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Abstract. In this paper, we present MachSMT, an algorithm selection
tool for state-of-the-art Satisfiability Modulo Theories (SMT) solvers.
MachSMT supports the entirety of the logics within the SMT-LIB ini-
tiative. MachSMT uses machine learning to learn empirical hardness
models (a mapping from SMT-LIB instances to solvers) for state-of-the-
art SMT solvers to compute a ranking of which solver is most likely to
solve a particular instance the fastest. We analyzed the performance of
MachSMT on 102 logics/tracks of SMT-COMP 2019 and observe that it
improves on competition winners in 49 logics (with up to 240% in perfor-
mance for certain logics). MachSMT is clearly not a replacement for any
particular SMT solver, but rather a tool that enables users to leverage
the collective strength of the diverse set of algorithms implemented as
part of these sophisticated solvers. Our MachSMT artifact is available
at https://github.com/j29scott/MachSMT.
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1 Introduction

Satisfiability Modulo Theories (SMT) solvers are tools that decide the satisfi-
ability of formulas over first-order theories, such as bit-vectors, floating-point,
integers, reals, strings, arrays and their combinations [14, 5, 19, 13, 34, 16]. SMT
solvers have had revolutionary impact on applications in software engineering
(broadly construed), such as software testing [12, 35], verification [18, 11, 29, 30],
and AI [26]. There is an insatiable demand for more efficient and expressive
solvers, especially as researchers find new application domains (e.g., verifica-
tion and synthesis of cryptographic primitives [8]) and attempt to scale existing
applications to larger settings (e.g., automatic bug finding in large commercial
software [21, 3]).

In response to this high demand, the SMT community has developed a
plethora of solvers. For example, in the 2019 edition of the annual SMT-COMP
competition [6, 22], more than 50 solvers and configurations of which were sub-
mitted. Many of these implement very different algorithms to tackle the satisfi-
ability problem for (a combination of) theories, with significantly varying per-
formance profiles. For example, for the quantifier-free theory of floating-point
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alone there exist several substantially different decision procedures, e.g., bit-
blasting [10], abstract CDCL [9], inter-reduction methods [40], and reduction to
global optimization [17, 27]. In this particular example, input instances can be
derived from a variety of applications, such as software verification or analysis of
machine learning (ML) models [41]. In such a scenario, a very natural question
arises: which solver and algorithm is best to use for a given input instance?

Another well known issue with many SMT solvers (even state-of-the-art ones)
is that users may not know a priori which formula features would make an
instance easy or hard to solve. This can be very frustrating for users as they
have to try combinatorially many different encoding and solver pairs before they
can figure out which combination works best for their specific scenario. Users
have also noted that as their application needs change, what was once a great
solver in an older setting is suddenly not very good in the newer one.

One way to address the above-mentioned problems is to use an automated
algorithm-selection tool that can automatically and with high accuracy select the
optimal SMT solver from a set of solvers, for a given SMT formula. A side-effect
of such a tool is that it may be helpful for solver developers to identify theory
features or encodings that are the root cause of inefficiency in their solvers.

To this end, we introduce MachSMT, a machine learning-based algorithm-
selection tool. MachSMT supports the entirety of the theories and logics within
the SMT-LIB initiative [7]. MachSMT constructs machine learned models by
analyzing the runtimes of solver configurations on benchmarks with respect to
the frequencies of grammatical constructs (i.e., of predicates, functions, round-
ing modes, etc.) of its inputs. MachSMT then takes as input an instance for
a specified theory of interest and outputs the solver or a ranking of solvers as
predicted to have the lowest runtime.

