80 0.84 0.67 0.96 0.76 0.67

25 L/min Flow Case
Sensor Location 1 2 3 4 5 6
Accuracy 0.97 0.91 0.98 0.78 0.98 0.81
Precision 1.00 0.92 1.00 0.84 1.00 0.86
Recall 0.93 0.92 0.94 0.68 0.95 0.76
AUC 0.93 0.89 0.83 0.79 0.98 0.74

Overall, with the exception of the 200 L/min at SL 3, SL6 and 50 L/min at SL 6, over
70% detection accuracy is achieved at all sensor locations for the case of simulated leak
at FL1. In terms of the maximum and minimum distances, SL 6 is located over 412 m
away and both SL 1 and SL 2 are at least 110 m from the simulated leak location (FL
1). Furthermore, it is interesting to observe that the lowest flow amount of 25 L/min is
associated with a minimum accuracy of 78%, which shows that the flow amounts in the
range tested does not seem to play a large role in terms of detection accuracy. Accuracy
results for FL 2 at all sensor locations are shown in Figure 6.8b. The results are as expected
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with respect to SL 3, yielding the highest accuracy, of over 97% in all flow cases. As with
the previous case, the detection accuracy in most cases is over 70%. As with the previous
flow case, the detection rate for the lowest flow amount is higher than 73%, with one
exception (SL 6), which is located the furthest from FL 2.

6.6.2 Leak localization

Leak localization follows leak detection and utilizes the two-step procedure described pre-
viously. This section describes the results obtained using this two-step procedure for the
case of two simulated leaks at locations FLs 1 and 2.

Flow Location 1

Step 1: Results for the proposed localization methodology are first presented for FL 1,
where the graph representation consisting of six measurement points, eleven pipe lengths,
and three pipe junctions, is depicted in Figure 6.3. The summary of the localization results
for this step for all FL 1 tests are shown in Table 6.3. The results presented in this table
were created by aggregating concurrent data from all sensor locations and converting the
raw time series into RMS of 3 second samples.At every instance, the intensity of the acoustic
signal for each sensor location, as described by its RMS value, is ranked from the largest to
the smallest. The underlying hypothesis is that the highest intensity values occur closest
to the simulated leak location and the least value for the location farthest. To account for
the statistical uncertainty, this experiment is repeated for all the instances (2, 500 instances
per test date) for each case of simulated leak. A polling scheme is employed to rank the
sensor locations according to their intensity and then converted into a percentage. This
process is repeated for all the three test dates and results are then averaged. Normalization
across each sensor location is performed in order to account for the unavailability of certain
sensor locations on all the three test dates.

Results in Table 6.3 show that the detection results in terms of identifying the most
proximal leak location(s) is correct for the four closest SLs. There is larger uncertainty
in the ranking (e.g. SL 4 and SL 6 are both ranked in the fourth position), which could
be a result of several factors, including the number of impedance changes and the local
acoustic environment near the source. It is important to underscore that for the purposes
of the correlation exercise in the next step, it is only sufficient to rank at a minimum two
locations correctly.
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Table 6.3: Average location rank as a percentage for FL 1 (true order: SL1/SL2, SL3, SL4,
SL6, SL5) of all flow cases. The selected rank for each sensor location is in bold.

Rank SL 1 SL 2 SL 3 SL 4 SL 5 SL 6
1st 18.4 45.1 19.1 1.1 6.7 6.8
2nd 42.2 14.0 8.0 5.4 5.4 16.1
3rd 1.9 3.7 28.8 24.6 23.1 29.8
4th 1.7 3.5 16.3 25.2 25.8 32.1
5th 19.5 7.5 9.0 18.9 28.9 15.2
6th 16.3 26.3 18.8 24.7 10.0 0.0

Step 2: Localization results from the first step show that SLs 1 and 2 are the two closest
locations to the simulated leak, with SL 3 also being within the general region. The
previously described pre-processing was applied to ≈ 2 second concurrent time series data
from the three sensor locations. Cross-correlation, using a theoretically obtained sound
propagation velocity of 458 m/s, was performed and the lag corresponding to the maximum
positive correlation was used to calculate D1. For all cases, the average D1 calculated for
each flow amount for the three test dates, yielding locations for the simulated leaks as
summarized in Table 6.4. The practical challenges associated with determining the true
D1 are the unknown lengths of laterals in the data available and the lack of experimentally
determined value of the speed of sound in the system. Hence, the true D1 used is as an
approximate value and the results obtained from using SL 1 and SL 3 show relatively
large error (between 7.5-24.8%) compared to SL 1 and SL 2 (1-11.9%). It is not surprising
that the former results in larger errors as SL− 3 is farther from the leak location and at a
junction of two pipe sizes. However, using SL 1 and SL 2, the correlation method yields
results within 12% for the worst case. As well, better localization accuracy is achieved for
the lower flow amounts compared to the highest flow amount (200 L/min).

