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Abstract

Adaptive control is an approach used to deal with systems with uncertain or time-varying
parameters. A classical adaptive controller typically consists of a linear time-invariant
(LTI) control law together with a tuning mechanism which adjusts its parameters. Usually,
though not exclusively, discrete-time adaptive controllers provide only asymptotic stability
and possibly bounded-noise bounded-state stability; neither exponential stability nor a
bounded noise gain is typically proven. Recently it has been shown that if we employ a
parameter estimator based on the original Projection Algorithm together with projecting
the parameter estimates onto a given compact and convex set, then the adaptive controller
guarantees linear-like closed-loop behavior: exponential stability, a bounded noise gain and
a convolution bound on the exogenous inputs. In this thesis, the overarching objective
is to show that we can prove these same desirable linear-like properties in a wide range
of adaptive control problems without the convexity assumption: the main idea is to use
multiple estimators and a switching algorithm. Indeed, we show that those properties arise
in a surprisingly natural way.

We first prove a general result that exponential stability and a convolution bound on
the closed-loop behavior can be leveraged to show tolerance to a degree of time-variations
and unmodelled dynamics, i.e. such closed-loop properties guarantee robustness. After
reviewing the original Projection Algorithm and introducing the reader to our slightly
revised version, we turn our attention to controller design, with a focus on a non-convex set
of plant uncertainty. As a starting point, we first consider first-order plants incorporating a
simple switching algorithm. We then extend the approach to a class of nonlinear plants
(which have stable zero dynamics); we consider both cases of convex and non-convex sets of
parameter uncertainty. Afterwards, we turn to possibly non-minimum phase LTI plants;
first we consider the stabilization problem for which we have two convex sets of uncertainty;
then, we turn to the problem of tracking the sum of a finite number of sinusoids of known
frequencies subject to an unknown plant order and a general compact set of uncertainty.
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Chapter 1

Introduction

In this chapter, we first briefly talk about adaptive control. Next, we will motivate the results
of the thesis through a detailed literature review and discussion. After that, objectives
and contributions of the thesis are discussed. Then an outline of the rest of the thesis is
provided, followed by introducing some notation that will be used throughout the thesis.

1.1 Adaptive Control

Adaptive control is an approach used to deal with systems with uncertain or time-varying
parameters. Typically, an adaptive controller will consist of a linear time-invariant (LTI)
control law together with a tuning algorithm which adjusts its parameters. In contrast, a
robust controller is designed, according to some criteria, to be an LTI controller, dealing
with uncertainty without the need of tuning or “adapting” its parameters. There are several
reasons for using an adaptive controller, including

• if the goal is closed-loop stability, then adaptive controllers tend to tolerate more
plant uncertainty and slowly changing operating conditions;

• if the goal is asymptotic tracking, then under suitable assumptions, an adaptive
controller can tolerate a great deal of plant uncertainty, while a robust controller can
tolerate none.

The main goals in adaptive control are stability and tracking. One of the popular
approaches addressing the tracking goal is the One-Step-Ahead Adaptive Control problem;

1



LTI Cont. Plant

Estimator

-
-

- -

�
�

?

-

r yu

Figure 1.1: An Adaptive Control System.

the goal is to have the output of the plant track a reference signal asymptotically. One
typical approach to achieving the stabilization goal is the Pole-Placement Adaptive Control
problem; the goal here is to asymptotically have the closed-loop behavior according to
prespecified closed-loop poles. These are among the most basic problems considered in
adaptive control—see [21], [31], [30], [37], [53].

1.2 Background and Motivation

1.2.1 Early Results

The first general results of adaptive control came about around 1980, e.g. see [16], [20], [49],
[59], [60]. However, these early results are not without issues. First of all, these controllers
typically do not tolerate unmodeled dynamics, time-variations, and/or noise/disturbance
very well—see the paper by Rohrs et al. [65]. Second of all, they put stringent assumptions
on a priori information about the structure of the plant, e.g. order, delay/relative degree,
etc.

Over the following two decades, an attempt was made to handle unmodeled dynamics,
slow time-variations and noise/disturbance. A common approach was to make small con-
troller design changes, such as the use of signal normalization, deadzones and σ-modifications,
e.g. see [29], [34], [40], [41], [75]. An alternative approach imposes a convexity assumption
on the set of parameter uncertainty, which is utilized in the estimation process to restrain
the estimates of the plant parameters to the convex set, e.g. see [38], [55], [77], [78], [80],
[81]. Although these controllers typically provide some tolerance to unmodelled dynamics
and/or slow time-variations, in general, they only provide

2



• asymptotic stability and not exponential stability,

• and a bounded-noise bounded-state property, but not a bounded gain on the noise.

The goal of this thesis is to design adaptive controllers for which the closed-loop system
exhibits highly desirable linear-like system properties, such as exponential stability, a
bounded gain on the noise, and ideally a convolution bound on the input-output behavior.
As far as the author is aware, in the classical approach to adaptive control a bounded gain
on the noise is proven only in [81]; however, neither a crisp exponential bound on the effect
of the initial condition nor a convolution bound on the closed-loop behavior is proven.

Remark 1.1. While we can prove a form of exponential stability if a persistent excitation
condition is satisfied, e.g. see [3], this places a stringent requirement on exogenous inputs,
which we would like to avoid.

1.2.2 Multiple Estimators and Multiple Controllers in Adaptive
Control

A great deal of work focused on removing (or reducing) the assumptions on structural
information of the plant, which typically included the following:

• the plant is minimum phase (this is waived if the goal is stability only);

• the plant order is known (or an upper bound on the plant order);

• the sign of the high-frequency gain is known.

There are various non-classical approaches to adaptive control that address these issues
and provide some linear-like system properties, like those that include multiple estimators,
multiple controller designs and/or a switching mechanism.

Pre-routed Switching

Some of the early works that tried to tackle each of the aforementioned restrictions are
[17], [39], [45], [42], [54], [62], [79]; here, a pre-routed switching mechanism is employed
to switch between a list of pre-designed candidate controllers. In Nussbaum [62], it is
proven that knowledge of the sign of high-frequency gain is not needed in the first order

3



case. In Mårtensson [39], it is proven that the knowledge of the order of an LTI stabilizing
compensator is sufficient for adaptive stabilization. In Fu and Barmish [17], with plant
parameters assumed to lie in a compact set, exponential stability is proven; this is extended
in Miller and Davison [45]. In all of these results discussed above, a bounded gain on the
noise is not proven. Also a side effect of the switching mechanism is that they typically
yield poor transient behavior, poor noise tolerance, or a large control input.

Supervisory Control

Later, motivated by works discussed above and by robust control, more sophisticated logic-
based switching approaches to adaptive control emerged. While an initial idea appeared in
Middleton et al. [41], the powerful approach of Supervisory Control is introduced in Morse
[50] and Morse [51]; this was then extended in Hespanha et al. [27], Hespanha et al. [26]
and Hespanha et al. [25], as well as in [11] for the discrete-time setting. Here, a bank of
candidate controllers is built; each is designed to stabilize a different “nominal” system
model. A high-level supervisor is responsible for switching between the candidate controllers.
The supervisor uses a performance signal or monitoring signal, typically a function of the
estimation error, to assess the potential performance of each candidate controller. From
time to time, the supervisor selects the controller corresponding to the “best” performance
signal. Analysis of the switching behavior utilize various concepts, namely, Hysteresis
Switching, see Morse et al. [52], and Hespanha and Morse [28], and Dwell-time Switching,
see Morse [50] and Hespanha and Morse [24]. Stability results are proven and in certain
circumstances a bounded gain on the noise can be proven, e.g. see Morse [51]. In Vu and
Liberzon [76], supervisory control is applied to handle slowly time-varying plants; while
stability results are proven handling time-variation, crisp bounds on closed-loop behavior
are not provided, and convolution bounds are not proven.

In the above works, convexity of the uncertainty set is generally not required. However,
a problem with these approaches is that, in many cases, there is a need to design a large
number of candidate controllers. To this end, the complexity of the approach grows with
the size of the plant uncertainty. This covering problem is still an ongoing research problem;
a discussion about this issue can be found in [1], [2], [63], [15], [33]; this issue arises in other
approaches discussed below.

Multiple Parameter Estimators

In Narendra and Balakrishnan [56] and Narendra and Balakrishnan [57], a combination of
both switching and parameter estimation is applied. Multiple estimators provide parallel

4



parameter estimates, and from time to time a switching algorithm selects which correspond-
ing controller to be used. All estimators are essentially the same; they differ only in the
initial values. Transient behavior is argued to be improved due to the possibility of closeness
of one of the estimates to the correct value; however, exponential stability is not explicitly
proven. In Narendra and Xiang [61], similar results are discussed when dealing with noise.

Mixing-based Approach

In a closely-related approach to the previous one, an approach utilizing multi-estimators
along with multi-controllers is discussed in Kuipers and Ioannou [36], Baldi et al. [4], Baldi
et al. [7], and Baldi and Ioannou [6]; this approach is called Adaptive Mixing Control. Here,
multiple parameter estimates are calculated and a list of corresponding candidate controllers
is constructed; the control law is a weighted combination of the candidate controllers, where
a “mixing” signal determines the participating level of each; in [4] and [6], this mixing is
determined by some switching logic.

A similar approach is found in Han and Narendra [23] and Narendra and Han [58].
It, too, utilizes a mixing approach, but is different from the above; the control law is,
instead, designed using a weighted combination of the parameter estimates directly. The
weights for this combination is also adaptively set, hence the approach is sometimes labeled
Second-level Adaptation.

For some of the approaches discussed above, stability and tracking results are presented
with some tolerance to noise and some unmodelled dynamics; while improvement in closed-
loop behavior is shown, assumptions of convexity and knowledge of plant order are enforced.
It is not clear how these approaches deal with plant parameter time-variation.

Falsification-based Approach

Another approach utilizes the multi-controller idea without any estimation; it is based on
the concept of Unfalsified Control—see Safonov and Tsao [67]. It addresses the problem of
detecting instability, or in other words, avoiding destabilizing controllers (see Stefanovic
and Safonov [74]). Here also, a list of candidate controllers is available; the approach aims
to switch any destabilizing controller out of the loop completely. Unlike other switching
methods discussed earlier, the switching decision here is based solely on the system’s
input-output information—see Battistelli et al. [8] and Baldi et al. [5]. So this approach
can be considered a data-driven “model-free” approach, sidestepping the issue of dealing
with structural assumptions on the plant. The switching algorithms utilized here borrows
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similar ideas from ones in Supervisory Control. In Battistelli et al. [9] and Battistelli et al.
[10], an interesting switching algorithm is designed to handle time-varying plants, as well.
Stability results are proven, but there is no guarantee of good transient behavior, let alone
a bounded noise gain.

Another approach employing a falsification idea, although inspired differently, can be
found in Zhivoglyadov et al. [87] and Zhivoglyadov et al. [88]. It uses a localization-based
switching to prove exponential stability with some tolerance to noise. One drawback of the
approach is that the number of candidate controllers may be extremely large if the set of
plant uncertainty is large; a bounded gain on the noise is not proven.

1.2.3 Linear-like Behavior in Adaptive Control

In all of the approaches discussed earlier, a linear-like convolution bound on the closed-loop
behavior is not proven. More recently, an approach is provided, in both the one-step-ahead
control setting by Miller [43], Miller and Shahab [47] and Miller and Shahab [48]1, and the
pole-placement control setting by Miller [44] and Miller and Shahab [46], which guarantees
a linear-like closed-loop behavior:

• exponential stability,

• a bounded gain on the noise,

• and a convolution bound on the exogenous signals,

which are clearly very desirable properties. As far as the author knows, such linear-like
convolution bounds have never before been proven in the adaptive setting. The key idea is
to employ, as part of the discrete-time adaptive controller, a single parameter estimator
based on the original Projection Algorithm together with projection of the parameter
estimates onto a given compact and convex set. In [43] and [46], the resulting convolution
bound is leveraged to prove tolerance to a degree of time-variation and unmodelled dynamics.

1The author of this thesis contributed to the tracking results of [47] and [48]; these papers deal with the
case of a convex set of uncertainty, which is outside the scope of the thesis, but a version of the tracking
results appears in Chapter 5.
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1.3 Objective and Contributions

The goal of this thesis is to extend the approach discussed in Section 1.2.3 to the non-convex
setting. As discussed earlier, the requirement of convexity on the set of uncertainty is shown
to play a crucial role in obtaining desirable closed-loop properties. Since convexity is a
very restrictive requirement, the main objective of the thesis is to prove the same desirable
linear-like closed-loop behavior in the case of a non-convex uncertainty set. To this end,
we replace the assumption of a convex and compact set of parameter uncertainty with only
the assumption of a compact set. The key idea of the proposed discrete-time adaptive
control approach include:

• first we “cover” the compact set of admissible parameters by a finite number of convex
sets;

• then we design a parameter estimator based on the original Projection Algorithm for
each convex set,

• and finally we use a switching algorithm to switch between the corresponding control
laws.

In Miller [43] and Miller and Shahab [46], it was shown that for the case of using a
single estimator, if a convolution bound is proven, then the resulting adaptive controller is
robust with respect to slow time-varying parameters and a degree of unmodelled dynamics.
In this thesis, the first main result is to show this is true in a more general formulation,
which allows for nonlinear plants and multi-estimator settings. This allows us to prove
robustness in a modular fashion: we can focus on analyzing the ideal plant, knowing that
robustness comes for free.

At this point, we look at the case of non-convex uncertainty sets:

• In the first-order setting, we consider the one-step-ahead adaptive control problem
subject to a compact uncertainty set; we provide a switching mechanism and prove
that the desired linear-like closed-loop properties are achieved.

• While we attempted to extend the results on the high order one-step-head adaptive
control of Miller and Shahab [48] to the case of a non-convex uncertainty set, we did
not succeed. However, we succeeded in extending the first-order approach to a special
class of high order nonlinear systems with stable zero dynamics.
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• At this point, we turn our attention to possibly non-minimum phase LTI plants. We
first look at the simplest case: the stabilization problem subject to known plant order
and two convex sets of uncertainty. We develop a switching mechanism and prove
that the desired linear-like closed-loop properties are achieved.

• Last of all, in the context of possibly non-minimum phase LTI plants, we tackle
the more difficult problem of tracking the sum of a finite number of sinusoids of
known frequencies subject to an unknown plant order and a general compact set of
uncertainty. Once again, we are able to develop a switching mechanism and prove
that the desired linear-like closed-loop properties are achieved.

We now provide an outline for the rest of the thesis. In Chapter 2, we define what we
mean by a convolution bound and then we prove robustness given a convolution bound
on the closed-loop behavior as discussed above. In Chapter 3, we provide the details
of the parameter estimation used throughout the thesis, based on the original Projection
Algorithm. Then, as a showcase for the contribution of the whole thesis, we consider the
case of one-step-ahead adaptive control of first-order plants in Chapter 4, which includes
a simple switching algorithm. Then in Chapter 5, we provide the results of adaptive
control of a special class of nonlinear plants; this chapter includes two parts: one where
the uncertainty set is convex and one where it is not. In Chapter 6 we consider the
stabilization problem of possibly non-minimum phase plants given two convex sets. The
penultimate chapter, Chapter 7, includes the main Multi-Model Adaptive Control and
Tracking approach dealing with possibly non-minimum phase plants subject to an unknown
plant order and a general compact uncertainty set. Finally, a summary of results and
a discussion about the limitations of our approach and future directions are provided in
Chapter 8.

We would like to point out to the reader that, as of the time of writing this thesis,
multiple papers have been published that include versions of the results of this thesis:

• in the conference paper Shahab and Miller [68], we have proven the desired results in
the context of one-step-ahead adaptive control of first-order plants subject only to a
compact uncertainty set;

• in the journal paper Miller and Shahab [46], we have proven the desired stability
results for a possibly non-minimum phase plant subject to a known order and two
compact and convex uncertainty sets;

• in the conference paper Shahab and Miller [70], we have proven the desired results in
the context of one-step-ahead adaptive control of first-order nonlinear plants;
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• in the conference paper Shahab and Miller [69], we have proven desired stability
results as well as step tracking, for a possibly non-minimum phase plant subject to a
known order and compact uncertainty set;

• in the journal paper Shahab and Miller [71] (under review), we have proven stability
results as well as tracking of the sum of a finite number of sinusoids of known
frequencies, for a possibly non-minimum phase plant subject to an unknown plant
order and a general compact set of uncertainty;

• in the conference submission Shahab and Miller [72], we have proven a condensed
version of Chapter 2.

1.4 Notation and Mathematical Preliminaries

We use standard notation throughout the thesis:

• R denotes the set of real numbers.

• R
+ denotes the set of nonnegative real numbers.

• Z denotes the set of integers.

• Z
+ denotes the set of nonnegative integers.

• N denotes the set of natural numbers.

• d·e denotes the ceiling function: for any x ∈ R, dxe := min{z ∈ Z : z ≥ x}.

• ‖ · ‖, the subscript-less default norm notation, denotes the Euclidean-norm of a vector
and the induced norm of a matrix.

• For a square matrix A, let det
(
A
)
denotes the determinant of A.

• S(Rp×q) denotes the set of Rp×q-valued sequences.

• `∞(Rp×q) denotes the set of Rp×q-valued bounded sequences.

• `∞ denotes the special case of `∞(R).
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• For a signal s ∈ `∞, define the ∞-norm by

‖s‖∞ := sup
t∈Z
|s(t)|.

• If Ω ⊂ Rp is a bounded set, we define the notation

‖Ω‖ := sup
x∈Ω
‖x‖.

• ej ∈ Rp denotes the normal vector of appropriate length p defined as

ej :=
[j−1 elements︷ ︸︸ ︷

0 · · · 0 1 0 · · · 0
]>
.

• 0p×q denotes the p× q matrix whose entries are all zeros.

• 0p denotes the p× 1 vector whose entries are all zeros.

• Ip denotes the identity matrix of size p.

• In general, signals are represented in the time-domain by small letters, e.g. s(t), and
in the z-transform domain by capital letters, e.g. S(z).

• We say that a function Γ : Rp → R
q has a bounded gain if there exists a ν > 0 such

that for all x ∈ Rp, we have ‖Γ(x)‖ ≤ ν‖x‖; the smallest such ν is the gain, and is
denoted by ‖Γ‖.

• For an index set I = {1, 2, . . . ,m} and Ji ≥ 0 (i ∈ I), in computing

argmin
i∈I

Ji,

it could very well be that there is more than one value i ∈ I which achieves the
minimum. In such a case, we (somewhat arbitrarily) choose the smallest
such index.

• Throughout the thesis, we will utilize the “inequality of arithmetic and geometric
means”: for nonnegative numbers h1, h2, h3, . . . , hM , we have that

 M∏
j=1

hj

 1
M

≤ 1
M

M∑
j=1

hj ⇔
M∏
j=1

hj ≤

 1
M

M∑
j=1

hj

M .
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Chapter 2

Robustness and Convolution Bounds

2.1 Introduction

In control system design, a common requirement is that the closed-loop system not only be
stable, but also be robust, in the sense that the desired closed-loop properties are maintained,
at the very least, in the presence of small time-variations in the plant parameters and a
small amount of unmodelled dynamics. Of course, if the plant and controller are both linear
and time-invariant, and the desired objective is closed-loop stability, then such robustness
follows from the Small Gain Theorem [82] and the study of time-varying linear systems
[14]. On the other hand, if either the plant or controller is nonlinear, this is often not the
case and/or it is not easy to prove.

Indeed, one special class of nonlinear controllers is that of adaptive controllers. In
general, as mentioned earlier, adaptive controllers provide asymptotic stability but not
exponential stability, with no bounded gain on the noise, let alone a convolution bound.
However, it has been proven (see [43], [46]) that if discrete-time adaptive control is carried
out using the original projection algorithm, then exponential stability and a convolution
bound on the closed-loop behavior can be proven; hence, the closed-loop system acts
‘linear-like’. It is shown in the first-order one-step-ahead case [43] and the pole-placement
case with a single estimator [46], that this approach is robust; this is proven in a modular
fashion—we leverage the exponential stability and the convolution bounds proven for the
nominal plant model without reopening its proof. This differs markedly from the approach
that most work on robust adaptive control adopt: there one proves robustness by taking
the proof for the ideal case and creating a more complicated version with a time-varying
plant with some unmodelled dynamics added. The goal of this chapter is to prove that this
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modularity property holds in a very general adaptive control setting; modularity is a highly
desirable property, since it allows us to focus on analyzing the ideal plant model, knowing
that robustness will come for free.

To this end, here we consider a class of finite-dimensional, nonlinear plant and adaptive
controller combinations; if exponential stability and a convolution bound holds, then we
prove that tolerance to small time-variations in the plant parameters and a small amount
of unmodelled dynamics follows1. An immediate application of this result is to prove
robustness of the proposed adaptive controllers presented in the following chapters of this
thesis; this includes approaches which use multi-estimators, and it allows us to focus on the
ideal plant model in the analysis.

2.2 The Setup

Here the nominal plant is multi-input multi-output2 with finite memory and an additive
disturbance, such that the uncertain plant parameter enters linearly. To this end, with an
output y(t) ∈ Rr, an input u(t) ∈ Rm, a disturbance w(t) ∈ Rr, a modeling parameter of

θ∗ ∈ S ⊂ Rp×r,

and a vector of input-output data of the form

ϑ(t) =



y(t)
y(t− 1)

...
y(t− ny + 1)

u(t)
u(t− 1)

...
u(t− nu + 1)


∈ Rny ·r+nu·m,

we consider the plant

y(t+ 1) = θ∗>f
(
ϑ(t)

)
+ w(t), ϑ(t0) = ϑ0; (2.1)

1A version of this chapter was submitted as a conference paper [72].
2This model is more general than we need throughout this thesis, but the cost of this is minimal.
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we assume that f : Rny ·r+nu·m → R
p has a bounded gain and that S is a bounded set; both

requirements are reasonable given that we will require uniform bounds in our analysis. We
represent this system by the pair

(
f,S

)
.

Here we consider a large class of controllers which subsumes LTI ones as well as a large
class of adaptive ones. To this end, we consider a controller with its state partitioned into
two parts:

• z(t) ∈ Rl1 and

• θ̂(t) ∈ Rl2 ,

an exogenous signal r(t) ∈ Rr (typically a reference signal), together with equations of the
form

z(t+ 1) = g1
(
z(t), θ̂(t), ϑ(t), r(t)

)
, z(t0) = z0 (2.2a)

θ̂(t+ 1) = g2
(
z(t), θ̂(t), ϑ(t), r(t)

)
, θ̂(t0) = θ0 (2.2b)

u(t) = h
(
z(t), θ̂(t), ϑ(t− 1), y(t), r(t)

)
. (2.2c)

With Ω ⊂ Rl2 a bounded set, we assume that

g2 : Rl1 × Ω× Rny ·r+nu·m × Rr −→ Ω,

i.e. if θ̂ is initialized in Ω, then it remains in Ω throughout.

Remark 2.1. This class subsumes finite-dimensional LTI controllers: simply set l2 = 0 so
that the sub-state θ̂(t) disappears, and make the functions g1 and h be linear.

Remark 2.2. This class subsumes many adaptive controllers: simply set l1 = 0 and let
θ̂(t) be the state of a parameter estimator constrained to the set Ω. If we are using multiple
estimators, then the size of θ̂(t) is typically larger than that of θ∗.

We now provide a definition of the desired linear-like closed-loop property:
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Definition 2.1. We say that (2.2) provides exponential stability and a convo-
lution bound for

(
f,S

)
with gain c ≥ 1 and decay rate λ ∈ (0, 1) if, for every θ∗ ∈ S,

t0 ∈ Z, ϑ0 ∈ Rny ·r+nu·m, z0 ∈ Rl1 , θ0 ∈ Ω ⊂ Rl2 , w ∈ S(Rr) and r ∈ S(Rr), when (2.2) is
applied to (2.1), the following holds:∥∥∥∥∥
[
ϑ(t)
z(t)

]∥∥∥∥∥ ≤ cλt−τ
∥∥∥∥∥
[
ϑ(τ)
z(τ)

]∥∥∥∥∥+
t−1∑
j=τ

cλt−j−1(‖r(j)‖+ ‖w(j)‖) + c‖r(t)‖, t ≥ τ ≥ t0.

(2.3)

Remark 2.3. In this definition there is no mention of θ̂(t), since it is of secondary interest
and constrained to lie in the bounded set Ω.

2.3 Tolerance to Time-Variation

We now consider plants with a possibly time-varying parameter vector θ∗(t) instead of a
static θ∗:

y(t+ 1) = θ∗(t)>f
(
ϑ(t)

)
+ w(t), ϑ(t0) = ϑ0. (2.4)

Definition 2.2. With c0 ≥ 0 and ε > 0 let S(S, c0, ε) denote the subset of `∞(Rp×r)
whose elements θ∗ satisfy:

• θ∗(t) ∈ S for every t ∈ Z,

• and
t2−1∑
t=t1
‖θ∗(t+ 1)− θ∗(t)‖ ≤ c0 + ε(t2 − t1), t2 > t1, t1 ∈ Z.

The above time-variation model encompasses both slow variations (c0 = 0) and/or occasional
jumps (c0 6= 0); this class is well-known in the adaptive control literature, e.g. see [35].

We can extend Definition 2.1 in a natural way to handle time-variations.
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Definition 2.3. We say that (2.2) provides exponential stability and a convo-
lution bound for

(
f, S(S, c0, ε)

)
with gain c ≥ 1 and decay rate λ ∈ (0, 1) if, for

every θ∗ ∈ S(S, c0, ε), t0 ∈ Z, ϑ0 ∈ Rny ·r+nu·m, z0 ∈ Rl1 , θ0 ∈ Ω ⊂ R
l2 , w ∈ S(Rr) and

r ∈ S(Rr), when (2.2) is applied to (2.4), the following holds:∥∥∥∥∥
[
ϑ(t)
z(t)

]∥∥∥∥∥ ≤ cλt−τ
∥∥∥∥∥
[
ϑ(τ)
zτ )

]∥∥∥∥∥+
t−1∑
j=τ

cλt−j−1(‖r(j)‖+ ‖w(j)‖) + c‖r(t)‖, t ≥ τ ≥ t0.

(2.5)

We now will show that if a controller (2.2) provides exponential stability and a convolu-
tion bound for the plant (2.1), then the same will be true for the time-varying plant (2.4),
as long as ε is small enough. We consider two cases: one where there is a desired decay
rate, and one where there is not.

Theorem 2.1. Suppose that the controller (2.2) provides exponential stability and a
convolution bound for

(
f,S

)
with gain c ≥ 1 and decay rate λ ∈ (0, 1). Then for every

λ1 ∈ (λ, 1) and c0 > 0, there exist a c1 ≥ c and ε > 0 so that (2.2) provides exponential
stability and a convolution bound for

(
f, S(S, c0, ε)

)
with gain c1 and decay rate λ1.

Remark 2.4. The following proof is based, in part, on the proof of Theorem 2 of [46],
which deals with a much simpler setup.

Proof of Theorem 2.1. Suppose the controller (2.2) provides exponential stability and
a convolution bound for (2.1) with gain c ≥ 1 and a decay rate of λ. Fix λ1 ∈ (λ, 1) and
c0 > 0; let t0 ∈ Z, ϑ0 ∈ Rny ·r+nu·m, z0 ∈ Rl1 , θ0 ∈ Ω, w ∈ S(Rr) and r ∈ S(Rr) be arbitrary.

Now fix m ∈ N to be any number satisfying

m ≥
ln(c) + 4c0c‖f‖

λ1−λ [ln (1 + 2c‖f‖‖S‖) + ln(2)− ln(λ+ λ1)]
ln(2λ1)− ln(λ+ λ1) ,

(the rationale for this choice will be more clear shortly), and set

ε = c0

m2 ;

let θ∗ ∈ S(S, c0, ε) be arbitrary and apply the controller (2.2) to the time-varying plant
(2.4). To proceed, we analyze the closed-loop system behavior on intervals of length m,
which we further analyze in groups of m2.
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To proceed, let t̄ ≥ t0 be arbitrary. Define a sequence {t̄i} by

t̄i = t̄+ im, i ∈ Z+.

We can rewrite the time-varying plant as

y(t+ 1) = θ∗(t̄i)>f(ϑ(t)) + w(t) +
[
θ∗(t)− θ∗(t̄i)

]>
f(ϑ(t))︸ ︷︷ ︸

=:ñi(t)

, t ∈ [t̄i, t̄i+1).

On the interval [t̄i, t̄i+1], we can regard the plant as time-invariant, but with an extra
disturbance; so by hypothesis,∥∥∥∥∥

[
ϑ(t)
z(t)

]∥∥∥∥∥ ≤ cλt−t̄i
∥∥∥∥∥
[
ϑ(t̄i)
z(t̄i)

]∥∥∥∥∥+
t−1∑
j=t̄i

cλt−j−1(‖r(j)‖+ ‖w(j)‖+ ‖ñi(j)‖) + c‖r(t)‖,

t ∈ [t̄i, t̄i+1], i ∈ Z+. (2.6)

To analyze this difference inequality, we first construct an associated difference equation:

ψ(t+ 1) = λψ(t) + ‖r(t)‖+ ‖w(t)‖+ ‖ñi(t)‖, t ∈ [t̄i, t̄i+1),

with an initial condition of
ψ(t̄i) =

∥∥∥∥∥
[
ϑ(t̄i)
z(t̄i)

]∥∥∥∥∥ .
Using the fact that c ≥ 1, it is straightforward to prove that∥∥∥∥∥

[
ϑ(t)
z(t)

]∥∥∥∥∥ ≤ cψ(t) + c‖r(t)‖, t ∈ [t̄i, t̄i+1]. (2.7)

Now we analyze this equation for i = 0, 1, . . . ,m− 1.

Case 1: ‖ñi(t)‖ ≤ λ1−λ
2c ‖ϑ(t)‖ for all t ∈ [t̄i, t̄i+1).

Using the above bound (2.7) and the fact that λ1 − λ ∈ (0, 1), we obtain

ψ(t+ 1) = λψ(t) + ‖r(t)‖+ ‖w(t)‖+ ‖ñi(t)‖
≤ λψ(t) + ‖r(t)‖+ ‖w(t)‖+ λ1−λ

2c ‖ϑ(t)‖
≤ λψ(t) + ‖r(t)‖+ ‖w(t)‖+ λ1−λ

2 (ψ(t) + ‖r(t)‖)
≤ λ1+λ

2 ψ(t) + 2‖r(t)‖+ ‖w(t)‖, t ∈ [t̄i, t̄i+1), (2.8)

16



which means that

|ψ(t)| ≤
(
λ1+λ

2

)t−t̄i |ψ(t̄i)|+
t−1∑
j=t̄i

(
λ1+λ

2

)t−j−1
(2‖r(j)‖+ ‖w(j)‖) , t = t̄i, t̄i + 1, . . . , t̄i+1.

(2.9)

This, in turn, implies that there exists c2 ≥ 2c so that∥∥∥∥∥
[
ϑ(t̄i+1)
z(t̄i+1)

]∥∥∥∥∥ ≤ c
(
λ1+λ

2

)m ∥∥∥∥∥
[
ϑ(t̄i)
z(t̄i)

]∥∥∥∥∥+

t̄i+1−1∑
j=t̄i

c2
(
λ1+λ

2

)t̄i+1−j−1
(‖r(j)‖+ ‖w(j)‖) + c2‖r(t̄i+1)‖. (2.10)

Case 2: ‖ñi(t)‖ > λ1−λ
2c ‖ϑ(t)‖ for some t ∈ [t̄i, t̄i+1).

Since θ∗(t) ∈ S for t ≥ t0, we see that

‖ñi(t)‖ ≤ 2‖S‖‖f(ϑ(t))‖ ≤ 2‖f‖‖S‖‖ϑ(t)‖, t ∈ [t̄i, t̄i+1).

This means that

ψ(t+ 1) = λψ(t) + ‖r(t)‖+ ‖w(t)‖+ ‖ñi(t)‖
≤ λψ(t) + ‖r(t)‖+ ‖w(t)‖+ 2‖f‖‖S‖‖ϑ(t)‖
≤ (1 + 2c‖f‖‖S‖)︸ ︷︷ ︸

=:γ3

ψ(t) + (1 + 2c‖f‖‖S‖)‖r(t)‖+ ‖w(t)‖, t ∈ [t̄i, t̄i+1),

(2.11)

which means that

|ψ(t)| ≤ γt−t̄i3 |ψ(t̄i)|+
t−1∑
j=t̄i

γt−j−1
3 (γ3‖r(j)‖+ ‖w(j)‖) , t = t̄i, t̄i + 1, . . . , t̄i+1. (2.12)

Setting t = t̄i+1 and using (2.7) yields
∥∥∥∥∥
[
ϑ(t̄i+1)
z(t̄i+1)

]∥∥∥∥∥ ≤ cγm3

∥∥∥∥∥
[
ϑ(t̄i)
z(t̄i)

]∥∥∥∥∥+
t̄i+1−1∑
j=t̄i

cγ
t̄i+1−j−1
3 (γ3‖r(j)‖+ ‖w(j)‖) + c‖r(t̄i+1)‖
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≤ cγm3

∥∥∥∥∥
[
ϑ(t̄i)
z(t̄i)

]∥∥∥∥∥+

cγ3
(

2γ3
λ1+λ

)m t̄i+1−1∑
j=t̄i

(
λ1+λ

2

)t̄i+1−j−1
(‖r(j)‖+ ‖w(j)‖) + c‖r(t̄i+1)‖. (2.13)

This completes Case 2.
At this point we combine Cases 1 and 2. We would like to analyze m intervals of length

m. On the interval [t̄, t̄+m2], there are m subintervals of length m; furthermore, because
of the choice of ε we have that

t̄+m2−1∑
j=t̄

‖θ∗(j + 1)− θ∗(j)‖ ≤ c0 + εm2 ≤ 2c0.

It is easy to see that there are at most N1 := 4c0c‖f‖
λ1−λ subintervals which fall into the category

of Case 2, with the remainder falling into the category of Case 1; it is clear from the formula
for m that m > N1. If we use (2.10) and (2.13) to analyze the behavior of the closed-loop
system on the interval [t̄, t̄+m2], we end up with a crude bound of∥∥∥∥∥

[
ϑ(t̄+m2)
z(t̄+m2)

]∥∥∥∥∥ ≤ cmγN1m
3

(
λ1+λ

2

)m(m−N1)
∥∥∥∥∥
[
ϑ(t̄)
z(t̄)

]∥∥∥∥∥+

2m
(

2γ3
λ1+λ

)m
(c2γ

m+1
3 )m

(
2

λ1+λ

)(m+1)m t̄+m2−1∑
j=t̄

(
λ1+λ

2

)t̄+m2−j−1
(‖r(j)‖+ ‖w(j)‖) +

c2‖r(t̄+m2)‖. (2.14)

From the choice of m above, it is easy to show that

m2 ln
(

2λ1
λ1+λ

)
≥ m ln(c) +N1m ln(γ3) +N1m ln

(
2

λ+λ1

)
;

this immediately implies that

cmγN1m
3

( 2
λ+ λ1

)N1m

≤
(

2λ1

λ1 + λ

)m2

⇔ cmγN1m
1

(
λ1 + λ

2

)m(m−N1)

≤ λm
2

1 .
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Since λ1+λ
2 < λ1, it follows from (2.14) that there exists a constant γ4 so that

∥∥∥∥∥
[
ϑ(t̄+m2)
z(t̄+m2)

]∥∥∥∥∥ ≤ λm
2

1

∥∥∥∥∥
[
ϑ(t̄)
z(t̄)

]∥∥∥∥∥+ γ4

t̄+m2−1∑
j=t̄

λt̄+m
2−j−1

1 (‖r(j)‖+ ‖w(j)‖) + γ4‖r(t̄+m2)‖.

(2.15)

Now let τ ≥ t0 be arbitrary. By setting t̄ = τ, τ +m2, τ + 2m2, . . ., in succession, it follows
from (2.15) that∥∥∥∥∥
[
ϑ(τ + qm2)
z(τ + qm2)

]∥∥∥∥∥ ≤ λqm
2

1

∥∥∥∥∥
[
ϑ(τ)
z(τ)

]∥∥∥∥∥+

γ4

τ+qm2−1∑
j=τ

λτ+qm2−j−1
1 (‖r(j)‖+ ‖w(j)‖) + γ4‖r(τ + qm2)‖, q ∈ Z+.

(2.16)

So
[
ϑ(t)
z(t)

]
is well-behaved at t = τ, τ + m2, τ + 2m2, . . ., etc; we can use (2.9) of Case 1,

(2.12) of Case 2 and (2.7) to prove that nothing untoward happens between these times.
We conclude that there exists a constant γ5 so that∥∥∥∥∥

[
ϑ(t)
z(t)

]∥∥∥∥∥ ≤ γ5λ
t−τ
1

∥∥∥∥∥
[
ϑ(τ)
z(τ)

]∥∥∥∥∥+ γ5

t−1∑
j=τ

λt−j−1
1 (‖r(j)‖+ ‖w(j)‖) + γ5‖r(t)‖, t ≥ τ. (2.17)

Since τ ≥ t0 is arbitrary, the desired bound is proven. �

A careful examination of the above proof reveals that ε→ 0 as c0 → 0 and as c0 →∞.
If we do not care about the decay rate, then we can remove this drawback in the following
result.

Theorem 2.2. Suppose that the controller (2.2) provides exponential stability and a
convolution bound for

(
f,S

)
with gain c ≥ 1 and decay rate λ ∈ (0, 1). Then there

exists an ε > 0 such that for every c0 ≥ 0, there exist λ∗ ∈ (0, 1) and γ > 0 so that (2.2)
provides exponential stability and a convolution bound for

(
f, S(S, c0, ε)

)
with gain γ

and decay rate λ∗.

Proof of Theorem 2.2. Suppose the controller (2.2) provides a convolution bound for
(2.1) with gain c ≥ 1 and a decay rate of λ. Fix λ1 ∈ (λ, 1); let t0 ∈ Z, ϑ0 ∈ Rny ·r+nu·m,
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z0 ∈ Rl1 , θ0 ∈ Ω, w ∈ S(Rr) and r ∈ S(Rr) be arbitrary. The goal is to prove that for a
small-enough ε, the controller (2.2) provides exponential stability and a convolution bound
for

(
f, S(S, c0, ε)

)
for every c0 ≥ 0. So at this point we will analyze the closed-loop system

for an arbitrary ε > 0, c0 ≥ 0, and θ∗ ∈ S(S, c0, ε).
To proceed, let t̄ ≥ t0 be arbitrary. For m ∈ N, we will first analyze closed-loop behavior

on intervals of length m; define a sequence {t̄i} by

t̄i = t̄+ im, i ∈ Z+.

We can rewrite the time-varying plant as

y(t+ 1) = θ∗(t̄i)>f(ϑ(t)) + w(t) +
[
θ∗(t)− θ∗(t̄i)

]>
f(ϑ(t))︸ ︷︷ ︸

=:ñi(t)

, t ∈ [t̄i, t̄i+1).

On the interval [t̄i, t̄i+1], we regard the plant as time-invariant, but with an extra disturbance:
so we obtain∥∥∥∥∥

[
ϑ(t)
z(t)

]∥∥∥∥∥ ≤ cλt−t̄i
∥∥∥∥∥
[
ϑ(t̄i)
z(t̄i)

]∥∥∥∥∥+
t−1∑
j=t̄i

cλt−j−1(‖r(j)‖+ ‖w(j)‖+ ‖ñi(j)‖) + c‖r(t)‖,

t ∈ [t̄i, t̄i+1], i ∈ Z+. (2.18)

Using the same idea as in the proof of Theorem 2.1, we define the difference equation

ψ(t+ 1) = λψ(t) + ‖r(t)‖+ ‖w(t)‖+ ‖ñi(t)‖, t ∈ [t̄i, t̄i+1)

with
ψ(t̄i) =

∥∥∥∥∥
[
ϑ(t̄i)
z(t̄i)

]∥∥∥∥∥ ;

it follows that ∥∥∥∥∥
[
ϑ(t)
z(t)

]∥∥∥∥∥ ≤ cψ(t) + c‖r(t)‖, t ∈ [t̄i, t̄i+1]. (2.19)

Case 1: ‖ñi(t)‖ ≤ λ1−λ
2c ‖ϑ(t)‖ for all t ∈ [t̄i, t̄i+1).

Arguing in an identical manner to the proof of Theorem 2.1, we obtain the following
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two bounds:

|ψ(t)| ≤
(
λ1+λ

2

)t−t̄i |ψ(t̄i)|+
t−1∑
j=t̄i

(
λ1+λ

2

)t−j−1
(2‖r(j)‖+ ‖w(j)‖) , t = t̄i, t̄i + 1, . . . , t̄i+1;

(2.20)

this, in turn, implies that there exists c2 > c so that∥∥∥∥∥
[
ϑ(t̄i+1)
z(t̄i+1)

]∥∥∥∥∥ ≤ c
(
λ1+λ

2

)m ∥∥∥∥∥
[
ϑ(t̄i)
z(t̄i)

]∥∥∥∥∥+

t̄i+1−1∑
j=t̄i

c2
(
λ1+λ

2

)t̄i+1−j−1
(‖r(j)‖+ ‖w(j)‖) + c2‖r(t̄i+1)‖. (2.21)

Case 2: ‖ñi(t)‖ > λ1−λ
2c ‖ϑ(t)‖ for some t ∈ [t̄i, t̄i+1).

Arguing in an identical manner to the proof of Theorem 2.1, we obtain the following
two bounds: there exists γ3 > 0 so that

|ψ(t)| ≤ γt−t̄i3 |ψ(t̄i)|+
t−1∑
j=t̄i

γt−j−1
3 (γ3‖r(j)‖+ ‖w(j)‖) , t = t̄i, t̄i + 1, . . . , t̄i+1, (2.22)

∥∥∥∥∥
[
ϑ(t̄i+1)
z(t̄i+1)

]∥∥∥∥∥ ≤ cγm3

∥∥∥∥∥
[
ϑ(t̄i)
z(t̄i)

]∥∥∥∥∥+
t̄i+1−1∑
j=t̄i

cγ
t̄i+1−j−1
3 (γ3‖r(j)‖+ ‖w(j)‖) + c‖r(t̄i+1)‖

≤ cγm3

∥∥∥∥∥
[
ϑ(t̄i)
z(t̄i)

]∥∥∥∥∥+

c2γ3
(

2γ3
λ1+λ

)m t̄i+1−1∑
j=t̄i

(
λ1+λ

2

)t̄i+1−j−1
(‖r(j)‖+ ‖w(j)‖) + c2‖r(t̄i+1)‖. (2.23)

This completes Case 2.
At this point we combine Cases 1 and 2. We would like to analyze N̄ ∈ N intervals of

length m; for now we let N̄ be free. We see that

t̄+mN̄−1∑
j=t̄

‖θ∗(j + 1)− θ∗(j)‖ ≤ c0 + εmN̄.
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Let N1 denote the number of intervals of the form [t̄i, t̄i+1) which lie in [t̄, t̄+mN̄ ] which
fall into Case 2; it is easy to see that N1 satisfies

N1
λ1 − λ

2c ≤
(
c0 + εmN̄

)
‖f‖

⇒N1 ≤
(

2c‖f‖
λ1 − λ

)
c0 +

(
2c‖f‖
λ1 − λ

)
εmN̄ ; (2.24)

observe that N1 depends on both c0 and ε. Using (2.21) and (2.23) we obtain∥∥∥∥∥
[
ϑ(t̄+mN̄)
z(t̄+mN̄)

]∥∥∥∥∥ ≤ cN̄
(
λ1+λ

2

)m(N̄−N1)
γmN1

3

∥∥∥∥∥
[
ϑ(t̄)
z(t̄)

]∥∥∥∥∥+

2N̄
(

2γ3
λ1+λ

)N̄
(c2γ

m+1
3 )N̄

(
2

λ1+λ

)(m+1)N̄
×

t̄+mN̄−1∑
j=t̄

(
λ1+λ

2

)t̄+mN̄−j−1
(‖r(j)‖+ ‖w(j)‖)

+ c2‖r(t̄(q+1)m)‖. (2.25)

At this point, we will choose quantities m, ε and N̄ , in that order, so that the key gain

cN̄
(
λ1+λ

2

)m(N̄−N1)
γmN1

3 < 1.

First of all, we apply the bound on N1 given in (2.24) to this key gain:

cN̄
(
λ1+λ

2

)m(N̄−N1)
γmN1

3 =
[
c
(
λ1+λ

2

)m]N̄ [( 2γ3
λ1+λ

)N1
]m

≤
[
c
(
λ1+λ

2

)m]N̄ ( 2γ3
λ1+λ

)[( 2c‖f‖
λ1−λ

)
c0+
(

2c‖f‖
λ1−λ

)
εmN̄

]m . (2.26)

Now choose m so that c
(
λ1+λ

2

)m
=: λ2 < 1, i.e. any m > ln(c)

ln(2)−ln(λ1+λ) . So rewriting
(2.26), we now obtain

cN̄
(
λ1+λ

2

)m(N̄−N1)
γmN1

3 ≤

( 2γ3
λ1+λ

)( 2c‖f‖
λ1−λ

)
c0m

( 2γ3
λ1+λ

)( 2c‖f‖
λ1−λ

)
εm2
× λ2

N̄ .
Now observe that

lim
ε→0

( 2γ3
λ1+λ

)( 2c‖f‖
λ1−λ

)
εm2
 = 1,
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so now choose ε > 0 so that ( 2γ3
λ1+λ

)( 2c‖f‖
λ1−λ

)
εm2
× λ2︸ ︷︷ ︸

=:λ3

< 1;

notice that ε is independent of c0. With this choice we now have

cN̄
(
λ1+λ

2

)m(N̄−N1)
γmN1

3 ≤

( 2γ3
λ1+λ

)( 2c‖f‖
λ1−λ

)
c0m

× λN̄3 .
Last of all, now choose N̄ so that( 2γ3

λ1+λ

)( 2c‖f‖
λ1−λ

)
c0m

× λN̄3︸ ︷︷ ︸
=:λ4

< 1;

any N̄ > 2cc0m‖f‖[ln(2γ3)−ln(λ1+λ)]
(λ−λ1) ln(λ3) will do. Observe that N̄ depends on c0.