Brief Overview of the Design of MachSMT: At a high-level, MachSMT
works as follows: For a particular combination of solver, logic and and its runtime
data on benchmarks in this logic, our tool MachSMT uses machine learning
to construct an empirical hardness model (a mapping from instances to solver
runtimes), specifically via the use of an adaptive boosting regressor [15] with
principal component analysis (PCA) [47, 23]. From the user’s perspective, for
any given input, MachSMT constructs a list of predicted log runtime for each
solver. MachSMT then returns this ranking or the fastest solver according to this
ranking. MachSMT is clearly not a replacement for any particular SMT solver,
but rather a tool that enables users to leverage the collective strength of the
diverse set of algorithms implemented as part of these sophisticated solvers.

While algorithm selection has been considered in the broad setting of solvers
(e.g., QBF solvers [38] and SAT solvers [48]) as well as certain specific SMT
theories and applications [42, 4, 46], we are not aware of previous work on algo-
rithm selection aimed at the entirety of SMT-LIB. Our results show that the
MachSMT algorithm selector is effective and highly accurate, in that it out-
performs the competition winners on several tracks from the SMT-COMP 2019
competition. Additionally, MachSMT is easy to use and extend by users.
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Contributions

We make the following contributions in this paper:

1. The MachSMT Tool: We present the MachSMT tool, an algorithm selec-
tion tool for the entirety of SMT-LIB. MachSMT learns a machine learning
(ML) model for algorithm selection for each logic and track within the SMT-
LIB initiative and SMT-COMP. Our MachSMT tool is designed to be easily
tuned and extended by SMT solver users for any logic and/or applications
of their interest. (Section 3)

2. Experimental Analysis of MachSMT: We perform a full experimental
analysis of the MachSMT algorithm selection tool. We analyzed the perfor-
mance of MachSMT in all logics of all tracks in SMT-COMP, and observe
that it improves on competition winners in 49 (out of a total of 102) divi-
sions, with up to 240% improvement in performance for the QF UFBV SQ
and 170% for the LRA SQ division. We provide our learned models, used
in our experimentation, for ease of use and transparency. While building
learned models for MachSMT can be computationally expensive, installing,
downloading, and using our models can be done relatively easily. (Section 4)

2 Background

A Brief Overview of Algorithm Selection: The idea of algorithm selection
was first proposed and formalized by Rice [39]. Researchers have long known that
given a set S of different algorithm implementations for the same specification
or problem, it is often the case that one of these implementations may perform
poorly on a given class of inputs while another might perform very well. This is
especially true for problems believed to be computationally hard. The reasons
for this phenomenon could be as diverse as choice of data structures, fundamen-
tal differences between algorithms, or the fact that heuristics implemented as
part of one algorithm can exploit the input problem structure or the underlying
hardware better than the other.

Users would naturally want to exploit this diversity in algorithmic approaches
to difficult problems. One way to accomplish this is via the use of Empirical
Hardness Models (EHM), which, given a set of features of an input instance,
predict which one of the distinct algorithmic implementations is most efficient for
that input. With advancements in machine learning, efficient EHMs have become
a reality in many domains, especially in the broad context of logic solvers.
SMT Theories and Logics: The SMT-LIB initiative provides a standard-
ized syntax and semantics for several first-order theories and logics [7]. In this
paper, we may use the following acronyms (given in brackets), optionally in
combination, to refer to various SMT-LIB logics: Quantifier Free (QF), Theory
of Arrays (A), Uninterpreted Functions (UF), Bit-Vectors (BV), Floating-Points
(FP), Strings (S), Integers (I), Reals (R), or mixed (IR). Further, arithmetic over
I and R can be linear (LIA, LRA), or nonlinear (NIA, NRA), or difference logics
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(IDL, RDL). For combinations of such, their order will appear in the order they
are written above. Each theory defines various operators/functions, predicates,
terms, sorts, and generalized keywords (e.g., assert, check-sat, Int, Float32). For
a full list of these, as well as more details on syntax and semantics, we refer to
the SMT-LIB standard [7]. We define grammatical-constructs or tokens as con-
stants, functions, predicates, rounding modes (in the context of FP), sorts, and
other keywords in the SMT-LIB standard.