Flow Location 2

Step 1: The graph model for this case is shown in Figure 6.3. The localization results from
the first step for all tests (dates and amounts) are shown in Table 6.5. Unlike FL 1, FL 2 is
located at the extremity of the test area and is located along the larger diameter pipe. As
seen from the results presented in Table 6.5, both SL 3 and SL 1 can be considered equally
probable as candidates in terms of the closest from the simulated leak, with SL 3 being the
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Table 6.4: Average D1 (in meters), µD1 , for each flow amount using SLs 1 and 2, and SLs
1 and 3. In both cases D1 is taken as the distance from SL 1 to the leak location, thus for
both cases, the true distance is approximately D1 = 109 m. Percentage errors are reported
in parenthesis.

Flow Amount µD1(SL1−2) (m) µD1(SL1−3) m
200 L/min 95.99 (11.9%) 136.03 (24.8%)
100 L/min 107.91 (1.0%) 131.19 (20.4%)
50 L/min 100.40 (7.9%) 117.26 (7.5%)
25 L/min 99.59 (8.6%) 100.62 (7.7%)

true closest location. SL 4 is correctly classified as the next closest, and SL 5 is correctly
classified as the furthest SL. SL 2 and SL 6, are mis-classified, as they are relatively far
from the flow location. However, this does not affect the subsequent step as the only two
closest locations have to be correctly ranked for the ensuing step.

Table 6.5: Average location rank as a percentage for FL 2 (true order: SL3, SL1, SL4,
SL2, SL6, SL5). The selected rank for each sensor location is in bold.

Rank SL 1 SL 2 SL 3 SL 4 SL 5 SL 6
1st 33.1 22.6 52.7 1.1 2.5 10.8
2nd 27.4 18.4 17.8 9.3 2.0 27.3
3rd 11.1 8.2 8.6 34.4 5.7 26.2
4th 8.7 8.7 7.6 24.1 20.7 24.2
5th 13.6 33.0 3.2 11.3 16.7 11.4
6th 6.1 9.1 0.0 19.7 52.3 0.0

Step 2: Based on the results of the first step presented in Table 6.5, the proximity ranking
of sensor locations show both SLs 1 and 3 as being the most proximal sensor locations,
while SL 4 ranked as the next closest. Due to this, it can be inferred that the leak is located
closer to, if not along, the main section of the pipe. Localization on the main section of the
pipe is done most effectively by using SLs 3, and 4 as their locations are associated with
the least impedance changes. The localization method is once again applied to ≈ 2 second
samples; cross-correlation using a sound propagation velocity of 403 m/s, calculated for
larger diameter pipe segment along which the leak and SLs under review lie, was performed
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and the location of the maximum lag in the correlation graph was used to calculate the
average D1 for each flow amount.

Table 6.6: Average D1 (in meters), µD1 , for each flow amount using SLs 3 and 4. D1 is
taken as the distance from SL 4 to the leak location, thus for both true D1 = 268 m.
Percentage errors are shown in the parenthesis.

Flow Amount µD1(SL3−4)

200 L/min 261.88 (2.3%)
100 L/min 230.85 (13.9%)

50 L/min 222.47 (17.0%)
25 L/min 247.90 (7.5%)

The cross-correlation of SLs 3 and 4 was reviewed for the different flow amounts col-
lected: the D1 values estimated from this algorithm are summarized in Table 6.6 together
with the errors. As mentioned previously, due to the presence of laterals, the true D1 is not
known exactly; however the 268 m based on the information provided (this is believed to
be within a few meters of actual) was used for comparison purposes. The results obtained
for FL − 2 are similar in terms of errors compared to FL − 1, despite the fact that this
layout can be viewed as more challenging compared to the former.