So incorporating all of the above, there exists γ4 > 0 (which clearly depends on c0 via
N̄) so that we can rewrite (2.25) as

∥∥∥∥∥
[
ϑ(t̄+mN̄)
z(t̄+mN̄)

]∥∥∥∥∥ ≤ λ4

∥∥∥∥∥
[
ϑ(t̄)
z(t̄)

]∥∥∥∥∥+ γ4

t̄+mN̄−1∑
j=t̄

(
λ1+λ

2

)t̄+mN̄−j−1
(‖r(j)‖+ ‖w(j)‖) +

γ4‖r(t̄+mN̄)‖. (2.27)

Now let τ ≥ t0 be arbitrary. By setting t̄ = τ, τ +mN̄, τ + 2mN̄, . . ., in succession, with

λ5 := max
{
λ

1
mN̄
4 , λ1+λ

2

}
(which clearly depends on c0 via N̄) it follows from (2.27) that

∥∥∥∥∥
[
ϑ(τ + qN̄m)
z(τ + qN̄m)

]∥∥∥∥∥ ≤ λqN̄m5

∥∥∥∥∥
[
ϑ(τ)
z(τ)

]∥∥∥∥∥+ γ4

τ+qN̄m−1∑
j=τ

λτ+qN̄m−j−1
5 (‖r(j)‖+ ‖w(j)‖) +

γ4‖r(τ + qN̄m)‖, q ∈ Z+. (2.28)

So
[
ϑ(t)
z(t)

]
is well-behaved at t = τ, τ +mN̄, τ + 2mN̄, . . ., etc; we can use (2.20) of Case 1,
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(2.22) of Case 2 and (2.19) to prove that nothing untoward happens between these times.
We conclude that there exists a constant γ5 so that∥∥∥∥∥

[
ϑ(t)
z(t)

]∥∥∥∥∥ ≤ γ5λ
t−τ
5

∥∥∥∥∥
[
ϑ(τ)
z(τ)

]∥∥∥∥∥+ γ5

t−1∑
j=τ

λt−j−1
5 (‖r(j)‖+ ‖w(j)‖) + γ5‖r(t)‖, t ≥ τ. (2.29)

Since τ ≥ t0 is arbitrary, the desired bound is proven. �

2.4 Tolerance to Unmodelled Dynamics

We now consider the time-varying plant (2.4) with the term d∆(t) ∈ Rr added to represent
unmodelled dynamics:

y(t+ 1) = θ∗(t)>f
(
ϑ(t)

)
+ w(t) + d∆(t), ϑ(t0) = ϑ0. (2.30)

Here we consider (a generalized version of) a class of unmodelled dynamics which is common
in the adaptive control literature—see [34] and [46]. With g : Rny ·r+nu·m → R a map with a
bounded gain, β ∈ (0, 1) and µ > 0, we consider

m(t+ 1) = βm(t) + β|g(ϑ(t))|, m(t0) = m0 (2.31a)
‖d∆(t)‖ ≤ µm(t) + µ|g(ϑ(t))|, t ≥ t0. (2.31b)

It turns out that this model subsumes classical additive uncertainty, multiplicative un-
certainty, and uncertainty in a coprime factorization, with side constraints on the pole
locations (less than β in magnitude) as well as strict causality; see [46] for a more detailed
explanation. We will now show that if the controller (2.2) provides exponential stability and
a convolution bound for

(
f, S(S, c0, ε)

)
, then a degree of tolerance to unmodelled dynamics

can be proven.
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Theorem 2.3. Suppose that the controller (2.2) provides exponential stability and a
convolution bound for

(
f, S(S, c0, ε)

)
with a gain c1 and decay rate λ1 ∈ (0, 1). Then

for every β ∈ (0, 1) and λ2 ∈ (max{λ1, β}, 1), there exist µ̄ > 0 and c2 > 0 so that for
every θ∗ ∈ S(S, c0, ε), µ ∈ (0, µ̄), t0 ∈ Z, ϑ0 ∈ Rny ·r+nu·m, z0 ∈ Rl1, θ0 ∈ Ω ⊂ R

l2, and
w, r ∈ S(Rr), when the controller (2.2) is applied to the plant (2.30) with d∆ satisfying
(2.31), the following holds:∥∥∥∥∥∥∥

ϑ(t)
z(t)
m(t)


∥∥∥∥∥∥∥ ≤ c2λ

t−t0
2

∥∥∥∥∥∥∥
ϑ0
z0
m0


∥∥∥∥∥∥∥+

t−1∑
j=t0

c2λ
t−j−1
2 (‖r(j)‖+ ‖w(j)‖) + c2‖r(t)‖, t ≥ t0.

(2.32)

Remark 2.5. The following proof is based, in part, on the proof of Theorem 3 of [46],
which deals with a much simpler setup.

Proof of Theorem 2.3. Fix β ∈ (0, 1) and λ2 ∈ (max{λ1, β}, 1) and let θ∗ ∈ S(S, c0, ε),
t0 ∈ Z, ϑ0 ∈ Rny ·r+nu·m, z0 ∈ Rl1 , θ0 ∈ Ω ⊂ R

l2 , w ∈ S(Rr) and r ∈ S(Rr) be arbitrary. So
by hypothesis:∥∥∥∥∥

[
ϑ(t)
z(t)

]∥∥∥∥∥ ≤ c1λ
t−τ
1

∥∥∥∥∥
[
ϑ(τ)
z(τ)

]∥∥∥∥∥+
t−1∑
j=τ

c1λ
t−j−1
1 (‖r(j)‖+ ‖w(j)‖+ ‖d∆(j)‖) + c1‖r(t)‖,

t ≥ τ ≥ t0. (2.33)

To convert this inequality to an equality, we consider the associated difference equations

ϑ̃(t+ 1) = λ1ϑ̃(t) + c1‖r(t)‖+ c1‖w(t)‖+ c1µm̃(t) + c1µ‖g‖ϑ̃(t), ϑ̃(t0) = c1

∥∥∥∥∥
[
ϑ0
z0

]∥∥∥∥∥ ,
together with the difference equation based on (2.31a):

m̃(t+ 1) = βm̃(t) + β‖g‖ϑ̃(t), m̃(t0) = |m0|.

Using induction together with (2.33), (2.31a), and (2.31b), we can prove that∥∥∥∥∥
[
ϑ(t)
z(t)

]∥∥∥∥∥ ≤ ϑ̃(t) + c1‖r(t)‖, (2.34a)

|m(t)| ≤ m̃(t), t ≥ t0. (2.34b)
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If we combine the difference equations for ϑ̃(t) and m̃(t), we obtain[
ϑ̃(t+ 1)
m̃(t+ 1)

]
=
[
λ1 + c1‖g‖µ c1µ

β‖g‖ β

]
︸ ︷︷ ︸

=:Acl(µ)

[
ϑ̃(t)
m̃(t)

]
+
[
c1
0

]
(‖r(t)‖+ ‖w(t)‖) , t ≥ t0. (2.35)

Now we see that
Acl(µ)→

[
λ1 0
β‖g‖ β

]
as µ→ 0, and this matrix has eigenvalues of {λ1, β} which are both less that λ2 < 1. Using
a standard Lyapunov argument, it is easy to prove that there exist µ̄ > 0 and γ1 > 0 such
that for all µ ∈ (0, µ̄], we have∥∥∥Acl(µ)k

∥∥∥ ≤ γ1λ
k
2, k ≥ 0;

if we use this in (2.35) and then apply the bound in (2.34), it follows that there exists a
constant γ2 so that∥∥∥∥∥∥∥

ϑ(t)
z(t)
m(t)


∥∥∥∥∥∥∥ ≤ γ2λ

t−t0
2

∥∥∥∥∥∥∥
ϑ0
z0
m0


∥∥∥∥∥∥∥+

t−1∑
j=t0

c1γ1λ
t−j−1
2 (‖r(j)‖+ ‖w(j)‖) + c1‖r(t)‖, t ≥ t0

(2.36)

as desired. �

2.5 Conclusion

In this chapter we have shown that for a class of nonlinear plant and controller combinations,
if linear-like properties of exponential stability and a convolution bound on the closed-loop
behavior can be proven, then tolerance to small parameter time-variations and a small
amount of unmodelled dynamics follows immediately. This result is applicable to various
adaptive control paradigms in a modular fashion; it allows one to focus on the nominal
plant in the analysis knowing that robustness will come for free. Indeed, this chapter will be
utilized as a powerful technical tool in subsequent results of this thesis to prove robustness
of the proposed adaptive controllers. Last of all, this result has the potential for use in
other non-adaptive contexts.
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Chapter 3

The Projection Algorithm

In this brief chapter we present the parameter estimation algorithm that will be used as
part of the adaptive controller—we consider the original Projection Algorithm.

3.1 The Ideal Projection Algorithm

Although we will eventually use the estimation algorithm in the context of dynamic systems,
we consider the following more general model:

y(t+ 1) = φ(t)>θ∗ + w(t), t ∈ Z, (3.1)

with y(t) ∈ R as the output measurement, φ(t) ∈ Rp as the regressor (data) vector, θ∗ ∈ Rp
as the unknown parameter vector, and w(t) ∈ R as the noise term.

Given y(t+ 1), φ(t), and an estimate of θ∗ denoted θ̂(t), at time t, define the prediction
error associated with (3.1) by

e(t+ 1) := y(t+ 1)− φ(t)>θ̂(t); (3.2)

this is a measure of the error in the estimate. A common way to obtain the next parameter
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θ̂(t)

θ̂(t+ 1)

H

Figure 3.1: Geometric picture of the Projection Algorithm.

estimate is to solve the following optimization problem:

arg min
θ

1
2‖θ − θ̂(t)‖

2

subject to y(t+ 1) = φ(t)>θ.

Solving this optimization problem by the Lagrange multipliers method yields the original
ideal Projection Algorithm:

θ̂(t+ 1) =


θ̂(t) if φ(t) = 0

θ̂(t) + φ(t)
‖φ(t)‖2 e(t+ 1) otherwise. (3.3)

The geometric interpretation of the algorithm in (3.3) is as follows: given y(t+ 1) and φ(t),
the possible values for θ∗ in the model (3.1) lie in the hyperplane

H =
{
θ ∈ Rp : y(t+ 1) = φ(t)>θ

}
;

then, we choose the next update to be the one closest to θ̂(t), i.e. we choose θ̂(t+ 1) to be
the one that minimizes 1

2‖θ̂(t+ 1)− θ̂(t)‖2 and lies in H. The estimate update θ̂(t+ 1) is
merely the projection of θ̂(t) onto the hyperplane H, hence the name “Projection Algorithm”.
You can view this interpretation visually for the case when θ∗ ∈ R2 in Figure 3.1, where H
is a line.
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If φ(t) is close to zero, numerical issues may arise, so it is the norm in the literature, e.g.
[21] and [20], to replace (3.3) with the following classical algorithm (with 0 < α < 2 and
β > 0):

θ̂(t+ 1) = θ̂(t) + αφ(t)
β + ‖φ(t)‖2 e(t+ 1). (3.4)

This is widely used and plays a role in many discrete-time adaptive control approaches;
however, a careful look at (3.4) shows that gain of the update law is small if φ(t) is
small, which is the reason why the closed-loop behavior in the adaptive control context is
asymptotic rather than exponential (in general) when an estimator of this form is used—see
[43], [44] and [46].

3.2 Projection Onto a Convex Set

For a compact and convex set S ⊂ Rp, let the function

Proj
S
{·} : Rp 7→ S

denote the projection onto the set S; because the set S is closed and convex, we know that
the function Proj

S
is well-defined; some examples will be discussed shortly.

If we know that θ∗ belongs to a set S ⊂ Rp, then we can also constrain estimate updates
to that set. We use the algorithm in (3.3) accompanied by projection onto S to ensure that
the estimate remains in S for all time. To this end, with θ̂(t0) ∈ S, for t ≥ t0 we set

θ̌(t+ 1) =


θ̂(t) if φ(t) = 0

θ̂(t) + φ(t)
‖φ(t)‖2 e(t+ 1) otherwise, (3.5a)

θ̂(t+ 1) = Proj
S

{
θ̌(t+ 1)

}
. (3.5b)

See Figure 3.2 to visualize (3.5b) for an arbitrary closed and convex set S; the function
Proj
S

has the nice property that, for every θ̌ ∈ Rp and every θ∗ ∈ S, we have

∥∥∥∥∥Proj
S
{θ̌} − θ∗

∥∥∥∥∥ ≤ ∥∥∥θ̌ − θ∗∥∥∥ ,
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Proj
S

{
θ̌(t+ 1)

}
θ̌(t+ 1)

S

Figure 3.2: Projection onto a convex set.

i.e. projecting θ̌ onto S never makes it further away from θ∗ (in the Euclidean-norm sense).

Remark 3.1. Here, we present a couple of examples for the projection operation of Proj
S
{θ̌}

applied to a vector θ̌ ∈ Rp.

• Let us denote the elements of a vector θ̌ ∈ Rp as follows: θ̌ =
[
θ̌1 θ̌2 · · · θ̌p

]>
. Let

us consider the case of a hyper-rectangle: there exists constants θj ≤ θ̄j, j = 1, 2, . . . , p,
such that

S =
{
θ̌ ∈ Rp : θj ≤ θ̌j ≤ θ̄j, j = 1, 2, . . . , p

}
.

We can apply the function Proj
S

in an element-by-element basis: with

θ̂j :=



θ̄j if θ̌j > θ̄j

θ̌j if θj ≤ θ̌j ≤ θ̄j

θj if θ̌j < θj

,

for every j = 1, 2, . . . , p, it turns out that

Proj
S

{
θ̌
}

=


θ̂1

θ̂2
...
θ̂p

 .
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• Now consider the case when the set S ⊂ Rp is a hypersphere defined by a center θc ∈ S
and a radius R; then the projection of θ̌ onto S can be defined as [37]:

Proj
S

{
θ̌
}

=


θ̌ if ‖θ̌ − θc‖ ≤ R

θc +R
θ̌ − θc
‖θ̌ − θc‖

if ‖θ̌ − θc‖ > R.

• For a more general form of the projection operator, one can refer to [64].

3.3 A Revised Estimation Algorithm

One may be concerned that the original problem of dividing by a number close to zero
remains. Also we have discussed that the classical algorithm in (3.4) can lead to loss of
exponential stability and a bounded noise gain. So as proposed in [44] and [46], a middle
ground is presented: we turn-off the estimation if it is clear that the noise is swamping the
estimation error1. In particular, when θ∗ ∈ S and θ(t) ∈ S, by examining (3.2), we see that

e(t+ 1) = y(t+ 1)− φ(t)>θ̂(t)
= φ(t)>

[
θ∗ − θ̂(t)

]
+ w(t),

which means that
|e(t+ 1)| ≤ 2‖S‖‖φ(t)‖+ |w(t)|.

Therefore, if
|e(t+ 1)| > 2‖S‖‖φ(t)‖,

then the update to θ̂(t), namely

‖θ̌(t+ 1)− θ̂(t)‖ = |e(t+ 1)|
‖φ(t)‖ ,

1This is different than the norm in literature when the estimator is turned-off if the prediction error is
small, e.g. estimators with deadzone—e.g. [21], [34] and [41].

31



will be greater than 2‖S‖; this means that the noise may be overwhelming the estimation
update. Motivated by this, with δ ∈ (0,∞], let us replace (3.5a) with

θ̌(t+ 1) =

θ̂(t) + φ(t)
‖φ(t)‖2 e(t+ 1) if |e(t+ 1)| < (2‖S‖+ δ) ‖φ(t)‖

θ̂(t) otherwise;
(3.6)

in the case of δ =∞, we will adopt the understanding that ∞× 0 = 0, in which case the
above formula collapses into the original ideal one in (3.3). In the case of δ <∞, we can
be assured the update term is bounded above by 2‖S‖+ δ, which should alleviate concerns
about having an infinite gain. To have a more compact notation, define ρδ : Rp×R 7→ {0, 1}
by

ρδ (φ(t), e(t+ 1)) :=
{

1 if |e(t+ 1)| < (2‖S‖+ δ) ‖φ(t)‖
0 otherwise;

this leads to the “vigilant” estimator:

θ̌(t+ 1) = θ̂(t) + ρδ (φ(t), e(t+ 1)) φ(t)
‖φ(t)‖2 e(t+ 1) (3.7a)

θ̂(t+ 1) = Proj
S

{
θ̌(t+ 1)

}
. (3.7b)

3.4 The Main Estimation Algorithm

In this section, we present a more general version of the estimator (3.7) to be used throughout
this thesis. In several cases in the following chapters, some modifications are incorporated
into the original-projection-algorithm based estimator of (3.7). To this end, with φm(t) ∈ Rq
where q ≥ p and

‖φ(t)‖ ≤ ‖φm(t)‖, t ∈ Z, (3.8)

we replace the algorithm in (3.7) as follows: with ρδ : Rq × R 7→ {0, 1} defined by

ρδ (φm(t), e(t+ 1)) :=
{

1 if |e(t+ 1)| < (2‖S‖+ δ) ‖φm(t)‖
0 otherwise,
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we set

θ̌(t+ 1) = θ̂(t) + ρδ (φm(t), e(t+ 1)) φ(t)
‖φm(t)‖2 e(t+ 1) (3.9a)

θ̂(t+ 1) = Proj
S

{
θ̌(t+ 1)

}
. (3.9b)

Observe that the quantity φm has replaced φ in the denominator of the estimator update
and in the associated definition of ρδ. In the following chapters, definitions for φm will be
introduced as needed.

In the following we list properties of the estimation algorithm (3.9). These properties are
similar to ones found in Propositions 1 and 3 of [46]; the difference arises when φm(t) 6= φ(t).
Define the parameter estimation error

θ̃(t) := θ̂(t)− θ∗.

First, we present a property of θ̃(t), which will be essential to the analysis of the closed-loop
behavior; this Proposition is dealing with the case when the estimator algorithm in (3.9)
is applied to the model in (3.1) when θ∗ lies in a compact and convex set S ⊂ Rp. It is a
generalization of the well-known result for the classical estimator (3.4).

Proposition 3.1. For every t0 ∈ Z, t2 > t1 ≥ t0, φ ∈ S(Rp), φm ∈ S(Rq) satisfying
(3.8), θ̂(t0) ∈ S, θ∗ ∈ S and w ∈ `∞, when the estimation algorithm in (3.9) is applied
to the model (3.1), the following holds:

‖θ̃(t2)‖2 ≤ ‖θ̃(t1)‖2 +
t2−1∑
j=t1

ρδ(φm(j), e(j + 1))
[
−1

2
e(j + 1)2

‖φm(j)‖2 + 2 w(j)2

‖φm(j)‖2

]
. (3.10)

Proof of Proposition 3.1. Let t0 ∈ Z, t2 > t1 ≥ t0, φ ∈ S(Rp), φm ∈ S(Rq) satisfying
(3.8), θ̂(t0) ∈ S, θ∗ ∈ S and w ∈ `∞ be arbitrary.

Next, define ˇ̃θ(t) := θ̌(t)− θ∗. When ρδ(φm(t), e(t+ 1)) = 0 we have θ̂(t+ 1) = θ̂(t) by
(3.9), which implies that

‖θ̃(t+ 1)‖2 = ‖θ̃(t)‖2. (3.11)
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On the other hand, when ρδ(φm(t), e(t+ 1)) = 1, by (3.9) and (3.8) we have

ˇ̃θ(t+ 1) = θ̃(t) + φ(t)
‖φm(t)‖2 e(t+ 1)

⇒ ‖ ˇ̃θ(t+ 1)‖2 = ‖θ̃(t)‖2 + ‖φ(t)‖2|e(t+ 1)|2
‖φm(t)‖4 + 2 θ̃(t)

>φ(t)e(t+ 1)
‖φm(t)‖2

≤ ‖θ̃(t)‖2 + |e(t+ 1)|2
‖φm(t)‖2 + 2 θ̃(t)

>φ(t)e(t+ 1)
‖φm(t)‖2 . (3.12)

From (3.2) and (3.1), we have

e(t+ 1) = y(t+ 1)− θ̂(t)>φ(t)
= θ∗>φ(t)− θ̂(t)>φ(t) + w(t)
= −θ̃(t)>φ(t) + w(t).

If we use the above to find a representation for θ̃(t)>φ(t) in (3.12) we obtain

‖ ˇ̃θ(t+ 1)‖2 ≤ ‖θ̃(t)‖2 + |e(t+ 1)|2
‖φm(t)‖2 + 2[w(t)− e(t+ 1)]e(t+ 1)

‖φm(t)‖2

= ‖θ̃(t)‖2 − |e(t+ 1)|2
‖φm(t)‖2 + 2w(t)e(t+ 1)

‖φm(t)‖2

≤ ‖θ̃(t)‖2 − |e(t+ 1)|2
2‖φm(t)‖2 + 2w(t)2

‖φm(t)‖2 .

(The last step uses the fact that for a, b ≥ 0, we have −a2 + 2ab ≤ −1
2a

2 + 2b2). Since
projection does not make the parameter estimate worse (i.e. ‖θ̃(t+ 1)‖ ≤ ‖ ˇ̃θ(t+ 1)‖), it
follows that

‖θ̃(t+ 1)‖2 ≤ ‖θ̃(t)‖2 − |e(t+ 1)|2
2‖φm(t)‖2 + 2w(t)2

‖φm(t)‖2 . (3.13)

If we combine the above bound for the case of ρδ(·, ·) = 1 with (3.11) for the case of
ρδ(·, ·) = 0, and iterate, then we obtain (3.10). �

Next, we provide the following result that provides a bound on the difference between
parameter estimates at two different points in time; this property holds when the algorithm
(3.9) is applied to (3.1) whether θ∗ lies in S or not.
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Proposition 3.2. For every t0 ∈ Z, t2 > t1 ≥ t0, φ ∈ S(Rp), φm ∈ S(Rq) satisfying
(3.8), θ̂(t0) ∈ S, θ∗ ∈ Rp and w ∈ `∞, when the estimation algorithm in (3.9) is applied
to the model (3.1), the following holds:

‖θ̂(t2)− θ̂(t1)‖ ≤
t2−1∑
j=t1

ρδ(φm(j), e(j + 1)) |e(j + 1)|
‖φm(j)‖ . (3.14)

Proof of Proposition 3.2. Let t0 ∈ Z, t2 > t1 ≥ t0, φ ∈ S(Rp), φm ∈ S(Rq) satisfying
(3.8), θ̂(t0) ∈ S, θ∗ ∈ Rp and w ∈ `∞ be arbitrary.

For the estimator (3.9), projection does not make the parameter estimate worse; for
t ≥ t0, it follows from (3.9) that if ρδ(φm(t), e(t+ 1)) = 0, then θ̂(t+ 1) = θ̂(t), so

‖θ̂(t+ 1)− θ̂(t)‖ = 0,

and if ρδ(φm(t), e(t+ 1))(t) = 1, then

‖θ̂(t+ 1)− θ̂(t)‖ ≤ ‖θ̌(t+ 1)− θ̂(t)‖

≤
∥∥∥∥∥φ(t)e(t+ 1)
‖φm(t)‖2

∥∥∥∥∥
≤ ‖φ(t)‖|e(t+ 1)|

‖φm(t)‖2

≤ |e(t+ 1)|
‖φm(t)‖ .

We conclude that (3.14) follows by iteration. �

Before proceeding with the rest of the thesis, we would like to point out that, for ease
of notation, we introduce a compact notation of the function ρδ: for t ∈ Z we define

ρ(t) := ρδ (φm(t), e(t+ 1)) .

In each chapter, specific details of the estimation algorithm will be presented accordingly.
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Chapter 4

One-Step-Ahead Adaptive Control of
First-order Plants

4.1 Introduction

In the recent paper by Miller [43], an approach is provided which guarantees a linear-like
convolution bound on the closed-loop behavior in the context of the first-order one-step-
ahead adaptive control paradigm. The requirement of convexity on the set of uncertainty
plays a crucial role in obtaining these nice closed-loop properties. Since convexity is a very
restrictive requirement, the main objective of this chapter is to extend the approach by
replacing the assumption of a convex and compact uncertainty set with the assumption of
a compact uncertainty set. This chapter will present itself as a showcase to illustrate the
approach proposed in the whole thesis1.

4.2 The Setup

Here we consider the first order system

y(t+ 1) = ay(t) + bu(t) + w(t), y(t0) = y0, t ≥ t0, (4.1)
1A version of this chapter was published as a conference paper in [68].
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where y(t) ∈ R is the output, u(t) ∈ R is the control input, w(t) ∈ R is the noise (or
disturbance); define

φ(t) :=
[
y(t)
u(t)

]
and θ∗ :=

[
a
b

]
.

We assume that θ∗ is unknown and belongs to a closed and bounded (compact) set S ⊂ R2

satisfying a controllability assumption:
[
a
0

]
6∈ S for every a ∈ R. Here we have an exogenous

reference signal and the control objective is to track it asymptotically while providing a
strong notion of closed-loop stability.

As discussed earlier, the property of convexity on the set of uncertainty is shown to
play a crucial role in getting nice closed-loop properties. However, here we impose no such
assumption. If the set of admissible parameters is not convex, the standard trick in adaptive
control is to replace it with its closed convex hull. Unfortunately, often that set contains
uncontrollable models (i.e. b = 0 in case of first-order plants). Here the key idea is to
“cover” the compact set of admissible parameters S by a finite number of convex sets: the
following proposition illustrates that we can always obtain a cover with two convex sets.

Proposition 4.1. For any compact set S ⊂
{[
a
b

]
∈ R2 : b 6= 0

}
, there exist compact

and convex sets S1 and S2 which also lie in
{[
a
b

]
∈ R2 : b 6= 0

}
such that S ⊂ S1 ∪ S2.

Proof of Proposition 4.1. For a given S, define

S1 := convex hull of
{[
a
b

]
∈ S : b > 0

}
,

S2 := convex hull of
{[
a
b

]
∈ S : b < 0

}
.

The result follows immediately. �

Remark 4.1. If a convex set is complicated, it may be difficult (numerically) to project

onto it. If we define ā := max
{
|a| :

[
a
b

]
∈ S

}
, b̄ := max

{
|b| :

[
a
b

]
∈ S

}
and b :=
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min
{
|b| :

[
a
b

]
∈ S

}
, then Proposition 4.1 also holds if we define

S1 :=
{[
a
b

]
∈ R2 : a ∈ [−ā, ā], b ∈ [b, b̄]

}

and
S2 :=

{[
a
b

]
∈ R2 : a ∈ [−ā, ā], b ∈ [−b̄,−b]

}
,

which are rectangles.

If S1 and S2 are large, it may be beneficial to have more than two, but smaller, convex
sets. At this point we assume that

S ⊂
m⋃
i=1
Si

and each set Si is compact and convex and satisfies
[
a
0

]
6∈ Si for every a ∈ R. Before

proceeding, for each θ∗ ∈ Si, i = 1, 2, . . . ,m, we define

i∗(θ∗) = min {i ∈ {1, 2, . . . ,m} : θ∗ ∈ Si} ;

when there is no ambiguity, we will drop the argument and simply write i∗.

4.2.1 Parameter Estimation

For each Si and θ̂i(t0) ∈ Si, we design a projection-algorithm based estimator which
generates an estimate θ̂i(t) ∈ Si at each t > t0. The associated prediction error is defined as

ei(t+ 1) = y(t+ 1)− φ(t)>θ̂i(t). (4.2)

We apply the simplest form of the general algorithm presented in (3.9) of Chapter 3, where
we set φm = φ and δ =∞; observe that in this case

ρδ(φ(t), ei(t+ 1)) = 1 ⇔ φ(t) 6= 0.
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The parameter estimation algorithm is as follows:

θ̌i(t+ 1) =


θ̂i(t) if φ(t) = 0

θ̂i(t) + φ(t)
‖φ(t)‖2 ei(t+ 1) otherwise; (4.3a)

θ̂i(t+ 1) = Proj
Si

{
θ̌i(t+ 1)

}
. (4.3b)

Define for each i the parameter estimation error θ̃i(t) := θ̂i(t) − θ∗. The following
Proposition lists a property of the estimation algorithm (4.3) which follows directly from
Proposition 3.1 of Chapter 3, where we set φm = φ and δ =∞. Obviously, we do not know
i∗.

Proposition 4.2. For every t0 ∈ Z, y0 ∈ R, θ̂i(t0) ∈ Si (i = 1, 2, . . . ,m), θ∗ ∈ S,
w ∈ `∞, when the estimation algorithm in (4.3) is applied to the plant (4.1), the
following holds:

‖θ̃i∗(t)‖2 ≤ ‖θ̃i∗(t0)‖2 − 1
2

t−1∑
j=t0,φ(j)6=0

|ei∗(j + 1)|2
‖φ(j)‖2 + 2

t−1∑
j=t0,φ(j)6=0

|w(j)|2
‖φ(j)‖2 , t > t0.

4.2.2 The Switching Controller

It is convenient to parametrize θ̂i(t) as

θ̂i(t) =:
[
âi(t)
b̂i(t)

]
.

Let y∗ be the reference signal to be tracked. We assume that it is known one step ahead,
i.e. we know y∗(t+ 1) at time t. If we invoke the Certainty Equivalence Principle there is a
natural choice for the one-step-ahead adaptive control law associated with the ith estimator:

u(t) = − âi(t)
b̂i(t)

y(t) + 1
b̂i(t)

y∗(t+ 1),

which ensures that y∗(t+1) = φ(t)>θ̂i(t). Here, of course, we do not know which Si contains
θ∗. In fact, θ∗ may lie in more than one such set.
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Let us define the index set
I∗ = {1, 2, . . . ,m}.

To this end, we define a switching signal σ : Z 7→ I∗ which decides which controller to use
at any given point in time, i.e. we set

u(t) = − âσ(t)(t)
b̂σ(t)(t)

y(t) + 1
b̂σ(t)(t)

y∗(t+ 1). (4.4)

To proceed, we define the tracking error ε by

ε(t) := y(t)− y∗(t).

Let us analyze the relationship between the tracking error and the prediction error when
the above control is applied:

ε(t+ 1) = y(t+ 1)− y∗(t+ 1)
= y(t+ 1)− φ(t)>θ̂σ(t)(t)
= eσ(t)(t+ 1), t ≥ t0. (4.5)

So the choice of σ at time t affects the tracking error ε at time t+ 1.
What remains is to show how to choose σ(t) to obtain the desired properties. We first

present the main result of m = 2. Then after that we briefly discuss the case of m > 2.

4.3 The Main Result: The Case of m = 2

We begin with the case of two uncertainty sets, i.e. we have I∗ = {1, 2}. Here we adopt
the following simple switching rule: with an initial condition of σ(t0) = σ0,

σ(t) = argmin
i∈I∗

|ei(t)|, t > t0, (4.6)

i.e. we choose the model with the minimum prediction error. This rule is memoryless and
is a function only of signals at the same instant. For the case when |e1(t)| = |e2(t)|, we
(somewhat arbitrarily) select σ(t) to be 1.

Before presenting the main result of this chapter, we first show that the simple logic in
(4.6) yields a very desirable closed-loop property.
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Lemma 4.1. Consider the plant (4.1) with m = 2, and suppose that the adaptive
controller consisting of the parameter estimator (4.3), the control law (4.4), and the
switching rule (4.6) is applied. Then for every t0 ∈ Z, y0 ∈ R, σ0 ∈ {1, 2}, θ∗ ∈ S, and
θ̂i(t0) ∈ Si (i = 1, 2) and y∗, w ∈ `∞, for every j ∈ {1, 2} and t ≥ t0 + 1 we have that

(a) |ε(t)| ≤ |ej(t)| or

(b) |ε(t+ 1)| ≤ |ej(t+ 1)|.

Proof of Lemma 4.1. Fix t0 ∈ Z, y0 ∈ R, σ0 ∈ {1, 2}, θ∗ ∈ S, θ̂i(t0) ∈ Si (i = 1, 2), and
y∗, w ∈ `∞, and let j ∈ {1, 2} and t ≥ t0 + 1 be arbitrary.

Let ̄ be the element of {1, 2} which is not j. Suppose that (b) fails to hold; in view
of (4.5) it must be that σ(t) = ̄; from (4.6) this means that |ē(t)| ≤ |ej(t)|. Since
ε(t) ∈ {e1(t), e2(t)}, we conclude that |ε(t)| ≤ |ej(t)|, i.e. (a) holds. �

In the above we do not make any claim that θ∗ ∈ Sσ(t) at any time; it only makes a
statement about the size of the prediction error. Quite surprisingly, it turns out that this is
enough to ensure that closed-loop stability is attained.

Now, we present the main result of this chapter.

Theorem 4.1. Consider the plant (4.1) with I∗ = {1, 2} and suppose that the adaptive
controller consisting of the parameter estimator (4.3), the control law (4.4), and the
switching rule (4.6) is applied. For every λ ∈ (0, 1), there exists a constant γ > 0 such
that for every t0 ∈ Z, y0 ∈ R, σ0 ∈ I∗, θ∗ ∈ S, θ̂i(t0) ∈ Si (i ∈ I∗), and y∗, w ∈ `∞, the
closed-loop system satisfies

‖φ(t)‖ ≤ γλt−t0|y0|+
t−1∑
j=t0

γλt−1−j(|w(j)|+ |y∗(j + 1)|) + γ|y∗(t+ 1)|, t ≥ t0.

(4.7)

The above result shows that the closed-loop system experiences linear-like behavior.
There is a uniform exponential decay bound on the effect of the initial condition, and
a convolution sum bound on the effect of the exogenous signals. If the initial condition
is zero, there is a bounded gain on the map from the exogenous signals (the noise and
reference signal) to φ in every p-norm; in classical adaptive control this is rarely the case.
This is analogous to the result in [43] which deals with one convex uncertainty set and a
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single estimator. Furthermore, while the choice in (4.6) seems obvious, as far as we are
aware there is no proof of stability in the literature for the situation in which the classical
estimation algorithm (3.4) is used in conjunction with the control law (4.4).

Before proving the main result, define the constants

s̄ := max
i
‖Si‖,

ā := max
{
|a| :

[
a
b

]
∈ S1∪S2

}
, b̄ := max

{
|b| :

[
a
b

]
∈ S1∪S2

}
,

f̄ := max
{∣∣∣∣ab

∣∣∣∣ :
[
a
b

]
∈ S1∪S2

}
, ḡ := max

{
1
|b|

:
[
a
b

]
∈ S1∪S2

}
.

Remark 4.2. The following proof will include a separate analysis for the case when no
noise entering the system, i.e. w = 0, and the case when noise is entering. It is clear that
the noise-free case is just a special case of the noisy case, but it is included in this chapter
to help the reader understand the proof technique. In subsequent results of the thesis, proofs
will only include the more general and complicated case of when noise enters the system.

Proof of Theorem 4.1:

The proof is a significant extension of that of the main result of [43]. It will be given for
the case when no noise enters the system, followed by the case with noise.

Fix λ ∈ (0, 1). Let t0 ∈ Z, y0 ∈ R, σ0 ∈ I∗, θ∗ ∈ S, θ̂i(t0) ∈ Si (i ∈ I∗), and y∗, w ∈ `∞
be arbitrary.

First we establish some general bounds to be used throughout the proof. Setting
c1 := (1 + f̄) and c2 := ḡ, from the control law in (4.4) we obtain the general bound

‖φ(t)‖ ≤ c1|y(t)|+ c2|y∗(t+ 1)|; (4.8)

if we define c3 := max{ā+ b̄f̄ , b̄ḡ} from the plant equation (4.1) we have the crude bound

|y(t+ 1)| ≤ c3|y(t)|+ c3|y∗(t+ 1)|+ |w(t)|. (4.9)

Case 1: w(t) = 0 for all t ≥ t0.
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In this part, the proof has several steps. First, we will analyze the behavior for two
consecutive instants. Then, we will consider the whole time horizon.

Using the fact that ‖θ̃i∗(t0)‖ ≤ 2‖Si∗‖, from Proposition 4.2 we have that:

‖θ̃i∗(t)‖2 ≤ ‖θ̃i∗(t0)‖2 − 1
2

t−1∑
j=t0,φ(j)6=0

|ei∗(j + 1)|2
‖φ(j)‖2

⇒
t−1∑

j=t0,φ(j)6=0

|ei∗(j + 1)|2
‖φ(j)‖2 ≤ 2‖θ̃i∗(t0)‖2 ≤ 8‖Si∗‖2 ≤ 8s̄2︸︷︷︸

=: c4

, t ≥ t0 + 1. (4.10)

For k ≥ t0, define

αk :=


|ei∗(k + 1)|
‖φ(k)‖ if φ(k) 6= 0

0 otherwise.

(4.11)

For φ(j) 6= 0, we have

|ei∗(j + 1)| = αj‖φ(j)‖. (4.12)

For φ(j) = 0, we have y(j) = u(j) = 0; from (4.1) we conclude that y(j + 1) = 0, and from
(4.2) we conclude that ei(j + 1) = 0 for all i ∈ I∗, which means that (4.12) holds for this
case as well. Using (4.8), we get

|ei∗(j + 1)| ≤ αj(c1|y(j)|+ c2|y∗(j + 1)|). (4.13)

Motivated by Lemma 4.1, now we will analyze closed-loop behavior on two consecutive
instants of time. Let j ∈ Z+ be arbitrary; as i∗ ∈ I∗, from Lemma 4.1 we have that either

|ε(t0 + 2j + 1)| ≤ |ei∗(t0 + 2j + 1)|

or
|ε(t0 + 2j + 2)| ≤ |ei∗(t0 + 2j + 2)|.

If we combine these with (4.13), use the fact that ε(t) = y(t)− y∗(t), note from (4.10) that
αk ≤

√
c4, and define ᾱt0+2j := max{αt0+2j, αt0+2j+1}, we can conclude that either

|y(t0 + 2j + 1)| ≤ c1ᾱt0+2j|y(t0 + 2j)|+ (1 + c2c
1
2
4 )|y∗(t0 + 2j + 1)|
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or

|y(t0 + 2j + 2)| ≤ c1ᾱt0+2j|y(k0 + 2j + 1)|+ (1 + c2c
1
2
4 )|y∗(t0 + 2j + 2)|.

Combining this with the crude bound (4.9) and defining c5 := max{1, c1c3} and c6 :=
2c3 + c1c3c

1
2
4 + c2c

1
2
4 + c2c3c

1
2
4 + 1, we see that in either case,

|y(t0 + 2j + 2)| ≤ c5ᾱt0+2j|y(t0 + 2j)|+ c6(|y∗(t0 + 2j + 1)|+ |y∗(t0 + 2j + 2)|), j ∈ Z+.
(4.14)

Now we examine behavior across the whole time horizon. Observe from (4.10) that
∞∑
j=0

ᾱ2
t0+2j ≤

∞∑
k=t0

α2
k ≤ c4.

Now define
λ1 = λ2

c5
.

We now utilize the inequality of arithmetic and geometric means:

p−1∏
j=q

ᾱt0+2j ≤

 1
p− q

p−1∑
j=q

ᾱ2
t0+2j


p−q

2

≤
[
c4

p− q

] p−q
2

=
( c4

p− q

) 1
2
p−q , 0 ≤ q < p. (4.15)

With k̄ :=
⌈(

c4
λ1

)2
⌉
, we have

c4

k̄
≤ λ2

1;

so it easy to see that
[(
c4

k

) 1
2
]k
≤ λk1, k ≥ k̄. (4.16)
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Since c4
k
decreases as k ≥ 1 increases, if we define c7 := max

{
1, c

k̄
2
4

}
, then

(
c4

k

) k
2
≤ c7λ

k
1, k = 1, 2, . . . , k̄,

as well. If we combine this with (4.16), from (4.15) we conclude that

p−1∏
j=q

ᾱt0+2j ≤ c7λ
p−q
1 , 0 ≤ q < p. (4.17)

Then by the definition of λ1 we obtain

p−1∏
j=q

[c5ᾱt0+2j] ≤ c7λ
p−q
1 cp−q5

≤ c7λ
2(p−q), 0 ≤ q < p. (4.18)

Now we solve the difference inequality (4.14) recursively and apply the above bound
(4.18): we obtain

|y(t0 + 2j)| ≤ c7λ
2j|y(t0)|+

j−1∑
l=0

c7c6λ
2(j−l−1)(|y∗(t0 + 2l+ 1)|+ |y∗(t0 + 2l+ 2)|), j ∈ Z+,

which simplifies to

|y(t0 + 2j)| ≤ c7λ
2j|y(t0)|+

2j−1∑
l=0

c7c6

λ
λ2j−l−1|y∗(t0 + l + 1)|, j ∈ Z+. (4.19)

We can use (4.9) to obtain a bound for the remaining time instants. So it follows that there
exists a constant γ̄1 := 1

λ2 max{c7, c3, c7c3, c6c7c3, c7c6} so that

|y(t)| ≤ γ̄1λ
t−t0|y(t0)|+

t−1∑
j=t0

γ̄1λ
t−j−1|y∗(j + 1)|, t ≥ t0. (4.20)

Case 2: w(t) 6= 0 for some t ≥ t0.
We now analyze the case when there is noise entering the system; this is more complicated
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since ‖θ̃i∗(t)‖2 is no longer monotonically decreasing. Motivated by Case 1, also define

λ1 = λ2

c5
.

Following [43] and [46], we partition the timeline into two parts: one in which w(·) is
small versus φ(·) and one where it is not. Before proceeding, define

ν :=
(
λ1

4

)2

.

Let us now define two sets in relation to size of the noise w(·):

Sgood =
{
j ≥ t0 : φ(j) 6= 0 and |w(j)|2

‖φ(j)‖2 < ν

}
,

Sbad =
{
j ≥ t0 : φ(j) = 0 or |w(j)|2

‖φ(j)‖2 ≥ ν

}
;

the idea is that on Sgood the disturbance is small relative to φ so the closed-loop system
acts like the noise-free case, at least if ν is small enough.

Now we partition the time index {j ∈ Z : j ≥ t0} into intervals which oscillate between
Sgood and Sbad. We can clearly define a (possibly infinite) sequence of intervals of the form
[kl, kl+1) which satisfy:
i) without loss of generality, k0 = t0 serves as the initial instant of the first interval;
ii) [kl, kl+1) either belongs to Sgood or Sbad; and
iii) if kl+1 6= ∞ and [kl, kl+1) belongs to Sgood then [kl+1, kl+2) belongs to Sbad and vice
versa.
Case 2a: [kl, kl+1) belongs to Sbad.

Let j ∈ [kl, kl+1) be arbitrary. So we have ‖φ(j)‖ = 0 or |w(j)|2
‖φ(j)‖2 ≥ ν, so in either case

‖φ(j)‖ ≤ 1√
ν
|w(j)|. If we define c8 := 1√

ν
and utilize the definition of φ(j) we conclude that

|y(j)| ≤ c8|w(j)|.

Also, from (4.1) we have

|y(j)| ≤ ((ā+ b̄) 1√
ν

+ 1)︸ ︷︷ ︸
=: c9

|w(j − 1)|, j = kl + 1, kl + 2, . . . , kl+1.
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We conclude that for j ∈ [kl, kl+1), we have

|y(j)| ≤
{
c8|w(j)| j = kl
c9|w(j − 1)| j = kl + 1, kl + 2, . . . , kl+1.

(4.21)

Case 2b: [kl, kl+1) belongs to Sgood.
Using the same notation as in Case 1, we define

αk := |ei
∗(k + 1)|
‖φ(k)‖ ;

for j ∈ Z+ so that kl + 2j + 1 < kl+1, we define

ᾱkl+2j := max{αkl+2j, αkl+2j+1}.

From Proposition 4.2 we have

‖θ̃i∗(k̄)‖2 ≤ ‖θ̃i∗(k)‖2 − 1
2

k̄−1∑
j=k

|ei(j + 1)|2
‖φ(j)‖2 + 2

k̄−1∑
j=k

|w(j)|2
‖φ(j)‖2 , kl ≤ k < k̄ ≤ kl+1, (4.22)

which yields

k̄−1∑
k=k

α2
k ≤ 8s̄2 + 4(k̄ − k)ν, kl ≤ k < k̄ ≤ kl+1,

or in other words:
p−1∑
j=q

ᾱ2
kl+2j ≤ 8s̄2 + 4[(kl + 2p)− (kl + 2q)]ν = 8s̄2 + 8(p− q)ν,

for all q, p ∈ Z+ s.t. kl ≤ kl + 2q < kl + 2p ≤ kl+1. (4.23)

Note from the above that αk ≤
√

8s̄2 + 4ν := c10.
If we now analyze the closed-loop system as in the noise-free case, we end up with a

version of (4.14) with the noise now included: there exists a constant c11 := 2c3 + c1c3c
1
2
10 +

c2c
1
2
10 + c2c3c

1
2
10 + c1c

1
2
10 + 1 so that

|y(kl + 2j + 2)| ≤ c5ᾱkl+2j|y(kl + 2j)|+ c11
(
|y∗(kl + 2j + 1)|+ |y∗(kl + 2j + 2)|+
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|w(kl + 2j)|+ |w(kl + 2j + 1)|
)
, j ∈ Z+ s.t. kl + 2j + 1 < kl+1.

(4.24)

By similar analysis like in Case 1, we use the inequality of arithmetic and geometric means;
to this end, from (4.23) and incorporating the definition of ν:

p−1∏
j=q

ᾱkl+2j ≤

 1
p− q

p−1∑
j=q

ᾱ2
kl+2j


p−q

2

≤
[

8s̄2

p− q
+ 8ν

] p−q
2

=
( 8s̄2

p− q
+ λ2

1
2

) 1
2
p−q ,

for all q, p ∈ Z+ s.t. kl ≤ kl + 2q < kl + 2p ≤ kl+1. (4.25)

With k̄ :=
⌈(

4s̄
λ1

)2
⌉
, we have

8s̄2

k̄
≤ λ2

1
2 ,

which means that (8s̄2

k
+ λ2

1
2

) 1
2
k ≤ λk1, k ≥ k̄.

Then in a similar manner to that of Case 1, if we define c12 := (8s̄2 + 1)
k̄
2 , it is easy to see

that
p−1∏
j=q

ᾱkl+2j ≤ c12λ
p−q
1 , for all q, p ∈ Z+, s.t. kl ≤ kl + 2q < kl + 2p ≤ kl+1. (4.26)

Then by the definition of λ1 we obtain

p−1∏
j=q

[c5ᾱkl+2j] ≤ c12λ
p−q
1 cp−q5

≤ c12λ
2(p−q), for all q, p ∈ Z+, s.t. kl ≤ kl + 2q < kl + 2p ≤ kl+1. (4.27)

Before proceeding, observe from the definition of ᾱkl+2j, that if kl+1 − kl is an odd
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number, then we would solve (4.24) and obtain a bound which is valid on t = kl, . . . , kl+1−1
and not on t = kl+1; when kl+1 − kl is an even number, we would be able to obtain a
bound on t = kl, . . . , kl+1. So in any case, we now proceed to solve (4.24) iteratively
and apply the bound in (4.27). Using a similar analysis to that of Case 1 and defining
γ̄2 := 1

λ2 max{c12, c3, c12c3, c11c12c3, c12c11}, we obtain

|y(t)| ≤ γ̄2λ
t−kl |y(kl)|+

t−1∑
j=kl

γ̄2λ
t−j−1(|y∗(j + 1)|+ |w(j)|), t = kl, kl + 1, . . . , kl+1 − 1.

(4.28)

Note that (4.28) does not apply for t = kl+1; so to conclude Case 2b, define γ̄3 :=
c3 max{1, γ̄2

λ
} and utilizing (4.9) to obtain a bound accounting for the extra step yields

|y(t)| ≤ γ̄3λ
t−kl |y(kl)|+

t−1∑
j=kl

γ̄3λ
t−j−1(|y∗(j + 1)|+ |w(j)|), t = kl, kl + 1, . . . , kl+1.

(4.29)

Finally, we will combine the results of Case 2a and Case 2b to find a general bound on
y. Before proceeding, define

γ̄4 := max{γ̄3, c9, γ̄3c9}.

Claim 4.1. The following bound holds:

|y(t)| ≤ γ̄4λ
t−t0|y(t0)|+

t−1∑
j=t0

γ̄4λ
t−j−1(|y∗(j + 1)|+ |w(j)|), t ≥ t0. (4.30)

Proof of Claim 4.1. If [k0, k1) = [t0, k1) ⊂ Sgood, then (4.30) is true for t ∈ [k0, k1] by (4.29).
If [k0, k1) ⊂ Sbad, then from (4.21) we have

|y(j)| ≤
{
|y(k0)| = |y(t0)| j = k0
c9|w(j − 1)| j = k0 + 1, k0 + 2, . . . , k1.

which means that (4.30) holds on [k0, k1] for this case as well.
We now use induction: suppose that (4.30) is true for t ∈ [k0, kl]; we need to prove that

it is true for t ∈ (kl, kl+1]. If t ∈ [kl, kl+1) ⊂ Sbad, then from (4.21) we see that

|y(t)| ≤ c9|w(t− 1)|, t = kl + 1, kl + 2, . . . , kl+1,
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so (4.30) clearly holds on (kl, kl+1]. On the other hand, if [kl, kl+1) ⊂ Sgood, then kl−1 ∈ Sbad;
from (4.21) we have

|y(kl)| ≤ c9|w(kl − 1)|.