Adaptive Boosting and Principal Component Analysis: Adaptive boost-
ing (AdaBoost) is a ensemble approach to machine learning. In ensemble learn-
ing, a set of learning algorithms (e.g., weak learners) are trained, and predictions
are made diplomatically across the set. In our application of AdaBoost, we use
an ensemble of decision trees. For more, we refer to Drucker et al. [15]. Principal
Component Analysis (PCA) is an unsupervised learning dimensionality reduc-
tion technique. PCA works by constructing a linear orthogonal transformation
over a dataset. For more, we refer to Halko et al. [23, 47]. As an implementation
detail, MachSMT uses scikit-learn as its ML backend [36].

3 A Description of MachSMT

Given a database of solvers, benchmarks, and their runtime data on these bench-
marks, MachSMT uses machine learning to construct an empirical hardness
model (EHM) [31] for each considered solver and benchmark set. In our ex-
perimental evaluation, we use the wall clock timing analysis provided by the
SMT-COMP 2019 [22], which was divided into several tracks: the Single Query
(SQ), Incremental (INC), Unsat Core (UC), Model Validation (MV), Challenge
(CH-SQ), and Challenge Incremental (CH-INC) tracks. Each track is divided
into logics (e.g., BV, LIA), and for each logic L and solver S in a track T , an
EHM is learned to predict the runtime of S on all instances of L in T . Put differ-
ently, an EHM is a function that takes as input a tuple 〈S,L, T 〉 and returns the
natural log of the runtime R of solver S. We used the SMT-COMP data because
it is comprehensive and available in a convenient format. However, MachSMT
can be trained with any such appropriately formatted data and instances.

Note that in the INC and CH-INC tracks of SMT-COMP, every instance
consists of multiple queries, and in the competition, the first deciding factor
for ranking solvers in incremental tracks is the number of successfully solved
queries within the time limit. As a consequence, the runtime analysis alone is
not sufficient to determine a score to rank solvers, since for hard problems,
solvers typically reach the time limit before all queries are solved. We thus only
consider instances, where all queries were solved within the given time limit.
Further, the UC and MV tracks in SMT-COMP have very specific and different
objectives than the SQ and INC tracks – here the goal is not only to solve
instances correctly and as fast as possible, but to provide a minimal UNSAT
core (the smaller, the higher the score) in the UC track, and a correct model in
the MV track. Currently, we only consider runtime to rank solvers in these two
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tracks. We leave more precise scores for the INC, CH-INC, UC and MV tracks
to future work.

The feature set for each SMT-LIB input file is created as follows: the file is
linearly scanned and the frequency of occurrence of each grammatical construct
(refer the SMT-LIB standard as defined in Section 2) that appears in that file is
recorded. The feature set is a set of tuples whose first element is the token name
of the grammatical construct and second element is its frequency of occurrence in
the input file. We use a strict 1-second time limit for all computations of features
for a particular SMT-LIB input, both for building and analyzing MachSMT. If
a timeout occurs, the current values state of the computed frequencies are used
as features. This frequency computation is efficient and timed out only on 1.6%
of the total number of SMT-LIB inputs.

each tuple of track and solver, MachSMT constructs a separate EHM, during
the training phase. For certain tracks with very few benchmarks, we may add
instances to that track by leveraging instances from similar logics in a different
track, thus augmenting their size and improving the learning of the corresponding
EHM. We explain this process using the following example: consider training an
EHM for the Z3 solver for the QF BV logic in the CH-SQ track, which has only
7 instances. We augment this training set by leveraging data from the QF BV
instances from the very similar SQ track. This gives us a much larger set of
benchmarks and data points.

Further, for evaluation purposes, we deploy a k-fold cross-validation proce-
dure (with k set to 5) to evaluate the performance of MachSMT. That is, we
randomly partition the entire dataset into k bins, train on k − 1 bins, and test
on the remaining one. This process is repeated until the tool has been tested
on each one of the k bins. Cross validation is commonly used as method to
check whether a machine learning model can generalize over unseen data and is
standard in machine learning research [37].