6.7 Summary

This chapter presents a field case study for the application of LP for semi-supervised leak-
detection in WDNs. A novel two-part localization methodology is presented, which first
isolates the general region of the leak, then pin-points a more exact location. The system
developed in this study overcomes many challenges and limitations that were previously
associated with long-term passive monitoring in WDN systems. This system offers a con-
venient and affordable solution for event detection in WDNs, while maintaining minimal
installation cost and energy-consumption.

Results from this study outline the use of LP features, coupled with a GMM, and show
that the proposed methodology is able to achieve leak-detection. Furthermore, the local-
ization results using correlation method shows that it is possible to achieve localization,
which can then inform more local inspections and intervention strategies for pinpointing
leaks. The computational efficiency of the proposed methodology allows for long-term
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monitoring in field applications. In addition, the localization methodology allows for two
granularities of localization, while using short time signal lengths. The short time signal
lengths minimizes the data-transmission requirements, which is one of the main impedi-
ments in other full-scale implementations of leak-detection technology. These results are
presented using data obtained from a section of a WDN, using a custom hydrant-mounted
data-acquisition system with unique hardware and software, designed specifically for the
case study described here.

While the results from this study are promising, it is important to acknowledge the
limitations of this study. The effectiveness of the proposed methodology was proven in one
field test-bed; there is significant additional validation tests required before this method can
be generalized or uniformly applied to a range of conditions. Moreover, while it is expected
that this methodology will perform robustly with different pipe materials, especially since
PVC is typically considered most challenging for leak detection and leak localization, other
pipe materials have not been evaluated in this dissertation. This study assumes that there
is only one leak at a time in a given section and does not make any claims in terms of
detection when multiple leaks occur in a given test area. Finally, the effect of different soil
materials surrounding the pipe system has also not been studied.
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Chapter 7

Concluding Remarks

7.1 Summary of contributions

In this dissertation, the problem of long term passive monitoring of leak detection and
determining their corresponding locations is addressed. Basic principles of LP are extended
and applied to the problem of leak detection and localization. Results from two test beds
are considered: a laboratory test bed for proof of concept and a corresponding field test
bed for validation of the developed event detection and localization algorithms. The field
test bed was selected for its similarity to the laboratory test bed, as they are the same
material and the majority of the field test bed consisted of the same diameter of pipe as
that found in the laboratory test bed. The purpose of the field test was to validate the
test results obtained from the laboratory tests. Specific challenges faced with long term
data collection and the use of data under unknown conditions were discussed, and semi-
supervised algorithms facilitating leak detection and localization under these conditions
were developed. The following are the main contributions of this dissertation:

1. A sensor hardware and software platform with specifications for the retrofitted hy-
drant mounted monitoring systems was developed, specifically for long-term pas-
sive monitoring systems which balance the density (of sensors), granularity of scale
and the reliability of event detection in a live WDN, for year-round monitoring.
The retrofitted fire hydrant system allows for a low-cost implementation with low
granularity in order to isolate general regions in the system to direct the tedious
high-resolution, high man-hour detection processes. The low-maintenance and low
granularity aspects of this passive monitoring system allows for cities with different
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budgets to deploy this system with whatever initial cost they can accommodate,
changing the granularity and accuracy of the system. The major tasks accomplished
for the development of this system are as follows:

(a) The development of hardware with adequate capabilities for data sampling and
collection.

(b) In practical implementation, the system facilitates autonomous deployment.
The developed software enables passive data collection during selected times
of interest.

2. A LP based framework is established for the analysis of acoustic signatures and was
found to be a powerful tool in capturing the primary resonant responses of the fluid-
pipe coupled linear system, and thus a representative feature as to the state of the
system. The main highlights from the development of this framework are as follows:

(a) The sensitivity of linear prediction coefficients to leak induced signals was vali-
dated for a single pipe segment in the laboratory.

(b) The LP framework allows for an unified treatment of both leak detection and
localization problems, which is a significant advantage.

(c) The proposed framework allows for a semi-supervised anomaly detection im-
plementation which is sufficiently robust and computationally efficient for long
term field applications.

3. Laboratory and field case studies were used to validate the LP based framework
and test the developed decision support systems for autonomous implementation
of event detection for the hydrant mounted system. The main highlights from the
experimental case studies are as follows:

(a) A laboratory test bed for proof of concept validation of the proposed methodol-
ogy, which is relatively representative of field conditions, was developed. While
it is not completely representative of a field system, it involves an increased
number of bends and laterals, as well as actual hydrants mounted to the system
to more accurately represent field conditions and features.