Using (4.29) to analyze the behavior on t ∈ [kl, kl+1], we have

|y(t)| ≤ γ̄3λ
t−kl |y(kl)|+

t−1∑
j=kl

γ̄3λ
t−j−1(|y∗(j + 1)|+ |w(j)|)

≤ c9γ̄3λ
t−kl |w(kl − 1)|+

t−1∑
j=kl

γ̄3λ
t−j−1(|y∗(j + 1)|+ |w(j)|)

≤
t−1∑

j=kl−1
γ̄4λ

t−j−1(|y∗(j + 1)|+ |w(j)|),

which implies that (4.30) holds. �

At this point we have bounds on y(·) for both cases with noise and without. To combine
the bounds (4.20) and (4.30), define γ̄5 := max{γ̄1, γ̄4}. Then the overall bound is given by

|y(t)| ≤ γ̄5λ
t−t0|y(t0)|+

t−1∑
j=t0

γ̄5λ
t−j−1(|y∗(j + 1)|+ |w(j)|), t ≥ t0. (4.31)

To conclude the proof of Theorem 4.1, we need a bound on u(·): using (4.4) we obtain

|u(t)| ≤ f̄ |y(t)|+ ḡ|y∗(t+ 1)|;

so by substituting (4.31) into the above, we get

|u(t)| ≤ f̄ γ̄5λ
t−t0|y(t0)|+

t−1∑
j=t0

f̄ γ̄5λ
t−j−1|w(j)|+

t∑
j=t0

(
f̄ γ̄5
λ

+ ḡ
)
λt−j|y∗(j + 1)|, t ≥ t0.

(4.32)

By combining (4.32) and (4.31) and defining γ := max{γ̄5, f̄ γ̄5,
f̄ γ̄5
λ

+ ḡ}, we conclude the
proof. �
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4.4 The Case of m ≥ 2

Now we consider the case of m > 2 uncertainty sets. As mentioned earlier, it may be
beneficial for performance to have more than two sets. Unfortunately, although the rule in
(4.6) is a well-defined rule in this case, and it works in all of our simulations, we have been
unable to prove that it will work. In particular, a potential problem is that the algorithm
could oscillate between two bad choices, and never (or rarely) choose the correct one; it is
not clear that Lemma 4.1 would hold. Instead, we propose a modified version of (4.6). At
each point in time we have an admissible set I(t): we initialize I(t0) = I∗, and we obtain
I(t+ 1) from I(t) by removing all j ∈ I(t) satisfying

|ε(t+ 1)| ≤ |ej(t+ 1)|,

clearly j = σ(t) satisfies this bound, but more j’s may as well; if this results in I(t + 1)
being empty, then we reset I(t+ 1) to be I∗. This Switching Algorithm2 is summarized as
follows: with σ(t0) = σ0 and I(t0) = I∗:

Î(t) = {i ∈ I∗ : |ei(t+ 1)| < |ε(t+ 1)|} , (4.33a)

I(t+ 1) =
{
I∗ if I(t) ∩ Î(t) = ∅
I(t) ∩ Î(t) otherwise,

(4.33b)

σ(t+ 1) = argmin
i∈I(t+1)

|ei(t+ 1)|, t ≥ t0. (4.33c)

Remark 4.3. We define the index set reset times as those k ≥ t0 for which I(k) = I∗.
Remark 4.4. In computing the argmin in the RHS of (4.33c), it could very well that there
are more values i ∈ I(t+ 1) which achieves the minimum. In such a case, we (somewhat
arbitrarily) choose the smallest such index.

Lemma 4.2. Consider the plant (4.1) for which m ≥ 2, and suppose that the adaptive
controller consisting of the parameter estimator (4.3), the control law (4.4), and the
switching algorithm (4.33) is applied. Then for every t0 ∈ Z, y0 ∈ R, σ0 ∈ I∗, θ∗ ∈ S,
θ̂i(t0) ∈ Si (i ∈ I∗), y∗, w ∈ `∞, if k and k̄ are two consecutive index set reset times,
there exists a k̂ ∈ [k, k̄) such that:

|ε(k̂ + 1)| ≤ |ei∗(k̂ + 1)|. (4.34)

2This algorithm is reminiscent of the localization-based algorithm of [88],[87]; though, in that work there
are no resets (to I∗).
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Remark 4.5. Lemma 4.2 says that, between every two index set resets, there is an instant
for which the tracking error is equal to, or smaller than, the prediction error associated with
the correct index.

Proof of Lemma 4.2. Let θ∗ ∈ S, t0 ∈ Z, σ0 ∈ I∗, y0 ∈ R, θ̂i(t0) ∈ Si (i ∈ I∗), and
w, y∗ ∈ `∞ be arbitrary. Let k̄ and k be two consecutive reset times.

We prove (4.34) by contradiction; assume that

|ε(j + 1)| > |ei∗(j + 1)|, for all j ∈ [k, k̄). (4.35)

Then, according to (4.33a), we should have

i∗ ∈ Î(j), j ∈ [k, k̄). (4.36)

We know by the definition of index resets that for all j ∈ (k, k̄) we have I(j) 6= I∗, which
means that by (4.33b)

I(j) = I(j − 1) ∩ Î(j − 1), j ∈ (k, k̄);

then by induction we see that

I(j) = I(k) ∩ Î(k) ∩ Î(k + 1)∩ · · · ∩ Î(j − 2) ∩ Î(j − 1), j ∈ (k, k̄).

But I(k) = I∗, so using (4.36) in the above, we see that

i∗ ∈ I(j), j ∈ [k, k̄) (4.37)

as well. So according to this and to (4.36) we have i∗ ∈ I(k̄ − 1) ∩ Î(k̄ − 1). However, we
know by the definition of index resets and (4.33b) that I(k̄ − 1) ∩ Î(k̄ − 1) = ∅, which is
a contradiction, so it must be that (4.35) does not hold. �

We now present the following main result for the case when we have more than two
estimators.
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Theorem 4.2. Consider the plant in (4.1) with I∗ = {1, 2, . . . ,m} and suppose that
the adaptive controller consisting of the parameter estimator (4.3), the control law
(4.4), and the switching algorithm (4.33) is applied. For every λ ∈ (0, 1), there exists a
constant γ̄ > 0 such that for every t0 ∈ Z, y0 ∈ R, σ0 ∈ I∗, θ∗ ∈ S, θ̂i(t0) ∈ Si (i ∈ I∗)
and y∗, w ∈ `∞, the closed-loop system satisfies

‖φ(t)‖ ≤ γ̄λt−t0|y0|+
t−1∑
j=t0

γ̄λt−1−j(|y∗(j + 1)|+ |w(j)|) + γ̄|y∗(t+ 1)|, t ≥ t0.

(4.38)

Proof of Theorem 4.2. We apply an analysis similar to that of the proof of Theorem
4.1; instead of analyzing two consecutive instants, we analyze intervals between index set
resets. We apply Lemma 4.2; we further utilize the fact that the maximum length between
any consecutive resets is not more than m. We omit the details here and refer the reader
to the main result of Chapter 7 that includes a similar proof. �

4.5 Robustness Results

Here we show that we can leverage the fact that a convolution bound holds in the case
of a fixed plant parameter to prove that a convolution bound (with larger constants) also
holds if we allow time-variation and/or unmodelled dynamics. To proceed, we consider a
time-varying version of the plant (4.1) along with the term d∆(t) ∈ R added to represent
the unmodelled dynamics:

y(t+ 1) = a(t)y(t) + b(t)u(t) + w(t) + d∆(t)

=
[
y(t)
u(t)

]>
︸ ︷︷ ︸

=φ(t)>

[
a(t)
b(t)

]
︸ ︷︷ ︸
=:θ∗(t)

+w(t) + d∆(t), t ∈ Z; (4.39)

as discussed in Chapter 2, we assume that d∆ satisfies

w(t+ 1) = βw(t) + β‖φ(t)‖, w(t0) = w0 (4.40a)
|d∆(t)| ≤ µw(t) + µ‖φ(t)‖, t ≥ t0. (4.40b)
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The following result addresses the problem when I∗ = {1, 2}, i.e. m = 2. Naturally, the
same result is true for when m > 2 when the switching algorithm (4.33) is applied.

Theorem 4.3. Suppose that the adaptive controller (4.3), (4.4) and (4.6) is applied
to the time-varying plant (4.39) with d∆ satisfying (4.40). Then, for every β ∈ (0, 1)
and c̄0 ≥ 0, there exist ε̄ > 0, µ > 0, λ̃ ∈ (β, 1) and γ̃ > 0 such that for every t0 ∈ Z,
y0 ∈ R, σ0 ∈ I∗, θ∗ ∈ S (S, c̄0, ε̄), θ̂i(t0) ∈ Si (i ∈ I∗), and w, y∗ ∈ `∞, the following
holds:∥∥∥∥∥
[
φ(t)
w(t)

]∥∥∥∥∥ ≤ γ̃λ̃t−t0
∥∥∥∥∥
[
φ(t0)
w0

]∥∥∥∥∥+
t−1∑
j=t0

γ̃λ̃t−j−1(|w(j)|+ |y∗(j + 1)|) + γ̃|y∗(t+ 1)|, t ≥ t0.

Proof of Theorem 4.3. We observe here that the plant (4.39) and the controller (4.3),
(4.4) and (4.6) fit into the paradigm of Chapter 2: we set

ϑ(t) = φ(t) =
[
y(t)
u(t)

]
,

f(ϑ(·)) = φ(·),
z(t) = ∅,

θ̂(t) =
[
θ̂1(t)
θ̂2(t)

]
,

r(t) = y∗(t+ 1),
Ω = S1 × S2.

In Theorem 4.1 it is proven the controller (4.3), (4.4) and (4.6) provides a convolution
bound for (4.1). Then, by Theorems 2.2, 2.2 and 2.3 we immediately see that the same is
true in the presence of time-variation and/or unmodelled dynamics. �
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Figure 4.1: Uncertainty set S (shaded area).

4.6 Simulation Examples

In this section, simulation examples are provided to illustrate the results of this chapter.
Consider the time-varying plant

y(t+ 1) =
[
y(t)
u(t)

]>
︸ ︷︷ ︸
=:φ(t)>

[
a(t)
b(t)

]
︸ ︷︷ ︸
=:θ∗(t)

+w(t),

with θ∗(t) belonging to the uncertainty set S:

S =
{[
a
b

]
∈ R2 : a ∈ [1, 2] ∪ [−2,−1], b ∈ [1, 2] ∪ [−2,−1]

}
,

which can be visualized in Figure 4.1. Hence, every admissible model is unstable, and the
sign of the input gain b is unknown.

4.6.1 Example 1

Here the plant parameters are varying as follows:

a(t) =
{
−3

2 −
1
2 sin( 1

20t), 51 ≤ t ≤ 100, 151 ≤ t ≤ 200
3
2 + 1

2 sin( 1
20t), otherwise,
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b(t) =
{
−3

2 −
1
2 cos( 1

15t), 101 ≤ t ≤ 150, 151 ≤ t ≤ 200
3
2 + 1

2 cos( 1
15t), otherwise.

In the first approach, we define two convex sets by convexifying the 1st and 2nd quadrants
and the 3rd and 4th quadrants, respectively, yielding

S1 :=
{[
a
b

]
∈ R2 : a ∈ [−2, 2], b ∈ [1, 2]

}
, (4.41a)

S2 :=
{[
a
b

]
∈ R2 : a ∈ [−2, 2], b ∈ [−2,−1]

}
. (4.41b)

We will apply the control law (4.4) using estimates from (4.3) and σ(t) determined by (4.6).
We set θ̂1(0) = [1.5 1.5]>, θ̂2(0) = [−1.5 − 1.5]>, σ0 = 2, y0 = −1, the reference y∗(·) to be
a unit-amplitude square wave of period 65, and noise to be w(t) = 1

20 sin(5t). Figures 4.2
and 4.3 display the results. We see that the controller does a reasonable job, even though
the switching occasionally chooses the wrong model. Large transient may ensue, but on
average the adaptive controller provides good tracking.

As mentioned earlier, it may be beneficial to have more than two convex sets. So in the
second approach, we define four convex sets in the following natural way:

S1 :=
{[
a
b

]
∈ R2 : a ∈ [1, 2], b ∈ [1, 2]

}
,

S2 :=
{[
a
b

]
∈ R2 : a ∈ [1, 2], b ∈ [−2,−1]

}
,

S3 :=
{[
a
b

]
∈ R2 : a ∈ [−2,−1], b ∈ [1, 2]

}
,

S4 :=
{[
a
b

]
∈ R2 : a ∈ [−2,−1], b ∈ [−2,−1]

}
.

We will apply the control law (4.4) using estimates from (4.3) and σ(t) determined by
(4.33). We set θ̂1(0) = [1.5 1.5]>, θ̂2(0) = [1.5 − 1.5]>, θ̂3(0) = [−1.5 1.5]>, θ̂4(0) =
[−1.5 − 1.5]>, σ0 = 2. As above we set y0 = −1, the reference y∗(·) to be a unit-amplitude
square wave of period 65, and noise to be w(t) = 1

20 sin(5t). Figures 4.4 and 4.5 display the
results. We see the controller does a good job of tracking, and with smaller transients than
in the first approach. Furthermore, the estimator does a fairly good job of tracking the
time-varying parameter. Both examples illustrate that the approach handles time-variation
and occasional jumps.

56



0 50 100 150 200 250 300

-20

-10

0

10

0 50 100 150 200 250 300

-20

0

20

time
0 50 100 150 200 250 300

-20

-10

0

10

0 50 100 150 200 250 300

-20

0

20

time
Figure 4.2: The upper plot shows both the reference (dashed) and the output (solid); the lower
plot shows control input.
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Figure 4.3: The upper two plots show the parameter estimates θ̂σ(t)(t), (solid) and actual
parameters θ∗(t) (dashed); the bottom plot shows the switching signal (solid) and the correct
index (dashed).
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Figure 4.4: The upper plot shows both the reference (dashed) and the output (solid); the lower
plot shows control input.
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Figure 4.5: The upper two plots show the parameter estimates θ̂σ(t)(t), (solid) and actual
parameters θ∗(t) (dashed); the bottom plot shows the switching signal (solid) and the correct
index (dashed).
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Figure 4.6: The upper plot shows the output when the original-projection-algorithm based
estimator is applied; the bottom plot shows the output when the classical estimator is applied.

4.6.2 Example 2

Finally, we compare the closed-loop performance when using the original-projection-
algorithm based estimator in (4.3) with the performance when using the classical estimator
in (3.4) (suitably modified to have projection onto Si). We consider again the case of
having two convex sets as defined in (4.41). We apply the adaptive controller in both cases
by coupling the estimator with control law (4.4) and switching rule (4.33); in applying
estimator (3.4), we choose α = β = 1. Here we suppose that the plant parameters are as
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follows:

a(t) = 1.5, and b(t) =
{

1 t ≤ 150
−1 t > 150.

We set θ̂1(0) = [1.5 1.5]>, θ̂2(0) = [−1.5 − 1.5]>, σ0 = 1, y0 = 0.1, the reference y∗(·) to be
zero, and noise to be w(t) = 1

100 sin(5t). See the results in Figure 4.6. You can see that, in
this example, as the control input gain changes its sign, our approach provides a smaller
transient, i.e. better performance, than when using the classical estimator.

4.7 Conclusion

In this chapter, we have considered the first-order case with unknown plant parameters
belonging to a closed and bounded uncertainty set. We designed a one-step-ahead adaptive
controller; no assumption on convexity of the uncertainty set is imposed. A parameter
estimation process is run by having multiple parallel estimators with each operating on a
compact and convex set. A switching algorithm is used to determine which parameters are
used in the controller. The corresponding one-step-ahead adaptive controller guarantees
linear-like convolution bounds on the closed loop behavior, which confers exponential
stability and a bounded noise gain. Hence, we have extended the approach of [43] which
imposes a convexity requirement and uses a single estimator to the case where there is no
convexity requirement and where we use multiple estimators. On the other hand, in the
absence of noise, we are unable to prove that we obtain asymptotic tracking; however, if
switching eventually stops then that will be the case. There are several possible approaches
to alleviate this problem:

• we may be able to design such a switching algorithm which has some memory.

• if we want to track set-points, as in Morse’s Supervisory Control approach, we can
adopt the technique of Chapter 7.
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Chapter 5

Adaptive Control of a Class of
Nonlinear Systems

5.1 Introduction

The goal of this chapter is to build on the results on the adaptive control of first-order
linear systems of Chapter 4 and extend them to the nonlinear setting. A natural nonlinear
model in first-order case is

y(t+ 1) = θ>ϕ
(
y(t)

)
+ bu(t) + w(t), (5.1)

with a known nonlinear function ϕ : R→ R
q and unknown parameters θ ∈ Rq and b ∈ R.

Indeed for this case, the desired linear-like properties is presented in our conference paper
[70] for the case of a known sign of b; the details are provided there but not explicitly
included here. Instead, here we will extend the approach to a class of possibly high order
nonlinear systems for which (5.1) is a special case.

In general, it turns out that the adaptive control of nonlinear discrete-time systems is
more challenging than in the continuous-time setting; this is, in part, due to difficulties
associated with the analysis of sampled-data nonlinear systems [32]. A standard approach
to achieve tracking in the context of adaptive control is to first put the input-output system
into the d-step-ahead predictor form (see [21]). However, this is hard to do for nonlinear
systems. To facilitate the approach, we assume that the nonlinear system is already in
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predictor form: indeed, we adopt the class of nonlinear nth-order plants of the form

y(t+ 1) = θ>ϕ
(
y(t), y(t− 1), . . . , y(t− n+ 1)

)
+ bu(t) + w(t) (5.2)

with ϕ : Rn → R
q a known nonlinear function and with θ ∈ R

q and b ∈ R unknown
parameters. To motivate this class of plant models, we provide the following physical
example.

Example 5.1. Consider a simple one-link manipulator with an attached load; see the
system pictured in Figure 5.1. The corresponding continuous-time dynamic system is

(J + 4ML2)q̈ + (m+ 2M)gL sin
(
q
)

= τ (5.3)

with q as the output angle (measured as shown in Figure 5.1) and τ as the control torque
input. We have J as the moment inertia of the link about the origin, m as the mass of
the link, L as the length of the link, M as the mass of the load, and g as the gravitational
acceleration constant. We can rewrite the above system as

d2q(t)
dt2

= −(m+ 2M)gL
(J + 4ML2) sin

(
q(t)

)
+ 1

(J + 4ML2)τ(t).

Instead of applying standard discretization using the Euler method, we elect to approximate
the 2nd derivative as follows:

d2q(t)
dt2

' q(t+ h)− 2q(t) + q(t− h)
h2 ,

with h as the sampling period. If we define y(t) := q(th) and u(t) := τ(th), we end up with
the following discrete-time second-order system which approximates (5.3):

y(t+ 1) = 2y(t)− (m+ 2M)gLh2

(J + 4ML2) sin
(
y(t)

)
− y(t− 1) + h2

(J + 4ML2)u(t), (5.4)

matching the form in (5.2) with

θ =


2

− (m+2M)gLh2

(J+4ML2)
−1

 , ϕ
(
y(t), y(t− 1)

)
=


y(t)

sin
(
y(t)

)
y(t− 1)

 , b = h2

(J + 4ML2) .

64



τ
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L

Figure 5.1: One-link manipulator with load.

Remark 5.1. Adaptive control of systems of the form in (5.2) is analyzed in Guo’s paper
[22]; desirable linear-like closed-loop properties are not obtained.

Remark 5.2. In the literature, a lot of work has been done on adaptive control of nonlinear
discrete-time systems, e.g. see [32], [12], [73], [85], [86], [84], [19], [18], [83], [89], [13];
almost exclusively they consider systems with relative degree n, i.e. with no zero dynamics,
and in general, exponential stability and a bounded gain on the noise are not proven. In
contrast, here we consider another class of nonlinear discrete-time systems, and we are able
to prove all the desirable linear-like properties proven in the previous chapter.

In the following we consider a class of nonlinear plants (a version of (5.2) which allows
for measurement noise) and show, under suitable assumptions, how to carry out adaptive
control so that we obtain not only exponential stability and a bounded gain on the noise,
but also a convolution bound on the effect of the exogenous inputs. First, we consider
plants with a known sign of the control/input gain; the second part of the chapter will
consider the case when that sign is unknown.

5.2 The Setup

Here we consider a class of nth-order discrete-time nonlinear plants described by

x(t+ 1) =
p−1∑
i=1

θiϕi
(
x(t), x(t− 1), · · · , x(t− n+ 1)

)
+ θpu(t) + w(t) (5.5a)

y(t) = x(t) + v(t). (5.5b)
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In (5.5) we have y(t) ∈ R as the output, u(t) ∈ R as the control input, x(t) ∈ R as an
internal variable, w(t) ∈ R as the process noise, and v(t) ∈ R as the measurement noise.
At time t, one needs all of x(t), x(t− 1), . . . , x(t− n+ 1) to form x(t+ 1), so the natural
systems theoretic notion of a state is

X (t) :=


x(t)

x(t− 1)
...

x(t− n+ 1)

 ;

here we will adopt the notation

ϕi
(
X (t)

)
:= ϕi

(
x(t), x(t− 1), · · · , x(t− n+ 1)

)
.

For each i = 1, 2, . . . , p− 1, ϕi : Rn → R is a known nonlinear function. With the function
ϕ : Rn → R

p−1 defined by

ϕ
(
X
)

:=


ϕ1
(
X
)

ϕ2
(
X
)

...
ϕp−1

(
X
)


and the unknown parameter vector defined by

θ∗ :=


θ1
θ2
...
θp

 ,

we can rewrite the plant in a more compact form as

x(t+ 1) = θ∗>
[
ϕ
(
X (t)

)
u(t)

]
+ w(t) (5.6a)

y(t) = x(t) + v(t). (5.6b)

It is assumed that θ∗ lies in a known set S∗ ⊂ Rp; we impose the following assumption on
the set.

66



Assumption 5.1. The set S∗ is closed and bounded (compact), and for each θ∗ ∈ S∗,
the pth element θp is non-zero.

The boundedness requirement is reasonable in practical situations; it is used here to prove
uniform bounds and decay rates on the closed-loop behavior.

We also impose some conditions on the nonlinear function ϕ.

Assumption 5.2. The function ϕ satisfies the following conditions:

1. ϕ(0n) = 0p−1, and

2. ϕ is globally Lipschitz continuous: there exists a constant K > 0 such that∥∥∥ϕ(X)− ϕ(X̃)∥∥∥ ≤ K‖X − X̃‖, for all X , X̃ ∈ Rn;

we denote the smallest such constant by cϕ.

This assumption restricts the family of nonlinear functions to those that vanish at zero and
are Lipschitz continuous. These restrictions are common in the literature.

We have an exogenous reference signal y∗(·) and the objective is to track it asymptotically
while stabilizing the closed-loop system; we assume that we know y∗ one step ahead in
time, i.e. we know y∗(t+ 1) at time t. We are interested in analyzing the corresponding
one-step-ahead control law when the plant parameters are unknown. We first present the
case when the sign of θp is known; afterwards, we will present the case of a switching control
law when the sign of θp is not known.

Before proceeding, we present some definitions and observations that will be used in the
rest of the chapter. For ease of notation define

Y(t) :=


y(t)

y(t− 1)
...

y(t− n+ 1)

 (5.7)

and define the following data vector:

φ(t) :=
[
ϕ
(
Y(t)

)
u(t)

]
. (5.8)
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We see from the definition of φ(·) and by Assumption 5.2 that

‖φ(t)‖ ≤
∥∥∥ϕ(Y(t)

)∥∥∥+ |u(t)| ≤ cϕ‖Y(t)‖+ |u(t)|. (5.9)

With t ≥ t0, observe from (5.6) that

y(t+ 1) = θ∗>
[
ϕ
(
X (t)

)
u(t)

]
+ w(t) + v(t+ 1)

= θ∗>φ(t) + w(t) + v(t+ 1) + θ∗>
[
ϕ
(
X (t)

)
− ϕ

(
Y(t)

)
0

]
︸ ︷︷ ︸

=:∆(t)

. (5.10)

Note that
|∆(t)| ≤ ‖θ∗‖

∥∥∥ϕ(X (t)
)
− ϕ

(
Y(t)

)∥∥∥ ;

so by Assumption 5.2, from the definition of X (·), Y(·) and the fact that y(j) = x(j) + v(j),
we obtain

|∆(t)| ≤ ‖θ∗‖cϕ

∥∥∥∥∥∥∥∥∥∥


v(t)

v(t− 1)
...

v(t− n+ 1)


∥∥∥∥∥∥∥∥∥∥

≤ ‖S∗‖cϕ
n∑
j=1
|v(t− j + 1)|. (5.11)

Also, define a combined noise signal that will be used throughout the chapter:

w̄(t) :=
√√√√w(t)2 +

n∑
j=0

v(t− j + 1)2

⇒ w̄(t)2 = w(t)2 +
n∑
j=0

v(t− j + 1)2; (5.12)

note that from the above we can easily confirm that

|w(t)| ≤ |w̄(t)|
|v(t)| ≤ |w̄(t)|

|v(t− 1)| ≤ |w̄(t)|
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...
|v(t− n+ 1)| ≤ |w̄(t)|,

which means that

|w(t)|+
n∑
j=0
|v(t− j + 1)| ≤ (n+ 2)|w̄(t)|. (5.13)

5.3 The Case of the Sign of θp being Known

In this section, we impose an extra assumption on the set of admissible parameters.

Assumption 5.3. For each θ∗ ∈ S∗, the sign of the pth element θp is always the same.

The knowledge of the sign of the input gain θp is a common assumption in adaptive control,
e.g. see [21]. To proceed, we use a parameter estimator together with a one-step-ahead
adaptive control law. To facilitate estimation, it is convenient for the set of admissible
parameters to be convex, so at this point let S ⊂ R

p be any convex and compact set
containing S∗ for which the pth element is never zero—the convex hull of S∗ would do.

5.3.1 Parameter Estimation

Given an estimate θ̂(t) of θ∗ at time t, we define the prediction error by

e(t+ 1) := y(t+ 1)− θ̂(t)>φ(t); (5.14)

this is a measure of the error in θ̂(t), since it is zero if θ̂(t) = θ∗ and w = v = 0. Here we
will be using a version of the original-projection-algorithm based algorithm presented in
(3.9) of Chapter 3. It turns out for the approach to work, the denominator of the estimator
update needs to be set carefully. Notice that the data vector φ(t) does not directly have
access to plant outputs Y(·); we only have ϕ

(
Y(·)

)
instead. To this end, first define

φ̃(t) :=
[
φ(t)
Y(t)

]
.
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With δ ∈ (0,∞] and with ‖φ̃(t)‖ replacing ‖φ(t)‖, we define ρ : Z 7→ {0, 1} by

ρ(t) :=
{

1 if |e(t+ 1)| < (2‖S‖+ δ)‖φ̃(t)‖
0 otherwise; (5.15)

with initial condition θ̂(t0) ∈ S, for t ≥ t0 estimator updates are computed by

θ̌(t+ 1) = θ̂(t) + ρ(t) φ(t)
‖φ̃(t)‖2

e(t+ 1) (5.16a)

θ̂(t+ 1) = Proj
S

{
θ̌(t+ 1)

}
. (5.16b)

Remark 5.3. Observe that we can rewrite the plant model (5.6) as

y(t+ 1) =
[
θ∗

0n

]> [
φ(t)
Y(t)

]
︸ ︷︷ ︸
φ̃(t)

+w(t) + v(t+ 1) + ∆(t), (5.17)

so the use of φ̃(t) in the estimator is not as odd as it might first seem. Indeed, if we were

to apply the standard approach of Chapter 3 to (5.17), we would attempt to estimate
[
θ∗

0n

]
which we would then project onto S × {0n}. The method of (5.16) is a simplified version,

where we do not attempt to estimate the bottom part of
[
θ∗

0n

]
since we already know it is

zero.

To proceed, define the parameter estimation error

θ̃(t) := θ̂(t)− θ∗.

In the following result we present a property of the estimator; this Proposition follows
directly from Proposition 3.1 of Chapter 3, where we set φm = φ̃.
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Proposition 5.1. There exists a constant c̄ > 0 such that for every t0 ∈ Z, X (t0) ∈ Rn,
θ̂(t0) ∈ S, θ∗ ∈ S∗, and v, w ∈ `∞, when the estimator (5.16) is applied to the plant
(5.5), the following holds:

∥∥∥θ̃(t)∥∥∥2
≤
∥∥∥θ̃(τ)

∥∥∥2
+

t−1∑
j=τ

ρ(j)
[
−1

2
e(j + 1)2

‖φ̃(j)‖2
+ c̄

w̄(j)2

‖φ̃(j)‖2

]
, t > τ ≥ t0. (5.18)

Remark 5.4. We will see in the proof that we can set

c̄ = 6 max
{

1, c2
ϕ‖S∗‖2n

}
.

Proof of Proposition 5.1. Let t0 ∈ Z, t > τ ≥ t0, X (t0) ∈ Rn, θ̂(t0) ∈ S, θ∗ ∈ S∗, and
v, w ∈ `∞ be arbitrary.

Applying Proposition 3.1 from Chapter 3 to (5.10) which is an equivalent version of the
plant equation (5.5), we obtain

∥∥∥θ̃(t)∥∥∥2
≤
∥∥∥θ̃(τ)

∥∥∥2
+

t−1∑
j=τ

ρ(j)
[
−1

2
e(j + 1)2

‖φ̃(j)‖2
+ 2 [w(j) + v(j + 1) + ∆(j)]2

‖φ̃(j)‖2

]
,

t > τ ≥ t0. (5.19)

Observe that

[w(j) + v(j + 1) + ∆(j)]2 ≤ 3
[
w(j)2 + v(j + 1)2 + ∆(j)2

]
; (5.20)

using the bound on ∆(·) in (5.11), we can see that

∆(j)2 ≤ ‖S∗‖2c2
ϕn

n∑
j=1
|v(t− j + 1)|2.

Substituting the above into (5.20) and using the notation defined in (5.12), we see that

[w(j) + v(j + 1) + ∆(j)]2 ≤ 3 max
{

1, c2
ϕ‖S∗‖2n

}
w̄(j)2.

Substitute this into (5.19) and define constant c̄ := 6 max
{

1, c2
ϕ‖S∗‖2n

}
to conclude the

proof. �
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5.3.2 The Control Law

We partition θ̂(t) in a natural way as

θ̂(t) =:


θ̂1(t)
θ̂2(t)
...

θ̂p(t)

 =
 ˆ̄θ(t)
θ̂p(t)

 , with ˆ̄θ(t) :=


θ̂1(t)
θ̂2(t)
...

θ̂p−1(t)

 .

The natural choice for the one-step-ahead adaptive control law is given by

u(t) = 1
θ̂p(t)

[
y∗(t+ 1)− ˆ̄θ(t)>ϕ

(
Y(t)

)]
, t ≥ t0; (5.21)

note that if θ∗ were known (i.e. θ̂(t) = θ∗) and no noise were entering the system, this
control law will ensure that y(t+ 1) = y∗(t+ 1).

Let the tracking error be defined by

ε(t) := y(t)− y∗(t);

from (5.21) we see that
y∗(t+ 1) = θ̂(t)>φ(t);

combining this with (5.14) yields

e(t+ 1) = ε(t+ 1), t ≥ t0. (5.22)

Before proceeding, define

cθ := max
{

1
|θp|

: θ∗ ∈ S
}
.

5.3.3 The Main Result

We now prove that the proposed adaptive controller has very desirable properties.
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Theorem 5.1. Suppose that the adaptive controller (5.16) and (5.21) is applied to the
nonlinear plant (5.5). Then for every λ ∈ (0, 1) and δ ∈ (0,∞], there exists a constant
γ > 0 so that, for every t0 ∈ Z, X (t0) ∈ Rn, θ̂(t0) ∈ S, θ∗ ∈ S∗, and v, w, y∗ ∈ `∞, the
following holds:∥∥∥∥∥

[
Y(t)
u(t)

]∥∥∥∥∥ ≤ γλt−τ ‖Y(τ)‖+
t−1∑
j=τ

γλt−τ−1 (|y∗(j + 1)|+ |w̄(j)|)

+ γ|y∗(t+ 1)|, t > τ ≥ t0. (5.23)

Remark 5.5. The above result shows that the closed-loop system experiences linear-like
behavior: there is a uniform exponential decay bound on the effect of the initial condition,
and there is a convolution bound on the effect of the exogenous signals. This implies that
the system has a bounded gain (from w, v and y∗ to y) in every p-norm: in particular, for
p =∞, it follows from (5.23) that there exists c > 0 such that∥∥∥∥∥

[
Y(t)
u(t)

]∥∥∥∥∥ ≤ γλt−t0‖Y(t0)‖+ γ
1−λ sup

j≥t0
(|y∗(j + 1)|+ |w̄(j)|) ,

≤ cγ

1− λ
(
λt−t0‖X (t0)‖+ ‖y∗‖∞ + ‖w‖∞ + ‖v‖∞

)
, t ≥ t0.

Hence, if w, v, y∗ ∈ `∞, then y, x, u ∈ `∞, so ε, e lie in `∞ as well; all signals in the
closed-loop system are uniformly bounded.

Before presenting the proof of Theorem 5.1, we provide a crude bound on the closed-loop
behavior.

Proposition 5.2. Suppose that the adaptive controller (5.16) and (5.21) is applied to
the plant (5.5). Then for every p ≥ 0, there exists a constant γ1 > 0 so that, for every
t0 ∈ Z, t ≥ t0, X (t0) ∈ Rn, θ̂(t0) ∈ S, θ∗ ∈ S∗, and v, w, y∗ ∈ `∞, the following holds:

‖Y(t+ p)‖ ≤ γ1 ‖Y(t)‖+ γ1

p−1∑
j=0

(|w̄(t+ j)|+ |y∗(t+ j + 1)|) . (5.24)

Proof. See Appendix B. �
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Proof of Theorem 5.1:

Fix λ ∈ (0, 1) and δ ∈ (0,∞]. Let t0 ∈ Z, X (t0) ∈ Rn, θ̂(t0) ∈ S, θ∗ ∈ S∗, and v, w, y∗ ∈ `∞
be arbitrary.

Step 1: Construct a useful difference equation.
From the definition of the tracking error we have

y(t+ 1) = ε(t+ 1) + y∗(t+ 1);

from (5.22), we know that the tracking error equals the prediction error, so we conclude
that

y(t+ 1) = e(t+ 1) + y∗(t+ 1). (5.25)

Now define this important quantity which appears in the estimator:

α(t) := ρ(t)e(t+ 1)
‖φ̃(t)‖2

φ̃(t)>; (5.26)

it is clear that

α(t)φ̃(t) = ρ(t)e(t+ 1). (5.27)

Now observe that
e(t+ 1) = ρ(t)e(t+ 1) + [1− ρ(t)]e(t+ 1)︸ ︷︷ ︸

=:η(t)

;

if we use this together with (5.27) and substitute the result into (5.25), then we obtain

y(t+ 1) = α(t)φ̃(t) + η(t) + y∗(t+ 1). (5.28)

Step 2: Analyze the difference equation (5.28).
By the definition of Y , it is easy to see that

‖Y(t+ n)‖ =

∥∥∥∥∥∥∥∥∥∥


y(t+ n)

y(t+ n− 1)
...

y(t+ 1)


∥∥∥∥∥∥∥∥∥∥
≤

n−1∑
j=0
|y(t+ j + 1)|;
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so using (5.28), we obtain

‖Y(t+ n)‖ ≤
n−1∑
j=0

(
‖α(t+ j)‖‖φ̃(t+ j)‖+ |η(t+ j)|+ |y∗(t+ j + 1)|

)
. (5.29)

From (5.21) and Assumptions 5.2, we obtain

|u(t)| ≤ cθ

(∥∥∥∥ ˆ̄θ(t)
∥∥∥∥ ∥∥∥ϕ(Y(t)

)∥∥∥+ |y∗(t+ 1)|
)

≤ cθ‖S‖‖ϕ
(
Y(t)

)
‖+ cθ|y∗(t+ 1)|

≤ cθcϕ‖S‖‖Y(t)‖+ cθ|y∗(t+ 1)|; (5.30)

we now combine this with (5.9) to obtain a bound on φ(t):

‖φ(t)‖ ≤ cϕ(1 + cθ‖S‖)︸ ︷︷ ︸
=:c1

‖Y(t)‖+ cθ|y∗(t+ 1)|. (5.31)

If we incorporate this with the definition of φ̃ and define c2 := 1 + c1, then we obtain

‖φ̃(t)‖ ≤ ‖φ(t)‖+ ‖Y(t)‖
≤ c2‖Y(t)‖+ cθ|y∗(t+ 1)|. (5.32)

Now if we use this bound on φ̃ in (5.29), then we obtain

‖Y(t+ n)‖ ≤
n−1∑
j=0

(
c2‖α(t+ j)‖‖Y(t+ j)‖+ |η(t+ j)|+

(1 + cθ‖α(t+ j)‖)|y∗(t+ j + 1)|
)
. (5.33)

Now let us obtain a bound on |η(t+ j)| in terms of |w̄(t+ j)|.
Claim 5.1. There exists a constant c3 such that

|η(t)| ≤ c3|w̄(t)|, t ≥ t0. (5.34)

Proof of Claim 5.1. If ρ(t) = 1, then η(t) = 0, so (5.34) clearly holds. Now suppose that
ρ(t) = 0. Then η(t) = e(t+ 1), and from the definition of ρ given in (5.15) we see that

|e(t+ 1)| ≥ (2‖S‖+ δ)‖φ̃(t)‖. (5.35)
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If we combine the prediction error definition in (5.14), the formula for y given in equation
(5.10) and the bound on ∆(·) given in equation (5.11), then we see that

|e(t+ 1)| ≤ ‖S∗‖‖φ(t)‖+ |w(t)|+ |v(t+ 1)|+ |∆(t)|+ ‖θ̂(t)‖‖φ(t)‖

≤ 2‖S‖‖φ(t)‖+ |w(t)|+ |v(t+ 1)|+ cϕ‖S∗‖

 n∑
j=1
|v(t− j + 1)|


≤ 2‖S‖‖φ(t)‖+ (1 + cϕ‖S∗‖)(n+ 2)|w̄(t)|
≤ 2‖S‖‖φ̃(t)‖+ (1 + cϕ‖S∗‖)(n+ 2)|w̄(t)|, t ≥ t0. (5.36)

Combining this inequality with (5.35) yields

2‖S‖‖φ̃(t)‖+ (1 + cϕ‖S∗‖)(n+ 2)|w̄(t)| ≥ (2‖S‖+ δ)‖φ̃(t)‖

⇒ ‖φ̃(t)‖ ≤ (1 + cϕ‖S∗‖)(n+ 2)
δ

|w̄(t)|;

finally, if we combine the above with (5.36), then we obtain

⇒ |η(t)| = |e(t+ 1)| ≤ (1 + cϕ‖S∗‖)(n+ 2)
(

2‖S‖
δ

+ 1
)

︸ ︷︷ ︸
=:c3

|w̄(t)|,

so we conclude that (5.34) holds. �

Applying (5.34) into (5.33), we obtain

‖Y(t+ n)‖ ≤
n−1∑
j=0

[
c2‖α(t+ j)‖‖Y(t+ j)‖+

(1 + cθ‖α(t+ j)‖) |y∗(t+ j + 1)|+ c3|w̄(t+ j)|
]
. (5.37)

Now let us define

α̃n(t) := max
j=0,1,...,n−1

‖α(t+ j)‖, t ≥ t0. (5.38)

This means that we can rewrite (5.37) as

‖Y(t+ n)‖ ≤ c2α̃n(t)
n−1∑
j=0
‖Y(t+ j)‖+
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n−1∑
j=0

[(
1 + cθα̃n(t)

)
|y∗(t+ j + 1)|+ c3|w̄(t+ j)|

]
. (5.39)

It follows from Proposition 5.2 (applied for p = 1, 2, . . . , n− 1) that there exists a constant
c4 so that the following holds:

n−1∑
j=0
‖Y(t+ j)‖ ≤ c4‖Y(t)‖+ c4

n−2∑
j=0

(|y∗(t+ j + 1)|+ |w̄(t+ j)|);

after substituting this into (5.39) and simplifying it follows that there exists a constant c5
such that

‖Y(t+ n)‖ ≤ c2α̃n(t)
c4‖Y(t)‖+ c4

n−2∑
j=0

(|y∗(t+ j + 1)|+ |w̄(t+ j)|)
+

n−1∑
j=0

[
(1 + cθα̃n(t)) |y∗(t+ j + 1)|+ c3|w̄(t+ j)|

]

≤ c5α̃n(t)‖Y(t)‖+ c5 (1 + α̃n(t))
n−1∑
j=0

(|y∗(t+ j + 1)|+ |w̄(t+ j)|) . (5.40)

This difference inequality governs the closed-loop system’s behavior.

Step 3: Analyze the first-order difference inequality (5.40).
Now we analyze the closed-loop behavior on the whole timeline. First, define

λ1 = λn

max{1, c5}
∈ (0, 1)

and

ν := λ2
1

4n2c̄
∈ (0, 1). (5.41)

To proceed, let τ ≥ t0 be arbitrary. We now partition the timeline into two parts: one in
which w̄(·) is small versus φ̃(·) and one where it is not. With ν defined above, we define

Sgood =
{
j ≥ τ : φ̃(j) 6= 0 and |w̄(j)|2

‖φ̃(j)‖2
< ν

}
,
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Sbad =
{
j ≥ τ : φ̃(j) = 0 or |w̄(j)|2

‖φ̃(j)‖2
≥ ν

}
;

clearly {j ∈ Z : j ≥ τ} = Sgood ∪ Sbad. We can clearly define a (possibly infinite) sequence
of intervals of the form [kl, kl+1) which satisfy:
(i) k0 = τ serves as the initial instant of the first interval;
(ii) [kl, kl+1) either belongs to Sgood or Sbad; and
(iii) if kl+1 6= ∞ and [kl, kl+1) belongs to Sgood then [kl+1, kl+2) belongs to Sbad, and vice
versa.

Now we analyze the behavior during each interval.
Case 1: [kl, kl+1) lies in Sbad.

Let j ∈ [kl, kl+1) be arbitrary. In this case, w̄(j)2

‖φ̃(j)‖2 ≥ ν or ‖φ̃(j)‖ = 0; in either case by
the definition of φ̃(·) we get

‖φ(j)‖2 + ‖Y(j)‖2 = ‖φ̃(j)‖2 ≤ 1
ν
|w̄(j)|2,

which implies that

‖φ(j)‖ ≤ 1√
ν
|w̄(j)|, j ∈ [kl, kl+1), (5.42a)

and

‖Y(j)‖ ≤ 1√
ν
|w̄(j)|, j ∈ [kl, kl+1). (5.42b)

We would like to obtain a bound similar to that in (5.42b) for ‖Y(kl+1)‖. To proceed, first
observe that, based on the definition of Y(t), we have that

‖Y(t+ 1)‖ ≤ ‖Y(t)‖+ |y(t+ 1)|. (5.43)

Second of all, from (5.10) and (5.11), we obtain

|y(j + 1)| ≤ ‖S∗‖‖φ(j)‖+ |w(j)|+ |v(j + 1)|+ ‖S∗‖cϕ
n∑
q=1
|v(j − q + 1)|;

using the bound in (5.42a) and the definition of w̄ in (5.12) into the above, with c6 :=
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‖S∗‖√
ν

+ (1 + cϕ‖S∗‖) (n+ 2), we see that the following holds:

|y(j + 1)| ≤ c6|w̄(j)|, j ∈ [kl, kl+1).

If we consider this with (5.43), we see that

‖Y(kl+1)‖ ≤ ‖Y(kl+1 − 1)‖+ c6|w̄(kl+1 − 1)|;

using (5.42b) to obtain a bound on ‖Y(kl+1 − 1)‖, we conclude that

‖Y(kl+1)‖ ≤
(

1√
ν

+ c6
)
|w̄(kl+1 − 1)|.

So this combined with (5.42b) can be written compactly as

‖Y(j)‖ ≤
{
c6|w̄(j)|, j = kl, kl + 1, . . . , kl+1 − 1(

1√
ν

+ c6
)
|w̄(j − 1)|, j = kl+1.

(5.44)

Case 2: [kl, kl+1) lies in Sgood.
First suppose that kl+1 − kl ≤ 2n; then by Proposition 5.2 it can be easily proven that

there exists a constant γ̄1 so that

‖Y(t)‖ ≤ γ̄1λ
t−kl‖Y(kl)‖+ γ̄1

t−1∑
j=kl

λt−j−1 (|y∗(j + 1)|+ |w̄(j)|) , t ∈ [kl, kl+1]. (5.45)

Now suppose that kl+1 − kl > 2n. Let j ∈ [kl, kl+1) be arbitrary. In this case, φ̃(j) 6= 0
and

w̄(j)2

‖φ̃(j)‖2
< ν. (5.46)

By Proposition 5.1, it follows that for any t2 > t1 ≥ t0:

t2−1∑
j=t1

ρ(j) |e(j + 1)|2

‖φ̃(j)‖2
≤ 2‖θ̃(t1)‖2 + 2c̄

t2−1∑
j=t1

ρ(j) |w̄(j)|2

‖φ̃(j)‖2
. (5.47)

If we now use the bound in (5.46) which holds on [kl, kl+1), together with the fact that
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‖θ̃(kl)‖ ≤ 2‖S‖, we see that

j−1∑
j=kl

ρ(j) |e(j + 1)|2

‖φ̃(j)‖2
≤ 8‖S‖2 + 2c̄ν (j − kl) , j ∈ [kl, kl+1). (5.48)

Now we turn to the update equation (5.40); with τ ≥ t0, we can rewrite this equation as

‖Y(τ + (j + 1)n)‖ ≤ c5α̃n(τ + jn)‖Y(τ + jn)‖

+ c5 (1 + α̃n(τ + jn))
n−1∑
q=0

(|y∗(τ + jn+ q + 1)|+ |w̄(τ + jn+ q)|)
︸ ︷︷ ︸

=:w̃(τ+jn)

, j ∈ Z+.

(5.49)

Now we analyze the square sum of α̃n(·); using the definition of α̃n given in (5.38), the
definition of α given in (5.26), and the Cauchy-Schwarz property, we see that

p−1∑
j=q

α̃n(τ + jn)2 =
p−1∑
j=q

(
max

k=0,1,...,n−1
‖α(τ + jn+ k)‖

)2

≤
p−1∑
j=q

(
n−1∑
k=0
‖α(τ + jn+ k)‖

)2

≤ n
p−1∑
j=q

n−1∑
k=0
‖α(τ + jn+ k)‖2

= n
p−1∑
j=q

n−1∑
k=0

ρ(τ + jn+ k) |e(τ + jn+ k + 1)|2

‖φ̃(τ + jn+ k)‖2

= n
τ+pn−1∑
j=τ+qn

ρ(j) |e(j + 1)|2

‖φ̃(j)‖2
, 0 ≤ q < p. (5.50)

Before proceeding, from (5.50) and (5.48) we obtain an upper bound on α̃n on [kl, kl+1):

α̃n(τ + jn) ≤
n τ+(j+1)n−1∑

q=τ+jn
ρ(q) |e(q + 1)|2

‖φ̃(q)‖2

 1
2

≤
(
8n‖S‖2 + 2c̄νn2

) 1
2 =: c7,
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for j ∈ Z+ s.t. [τ + jn, τ + (j + 1)n) ⊂ [kl, kl+1); (5.51)

we can then use this to bound the second occurrence of α̃n in (5.49) to yield

‖Y(τ + (j + 1)n)‖ ≤ c5α̃n(τ + jn)‖Y(τ + jn)‖+ c5 (1 + c7)︸ ︷︷ ︸
=:c8

w̃(τ + jn),

j ∈ Z+ s.t. [τ + jn, τ + (j + 1)n) ⊂ [kl, kl+1). (5.52)

We now utilize the inequality of arithmetic and geometric means.
Claim 5.2. There exists a constant γ̄2 > 1 such that

p−1∏
j=q

α̃n(τ + jn) ≤ γ̄2λ
p−q
1 ,

for q, p ∈ Z+ s.t. kl ≤ τ + qn < τ + pn ≤ kl+1. (5.53)

Proof of Claim 5.2. Let q, p ∈ Z+ be arbitrary such that kl ≤ τ + qn < τ + pn ≤ kl+1. By
the fact that α̃n(·) ≥ 0, we obtain

p−1∏
j=q

α̃n(τ + jn) ≤
 1
p− q

p−1∑
j=q

α̃n(τ + jn)2


p−q

2

. (5.54)

Substituting (5.48) into (5.50) yields

p−1∑
j=q

α̃n(τ + jn)2 ≤ n
τ+pn−1∑
j=τ+qn

ρ(j) |e(j + 1)|2

‖φ̃(j)‖2

≤ 8n‖S‖2 + 2c̄νn2 (p− q) ; (5.55)

applying this into (5.54), we obtain

p−1∏
j=q

α̃n(τ + jn) ≤
[

8n‖S‖2

p− q
+ 2c̄νn2

] p−q
2

. (5.56)
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So it is enough to prove that there exists a constant γ̄2 so that
[

8n‖S‖2

k
+ 2c̄νn2

] 1
2

︸ ︷︷ ︸
=:g(k)


k

≤ γ̄2λ
k
1, k > 0.