Before training the EHM, we apply two preprocessing steps. First, a regular-
izer is trained to adjust each individual feature’s distribution to be zero mean
and unit deviation to normalize the data. This kind of normalization is common
practice in ML research and is often necessary for high classification accuracy
of many ML algorithms. Second, due to the high dimensionality (148) of our
feature space, we apply a well known unsupervised dimensionality reduction
algorithm on the regularized data, specifically, Principal Component Analysis
(PCA) [47, 23]. We use PCA to reduce the dimensionality of the feature space,
which is important for the performance of the underlying ML algorithm we use.
We achieved the best results with 30 dimensions.

Traditionally, algorithm selection tools such as SatZilla [49, 50] deploy linear
ridge regression [24] as their primary regressor for an EHM. For MachSMT,
we use Adaptive Boosting (AdaBoost) [15] based on empirical testing. Upon
completion of the preprocessing, an EHM is then trained for each solver S that
is competing in the track and logic of interest. When making a prediction for an
input I, each solver’s EHM is queried to predict a log runtime for I. We use these
predictions to rank the solvers that are most likely to solve I the most efficiently.
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MachSMT returns the argmin of the predicted log of runtimes. Across all logics
and tracks, MachSMT maintains 765 EHMs.

We use the above process and all mentioned hyper-parameters in our training
and evaluation of MachSMT. However, there are likely better configurations for
a user with a particular application. To this end, we allow the user to disable in-
dividual preprocessing components, or customize the dimensionality seen by the
regressor. Further, the regressor can be configured to use a variety of regression
algorithms, such as Linear Regression, k-Nearest Neighbour Regression, Deep
Neural-Networks, and Support Vector Machines, with ease [36].

3.1 Using MachSMT

In this subsection, we provide a brief description of how to use MachSMT. The
MachSMT system includes two easy to use executable scripts: machsmt select
and machsmt build, which run with a small set of dependencies: Python 3.5+,
pip3, and a small set of pip3 installable dependencies. The executable mach-
smt select takes as input an SMT-LIB input I and the corresponding learned
EHMs and prints the name of the solver that is expected to have the lowest
runtime. Our models are publicly available and can be downloaded with ease.

The second executable machsmt build provides an interface to build the re-
quired learned models for machsmt select. The script machsmt build builds all
the required EHM for the solvers, logics, and tracks of interest. It is required
that the appropriate SMT-LIB benchmark dataset is available at the root of
the MachSMT repository. Upon termination, the learned model is stored locally
at the root of the MachSMT repository. For the entirety of SMT-LIB, we have
observed this process to take up to 12 hours on an Intel i7-4790 16 GB machine.

User Defined Features: We include a simple interface for users to extend the
considered features in MachSMT’s algorithm selection. All that is required is to
create a Python method that returns a single floating-point number representing
the feature. As input, the user enters the path of the SMT-LIB input, as well
as its logic and track. If a user feature is to be considered by MachSMT, the
user-defined procedure should return its floating-point representation, otherwise
returns none. All user-defined features will automatically be included in building
MachSMT. This feature can significantly influence the accuracy of MachSMT
when applying it to a specific class of instance.

4 Experimental Results and Analysis

In this section, we present the evaluation of our MachSMT tool (refer to Table 1
and cactus plots in Figures 1–4), specifically with the benchmarks, solvers, and
solver runtime analysis from SMT-COMP 2019. More precisely, we used the
data from the SMT-COMP 2019 competition. In the SMT-COMP 2019, all
solver input queries were performed on the StarExec computing service [43],
which consists of a cluster of 2.4 GHz Intel Xeon machines running Red Hat
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Logic and Track Best Standalone Number of Solved Number Solved PAR-2 %
Solver by PAR-2 Instances by MachSMT Improvement