(b) By using advanced statistical and machine learning methods coupled with the
proposed LP based framework, the described system has the capacity to identify
anomalies accurately and with sufficient computational efficiency that it can be
deployed in field monitoring situations. However, as it is a purely data-driven
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approach, this is contingent on a good representation of the baseline of the
system.

(c) The proposed system was experimentally deployed and verified in a subset of
water distribution network under live conditions. A comprehensive database
containing months of hydro-acoustic data of typical water distribution system
operating at various hours and months, across a DMA at a hydrant level, was
developed. This database can be used to:

i. Better understand hydraulic conditions as they occur in the field.

ii. Better the development of accurate baselines throughout the year and al-
gorithmic improvements.

7.2 Limitations

While the results from this dissertation are promising, it is important to acknowledge the
limitations. The effectiveness of the proposed methodology was proven in one field test-bed;
there is significant additional validation tests required before this method can be general-
ized or uniformly applied to a range of conditions. Data collected at low demand hours
are used for the pilot study discussed herein, a review of the effectiveness of the proposed
methodology on data collected throughout the day should also be considered. As well, an
assumption is made that the detection of anomalies is limited to the presence of leaks. No
attempt to identify other sources of anomalies is made within this dissertation. Moreover,
while it is expected that this methodology will perform robustly with different pipe mate-
rials, especially since PVC is typically considered most challenging for leak detection and
leak localization, other pipe materials have not been evaluated in this dissertation. This
dissertation assumes that there is only one leak at a time in a given section and does not
make any claims in terms of detection when multiple leaks occur in a given test area or any
attempt at identifying the size of the leak that is detected. The effect of the surrounding
soil properties on the detection accuracy is also not addressed.

7.3 Directions for future study

Based on the research work proposed in this dissertation, the following research directions
can be pursued for extending the methodology:
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1. While this study extended over multiple years, actionable data was only obtained for
time spanning a few months. Various factors including the need for field support staff
(operating hydrants can only be undertaken by licensed staff), budget and scheduling
limited the ability to collect extensive data. Hence, there is a tremendous scope to not
only extend the duration of data collection, but also to increase the sensor density.

2. From an anomaly detection standpoint, a fairly limited set of tools have been em-
ployed on acoustic data; there is definitely a lot of room to test and deploy pow-
erful machine learning algorithms in the future. The employment of a probabilistic
Bayesian inference approach, for example, would enrich the methodology by incor-
porating the epistemic uncertainty around the LP and GMM parameters.

3. There is also potential to add concurrent data from other sensor types such as pressure
and accelerometers into the training and validation processes. Utilizing the strengths
from different sensor types would strengthen the methodology and likely improve
performance.

4. Although PVC is considered the most difficult pipe material for detection and lo-
calization due to the flexible nature of the materials and thus the increased signal
attenuation, the review of the proposed framework on other pipe materials would be a
logical next step to the work summarized within this dissertation. It is expected that
the rigid nature of cast iron and concrete will improve the detection and localization
accuracies when this framework is implemented in those systems.

5. In addition to the pipe material, the effect of various types of surrounding back-fill
material on the quality of results need to be studied. This will likely have significant
effects on the rigidity and in turn the attenuation of the signal.

6. The described framework can be extended to include other important variables such
as leak size, presence and number of multiple leaks and frequency of pressure tran-
sients in the system.

7. In the proposed framework, data from each sensor unit is modeled independently as
a uni-variate time series. A multivariate modelling approach can also be taken in the
future, where data from multiple units can be taken simultaneously and modeled as
as vector time series, which could potentially yield additional insight into the leak
characteristics.
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Salvador Garćıa, Alberto Fernández, Julián Luengo, and Francisco Herrera. A study of
statistical techniques and performance measures for genetics-based machine learning:
accuracy and interpretability. Soft Computing, 13(10):959, 2009.

Jie Geng, Jianchao Fan, Hongyu Wang, Xiaorui Ma, Baoming Li, and Fuliang Chen. High-
resolution sar image classification via deep convolutional autoencoders. IEEE Geoscience
and Remote Sensing Letters, 12(11):2351–2355, 2015.

161



Nina E. Golyandina. On the choice of parameters in singular spectrum analysis and related
subspace-based methods. Statistics and Its Interface, 2010.