We can easily show that with k̄ := 16n×
⌈(
‖S‖
λ1

)2
⌉
, we have

8n‖S‖2

k̄
≤ λ2

1
2 ,

which means that, by the choice of ν in (5.41), we see that

g(k)k ≤ λk1, k ≥ k̄.

Since g(k) decreases as k ≥ 1 increases, we conclude that if we define γ̄2 := max
{

1,
(
g(1)
λ1

)k̄}
,

then
g(k)k ≤ γ̄2λ

k
1, k = 1, 2, . . . , k̄,

as well, so the claim holds. �

First of all, using the bound in (5.53) and the definition of λ1, we obtain

p−1∏
j=q

[c5α̃n(τ + jn)] ≤ γ̄2λ
p−q
1 cp−q5

≤ γ̄2λ
(p−q)n,

for q, p ∈ Z+ s.t. kl ≤ τ + qn < τ + pn ≤ kl+1. (5.57)

If we solve (5.52) iteratively and use the above bound, we obtain

‖Y(τ + pn)‖ ≤ γ̄2λ
(p−q)n‖Y(τ + qn)‖+

p−1∑
j=q

c8γ̄2(λn)p−j−1w̃(τ + jn),

for q, p ∈ Z+, s.t. kl ≤ τ + qn < τ + pn ≤ kl+1. (5.58)

We can now use Proposition 5.2 (for no more than n steps at a time):
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• to provide a bound on ‖Y(t)‖ between consecutive (τ + jn)’s ;

• to provide a bound on ‖Y(t)‖ on the beginning part of the interval [kl, kl+1), until we
get to the first admissible τ + jn;

• to provide a bound on ‖Y(t)‖ on the last part of the interval [kl, kl+1), after the last
admissible τ + jn.

After simplification, we conclude that there exists a constant γ̄3 ≥ γ̄1 so that

‖Y(t)‖ ≤ γ̄3λ
t−kl‖Y(kl)‖+ γ̄3

t−1∑
j=kl

λt−j−1 (|y∗(j + 1)|+ |w̄(j)|) , t ∈ [kl, kl+1], (5.59)

as desired.

Step 4: Combine Case 1 and Case 2 of Step 3 into a general bound on Y.

Now we will combine Case 1 and Case 2 into a general bound on Y . Using an argument
similar to that used in the end of proof of the main result in Chapter 4, we glue the bounds
of Case 1 and Case 2 together. To this end, first define

γ̄ := max
{
γ̄3,

(
c6 + 1√

ν

)
, γ̄3

(
c6 + 1√

ν

)}
.

Claim 5.3. The following bound holds:

‖Y(t)‖ ≤ γ̄λt−τ‖Y(τ)‖+
t−1∑
j=τ

γ̄λt−j−1(|y∗(j + 1)|+ |w̄(j)|), t ≥ τ. (5.60)

Proof of the Claim 5.3. If [k0, k1) = [τ, k1) ⊂ Sgood, then (5.60) is true for t ∈ [k0, k1] by
(5.45) and (5.59). If [k0, k1) ⊂ Sbad, then by (5.44) we have

‖Y(j)‖ ≤



‖Y(τ)‖ j = k0 = τ

1√
ν
|w̄(j)| j = k0 + 1, k0 + 2, . . . , k1 − 1

(
c6 + 1√

ν

)
|w̄(j − 1)| j = k1,

which means that (5.60) holds on [k0, k1] for this case as well.
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We now use induction: suppose that (5.60) is true for t ∈ [k0, kl]; we need to prove that
it holds for t ∈ (kl, kl+1] as well. If [kl, kl+1) ⊂ Sbad, then from (5.44) we see that

‖Y(j)‖ ≤


1√
ν
|w̄(j)| j = kl, kl + 1, . . . , kl+1 − 1

(
c6 + 1√

ν

)
|w̄(j − 1)| j = kl+1,

which means (5.60) holds on (kl, kl+1]. On the other hand, suppose that [kl, kl+1) ⊂ Sgood.
Using (5.45) and (5.59) to analyze the behavior on [kl, kl+1], we have

‖Y(t)‖ ≤ γ̄3λ
t−kl‖Y(kl)‖+ γ̄3

t−1∑
j=kl

λt−j−1 (|y∗(j + 1)|+ |w̄(j)|) , t ∈ [kl, kl+1].

But kl − 1 ∈ Sbad, so by (5.44) we have

‖Y(kl)‖ ≤
(
c6 + 1√

ν

)
|w̄(kl − 1)|;

combining these, we obtain

‖Y(t)‖ ≤ γ̄3λ
t−kl

(
c6 + 1√

ν

)
|w̄(kl − 1)|+ γ̄3

t−1∑
j=kl

λt−j−1 (|y∗(j + 1)|+ |w̄(j)|)

≤ γ̄
t−1∑

j=kl−1
λt−j−1 (|y∗(j + 1)|+ |w̄(j)|) , t ∈ [kl, kl+1],

which means that (5.60) holds on (kl, kl+1] in this case as well. This concludes the proof of
the claim. �

Step 5: Obtain a bound on u(t).
Now we derive a bound on u(t). Substituting (5.60) into (5.30) yields

|u(t)| ≤ cθcϕ‖S‖γ̄λt−τ‖Y(τ)‖+

cθcϕ‖S‖γ̄
t−1∑
j=τ

λt−j−1(|y∗(j + 1)|+ |w̄(j)|) + cθ|y∗(t+ 1)|, t ≥ τ. (5.61)
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Now we combine the above with (5.60): there clearly exists a constant γ1 so that∥∥∥∥∥
[
Y(t)
u(t)

]∥∥∥∥∥ ≤ γ1λ
t−τ‖Y(τ)‖+

t−1∑
j=τ

γ1λ
t−j−1(|y∗(j + 1)|+ |w̄(j)|) + γ1|y∗(t+ 1)|, t ≥ τ.

(5.62)

Since τ ≥ t0 is arbitrary, we conclude the proof. �

5.3.4 Robustness Results

Now we show that the exponential stability property and the linear-like convolution
bounds proven in Theorem 5.1 will guarantee robustness to a degree of time-variations and
unmodelled dynamics. In this way, the approach has a lot in common with LTI systems,
which also enjoys this feature. To this end, we consider a time-varying version of the plant
(5.5) along with the term d∆(t) ∈ R added to represent the unmodelled dynamics:

y(j + 1) = θ∗(t)>
[
ϕ
(
X (j)

)
u(j)

]
+ w(j) + v(j + 1) + d∆(t)

= θ∗(t)>φ(j) + w(j) + v(j + 1) + θ∗(t)>
[
ϕ
(
X (j)

)
− ϕ

(
Y(j)

)
0

]
︸ ︷︷ ︸

=:∆̃(j)

+d∆(t). (5.63)

As discussed in Chapter 2, with g : Rn+1 7→ R having a bounded gain, we assume that d∆
satisfies

m(t+ 1) = βm(t) + β

∣∣∣∣∣g
([
Y(t)
u(t)

])∣∣∣∣∣ , m(t0) = m0 (5.64a)

|d∆(t)| ≤ µm(t) + µ

∣∣∣∣∣g
([
Y(t)
u(t)

])∣∣∣∣∣ , t ≥ t0. (5.64b)

85



Theorem 5.2. Suppose that the adaptive controller (5.16) and (5.21) is applied to the
time-varying nonlinear plant (5.63) with d∆ satisfying (5.64). Then for every δ ∈ (0,∞],
β ∈ (0, 1) and c̄0 ≥ 0, there exist ε̄ > 0, µ > 0, λ̃ ∈ (β, 1) and γ̃ > 0 such that for every
t0 ∈ Z, X (t0) ∈ Rn, θ∗ ∈ S (S∗, c̄0, ε̄), θ̂(t0) ∈ S, and w, v, y∗ ∈ `∞, the following holds:∥∥∥∥∥∥∥

Y(t)
u(t)
m(t)


∥∥∥∥∥∥∥ ≤ γ̃λ̃t−t0

∥∥∥∥∥∥∥
Y(t0)
u(t0)
m0


∥∥∥∥∥∥∥+

t−1∑
j=t0

γ̃λ̃t−j−1(|w̄(j)|+ |y∗(j + 1)|) + γ̃|y∗(t+ 1)|, t ≥ t0.

Proof of Theorem 5.2. We observe here that the plant (5.63) and the controller (5.16)
and (5.21) fit into the paradigm of Chapter 2: we set

ϑ(t) =
[
Y(t)
u(t)

]
,

f(ϑ(·)) = φ(·) =
[
ϕ
(
Y(·)

)
u(·)

]
,

z(t) = ∅,
θ̂(t) = θ̂(t),
r(t) = y∗(t+ 1),
w(t) = w(t) + v(t+ 1) + ∆̃(t),

Ω = S.

In Theorem 5.1 it is proven the controller (5.16) and (5.21) provides a convolution bound
for (5.5), which is equivalent to (5.10). Observe that the term ∆̃(t) has the same upper
bound as its counterpart in (5.10) because θ∗(t) ∈ S for all t ∈ Z; indeed, we utilize the
upper bound given in (5.11). By the definition of w̄ given in (5.12), it means that there
exists a constant c so that

|w(t) + v(t+ 1) + ∆̃(t)| ≤ c|w̄(t)|.

We apply Theorems 2.2, 2.2 and 2.3 to immediately see that the linear-like convolution
bound holds in the presence of parameter time-variation and/or unmodelled dynamics. �

86



5.3.5 Tracking Results

We now move from the stability problem to the tracking problem. We first analyze the case
when the disturbance is absent: we start with the original case of constant parameters, and
then we move to the case in which the parameters are slowly time-varying. Second of all,
we consider the original case with a disturbance.

Constant Parameters - No Disturbance

In the literature it is typically proven that the tracking error is square summable, e.g. see
[20]. Here we can prove an explicit bound on the 2−norm of the error signal in terms
of the plant initial condition and the size of the reference signal, which is a significant
improvement.

Theorem 5.3. Suppose that the adaptive controller (5.16) and (5.21) is applied to
the nonlinear plant (5.5) in the presence of a zero disturbance w = v = 0. Then for
every δ ∈ (0,∞] and λ ∈ (0, 1), there exists a constant c > 0 so that, for every t0 ∈ Z,
θ∗ ∈ S∗, y∗ ∈ `∞, θ̂(t0) ∈ S, and X (t0) ∈ Rn, the following bound holds:

∞∑
t=t0+1

ε(t)2 ≤ c
(
‖X (t0)‖2 + ‖y∗‖2

∞

)
.

Proof. See Appendix C. �

Slowly Time-Varying Parameters - No Disturbance

Now we turn to the case in which the plant parameter is slowly time-varying (with no
jumps in the parameters) and the disturbance is zero. We should not expect to get exact
tracking; we will be able to prove, roughly speaking, that the average tracking error is small
on average if the time-variation is small. To proceed, we consider the time-varying plant
(5.63) without the unmodelled dynamics and with zero noise (v = w = 0):

y(t+ 1) = x(t+ 1) = θ∗(t)>
[
ϕ
(
X (t)

)
u(t)

]
= θ∗(t)>φ(t). (5.65)
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Theorem 5.4. For every δ ∈ (0,∞], there exist constants ε̄ > 0 and γ > 0 so that
for every t0 ∈ Z, ε ∈ (0, ε̄), X (t0) ∈ Rn, θ∗ ∈ S(S∗, 0, ε), θ̂(t0) ∈ S, and y∗ ∈ `∞, when
the adaptive controller (5.16) and (5.21) is applied to the time-varying nonlinear plant
(5.65), the following holds:

lim sup
T→∞

1
T

t0+T−1∑
j=t0

|ε(j)|2 ≤ γε2/3‖y∗‖2
∞.

Proof. See Appendix C. �

Remark 5.6. The proof of Theorem 5.4 is a modified version of a proof in the paper Miller
and Shahab [48] which deals with the LTI one-step-ahead adaptive control paradigm.

Tracking in the Presence of a Disturbance

Now we turn to the much harder problem of tracking in the presence of a disturbance;
throughout this sub-section we assume that plant parameters are constant. Our goal is
to show that if the noise is small, then the tracking error is small; this is a stringent
requirement, since in adaptive control it is usually only proven that if the noise is bounded,
then the error is bounded. We can, of course, measure signal sizes in a variety of ways,
with the 2−norm and the ∞-norm the most common; given that a large disturbance can
lead the estimator astray and cause “temporary instability”, the 2−norm seems to be the
most appropriate here.

If the closed-loop system were LTI, then by Parseval’s Theorem we could conclude that
the average power of the tracking error is bounded by the average power of the disturbance,
i.e. there exists a constant c so that

lim sup
T→∞

1
T

t0+T−1∑
j=t0

[ε(t)]2 ≤ c× lim sup
T→∞

1
T

t0+T−1∑
j=t0

[w(t)]2; (5.66)

unfortunately, while the closed-loop system has some desirable linear-like closed-loop
properties, the closed-loop system is clearly not LTI.

We will prove something weaker than (5.66), but with much the same flavor; it is,
however, stronger than the standard result in the literature.
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Theorem 5.5. Suppose that the adaptive controller (5.16) and (5.21) is applied to the
nonlinear plant (5.5). Then for every δ ∈ (0,∞], there exists a constant γ > 0 so that,
for every t0 ∈ Z, θ∗ ∈ S∗, y∗, w, v ∈ `∞, θ̂(t0) ∈ S, and X (t0) ∈ Rn, the following
holds: if lim inft→∞ |y∗(t)| > 0, then

lim sup
T→∞

1
T

t0+T−1∑
j=t0

|ε(j)|2 ≤ γ × lim sup
T→∞

1
T

t0+T−1∑
j=t0

(|w(j)|2 + |v(j)|2)×

lim supt→∞ |y∗(t)|2 + lim supt→∞(|w(t)|2 + |v(t)|2)
lim inft→∞ |y∗(t)|2

. (5.67)

Proof. See Appendix C. �

Remark 5.7. So we see that the bound proven here is similar to that of (5.66) which holds
in the LTI case, although we have an extra term multiplied on the RHS:

lim supt→∞ |y∗(t)|2 + lim supt→∞(|w(t)|2 + |v(t)|2)
lim inft→∞ |y∗(t)|2

.

If the reference signal is larger than the noise, which is what one would normally expect,
then this would be bounded by

2lim supt→∞ |y∗(t)|2
lim inft→∞ |y∗(t)|2

;

if |y∗(t)| ∈ {−1, 1} then this is exactly two. It is curious that the quantity gets large if
y∗(t) gets close to zero; we suspect that this is an artifact of the proof, since all simulations
indicate that the LTI-like bound (5.66) holds.

Remark 5.8. The proof of Theorem 5.5 is a modified version of a proof in the paper Miller
and Shahab [48] which dealt with the LTI one-step-ahead adaptive control paradigm.

5.4 The Case of the Sign of θp being Unknown

As shown earlier, the convexity requirement on the set of uncertainty plays a crucial role in
proving nice closed-loop properties. In this section, we only impose Assumptions 5.1 and
5.2; the set of admissible parameters may not be convex. In this case, the standard trick in
adaptive control is to replace the set with its closed convex hull; however, that set may
contain “uncontrollable models”, i.e. it may be that θp = 0. If this is the case then instead,
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we “cover” the compact set of admissible parameters S∗ by a finite number of convex sets:
the following proposition illustrates that we can always obtain a cover with two convex sets.

Proposition 5.3. For every compact set S∗ ⊂ {θ∗ ∈ Rp : θp 6= 0}, there exist compact
and convex sets S1 and S2 which also lie in {θ∗ ∈ Rp : θp 6= 0} such that S∗ ⊂ S1 ∪ S2.

Proof of Proposition 5.3. For a given S∗, define

S1 := convex hull of {θ∗ ∈ S∗ : θp > 0} ,
S2 := convex hull of {θ∗ ∈ S∗ : θp < 0} .

The result follows immediately. �

At this point we assume that we have at hand sets S1 and S2 of the form discussed in
Proposition 5.3. Similar to Chapter 4, now define the index set

I∗ := {1, 2}.

For each θ∗ ∈ Si, i = 1, 2, we define

i∗(θ∗) = min {i ∈ I∗ : θ∗ ∈ Si} ;

when there is no ambiguity, we will drop the argument and simply write i∗. Before
proceeding, define

s̄ := max
i
‖Si‖.

5.4.1 Parameter Estimation

For i = 1 and 2, given an estimate θ̂i(t) of θ∗ at time t, we define the prediction error by

ei(t+ 1) := y(t+ 1)− θ̂i(t)
>
φ(t); (5.68)

as usual, this is a measure of the error in θ̂i(t), since it is zero if θ̂i(t) = θ∗ and w = v = 0.
For each i = 1, 2, we will be using the same projection algorithm as in Section 5.3.1; however
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here we project updates onto the corresponding Si. To this end, with δ ∈ (0,∞] and

φ̃(t) =
[
φ(t)
Y(t)

]
,

we define ρi : Z 7→ {0, 1} by

ρi(t) :=
{

1 if |ei(t+ 1)| < (2s̄ + δ)‖φ̃(t)‖
0 otherwise; (5.69)

here ρi is defined in this manner as i∗ is unknown and ‖Si∗‖ ≤ s̄. With an initial condition
of θ̂i(t0) ∈ Si, for t ≥ t0 the ith estimator is updated via

θ̌i(t+ 1) = θ̂i(t) + ρi(t)
φ(t)
‖φ̃(t)‖2

ei(t+ 1) (5.70a)

θ̂i(t+ 1) = Proj
Si

{
θ̌i(t+ 1)

}
. (5.70b)

Define the parameter estimation error

θ̃i(t) := θ̂i(t)− θ∗.

The following estimator property follows directly from Proposition 5.1. Of course, the
difference here is that we do not know the value of i∗.

Proposition 5.4. There exists a constant c̄ > 0 such that for every t0 ∈ Z, X (t0) ∈ Rn,
θ̂i(t0) ∈ Si (i = 1, 2), θ∗ ∈ S∗, and v, w ∈ `∞, when the estimator (5.70) is applied to
the plant (5.5), the following holds:

∥∥∥θ̃i∗(t)∥∥∥2
≤
∥∥∥θ̃i∗(τ)

∥∥∥2
+

t−1∑
j=τ

ρi∗(j)
[
−1

2
ei∗(j + 1)2

‖φ̃(j)‖2
+ c̄

w̄(j)2

‖φ̃(j)‖2

]
, t > τ ≥ t0. (5.71)
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5.4.2 The Switching Control Law

For each i, we partition θ̂i(t) in a natural way as

θ̂i(t) =:


θ̂i,1(t)
θ̂i,2(t)

...
θ̂i,p(t)

 ,

and define ˆ̄θi(t) to be the first p− 1 elements:

ˆ̄θi(t) :=


θ̂i,1(t)
θ̂i,2(t)

...
θ̂i,p−1(t)

 .

With y∗(·) as the reference signal to be tracked, the natural choice for the one-step-ahead
adaptive control law associated with the ith estimator is given by

u(t) = 1
θ̂i,p(t)

[
y∗(t+ 1)− ˆ̄θi(t)>ϕ

(
Y(t)

)]
;

note that if θ∗ were known (i.e. θ̂i(t) = θ∗) and no noise is entering the system, this control
law will ensure that y(t+ 1) = y∗(t+ 1).

We define a switching signal σ : Z 7→ I∗ that decides which controller to use at any
given point in time; in the next sub-section, we will show how to choose σ(t). With that in
mind, we set the control law to be

u(t) = 1
θ̂σ(t),p(t)

[
y∗(t+ 1)− ˆ̄θσ(t)(t)>ϕ

(
Y(t)

)]
. (5.72)

With the tracking error defined as in the previous section, namely ε(t) := y(t)− y∗(t),
from (5.72) we see that

y∗(t+ 1) = θ̂σ(t)(t)
>
φ(t);
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combining this with (5.68) yields

eσ(t)(t+ 1) = ε(t+ 1), t ≥ t0. (5.73)

5.4.3 The Switching Algorithm

Unlike in the first-order LTI case of Chapter 4, to facilitate analysis, we update σ(t) only
every n steps; however, we keep the estimators running at all times. The effect of this
will become clear in the proof of the main result of this section. To this end, we define a
sequence of switching times as follows: we initialize t̂0 := t0 and then define

t̂` := t̂0 + `n, ` ∈ N;

the switching signal is piecewise constant of the form

σ(t) = σ(t̂`), t ∈ [t̂`, t̂`+1), ` ∈ Z+. (5.74)

For each i ∈ I∗ we define a performance signal Ji :
{
t̂0, t̂1, t̂2, . . .

}
→ R

+ by

Ji(t̂`) :=
t̂`+1−1∑
j=t̂`

ρi(j)
|ei(j + 1)|
‖φ̃(j)‖

; (5.75)

in the absence of noise, this is a crude measure of the size of ‖θ̂i(t̂`+1) − θ̂i(t̂`)‖. With
σ(t̂0) = σ0, we choose the following switching rule:

σ(t̂`+1) = argmin
i∈I∗

Ji(t̂`), ` ∈ Z+. (5.76)

For the case when J1(t̂`) = J2(t̂`), we (somewhat arbitrarily) select σ(t̂`+1) to be 1.

Lemma 5.1. Suppose that the adaptive controller (5.70), (5.72), (5.74), (5.75) and
(5.76) is applied to the plant (5.5). Then for every t0 ∈ Z, X (t0) ∈ Rn, σ0 ∈ I∗, θ∗ ∈ S∗,
θ̂i(t0) ∈ Si (i = 1, 2) and y∗, w, v ∈ `∞, we have that for every ` ∈ Z+,

(a) Jσ(t̂`)(t̂`) ≤ Ji∗(t̂`) or

(b) Jσ(t̂`+1)(t̂`+1) ≤ Ji∗(t̂`+1).
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Proof of Lemma 5.1. Fix t0 ∈ Z, X (t0) ∈ Rn, σ0 ∈ I∗, θ∗ ∈ S∗, and θ̂i(t0) ∈ Si (i = 1, 2)
and y∗, w, v ∈ `∞, and let ` ∈ Z+ be arbitrary.

Assume that (a) does not hold, i.e. Jσ(t̂`)(t̂`) > Ji∗(t̂`); then according to (5.76), this
means that σ(t̂`+1) = i∗, i.e. (b) will hold. �

In the above we do not make any claim that θ∗ ∈ Sσ(t) at any time; it only makes a
indirect statement about the size of the prediction error. It turns out that this is enough to
ensure that the desirable closed-loop properties are attained.

5.4.4 The Main Result

We now prove that the proposed switching adaptive controller has the same desirable
linear-like properties as in the case when sign of θp is known.

Theorem 5.6. Suppose that the adaptive controller (5.70), (5.72), (5.74), (5.75) and
(5.76) is applied to the nonlinear plant (5.5). Then for every δ ∈ (0,∞] and λ ∈ (0, 1),
there exists a constant γ > 0 so that, for every t0 ∈ Z, X (t0) ∈ Rn, θ̂i(t0) ∈ Si, θ∗ ∈ S∗,
and v, w, y∗ ∈ `∞, the following holds:∥∥∥∥∥

[
Y(t)
u(t)

]∥∥∥∥∥ ≤ γλt−τ ‖Y(τ)‖+
t−1∑
j=τ

γλt−τ−1 (|y∗(j + 1)|+ |w̄(j)|) + γ|y∗(t+ 1)|,

t > τ ≥ t0. (5.77)

Remark 5.9. The above result shows that the closed-loop system experiences linear-like
behavior. There is a uniform exponential decay bound on the effect of the initial condition,
and there is a convolution sum bound on the effect of the exogenous signals. As in the
previous section, this implies that the system has a bounded gain (from w, v and y∗ to y) in
every p-norm; in particular for p =∞, it follows from (5.77) that there exists c > 0 such
that ∥∥∥∥∥

[
Y(t)
u(t)

]∥∥∥∥∥ ≤ cγ

1− λ
(
λt−t0‖Y(t0)‖+ ‖y∗‖∞ + ‖w‖∞ + ‖v‖∞

)
, t ≥ t0.

Hence, if w, v, y∗ ∈ `∞, then y, x, u ∈ `∞, so ε, ei (i ∈ I∗) lie in `∞ as well; all signals in
the closed-loop system are uniformly bounded.
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Similar to Proposition 5.2 that provided a crude bound on the closed-loop behavior in
the case of one parameter estimator and a non-switching control law, the following also
provide a similar crude bound on the closed-loop behavior for the case considered here.
Due to the boundedness of S∗, S1 and S2, it is easy to prove the following result in the
same way as that of the proof of Proposition 5.2.

Proposition 5.5. Suppose that the adaptive controller (5.70), (5.72), (5.74), (5.75)
and (5.76) is applied to (5.5). Then for every p ≥ 0, there exists a constant c1 > 0 so
that, for every t0 ∈ Z, X0 ∈ R, σ0 ∈ I∗, θ̂i(t0) ∈ Si (i = 1, 2), θ∗ ∈ S∗, and v, w, r ∈ `∞,
the following holds:

‖Y(t+ p)‖ ≤ c1 ‖Y(t)‖+ c1

p−1∑
j=0

(|w̄(t+ j)|+ |y∗(t+ j + 1)|) . (5.78)

Before proceeding, define

ĉθ := max
{

1
|θp|

: θ∗ ∈ Si, i = 1, 2
}
.

We now proceed to prove the Theorem.

Proof of Theorem 5.6:

Fix δ ∈ (0,∞] and λ ∈ (0, 1). Let t0 ∈ Z, X (t0) ∈ R
n, θ̂i(t0) ∈ Si, (i = 1, 2), σ0 ∈ I∗,

θ∗ ∈ S∗, and v, w, r ∈ `∞ be arbitrary. In many aspects, this proof will be similar to
the proof of Theorem 5.1; the key difference is in Step 3 where we analyze the switching
behavior in the closed-loop system.

Step 1: Construct a useful difference equation.

From the tracking error we have

y(t+ 1) = ε(t+ 1) + y∗(t+ 1);

then from (5.73), we have

y(t+ 1) = eσ(t)(t+ 1) + y∗(t+ 1). (5.79)
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Now define:

αi(t) := ρi(t)
ei(t+ 1)
‖φ̃(t)‖2

φ̃(t)>, i ∈ I∗; (5.80)

it is clear that

αi(t)φ̃(t) = ρi(t)ei(t+ 1). (5.81)

Also, observe that

ei(t+ 1) = ρi(t)ei(t+ 1) + [1− ρi(t)]ei(t+ 1)︸ ︷︷ ︸
=:ηi(t)

, i ∈ I∗;

if we combine this with (5.81) and substitute the result into (5.79), then we obtain

y(t+ 1) = ασ(t)(t)φ̃(t) + ησ(t)(t) + y∗(t+ 1). (5.82)

Step 2: Analyze the difference equation (5.82).
We will analyze (5.82) in somewhat the same way as inside the proof of Theorem 5.1.

Before proceeding, let us analyze the term |ησ(t)(t)|.
Claim 5.4. There exists a constant c1 such that

|ηi(t)| ≤ c1|w̄(t)|, t ≥ t0, i ∈ I∗. (5.83)

Proof of Claim 5.4. If ρi(t) = 1, then ηi(t) = 0. If ρi(t) = 0, then ηi(t) = ei(t+ 1) and from
the estimator definition we obtain

|ei(t+ 1)| ≥ (2s̄ + δ)‖φ̃(t)‖;

similar to the proof of Claim 5.1, we can also obtain

|ei(t+ 1)| ≤ 2s̄‖φ̃(t)‖+ (1 + cϕ‖S∗‖)(n+ 2)|w̄(t)|. (5.84)

Combining the above two statements yields

2s̄‖φ̃(t)‖+ (1 + cϕ‖S∗‖)(n+ 2)|w̄(t)| ≥ (2s̄ + δ)‖φ̃(t)‖

⇒ ‖φ̃(t)‖ ≤ (1 + cϕ‖S∗‖)(n+ 2)
δ

|w̄(t)|;
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if we combine this with (5.84), we end up with the desired bound:

|ηi(t)| = |ei(t+ 1)| ≤ (1 + cϕ‖S∗‖)(n+ 2)
(2s̄
δ

+ 1
)

︸ ︷︷ ︸
=:c1

|w̄(t)|, t ≥ t0, i ∈ I∗.

�

Using the definition of Y(·), the formula for y(t+ 1) in (5.82), Claim 5.4, and (5.29)–
(5.37) inside the proof of Theorem 5.1, we conclude that there exists a constant c2 such
that the following holds:

‖Y(t+ n)‖ ≤
n−1∑
j=0

[
c2‖ασ(t+j)(t+ j)‖‖Y(t+ j)‖+

(
1 + ĉθ‖ασ(t+j)(t+ j)‖

)
|y∗(t+ j + 1)|+ c1|w̄(t+ j)|

]
, t ≥ t0.

(5.85)

Now define the quantity

α̃n(t) := max
j=0,1,...,n−1

‖ασ(t+j)(t+ j)‖, t ≥ t0. (5.86)

This means that we can rewrite (5.85) as

‖Y(t+ n)‖ ≤ c2α̃n(t)
n−1∑
j=0
‖Y(t+ j)‖+

n−1∑
j=0

[(
1 + ĉθ‖ασ(t+j)(t+ j)‖

)
|y∗(t+ j + 1)|+ c1|w̄(t+ j)|

]
. (5.87)

It follows from Proposition 5.5 (applied for p = 1, 2, . . . , n− 1) that there exists a constant
c3 so that the following holds:

n−1∑
j=0
‖Y(t+ j)‖ ≤ c3‖Y(t)‖+ c3

n−2∑
j=0

(|y∗(t+ j + 1)|+ |w̄(t+ j)|);
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after substituting this into (5.87), it follows that there exists a constant c4 such that

‖Y(t+ n)‖ ≤ c4α̃n(t)‖Y(t)‖+ c4 (1 + α̃n(t))
n−1∑
j=0

(|y∗(t+ j + 1)|+ |w̄(t+ j)|) . (5.88)

Step 3: Analyze the switching behavior, and obtain a bound on Y(·) which
depends solely on Ji∗(·).

As t̂`+1 − t̂` = n, by changing indexes we can rewrite (5.88) to describe the behavior
between two switching times:

‖Y(t̂`+1)‖ ≤ c4α̃n(t̂`)‖Y(t̂`)‖+ c4
(
1 + α̃n(t̂`)

) n−1∑
j=0

(
|y∗(t̂` + j + 1)|+ |w̄(t̂` + j)|

)
, ` ∈ Z+.

(5.89)

Now we will analyze the α̃n(j) term carefully. First, from the definition of αi given in
(5.80), we have

‖αi(t)‖ = ρi(t)
|ei(t+ 1)|
‖φ̃(t)‖

; (5.90)

so from the definition of the performance signal in (5.75) and the fact that σ(j) is constant
for j ∈ [t̂`, t̂`+1), we see that

α̃n(t̂`) = max
q=0,1,...,n−1

‖ασ(t̂`+q)(t̂` + q)‖

≤
n−1∑
q=0
‖ασ(t̂`+q)(t̂` + q)‖

=
n−1∑
q=0

ρσ(t̂`+q)(t̂` + q)
|eσ(t̂`+q)(t̂` + q + 1)|
‖φ̃(t̂` + q)‖

= Jσ(t̂`)(t̂`), ` ∈ Z+. (5.91)

Incorporating the bound (5.91) into (5.89) yields

‖Y(t̂`+1)‖ ≤ c4Jσ(t̂`)(t̂`)‖Y(t̂`)‖+ c4
(
1 + Jσ(t̂`)(t̂`)

) t̂`+1−1∑
j=t̂`

(|y∗(j + 1)|+ |w̄(j)|) , ` ∈ Z+.

(5.92)
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In the remainder of this step, we will analyze the closed-loop behavior on intervals of
length 2n; we want to obtain a bound on Y(t̂`+2) in terms of Y(t̂`). To proceed, the first
goal is to replace the Jσ(·) term by Ji∗ : for every ` ∈ Z+, from Lemma 5.1 we have either

Jσ(t̂`)(t̂`) ≤ Ji∗(t̂`) (5.93)

or

Jσ(t̂`+1)(t̂`+1) ≤ Ji∗(t̂`+1). (5.94)

So, if (5.93) is true, then we can substitute it into (5.92) to obtain a bound on ‖Y(t̂`+1)‖
in terms of ‖Y(t̂`)‖ and then use Proposition 5.5 for n steps to get a bound on ‖Y(t̂`+2)‖
in terms of ‖Y(t̂`+1)‖; it follows that there exists a constant c5 so that

‖Y(t̂`+2)‖ ≤ c5c4Ji∗(t̂`)‖Y(t̂`)‖+ c5c4
(
1 + Ji∗(t̂`)

) t̂`+1−1∑
j=t̂`

(|y∗(j + 1)|+ |w̄(j)|) +

c5

t̂`+2−1∑
j=t̂`+1

(|y∗(j + 1)|+ |w̄(j)|) . (5.95)

On the the other hand, if (5.94) is true, then we can use Proposition 5.5 for n steps to get
a bound on ‖Y(t̂`+1)‖ in terms of ‖Y(t̂`)‖, and then we can substitute (5.94) into (5.92) to
obtain a bound on ‖Y(t̂`+2)‖ in terms of ‖Y(t̂`+1)‖; it follows that there exists a constant
c5 so that

‖Y(t̂`+2)‖ ≤ c5c4Ji∗(t̂`+1)‖Y(t̂`)‖+ c5c4Ji∗(t̂`+1)
t̂`+1−1∑
j=t̂`

(|y∗(j + 1)|+ |w̄(j)|) +

c4
(
1 + Ji∗(t̂`+1)

) t̂`+2−1∑
j=t̂`+1

(|y∗(j + 1)|+ |w̄(j)|) . (5.96)

Define

β` := max
{
Ji∗(t̂`), Ji∗(t̂`+1)

}
, ` ∈ Z+; (5.97)
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then there exists a constant c6 so that (5.95) and (5.96) can be combined to yield

‖Y(t̂`+2)‖ ≤ c6β`‖Y(t̂`)‖+ c6 (1 + β`)
t̂`+2−1∑
j=t̂`

(|y∗(j + 1)|+ |w̄(j)|) , ` ∈ Z+. (5.98)

Before proceeding, for ease of analysis we further rewrite the above as follows:

‖Y(t̂2j+2)‖ ≤ c6β2j‖Y(t̂2j)‖+ c6 (1 + β2j)
t̂2j+2−1∑
k=t̂2j

(|y∗(k + 1)|+ |w̄(k)|)

︸ ︷︷ ︸
=:w̃(j)

, j ∈ Z+. (5.99)

Step 4: Solve the key difference inequality (5.99).
Now we proceed to analyze the closed-loop behavior on the whole timeline. We define

λ1 = λ2n

max{1, c6}
∈ (0, 1)

and

ν := λ2
1

16n2c̄
∈ (0, 1). (5.100)

To proceed, let τ ≥ t0 be arbitrary. We now partition the timeline into two parts: one in
which w̄(·) is small versus φ̃(·) and one where it is not. With ν defined above, we define

Sgood =
{
j ≥ τ : φ̃(j) 6= 0 and |w̄(j)|2

‖φ̃(j)‖2
< ν

}
,

Sbad =
{
j ≥ τ : φ̃(j) = 0 or |w̄(j)|2

‖φ̃(j)‖2
≥ ν

}
;

clearly {j ∈ Z : j ≥ τ} = Sgood ∪ Sbad. We can clearly define a (possibly infinite) sequence
of intervals of the form [kl, kl+1) which satisfy:
(i) k0 = τ serves as the initial instant of the first interval;
(ii) [kl, kl+1) either belongs to Sgood or Sbad; and
(iii) if kl+1 6= ∞ and [kl, kl+1) belongs to Sgood then [kl+1, kl+2) belongs to Sbad and vice
versa.

Now we analyze the behavior during each interval.
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Case 1: [kl, kl+1) lies in Sbad.
In this case, the analysis is identical to Case 1 inside the proof of Theorem 5.1; we

conclude that there exists a constant c7 := ‖S∗‖√
ν

+ (1 + cϕ‖S∗‖) (n + 2) so that following
holds:

‖Y(j)‖ ≤
{
c7|w̄(j)|, j = kl, kl + 1, . . . , kl+1 − 1(

1√
ν

+ c7
)
|w̄(j − 1)|, j = kl+1.

(5.101)

Case 2: [kl, kl+1) lies in Sgood.
First suppose that kl+1 − kl ≤ 4n; then by Proposition 5.5 it can be easily proven that

there exists a constant γ1 so that

‖Y(t)‖ ≤ γ1λ
t−kl‖Y(kl)‖+ γ1

t−1∑
j=kl

λt−j−1 (|y∗(j + 1)|+ |w̄(j)|) , t ∈ [kl, kl+1]. (5.102)

Now suppose that kl+1 − kl > 4n; this means that in the interval of interest, namely
[kl, kl+1), there are at least two switching times: there exist 0 ≤ q < p so that

kl ≤ t̂q < t̂p ≤ kl+1;

in fact, there may be many choices of q and p. For j ∈ [kl, kl+1), we have φ̃(j) 6= 0 and

w̄(j)2

‖φ̃(j)‖2
< ν. (5.103)

By Proposition 5.4, it follows that for every t2 > t1 ≥ t0:

t2−1∑
j=t1

ρi∗(j)
|ei∗(j + 1)|2

‖φ̃(j)‖2
≤ 2‖θ̃i∗(t1)‖2 + 2c̄

t2−1∑
j=t1

ρi∗(j)
|w̄(j)|2

‖φ̃(j)‖2
; (5.104)

from this and using the bound in (5.103) which holds on [kl, kl+1), together with the fact
that ‖θ̃i∗(t)‖ ≤ 2‖Si∗‖ ≤ 2s̄, we see that

t2−1∑
j=t1

ρi∗(j)
|ei∗(j + 1)|2

‖φ̃(j)‖2
≤ 8s̄2 + 2c̄ν (t2 − t1) , kl ≤ t1 < t2 ≤ kl+1. (5.105)
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We now analyze the square sum of β2j; from the definition of β2j and the Cauchy-Schwarz
property, we have

p−1∑
j=q

β2
2j =

p−1∑
j=q

max
{
Ji∗(t̂2j), Ji∗(t̂2j+1)

}2

≤
p−1∑
j=q

(
Ji∗(t̂2j) + Ji∗(t̂2j+1)

)2

≤ 2
p−1∑
j=q

[
Ji∗(t̂2j)2 + Ji∗(t̂2j+1)2

]

= 2
p−1∑
j=q


t̂2j+1−1∑

k=t̂2j

ρi∗(k) |ei
∗(k + 1)|
‖φ̃(k)‖


2

+

t̂2j+2−1∑
k=t̂2j+1

ρi∗(k) |ei
∗(k + 1)|
‖φ̃(k)‖


2

≤ 2n
p−1∑
j=q

t̂2j+2−1∑
k=t̂2j

ρi∗(k) |ei
∗(k + 1)|2

‖φ̃(k)‖2


= 2n

t̂2p−1∑
j=t̂2q

ρi∗(j)
|ei∗(j + 1)|2

‖φ̃(j)‖2
, 0 ≤ q < p. (5.106)

Applying (5.105) into the above yields

p−1∑
j=q

β2
2j ≤ 2n

t̂2p−1∑
j=t̂2q

ρi∗(j)
|ei∗(j + 1)|2
‖φ(j)‖2

≤ 16ns̄2 + 4c̄νn
(
t̂2p − t̂2q

)
,

= 16ns̄2 + 8c̄νn2 (p− q) ,
for all q, p ∈ Z+ s.t. kl ≤ t̂2q < t̂2p ≤ kl+1. (5.107)

Before proceeding, we would like to obtain an upper bound on the β2j term that appears in
the second term on the RHS of (5.99). From the above we see that

β2j ≤
(
16ns̄2 + 8c̄νn2

) 1
2 =: c8;
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so we can rewrite (5.99) as

‖Y(t̂2j+2)‖ ≤ c6β2j‖Y(t̂2j)‖+ c6 (1 + c8)︸ ︷︷ ︸
=:c9

w̃(j). (5.108)

We now utilize the inequality of arithmetic and geometric means.
Claim 5.5. There exists a constant γ2 > 1 such that

p−1∏
j=q

β2j ≤ γ2λ
p−q
1 , for all q, p ∈ Z+ s.t. kl ≤ t̂2q < t̂2p ≤ kl+1. (5.109)

Proof of Claim 5.5. Let q, p ∈ Z+ be arbitrary such that kl ≤ t̂2q < t̂2p ≤ kl+1. By the fact
that β2j ≥ 0, we obtain

p−1∏
j=q

β2j ≤

 1
p− q

p−1∑
j=q

β2
2j


p−q

2

. (5.110)

Substituting (5.107) and the definition of ν in (5.100) into (5.110) yields

p−1∏
j=q

β2j ≤
[

16ns̄2

p− q
+ 8c̄νn2

] p−q
2

≤
[

16ns̄2

p− q
+ λ2

1
2

] p−q
2

. (5.111)

So it is enough to prove that there exists a constant γ2 so that
[

16ns̄2

k
+ λ2

1
2

] 1
2

︸ ︷︷ ︸
=:g(k)


k

≤ γ2λ
k
1, k > 0.

We can easily show that with k̄ := 32n×
⌈(

s̄
λ1

)2
⌉
, we have

16ns̄2

k̄
≤ λ2

1
2 ,
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which means that

g(k)k ≤ λk1, k ≥ k̄.

Since g(k) decreases as k ≥ 1 increases, we conclude that if we define γ2 := max
{

1,
(
g(1)
λ1

)k̄}
,

then
g(k)k ≤ γ2λ

k
1, k = 1, 2, . . . , k̄,

as well, so the claim holds. �

We now solve (5.108). First of all, using the bound in (5.109) and the definition of λ1
we obtain

p−1∏
j=q

[c6β2j] ≤ γ2λ
p−q
1 cp−q6

≤ γ2λ
2n(p−q), for all q, p ∈ Z+ s.t. kl ≤ t̂2q < t̂2p ≤ kl+1. (5.112)

If we solve (5.108) iteratively and apply the above inequality, we obtain

‖Y(t̂2p)‖ ≤ γ2λ
2n(p−q)‖Y(t̂2q)‖+

p−1∑
j=q

c9γ2
(
λ2n

)p−j−1
w̃(j),

for all q, p ∈ Z+ s.t. kl ≤ t̂2q < t̂2p ≤ kl+1. (5.113)

We can now use Proposition 5.5 (for no more than 2n steps at a time):

• to provide a bound on ‖Y(t)‖ between the switching times t̂2j’s;

• to provide a bound on ‖Y(t)‖ on the beginning part of the interval [kl, kl+1), until we
get to the first admissible switching time;

• to provide a bound on ‖Y(t)‖ on the last part of the interval [kl, kl+1), after the last
admissible switching time.

After simplification, we conclude that there exists a constant γ3 ≥ γ1 so that

‖Y(t)‖ ≤ γ3λ
t−kl‖Y(kl)‖+ γ3

t−1∑
j=kl

λt−j−1 (|y∗(j + 1)|+ |w̄(j)|) , t ∈ [kl, kl+1], (5.114)
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as desired.
Now we combine Case 1 and Case 2 into a general bound on Y. We use the same

argument that of Claim 5.3 inside the proof of Theorem 5.1 to glue the bounds of Case 1
and Case 2 together: we conclude that there exists a constant γ̄ so that

‖Y(t)‖ ≤ γ̄λt−τ‖Y(τ)‖+
t−1∑
j=τ

γ̄λt−j−1(|y∗(j + 1)|+ |w̄(j)|), t > τ. (5.115)

Step 5: Obtain a bound on u(t).
Now we derive a bound on u(t) in a similar manner to that of Step 4 inside the proof of

Theorem 5.1; we see that

|u(t)| ≤ ĉθcϕs̄γ̄λt−τ‖Y(τ)‖+ ĉθcϕs̄γ̄
t−1∑
j=τ

λt−j−1(|y∗(j + 1)|+ |w̄(j)|) + ĉθ|y∗(t+ 1)|, t ≥ τ.

(5.116)

If we combine this with (5.115) we conclude that there exists a constant γ̄2 so that∥∥∥∥∥
[
Y(t)
u(t)

]∥∥∥∥∥ ≤ γ̄2λ
t−τ‖Y(τ)‖+

t−1∑
j=τ

γ̄2λ
t−j−1(|y∗(j + 1)|+ |w̄(j)|) + γ̄2|y∗(t+ 1)|, t ≥ τ. (5.117)

Since τ ≥ t0 is arbitrary, we conclude the proof. �

Remark 5.10. Observe that the result in Theorem 5.6 subsumes the result in Theorem 4.1
of Chapter 4 dealing with one-step-ahead adaptive control of first-order linear plants.

5.4.5 Robustness Results

Similar to the case of a known plant’s input gain, the linear-like convolution bounds proven
in Theorem 5.6 will guarantee robustness to a degree of time-variations and unmodelled
dynamics in this case of an unknown plant’s input gain and using switching control law.
We have in (5.63) a time-varying version of the plant (5.5) along with the term d∆(t) ∈ R
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added to represent the unmodelled dynamics; for clarity we present it here again:

y(t+ 1) = θ∗(t)>
[
ϕ
(
X (j)

)
u(t)

]
+ w(t) + v(t+ 1) + d∆(t)

= θ∗(t)>φ(t) + w(t) + v(t+ 1) + θ∗(t)>
[
ϕ
(
X (t)

)
− ϕ

(
Y(t)

)
0

]
︸ ︷︷ ︸

=:∆̃(t)

+d∆(t). (5.118)

Similar to the previous section, as discussed in Chapter 2, with g : Rn+1 7→ R having a
bounded gain, we assume that d∆ satisfies

m(t+ 1) = βm(t) + β

∣∣∣∣∣g
([
Y(t)
u(t)

])∣∣∣∣∣ , m(t0) = m0 (5.119a)

|d∆(t)| ≤ µm(t) + µ

∣∣∣∣∣g
([
Y(t)
u(t)

])∣∣∣∣∣ , t ≥ t0. (5.119b)

Theorem 5.7. Suppose that the adaptive controller (5.70), (5.72), (5.74), (5.75) and
(5.76) is applied to the time-varying nonlinear plant (5.118) with d∆ satisfying (5.119).
Then for every δ ∈ (0,∞], β ∈ (0, 1) and c̄0 ≥ 0, there exist ε̄ > 0, µ > 0, λ̃ ∈ (β, 1)
and γ̃ > 0 such that for every t0 ∈ Z, X (t0) ∈ Rn, σ0 ∈ I∗, θ∗ ∈ S (S∗, c̄0, ε̄), θ̂i(t0) ∈
Si (i = 1, 2), and w, v, y∗ ∈ `∞, the following holds:∥∥∥∥∥∥∥

Y(t)
u(t)
m(t)


∥∥∥∥∥∥∥ ≤ γ̃λ̃t−t0

∥∥∥∥∥∥∥
Y(t0)
u(t0)
m0


∥∥∥∥∥∥∥+

t−1∑
j=t0

γ̃λ̃t−j−1(|w̄(j)|+ |y∗(j + 1)|) + γ̃|y∗(t+ 1)|, t ≥ t0.