QF UFBV SQ Yices 2.6.2 220 222 242.3
NRA SQ vampire-4.4 82 89 157.1

QF NRA SQ Yices 2.6.2 2165 2510 101.8
QF AUFBV SQ Yices 2.6.2 38 40 74.2

QF BV MV Boolector 7171 7180 73.7
QF UFBV UC z3-4.7.1 298 299 66.8

LIA UC CVC4 200 200 65.4
UFNIA UC z3-4.8.4 1407 1477 65.0
UFIDL UC z3-4.8.4 30 30 60.8

BV SQ Q3B 741 771 58.2
QF AUFNIA SQ mathsat 9 9 55.1

QF LRA SQ SPASS-SATT 519 517 46.5
AUFNIRA UC z3-4.8.4 513 517 40.3
QF LRA UC CVC4 191 187 39.8
QF LIA SQ SPASS-SATT 3048 3069 36.0

QF AUFLIA UC Yices 2.6.2 300 300 35.0
QF UFBV INC Boolector 1165 1165 31.7

QF UFLRA INC z3-4.7.4 1529 1529 29.7
QF AUFLIA SQ Yices 2.6.2 651 651 25.8

QF FP SQ colibri 2176 196 206 20.8
UFLIA UC CVC4 3714 3735 16.0

AUFLIRA SQ z3-4.8.4 1600 1611 15.1
BV INC z3 10 11 13.2

QF ANIA SQ CVC4 7 7 12.3
QF BV UC Yices 2.6.0 2437 2459 10.1

QF UFNRA SQ Yices 2.6.0 25 23 9.8
QF ABV UC Yices 2.6.0 1852 1853 9.3
QF IDL SQ z3-4.8.4 938 944 8.4

AUFLIRA UC z3-4.8.4 9872 9873 8.3
QF UF SQ Yices 2.6.2 3512 3512 7.6

AUFLIA UC CVC4 1161 1166 6.9
BV UC CVC4 228 228 6.1

Table 1: The 32 (out of 49) SMT-COMP logics on which MachSMT improves
over the best standalone solver (SMT-COMP 2019 version) according to the
PAR-2 score by more than 5%.

Enterprise Linux 7.2. Each solver/benchmark pair was configured to have 4 cores
and 60GB of memory available [22]. Further, we perform k-fold cross validation
(with k = 5). In cross validation, the dataset is randomly partitioned into k
subsets. A model is then trained over k − 1 subsets and makes predictions over
the subset that is excluded from training. This process is repeated to obtain fair
predictions for each subset. Cross validation is commonly deployed to analyze
machine learning models. For more details we refer to Picard et al. [37].

For every track and logic, we evaluated our MachSMT model by checking
whether we beat the best solver from the SMT-COMP 2019 competition, ac-
cording to PAR-2 scores (refer to results in Table 1). Another metric to evaluate
the prediction accuracy of MachSMT is to check how close it is to the virtual
best solver in performance. As we discuss below, MachSMT performed better
than the best solver from SMT-COMP 2019 competition (PAR-2 score) in 49
out of 102 tracks from the SMT-COMP 2019, with up to a 240% improvement
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Fig. 1 Cactus Plot for BV in the Single Query Track.

Fig. 2 Cactus Plot for QF NRA in the Single Query Track.

for the QF UFBV SQ logic. (Certain tracks which have less than 5 benchmarks
were excluded from our evaluation since it is very difficult to learn anything from
such a small sample.)

We present cactus plots of selected logics and tracks where MachSMT gave
the best results3 in Figures 1–4. A cactus plot is a visualization of how a solver
performs on a database of inputs. A point (X,Y) denotes that a solver S solves
X inputs within Y seconds each. We additionally include the performance of
the virtual best solver (i.e, perfect algorithm selection), random algorithm selec-
tion (selects algorithms uniformly-at-random), and all standalone solvers (that
competed in the relevant logic) as baselines for comparison.