Jinzhe Gong, Martin Lambert, Aaron Zecchin, Angus Simpson, Nicole Arbon, and Young-il
Kim. Field study on non-invasive and non-destructive condition assessment for asbestos
cement pipelines by time-domain fluid transient analysis. Structural Health Monitoring,
15(1):113–124, 2016. ISSN 1475-9217. doi: 10.1177/1475921715624505.

James-A Goulet, Sylvain Coutu, and Ian FC Smith. Model falsification diagnosis and
sensor placement for leak detection in pressurized pipe networks. Advanced Engineering
Informatics, 27(2):261–269, 2013.

Environment Government of Canada and Climate Change Canada. Environment and
Climate Change Canada - Environmental Indicators - Residential Water Use, mar 2012.
URL https://www.ec.gc.ca/indicateurs-indicators/default.asp?lang=en{&}n=

7E808512-1.

Marcos Guillen, Jean-Francois Dulhoste, Gildas Besancon, and Rafael Santos. Study of a
flow model for detection and location of leaks and obstructions in pipes. 9th International
Conference on Modeling, Optimization & SIMulation, Bordeaux, France, 06 2012.

Suman Gupta. Canadas freshwater - alive, 2013. URL http://www.alive.com/

lifestyle/canadas-freshwater/.
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for the environmental evaluation of potable water production. Desalination, 220(1–3):
37–56, mar 2008. ISSN 0011-9164. doi: 10.1016/j.desal.2007.01.021.

Hans Von Storch. Misuses of statistical analysis in climate research. In Analysis of Climate
Variability, chapter 15, pages 11–26. Springer, 1999.

Hans von Storch and Francis W Zwiers. Statistical analysis in climate research, 2002.

Lynn P. Wallace. Water and Revenue Losses: Unaccounted for Water. American Water
Works Foundation, 1987. ISBN 0898674174.

L Wang, A Chen, SA Flamberg, JB Nestleroth, M Royer, and AF Williams. Field demon-
stration of innovative leak detection/location technologies in conjunction with pipe wall
thickness testing for water mains. In Pipelines 2010: Climbing New Peaks to Infras-
tructure Reliability: Renew, Rehab, and Reinvest, pages 1188–1198. American Society of
Civil Engineers, 2010.

Mike West and Jeff Harrison. Bayesian forecasting and dynamic models. Springer Science
& Business Media, 2006.

Andrew J. Whittle, Lewis Girod, Ami Preis, Michael Allen, Hock Beng Lim, Mudasser
Iqbal, Seshan Srirangarajan, Cheng Fu, Kai Juan Wong, and Daniel Goldsmith. Wa-
terWiSe@SG: A Testbed for Continuous Monitoring of the Water Distribution System
in Singapore. Water Distribution Systems Analysis 2010, pages 1362–1378, 2010. doi:
10.1061/41203(425)122.

Andrew J Whittle, Michael Allen, Ami Preis, and Mudasser Iqbal. Sensor networks for
monitoring and control of water distribution systems. In Pipelines 2012: Innovations
in Design, Construction, Operations, and Maintenance, Doing More with Less. Interna-
tional Society for Structural Health Monitoring of Intelligent Infrastructure, 2013.

Pierre Wickramarachi. Effects of windowing on the spectral content of a signal. Sound and
vibration, 37(1):10–13, 2003.

176



G. Williams and G. Kuczera. Analyzing SCADA to understand the contribution of hy-
draulic pressures to trunk-main failure. Procedia Engineering, 89:1452–1459, 2014. ISSN
18777058. doi: 10.1016/j.proeng.2014.11.472.

Worldometer. Current world population, 2019. URL https://www.worldometers.info/

world-population/.

Yipeng Wu and Shuming Liu. A review of data-driven approaches for burst detection in
water distribution systems. Urban Water Journal, 14(9):972–983, 2017.

Zheng Yi Wu and Paul Sage. Water loss detection via genetic algorithm optimization-based
model calibration. In Water Distribution Systems Analysis Symposium 2006, pages 1–11.
ASCE, 2008.

Zheng Yi Wu, Paul Sage, and David Turtle. Pressure-Dependent Leak Detection Model
and Its Application to a District Water System. Journal of Water Resources Plan-
ning and Management, 136(1):116–128, 2010. ISSN 0733-9496. doi: 10.1061/(ASCE)
0733-9496(2010)136:1(116).

Jin Yang, Yumei Wen, and Ping Li. Leak location using blind system identification in
water distribution pipelines. Journal of Sound and Vibration, 310(1-2):134–148, 2008.
ISSN 10958568. doi: 10.1016/j.jsv.2007.07.067.