Proof of Theorem 5.7. We observe here that the plant (5.118) and the controller con-
sisting of (5.70), (5.72), (5.74), (5.75) and (5.76) fit into the paradigm of Chapter 2: we
set

ϑ(t) =
[
Y(t)
u(t)

]
,
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f(ϑ(·)) = φ(·) =
[
ϕ
(
Y(·)

)
u(·)

]
,

z(t) = ∅,

θ̂(t) =
[
θ̂1(t)
θ̂2(t)

]
,

r(t) = y∗(t+ 1),
w(t) = w(t) + v(t+ 1) + ∆̃(t),

Ω = S1 × S2.

In Theorem 5.6 it is proven the controller (5.70), (5.72), (5.74), (5.75) and (5.76) provides
a convolution bound for (5.5). Observe that the term ∆̃(t) has the same upper bound of as
its counterpart in (5.10) because θ∗(t) ∈ S for all t ∈ Z; indeed, we utilize the upper bound
given in (5.11). By the definition of w̄ given in (5.12), it means that there exists a constant
c so that

|w(t) + v(t+ 1) + ∆̃(t)| ≤ c|w̄(t)|.

We apply Theorems 2.2, 2.2 and 2.3 to immediately see that the linear-like convolution
bound holds in the presence of parameter time-variation and/or unmodelled dynamics. �

Remark 5.11. Just as in the first-order LTI case of Chapter 4, in the absence of noise,
we are unable to prove that we obtain asymptotic tracking; however, if switching eventually
stops then this will be the case. We may be able to alleviate this problem if we apply the
switching algorithm using a performance signal which has some memory.

5.5 Simulation Examples

5.5.1 The One-link Manipulator

Here we apply the proposed approach to a one-link manipulator system discussed in
Example 5.1. There we provide a continuous-time model (5.3), together with a discretized
approximation (5.4); with a sampling period of h = 0.1 seconds, the latter is given by

y(t+ 1) = θ1y(t) + θ2 sin
(
y(t)

)
+ θ3y(t− 1) + θ4u(t), (5.120)
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with 
θ1
θ2
θ3
θ4

 =


2

− [m+2M ]gLh2

J+4ML2

−1
h2

J+4ML2

 and ϕ
(
y(t), y(t− 1)

)
=


y(t)

sin
(
y(t)

)
y(t− 1)

 .
Here we allow the time-varying mass load M to take values between 0 and 5; we set other
parameters to be: m = J = 0.5 and L = 1. This means that the uncertainty set of the
system is as follows:

S = S∗ =



θ1
θ2
θ3
θ4

 ∈ R4 : θ1 = 2, θ2 ∈ [−1,−0.0502], θ3 = −1, θ4 ∈ [0.0005, 0.02]

 ;

notice that the estimation of the parameters θ1 and θ3 is trivial.
We illustrate the result in Theorem 5.4 on tracking in the presence of time-variation; we

show that the average tracking error is proportional to the speed of the parameter variation.
We apply the proposed controller (5.16) and (5.21) (with δ = ∞) to the plant when the
mass load is varying between 0 and 2 as follows:

M(t) = 1 + sin (ω0t)

with
ω0 ∈ {0.005, 0.01, 0.05, 0.1} .

We choose plant initial conditions of y(−1) = y(0) = π, and the initial parameter estimate
corresponding to a mass load of 2; this corresponds to values of θ̂2(0) = −0.0678 and
θ̂4(0) = 0.0077. With a zero disturbance and

y∗(t) = π

2 sin
(

1
250t

)
,

we simulate the closed-loop system for T = 10000 steps, i.e. 1000 seconds; we plot the
tracking error for the last 2000 steps in Figure 5.2, i.e. after the transient effect has been
eliminated. We see that, consistent with Theorem 5.4, average tracking error increases
with the speed of the plant parameter variation. In Figure 5.3 and Figure 5.4 we show the
details of the closed-loop behavior for the case of ω0 = 0.005; although the system exhibits
a large transient control action, stability is retained.
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Figure 5.2: The plots show the tracking error for simulation of a one-link manipulator for various
choices of the time-varying parameter.
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Figure 5.3: The top plot shows both the output y(t) (solid black) and the reference y∗(t) (dashed
red); the bottom left plot shows the transient control input u(t) of the first 10 steps, and the
bottom right plot shows the control input u(t) for t ≥ 10.
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Figure 5.4: The two plots shows both the parameter estimate θ̂2(t) and θ̂4(t) (solid black) and the
actual parameters θ2(t) and θ4(t) (dashed blue), respectively.
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5.5.2 An Example with an Unknown θp Sign

Here we consider an example to illustrate the switching controller of Section 5.4. To this
end, consider the following second-order nonlinear plant:

x(t+ 1) = θ1(t)x(t) + θ2(t) sin
(
10x(t)

)
+ θ3(t)|x(t− 1)|+ θ4(t)u(t) + w(t)

y(t) = x(t) + v(t),

with the unknown parameters belonging to the compact set

S∗ =



θ1
θ2
θ3
θ4

 ∈ R4 : θ1 ∈ [1, 3], θ2 ∈ [−2, 2], θ3 ∈ [−4,−2], θ4 ∈ [1, 3] ∪ [−3,−1]

 ;

observe that this set satisfies Assumptions 5.1. Here we have

ϕ
(
x(t), x(t− 1)

)
=


x(t)

sin
(
10x(t− 1)

)
|x(t− 1)|


which clearly satisfies Assumption 5.2. To apply our approach, we will need compact and
convex sets S1 and S2 so that their union contains S∗; there is a natural choice: define

S1 =



θ1
θ2
θ3
θ4

 ∈ R4 : θ1 ∈ [1, 3], θ2 ∈ [−2, 2], θ3 ∈ [−4,−2], θ4 ∈ [1, 3]

 ,

S2 =



θ1
θ2
θ3
θ4

 ∈ R4 : θ1 ∈ [1, 3], θ2 ∈ [−2, 2], θ3 ∈ [−4,−2], θ4 ∈ [−3,−1]

 .

Now we will carry out a simulation with time-varying parameters:

θ1(t) = 2 + cos
(

1
300t

)
, θ2(t) = cos

(
1

250t
)
,

θ3(t) = −2, θ4(t) =
{
−1 2000 < t ≤ 3500
1 otherwise;
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we set the noise terms to

w(t) =
{

1
2 sin(10t), 1000 < t ≤ 2500
0 otherwise,

v(t) =
{

1
5 cos(20t), 1000 < t ≤ 2500
0 otherwise.

We apply the switching adaptive controller (5.70), (5.72), (5.74), (5.75) and (5.76)
(with δ = 2s̄ ≈ 6) with initial parameter estimates set to θ1(0) =

[
2 0 −3 3

]>
, and

θ2(0) =
[
2 0 −3 −3

]>
and σ0 = 2. We set the reference signal to y∗(t) = 20 cos

(
2π
750t

)
and set initial condition to x(0) = x(−1) = 11. We plot the results in Figures 5.5 and
5.6. We see that the closed-loop system provides a good job of tracking despite inaccurate
parameter estimation. While performance degrades temporarily when measurement noise
is turned on or when the sign of θ4 changes, it improves quickly thereafter. Furthermore,
the estimate choice is mostly correct.

Remark 5.12. We can also compare the performance here with that which arises when we
use the classical estimator (3.4) as part of the adaptive controller; we often end up with
the same sort of result as in Example 2 of the simulation section of Chapter 4, namely a
degradation in performance.

5.6 Conclusion

We have shown in this chapter that we are able to obtain desirable linear-like closed-loop
behavior for a class of nonlinear systems. The set of parametric uncertainty is only assumed
to be compact. The first half of the chapter discussed the approach when the sign of the
control/input gain is known. The second half of the chapter deals with the case of sign of
the control/input gain is unknown: multiple estimators, together with a switching control
law, is used. Utilizing the resulting convolution bounds, we have shown that the adaptive
controller tolerates a certain degree of time-variations and unmodelled dynamics. In the
case of known sign of the control gain, some tracking results are also proven which are
stronger than what is usually found in the literature. This work can be considered as a first
step towards obtaining the desired linear-like properties when applying adaptive control
to discrete-time nonlinear systems; further study of the adaptive control of more general
discrete-time nonlinear systems is merited.
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Figure 5.5: The top plot shows both the output y(t) (solid black) and the reference y∗(t) (dashed
red); the 2nd plot shows the control input u(t); the bottom plot shows both the switching signal
σ(t) (solid black) and correct index i∗(t) (dashed red).
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Figure 5.6: The plots show the parameter estimates θ̂σ(t) (solid) as well as the actual parameters
θ∗(t) (dashed).
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Chapter 6

Adaptive Stabilization of Possibly
Non-Minimum Phase Plants Using
Two Estimators

6.1 Introduction

We have shown in Chapter 4 in the first-order LTI case that a switching adaptive controller
utilizing projection-algorithm estimators stabilizes the system and provide a linear-like
closed-loop behavior; the same is proven in Chapter 5 for a special class of nonlinear
systems with stable zero dynamics. In this chapter, we extend the approach to higher order
LTI plants that may be non-minimum phase. We adopt a pole-placement based adaptive
controller to achieve the desirable linear-like properties.

6.2 The Setup

Here, we consider an nth-order linear time-invariant discrete-time plant given by

y(t+ 1) =
n∑
j=1

ajy(t− j + 1) +
n∑
j=1

bju(t− j + 1) + w(t)
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=



y(t)
y(t− 1)

...
y(t− n+ 1)

u(t)
u(t− 1)

...
u(t− n+ 1)



>

︸ ︷︷ ︸
=:φ(t)>



a1
a2
...
an
b1
b2
...
bn


︸ ︷︷ ︸
=:θ∗

+w(t), (6.1)

with y(t) ∈ R the measured output, u(t) ∈ R the control input, φ(t) ∈ R2n a vector of
input-output data, and w(t) ∈ R the noise (or disturbance) input. We assume that θ∗
is unknown but belongs to a set S∗ ⊂ R

2n. Associated with this plant model are the
polynomials

A(z−1) := 1− a1z
−1 − a2z

−2 − · · · − anz−n

and
B(z−1) := b1z

−1 + b2z
−2 + · · ·+ bnz

−n

and the transfer function B(z−1)
A(z−1) .

Remark 6.1. It is straight-forward to verify that if the system has a disturbance at both
the input and output, then it can be converted to a system of the above form. To see this,
suppose that we start with the model

x(t+ 1) =
n∑
j=1

ajx(t− j + 1) +
n∑
j=1

bju(t− j + 1)

y(t) = x(t) + w1(t)
u(t) = uc(t) + w2(t);

here y(t) is the measured output, uc(t) is the input generated by the controller, w1(t) is an
output disturbance/noise and w2(t) is an input disturbance/noise. This can be rewritten as

y(t+ 1) =
n∑
j=1

ajy(t− j + 1) +
n∑
j=1

bjuc(t− j + 1)+
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w1(t+ 1)−
n∑
j=1

ajw1(t− j + 1) +
n∑
j=1

bjw2(t− j + 1)
︸ ︷︷ ︸

=:w(t)

,

which is exactly of the form (6.1). Nonlinear plants generally do not enjoy this property.

It has been shown in the main result of Miller and Shahab [46] on adaptive pole-
placement control that convexity and coprimeness assumptions on the set of admissible
plant parameters play a crucial role in obtaining closed-loop stability and other desirable
closed-loop properties. Here we will show that it is possible to weaken the convexity
requirement with the objective of stabilizing the system. The proposed approach is modelled
on the first-order one-step-ahead control set-up in Chapter 4 which is deadbeat in nature;
of course, here the plant is larger than a first-order one, which increases the complexity.
While we are able to remove the convexity requirement completely (see the next chapter),
in this chapter we are only weakening it to illustrate the approach. To this end, we impose
an assumption on the set of parameter uncertainty.

Assumption 6.1. S∗ ⊂ S1 ∪ S2 with S1 and S2 compact and convex, and for each
θ∗ ∈ S1∪S2, the corresponding pair of polynomials znA(z−1) and znB(z−1) are coprime.

As has been discussed earlier, the boundedness assumption is quite reasonable in
practical situations; it is used here to ensure that we can prove uniform bounds and decay
rates on the closed-loop behavior. The coprimeness assumption arises since our goal is to
place the closed-loop poles at desirable locations.

The main goal here is to prove a form of stability. To proceed, we use a parameter
estimator together with an adaptive pole placement control law. The idea is to use an
estimator for each of S1 and S2, and at each point in time we choose which one to use in
the control law. In a similar manner as in previous chapters, for each θ∗ ∈ Si, i = 1, 2, we
define

i∗(θ∗) = min {i ∈ {1, 2} : θ∗ ∈ Si} ;

when there is no ambiguity, we will drop the argument and simply write i∗. Also define

s̄ := max {‖S1‖, ‖S2‖} .
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6.2.1 Parameter Estimation

For each Si and θ̂i(t0) ∈ Si, we construct an estimator which generates an estimate θ̂i(t) ∈ Si
at each t > t0. The associated prediction error is defined as

ei(t+ 1) = y(t+ 1)− φ(t)>θ̂i(t). (6.2)

Here we apply the simplest form1 of the estimator (3.9) of Chapter 3, where we set φm = φ
and δ =∞; observe that in this case

ρδ(φ(t), ei(t+ 1)) = 1 ⇔ φ(t) 6= 0,

and the parameter update law is given by

θ̌i(t+ 1) =

θ̂i(t) + φ(t)
‖φ(t)‖2 ei(t+ 1) if φ(t) 6= 0

θ̂i(t) if φ(t) = 0,
(6.3a)

θ̂i(t+ 1) = Proj
Si

{
θ̌i(t+ 1)

}
. (6.3b)

Associated with this estimator is the parameter estimation error θ̃i(t) := θ̂i(t) − θ∗. We
now list some properties of the above algorithm; the following result follows directly from
combining the results in Propositions 3.1 and 3.2 of Chapter 3, where φm = φ and δ =∞.
The index i∗ is not known, of course.

1For ease of exposition, we do not use the more general version of the estimator.
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Proposition 6.1. For every t0 ∈ Z, t2 > t1 ≥ t0, φ(t0) ∈ R2n, θ∗ ∈ S∗, θ̂i(t0) ∈ Si (i =
1, 2) and w ∈ `∞, when the estimation algorithm in (6.3) is applied to the plant (6.1),
the following holds:

1. for every estimator i = 1, 2,

‖θ̂i(t2)− θ̂i(t1)‖ ≤
t2−1∑

j=t1, φ(j) 6=0

|ei(j + 1)|
‖φ(j)‖ . (6.4)

2. for the correct estimator i∗,

‖θ̃i∗(t2)‖2 ≤ ‖θ̃i∗(t1)‖2 +
t2−1∑

j=t1, φ(j) 6=0

[
−1

2
ei∗(j + 1)2

‖φ(j)‖2 + 2 w(j)2

‖φ(j)‖2

]
. (6.5)

6.2.2 The Switching Control Law

The elements of θ̂i(t) are partitioned in a natural way as

θ̂i(t) =:



âi,1(t)
âi,2(t)

...
âi,n(t)
b̂i,1(t)
b̂i,2(t)

...
b̂i,n(t)


;

associated with these estimates are the polynomials

Âi(t, z−1) = 1− âi,1(t)z−1 − âi,2(t)z−2 · · · − âi,n(t)z−n,

and
B̂i(t, z−1) = b̂i,1(t)z−1 + b̂i,2(t)z−2 · · ·+ b̂i,n(t)z−n.
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Next, we design a nth-order strictly proper controller; we choose the following polynomials

L̂i(t, z−1) = 1 + l̂i,1(t)z−1 + l̂i,2(t)z−2 + · · ·+ l̂i,n(t)z−n,

P̂i(t, z−1) = p̂i,1(t)z−1 + p̂i,2(t)z−2 + · · ·+ p̂i,n(t)z−n

to place all closed-loop poles at zero, so we need

Âi(t, z−1)L̂i(t, z−1) + B̂i(t, z−1)P̂i(t, z−1) = 1. (6.6)

Given the assumption that the znÂi(t, z−1) and znB̂i(t, z−1) are coprime, we know that
there exist unique L̂i(t, z−1) and P̂i(t, z−1) which satisfy this equation; this entails solving
a linear equation—see Appendix A for more details. It is also easy to prove that the
coefficients of L̂i(t, z−1) and P̂i(t, z−1) are analytic functions of θ̂i(t) ∈ Si.

We can now discuss the candidate control law to be used. Define the control parameters

K̂i(t) :=
[
−p̂i,1(t) −p̂i,2(t) · · · −p̂i,n(t) −l̂i,1(t) −l̂i,2(t) · · · −l̂i,n(t)

]
(6.7)

and a switching signal σ : Z 7→ {1, 2} that decides which controller to use at any given
point in time. A natural choice for a control law is

u(t) = K̂σ(t−1)(t− 1)φ(t− 1). (6.8)

Remark 6.2. In order to describe the closed-loop system, it is illustrative to first consider
the case in which S∗ is a convex set and use only one estimator, as in the first part of
Miller and Shahab [46]. In this case, we can exactly obtain an update equation for φ(t):
we use (6.8) to provide the update for u(t+ 1) and the prediction error equation (6.2) to
provide an update for y(t+ 1), and end up with the equation
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φ(t+ 1) =



â1(t) â2(t) · · · ân(t) b̂1(t) · · · · · · b̂n(t)
1 0 · · · 0 0 · · · · · · 0

. . . ... ... · · · · · · ...
1 0 0 · · · · · · 0

−p̂1(t) −p̂2(t) · · · −p̂n(t) −l̂1(t) −l̂2(t) · · · −l̂n(t)
0 · · · · · · 0 1 0 · · · 0
... · · · · · · ... . . . ...
0 · · · · · · 0 1 0


︸ ︷︷ ︸

=:Ā(t)

φ(t) + e1e(t+ 1);

(6.9)

here we have omitted the estimator index since it is no longer needed.

As we will soon see, our closed-loop system behavior will in large part be determined
by the natural extension of Ā(t) (defined above) to the case of switching—we label this as
Āσ(t)(t) ∈ R2n (see (6.20) for a precise definition); the closed-loop behavior is captured by

φ(t+ 1) = Āσ(t)(t)φ(t) + e1eσ(t)(t+ 1). (6.10)

As mentioned earlier, our approach is based on exploiting the deadbeat nature of the
problem. While Āσ(t)(t) is a deadbeat matrix (i.e. all of its eigenvalues is at zero) for every
t, the product

Āσ(t)(t)× Āσ(t−1)(t− 1)× · · · × Āσ(t0)(t0), t ≥ t0

will not usually have all eigenvalues at zero. A natural attempt to deal with the problem is
to hold σ(t) constant in (6.8) for 2n steps at a time as well as updating the estimators every
2n steps as well; the problem here is that we end up with no information about ei(t+ 1)
between the updates, so the closed-loop system is not amenable to analysis. So our solution
procedure will be different: we are going to change σ(t) every N ≥ 2n steps; we keep the
estimators running, but adjust the control parameters every N ≥ 2n steps as well. The
effect of this will become clear in the proof of the result. To this end, we define a sequence
of switching times as follows: we initialize t̂0 := t0 and then define

t̂` := t0 + `N, ` ∈ N.
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So now define the associated control parameters by

Ki(t) :=
[
−p̂i,1(t̂`) −p̂i,2(t̂`) · · · −p̂i,n(t̂`) −l̂i,1(t̂`) −l̂i,2(t̂`) · · · −l̂i,n(t̂`)

]
,

t ∈ [t̂`, t̂`+1), ` ∈ Z+, (6.11)

and the switching signal by

σ(t) = σ(t̂`), t ∈ [t̂`, t̂`+1), ` ∈ Z+. (6.12)

We subsequently define the control law as

u(t) = Kσ(t−1)(t− 1)φ(t− 1), t > t0. (6.13)

What remains to be defined is the choice of switching signal σ(t̂`), which we do in the
next subsection.

6.2.3 The Switching Algorithm

To proceed, we define a performance signal Ji : {t̂0, t̂1, . . .} 7→ R
+ for estimator i, which

produces a measure of “accuracy” of estimation; for ` ∈ Z+, we define

Ji(t̂`) :=


0 if φ(j) = 0 for all j ∈ [t̂`, t̂`+1),

max
j∈[t̂`,t̂`+1),φ(j)6=0

|ei(j + 1)|
‖φ(j)‖ otherwise.

(6.14)

With σ(t̂0) = σ0, we use the following switching rule:

σ(t̂`+1) = argmin
i∈{1,2}

Ji(t̂`), ` ∈ Z+. (6.15)

For the case when J1(t̂`) = J2(t̂`), we (somewhat arbitrarily) select σ(t̂`+1) to be 1. Before
presenting the main result of this chapter, we first show that the logic in (6.15) yields a
desirable closed-loop property; this result is equivalent to the one in Lemma 5.1.
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Lemma 6.1. Consider the plant (6.1) and suppose that the adaptive controller con-
sisting of the parameter estimator (6.3), the control law (6.13), the performance signal
(6.14) and the switching rule (6.15) is applied. Then for every t0 ∈ Z, φ(t0) ∈ R2n,
σ0 ∈ {1, 2}, N ≥ 1, θ∗ ∈ S∗, θ̂i(t0) ∈ Si (i = 1, 2) and w ∈ `∞, we have that, for every
` ∈ Z+, either

(a) Jσ(t̂`)(t̂`) ≤ Ji∗(t̂`), or

(b) Jσ(t̂`+1)(t̂`+1) ≤ Ji∗(t̂`+1).

Proof of Lemma 6.1. Fix t0 ∈ Z, φ(t0) ∈ R2n, σ0 ∈ {1, 2}, N ≥ 1, θ∗ ∈ S∗, θ̂i(t0) ∈ Si
(i = 1, 2), and w ∈ `∞. Let ` ∈ Z

+ be arbitrary. Assume that (a) does not hold, i.e.
Jσ(t̂`)(t̂`) > Ji∗(t̂`); then according to (6.15), this means that σ(t̂`+1) = i∗, i.e. (b) will
hold. �

Similar to previous results in this thesis, observe here that we do not make any claim
that θ∗ ∈ Sσ(t) at any time; it only makes an indirect statement about the size of the
prediction error. It turns out that this is enough to ensure that closed-loop stability is
attained.

6.3 The Main Result

Now we present the main result of this chapter.

Theorem 6.1. Consider the nth-order plant (6.1) and suppose that the adaptive con-
troller consisting of the parameter estimator (6.3), the control law (6.13), the perfor-
mance signal (6.14) and the switching rule (6.15) is applied to the plant (6.1). For
every λ ∈ (0, 1) and N ≥ 2n, there exists a constant γ > 0 such that for every t0 ∈ Z,
φ(t0) ∈ R2n, σ0 ∈ {1, 2}, θ∗ ∈ S∗, θ̂i(t0) ∈ Si (i = 1, 2), and w ∈ `∞, the following
bound holds:

‖φ(t)‖ ≤ γλt−τ‖φ(τ)‖+ γ
t−1∑
j=τ

λt−1−j|w(j)|, t > τ ≥ t0. (6.16)

Remark 6.3. The above result shows linear-like closed-loop behavior. There is a uniform
exponential decay bound on the effect of the initial condition, and a convolution bound on
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the effect of the exogenous signals. This implies that the system has a bounded gain (from
w and y∗ to y) in every p-norm; in particular, for p =∞ we see from the above bound that

‖φ(t)‖ ≤ γλt−t0‖φ(t0)‖+ γ

1− λ sup
j∈[t0,t)

|w(j)| ≤ γ

1− λ

(
λt−t0‖φ(t0)‖+ ‖w‖∞

)
, t ≥ t0.

Hence, if w ∈ `∞, then y, u ∈ `∞.

It is natural to ask if the proposed approach would work if S ⊂ ⋃mi=1 Si where m > 2
with each Si compact and convex sets for which the corresponding pair of polynomials
A(z−1) and B(z−1) are coprime. While the proposed controller (6.3), (6.13), (6.14) and
(6.15) is well defined in this case, we have been unable to prove that it will work; as
mentioned in earlier chapters a potential problem is that the switching algorithm would
oscillate between two bad choices, and never (or rarely) choose the correct one. In the next
chapter we provide a more complicated approach which deals with this problem and more.

In order to prove Theorem 6.1, we need the following result that produces a crude bound
on the closed-loop behavior.

Proposition 6.2. Consider the plant (6.1) and suppose that the adaptive controller
consisting of the parameter estimator (6.3), the control law (6.13), the performance
signal (6.14) and the switching rule (6.15) is applied. Then for every p ≥ 0, there exists
a constant c̄ ≥ 1 such that for every t0 ∈ Z, t ≥ t0, φ(t0) ∈ R2n, σ0 ∈ {1, 2}, N ≥ 1,
θ∗ ∈ S∗, θ̂i(t0) ∈ Si (i = 1, 2) and w ∈ `∞, the following holds:

‖φ(t+ p)‖ ≤ c̄‖φ(t)‖+ c̄
p−1∑
j=0
|w(t+ j)|. (6.17)

Proof. See Appendix B. �

Proof of Theorem 6.1:

Fix λ ∈ (0, 1) and N ≥ 2n. Let t0 ∈ Z, φ(t0) ∈ R2n, σ0 ∈ {1, 2}, θ∗ ∈ S∗, θ̂i(t0) ∈ Si
(i = 1, 2), and w ∈ `∞ be arbitrary.

Step 1: Obtain a state-space model describing φ(t) for t ∈ [t̂`, t̂`+1).
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By definition of the prediction error (6.2) and by the property of switching signal (6.12)
being constant on [t̂`, t̂`+1) we have

y(t+ 1) = φ(t)>θ̂σ(t)(t) + eσ(t)(t+ 1)
= φ(t)>θ̂σ(t̂`)(t) + eσ(t̂`)(t+ 1) + φ(t)>θ̂σ(t̂`)(t̂`)− φ(t)>θ̂σ(t̂`)(t̂`)

= θ̂σ(t̂`)(t̂`)
>φ(t) +

[
θ̂σ(t̂`)(t)− θ̂σ(t̂`)(t̂`)

]>
φ(t) + eσ(t̂`)(t+ 1), t ∈ [t̂`, t̂`+1).

(6.18)

From the control law (6.13) and the control gains (6.11) we have

u(t+ 1) = Kσ(t)(t)φ(t)
= Kσ(t̂`)(t̂`)φ(t), t ∈ [t̂`, t̂`+1). (6.19)

We now derive a state-space equation for φ(t); we first define the following 2n× 2n matrix

Āσ(t)(t) :=



âσ(t),1(t) âσ(t),2(t) · · · âσ(t),n(t) b̂σ(t),1(t) · · · · · · b̂σ(t),n(t)
1 0 · · · 0 0 · · · · · · 0

. . . ... ... · · · · · · ...
1 0 0 · · · · · · 0

−p̂σ(t),1(t) −p̂σ(t),2(t) · · · −p̂σ(t),n(t) −l̂σ(t),1(t) −l̂σ(t),2(t) · · · −l̂σ(t),n(t)
0 · · · · · · 0 1 0 · · · 0
... · · · · · · ... . . . ...
0 · · · · · · 0 1 0


;

(6.20)

then, in light of (6.18) and (6.19), the following holds

φ(t+ 1) = Āσ(t̂`)(t̂`)φ(t) + e1

([
θ̂σ(t̂`)(t)− θ̂σ(t̂`)(t̂`)

]>
φ(t) + eσ(t̂`)(t+ 1)

)
,

t ∈ [t̂`, t̂`+1), ` ∈ Z+. (6.21)

Step 2: Obtain a bound on ‖φ(t̂`+1)‖ in terms of ‖φ(t̂`)‖.
In (6.21) we have Āσ(t̂`)(t̂`) ∈ R

2n×2n to be a constant matrix with all eigenvalues equal
to zero; since N ≥ 2n, clearly

[
Āσ(t̂`)(t̂`)

]t̂`+1−t̂` =
[
Āσ(t̂`)(t̂`)

]N
= 0.
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So, solving (6.21) for φ(t̂`+1) yields

φ(t̂`+1) =
t̂`+1−1∑
j=t̂`

[
Āσ(t̂`)(t̂`)

]t̂`+1−j−1
[
e1

([
θ̂σ(t̂`)(j)− θ̂σ(t̂`)(t̂`)

]>
φ(j) + eσ(t̂`)(j + 1)

)]
.

(6.22)

It follows from the compactness of the Si’s that
∥∥∥∥[Āσ(t̂`)(t̂`)

]j∥∥∥∥ , j = 0, 1 . . . , N − 1, is
bounded above by a constant which we label c1. Using this fact together with Part (1) of
Proposition 6.1 which provides a bound on the difference between parameter estimates at
two different points in time, we obtain

‖φ(t̂`+1)‖ ≤ c1

t̂`+1−1∑
j=t̂`

(∥∥∥θ̂σ(t̂`)(j)− θ̂σ(t̂`)(t̂`)
∥∥∥ ‖φ(j)‖+ |eσ(t̂`)(j + 1)|

)

≤ c1

t̂`+1−1∑
j=t̂`

 j−1∑
q=t̂`,φ(q) 6=0

|eσ(t̂`)(q + 1)|
‖φ(q)‖

 ‖φ(j)‖+ |eσ(t̂`)(j + 1)|
 .

By definition of the prediction error, if φ(j) = 0 then

|ei(j + 1)| = |w(j)|,

and if φ(j) 6= 0, then

|ei(j + 1)| = |ei(j + 1)|
‖φ(j)‖ ‖φ(j)‖.

Incorporating this into the above equation yields

⇒ ‖φ(t̂`+1)‖ ≤ c1

t̂`+1−1∑
j=t̂`

 j∑
q=t̂`,φ(q)6=0

|eσ(t̂`)(q + 1)|
‖φ(q)‖

 ‖φ(j)‖+ |w(j)|


≤ c1

t̂`+1−1∑
j=t̂`

 t̂`+1−1∑
q=t̂`,φ(q)6=0

|eσ(t̂`)(q + 1)|
‖φ(q)‖

 ‖φ(j)‖+ |w(j)|


= c1

 t̂`+1−1∑
q=t̂`,φ(q)6=0

|eσ(t̂`)(q + 1)|
‖φ(q)‖

 t̂`+1−1∑
j=t̂`

‖φ(j)‖+ c1

t̂`+1−1∑
j=t̂`

|w(j)|
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≤ c1(t̂`+1 − t̂`)
[

max
j∈[t̂`,t̂`+1),φ(j)6=0

|eσ(t̂`)(j + 1)|
‖φ(j)‖

] t̂`+1−1∑
j=t̂`

‖φ(j)‖+

c1

t̂`+1−1∑
j=t̂`

|w(j)|. (6.23)

Since t̂`+1 − t̂` = N , it follows from Proposition 6.2 that there exists a constant c2 so that
the following holds:

t̂`+1−1∑
j=t̂`

‖φ(j)‖ ≤ c2‖φ(t̂`)‖+ c2

t̂`+1−2∑
j=t̂`

|w(j)|; (6.24)

so, substituting (6.24) into (6.23) and using the definition of the performance signal Jσ(t̂`)(·)
given in (6.14) it follows that there exists a constant c3 so that

‖φ(t̂`+1)‖ ≤ c1NJσ(t̂`)

c2‖φ(t̂`)‖+ c2

t̂`+1−2∑
j=t̂`

|w(j)|
+ c1

t̂`+1−1∑
j=t̂`

|w(j)|

≤ c3Jσ(t̂`)(t̂`)‖φ(t̂`)‖+ c3
(
1 + Jσ(t̂`)(t̂`)

) t̂`+1−1∑
j=t̂`

|w(j)|. (6.25)

Step 3: Apply Lemma 6.1 and Proposition 6.2 to obtain a bound on ‖φ(t̂`+2)‖
in terms of ‖φ(t̂`)‖.

For an arbitrary ` ∈ Z+, from Lemma 6.1 either

Jσ(t̂`)(t̂`) ≤ Ji∗(t̂`) (6.26)

or

Jσ(t̂`+1)(t̂`+1) ≤ Ji∗(t̂`+1). (6.27)

If (6.26) is true, then we can substitute this into (6.25) to obtain a bound on ‖φ(t̂`+1)‖ in
terms of Ji∗(t̂`), and then apply Proposition 6.2 to get a bound on ‖φ(t̂`+2)‖ in terms of
‖φ(t̂`+1)‖ and the exogenous inputs; it follows that there exists a constant c4 so that

‖φ(t̂`+2)‖ ≤ c3c4Ji∗(t̂`)‖φ(t̂`)‖+
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c3c4
(
1 + Ji∗(t̂`)

) t̂`+1−1∑
j=t̂`

|w(j)|+ c4

t̂`+2−1∑
j=t̂`+1

|w(j)|. (6.28)

On the other hand, if (6.27) is true, we can use (6.25) to get a bound on ‖φ(t̂`+2)‖ in terms
of Ji∗(t̂`+1), and then apply Proposition 6.2 to get a bound on ‖φ(t̂`+1)‖ in terms of ‖φ(t̂`)‖;
it follows that there exists a constant c5 so that

‖φ(t̂`+2)‖ ≤ c3c5Ji∗(t̂`+1)‖φ(t̂`)‖+ c3c5Ji∗(t̂`+1)
t̂`+1−1∑
j=t̂`

|w(j)|

+ c3
(
1 + Ji∗(t̂`+1)

) t̂`+2−1∑
j=t̂`+1

|w(j)|. (6.29)

If we define
α(t̂`) := max

{
Ji∗(t̂`), Ji∗(t̂`+1)

}
,

then there exist a constant c6 so that (6.28) and (6.29) can be combined to yield

‖φ(t̂`+2)‖ ≤ c6α(t̂`)‖φ(t̂`)‖+ c6
(
1 + α(t̂`)

) t̂`+2−1∑
j=t̂`

|w(j)|, ` ∈ Z+. (6.30)

Step 4: Analyze the first-order difference inequality (6.30).
First we change notation in (6.30) to facilitate analysis:

‖φ(t̂2j+2)‖ ≤ c6α(t̂2j)‖φ(t̂2j)‖+ c6
(
1 + α(t̂2j)

) t̂2j+2−1∑
q=t̂2j

|w(q)|, j ∈ Z+. (6.31)

Next, we will analyze (6.31) to obtain a bound on the closed-loop behavior. Define

λ1 := λ2N

max{1, c6}

and

ν :=
(
λ1

4N

)2

.

Let τ ≥ t0 be arbitrary. We now partition the timeline into two parts: one in which the
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noise is small versus φ and one where it is not. With ν defined above, we define

Sgood =
{
j ≥ τ : φ(j) 6= 0 and |w(j)|2

‖φ(j)‖2 < ν

}
,

Sbad =
{
j ≥ τ : φ(j) = 0 or |w(j)|2

‖φ(j)‖2 ≥ ν

}
;

clearly {j ∈ Z : j ≥ τ} = Sgood ∪ Sbad. We can clearly define a (possibly infinite) sequence
of intervals of the form [kl, kl+1) which satisfy:
(i) k0 = τ serves as the initial instant of the first interval;
(ii) [kl, kl+1) either belongs to Sgood or Sbad; and
(iii) if kl+1 6= ∞ and [kl, kl+1) belongs to Sgood then [kl+1, kl+2) belongs to Sbad and vice
versa.

Now we analyze the behavior during each interval.

Step 4.1: [kl, kl+1) lies in Sbad.
Let j ∈ [kl, kl+1) be arbitrary. In this case

|w(j)|2
‖φ(j)‖2 ≥ ν or ‖φ(j)‖ = 0;

in either case
‖φ(j)‖ ≤ 1√

ν︸︷︷︸
=:c7

|w(j)|.

Also, applying Proposition 6.2 for one step, there exists constant c8 so that

‖φ(j)‖ ≤ c8|w(j − 1)|.

Then for j ∈ [kl, kl+1), we have

‖φ(j)‖ ≤
{
c7|w(j)| j = kl
c8|w(j − 1)| j = kl + 1, kl + 2, . . . , kl+1.

(6.32)

Step 4.2: [kl, kl+1) lies in Sgood.
First suppose that kl+1 − kl ≤ 4N . From Proposition 6.2 it can be easily proven that
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there exists a constant c9 so that

‖φ(t)‖ ≤ c9λ
t−kl‖φ(kl)‖+ c9

t−1∑
j=kl

λt−j−1|w(j)|, t ∈ [kl, kl+1]. (6.33)

Now suppose that kl+1 − kl > 4N . This means, in particular, that there exist j1 < j2 so
that

kl ≤ t̂2j1 < t̂2j2 ≤ kl+1.

Let j ∈ [kl, kl+1) be arbitrary. To proceed, observe that ‖φ(j)‖ 6= 0 and

|w(j)|2
‖φ(j)‖2 < ν. (6.34)

It follows from Part (2) of Proposition 6.1 and the definition of α(·) that

j2−1∑
q=j1

α(t̂2q)2 ≤ N
τ+2j2N−1∑

p=τ+2j1N,φ(p) 6=0

|ei∗(p+ 1)|2
‖φ(p)‖2

≤ 2N‖θ̃i∗(t̂2j1)‖2 + 4N
t̂2j2−1∑

p=t̂2j1 ,φ(p)6=0

|w(p)|2
‖φ(p)‖2 , 0 ≤ j1 < j2; (6.35)

using the bound given in (6.34) which holds on [kl, kl+1), this becomes

j2−1∑
q=j1

α(t̂2q)2 ≤ 8N s̄2 + 8N2(j2 − j1)ν, for all j1, j2 ∈ Z+ s.t. kl ≤ t̂2j1 < t̂2j2 ≤ kl+1.

(6.36)

We want now to utilize the inequality of arithmetic and geometric means.
Claim 6.1. There exists a constant γ1 > 1 such that

j1−1∏
j=j2

α(t̂2j) ≤ γ1λ
j2−j1
1 ,

for j1, j2 ∈ Z+ s.t. kl ≤ t̂2j1 < t̂2j2 ≤ kl+1. (6.37)

Proof of Claim 6.1. Let j1, j2 ∈ Z+ be arbitrary such that kl ≤ t̂2j1 < t̂2j2 ≤ kl+1. By the
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fact that α(·) ≥ 0, we obtain

j2−1∏
j=j1

α(t̂2j) ≤
 1
j2 − j1

j2−1∑
j=j1

α(t̂2j)2


j2−j1

2

. (6.38)

Substituting (6.36) into the above yields

j2−1∏
j=j1

α(t̂2j) ≤
[

8N s̄2

j2 − j1
+ 8N2ν

] j2−j1
2

. (6.39)

So it is enough to prove that there exists a constant γ1 so that
[

8N s̄2

k
+ 8N2ν

] 1
2

︸ ︷︷ ︸
=:g(k)


k

≤ γ1λ
k
1, k > 0.

We can easily show that with k̄ := 16N ×
⌈(

s̄
λ1

)2
⌉
, we have

8N s̄2

k̄
≤ λ2

1
2 ,

which means that by the choice of ν, we see that

g(k)k ≤ λk1, k ≥ k̄.

So if we define γ1 := max
{

1,
(
g(1)
λ1

)k̄}
, we conclude the proof of the claim. �

Using the bound in (6.37) and the definition of λ1 we obtain

j2−1∏
j=j1

[c6α(t̂2j)] ≤ γ1λ
j2−j1
1 cj2−j16 ,

≤ γ1λ
2N(j2−j1), for j1, j2 ∈ Z+ s.t. kl ≤ t̂2j1 < t̂2j2 ≤ kl+1. (6.40)

Now we can proceed to solve (6.31). Before proceeding, we use (6.36) to have an upper
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bound on α(·):

α(t̂2j) ≤
√

8N(s̄2 +Nν) =: c10, for all j ∈ Z+ s.t. kl ≤ t̂2j < t̂2(j+1) ≤ kl+1.

The first step is to bound the second occurrence of α(t̂2j) in (6.31), yielding

‖φ(t̂2j+2)‖ ≤ c6α(t̂2j)‖φ(t̂2j)‖+ c6(1 + c10)︸ ︷︷ ︸
=:c11

t̂2j+2−1∑
q=t̂2j

|w(q)|

︸ ︷︷ ︸
=:w̄(j)

,

for all j ∈ Z+ s.t. kl ≤ t̂2j < t̂2j+2 ≤ kl+1. (6.41)

If we solve this iteratively and use the bounds in (6.40), we see that

‖φ(t̂2j2)‖ ≤ γ1λ
2N(j2−j1)‖φ(t̂2j1)‖+

j2−1∑
q=j1

γ1c11
(
λ2N

)j2−1−q
w̄(q),

for all j1, j2 ∈ Z+ s.t. kl ≤ t̂2j1 < t̂2j2 ≤ kl+1. (6.42)

We can now use Proposition 6.2 for no more than 2N steps at a time:

• to provide a bound on ‖φ(t)‖ between consecutive t̂2j’s;

• to provide a bound on ‖φ(t)‖ on the beginning part of the interval [kl, kl+1) (until we
get to the first admissible t̂2j);

• to provide a bound on ‖φ(t)‖ on the last part of the interval [kl, kl+1) (after the last
admissible t̂2j).

We conclude that there exist a constant γ2 ≥ c9 so that

‖φ(t)‖ ≤ γ2λ
t−kl‖φ(kl)‖+ γ2

t−1∑
j=kl

λt−j−1|w(j)|, t ∈ [kl, kl+1]. (6.43)

Now we combine Step 4.1 and Step 4.2 into a general bound on φ. Define

γ := max {γ2, c8, c8γ2} .
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Claim 6.2. The following bound holds:

‖φ(t)‖ ≤ γλt−τ‖φ(τ)‖+
t−1∑
j=τ

γλt−j−1|w(j)|, t ≥ τ. (6.44)

Proof of the Claim 6.2. If [k0, k1) = [τ, k1) ⊂ Sgood, then (6.44) is true for t ∈ [k0, k1] by
(6.43). If [k0, k1) ⊂ Sbad, then from (6.32) we obtain

‖φ(j)‖ ≤
{
‖φ(k0)‖ = ‖φ(τ)‖ j = k0 = τ
c8|w(j − 1)| j = k0 + 1, k0 + 2, . . . , k1.

which means that (6.44) holds on [k0, k1] for this case as well.
We now use induction: suppose that (6.44) is true for t ∈ [k0, kl]; we need to prove it

holds for t ∈ (kl, kl+1] as well. If k ∈ [kl, kl+1) ⊂ Sbad, then from (6.32) we see that

‖φ(j)‖ ≤ c8|w(j − 1)|, j = kl + 1, kl + 2, . . . , kl+1,

which means (6.44) holds on (kl, kl+1]. On the other hand, if [kl, kl+1) ⊂ Sgood, then
kl − 1 ∈ Sbad; from (6.32) we have that

‖φ(kl)‖ ≤ c8|w(kl − 1)|.

Using (6.43) to analyze the behavior on [kl, kl+1], we have

‖φ(t)‖ ≤ γ2λ
t−kl [c8|w(kl − 1)|] +

t−1∑
j=kl

γ2λ
t−j−1|w(j)|,

≤ γ
t−1∑

j=kl−1
λt−j−1|w(j)|, t ∈ [kl, kl+1], (6.45)

which implies that (6.44) holds. �

As τ ≥ t0 is arbitrary, this concludes the proof. �

6.4 Robustness Results

Here we show that we can leverage the fact that a convolution bound holds in the case of a
fixed plant parameter to prove that a convolution bound also holds if we allow time-variation
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and/or unmodelled dynamics. To proceed, we consider a time-varying version of the plant
(6.1) along with the term d∆(t) ∈ R added to represent the unmodelled dynamics:

y(t+ 1) = θ∗(t)>φ(t) + w(t) + d∆(t), t ∈ Z; (6.46)

as discussed in Chapter 2, we assume that d∆ satisfies

m(t+ 1) = βm(t) + β‖φ(t)‖, m(t0) = m0 (6.47a)
|d∆(t)| ≤ µm(t) + µ‖φ(t)‖, t ≥ t0. (6.47b)

Theorem 6.2. Suppose that the adaptive controller (6.3), (6.13), (6.14) and (6.15)
is applied to the time-varying plant (6.46) with d∆ satisfying (6.47). Then for every
β ∈ (0, 1), N ≥ 2n, and c̄0 ≥ 0, there exist ε̄ > 0, µ > 0, λ̃ ∈ (β, 1) and γ̃ > 0 such
that for every t0 ∈ Z, φ(t0) ∈ R2n, σ0 ∈ {1, 2}, θ∗ ∈ S (S∗, c̄0, ε̄), θ̂i(t0) ∈ Si (i = 1, 2),
and w ∈ `∞, the following holds:∥∥∥∥∥

[
φ(t)
m(t)

]∥∥∥∥∥ ≤ γ̃λ̃t−t0
∥∥∥∥∥
[
φ(t0)
m0

]∥∥∥∥∥+
t−1∑
j=t0

γ̃λ̃t−j−1|w(j)|, t ≥ t0.

Proof of Theorem 6.2. We observe here that the plant (6.46) and the controller (6.3),
(6.13), (6.14), (6.15) fit into the paradigm of Chapter 2: we set

ϑ(t) = φ(t),
f(ϑ(·)) = φ(·)

z(t) = ∅,

θ̂(t) =
[
θ̂1(t)
θ̂2(t)

]
,

r(t) = 0,
Ω = S1 × S2.

In Theorem 6.1 it is proven the controller (6.3), (6.13), (6.14), (6.15) provides a convolution
bound for (6.1). Then, by Theorems 2.2, 2.2 and 2.3 we immediately see that the same is
true in the presence of time-variation and/or unmodelled dynamics. �
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6.5 A Simulation Example

We will consider the second order plant

y(t+ 1) = a1(t)y(t) + a2(t)y(t− 1) + b1(t)u(t) + b2(t)u(t− 1) + w(t) + d∆(t)

with θ∗ belonging to S1 ∪ S2:

S1 :=



a1
a2
b1
b2

 ∈ R4 : a1 ∈ [0, 2], a2 ∈ [1, 3], b1 ∈ [0, 1], b2 ∈ [−5,−2]

 ,

S2 :=



a1
a2
b1
b2

 ∈ R4 : a1 ∈ [0, 2], a2 ∈ [1, 3], b1 ∈ [−1, 0], b2 ∈ [2, 5]

 ;

observe that each of S1 and S2 is convex. Every admissible plant is unstable and non-
minimum phase, which makes this a challenging plant to control; it has two complex
unstable poles and a zero that lie in [2,∞). Note also that the convex hull of S1 ∪ S2
includes the case when b1 = b2 = 0, that corresponds to a non-stabilizable plant, violating
the coprimeness assumption; hence, the proposed approach is applied.

We want to illustrate the approach and its robustness; to this end, we will examine the
case of the proposed controller when it is applied to the time-varying plant with unmodelled
dynamics entering the system, a zero initial condition, and a non-zero noise. Specifically,
we set the time-varying parameters to

a1(t) = 1 + sin
(

1
1000t

)
,

a2(t) = 2 + cos
(

1
1000t

)
,

b1(t) =

 −0.5− 0.5 sin
(

1
200t

)
1500 ≤ t < 8000

0.5 + 0.5 sin
(

1
200t

)
otherwise,

b2(t) =

 3.5− 1.5 sin
(

1
200t

)
1500 ≤ t < 8000

−3.5 + 1.5 sin
(

1
200t

)
otherwise.

We apply the proposed switching controller consisting of the estimator (6.3), the control law
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(6.13), the performance signal (6.14) and the switching rule (6.15); we choose N = 2n = 4.
Here we also set y(0) = y(−1) = u(0) = u(−1) = 0 and the noise to

w(t) = 0.01 sin(5t).