We use a modified version of the PAR-2 scoring scheme, frequently seen in
SAT contests [33]. PAR-2 is the cumulative runtime of a solver over all instances

3 All cactus plots, results, code can be found on the MachSMT website.
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Fig. 3 Cactus Plot for UFNIA in the Unsat Core Track.

Fig. 4 Cactus Plot for QF UFBV in the Single Query Track.

in the database. On a timeout, a score of twice the wall clock timeout is used. For
SAT contests, incorrect answers automatically disqualify a solver, while SMT-
COMP penalizes solvers that give incorrect answers. To this end, a wrong answer
results in ten times the wall clock timeout in the PAR-2 score. Using MachSMT,
we were able to improve upon standalone solvers (i.e., the PAR-2 score winner)
in 49 logics across SMT-COMP 2019. We present 32 out of 49 tracks/logics over
which MachSMT improves by more than 5% over the best solver according to
PAR-2 in Table 1. Further, we compared MachSMT against the PAR4 portfolio
solver, which won several logics in the SMT-COMP 2019. We improve over PAR4
in all but two tracks. However, we don’t include PAR4 as one of the solvers as part
of MachSMT algorithm selector. The reason is that PAR4 is a portfolio solver
that uses other existing SMT solvers (from the SMT-COMP 2018 competition)



10 J. Scott et al.

all in parallel, one per thread. The answer produced by the first solver that
terminates is returned as the answer by PAR4.

MachSMT is designed to predict the solver with the fastest runtime and
to minimize the PAR-2 score. However, we also observed in some logics/tracks
that MachSMT gave better PAR-2 (and hence better overall runtime) but solved
fewer instances than the corresponding best standalone solver according to PAR-
2. We used a total 102 tracks from SMT-COMP 2019 for our evaluation, of which
for 10 tracks the best standalone solver was the virtual best solver. Disregarding
these, MachSMT improves on the competition winner in 53% of tracks.

5 Related Work

Algorithm selection tools have a rich history and have been around since at least
1976 when Rice et al. were the first to propose it [39]. Algorithm selectors have
been extensively used in many contexts, e.g., classifiers for machine learning [1],
combinatorics [28], and other NP-hard optimization problems [44, 45]. Within
the context of solvers, algorithm selectors have been proposed for QBF [38, 32],
SAT [48–50], and CSP solvers [20, 2, 25]. Further, Symbolic Execution tools using
SMT solvers have considered algorithm selection [46] for the specific classes of
instances within the context of the bit-vector theory. This would be an ideal
use case of MachSMT, since we provide a more complete solution. There have
been other works using machine learning as applied to SMT solvers to improve
their performance. Balunovic et al. use neural networks and synthesis to find
tactics and strategies for three SMT-LIB theories [4]. Scott et al. proposed an
algorithm selection tool for the QF FP theory [42]. To the best of our knowledge,
MachSMT is the first publicly available tool for the entirety of SMT-LIB.

6 Conclusions and Future Work

In this paper, we present MachSMT, the first algorithm selection tool for the
entirety of SMT-LIB. MachSMT is designed to be user-friendly and easily mod-
ifiable by users for their specific application. It is not intended as a replacement
for any specific SMT solver, but rather aimed at enabling users to leverage the
diversity of decision procedures available to them. Using MachSMT, we observe
improvement in 49 out of 102 logics in all tracks from the SMT-COMP 2019,
with up to a 240% improvement for the QF UFBV SQ logic. Several of the logics
on which we don’t see improvement are ones that have very few instances, or
are in tracks where our current scoring scheme does not take the specific na-
ture of the track into account. In the future, we plan to improve our scoring
scheme for these tracks of SMT-COMP. We further plan to extend our feature
set with more (theory-)specific features such as number of quantifier alternations
or nesting depth and arity of functions/predicates. It is very likely that users
may have domain-specific knowledge about which features might be most pre-
dictive of solver runtime. Hence, we have provided an interface to easily extend
and specialize MachSMT to a user’s specific setting.
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