Jin Yang, Yumei Wen, Ping Li, and Xingke Wang. Study on an improved acoustic leak
detection method for water distribution systems. Urban Water Journal, 10(2):71–84,
2013.

Xincong Yang, Heng Li, Yantao Yu, Xiaochun Luo, Ting Huang, and Xu Yang. Auto-
matic pixel-level crack detection and measurement using fully convolutional network.
Computer-Aided Civil and Infrastructure Engineering, 33(12):1090–1109, 2018.

Guoliang Ye and Richard Andrew Fenner. Kalman Filtering of Hydraulic Measurements for
Burst Detection in Water Distribution Systems. Journal of Pipeline Systems Engineering
and Practice, 2(1):14–22, 2011. ISSN 1949-1190. doi: 10.1061/(ASCE)PS.1949-1204.
0000070.

B Yegnanarayana. Artificial neural networks. PHI Learning Pvt. Ltd., 2009.

Shen Yin, Xiangping Zhu, and Chen Jing. Fault detection based on a robust one class
support vector machine. Neurocomputing, 145:263–268, 05 2014.

177

https://www.worldometers.info/world-population/
https://www.worldometers.info/world-population/


L. Yufeng and J. Saniie. Singular spectrum analysis for trend extraction in ultrasonic
backscattered echoes. Proc. IEEE Int. Ultrasonics Symposium, pages 1–4, 2015.

Yves Filion, MacLean, H., and Karney, B. Life-Cycle Energy Analysis of a Water Distribu-
tion System. Journal of Infrastructure Systems, 10(3):120–130, 2004. ISSN 1076-0342.
doi: 10.1061/(ASCE)1076-0342(2004)10:3(119).

Min-Ling Zhang and Zhi-Hua Zhou. A k-nearest neighbor based algorithm for multi-
label classification. In Granular Computing, 2005 IEEE International Conference on,
volume 2, pages 718–721. IEEE, 2005.

Qingzhou Zhang, Zheng Yi Wu, Ming Zhao, Jingyao Qi, Yuan Huang, and Hongbin Zhao.
Leakage zone identification in large-scale water distribution systems using multiclass
support vector machines. Journal of Water Resources Planning and Management, 142
(11):04016042, 2016.

178



APPENDICES

179



Appendix A

List of Publications

The following is a list of journal publications and conference papers resulting from the
work contained in this dissertation:
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1. Cody, R., Harmouche, J., and Narasimhan, S. (2018). Leak detection in water
distribution pipes using singular spectrum analysis. Urban Water Journal, 15(7),
636-644.

2. Cody, R. A., Dey, P., and Narasimhan, S. (2020). Linear prediction for leak de-
tection in water distribution networks. Journal of Pipeline Systems Engineering and
Practice, 11(1), 04019043.

3. Cody, R. A., Tolson, B. A., and Orchard, J. (2020). Detecting leaks in water
distribution pipes using a deep autoencoder and hydroacoustic spectrograms. Journal
of Computing in Civil Engineering, 34(2), 04020001.

4. Cody, R. and Narasimhan, S.. A Field implementation of linear prediction for
leak-monitoring in water distribution networks. Advanced Engineering Informatics
(undergoing revisions).

Conference Proceedings - Full paper

1. Cody, R., Narasimhan, S., and Tolson, B. (2017). One-class SVM–leak detection in
water distribution systems. Proc., Computing and Control for the Water Industry,
CCWI 2017.
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Appendix B

Cholesky Decomposition

The Cholesky decomposition (or Cholesky factorization) factors a Hermitian, positive-
definite matrix into the produce of a lower triangular matrix and its conjugate transpose,
such that A = LTL. It can be computed by a form of Gaussian elimination that takes
advantage of the symmetry and definiteness, such that each element can be computed as
[Benoıt, 1924],

A(i, j) =

{
ai,i =

∑i
k=1 l

2
k,i : j = i,

ai,j =
∑i

k=1 lk,ilk,j : j > i.
(B.1)

This can be expressed in terms of L as,

L(i, j) =

li,i =
√
ai,i −

∑i−1
k=1 l

2
k,i,

li,j = 1
lj,j

(
ai,j −

∑j−1
k=1 li,klj,k

)
.