For the unmodelled dynamics, we choose a model of

m(t+ 1) = 0.75m(t) + 0.75‖φ(t)‖, m(0) = 0,

d∆(t) =
{

0 t < 5000
0.025m(t) + 0.025‖φ(t)‖ otherwise.

Initial parameter estimates θ̂i(0) are set to the midpoints of each respective interval, and
set σ0 = 2.

The result for this case is plotted in Figure 6.1; we see that the controller does a
reasonable job, even though the switching often chooses the wrong model. Larger transients
may ensue, but on average the adaptive controller provides good performance. Furthermore,
the estimator does a fairly good job of tracking the time-varying parameters. This illustrates
that the approach handles time-variation and occasional jumps, as well as unmodelled
dynamics.

Remark 6.4. We can also compare the performance here with that which arises when we
use the classical estimator (3.4) as part of the adaptive controller; we often end up with
the same sort of result as in Example 2 of the simulation section of Chapter 4, namely a
degradation in performance.

6.6 Conclusion

In this chapter, we have shown that for possibly non-minimum phase plants, we are able to
stabilize and obtain linear-like closed behavior subject to a standard coprimeness assumption
on a compact, but possibly non-convex, set of plant uncertainty; that being said, we required
the set of admissible plant parameters to lie in the union of two convex sets. Two parameter
estimators along with a simple switching rule are used to choose which parameters are used
in the pole-placement based control law. While we are able to extend that approach to
more complex compact sets, we have decided to defer this to the next chapter, where we
consider a more general situation which also incorporates a tracking requirement.
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Figure 6.1: The upper two plots show system output and control input, respectively. The next four
plots show the parameter estimates (solid) and actual plant parameters (dashed). The bottom
plot shows the switching signal σ(t) (solid) and the correct index (dashed).
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Chapter 7

Multi-Model Adaptive Control and
Tracking

7.1 Introduction

In Chapter 6, the convexity assumption is weakened slightly (without completely removing
it) and stability is proven, but not tracking. In this chapter, we consider the problem of
stabilization and tracking the sum of a finite number of sinusoids of known frequencies in
the presence of plant uncertainty. We assume knowledge of an upper bound on the plant
order, and for each admissible order we assume knowledge of a compact set in which the
plant parameters lie; although we impose some natural technical assumptions on the sets,
we do not assume that they are convex. To facilitate the tracking requirement, rather than
directly estimating the plant parameters, we instead estimate the parameters of a suitably
defined auxiliary plant model. We use the compactness of the parameter uncertainty set
for each admissible order to prove that it is contained in a finite union of compact and
convex sets; we construct a parameter estimator for each of these compact and convex sets,
based on the original projection algorithm. A switching algorithm is used to determine
which estimates are used in the controller at a given point in time; unlike many switching
approaches in the literature, e.g. [41], [26] and [7], our approach does not assume that the
switching stops; actually, the switching algorithms proposed in the previous chapters have
this property as well. We prove that the desired linear-like convolution bounds are achieved,
and if the reference and disturbance signals belong to the aforementioned class of sinusoids
then the tracking error goes exponentially to zero. A preliminary version of this chapter
appears in [69], and deals only with the problem of step tracking with a known plant order;
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a complete version has been submitted [71].
We first discuss the unknown plant, the auxiliary plant to be used for estimation, and

the uncertainty sets. Then we introduce the multi-model adaptive controller, followed by
the main result, which shows that the closed-loop behavior satisfies the desired convolution
bound, and asymptotic tracking for certain classes of reference and noise signals is provided.

7.2 The Setup

7.2.1 The Plant

As in the previous chapter, here we consider the nth-order linear time-invariant discrete-time
plant

y(t+ 1) =
n∑
j=1

ajy(t− j + 1) +
n∑
j=1

bju(t− j + 1) + w(t), t ∈ Z, (7.1)

with y(t), u(t), w(t) ∈ R denoting the measured output, the control input, and the distur-
bance/noise input, respectively. Since our goal is more demanding here, we will proceed
in a different way than in Chapter 6. A plant of the form (7.1) can be expressed in the
(two-sided) z-transform form as

A(z−1)Y (z) = B(z−1)U(z) + z−1W (z), (7.2)

with the corresponding polynomials defined as

A(z−1) := 1− a1z
−1 − a2z

−2 · · · − anz−n,

and
B(z−1) := b1z

−1 + b2z
−2 · · ·+ bnz

−n,

with Y (z), U(z) and W (z) denoting the z-transform of y(t), u(t) and w(t), respectively.
The plant can be represented by the strictly proper transfer function B(z−1)

A(z−1) . Note that
Remark 6.1 of Chapter 6 applies here too. We can represent the plant model by the vector
of parameters

θ =
[
a1 a2 · · · an b1 b2 · · · bn

]>
∈ R2n.

The objective is to control the system when θ is unknown but lies in a set of admissible
parameters. Since our goal is to provide uniform bounds, we shall require that this set be
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compact; we will not insist on convexity. Since we will be using a pole-placement approach,
we will require that znA(z−1) and znB(z−1) be coprime. Indeed, it turns out that our
approach works if the plant order n is not known exactly, but rather we have an upper
bound n̄ on n. To this end, for each n ∈ {1, 2, . . . , n̄} we let

Θn ⊂ R2n

denote the set of admissible parameters, and impose

Assumption 7.1. For every n ∈ {1, 2, . . . , n̄}:

(1) the set Θn is compact1and

(2) for every θ ∈ Θn, the corresponding polynomials znA(z−1) and znB(z−1) are
coprime.

7.2.2 Control Objective

The objective is to prove an exponential form of stability, a bounded gain on the noise and
on a general reference signal, and tracking (and disturbance rejection) of the sum of a finite
number of sinusoids of known frequencies. To this end, consider a gth-order polynomial of
the form

Q(z−1) = 1− q1z
−1 − q2z

−2 · · · − qgz−g (7.3)

with all of its roots belonging to the unit circle and with no multiplicities. Let y∗(t) ∈ R
be the reference signal; the set of reference signals y∗ to be tracked, and/or disturbance
signals w to be rejected, includes those satisfying

Q(z−1)Y ∗(z) = 0, and/or Q(z−1)W (z) = 0, (7.4)

with Y ∗(z) and W (z) being the z-transform of y∗(t) and w(t), respectively.

Remark 7.1. If we wish to consider set-point tracking (and/or constant disturbance
rejection), we should set

Q(z−1) = 1− z−1.

1It could very well be that Θn is empty for some n.
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If we wish to track (and/or reject) a sinusoid of the form A0 cos(ω0t), we should set

Q(z−1) = 1− 2 cos(ω0)z−1 + z−2.

More generally, if we want to track a reference signal (and/or reject a disturbance signal)
of the form

A0 +
ng∑
p=1

Ap sin(ωpt+ φp)

with ng distinct frequencies ω1, ω2, . . . , ωng , then we should set

Q(z−1) = (1− ej0z−1)×
ng∏
p=1

(
(1− ejωpz−1)(1− e−jωpz−1)

)

= (1− z−1)×
ng∏
p=1

(
1− 2 cos(ωp)z−1 + z−2

)
.

As we know from the classical continuous-time control, if the plant has a zero at the
origin then we cannot design an LTI stability controller which ensures the plant to track
steps. To this end, we impose the following natural assumption:

Assumption 7.2. For each n ∈ {1, 2, . . . , n̄}, we assume that for every θ ∈ Θn, the
corresponding polynomial znB(z−1) and the polynomial zgQ(z−1) are coprime.

Remark 7.2. Observe that the plant may be non-minimum phase.

7.2.3 The Auxiliary Plant

If n is known and the set of admissible parameters Θn is convex, then the classical approach
is to carry out system identification of the plant in the usual way, e.g. [21], and design the
pole-placement based control law in such a way as to force an “internal model of Q(z−1)”
into the controller; this has been shown to be quite effective in classical results which prove
asymptotic stability, e.g. see [21], as well as in Miller and Shahab [46] where exponential
stability and step tracking is proven. If, however, the set of admissible parameters is not
convex, which can be the case here, the standard trick is to replace it with its closed convex
hull. Unfortunately, often that set will contain models that violate coprimeness, so we need
another approach. The compactness of the set of admissible parameters can be utilized to
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easily prove that it is contained in a finite union of convex sets with desirable properties;
we can then use an estimator for each convex set and from time to time switch between
estimates for use in the control law. We have analyzed this approach, and while we have
been able to prove an exponential type of stability, we have been unable to achieve our
tracking objective. We will deal with this difficulty by doing system identification on a
related auxiliary plant model rather than the original plant model.

Remark 7.3. In many of the results on “switching adaptive control” in the literature,
which typically considers the noise-free case, to prove asymptotic tracking they generally
rely on the fact that the switching mechanism stops at some point, e.g. see [41], [26] and [7].
With unknown noise entering the system, as it is in our case, it is generally not possible to
conclude that the switching eventually stops.

With y∗, w ∈ `∞, let us define the tracking error ε by

ε(t) := y(t)− y∗(t); (7.5)

also define an auxiliary control input v(t) ∈ R and its z-transform counterpart by

V (z) := Q(z−1)U(z) (7.6a)
⇔ v(t) = u(t)− q1u(t− 1)− · · · − qgu(t− g). (7.6b)

If we multiply both sides of the z-transformed counterpart of the plant model (7.2) by
Q(z−1) and use the definition in (7.6), then we end up with

Q(z−1)A(z−1)Y (z) = B(z−1)V (z) + z−1Q(z−1)W (z);

denoting the z-transform of ε(t) by E(z), if we subtract Q(z−1)A(z−1)Y ∗(z) from both
sides of the above equation then we obtain the auxiliary plant model

Q(z−1)A(z−1)︸ ︷︷ ︸
=:Ā(z−1)

E(z) = B(z−1)V (z) + z−1 Q(z−1)
[
W (z)− zA(z−1)Y ∗(z)

]
︸ ︷︷ ︸

=:W̄ (z)

, (7.7)

or in other words

Ā(z−1)E(z) = B(z−1)V (z) + z−1W̄ (z). (7.8)
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We examine the polynomial Ā(z−1) carefully; we have

Ā(z−1) =: 1− ā1z
−1 − ā2z

−2 · · · − ān+gz
−(n+g)

= Q(z−1)A(z−1)

=
1−

g∑
j=1

qjz
−j

1−
n∑
j=1

ajz
−j


which can be written as

Ā(z−1) = 1−
[
z−1 z−2 · · · z−(n+g)

]



q1 1
q2 −q1 1
... −q2 −q1

. . .
... ... −q2

. . . 1
... ... ... . . . −q1

qg
... ... −q2

−qg
... ...
−qg

...
. . . ...
−qg


︸ ︷︷ ︸

=:V(Q,n)



1
a1
a2
...
...
an


. (7.9)

We see that the parameters of Ā(z−1) are determined in a simple way from those of A(z−1).
Indeed, for each pair of n and Q(z−1), it is easy to obtain a matrix V(Q, n) ∈ R(n+g)×(n+1)

defined in (7.9), from which we can form a matrix V̄(Q, n) ∈ R(2n+g)×(2n+1) defined by

V̄(Q, n) :=
[
V(Q, n)

In

]
(7.10)
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so that

V̄(Q, n)



1
a1
...
an
b1
...
bn


=



ā1
ā2
...

ān+g
b1
...
bn


=: θ∗.

So we observe that the set of admissible parameters of (7.8) is given by

Θ̃n :=
{
V̄(Q, n)

[
1
θ

]
: θ ∈ Θn

}
⊂ R2n+g. (7.11)

Using this notation and to facilitate analysis, the auxiliary plant (7.8) can now be put into
regressor form:

ε(t+ 1) = ψ(t)>θ∗ + w̄(t), (7.12)

with w̄(t) as the inverse z-transform of W̄ (z), ψ(t) ∈ R2n+g defined as

ψ(t) :=



ε(t)
ε(t− 1)

...
ε(t− n− g + 1)

v(t)
v(t− 1)

...
v(t− n+ 1)


and θ∗ ∈ Θ̃n. As in the case of the original plant (7.1), the order is not known, though it is
known that n ∈ {1, 2, . . . , n̄}; hence, while the dimension of ψ(t) clearly depends on n, to
enhance readability this will not be made explicit.

Remark 7.4. The new plant (7.12) is clearly overmodelled by g variables, which we consider
to be a small price to pay to achieve our tracking objective.
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7.2.4 Uncertainty Sets

Since for every n ∈ {1, 2, . . . , n̄}, Θn is compact, it follows that Θ̃n is as well; also, because
of Assumptions 7.1 and 7.2 we see that for every θ̄ ∈ Θ̃n, the corresponding polynomials
zn+gĀ(z−1) and znB(z−1) are coprime. Of course, if we were to replace Θ̃n by its convex
hull, then those properties may fail to hold. This brings us to the following result. We show
that for any n ∈ {1, 2, . . . , n̄}, Θ̃n can be approximated by a finite number of convex sets
with desired properties.

Proposition 7.1. For every n ∈ {1, 2, . . . , n̄} and µ > 0, there exist a finite number
of convex, compact sets Θi

n ⊂ R2n+g (i = 1, 2, . . . ,mn) that satisfy

(i) Θ̃n ⊂
mn⋃
i=1

Θi
n,

(ii) for every θ∗ ∈ ⋃mni=1 Θi
n there exists a θ̄∗ ∈ Θ̃n that satisfy ‖θ̄∗ − θ∗‖ ≤ µ.

Furthermore, if µ > 0 is sufficiently small, then we can choose the Θi
n’s to have

additional property as well:

(iii) for every θ∗ ∈ ⋃mni=1 Θi
n, the corresponding pair of polynomials zn+gĀ(z−1) and

znB(z−1) are coprime.

Proof of Proposition 7.1. Let n ∈ {1, 2, . . . , n̄} be arbitrary. Fix µ > 0. For every
x ∈ Θ̃n, let Ox ⊂ R2n+g denote the open ball of radius µ centered at x. Then{

Ox : x ∈ Θ̃n

}
is an open cover of Θ̃n, so by the Heine-Borel Theorem [66] there exist x1, x2, . . . , xmn so
that

Θ̃n ⊂
mn⋃
i=1
Oxi .

If we set Θi
n := closure of Oxi , then (i) and (ii) of the required properties hold.

If Ā(z−1) and B(z−1) are the corresponding polynomials associated with x ∈ R2n+g,
then let Syl(x) ∈ R(2n+g)×(2n+g) denote the Sylvester Matrix associated with the pair of
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polynomials (see [21, p. 482]). By the coprimeness requirement, we know that

min
θ̄∗∈Θ̃n

∣∣∣det
(
Syl(θ̄∗)

)∣∣∣ > 0.

As det
(
Syl(x)

)
is continuous in x, if a small enough µ > 0 is used in the procedure (of the

previous paragraph) to construct the Θi
n’s, we conclude that

min
θ∗∈Θi

n

∣∣∣det
(
Syl(θ∗)

)∣∣∣ > 0, i = 1, 2, . . . ,mn. �

In general, finding a set of mn Θi
n’s which satisfy the desired properties of Proposition

7.1 for which mn is small and Θi
n has “nice2 structure” is not easy. However, this is not

the focus of this thesis. This covering problem is an open research problem—e.g. see
[1], [15] and [33]. So at this point we assume that this process has been done for each
n ∈ {1, 2, . . . , n̄}; we will show some examples on how to do this in Section 7.6.

To this end, the idea is to use a parameter estimator for each compact and convex
set, and at each point in time we choose which one to use in constructing the control
law. At this point, for every n ∈ {1, 2, . . . , n̄} we have at hand mn compact and convex
parameter uncertainty sets (they can be disjoint or overlapping) that correspond to models
of nth-order plants; so for all possible plant orders n ∈ {1, 2, . . . , n̄}, we have compact and
convex uncertainty sets:

Θ1
1,Θ2

1, . . . ,Θm1
1 ,Θ1

2,Θ2
2, . . . ,Θm2

2 , . . . . . . ,Θ1
n̄,Θ2

n̄ . . . ,Θmn̄
n̄ ,

yielding a total of
m := m1 +m2 + · · ·+mn̄

sets. For ease of notation, we re-label these sets as

Si ⊂ R2ni+g, i = 1, 2, . . . m;

here ni ∈ {1, 2, . . . , n̄} represents the plant order of the associated model.
Now define the index set

I∗ := {1, 2, . . . ,m}.
2Nice in the sense that it is computationally easy to project onto it.
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Figure 7.1: The Block diagram of the closed-loop system; enclosed inside the dashed boxes are
the multiple estimators/controllers (blue), and the switching mechanism (red).

Similar to the previous chapters, for each θ∗ ∈ Si, i = 1, 2, . . . ,m, we define

i∗(θ∗) = min {i ∈ I∗ : θ∗ ∈ Si} ;

when there is no ambiguity, we will drop the argument and simply write i∗. Before
proceeding, define

s̄ := max
i∈I∗
‖Si‖.

7.3 The Multi-Model Adaptive Controller

In this section we present the proposed adaptive controller; we discuss parameter multi-
estimators, the associated switching control law, and the switching algorithm. The proposed
controller is illustrated in the block diagram of the closed-loop system given in Figure 7.1.
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7.3.1 Parameter Estimation

First, for each i ∈ I∗, the corresponding regressor vector is defined by ψi(t) ∈ R2ni+g:

ψi(t) :=



ε(t)
ε(t− 1)

...
ε(t− ni − g + 1)

v(t)
v(t− 1)

...
v(t− ni + 1)


.

So we know that the auxiliary plant (7.12) can be rewritten as

ε(t+ 1) = ψi∗(t)>θ∗ + w̄(t).

Given an estimate θ̂i∗(t) at time t, we can now define the prediction error associated with
this model by

ei∗(t+ 1) := ε(t+ 1)− ψi∗(t)>θ̂i∗(t). (7.13)

Of course, we do not know the value of i∗ but we define a prediction error for the ith model
in the natural way. Here we apply the same projection-algorithm based estimator (3.9)
discussed in Chapter 3; to make our proof work we need to define the denominator in the
estimation update law carefully. To proceed, we make the following observations:

1. We define the longest data vector by ψ̄(t) ∈ R2n̄+g:

ψ̄(t) :=



ε(t)
ε(t− 1)

...
ε(t− n̄− g + 1)

v(t)
v(t− 1)

...
v(t− n̄+ 1)


; (7.14)
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observe that ‖ψi(t)‖ ≤ ‖ψ̄(t)‖ for all i.

2. By examining (7.13), we see that

ei∗(t+ 1) = ψi∗(t)>
[
θ∗ − θ̂i∗(t)

]
+ w̄(t), (7.15)

which means that |ei∗(t+ 1)| ≤ 2s̄‖ψi∗(t)‖+ |w̄(t)|. So if |ei∗(t+ 1)| > 2s̄‖ψi∗(t)‖, then
the disturbance may be overwhelming the data, so we turn off the estimator.

To this end, define

ei(t+ 1) := ε(t+ 1)− ψi(t)>θ̂i(t), i ∈ I∗, (7.16)

and with δ ∈ (0,∞], we define ρi : Z 7→ {0, 1} by

ρi(t) :=
{

1 if |ei(t+ 1)| < (2s̄ + δ)‖ψ̄(t)‖
0 otherwise, (7.17)

which is used to determine when to turn off the algorithm. This leads to our proposed
estimator: the estimator i updates are computed as follows:

θ̌i(t+ 1) = θ̂i(t) + ρi(t)
ψi(t)
‖ψ̄(t)‖2

ei(t+ 1) (7.18a)

θ̂i(t+ 1) = Proj
Si

{
θ̌i(t+ 1)

}
. (7.18b)

Define the (correct) parameter estimation error θ̃i∗(t) := θ̂i∗(t) − θ∗. The following
result lists properties of the estimation algorithm (7.18). These properties are direct result
of applying Proposition 3.1 and 3.2 of Chapter 3, with the choices of φ(·) = ψi(·) and
φm(·) = ψ̄(·); note that the difference between the two vectors arises when the order is
unknown, in which case ψi(t) and ψ̄(t) may differ for some i.
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Proposition 7.2. For every n ∈ {1, 2, . . . , n̄} and θ∗ ∈ Θ̃n, t0 ∈ Z, t2 > t1 ≥ t0,
ψ̄(t0) ∈ R2n̄+g, θ̂i(t0) ∈ Si (i ∈ I∗) and w, y∗ ∈ `∞, when the estimation algorithm in
(7.18) is applied to the corresponding auxiliary plant (7.12), the following holds:

1. for every estimator i = 1, 2, . . . ,m,

‖θ̂i(t2)− θ̂i(t1)‖ ≤
t2−1∑
j=t1

ρi(j)
|ei(j + 1)|
‖ψ̄(j)‖

. (7.19)

2. for the correct estimator i∗,

‖θ̃i∗(t2)‖2 ≤ ‖θ̃i∗(t1)‖2 +
t2−1∑
j=t1

ρi∗(j)
[
−1

2
ei∗(j + 1)2

‖ψ̄(j)‖2
+ 2 w̄(j)2

‖ψ̄(j)‖2

]
. (7.20)

7.3.2 The Switching Control Law

For each i, the parameter estimate θ̂i(t) is partitioned naturally as

θ̂i(t) =:



ˆ̄ai,1(t)
ˆ̄ai,2(t)

...
ˆ̄ai,ni+g(t)
b̂i,1(t)
b̂i,2(t)

...
b̂i,ni(t)


;

associated with these estimates are the polynomials

ˆ̄Ai(t, z−1) = 1− ˆ̄ai,1(t)z−1 − ˆ̄ai,2(t)z−2 · · · − ˆ̄ai,ni+g(t)z−(ni+g),

B̂i(t, z−1) = b̂i,1(t)z−1 + b̂i,2(t)z−2 · · ·+ b̂i,ni(t)z−ni .

Next we design a (ni + g)th-order strictly proper controller; we choose the following polyno-
mials

L̂i(t, z−1) = 1 + l̂i,1(t)z−1 + l̂i,2(t)z−2 + · · ·+ l̂i,ni(t)z−ni ,
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P̂i(t, z−1) = p̂i,1(t)z−1 + p̂i,2(t)z−2 + · · ·+ p̂i,ni+g(t)z−(ni+g)

so as to place all closed-loop poles at z = 0:

ˆ̄Ai(t, z−1)L̂i(t, z−1) + B̂i(t, z−1)P̂i(t, z−1) = 1. (7.21)

Since zni+g ˆ̄Ai(t, z−1) and zniB̂i(t, z−1) are coprime by design, we know that there exist
unique L̂i(t, z−1) and P̂i(t, z−1) which satisfy this equation; this entails solving a linear
equation—see Appendix A. It is also easy to prove that the coefficients of L̂i(t, z−1) and
P̂i(t, z−1) are analytic functions of θ̂i(t) ∈ Si. For a suitable choice of i ∈ I∗ at time t, we
define the control input by

L̂i(t− 1, z−1)V (z) = −P̂i(t− 1, z−1)E(z). (7.22)

This can be written in terms of the data vector ψi(t): to this end, we define the control
gains K̂i(t) ∈ R2ni+g by

K̂i(t) :=
[
−p̂i,1(t) −p̂i,2(t) · · · −p̂i,ni+g(t) −l̂i,1(t) −l̂i,2(t) · · · −l̂i,ni(t)

]
(7.23)

so that (7.22) becomes
v(t) = K̂i(t− 1)ψi(t− 1).

We will use a switching signal σ : Z→ I∗ to denote the index i: σ(t) denotes the index of
the controller to use at time t.

In the previous chapter, we considered the problem of closed-loop stability (but not
tracking) in the case of switching between two estimators of the same dimension. Unfortu-
nately, the approach does not extend in a simple way to the case of m > 2 estimators, so we
will need a different algorithm. However, our closed-loop system behavior will still, in large
part, be determined by a time-varying matrix Aσ(t)(t) ∈ R2n̄+g (see (7.39)); at all times this
matrix will be deadbeat, i.e. all of its eigenvalues will be at zero. However, its product

Aσ(t)(t)×Aσ(t−1)(t− 1)× · · · × Aσ(t0)(t0), t ≥ t0

will not usually be deadbeat. A natural solution to this problem is to update the estimators
every 2n̄+ g steps; the problem with this idea is that we end up with no information about
ei(t+ 1) between the updates, so the closed-loop system is not amenable to analysis. So our
solution procedure will need to be different: we update σ(t) only every N ≥ 2n̄+ g steps;
however, we keep the estimators running and the control gains updating; the aforementioned
product of matrices is still not deadbeat, but it is close to being so, in a sense which will be
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apparent from the proof3. To this end, we define a sequence of switching times as follows:
we initialize t̂0 := t0 and then define

t̂` := t̂0 + `N, ` ∈ N.

So the switching signal is piecewise constant of the form

σ(t) = σ(t̂`), t ∈ [t̂`, t̂`+1), ` ∈ Z+; (7.24)

the algorithm to compute σ(t̂`) will be introduced shortly. We propose the choice of the
control law

v(t) = K̂σ(t−1)(t− 1)ψσ(t−1)(t− 1), t > t0, (7.25)

which generates the auxiliary control input; this is combined with (7.6) to yield the plant
control input

u(t) = v(t) +
g∑
j=1

qju(t− j), t > t0. (7.26)

What remains to be defined is the choice of the switching signal σ(t̂`), which we will do in
the next subsection.

7.3.3 The Switching Algorithm

With N ∈ N, define the set of switching times by

TN :=
{
t̂` ≥ t̂0 : t̂` = t̂0 + `N, ` ∈ Z+

}
. (7.27)

To proceed, for each i ∈ I∗ we define a performance signal Ji : TN → R
+ by

Ji(t̂`) :=
t̂`+1−1∑
j=t̂`

ρi(j)
|ei(j + 1)|
‖ψ̄(j)‖

, ` ∈ Z+; (7.28)

this quantity is an upper bound on the amount of change in θ̂i(t) on the interval [t̂`, t̂`+1).
We may expect the estimator with the least amount of update to be the best one, which

3This is arguably a simplified version of the approach adopted in the previous chapter.
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would lead to a switching signal of the form

σ(t̂`+1) = argmin
i∈I∗

Ji(t̂`).

Although this rule works in every simulation that we have tried, a proof remains elusive; a
potential problem is that the switching signal could oscillate between two bad choices, and
never (or rarely) choose a “correct” one. Instead, we propose a different approach. At each
switching time t̂` we have an admissible set I(t̂`): we initialize I(t̂0) = I∗, and we obtain
I(t̂`+1) from I(t̂`) by removing all j ∈ I(t̂`) satisfying

Jσ(t̂`)(t̂`) ≤ Jj(t̂`),

i.e. we keep all models in the admissible index set for which the performance signal is better
(i.e. smaller) than the one we are currently using; clearly j = σ(t̂`) satisfies this bound, but
more j’s may as well; if this results in I(t̂`+1) being empty, then we reset I(t̂`+1) to be I∗.
This Switching Algorithm is summarized as follows: with σ(t̂0) = σ0 and I(t̂0) = I∗:

Î(t̂`) =
{
i ∈ I∗ : Ji(t̂`) < Jσ(t̂`)(t̂`)

}
, (7.29a)

I(t̂`+1) =
{
I∗ if I(t̂`) ∩ Î(t̂`) = ∅
I(t̂`) ∩ Î(t̂`) otherwise,

(7.29b)

σ(t̂`+1) = argmin
i∈I(t̂`+1)

Ji(t̂`), ` ∈ Z+. (7.29c)

Remark 7.5. In computing the argmin in the RHS of (7.29c), it could very well that there
are more values i ∈ I(t̂`+1) which achieves the minimum. In such a case, we (somewhat
arbitrarily) choose the smallest such index.
Remark 7.6. We define the index set reset times as those t̂`, ` ∈ Z

+, for which
I(t̂`) = I∗.
Remark 7.7. The switching algorithm in (7.29) is an extended version of the one in (4.33)
of Chapter 4 dealing with one-step-ahead adaptive control of a first-order plant, with N = 1
and Ji(t̂`) = |ei(t + 1)|. Note also that this algorithm can be applied to the approach of
Chapter 5 dealing with nonlinear plants if more that two estimators were to be used (with
N = n).

In Figure 7.2 we provide an illustration of time steps, switching times, and index set
reset times on the timeline. Now we present a desirable property of the switching algorithm
(7.29).
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Time steps :

Switching times :

Reset times :

t0

t̂0

t̂`0

t0 + 1 · · · t0 +N

t̂1

· · · t0 + 2N

t̂2

· · ·

· · ·

t0 + (`1 − 1)N

t̂`1−1

· · · t0 + `1N

t̂`1

t̂`1

· · · t0 + (`1 + 1)N

t̂`1+1

· · ·

· · ·

t0 + `2N

t̂`2

t̂`2

· · ·

· · ·

· · ·

t0 + `jN

t̂`j

t̂`j

· · ·

· · ·

· · ·

Figure 7.2: Illustration of the time instants, switching times, and the index set reset times.

Lemma 7.1. Suppose that the adaptive controller (7.18), (7.23)–(7.25), and (7.27)–
(7.29) is applied to the auxiliary plant (7.12). Then, for every n ∈ {1, 2, . . . , n̄} and
θ∗ ∈ Θ̃n, t0 ∈ Z, σ0 ∈ I∗, ψ̄(t0) ∈ R2n̄+g, N ≥ 1, θ̂i(t0) ∈ Si (i ∈ I∗) and w, y∗ ∈ `∞,
if t̂` and t̂¯̀ are two consecutive index set reset times, then there exists a `∗ ∈ [`, ¯̀) such
that:

Jσ(t̂`∗ )(t̂`∗) ≤ Ji∗(t̂`∗). (7.30)

Remark 7.8. Lemma 7.1 says that, between every two index set resets, there is an interval
of the form [t̂`∗ , t̂`∗+1) for which the performance associated with the chosen index is equal
to, or better than, that of the performance associated with the correct index.

Proof of Lemma 7.1. Let n ∈ {1, 2, . . . , n̄} and θ∗ ∈ Θ̃n, t0 ∈ Z, σ0 ∈ I∗, ψ̄(t0) ∈ R2n̄+g,
N ≥ 1, θ̂i(t0) ∈ Si (i ∈ I∗), and w, y∗ ∈ `∞ be arbitrary. Let t̂` and t̂¯̀ be two consecutive
reset times.

We prove (7.30) by contradiction; assume that

Jσ(t̂j)(t̂j) > Ji∗(t̂j), for all j ∈ [`, ¯̀). (7.31)

Then, according to (7.29a), we should have

i∗ ∈ Î(t̂j), j ∈ [`, ¯̀). (7.32)

We know by the definition of index resets that for all j ∈ (`, ¯̀) we have I(t̂j) 6= I∗, which
means that by (7.29b)

I(t̂j) = I(t̂j−1) ∩ Î(t̂j−1), j ∈ (`, ¯̀);

then by induction we see that

I(t̂j) = I(t̂`) ∩ Î(t̂`) ∩ Î(t̂`+1)∩ · · · ∩ Î(t̂j−2) ∩ Î(t̂j−1), j ∈ (`, ¯̀).

154



But I(t̂`) = I∗, so using (7.32) in the above, we see that

i∗ ∈ I(t̂j), j ∈ [`, ¯̀) (7.33)

as well. So according to this and to (7.32) we have i∗ ∈ I(t̂¯̀−1) ∩ Î(t̂¯̀−1). However, we
know by the definition of index resets and (7.29b) that I(t̂¯̀−1) ∩ Î(t̂¯̀−1) = ∅, which is a
contradiction, so it must be that (7.31) does not hold. �

As discussed throughout the thesis about similar results, in the above we do not make
any claim that θ∗ ∈ Sσ(t) at any time; it only makes an indirect statement about the size
of the prediction error. It turns out that this is enough to ensure that desired closed-loop
behavior is attained.

7.4 The Main Result

We will define a vector φ̄(t) ∈ R2(n̄+g)

φ̄(t) :=



y(t)
y(t− 1)

...
y(t− n̄− g + 1)

u(t)
u(t− 1)

...
u(t− n̄− g + 1)


to serve as the “plant state”; while this is longer than what is needed for a minimal state
representation of (7.1), the choice will facilitate our analysis. Recall that the vectors
ψi, i ∈ I∗, and ψ̄ contain values of the tracking error and the auxiliary control input,
while the vector φ̄ contains values of the plant input and output. Before proceeding, it is
convenient to define a weighted sum of past values of y∗:

ỹ∗(t) :=
n̄+g−1∑
j=0
|y∗(t− j)|. (7.34)

155



Theorem 7.1. Suppose that the adaptive controller consisting of the parameter esti-
mators (7.18), control gains (7.23), switching signal (7.24) with switching times (7.27),
performance signal (7.28), switching algorithm (7.29), and control law (7.25) and (7.26),
is applied to the plant (7.1). Then for every λ ∈ (0, 1), δ ∈ (0,∞] and N ≥ 2n̄ + g,
there exists a constant γ > 0 so that, for every n ∈ {1, 2, . . . , n̄} and θ ∈ Θn, t0 ∈ Z,
φ̄(t0) ∈ R2(n̄+g), σ0 ∈ I∗, θ̂i(t0) ∈ Si (i ∈ I∗), and w, y∗ ∈ `∞,

i) the following bound holds:

‖φ̄(t)‖ ≤ γλt−τ‖φ̄(τ)‖+ γ
t−1∑
j=τ

λt−1−j(|w(j)|+ |ỹ∗(j + 1)|), t > τ ≥ t0; (7.35)

ii) if Q(z−1)Y ∗(z) = 0 and Q(z−1)W (z) = 0, then y(t)→ y∗(t) exponentially fast,
in the sense that

|ε(t)| ≤ γλt−t0
(
‖φ̄(t0)‖+ ‖y∗‖∞

)
, t ≥ t0.

Remark 7.9. The above result shows that the closed-loop system experiences linear-like
behavior. There is a uniform exponential decay bound on the effect of the initial condition,
and a convolution bound on the effect of the exogenous signals. This implies that the system
has a bounded gain (from w and y∗ to y) in every p-norm; in particular, for p =∞ we see
from the above bound that

‖φ̄(t)‖ ≤ γλt−t0‖φ̄(t0)‖+ γ

1− λ sup
j∈[t0,t)

(|w(j)|+ |ỹ∗(j + 1)|)

≤ γ(n̄+ g)
1− λ

(
λt−t0‖φ̄(t0)‖+ ‖w‖∞ + ‖y∗‖∞

)
, t ≥ t0.

Hence, if w, y∗ ∈ `∞, then y, u ∈ `∞, so ε, v, ei (i ∈ I∗) lie in `∞ as well.

We emphasize here that we are able to prove Theorem 7.1 using a switching control law
without assuming that the switching stops. As far as the author knows, only a few similar
results are found in the literature, e.g. the Supervisory Control approach of Morse [51],
although convolution bounds are not proven there.
Remark 7.10. Observe that the stability result (with a slightly different controller) of
Theorem 6.1 of the previous chapter is subsumed by the result of Theorem 7.1 by putting
Q(z−1) = 1 (i.e. g = 0).

Proving Theorem 7.1 requires two steps:
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• First, we analyze the adaptive control system to obtain a desired bound on the key
quantity ψ̄(t) (which consists of present and past values of the tracking error and the
auxiliary input), which plays a key role in the auxiliary model (7.12), the parameter
estimator (7.18), and the control law (7.25); this requires a careful analysis of the
closed-loop system.

• Second, we use linear system theory to translate the bound on ψ̄ to a bound on φ̄ (which
consists of present and past values of the plant’s input and output).

To enhance readability and to focus the reader’s attention on the most important aspects
of the approach, we will present the first part in the form of a Proposition.

Proposition 7.3 (Main Proposition). Suppose that the adaptive controller (7.18),
(7.23)–(7.25), and (7.27)–(7.29) is applied to the auxiliary plant (7.12). Then, for every
λ ∈ (0, 1), δ ∈ (0,∞] and N ≥ 2n̄+ g, there exists a constant c > 0 so that, for every
n ∈ {1, 2, . . . , n̄} and θ∗ ∈ Θ̃n, t0 ∈ Z, ψ̄(t0) ∈ R2n̄+g, σ0 ∈ I∗, θ̂i(t0) ∈ Si (i ∈ I∗),
and w, y∗ ∈ `∞, the following holds

‖ψ̄(t)‖ ≤ cλt−τ‖ψ̄(τ)‖+
t−1∑
j=τ

cλt−j−1|w̄(j)|, t > τ ≥ t0. (7.36)

Before presenting the proof of this Proposition, we need a crude bound on the closed-loop
behavior.

Lemma 7.2. Suppose that the adaptive controller (7.18), (7.23)–(7.29) is applied to
the plant (7.1). Then for every p ≥ 0, there exist constants c̄1, c̄2 ≥ 1 so that, for
every n ∈ {1, 2, . . . , n̄} and θ ∈ Θn, t0 ∈ Z, t ≥ t0, N ≥ 1, σ0 ∈ I∗, φ̄(t0) ∈ R2(n̄+g),
θ̂i(t0) ∈ Si (i ∈ I∗), and w, y∗ ∈ `∞, the following hold:

i) ‖ψ̄(t+ p)‖ ≤ c̄1‖ψ̄(t)‖+ c̄1

p−1∑
j=0
|w̄(t+ j)|.

ii) ‖φ̄(t+ p)‖ ≤ c̄2‖φ̄(t)‖+ c̄2

p−1∑
j=0

(|w(t+ j)|+ |ỹ∗(t+ j)|).

Proof. See Appendix B. �
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Proof of Proposition 7.3:

Fix λ ∈ (0, 1), δ ∈ (0,∞] and N ≥ 2n̄+ g. Let n ∈ {1, 2, . . . , n̄}, θ∗ ∈ Θ̃n, t0 ∈ Z, ψ̄(t0) ∈
R

2(n̄+g), σ0 ∈ I∗, θ̂i(t0) ∈ Si (i ∈ I∗), and w, y∗ ∈ `∞ be arbitrary. We denote the sequence
of index set reset times by t̂`0 , t̂`1 , t̂`2 , . . . (see Fig. 7.2).
Step 1: Obtain a state-space model describing ψ̄(t) for t ∈ [t̂`, t̂`+1).

It will be convenient for analysis to have all of the parameter estimates and controller
gains to be of the same length. To this end, we will pad θ̂i(t) and K̂i(t) by zeros in the
appropriate locations: we define Θ̂i(t) ∈ R2n̄+g by

Θ̂i(t) :=
[
ˆ̄ai,1(t) ˆ̄ai,2(t) · · · ˆ̄ai,ni+g(t) 0>n̄−ni b̂i,1(t) b̂i,2(t) · · · b̂i,ni(t) 0>n̄−ni

]>
and ˆ̄Ki(t) ∈ R2n̄+g by

ˆ̄Ki(t) :=[
−p̂i,1(t) −p̂i,2(t) · · · −p̂i,ni+g(t) 0>n̄−ni −l̂i,1(t) −l̂i,2(t) · · · −l̂i,ni(t) 0>n̄−ni

]
;

so by definition of the prediction error (7.16) and from the control law in (7.25) we have

ε(t+ 1) = θ̂σ(t)(k)>ψσ(t)(k) + eσ(t)(t+ 1)
= Θ̂σ(t)(t)>ψ̄(t) + eσ(t)(t+ 1), (7.37)

v(t+ 1) = K̂σ(t)(t)ψσ(t)(t)

= ˆ̄Kσ(t)(t)ψ̄(t). (7.38)

Next, define the matrix Ai(t) ∈ R(2n̄+g)×(2n̄+g) by

Ai(t) :=


Θ̂i(t)>[

In̄+g−1 0(n̄+g−1)×(n̄+1)
]

ˆ̄Ki(t)[
0(n̄−1)×(n̄+g) In̄−1 0n̄−1

]

 =



Θ̂i(t)>
1 0 · · · 0 0 · · · · · · 0

. . . ... ... · · · · · · ...
1 0 0 · · · · · · 0

ˆ̄Ki(t)
0 · · · · · · 0 1 0 · · · 0
... · · · · · · ... . . . ...
0 · · · · · · 0 1 0


; (7.39)
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using (7.21) it is easy to verify that the characteristic equation of the matrix Ai(t) (for
frozen time t) satisfies

det
(
zI2n̄+g −Ai(t)

)
= z2n̄+g[Âi(t, z−1)L̂i(t, z−1) + B̂i(t, z−1)P̂i(t, z−1)]
= z2n̄+g.

This means that for every i ∈ I∗, for each time t the matrix Ai(t) has all of its eigenvalues
at zero. Also define B1 := e1 ∈ R2n̄+g and

∆i(t) := ρi(t)
ei(t+ 1)
‖ψ̄(t)‖2

B1ψ̄(t)> (7.40)

so we have
B1ei(t+ 1) = ∆i(t)ψ̄(t) +B1 [1− ρi(t)]ei(t+ 1)︸ ︷︷ ︸

=:ηi(t)

.

From (7.37) and (7.38), the fact that the switching signal is constant on [t̂`, t̂`+1), and the
definition of ψ̄, we have that

ψ̄(t+ 1) = Aσ(t)(t)ψ̄(t) +B1eσ(t)(t+ 1)
= Aσ(t̂`)(t̂`)ψ̄(t) +

[
Aσ(t)(t)−Aσ(t̂`)(t̂`)

]
ψ̄(t) +B1eσ(t)(t+ 1)

= Aσ(t̂`)(t̂`)ψ̄(t) +
[
Aσ(t̂`)(t)−Aσ(t̂`)(t̂`)

]
ψ̄(t) +B1eσ(t̂`)(t+ 1)

= Aσ(t̂`)(t̂`)ψ̄(t) +
[
Aσ(t̂`)(t)−Aσ(t̂`)(t̂`) + ∆σ(t̂`)(t)

]
ψ̄(t) +B1ησ(t̂`)(t),

t ∈ [t̂`, t̂`+1), ` ∈ Z+. (7.41)

Step 2: Obtain a bound on ‖ψ̄(t̂`+1)‖ in terms of ‖ψ̄(t̂`)‖.
We now are going to analyze the key equation (7.41) in detail; we make the following

observations. For t ∈ [t̂`, t̂`+1), we have Aσ(t̂`)(t̂`) ∈ R
(2n̄+g)×(2n̄+g) to be a constant matrix

with all eigenvalues equal to zero; since N ≥ 2n̄+ g,
[
Aσ(t̂`)(t̂`)

]t̂`+1−t̂` =
[
Aσ(t̂`)(t̂`)

]N
= 0. (7.42)

Next, note that for t ∈ [t̂`, t̂`+1) we have that the dimension of θ̂σ(t)(t) is constant; by
utilizing part (1) of Proposition 7.2 to provide a bound on the difference between parameter
estimates at two different point in time, the fact that the controller gains are analytic
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functions of the parameter estimates, and (7.39), we conclude that there exists a constant
c1 such that∥∥∥Aσ(t̂`)(t)−Aσ(t̂`)(t̂`)

∥∥∥ ≤ ∥∥∥Θ̂σ(t̂`)(t)− Θ̂σ(t̂`)(t̂`)
∥∥∥+

∥∥∥∥ ˆ̄Kσ(t̂`)(t)−
ˆ̄Kσ(t̂`)(t̂`)

∥∥∥∥
=
∥∥∥θ̂σ(t̂`)(t)− θ̂σ(t̂`)(t̂`)

∥∥∥+
∥∥∥K̂σ(t̂`)(t)− K̂σ(t̂`)(t̂`)

∥∥∥
≤
∥∥∥θ̂σ(t̂`)(t)− θ̂σ(t̂`)(t̂`)

∥∥∥+ c1

∥∥∥θ̂σ(t̂`)(t)− θ̂σ(t̂`)(t̂`)
∥∥∥

= (1 + c1)
∥∥∥θ̂σ(t̂`)(t)− θ̂σ(t̂`)(t̂`)

∥∥∥
≤ (1 + c1)

t−1∑
j=t̂`

ρσ(t̂`)(j)
|eσ(t̂`)(j + 1)|
‖ψ̄(j)‖

, t ∈ [t̂`, t̂`+1), ` ∈ Z+.

(7.43)

From (7.40) we obtain

‖∆σ(t̂`)(t)‖ = ρσ(t̂`)(t)
|eσ(t̂`)(t+ 1)|
‖ψ̄(t)‖

. (7.44)

So from (7.43), (7.44) and definition of the performance signal (7.28), there exists a constant
c2 so that for all t ∈ [t̂`, t̂`+1):∥∥∥Aσ(t̂`)(t)−Aσ(t̂`)(t̂`) + ∆σ(t̂`)(t)

∥∥∥ ≤ ∥∥∥Aσ(t̂`)(t)−Aσ(t̂`)(t̂`)
∥∥∥+ ‖∆σ(t̂`)(t)‖

≤ (1 + c1)
 t−1∑
j=t̂`

ρσ(t̂`)(j)
|eσ(t̂`)(j + 1)|
‖ψ̄(j)‖

+

ρσ(t̂`)(t)
|eσ(t̂`)(t+ 1)|
‖ψ̄(t)‖

≤ (1 + c1)︸ ︷︷ ︸
=:c2

t∑
j=t̂`

ρσ(t̂`)(j)
|eσ(t̂`)(j + 1)|
‖ψ̄(j)‖

≤ c2

t̂`+1−1∑
j=t̂`

ρσ(t̂`)(j)
|eσ(t̂`)(j + 1)|
‖ψ̄(j)‖

= c2Jσ(t̂`)(t̂`), t ∈ [t̂`, t̂`+1), ` ∈ Z+. (7.45)

To proceed, we need a bound on ηi(t).
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Claim 7.1. There exists a c3 such that for all i ∈ I∗:

|ηi(t)| ≤ c3|w̄(t)|, t ≥ t0. (7.46)
Proof of Claim 7.1. If ρi(t) = 1, then ηi(t) = 0. If ρi(t) = 0, then ηi(t) = ei(t+ 1) and from
the estimator definition

|ei(t+ 1)| ≥ (2s̄ + δ)‖ψ̄(t)‖;

but notice that

ei(t+ 1) = ψi∗(t)>θ∗ − ψi(t)>θ̂i(t) + w̄(t)
⇒ |ei(t+ 1)| ≤ ‖ψi∗(t)‖‖θ∗‖+ ‖ψi(t)‖‖θ̂i(t)‖+ |w̄(t)|

≤ ‖Si∗‖‖ψi∗(t)‖+ ‖Si‖‖ψi(t)‖+ |w̄(t)|
≤ s̄ (‖ψi∗(t)‖+ ‖ψi(t)‖) + |w̄(t)|
≤ 2s̄‖ψ̄(t)‖+ |w̄(t)|.

Combining the above two statements:

2s̄‖ψ̄(t)‖+ |w̄(t)| ≥ (2s̄ + δ)‖ψ̄(t)‖ ⇒ ‖ψ̄(t)‖ ≤ 1
δ
|w̄(t)|;

this means that |ei(t+ 1)| ≤ 2s̄
δ
|w̄(t)|+ |w̄(t)|, so define c3 := 2s̄

δ
+ 1. �

Now we return to analyzing the key equation (7.41). Solving for ψ̄(t̂`+1) yields

ψ̄(t̂`+1) =
[
Aσ(t̂`)(t̂`)

]t̂`+1−t̂`
ψ̄(t̂`) +

t̂`+1−1∑
j=t̂`

[
Aσ(t̂`)(t̂`)

]t̂`+1−j−1
([
Aσ(t̂`)(j)−Aσ(t̂`)(t̂`)+

∆σ(t̂`)(j)
]
ψ̄(j) +B1ησ(t̂`)(j)

)
. (7.47)

It follows from the compactness of the Si’s that
∥∥∥∥[Aσ(t̂`)(t̂`)

]j∥∥∥∥ , j = 0, 1 . . . , N − 1, is
bounded above by a constant, which we label c4. So incorporating this and the observations
of (7.42), (7.45) and (7.46) into (7.47), we obtain

‖ψ̄(t̂`+1)‖ ≤ c4

t̂`+1−1∑
j=t̂`

(
c2Jσ(t̂`)(t̂`)‖ψ̄(j)‖+ c3|w̄(j)|

)
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= c4c2Jσ(t̂`)(t̂`)
t̂`+1−1∑
j=t̂`

‖ψ̄(j)‖+ c4c3

t̂`+1−1∑
j=t̂`

|w̄(j)|. (7.48)

It follows from Lemma 7.2 (applied for p = 1, 2, . . . , N − 1) that there exists a constant c5
so that the following holds:

t̂`+1−1∑
j=t̂`

‖ψ̄(j)‖ ≤ c5‖ψ̄(t̂`)‖+ c5

t̂`+1−2∑
j=t̂`

|w̄(j)|; (7.49)

so substituting (7.49) into (7.48) it follows that there exists a constant c6 so that for all
` ∈ Z+:

‖ψ̄(t̂`+1)‖ ≤ c4c2Jσ(t̂`)(t̂`)
c5‖ψ̄(t̂`)‖+ c5

t̂`+1−2∑
j=t̂`

|w̄(j)|
+ c4c3

t̂`+1−1∑
j=t̂`

|w̄(j)|

≤ c6Jσ(t̂`)(t̂`)‖ψ̄(t̂`)‖+ c6
(
1 + Jσ(t̂`)(t̂`)

) t̂`+1−1∑
j=t̂`

|w̄(j)|. (7.50)

Step 3: Obtain a bound on ψ̄ between index set reset times which depend solely
on Ji∗.