(B.2)
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Appendix C

Head Tank Pressure

This summary attempts to statistically characterize the variability that exists in the overall
system pressure within a live WDN. This can be done by studying the variability in the
measured pressure in the head tank, located in the City of Guelph, Ontario where the
field tests have been conducted. A histogram of the head tank pressures for the dates
10/13/2018, 10/21/2018 and11/03/2018 are generated and shown in Figure C.1.

Figure C.1: Distribution of leak and leak free pressure data.

182



Appendix D

Equation of motion of a membrane

The following derivation for the equation of motion of a membrane is taken from Kinsler
et al. [1999]. It is included within this dissertation for the sake of completeness.

If the tension per unit length, T is uniform at all points and the deflections u(x, y, t)
during motion are small, then according to Figure D.1, the net vertical forces in the x-axis
and y-axis, respectively, are,

T∆y(sinβ − sinα) ≈ T∆y(tanβ − tanα)

= T∆y(
∂u

∂x
|x+∆x,y1 −

∂u

∂x
)|x,y2)

T∆x(sinβ − sinα) ≈ T∆x(tanβ − tanα)

= T∆x(
∂u

∂y
|x1,y+∆y −

∂u

∂y
)|x2,y).

(D.1)

By applying Newton’s law and summing the forces in equation D.1 for equilibrium,

∂2u

∂t2
=
T

ρ
[
∂u
∂x
|x+∆x,y1 − ∂u

∂x
)|x,y2

∆x
+

(∂u
∂y
|x1,y+∆y − ∂u

∂y
)|x2,y)

∆y
] (D.2)

= c2(
∂2u

∂x2
+
∂2u

∂y2
) (D.3)

= c2∇2u (D.4)

where c2 = T
ρ

and ∇2 is the Laplacian operator.
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Figure D.1: Forces acting on the stretched membrane [Jeffrey, 2001].

In order to derive the equation for normal modes, the equation of motion shown in
equation D.4 is assumed to have solutions of the form,

u = Ψeiωt, (D.5)

where Ψ is a function of only the position.

By substituting equation D.5 into equation D.4, and introducing wave number, (k), as
k = ω

c
gives the Helmholtz equation,

∇2Ψ + k2Ψ = 0, (D.6)

which can be expressed in cylindrical coordinates as,

∂2Ψ

∂r2
+

1

r

∂Ψ

∂r
+

1

r2

∂2Ψ

∂θ2
+ k2Ψ = 0. (D.7)

By assuming Ψ = R(r)Θ(θ), applying separation of variable and multiplying equation
D.7 by r2/Θ and re-arranging gives,

r2

R
(
∂2R

∂r2
+

1

r

∂R

∂r
) + k2r2 = − 1

Θ

∂2Θ

∂θ2
. (D.8)
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If ∂2Θ
∂θ2

= −m2Θ has the harmonic solutions Θ(θ) = cos(mθ + ym), then, with m fixed
in value, equation D.8 becomes Bessel’s equation,

∂2R

∂r2
+

1

r

∂R

∂r
+ (k2 − m2

r2
)R = 0. (D.9)

The solutions to this equation take the form of Bessel’s functions of order m of the first
kind Jm(kr) and second kind Ym(kr),

R(r) = AJm(kr) + BYm(kr). (D.10)

Equation D.10 are oscillatory functions of kr whose amplitude reduces roughly as
1/
√
kr. As kr tends to 0, the function BYm(kr) becomes unbounded. However, the

membrane that extends across origin should have finite displacement at r = 0. Thus it
requires B in Eq. D.10 to be zero which reduces to,

R(r) = AJm(kr). (D.11)

At r = a, the boundary condition R(a) = 0 requires Jm(ka) = 0. If the values of
the function for Jm that cause it to be zero, are represented by jmn and kmn, in which
kmn = jmn/a, then solutions of circular membrane with fixed rim becomes,

ur,θ,t = AmnJm(kmnr)cos(mθ + γmn)eiωmnt, (D.12)

where, Amn = Amne
jφmn .

The fundamental frequency of the system can be obtained using zeros of the first kind
(Jm(kr)) of Bessel’s function, the speed of sound c in a pipe, and the pipe radius a,

fmn =
1

2π

jmnc

a
. (D.13)

The real part of equation D.12 gives the physical motion of (m,n)th modes,

ur,θ,t = AmnJm(kmnr)cos(mθ + γmn)cos(ωmnt+ φmn). (D.14)

Sample mode shapes can be seen in Figure 3.1.
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