Let t̂`j be an arbitrary reset time. From Lemma 7.1 we know that there exists an `∗
satisfying `j ≤ `∗ < `j+1 such that

Jσ(t̂`∗ )(t̂`∗) ≤ Ji∗(t̂`∗). (7.51)

So here we will analyze the closed-loop behavior for

[t̂`j , t̂`j+1) = [t̂`j , t̂`∗) ∪ [t̂`∗ , t̂`∗+1) ∪ [t̂`∗+1, t̂`j+1).

The behavior on [t̂`∗ , t̂`∗+1) can be analyzed by combining (7.50) with (7.51):

‖ψ̄(t̂`∗+1)‖ ≤ c6Ji∗(t̂`∗)‖ψ̄(t̂`∗)‖+ c6
(
1 + Ji∗(t̂`∗)

) t̂`∗+1−1∑
j=t̂`∗

|w̄(j)|. (7.52)

The behavior for the other two intervals can be analyzed by utilizing Lemma 7.2. To this
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end, from the switching algorithm, it is clear that

`j+1 − `j ≤ m, j ∈ Z+;

so t̂`j+1 − t̂`j ≤ Nm, which means that t̂`∗ − t̂`j ≤ Nm and t̂`j+1 − t̂`∗+1 ≤ Nm as well; so
we can utilize Lemma 7.2 with p ≤ Nm: in particular, there exists a constant c7 so that

‖ψ̄(t̂`j+1)‖ ≤ c7‖ψ̄(t̂`∗+1)‖+ c7

t̂`j+1−1∑
j=t̂`∗+1

|w̄(j)| (7.53)

and

‖ψ̄(t̂`∗)‖ ≤ c7‖ψ̄(t̂`j)‖+ c7

t̂`∗−1∑
j=t̂`j

|w̄(j)|. (7.54)

Now define

α(`j) := max
τ∈[`j ,`j+1)

Ji∗(t̂τ ) (7.55)

and

w̃(j) :=
t̂`j+1−1∑
q=t̂`j

|w̄(q)|;

by combining these bounds with (7.52) we conclude that there exists a constant c8 such
that

‖ψ̄(t̂`j+1)‖ ≤ c8α(`j)‖ψ̄(t̂`j)‖+ c8(1 + α(`j))w̃(j), j ∈ Z+. (7.56)

Step 4: Analyze the first-order difference inequality (7.56).
We will analyze (7.56) to obtain a bound on the closed-loop behavior of the system for

the whole time horizon. The first step is to analyze the square sum of α(·) over an interval;
from the definition of α(·) and the Cauchy-Schwarz property, we have for all j2 > j1 ≥ 0:

j2−1∑
q=j1

α(`q)2 =
j2−1∑
q=j1

(
max

p∈[`q ,`q+1)
Ji∗(t̂p)

)2
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≤
j2−1∑
q=j1

`q+1−1∑
p=`q

Ji∗(t̂p)
2

≤
j2−1∑
q=j1

[`q+1 − `q]
`q+1−1∑
p=`q

Ji∗(t̂p)2


≤ m

j2−1∑
q=j1

`q+1−1∑
p=`q

Ji∗(t̂p)2

= m
j2−1∑
q=j1

`q+1−1∑
p=`q

t̂p+1−1∑
τ=t̂p

ρi∗(τ) |ei
∗(τ + 1)|
‖ψ̄(τ)‖

2

≤ m
j2−1∑
q=j1

`q+1−1∑
p=`q

(
[t̂p+1 − t̂p]

t̂p+1−1∑
τ=t̂p

ρi∗(τ) |ei
∗(τ + 1)|2

‖ψ̄(τ)‖2

)

= Nm
j2−1∑
q=j1

`q+1−1∑
p=`q

t̂p+1−1∑
τ=t̂p

ρi∗(τ) |ei
∗(τ + 1)|2

‖ψ̄(τ)‖2

= Nm

t̂`j2
−1∑

τ=t̂`j1

ρi∗(τ) |ei
∗(τ + 1)|2

‖ψ̄(τ)‖2
.

Using the above together with part (2) of Proposition 7.2, we obtain, for any p > q ≥ 0:

p−1∑
j=q

α(`j)2 ≤ 2Nm‖θ̃i∗(t̂`q)‖2 + 4Nm
t̂`p−1∑
j=t̂`q

ρi∗(j)
|w̄(j)|2

‖ψ̄(j)‖2
. (7.57)

To proceed, let τ ≥ t0 be arbitrary. We define

λ1 := λNm

max{1, c8}
∈ (0, 1).

We now partition the timeline into two parts: one in which w̄(·) is small versus ψ̄(·) and
one where it is not; with

ν :=
(

λ1

4Nm

)2

, (7.58)
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we define
Sgood =

{
j ≥ τ : ψ̄(j) 6= 0 and |w̄(j)|2

‖ψ̄(j)‖2
< ν

}
,

Sbad =
{
j ≥ τ : ψ̄(j) = 0 or |w̄(j)|2

‖ψ̄(j)‖2
≥ ν

}
;

clearly {j ∈ Z : j ≥ τ} = Sgood ∪ Sbad. Notice that if w̄ = 0, then Sgood could be the whole
timeline [τ,∞). We can clearly define a (possibly infinite) sequence of intervals of the form
[kl, kl+1) which satisfy:
(i) k0 = τ serves as the initial instant of the first interval;
(ii) [kl, kl+1) either belongs to Sgood or Sbad; and
(iii) if kl+1 6= ∞ and [kl, kl+1) belongs to Sgood then [kl+1, kl+2) belongs to Sbad, and vice
versa.

Now we analyze the behavior during each interval.
Step 4.1: [kl, kl+1) ⊂ Sbad.

Let j ∈ [kl, kl+1) be arbitrary. In this case |w̄(j)|2
‖ψ̄(j)‖2 ≥ ν or ‖ψ̄(j)‖ = 0; in either case

‖ψ̄(j)‖ ≤ 1√
ν
|w̄(j)|.

Also, applying Lemma 7.2 for one step, there exists a constant c9 so that

‖ψ̄(j + 1)‖ ≤ c9‖ψ̄(j)‖+ c9|w̄(j)|
≤ c9

1√
ν
|w̄(j)|+ c9|w̄(j)|, j ∈ [kl, kl+1).

This, in turn, implies that

‖ψ̄(j)‖ ≤
{ 1√

ν
|w̄(j)| j = kl

c9( 1√
ν

+ 1)|w̄(j − 1)| j = kl + 1, . . . , kl+1.
(7.59)

Step 4.2: [kl, kl+1) ⊂ Sgood.
First suppose that kl+1 − kl ≤ 2Nm; then by Lemma 7.2 it can be easily proven that

there exists a constant c10 so that

‖ψ̄(t)‖ ≤ c10λ
t−kl‖ψ̄(kl)‖+ c10

t−1∑
j=kl

λt−j−1|w̄(j)|, t ∈ [kl, kl+1].
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Now suppose that kl+1 − kl > 2Nm. This means that in the interval of interest, namely
[kl, kl+1), there are at least two reset times: there exist q < p so that

kl ≤ t̂`q < t̂`p ≤ kl+1;

in fact, there may be many choices of q and p; so let q be the smallest such q and p̄ be the
largest such p. To proceed, observe that ‖ψ̄(j)‖ 6= 0 and |w̄(j)|2

‖ψ̄(j)‖2 < ν. Using this bound
which holds on [kl, kl+1), together with the fact that ‖θ̃i∗(t̂`q)‖ ≤ 2‖Si∗‖ ≤ 2s̄, we rewrite
(7.57) to yield

p−1∑
j=q

α(`j)2 ≤ 8Nms̄2 + 4Nm(t̂`p − t̂`q)ν

= 8Nms̄2 + 4N2m(`p − `q)ν
≤ 8Nms̄2 + 4N2m2(p− q)ν, q ≤ q < p ≤ p̄. (7.60)

From the definition of ν in (7.58), the above bound can be simplified to

p−1∑
j=q

α(`j)2 ≤ 8Nms̄2 + (p− q)λ
2
1

4 , q ≤ q < p ≤ p̄. (7.61)

Now we will analyze the difference inequality in (7.56). First, we use (7.61) to bound
the second occurrence of α in (7.56); from (7.61) we see that α(`j) ≤

√
8Nms̄2 + λ2

1/4 ≤√
8Nms̄2 + 1 =: c11, q ≤ j ≤ p̄. So we can rewrite (7.56) to yield

‖ψ̄(t̂`j+1)‖ ≤ c8α(`j)‖ψ̄(t̂`j)‖+ c8(1 + c11)︸ ︷︷ ︸
=:c12

w̃(j), q ≤ j ≤ p̄. (7.62)

We now proceed to solve the above difference inequality; we will utilize the inequality of
arithmetic and geometric means.
Claim 7.2. There exists a constant γ1 > 1 such that

p−1∏
j=q

α(`j) ≤ γ1λ
p−q
1 , q ≤ q < p ≤ p̄. (7.63)

Proof of Claim 7.2. Let q, p ∈ Z+ be arbitrary such that q ≤ q < p ≤ p̄. By the fact that
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α(`j) ≥ 0, we obtain

p−1∏
j=q

α(`j) ≤
 1
p− q

p−1∑
j=q

α(`j)2


p−q

2

.

Using (7.61) we obtain

p−1∏
j=q

α(`j) ≤
[

8Nms̄2

p− q
+ λ2

1
4

] p−q
2

.

So it is enough to prove that there exists a constant γ1 so that
[

8Nms̄2

j
+ λ2

1
4

] 1
2

︸ ︷︷ ︸
=:β(j)


j

≤ γ1λ
j
1, j > 0.

We can easily show that with ̄ := 16Nm×
⌈(

s̄
λ1

)2
⌉
, we have

8Nms̄2

̄
≤ λ2

1
2 ,

which means that
β(j)j ≤ λj1 ≤ 1, j ≥ ̄.

So if we define γ1 := max
{

1,
(
β(1)
λ1

)̄}
, then the result in (7.63) is proven. �

Using the bound in (7.63) and the definition of λ1 we obtain

p−1∏
j=q

[c8α(`j)] ≤ γ1λ
p−q
1 cp−q8 ,

≤ γ1λ
Nm(p−q), q ≤ q < p ≤ p̄. (7.64)
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We can now proceed to solve (7.62) iteratively; if we use the bound in (7.64), we see that

‖ψ̄(t̂`p)‖ ≤ γ1λ
Nm(p−q)‖ψ̄(t̂`q)‖+

p−1∑
j=q

γ1c12
(
λNm

)p−j−1
w̃(j), q ≤ q < p ≤ p̄.

We can now use Lemma 7.2 (for no more than Nm steps at a time):

• to provide a bound on ‖ψ̄(t)‖ between consecutive index set reset times, i.e. between
t̂`j and t̂`j+1 ;

• to provide a bound on ‖ψ̄(t)‖ on the beginning part of the interval [kl, kl+1), until we
get to the first admissible index set reset time t̂`q ;

• to provide a bound on ‖ψ̄(t)‖ on the last part of the interval [kl, kl+1), after the last
admissible index set reset time t̂`p̄ .

After simplification, we conclude that there exists a constant γ2 ≥ c10 so that

‖ψ̄(t)‖ ≤ γ2λ
t−kl‖ψ̄(kl)‖+ γ2

t−1∑
j=kl

λt−j−1|w̄(j)|, t ∈ [kl, kl+1]. (7.65)

Step 4.3: Combine the bounds on Sgood and Sbad.
Now we combine Step 4.1 and Step 4.2 into a general bound on ψ̄: we glue the bounds

of Step 4.1 and Step 4.2 together. Define

γ̄ := max
{
γ2, c9(1 + 1√

ν
), γ2c9(1 + 1√

ν
)
}
.

Claim 7.3. The following bound holds:

‖ψ̄(t)‖ ≤ γ̄λt−τ‖ψ̄(τ)‖+
t−1∑
j=τ

γ̄λt−j−1|w̄(j)|, t ≥ τ. (7.66)

Proof of the Claim 7.3. If [k0, k1) = [τ, k1) ⊂ Sgood, then (7.66) is true for t ∈ [k0, k1] by
(7.65). If [k0, k1) ⊂ Sbad, then from (7.59) we obtain

‖ψ̄(j)‖ ≤
{
‖ψ̄(τ)‖ j = k0 = τ
c9(1 + 1√

ν
)|w̄(j − 1)| j = k0 + 1, . . . , k1.

which means that (7.66) holds on [k0, k1] for this case as well.

168



We now use induction: suppose that (7.66) is true for t ∈ [k0, kl]; we need to prove it
holds for t ∈ (kl, kl+1] as well. If k ∈ [kl, kl+1) ⊂ Sbad, then from (7.59) we see that

‖ψ̄(j)‖ ≤ c9(1 + 1√
ν
)|w̄(j − 1)|, j = kl + 1, kl + 2, . . . , kl+1,

which means (7.66) holds on (kl, kl+1]. On the other hand, if [kl, kl+1) ⊂ Sgood, then
kl − 1 ∈ Sbad; from (7.59) we have that

‖ψ̄(kl)‖ ≤ c9(1 + 1√
ν
)|w̄(kl − 1)|.

Using (7.65) to analyze the behavior on [kl, kl+1], we have

‖ψ̄(k)‖ ≤ γ2λ
k−kl [c9(1 + 1√

ν
)|w̄(kl − 1)|] +

k−1∑
j=kl

γ2λ
k−j−1|w̄(j)|,

≤ γ̄
k−1∑

j=kl−1
λk−j−1|w̄(j)|, k ∈ [kl, kl+1], (7.67)

which implies that (7.66) holds. �

Finally, as τ ≥ t0 is arbitrary, it follows that the proof of Proposition 7.3 is concluded. �

Now we proceed to prove the main result in Theorem 7.1.

Proof of Theorem 7.1. Fix λ ∈ (0, 1), δ ∈ (0,∞] and N ≥ 2n̄+ g. Let n ∈ {1, 2, . . . , n̄},
θ ∈ Θn, t0 ∈ Z, φ̄(t0) ∈ R2(n̄+g), σ0 ∈ I∗, θ̂i(t0) ∈ Si (i ∈ I∗), and w, y∗ ∈ `∞ be arbitrary.

Let τ ≥ t0 be arbitrary. Then applying the adaptive controller to the associated auxiliary
plant (7.12), by Proposition 7.3 there exists a constant c such that

‖ψ̄(t)‖ ≤ cλt−τ‖ψ̄(τ)‖+
t−1∑
j=τ

cλt−j−1|w̄(j)|, t > τ. (7.68)

Step 1: Finding a bound on y(·).
It turns out to be easy to leverage (7.68) to provide a desired bound on the output y

and its past values. Using the definition of ψ̄ given in (7.14), the definition of ỹ∗ given in
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(7.34), and the fact that y(t) = ε(t) + y∗(t), with a change in the indexes it follows from
(7.68) that∥∥∥∥∥∥∥∥∥∥


y(t)

y(t− 1)
...

y(t− n̄− g + 1)


∥∥∥∥∥∥∥∥∥∥
≤ cλt−τ−n̄−g‖ψ̄(τ + n̄+ g)‖+ |ỹ∗(t)|+

t−1∑
j=τ+n̄+g

cλt−j−1|w̄(j)|,

t > τ + n̄+ g; (7.69)

the reason for choosing a starting time of τ + n̄+ g rather than τ will become clear later in
the proof. Although this provides a bound on the top part of φ̄, the quantity on the RHS
differs from that on the RHS of the desired bound (7.36). We will now proceed to get a
similar kind of bound on the bottom part of φ̄, after which we convert the quantity in the
RHS to one of the desired form.
Step 2: Finding a bound on u(·).

Now we will derive a desirable bound for plant input u and its past values. The analysis
here is more involved than the one for finding the bound on y.

We start by constructing a state-space model of the plant (7.1); we will choose one of
dimension n which is in controllable canonical form:

x(t+ 1) = Ax(t) +Bu(t) (7.70a)
y(t) = Cx(t) + w(t− 1). (7.70b)

Corresponding to our coprimeness and compactness assumptions, the set of all such (A,B,C)
triples lies in a compact set.

From the plant control input defined in (7.26), we can view u as the output of the
following gth-order system. In fact, with Q ∈ Rg×g defined by

Q :=



q1 q2 · · · qg−1 qg
1 0 · · · 0
0 1 0 · · · 0
... . . . ...
0 · · · 0 1 0

 ,
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Cc := e>1 ∈ Rg, Bc := e1 ∈ Rg and

ξ(t) :=


u(t)

u(t− 1)
...

u(t− g + 1)

 ,

it follows that

ξ(t+ 1) = Qξ(t) +Bcv(t+ 1), (7.71a)
u(t) = Ccξ(t). (7.71b)

Since ε(t) = y(t) − y∗(t), by combining (7.70) with (7.71) we obtain the augmented
(n+ g)th-order state-space system[

x(t+ 1)
ξ(t+ 1)

]
=
[
A BCc

0g×n Q

]
︸ ︷︷ ︸

=:Ā

[
x(t)
ξ(t)

]
︸ ︷︷ ︸
=:x̄(t)

+
[

0
Bc

]
︸ ︷︷ ︸
=:B̄

v(t+ 1) (7.72a)

ε(t) =
[
C 0>g

]
︸ ︷︷ ︸

=:C̄

[
x(t)
ξ(t)

]
+ w(t− 1)− y∗(t). (7.72b)

Since (7.70) is controllable and observable and does not have common zeros with the
eigenvalues of Q (Assumption 7.2), it follows that (C̄, Ā) is observable; hence, there exists
a unique H̄ such that the eigenvalues of Ā+ H̄C̄ are all zero and it is well-known that H̄ is
a continuous function of Ā and C̄. Now rewrite (7.72) as

x̄(t+ 1) =
[
Ā+ H̄C̄

]
x̄(t)− H̄ε(t) + B̄v(t+ 1) + H̄w(t− 1)− H̄y∗(t);

noting that [Ā+ H̄C̄]j = 0 for all j ≥ n+ g, the solution of the above equation is

x̄(t) =
n+g∑
j=1

[
Ā+ H̄C̄

]j−1
([
−H̄ε(t− j) + B̄v(t− j + 1)

]
+ H̄[w(t− j − 1)− y∗(t− j)]

)
,

t ≥ τ + n+ g.

We now want to analyze the behavior of x̄ in terms of ψ̄. But

ε(t− j) = e>j ψ̄(t− 1), j = 1, 2, . . . , n+ g,
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v(t− j + 1) =


e>n̄+g+jψ̄(t), j = 1, 2, . . . , n

e>2n̄+gψ̄(t+ n− j), j = n+ 1, . . . , n+ g,

and ξ(t) is part of x̄(t), then there exists a constant γ1 so that

‖ξ(t)‖ ≤ γ1

g∑
j=0
‖ψ̄(t− j)‖+ γ1

t−1∑
j=t−n−g

(|w(j − 1)|+ |y∗(j)|)

≤ γ1

g∑
j=0
‖ψ̄(t− j)‖+ γ1

t−1∑
j=t−n−g

|w(j − 1)|+ γ1|ỹ∗(t− 1)|, t ≥ τ + n+ g. (7.73)

We will use (7.68) to provide a bound on ψ̄(·)’s: changing indexes (with k ≥ 0, we replace t
by t− k and τ by τ + n̄+ g) we have

‖ψ̄(t− k)‖ ≤ cλt−k−τ−n̄−g‖ψ̄(τ + n̄+ g)‖+
t−k−1∑

j=τ+n̄+g
cλt−k−j−1|w̄(j)|,

t > τ + k + n̄+ g, k ≥ 0.

If we use this bound in (7.73) for k = 0, 1, . . . , g, and simplify, then we see that there exists
a constant γ2 so that

‖ξ(t)‖ ≤ γ2λ
t−τ−n̄−g‖ψ̄(τ + n̄+ g)‖+

γ2

t−1∑
j=τ+n̄+g

λt−j−1|w̄(j)|+ γ1

t−1∑
j=t−n−g

|w(j − 1)|+ γ1|ỹ∗(t− 1)|, t ≥ τ + n̄+ 2g.

(7.74)

While ξ(t) contains u(t), u(t− 1), . . . , u(t− g + 1), the vector φ̄(t) contains u(t), u(t−
1), . . . , u(t− n̄− g + 1). However, we see that∥∥∥∥∥∥∥∥∥∥


u(t)

u(t− 1)
...

u(t− n̄− g + 1)


∥∥∥∥∥∥∥∥∥∥
≤

n̄∑
j=0
‖ξ(t− j)‖. (7.75)

Now we apply the bound in (7.74) to obtain bounds on ξ(t), ξ(t − 1), . . . , ξ(t − n̄); if we
substitute them into (7.75) and simplify, we conclude that there exists a constant γ3 such
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that ∥∥∥∥∥∥∥∥∥∥


u(t)

u(t− 1)
...

u(t− n̄− g + 1)


∥∥∥∥∥∥∥∥∥∥
≤ γ3λ

t−τ−n̄−g‖ψ̄(τ + n̄+ g)‖+ γ3

n̄∑
j=0
|ỹ∗(t− j − 1)|+

γ3

t−1∑
j=t−n̄−n−g

|w(j − 1)|+ γ3

t−1∑
j=τ+n̄+g

λt−j−1|w̄(j)|,

t ≥ τ + 2n̄+ 2g. (7.76)

Step 3: Obtaining the desired bound.

Now we provide the desired bound on the full vector φ̄: using (7.69) and (7.76) and the
fact that n+ n̄ ≤ 2n̄, there exists a constant γ4 so that

∥∥∥φ̄(t)
∥∥∥ ≤ γ4λ

t−τ−n̄−g‖ψ̄(τ + n̄+ g)‖+ γ4

n̄+1∑
j=0
|ỹ∗(t− j)|+

γ4

t−1∑
j=t−2n̄−g

|w(j − 1)|+ γ4

t−1∑
j=τ+n̄+g

λt−j−1|w̄(j)|, t ≥ τ + 2n̄+ 2g. (7.77)

The bound in (7.77) looks very similar to the desired bound, except for the use of w̄,
the use of ψ̄ instead of φ̄, and the starting point; we will now deal with these issues in
that order. We first replace w̄(·) with its constituent signals; we see from the definition
of w̄ in (7.7) that for each time j, w̄(j) is a weighted sum of w(j), w(j − 1), . . . , w(j − g)
and y∗(j + 1), y∗(j), y∗(t − 1) . . . , y∗(j − n − g + 1). So substituting this into (7.77) and
simplifying, we see that there exists a constant γ5 such that

∥∥∥φ̄(t)
∥∥∥ ≤ γ5λ

t−τ‖ψ̄(τ + n̄+ g)‖+ γ5

n̄+1∑
j=0
|ỹ∗(t− j)|+

γ5

t−1∑
j=t−2n̄−g

|w(j − 1)|+ γ5

t−1∑
j=τ

λt−j−1(|w(j)|+ |y∗(j + 1)|), t ≥ τ + 2n̄+ 2g.

(7.78)

Using the definition of ỹ∗ given in (7.34), and changing the range of t slightly in order to
ensure that the index on w is greater than or equal to τ , then it follows that there exists a
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constant γ6 such that

∥∥∥φ̄(t)
∥∥∥ ≤ γ6λ

t−τ‖ψ̄(τ + n̄+ g)‖+ γ6

t−1∑
j=τ

λt−j−1(|w(j)|+ |y∗(j + 1)|),

t ≥ τ + 2n̄+ 2g + 1. (7.79)

We now want to have a bound on ‖ψ̄(τ + n̄+ g)‖ in terms of ‖φ̄(τ + n̄+ g)‖ and then obtain
a bound in terms of ‖φ̄(τ)‖. From the definition of ψ̄(t) and definition of the auxiliary
input v(·), we see that ψ̄(t) consists of y(t)− y∗(t), y(t− 1)− y∗(t− 1), . . . , y(t− n̄− g +
1)− y∗(t− n̄− g + 1) and weighted sums of u(t), u(t− 1), . . . , u(t− n̄− g + 1); so by the
definition of φ̄(·) we observe that there exists a constant γ7 such that

‖ψ̄(t)‖ ≤ γ7‖φ̄(t)‖+
n̄+g−1∑
j=0
|y∗(t− j)|. (7.80)

Applying this to (7.79), we see that there exists a constant γ8 so that

∥∥∥φ̄(t)
∥∥∥ ≤ γ8λ

t−τ‖φ̄(τ + n̄+ g)‖+ γ8

t−1∑
j=τ

λt−j−1(|w(j)|+ |y∗(j + 1)|),

t ≥ τ + 2n̄+ 2g + 1. (7.81)

We now obtain a bound on ‖φ̄(τ + n̄ + g)‖ in terms of ‖φ̄(τ)‖ utilizing Lemma 7.2 with
p = n̄+ g. We conclude that there exists γ9 such that

∥∥∥φ̄(t)
∥∥∥ ≤ γ9λ

t−τ‖φ̄(τ)‖+ γ9

τ+n̄+g−1∑
j=τ

|ỹ∗(j)|+ γ9

t−1∑
j=τ

λt−j−1(|w(j)|+ |y∗(j + 1)|),

t ≥ τ + 2n̄+ 2g + 1. (7.82)

We can obtain a bound in terms of only ỹ∗ using the definition in (7.34); after manipulation
we conclude that there exists a constant γ10 so that

∥∥∥φ̄(t)
∥∥∥ ≤ γ10λ

t−τ‖φ̄(τ)‖+ γ10

t−1∑
j=τ

λt−j−1(|w(j)|+ |ỹ∗(j + 1)|),

t ≥ τ + 2n̄+ 2g + 1. (7.83)

Finally, we will use Lemma 7.2 to get the desired bound for t ∈ [τ, τ + 2n̄+ 2g]: there
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exists a constant γ11 such that

‖φ̄(t)‖ ≤ γ11λ
t−τ‖φ̄(τ)‖+

t−1∑
j=τ

γ11λ
t−j−1(|w(j)|+ |ỹ∗(j + 1)|),

τ + 2n̄+ 2g ≥ t > τ. (7.84)

Combining this bound with the bound in (7.83) we obtain the desired bound for the whole
timeline: there exists a constant γ̄ so that

∥∥∥φ̄(t)
∥∥∥ ≤ γ̄λt−τ‖φ̄(τ)‖+ γ̄

t−1∑
j=τ

λt−j−1(|w(j)|+ |ỹ∗(j + 1)|), t > τ. (7.85)

As τ ≥ t0 is arbitrary, this concludes the proof of Part i).
Step 4: Proving asymptotic tracking.

Observe that if y∗ and w satisfy Q(z−1)Y ∗(z) = 0 and Q(z−1)W (z) = 0, then from the
definition of W̄ (z) in (7.7) we have w̄(t) = 0. So from (7.68) and the definition of ψ̄, we see
that

|ε(t)| ≤ ‖ψ̄(t)‖ ≤ cλt−t0‖ψ̄(t0)‖, t ≥ t0.

Using (7.80) to obtain a bound on ‖ψ̄(t0)‖, we obtain the desired bound on the tracking
error. �

7.5 Robustness Results

To proceed, we consider a time-varying version of the plant (7.1). In order to apply the
results of Chapter 2, we would like the plant model to incorporate the vector φ̄(t) regardless
of the value of n ∈ {1, 2, . . . , n̄}, so we will pad θ with zeros in the obvious spots and then
write the time-varying version of plant (7.1) as

y(t+ 1) = θ(t)>φ̄(t) + w(t), t ∈ Z; (7.86)
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we define Θn ⊂ R2(n̄+g) to represent the padded elements of Θn:

Θn :=





a1
...
an

0n̄+g−n
b1
...
bn

0n̄+g−n


∈ R2(n̄+g) : θ ∈ Θn



,

and define
Θ :=

n̄⋃
n=1

Θn,

which is clearly compact.
We now consider the time-varying plant (7.86) with the term d∆(t) ∈ R added to

represent the unmodelled dynamics:

y(t+ 1) = θ(t)>φ̄(t) + w(t) + d∆(t), t ∈ Z. (7.87)

As discussed in Chapter 2, we assume that d∆ satisfies

w(t+ 1) = βw(t) + β
∥∥∥φ̄(t)

∥∥∥ , w(t0) = w0 (7.88a)

|d∆(t)| ≤ µw(t) + µ
∥∥∥φ̄(t)

∥∥∥ , t ≥ t0. (7.88b)

Theorem 7.2. Suppose that the adaptive controller (7.18), (7.23)–(7.29) is applied
to the time-varying plant (7.87) with d∆ satisfying (7.88). Then for every δ ∈ (0,∞],
N ≥ 2n̄+ g, β ∈ (0, 1) and c̄0 ≥ 0, there exist ε̄ > 0, µ > 0, λ̃ ∈ (β, 1) and γ̃ > 0 such
that for every t0 ∈ Z, φ̄(t0) ∈ R2(n̄+g), σ0 ∈ I∗, θ ∈ S

(
Θ, c̄0, ε̄

)
, θ̂i(t0) ∈ Si (i ∈ I∗),

and w, y∗ ∈ `∞, the following holds:∥∥∥∥∥
[
φ̄(t)
w(t)

]∥∥∥∥∥ ≤ γ̃λ̃t−t0
∥∥∥∥∥
[
φ̄(t0)
w0

]∥∥∥∥∥+
t−1∑
j=t0

γ̃λ̃t−j−1(|w(j)|+ |ỹ∗(j + 1)|), t ≥ t0.

Proof of Theorem 7.2. We observe here that the plant (7.1) and the controller (7.18),
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(7.23)–(7.29) fit into the paradigm of Chapter 2: we set

ϑ(t) = φ̄(t),
f(ϑ(·)) = φ̄(·),

z(t) = ∅,

θ̂(t) =


θ̂1(t)
θ̂2(t)
...

θ̂m(t)

 ,
r(t) = ỹ∗(t+ 1),

Ω = S1 × S2 × · · · × Sm.

In Theorem 7.1 it is proven the controller (7.18), (7.23)–(7.29) provides a convolution bound
for (7.1). Then, by Theorems 2.2, 2.2 and 2.3 we immediately see that the same is true in
the presence of time-variation and/or unmodelled dynamics. �

7.6 Simulation Examples

7.6.1 Sinusoidal Tracking

In this example, we will show the efficiency of the proposed approach, mainly in dealing
with plant changes and noise. We have the upper bound on the order of the plant to be
n̄ = 2; consider the following family of plants:
(i) first-order plants with an uncertainty set of

Θ1 =
{[
a1
b1

]
∈ R2 : a1 ∈ [1, 3

2 ], b1 ∈ [−2,−1] ∪ [1, 2]
}

and (ii) second-order plants with an uncertainty set of

Θ2 =



a1
a2
b1
b2

 ∈ R4 : a1 = 3
2 , a2 ∈

{
−3
2 ,

3
2

}
, b1 ∈ [−1, 0], b2 ∈ [−5,−3]

 .
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It is obvious that each of the sets above is compact as required; also, the coprimeness
requirement is satisfied. You can see that all potential models are unstable. Also, the
2nd-order models are all nonminimum phase.

The goal is to track reference signals of frequency π
25 : so we set

Q(z−1) = 1− 2 cos( π25)z−1 + z−2,

i.e.
q1 = 2 cos( π25), q2 = −1, g = 2.

Observe that 2nd-order plant models have a real zero that can lie in [3,∞), i.e. the associated
B(z−1) and Q(z−1) are coprime as required. Next, with n ∈ {1, 2} we use the definition in
(7.11) to construct the uncertainty sets of the associated auxiliary plant:

Θ̃1 =
{[
ā1 ā2 ā3 b1

]>
∈ R4 : ā1 ∈ [1 + q1,

3
2 + q1], ā2 ∈ [q2 − 3q1

2 , q2 − q1], ā3 ∈ [−q2,−3q2
2 ],

b1 ∈ [−2,−1] ∪ [1, 2]
}
,

Θ̃2 =
{[
ā1 ā2 ā3 ā4 b1 b2

]>
∈ R6 : ā1 = 3

2 + q1,

(ā2, ā3, ā4) ∈
{(
q2 + 3

2(1− q1),−q2 − 3q1
2 ,−

3q2
2

)
,
(
q2 + 3

2(q1 − 1),−q2 + 3q1
2 ,

3q2
2

)}
,

b1 ∈ [−1, 0], b2 ∈ [−5,−3]
}

;

clearly these sets are compact. We see that Θ̃1 and Θ̃2 are not convex; the convex hull of
each could violate the coprimeness requirement; for example notice that the convex hull of
Θ̃1 includes the case of b1 = 0, which corresponds to a non-stabilizable system, violating
the coprimeness assumption. For each of Θ̃1 and Θ̃2, we will need a set of compact and
convex sets so that their union contain Θ̃1 and Θ̃2 respectively and satisfy the coprimeness
requirement. There is a natural choice: define

S1 =
{[
ā1 ā2 ā3 ā4 b1 b2

]>
∈ R6 : ā1 = 3

2 + q1, ā2 = q2 + 3
2(1− q1),

ā3 = −q2 − 3q1
2 , ā4 = −3q2

2 , b1 ∈ [−1, 0], b2 ∈ [−5,−3]
}
,
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S2 =
{[
ā1 ā2 ā3 ā4 b1 b2

]>
∈ R6 : ā1 = 3

2 + q1, ā2 = q2 + 3
2(q1 − 1),

ā3 = −q2 + 3q1
2 , ā4 = 3q2

2 , b1 ∈ [−1, 0], b2 ∈ [−5,−3]
}
,

S3 =
{[
ā1 ā2 ā3 b1

]>
∈ R4 : ā1 ∈ [1 + q1,

3
2 + q1], ā2 ∈ [q2 − 3q1

2 , q2 − q1], ā3 ∈ [−q2,−3q2
2 ],

b1 ∈ [−2,−1]
}
,

S4 =
{[
ā1 ā2 ā3 b1

]>
∈ R4 : ā1 ∈ [1 + q1,

3
2 + q1], ā2 ∈ [q2 − 3q1

2 , q2 − q1], ā3 ∈ [−q2,−3q2
2 ],

b1 ∈ [1, 2]
}

;

clearly Θ̃1 ⊂ S3 ∪ S4 and Θ̃2 ⊂ S1 ∪ S2. The auxiliary plant associated with the 2nd-order
plant models has potential poles of either complex ones, or real ones of values 2.186 or
−0.686, while it has a zero that lies in [3,∞); this means that the coprimeness requirement
is satisfied as well. So we are going to estimate parameters using 4 parallel estimators;
however, we see that for S1 and S2, each has only one value for parameters ā1, ā2, ā3 and
ā4, which means that the estimation of those parameters is trivial.

For this simulation, we set the plant to

y(t+ 1) =


3
2

[
y(t)− y(t− 1)

]
− 3

4u(t)− 4u(t− 1), t ≤ 500

−3
2

[
y(t) + u(t)

]
, t > 500.

We set the reference signal to
y∗(t) = 2 sin( π25t)

and the noise to
w(t) =

{
0.05 cos(45t), 250 ≤ t < 750
0 otherwise.

We will apply the proposed controller (7.18) and (7.23)–(7.29); we choose N = 6 and
δ =∞. We set the plant initial conditions to y(0) = y(−1) = y(−2) = y(−3) = 1.75 and
u(0) = u(−1) = u(−2) = u(−3) = 0; we also set

θ̂1(0) =
[

3
2 + q1 q2 + 3

2(1− q1) −q2 − 3q1
2 −3q2

2 −1
2 −4.5

]>
,
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θ̂2(0) =
[

3
2 + q1 q2 + 3

2(q1 − 1) −q2 + 3q1
2

3q2
2 −1

2 −4.5
]>
,

θ̂3(0) =
[
q1 + 1 1.25 1

2 −2
]>
,

θ̂4(0) =
[
q1 + 1 1.25 1

2 2
]>
,

and σ0 = 4. The results are in Fig. 7.3. We see that the controller provides good tracking
performance; while performance degrades temporarily when noise is added and when the
plant change happens, tracking recovers.

7.6.2 Set-Point Control

In this section, another simulation example is provided to show the application to set-
point control. Here, we illustrate the disturbance rejection property and tolerance to slow
time-variation of the approach. Consider the 2nd-order plant:

y(t+ 1) = a1(t)y(t) + a2(t)y(t− 1) + b1(t)u(t) + b2(t)u(t− 1) + w(t)

with parameters belonging to the uncertainty sets Θ1 = ∅ and

Θ2 =



a1
a2
b1
b2

 ∈ R4 : a1 ∈ [−2, 0], a2 ∈ [−3,−1], b1 ∈ [−1, 0], b2 ∈ [−5,−3] ∪ [3, 5]

 ,

i.e. the order is known in this case. Hence, every admissible model is unstable and non-
minimum phase, which makes this plant challenging to control; it has two complex unstable
poles together with a zero that can lie in [3,∞). It is also obvious to see that Θ2 is not a
convex set; notice that the convex hull of it includes the case of having b1 = b2 = 0, which
corresponds to a non-stabilizable system, violating the coprimeness assumption. So, we
apply the proposed approach in this chapter.

With Q(z−1) = 1− z−1, i.e.
q1 = 1, g = 1,

we define the set Θ̃2 by (7.11); so we will be estimating the parameters of the auxiliary
plant: θ∗(t) =

[
ā1(t) ā2(t) ā3(t) b1(t) b2(t)

]>
∈ Θ̃2. We know that the set Θ̃2 is also

compact and satisfies the coprimeness requirement; we will need to find a set of compact
and convex sets that their union contains Θ̃2 and that will also satisfy the coprimeness
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Figure 7.3: The upper plot shows both the reference (dashed) and the output (solid); the next
plot shows the plant control input; the bottom plot shows the switching signal (solid) and the
correct index (dashed).
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requirement. We define

S1 =




ā1
ā2
ā3
b1
b2

 ∈ R
5 : ā1 ∈ [−1, 1], ā2 ∈ [−3, 1], ā3 ∈ [1, 3], b1 ∈ [−1, 0], b2 ∈ [−5,−3]


,

S2 =




ā1
ā2
ā3
b1
b2

 ∈ R
5 : ā1 ∈ [−1, 1], ā2 ∈ [−3, 1], ā3 ∈ [1, 3], b1 ∈ [−1, 0], b2 ∈ [3, 5]


.

Each of the sets S1 and S2 is a hyper-rectangle, which is easy to project onto; we easily
see that Θ̃2 ⊂ S1 ∪ S2 . It can be verified that each of S1 and S2 contain models that are
coprime, as desired.

For this simulation we set

a1(t) = −1
2 ,

a2(t) = −2 + 1
2 cos

(
1

100t
)
,

b1(t) = −1
2 −

1
2 sin

(
1

175t
)
,

b2(t) = −4.

We will apply the proposed controller (7.18) and (7.23)–(7.29); we choose N = 5 and
δ = s̄ ≈ 6.7. We set the reference y∗ to be a square wave of magnitude 2 and period 350,
and initial condition y(0) = y(−1) = y(−2) = 2 and u(0) = u(−1) = u(−2) = 0; we also
set θ̂1(0) =

[
0 −1 2 −1

2 −5
]>
, θ̂2(0) =

[
0 −1 2 −1

2 5
]>

and σ0 = 2. We set the
disturbance to be of a constant magnitude: |w(t)| = 1

2 , but with its sign changing every 250
steps. Figure 7.4 displays the results. We see that the controller does a good job of tracking
even when parameters are time-varying; the closed-loop system experiences some transient
behavior when the set-point or disturbance change signs, but the tracking recovers quickly.

Remark 7.11. We can also compare the performance here with that which arises when we
use the classical estimator (3.4) as part of the adaptive controller; we end up with the same
sort of result as in Example 2 of the simulation section of Chapter 4, namely a degradation
in performance.
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Figure 7.4: The top plot shows both the reference (dashed) and the output (solid); the middle
plot shows the disturbance w; the bottom plot shows the switching signal (solid) and the correct
index (dashed).
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7.7 Conclusion

In this chapter, we have considered the problem of tracking for a discrete-time plant with
unknown order; we assume knowledge of an upper bound on the order, and that the
uncertainty set of parameters for each admissible order lies in a compact set, subject to a
coprimeness requirement. Rather than directly estimating the plant parameters, we instead
estimate the parameters of a suitably defined auxiliary plant model. We use compactness
to prove that for each admissible order, the uncertainty set is contained in a finite union of
convex sets; we use a projection-algorithm based estimator for each convex set. At each
point in time, we employ a switching algorithm to determine which model and parameter
estimates are used in the control law. We prove that this adaptive controller guarantees
desirable linear-like closed-loop behavior: exponential stability, a bounded noise gain, and
convolution bounds on the input-output behavior, as well as asymptotic tracking for certain
classes of reference and noise signals; we do not assume that the switching stops.
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Chapter 8

Conclusion

8.1 Summary of Results

We have developed an approach to multi-model adaptive control that guarantees linear-like
closed-loop behavior: exponential stability, a bounded noise gain and a convolution bound
on the exogenous inputs. In contrast, usually in the adaptive control literature, only
asymptotic stability and a bounded-noise bounded-state property is proven, although there
are exceptions; furthermore, the only results which yield a convolution bound are Miller
[43], Miller and Shahab [46], Miller and Shahab [48]. In earlier work on this approach,
namely in the aforementioned papers, the requirement of convexity on the set of uncertainty
plays a crucial role in obtaining these desirable closed-loop properties. Here we have shown
that we can prove the same linear-like properties without the convexity assumption: the
main idea is to use multiple estimators together with a switching algorithm. The proposed
discrete-time adaptive control approach includes: 1) covering the compact set of admissible
parameters by a finite number of convex sets, 2) designing a parameter estimator based on
the original Projection Algorithm for each convex set, and 3) using a switching algorithm
to switch between the corresponding controllers.

First, we have proven a general result that exponential stability and a linear-like
convolution bound on the closed-loop behavior can be leveraged to show tolerance to a
degree of time-variations and unmodelled dynamics, i.e. such a bound guarantees robustness,
which is proven in a modular fashion. After that, we have proven, in various contexts and
with a focus on non-convex but compact sets of uncertainty, that our approach provides
the desirable aforementioned linear-like properties. First we consider the simplest case of
adaptive control of first-order linear plants. We then extend the approach to a special class
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of nonlinear plants (which have stable zero dynamics); we consider both cases of a known
control/input gain sign and an unknown one. Afterwards, we turn to adaptive control of
possibly non-minimum phase LTI plants; we first consider the stabilization problem given
two convex sets of uncertainty. Finally, we turn to the more difficult problem of tracking
the sum of a finite number of sinusoids of known frequencies subject to an unknown plant
order and a general compact set of uncertainty.

8.2 Some Limitations

Here we discuss some limitations of our approach. You can see that in both the context
of the one-step-ahead control laws of Chapter 4 and Chapter 5, and the context of the
pole-placement based control laws of Chapter 6 and Chapter 7, we rely heavily on the
deadbeat nature of the approach to provide the desirable closed-loop properties. One
drawback is that this may incur larger transient control actions, which can be undesirable
for some practical applications. A way around this is to investigate how to extend the
approach to less demanding control law designs.

We have shown asymptotic tracking results for a general reference signal in the nonlinear
systems setting when using a single estimator (Chapter 5), and for a reference signal which
is a sum of sinusoids of known frequencies in the LTI plants setting when using multiple
estimators (Chapter 7). However, we were not able to prove asymptotic tracking of general
reference signals when using multiple estimators. One possible reason is that our proposed
switching mechanism, which includes memoryless performance signals, is not proven to
eventually stop even in the absence of noise; however, in all of our simulations, switching
does stop and tracking is achieved. While the memoryless performance signals played a role
in obtaining desirable closed-loop properties, one expects there exists a careful choice of a
performance signal with memory that achieves tracking as well as the desirable linear-like
closed behavior.

Observe that in the nonlinear setting, the approach considers only a special family of
nonlinear systems. As mentioned earlier, this work can be considered a first step towards
obtaining desirable linear-like closed-loop properties in the context of adaptive control of a
more general class of discrete-time nonlinear systems.

8.3 Future Directions

Finally, we provide some possible avenues of research in relation to the results of this thesis.
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• An obvious area is to extend the results to the continuous-time setting. The difficulty
here is that the estimator often look much different, and in the cases which look
similar, there are technical issues about existence and uniqueness of the solutions to
the associated differential equation.

• As has been alluded to in the limitations section, another aspect worth studying is
related to controller design. We would like to further investigate the performance of
the transient behavior which would be helpful for potential design issues.

• Also related to the previous point, one would like to extend the One-Step-Ahead
Adaptive Control approach to the more general Model Reference Adaptive Control
(MRAC) problem; because we are seeking stronger closed-loop properties than what
is normally proven in the literature, more detailed analysis is expected in dealing with
the MRAC setup.

• Discussed in the limitations section, we would like to investigate more sophisticated
switching algorithms while aiming for the same desirable closed-loop properties;
approaches to switching which use performance signals with memory merits more
study.

• We would like also to relax the coprimeness requirement in the pole-placement
approach of Chapter 6 and Chapter 7 to one requiring that all common zeros be in
the open unit disk. Hence, we would like to relax Assumption 7.1 to one having a
single compact set in the highest dimension.

• Of course, an area of interest is potential practical applications; one example is dealing
with sensor and/or actuator failures (with the approach suitably modified into the
multi-input multi-output paradigm).

187



References

[1] B. D. O. Anderson, T. S. Brinsmead, F. De Bruyne, J. P. Hespanha, D. Liberzon, and
A. S. Morse, “Multiple model adaptive control. part 1: Finite controller coverings,”
International Journal of Robust and Nonlinear Control, vol. 10, no. 11-12, pp. 909–929,
Sep. 2000.

[2] B. D. O. Anderson, T. Brinsmead, D. Liberzon, and A. S. Morse, “Multiple model
adaptive control with safe switching,” International Journal of Adaptive Control and
Signal Processing, vol. 15, no. 5, pp. 445–470, 2001.

[3] B. D. O. Anderson and C. R. Johnson, “Exponential convergence of adaptive identifi-
cation and control algorithms,” Automatica, vol. 18, no. 1, pp. 1 –13, 1982.

[4] S. Baldi, P. A. Ioannou, and E. Mosca, “Multiple Model Adaptive Mixing Control:
The Discrete-Time Case,” IEEE Transactions on Automatic Control, vol. 57, no. 4,
pp. 1040–1045, Apr. 2012.

[5] S. Baldi, G. Battistelli, E. Mosca, and P. Tesi, “Multi-model unfalsified adaptive
switching supervisory control,” Automatica, vol. 46, no. 2, pp. 249–259, 2010.

[6] S. Baldi and P. A. Ioannou, “Stability Margins in Adaptive Mixing Control Via a
Lyapunov-Based Switching Criterion,” IEEE Transactions on Automatic Control,
vol. 61, no. 5, pp. 1194–1207, May 2016.

[7] S. Baldi, P. A. Ioannou, and E. B. Kosmatopoulos, “Adaptive mixing control with
multiple estimators,” International Journal of Adaptive Control and Signal Processing,
vol. 26, no. 8, pp. 800–820, Aug. 2012.

[8] G. Battistelli, E. Mosca, M. G. Safonov, and P. Tesi, “Stability of unfalsified adaptive
switching control in noisy environments,” IEEE Transactions on Automatic Control,
vol. 55, no. 10, pp. 2424–2429, Oct. 2010.

[9] G. Battistelli, J. P. Hespanha, E. Mosca, and P. Tesi, “Model-Free Adaptive Switching
Control of Time-Varying Plants,” IEEE Transactions on Automatic Control, vol. 58,
no. 5, pp. 1208–1220, May 2013.

188



[10] G. Battistelli, E. Mosca, and P. Tesi, “Adaptive memory in multi-model switching
control of uncertain plants,” Automatica, vol. 50, no. 3, pp. 874–882, 2014.

[11] D. Borrelli, A. S. Morse, and E. Mosca, “Discrete-time supervisory control of families of
two-degrees-of-freedom linear set-point controllers,” IEEE Transactions on Automatic
Control, vol. 44, no. 1, pp. 178–181, Jan. 1999.

[12] F.-C. Chen and H. K. Khalil, “Adaptive control of a class of nonlinear discrete-time
systems using neural networks,” IEEE Transactions on Automatic Control, vol. 40,
no. 5, pp. 791–801, May 1995.

[13] S. Dai, C. Yang, S. S. Ge, and T. H. Lee, “Robust adaptive output feedback control of
a class of discrete-time nonlinear systems with nonlinear uncertainties and unknown
control directions,” International Journal of Robust and Nonlinear Control, vol. 23,
no. 13, pp. 1472–1495, Sep. 2013.

[14] C. Desoer, “Slowly varying discrete system xi+1 = Aixi,” Electronics Letters, vol. 6,
no. 11, pp. 339–340, May 1970.

[15] S. Fekri, M. Athans, and A. Pascoal, “Issues, progress and new results in robust
adaptive control,” International Journal of Adaptive Control and Signal Processing,
vol. 20, no. 10, pp. 519–579, Dec. 2006.

[16] A. Feuer and A. S. Morse, “Adaptive control of single-input, single-output linear
systems,” IEEE Transactions on Automatic Control, vol. 23, no. 4, pp. 557–569, Aug.
1978.

[17] M. Fu and B. Barmish, “Adaptive stabilization of linear systems via switching control,”
IEEE Transactions on Automatic Control, vol. 31, no. 12, pp. 1097–1103, Dec. 1986.

[18] S. S. Ge, C. Yang, S.-L. Dai, Z. Jiao, and T. H. Lee, “Robust adaptive control of a
class of nonlinear strict-feedback discrete-time systems with exact output tracking,”
Automatica, vol. 45, no. 11, pp. 2537 –2545, 2009.

[19] S. S. Ge, C. Yang, and T. H. Lee, “Adaptive robust control of a class of nonlinear
strict-feedback discrete-time systems with unknown control directions,” Systems &
Control Letters, vol. 57, no. 11, pp. 888 –895, 2008.

[20] G. C. Goodwin, P. Ramadge, and P. Caines, “Discrete-time multivariable adaptive
control,” IEEE Transactions on Automatic Control, vol. 25, no. 3, pp. 449–456, Jun.
1980.

[21] G. C. Goodwin and K. S. Sin, Adaptive Filtering Prediction and Control. New York,
NY, USA: Dover Publications, Inc., 1984.

189



[22] L. Guo, “On critical stability of discrete-time adaptive nonlinear control,” IEEE
Transactions on Automatic Control, vol. 42, no. 11, pp. 1488–1499, Nov. 1997.

[23] Z. Han and K. S. Narendra, “New Concepts in Adaptive Control Using Multiple
Models,” IEEE Transactions on Automatic Control, vol. 57, no. 1, pp. 78–89, Jan.
2012.

[24] J. P. Hespanha and A. S. Morse, “Stability of switched systems with average dwell-
time,” in Proceedings of the 38th IEEE Conference on Decision and Control, vol. 3,
Dec. 1999, 2655–2660 vol.3.

[25] J. P. Hespanha, D. Liberzon, A. S. Morse, B. D. O. Anderson, T. S. Brinsmead, and
F. De Bruyne, “Multiple model adaptive control. Part 2: switching,” International
Journal of Robust and Nonlinear Control, vol. 11, no. 5, pp. 479–496, Apr. 2001.

[26] J. P. Hespanha, D. Liberzon, and A. S. Morse, “Hysteresis-based switching algorithms
for supervisory control of uncertain systems,” Automatica, vol. 39, no. 2, pp. 263–272,
Feb. 2003.

[27] J. P. Hespanha, D. Liberzon, and A. S. Morse, “Overcoming the limitations of adaptive
control by means of logic-based switching,” Systems & Control Letters, vol. 49, no. 1,
pp. 49–65, May 2003.

[28] J. P. Hespanha and A. S. Morse, “Scale-independent hysteresis switching,” in Hybrid
Systems: Computation and Control, F. W. Vaandrager and J. H. van Schuppen, Eds.,
Berlin, Heidelberg: Springer Berlin Heidelberg, 1999, pp. 117–122.

[29] P. A. Ioannou and K. S. Tsakalis, “A robust direct adaptive controller,” IEEE
Transactions on Automatic Control, vol. 31, no. 11, pp. 1033–1043, Nov. 1986.

[30] P. A. Ioannou and B. Fidan, Adaptive control tutorial. Society for Industrial and
Applied Mathematics, 2006.

[31] P. A. Ioannou and J. Sun, Robust Adaptive Control. Upper Saddle River, NJ, USA:
Prentice-Hall, Inc., 1995.

[32] I. Kanellakopoulos, “A discrete-time adaptive nonlinear system,” IEEE Transactions
on Automatic Control, vol. 39, no. 11, pp. 2362–2365, Nov. 1994.

[33] S. Kersting and M. Buss, “How to systematically distribute candidate models and
robust controllers in multiple-model adaptive control: A coverage control approach,”
IEEE Transactions on Automatic Control, vol. 63, no. 4, pp. 1075–1089, Apr. 2018.

[34] G. Kreisselmeier and B. D. O. Anderson, “Robust model reference adaptive control,”
IEEE Transactions on Automatic Control, vol. 31, no. 2, pp. 127–133, Feb. 1986.

190



[35] G. Kreisselmeier, “Adaptive control of a class of slowly time-varying plants,” Systems
& Control Letters, vol. 8, no. 2, pp. 97–103, Dec. 1986.

[36] M. Kuipers and P. A. Ioannou, “Multiple Model Adaptive Control With Mixing,”
IEEE Transactions on Automatic Control, vol. 55, no. 8, pp. 1822–1836, Aug. 2010.

[37] I. Landau, R. Lozano, M. M’Saad, and A. Karimi, Adaptive Control: Algorithms,
Analysis and Applications, ser. Communications and Control Engineering. London:
Springer, 2011.

[38] Y. Li and H.-F. Chen, “Robust adaptive pole placement for linear time-varying
systems,” IEEE Transactions on Automatic Control, vol. 41, no. 5, pp. 714–719, May
1996.

[39] B. Mårtensson, “The order of any stabilizing regulator is sufficient a priori information
for adaptive stabilization,” Systems & Control Letters, vol. 6, no. 2, pp. 87–91, Jul.
1985.

[40] R. H. Middleton and G. C. Goodwin, “Adaptive control of time-varying linear systems,”
IEEE Transactions on Automatic Control, vol. 33, no. 2, pp. 150–155, 1988.

[41] R. H. Middleton, G. C. Goodwin, D. J. Hill, and D. Q. Mayne, “Design issues in
adaptive control,” IEEE Transactions on Automatic Control, vol. 33, no. 1, pp. 50–58,
Jan. 1988.

[42] D. E. Miller, “Adaptive stabilization using a nonlinear time-varying controller,” IEEE
Transactions on Automatic Control, vol. 39, no. 7, pp. 1347–1359, Jul. 1994.

[43] D. E. Miller, “A parameter adaptive controller which provides exponential stability:
The first order case,” Systems & Control Letters, vol. 103, pp. 23–31, May 2017.

[44] D. E. Miller, “Classical discrete-time adaptive control revisited: Exponential stabiliza-
tion,” in 2017 IEEE Conference on Control Technology and Applications (CCTA),
IEEE, Aug. 2017, pp. 1975–1980.

[45] D. E. Miller and E. J. Davison, “An adaptive controller which provides Lyapunov
stability,” IEEE Transactions on Automatic Control, vol. 34, no. 6, pp. 599–609, Jun.
1989.

[46] D. E. Miller and M. T. Shahab, “Classical pole placement adaptive control revisited:
Linear-like convolution bounds and exponential stability,” Mathematics of Control,
Signals, and Systems, vol. 30, no. 4, p. 19, Nov. 2018.

[47] D. E. Miller and M. T. Shahab, “Classical d-step-ahead adaptive control revisited:
Linear-like convolution bounds and exponential stability,” in 2019 American Control
Conference, Jul. 2019, pp. 417–422.

191



[48] D. E. Miller and M. T. Shahab, “Adaptive tracking with exponential stability and
convolution bounds using vigilant estimation,” Mathematics of Control, Signals, and
Systems, Apr. 2020.

[49] A. S. Morse, “Global stability of parameter-adaptive control systems,” IEEE Trans-
actions on Automatic Control, vol. 25, no. 3, pp. 433–439, Jun. 1980.

[50] A. S. Morse, “Supervisory control of families of linear set-point controllers–Part 1:
Exact matching,” IEEE Transactions on Automatic Control, vol. 41, no. 10, pp. 1413–
1431, 1996.

[51] A. S. Morse, “Supervisory Control of Families of Linear Set-Point Controllers–Part 2:
Robustness,” IEEE Transactions on Automatic Control, vol. 42, no. 11, pp. 1500–1515,
1997.

[52] A. S. Morse, D. Q. Mayne, and G. C. Goodwin, “Applications of hysteresis switching
in parameter adaptive control,” IEEE Transactions on Automatic Control, vol. 37,
no. 9, pp. 1343–1354, 1992.

[53] E. Mosca, Optimal, predictive, and adaptive control. Upper Saddle River, NJ, USA:
Prentice-Hall, Inc., 1995.

[54] D. Mudgett and A. S. Morse, “Adaptive stabilization of linear systems with unknown
high-frequency gains,” IEEE Transactions on Automatic Control, vol. 30, no. 6,
pp. 549–554, Jun. 1985.

[55] S. Naik, P. Kumar, and B. Ydstie, “Robust continuous-time adaptive control by
parameter projection,” IEEE Transactions on Automatic Control, vol. 37, no. 2,
pp. 182–197, 1992.

[56] K. S. Narendra and J. Balakrishnan, “Improving transient response of adaptive control
systems using multiple models and switching,” IEEE Transactions on Automatic
Control, vol. 39, no. 9, pp. 1861–1866, 1994.

[57] K. S. Narendra and J. Balakrishnan, “Adaptive control using multiple models,” IEEE
Transactions on Automatic Control, vol. 42, no. 2, pp. 171–187, 1997.

[58] K. S. Narendra and Z. Han, “A new approach to adaptive control using multiple
models,” International Journal of Adaptive Control and Signal Processing, vol. 26,
no. 8, pp. 778–799, Aug. 2012.

[59] K. S. Narendra and Y.-H. Lin, “Stable discrete adaptive control,” IEEE Transactions
on Automatic Control, vol. 25, no. 3, pp. 456–461, Jun. 1980.

192



[60] K. S. Narendra, Y.-H. Lin, and L. Valavani, “Stable adaptive controller design, part II:
Proof of stability,” IEEE Transactions on Automatic Control, vol. 25, no. 3, pp. 440–
448, Jun. 1980.

[61] K. S. Narendra and C. Xiang, “Adaptive control of discrete-time systems using
multiple models,” IEEE Transactions on Automatic Control, vol. 45, no. 9, pp. 1669–
1686, 2000.

[62] R. Nussbaum, “Some remarks on a conjecture in parameter adaptive control,” Systems
& Control Letters, vol. 3, no. 5, pp. 243–246, Nov. 1983.

[63] F. M. Pait and F. Kassab, “On a class of switched, robustly stable, adaptive systems,”
International Journal of Adaptive Control and Signal Processing, vol. 15, no. 3,
pp. 213–238, May 2001.

[64] J.-B. Pomet and L. Praly, “Adaptive nonlinear regulation: Estimation from the
lyapunov equation,” IEEE Transactions on Automatic Control, vol. 37, no. 6, pp. 729–
740, Jun. 1992.

[65] C. Rohrs, L. Valavani, M. Athans, and G. Stein, “Robustness of continuous-time adap-
tive control algorithms in the presence of unmodeled dynamics,” IEEE Transactions
on Automatic Control, vol. 30, no. 9, pp. 881–889, Sep. 1985.

[66] H. L. Royden, Real analysis. New York, NY, USA: Macmillan, 1988.
[67] M. G. Safonov and T.-C. Tsao, “The unfalsified control concept and learning,” IEEE

Transactions on Automatic Control, vol. 42, no. 6, pp. 843–847, Jun. 1997.
[68] M. T. Shahab and D. E. Miller, “Multi-estimator based adaptive control which

provides exponential stability: The first-order case,” in 2018 IEEE Conference on
Decision and Control, Dec. 2018, pp. 2223–2228.

[69] M. T. Shahab and D. E. Miller, “Adaptive Set-Point Regulation using Multiple
Estimators,” in 2019 IEEE Conference on Decision and Control, Dec. 2019, pp. 84–
89.

[70] M. T. Shahab and D. E. Miller, “Exponential stability for adaptive control of a class
of first-order nonlinear systems,” IFAC-PapersOnLine, vol. 52, no. 29, pp. 168 –173,
2019, 13th IFAC Workshop on Adaptive and Learning Control Systems ALCOS 2019.

[71] M. T. Shahab and D. E. Miller, “Asymptotic Tracking and Linear-like Behavior Using
Multi-Model Adaptive Control,” IEEE Transactions on Automatic Control, 2020,
(Submitted, under revision).

193



[72] M. T. Shahab and D. E. Miller, “The Inherent Robustness of a New Approach to
Adaptive Control,” in 2020 IEEE Conference on Control Technology and Applications
(CCTA), (Submitted), 2020.

[73] Y. Song and J. W. Grizzle, “Adaptive output-feedback control of a class of discrete-
time nonlinear systems,” in 1993 American Control Conference, Jun. 1993, pp. 1359–
1364.

[74] M. Stefanovic and M. G. Safonov, “Safe Adaptive Switching Control: Stability and
Convergence,” IEEE Transactions on Automatic Control, vol. 53, no. 9, pp. 2012–2021,
Oct. 2008.

[75] K. S. Tsakalis and P. A. Ioannou, “Adaptive control of linear time-varying plants: a
new model reference controller structure,” IEEE Transactions on Automatic Control,
vol. 34, no. 10, pp. 1038–1046, 1989.

[76] L. Vu and D. Liberzon, “Supervisory Control of Uncertain Linear Time-Varying
Systems,” IEEE Transactions on Automatic Control, vol. 56, no. 1, pp. 27–42, Jan.
2011.

[77] C. Wen, “A robust adaptive controller with minimal modifications for discrete time-
varying systems,” IEEE Transactions on Automatic Control, vol. 39, no. 5, pp. 987–
991, May 1994.

[78] C. Wen and D. J. Hill, “Global boundedness of discrete-time adaptive control just
using estimator projection,” Automatica, vol. 28, no. 6, pp. 1143–1157, Nov. 1992.

[79] J. C. Willems and G. I. Byrnes, “Global adaptive stabilization in the absence of
information on the sign of the high frequency gain,” in Analysis and Optimization of
Systems, Berlin/Heidelberg: Springer-Verlag, 1984, pp. 49–57.

[80] B. Ydstie, “Transient performance and robustness of direct adaptive control,” IEEE
Transactions on Automatic Control, vol. 37, no. 8, pp. 1091–1105, 1992.

[81] B. Ydstie, “Stability of discrete model reference adaptive control — revisited,” Systems
& Control Letters, vol. 13, no. 5, pp. 429 –438, 1989.

[82] G. Zames, “On the input-output stability of time-varying nonlinear feedback systems
Part one: Conditions derived using concepts of loop gain, conicity, and positivity,”
IEEE Transactions on Automatic Control, vol. 11, no. 2, pp. 228–238, Apr. 1966.

[83] Y. Zhang, W. H. Chen, and Y. C. Soh, “Improved robust backstepping adaptive
control for nonlinear discrete-time systems without overparameterization,” Automatica,
vol. 44, no. 3, pp. 864 –867, 2008.

194



[84] Y. Zhang, C. Wen, and Y. C. Soh, “Robust adaptive control of nonlinear discrete-time
systems by backstepping without overparameterization,” Automatica, vol. 37, no. 4,
pp. 551 –558, 2001.

[85] J. Zhao and I. Kanellakopoulos, “Active identification for discrete-time nonlinear
control. i. output-feedback systems,” IEEE Transactions on Automatic Control, vol. 47,
no. 2, pp. 210–224, Feb. 2002.

[86] J. Zhao and I. Kanellakopoulos, “Active identification for discrete-time nonlinear
control. ii. strict-feedback systems,” IEEE Transactions on Automatic Control, vol. 47,
no. 2, pp. 225–240, Feb. 2002.

[87] P. V. Zhivoglyadov, R. H. Middleton, and M. Fu, “Localization based switching
adaptive control for time-varying discrete-time systems,” IEEE Transactions on
Automatic Control, vol. 45, no. 4, pp. 752–755, Apr. 2000.

[88] P. V. Zhivoglyadov, R. H. Middleton, and M. Fu, “Adaptive stabilization of uncertain
discrete-time systems via switching control: the method of localization,” in Adaptive
Control Systems: Advanced Techniques for Practical Application, G. Feng and R.
Lozano, Eds., Oxford: Newnes, 1999.

[89] Q. Zhu, J.-X. Xu, S. Yang, and G.-D. Hu, “Adaptive backstepping repetitive learning
control design for nonlinear discrete-time systems with periodic uncertainties,” Inter-
national Journal of Adaptive Control and Signal Processing, vol. 29, no. 4, pp. 524–535,
2015.

195



APPENDICES

196



Appendix A

Pole-Placement using Polynomials:
Placing all Poles at the Origin

Here we briefly discuss, details about the pole-placement design process to be carried out
in solving (6.6) and (7.21) at every time step.

Existence of A Solution

Given the following polynomials associated with a plant

A(z−1) = a0 + a1z
−1 + · · ·+ anA−1z

−nA+1 + anAz
−nA

and
B(z−1) = b1z

−1 + b2z
−2 + · · ·+ bnB−1z

−nB+1 + bnBz
−nB ,

we want to design a strictly proper controller by choosing polynomials

L(z−1) = l0 + l1z
−1 + · · ·+ lnA−1z

−nL+1 + lnAz
−nL

and
P(z−1) = p1z

−1 + p2z
−2 + · · ·+ pnP−1z

−nP+1 + pnP z
−nP ,

so that to place all closed-loop poles at the origin, i.e. we want to satisfy the following
equation:

A(z−1)L(z−1) + B(z−1)P(z−1) = 1. (A.1)
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The following result presents the conditions on obtaining L(z−1) and P(z−1).

Theorem A.1 (Theorem 2.3.1 of Ioannou and Sun [31]). If polynomials a(z)
and b(z) are coprime and of degree na and nb, respectively, where na > nb, then for
any given arbitrary polynomial a∗(z) of degree na∗ ≥ na, the polynomial equation

a(z)l(z) + b(z)p(z) = a∗(z)

has a unique solution l(z) and p(z) whose degrees nl and np, respectively, satisfy the
constraints np < na, nl ≥ max {na∗ − na, nb − 1}.

To this end, if we define the following:

A′(z) := znAA(z−1),
B′(z) := znBB(z−1),
L′(z) := znLL(z−1),
P′(z) := znPP(z−1),

and nA∗ := max{nA + nL, nB + nP − 2}, observe that satisfying (A.1) is equivalent to
satisfying the following equation:

A′(z)L′(z) + B′(z)P′(z) = znA∗ .

Observe that polynomials A′(z), B′(z), L′(z) and P′(z) have degrees of

nA, nB − 1, nL and nP − 1,

respectively. This means that we have flexibility on the choices of nL and nP and therefore
nA∗ to meet the conditions of Theorem A.1; this flexibility is of course a special case because,
generally, in pole-placement design we do not necessarily place all poles at zero.

Examples:

• For the case of a known plant order and a stability objective, i.e. Chapter 6, we have
nA = nB = n and the the natural choices of nL = nP = n as well; so nA∗ = 2n. If we
check the conditions of Theorem A.1 we know that a(z) ≡ A′(z) and b(z) ≡ B′(z)
are coprime, and na ≡ n, nb ≡ n− 1. Then the choices of a∗(z) ≡ z2n, l(z) ≡ L′(z)
and p(z) ≡ P′(z) are appropriate as na∗ ≡ 2n, nl ≡ n and np ≡ n− 1.
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• For the case of a unknown plant order and tracking objective, i.e. Chapter 7, with
ni ∈ {1, 2, . . . , n̄}, we have nA = ni + g and nB = ni and the natural choices of
nL = ni and nP = ni + g; so we can choose nA∗ = 2ni + g. If we check the conditions
of Theorem A.1 we see that a(z) ≡ A′(z) and b(z) ≡ B′(z) are coprime, and
na ≡ ni + g, nb ≡ ni − 1. Then the choices of a∗(z) ≡ z2ni+g, l(z) ≡ L′(z) and
p(z) ≡ P′(z) are appropriate as na∗ ≡ 2ni + g, nl ≡ ni and np ≡ ni + g − 1.

Design Steps

Given polynomials A(z−1) and B(z−1) as defined in the previous section, and nL and nP cho-
sen appropriately, then we can construct the non-singular matrixM ∈ R(nL+nP+1)×(nL+nP+1):

M :=



a0 0 · · · 0 0 · · · 0
a1 a0 · · · 0 b1 · · · 0
... ... . . . ... ... . . . ...

anA−1 anA−2
. . . a0 bnB−1

. . . b1

anA anA−1
. . . a1 bnB

. . . ...
0 anA

. . . a2 0 . . . bnB−1
... 0 . . . ... ... . . . bnB... anA
0 0



;

︸ ︷︷ ︸
nL+1 columns

︸ ︷︷ ︸
nP columns

with nA∗ = max{nA + nL, nB + nP − 2}, define

α∗ := e1 ∈ RnA∗ ,
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so if we define the vector of the unknown coefficients of L(z−1) and P(z−1) as

k :=



l0
l1
...
lnL
p1
p2
...
pnP


,

then we can find the solution by calculating the following:

k = M−1α∗.
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Appendix B

Crude Bounds Proofs

Proof of Proposition 5.2. Fix p ≥ 0. Let t0 ∈ Z, t ≥ t0, X (t0) ∈ Rn, θ̂(t0) ∈ S, θ∗ ∈ S∗,
and v, w, y∗ ∈ `∞ be arbitrary.

From the definition of Y(t+ 1) it follows immediately that

‖Y(t+ 1)‖ ≤ ‖Y(t)‖+ |y(t+ 1)|. (B.1)

From (5.10) and (5.11) we obtain

|y(t+ 1)| ≤ ‖S∗‖‖φ(t)‖+ |w(t)|+ |v(t+ 1)|+ ‖S∗‖cϕ
n∑
q=1
|v(t− q + 1)|. (B.2)

From (5.21) and Assumptions 5.2, we obtain

|u(t)| ≤ cθ

(∥∥∥∥ ˆ̄θ(t)
∥∥∥∥ ∥∥∥ϕ(Y(t)

)∥∥∥+ |y∗(t+ 1)|
)

≤ cθ‖S‖‖ϕ
(
Y(t)

)
‖+ cθ|y∗(t+ 1)|

≤ cθcϕ‖S‖‖Y(t)‖+ cθ|y∗(t+ 1)|; (B.3)

we now combine this with (5.9) to obtain a bound on φ(t):

‖φ(t)‖ ≤ cϕ(1 + cθ‖S‖)‖Y(t)‖+ cθ|y∗(t+ 1)|.
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Substituting this bound into (B.2) and then combining with (B.1), we obtain

‖Y(t+ 1)‖ ≤ (1 + ‖S∗‖cϕ(1 + cθ‖S‖))︸ ︷︷ ︸
=:c1

‖Y(t)‖+ cθ‖S∗‖|y∗(t+ 1)|+

|w(t)|+ |v(t+ 1)|+ cϕ‖S∗‖
n∑
q=1
|v(t− q + 1)|; (B.4)

then using (5.13) and simplifying the above we end up with

‖Y(t+ 1)‖ ≤ c1‖Y(t)‖+ (cθ‖S∗‖+ (n+ 2)(1 + cϕ‖S∗‖))︸ ︷︷ ︸
=:c2

[|y∗(t+ 1)|+ |w̄(t)|]. (B.5)

Using the fact that c1, c2 ≥ 1, if we solve the above iteratively for p steps and define
γ1 := cp1c2, then we conclude that (5.24) holds. �

Proof of Proposition 6.2. Fix p ≥ 0. Let t0 ∈ Z, t ≥ t0, φ(t0) ∈ R2n, σ0 ∈ {1, 2}, N ≥ 1,
θ∗ ∈ S∗, θ̂i(t0) ∈ Si (i = 1, 2) and w ∈ `∞ be arbitrary.

From (6.1) we see that

|y(t+ 1)| ≤ s̄‖φ(t)‖+ |w(t)|.

From (6.13) and compactness (Assumption 6.1), we have that there exists a constant γ so
that

|u(t+ 1)| ≤ γ‖φ(t)‖.

From the definition of ‖φ(t+ 1)‖, we have that

‖φ(t+ 1)‖ ≤ ‖φ(t)‖+ |y(t+ 1)|+ |u(t+ 1)|.

Combining these three bounds, we end up with

‖φ(t+ 1)‖ ≤ (1 + s̄ + γ)︸ ︷︷ ︸
=:ā

‖φ(t)‖+ |w(t)|.

Solving iteratively, we have

‖φ(t+ p)‖ ≤ āp‖φ(t)‖+
p−1∑
j=0

āp−j−1|w(t+ j)|
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≤ āp‖φ(t)‖+ āp−1
p−1∑
j=0
|w(t+ j)|.

Put c̄ := āp to conclude the proof. �

Proof of Lemma 7.2. Fix p ≥ 0. Let n ∈ {1, 2, . . . , n̄} and θ ∈ Θn, t0 ∈ Z, t ≥ t0,
N ≥ 1, σ0 ∈ I∗, φ̄(t0) ∈ R2(n̄+g), θ̂i(t0) ∈ Si (i ∈ I∗) and w, y∗ ∈ `∞ be arbitrary.

Part (i): From the associated auxiliary plant (7.12) we see that

|ε(t+ 1)| ≤ ‖θ∗‖‖ψ∗(t)‖+ |w̄(t)| ≤ s̄‖ψ̄(t)‖+ |w̄(t)|.

From (7.25) and compactness, we have that there exists a constant γ1 so that

|v(t+ 1)| ≤ γ1‖ψ̄(t)‖. (B.6)

From the definition of ‖ψ̄(t+ 1)‖ given in (7.14), we have that

‖ψ̄(t+ 1)‖ ≤ ‖ψ̄(t)‖+ |ε(t+ 1)|+ |v(t+ 1)|.

Combining these three bounds, we end up with

‖ψ̄(t+ 1)‖ ≤ (1 + s̄ + γ1)︸ ︷︷ ︸
=:γ2

‖ψ̄(t)‖+ |w̄(t)|.

We solve this iteratively for p steps and put c̄1 := γp2 to conclude the proof of part (i).
Part (ii): First define γ3 := maxn∈{1,...,n̄} ‖Θn‖; from the plant equation (7.1) we obtain

|y(t+ 1)| ≤ ‖θ‖‖φ̄(t)‖+ |w(t)| ≤ γ3‖φ̄(t)‖+ |w(t)|.

From (7.26) we see that there exists a constant γ4 such that

|u(t+ 1)| ≤ |v(t+ 1)|+ γ4‖φ̄(t)‖.

From the definition of ‖φ̄(t+ 1)‖, we have that

‖φ̄(t+ 1)‖ ≤ ‖φ̄(t)‖+ |y(t+ 1)|+ |u(t+ 1)|.
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Combining these three bounds and (B.6), we end up with

‖φ̄(t+ 1)‖ ≤ (1 + γ3 + γ4)︸ ︷︷ ︸
=:γ5

‖φ̄(t)‖+ γ1|ψ̄(t)|+ |w(t)|. (B.7)

From the definition of ψ̄(t) and definition of the auxiliary input v(·), we see that ψ̄(t)
consists of y(t) − y∗(t), y(t − 1) − y∗(t − 1), . . . , y(t − n̄ − g + 1) − y∗(t − n̄ − g + 1) and
weighted sums of u(t), u(t− 1), . . . , u(t− n̄− g + 1); so by the definition of φ̄(·) we see that
there exists a constant γ6 such that

‖ψ̄(t)‖ ≤ γ6‖φ̄(t)‖+
n̄+g−1∑
j=0
|y∗(t− j)|.

After substituting the above into (B.7), we obtain

‖φ̄(t+ 1)‖ ≤ (γ5 + γ6γ1)‖φ̄(t)‖+

γ1

n̄+g−1∑
j=0
|y∗(t− j)|+ |w(t)|.

Using the definition of ỹ∗ in (7.34), if we solve the above iteratively for p steps and put
c̄2 := (γ1 + 1)(γ5 + γ6γ1)p, then we conclude that part (ii) holds. �
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Appendix C

Proofs of the Tracking Results of
Chapter 5

Proof of Theorem 5.3. Fix δ ∈ (0,∞] and λ ∈ (0, 1). Let t0 ∈ Z, θ∗ ∈ S∗, y∗ ∈ `∞,
θ̂(t0) ∈ S, and X (t0) be arbitrary. Now suppose that w = v = 0; for this case, by the
definition of the function ρ, for t ≥ t0 + 1 we have w̄ = 0 and

ρ(t) = 0 ⇔ ‖φ̃(t)‖ = 0.

If we incorporate the fact that ε(t) = e(t) for t ≥ t0 + 1 into the result of Proposition 5.1,
we obtain

T∑
t=t0+1,‖φ̃(t−1)‖6=0

|ε(t)|2

‖φ̃(t− 1)‖2
=

T∑
t=t0+1,‖φ̃(t−1)‖6=0

|e(t)|2

‖φ̃(t− 1)‖2

≤
∞∑

t=t0+1,‖φ̃(t−1)‖6=0

|e(t)|2

‖φ̃(t− 1)‖2

≤ 8‖S‖2.

When ‖φ̃(t− 1)‖ = 0 it follows that φ(t− 1) = 0, so it is easy to see by (5.10) that y(t) = 0
and by the control law (5.21) that y∗(t) = 0, which means that ε(t) = 0. Then from the
above and by the definition of φ̃, we obtain

∞∑
t=t0+1

ε(t)2 ≤ 8‖S‖2 sup
j≥t0

[
‖φ(j)‖2 + ‖Y(j)‖2

]
.
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We know that from the definition of the control law and by Assumption 5.2 that there
exists a constant c1 such that

‖φ(j)‖ ≤ ‖Y(j)‖+ |u(j)| ≤ c1 (‖Y(j)‖+ |y∗(j + 1)|) , j ≥ t0;

by Theorem 5.1 we see that there exists a constant c2 so that

‖Y(j)‖ ≤ c2

(
‖X (t0)‖+ sup

j≥t0
|y∗(j + 1)|

)
, j ≥ t0.

Incorporating all of the above and simplifying, we conculde that there exists a constant c
so that

∞∑
t=t0+1

ε(t)2 ≤ c
(
‖X (t0)‖2 + ‖y∗‖2

∞

)

as desired. �

Proof of Theorem 5.4. Fix δ ∈ (0,∞] and λ1 ∈ (0, 1), and set w = v = 0. By Theorem
5.2 there exist constants γ1 > 0 and

ε̄ ∈ (0, 2 3
2‖S‖)

so that for every t0 ∈ Z, y∗ ∈ `∞, θ̂(t0) ∈ S, X (t0) ∈ Rn, and θ∗ ∈ S(S∗, 0, ε̄), when the
adaptive controller (5.16) and (5.21) is applied to the plant (5.65), the following holds:∥∥∥∥∥

[
X (t)
u(t)

]∥∥∥∥∥ ≤ γ1λ
t−t0
1 ‖X (t0)‖+ γ1

1− λ1
sup
j∈[t0,t]

|y∗(j + 1)|, t ≥ t0. (C.1)

Now, let t0 ∈ Z, y∗ ∈ `∞, θ̂(t0) ∈ S, X (t0) ∈ R
n, ε ∈ (0, ε̄) and θ∗ ∈ S(S∗, 0, ε) be

arbitrary. Let ti ≥ t0 be arbitrary; then from plant equation (5.65) we have

y(t+ 1) = φ(t)>θ∗(ti) + φ(t)> [θ∗(t)− θ∗(ti)]︸ ︷︷ ︸
=:∆i(t)

. (C.2)

Note from the definition of S(S∗, 0, ε̄) given in Definition 2.2 that

‖∆i(t)‖ ≤ ε‖φ(t)‖ (t− ti) .

Define θ̃i(t) := θ̂(t)− θ∗(ti). Since w = v = 0 and ‖φ(t)‖ ≤ ‖φ̃(t)‖, by applying Proposition
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5.1 to the plant (C.2), we obtain1

t−1∑
j=ti,‖φ̃(j)‖6=0

|ε(j + 1)|2

‖φ̃(j)‖2
=

t−1∑
j=ti,‖φ̃(j)‖6=0

|e(j + 1)|2

‖φ̃(j)‖2

≤ 2‖θ̃(ti)‖2 +
t−1∑

j=ti,‖φ̃(j)‖6=0

4‖∆i(j)‖2

‖φ̃(j)‖2

≤ 2‖θ̃i(ti)‖2 + 4ε2
t−1∑
j=ti

(j − ti)2

= 2‖θ̃i(ti)‖2 + 4ε2
t−ti−1∑
k=0

k2

≤ 8‖S‖2 + 4ε2(t− ti − 1)3, t ≥ ti + 1, ti ≥ t0.

Since the disturbance is zero here, it follows that ‖φ̃(j)‖ = 0 implies that ε(j + 1) = 02. So
from the above we conclude that

t−1∑
j=ti
|ε(j + 1)|2 ≤ 4

[
2‖S‖2 + ε2(t− ti − 1)3

]
sup
j∈[ti,t)

‖φ̃(j)‖2, t ≥ ti + 1, ti ≥ t0. (C.3)

We now analyze the average tracking error. From (C.3) we obtain

1
t− ti

t−1∑
j=ti
|ε(j + 1)|2 ≤ 4

[
2‖S‖2

t− ti
+ ε2

(t− ti − 1)3

t− ti

]
sup
j∈[ti,t)

‖φ̃(j)‖2,

t ≥ ti + 1, ti ≥ t0. (C.4)

Now define

βε :=
(
ε‖S‖2

) 2
3 (C.5)

and Tβ ∈ N by

Tβ :=
⌈

2‖S‖2

βε

⌉
;

1Observe that
∑m

k=1 k
2 = m(m+1)(2m+1)

6 = m3

3 + m2

2 + m
6 ≤ m

3.
2Observe that this is true even when θ∗(t) is time-varying.
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this means that
2‖S‖2

Tβ
≤ βε.

We can easily check that (Tβ−1)3

Tβ
≤ 8T 2

β . Incorporating this and the definition of Tβ into
(C.4), by choosing t = ti + Tβ we have

1
Tβ

ti+Tβ−1∑
j=ti

|ε(j + 1)|2 ≤ 4
[

2‖S‖2

Tβ
+ 8ε2T 2

β

]
sup

j∈[ti,ti+Tβ)
‖φ̃(j)‖2

≤ 4
[
βε + 8ε2T 2

β

]
sup

j∈[ti,ti+Tβ)
‖φ̃(j)‖2, ti ≥ t0. (C.6)

We would like to obtain a bound on ε2T 2
β . But it follows from (C.5) that

β3
ε = ε2‖S‖4,

so

ε2 = βε

(
βε
‖S‖2

)2

= 4βε
(

βε
2‖S‖2

)2

;

if we define x = βε
2‖S‖2 , then we see that

ε2T 2
β = 4βεx2

(⌈1
x

⌉)2

≤ 4βεx2
(1
x

+ 1
)2

= 4βε(x+ 1)2.

But ε ∈ (0, 23/2‖S‖) by hypothesis, so

m = βε
2‖S‖2 = (ε‖S‖2)2/3

2‖S‖2 <
(23/2‖S‖ × ‖S‖2)2/3

2‖S‖2 = 1,

so
ε2T 2

β ≤ 16βε.

208



Substituting this into (C.6) and simplifying yields

1
Tβ

ti+Tβ−1∑
j=ti

|ε(j + 1)|2 ≤ 516βε sup
j∈[ti,ti+Tβ)

‖φ̃(j)‖2, ti ≥ t0. (C.7)

We now analyze the average tracking error over the whole time horizon; we do so by
considering time intervals of length Tβ. From (C.7) we easily obtain

1
iTβ

t̄+iTβ−1∑
j=t̄

|ε(j + 1)|2 ≤ 516βε sup
j∈[t̄,t̄+iTβ)

‖φ̃(j)‖2, i ∈ N, t̄ ≥ t0. (C.8)

The bound in (C.8) provides a bound on the average tracking error over time intervals
of lengths that are multiples of Tβ. To extend this to intervals of arbitrary length, first
observe that (C.8) can be rewritten as

t̄+iTβ−1∑
j=t̄

|ε(j + 1)|2 ≤ iTβ(516︸︷︷︸
=:γ2

βε) sup
j∈[t̄,t̄+iTβ)

‖φ̃(j)‖2, i ∈ N, t̄ ≥ t0.

For k ∈ {0, 1, ..., Tβ − 1}, this inequality implies that

t̄+iTβ−1+k∑
j=t̄+k

|ε(j + 1)|2 ≤ iγ2Tββε sup
j∈[t̄+k,t̄+iTβ+k)

‖φ̃(j)‖2, i ∈ N, t̄ ≥ t0;

adding these two inequalities and simplifying yields

t̄+iTβ−1+k∑
j=t̄

|ε(j + 1)|2 ≤ 2iγ2Tββε sup
j∈[t̄,t̄+iTβ+k)

‖φ̃(j)‖2, i ∈ N, k ∈ {0, 1, ..., Tβ − 1}, t̄ ≥ t0.

Changing variables to enhance clarity, we see that this implies that

t̄+T−1∑
j=t̄
|ε(j + 1)|2 ≤ 2γ2Tβε sup

j∈[t̄,t̄+T−1)
‖φ̃(j)‖2, T ≥ Tβ, t̄ ≥ t0,
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which means that

1
T

t̄+T−1∑
j=t̄
|ε(j + 1)|2 ≤ 2γ2βε sup

j∈[t̄,t̄+T−1)
‖φ̃(j)‖2, T ≥ Tβ, t̄ ≥ t0. (C.9)

This means that

lim sup
T→∞

1
T

t̄+T−1∑
j=t̄
|ε(j + 1)|2 ≤ 2γ2βε × lim sup

j→∞
‖φ̃(j)‖2, t̄ ≥ t0.

From the control law, by Assumption 5.2 and (C.1) we see that there exists a constant c1
so that

lim sup
j→∞

‖φ̃(j)‖ ≤ lim sup
j→∞

(‖φ(j)‖+ ‖X (j)‖) ≤ c1‖y∗‖∞;

the boundedness of the tracking error ensures that for every t̄ ≥ t0 we have

lim sup
T→∞

1
T

t̄+T−1∑
j=t̄
|ε(j + 1)|2 = lim sup

T→∞

1
T

t0+T−1∑
j=t0

|ε(j + 1)|2, t̄ ≥ t0,

so we conclude that

lim sup
T→∞

1
T

t0+T−1∑
j=t0

|ε(j + 1)|2 ≤ 2c2
1γ2βε‖y∗‖2

∞.

Since βε = ‖S‖4/3ε2/3, the result follows. �

Proof of Theorem 5.5. Fix δ ∈ (0,∞] and λ ∈ (0, 1). Let t0 ∈ Z, θ∗ ∈ S∗, y∗, w, v ∈ `∞,
θ̂(t0) ∈ S, and X (t0) ∈ Rn be arbitrary, but so that lim inft→∞ |y∗(t)| > 0. Before proceeding,
choose t ≥ t0 + 1 so that

inf{|y∗(t)| : t ≥ t} > 0.

Now, by applying Proposition 5.1, for t̄ ≥ t0 + 1 we obtain

t∑
j=t̄

ρ(j − 1) |ε(j)|2

‖φ̃(j − 1)‖2
=

t∑
j=t̄

ρ(j − 1) |e(j)|2

‖φ̃(j − 1)‖2

≤ 8‖S‖2 + 2c̄
t∑
j=t̄

ρ(j − 1) |w̄(j − 1)|2

‖φ̃(j − 1)‖2

210



= 2c̄‖S‖2

4
c̄

+ 1
‖S‖2

t∑
j=t̄

ρ(j − 1) |w̄(j − 1)|2

‖φ̃(j − 1)‖2


= 2c̄‖S‖2

4
c̄

+
t∑
j=t̄

ρ(j − 1) |w̄(j − 1)|2(
‖S‖‖φ̃(j − 1)‖

)2

 , t ≥ t̄ ≥ t0 + 1.

(C.10)

From the controller equation (5.21) we have

y∗(t) = θ̂(t− 1)>φ(t− 1), t ≥ t0 + 1,

which means that

|y∗(t)| ≤ ‖θ̂(t− 1)‖‖φ(t− 1)‖ ≤ ‖S‖‖φ(t− 1)‖ ≤ ‖S‖‖φ̃(t− 1)‖, t ≥ t0 + 1;

if we substitute this into (C.10), then we obtain

t∑
j=t̄

ρ(j − 1) |ε(j)|2

‖φ̃(j − 1)‖2
≤ 2c̄‖S‖2

4
c̄

+
t∑
j=t̄

ρ(j − 1) |w̄(j − 1)|2
|y∗(j)|2

 , t ≥ t̄ ≥ t. (C.11)

Now we analyze the above bound for two cases: when the estimator is turned on, i.e.
when ρ(·) = 1, and when the estimator is turned off, i.e. when ρ(·) = 0. Before proceeding,
we define some notation: for t2 ≥ t1 ≥ t0, we define

y∗[t1,t2] := inf
j∈[t1,t2], ρ(j−1)=1

|y∗(j)|2.

Case 1: The estimator is turned on: ρ(j − 1) = 1.
From (C.11), we have

t∑
j=t̄, ρ(j−1)=1

|ε(j)|2

‖φ̃(j − 1)‖2
≤ 2c̄‖S‖2

4
c̄

+ 1
y∗[t̄,t]

t∑
j=t̄
|w̄(j − 1)|2

 , t ≥ t̄ ≥ t, (C.12)
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which means that

t∑
j=t̄,ρ(j−1)=1

|ε(j)|2 ≤ 2c̄‖S‖2
(

sup
j∈[t̄−1,t−1]

‖φ̃(j)‖2
)4

c̄
+ 1
y∗[t̄,t]

t∑
j=t̄
|w̄(j − 1)|2

 , t ≥ t̄ ≥ t.

(C.13)

Case 2: The estimator is turned off: ρ(j − 1) = 0.
In this case, we know from the definition of ρ that when ρ(t− 1) = 0:

• if δ =∞ then φ̃(t− 1) = 0, so

‖φ̃(t− 1)‖ ≤ 1
δ
|w̄(t− 1)|;

• if δ ∈ (0,∞), then we have that

|e(t)| ≥ (2‖S‖+ δ)‖φ̃(t− 1)‖;

using the prediction error definition in (5.14), equation (5.10) and (5.11) we conclude
(by similar analysis to that done in (5.36)) that

|e(t)| ≤ 2‖S‖‖φ̃(t− 1)‖+ (1 + cϕ‖S∗‖)(n+ 2)|w̄(t− 1)|, t ≥ t0 + 1; (C.14)

combining these two equations yields

‖φ̃(t− 1)‖ ≤ (1 + cϕ‖S∗‖)(n+ 2)
δ

|w̄(t− 1)|.

Using (C.14) and applying bounds on φ̃(t− 1) found above, we obtain

|ε(t)| = |e(t)| ≤ (1 + cϕ‖S∗‖)(n+ 2)
(

2‖S‖
δ

+ 1
)

︸ ︷︷ ︸
=:c1

|w̄(t− 1)|, t ≥ t0 + 1.

Hence,

t∑
j=t̄, ρ(j−1)=0

|ε(j)|2 ≤ c2
1

t∑
j=t̄
|w̄(j − 1)|2, t ≥ t̄ ≥ t0 + 1, (C.15)
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which concludes Case 2.
We can now combine (C.13) and (C.15) of Case 1 and Case 2, respectively, to yield

t∑
j=t̄
|ε(j)|2 ≤ 8‖S‖2

(
sup
j∈[t̄,t]

‖φ̃(j + 1)‖2
)

+

max
{
c2

1, 2c̄‖S‖2
(

supj∈[t̄,t] ‖φ̃(j+1)‖2

y∗[t̄,t]

)} t∑
j=t̄
|w̄(j − 1)|2

 , t ≥ t̄ ≥ t. (C.16)

By Theorem 5.1 there exists constants c > 0 and λ ∈ (0, 1) so that∥∥∥∥∥
[
Y(t+ 1)
u(t+ 1)

]∥∥∥∥∥ ≤ cλt+1−t0‖Y(t0)‖+
t+1∑
j=t0

cλt+1−j(|y∗(j)|+ |w̄(j)|, t ≥ t,

so we can choose t̄ ≥ t (which depends implicitly on X (t0), y∗, θ̂(t0), and θ∗) such that∥∥∥∥∥
[
Y(t+ 1)
u(t+ 1)

]∥∥∥∥∥ ≤ 2c
1− λ lim sup

k→∞
(|y∗(t̄+ k)|+ |w̄(t̄+ k)|), t ≥ t̄,

as well as
|y∗(t)|2 ≥ 1

2 lim inf
k→∞

|y∗(k)|2︸ ︷︷ ︸
=:y∗

, t ≥ t̄;

combining this with the definitions of φ̃ and w̄, and Assumption 5.2, we conclude that there
exists a constant c2 so that

‖φ̃(t+ 1)‖ ≤ c2 lim sup
k→∞

(|y∗(t̄+ k)|+ |w(t̄+ k)|+ |v(t̄+ k)|), t ≥ t̄.

If we incorporate this into (C.16), then we obtain

t∑
j=t̄
|ε(j)|2 ≤ 8‖S‖2

(
sup
j∈[t̄,t]

‖φ̃(j + 1)‖2
)

+
 t∑
j=t̄
|w̄(j − 1)|2

×
max

{
c2

1, c
2
2

lim supk→∞(|y∗(t̄+k)|2+|w(t̄+k)|2+|v(t̄+k)|2)
1
2y
∗

}
, t ≥ t̄,
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which means that

lim sup
T→∞

1
T

t̄+T−1∑
j=t̄
|ε(j)|2 ≤ lim sup

T→∞

1
T

t̄+T−1∑
j=t̄
|w̄(j − 1)|2×

max
{
c2

1, c
2
2

lim supk→∞(|y∗(t̄+k)|2+|w(t̄+k)|2+|v(t̄+k)|2)
1
2y
∗

}
.

But w̄(t)2 is a weighted sum of {w(t)2, v(t+1)2, v(t)2, . . . , v(t+n−1)2}, and the boundedness
of all variables makes the starting point of the average sums irrelevant, so the desired bound
(5.67) follows. �
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