
Does AI Remember?
Neural Networks and the Right to be Forgotten

Laura Graves , Vineel Nagisetty , Vijay Ganesh
University of Waterloo

{laura.graves, vineel.nagisetty, vganesh}@uwaterloo.ca

Abstract
The Right to be Forgotten is part of the recently en-
acted General Data Protection Regulation law that
affects any data holder that has data on European
Union residents. It gives EU residents the abil-
ity to request deletion of their data. This includes
training records used to train any machine learn-
ing model that data holders might own. In par-
ticular, deep neural network models are vulnera-
ble to model inversion attacks which extract class
information from a trained model. If a malicious
party can mount an attack and learn private infor-
mation that was meant to be forgotten, then it im-
plies that the model owner has not properly pro-
tected their user’s rights and may not be compli-
ant with the General Data Protection Regulation
law. We present a general threat model to show
that simply removing training data is insufficient
to protect users. We further propose and evalu-
ate three defense mechanisms (deemed neuron re-
moval, scattered unlearning, and class unlearning)
that could help model owners protect themselves
against such attacks while being compliant with
regulations. We show that these defense mecha-
nisms enable deep neural networks to forget sen-
sitive data from trained models while maintaining
model efficacy. A copy of our code, which can
be used to replicate our results, can be found at
http://tiny.cc/forgetfulnet.

1 Introduction
In 2016 the European Union (EU) established the General
Data Protection Regulation (GDPR) which is intended to al-
low individuals in EU nations control over their personal data.
This includes regulations for businesses that handle personal
data, requiring them to provide safeguards to protect data
and use the highest-possible privacy settings by default [?].
In particular, article 17 of the GDPR gives individuals the
Right to be Forgotten (RTBF) and states that ... “(businesses)
have the obligation to erase personal data without undue de-
lay” [?]. Individuals who invoke the Right to be Forgotten
must have their personal data removed from the requested
datasets.

Unfortunately, the existence of model inversion (MI) at-
tacks [?] that extract class information from trained models
poses a unique problem for model owners with respect to
GDPR. If an individual’s data has been used to train a model
and that individual invokes the RTBF, simply deleting the
training data is not sufficient to be compliant with GDPR.
This is because deep learning algorithms learn properties (in-
cluding private data) of the dataset they are trained on. Con-
sequently, if a malicious party can mount an attack and learn
private information that was meant to be forgotten, then it is
possible to conclude that the model owner has not properly
protected their user’s privacy rights.

A naive attempt by a model owner at solving the above-
described problem may be to discard their trained model,
remove the individual’s data and train a new model from
scratch. Sadly, training machine learning models can be a
very expensive and time-consuming process. Model owners
are likely to be disinclined to bring down their model, while
a new model is being trained which is compliant with the re-
quest from a customer and the GDPR law. It is in the best
interest of model owners to find ways to forget data that re-
quires less time and resources while ensuring the fidelity of
their network, and compliance with laws and policies set forth
by governmental agencies. Humerick [?] highlights the le-
gal importance of ensuring data is forgotten when requested
(thus remaining compliant with RTBF), as well as the eco-
nomic harm that could be caused by requiring models to be
retrained from scratch.

Problem Statement: Our work focuses on the following
question: if individuals or groups invoke the right to be for-
gotten, how can a model owner ensure the data is forgotten
while minimizing cost?

1.1 Contributions
We make the following contributions in this paper:

1. We explore the problem of how to make DNNs compli-
ant with the Right to be Forgotten policy of the GDPR
law while minimizing cost to model owners. In this con-
text, we introduce three different defense mechanisms
that cause a neural network to efficiently forget learned
data thus protecting model owners, without harming
model performance and at a relatively low cost. We fur-
ther compare these methods against the naive method of

http://tiny.cc/forgetfulnet


removing the data and retraining. The defense mech-
anisms we introduce are: neuron removal (directly re-
moving the output layer neuron corresponding to the for-
gotten class, with optional retraining for a small number
of iterations), scattered unlearning (randomly labeling
data with the forgotten class label, before retraining for
a moderate number of iterations) and class unlearning
(random relabeling of the forgotten class examples, be-
fore retraining for a very small number of iterations).
For a full explanation of these methods see section 4.

2. We provide detailed comparisons of the above-
mentioned defense mechanisms, specifically through
metrics such as number of retraining iterations (cost)
and model accuracy. Further, we evaluate the efficacy
of our defense mechanisms against model inversion at-
tacks. The ideal defense mechanism is one which is not
only effective, but also requires very few retraining itera-
tions and does not diminish the accuracy of the retrained
model on non-forgotten data. One of the key findings
of our work is that class unlearning defense mechanism
is the best one among the three methods we evaluated.
(Section 5). Additionally, as part of our effort to formal-
ize an appropriate threat model in this context, we found
that some modifications to the model inversion attack [?]
result in an attack that is effective on convolutional neu-
ral networks previously considered impervious to such
attacks. (Section 3.2)

In this work we use the terms defense mechanism and for-
getting method interchangeably. Further, a defense mecha-
nism is defined as any method that can be applied to DNNs to
cause them to become resistant to a certain class of attacks.
The space we explore here is methods that cause DNNs to
be resistant to leaking information about a class. We want to
note that we considered the question of providing a mathe-
matical certificate that guarantees compliance of a DNN with
RTBF. However, at this point in time we find this question
of mathematical guarantees in the setting of DNNs to be too
difficult, and instead focus on pragmatic defense mechanisms
that can be evaluated relative to each other based on appropri-
ate metrics or observations based on whether a class of attacks
is successful (such as the ones we suggest in this paper).

2 Prior Work
Machine learning models have been shown to leak (private)
information about their training data [?; ?; ?; ?; ?]. Specif-
ically, two main kinds of information leakage attacks have
been studied: membership inference attacks that leak infor-
mation about specific records[?] and model inversion attacks
(MI) that leak information about the classes[?; ?].

Membership inference attacks determine whether a par-
ticular record was used to train a model. This work was
first highlighted by Homer et al. in [?] and formalized by
Dwork et al. in [?]. Other works include attacks and de-
fense mechanisms against membership inferences [?; ?; ?;
?; ?]. Property inference attacks are a subset of member-
ship inference attacks that determine a general property of
the training data, such as the ratio between classes [?]. Model
inversion attacks, introduced by Fredrikson et al. in [?] and

expanded to vision tasks in [?], have been shown to recreate
instances of records from an ML model. Given access to a
white box classifier, examples of target classes can be recre-
ated. In our paper, we contribute modified versions of these
inversion attacks to determine if models leak class informa-
tion.

There is an abundance of literature on differential pri-
vacy which provides an upper bound on the amount of pri-
vacy leakage from each individual data record [?; ?; ?;
?]. Cummings and Desai 2018., address the need for training
machine learning models in a differentially private manner to
comply with GDPR[?]. However, differential private algo-
rithms only ensure privacy of the records and do not enable
data to be forgotten once requested (such as by an individ-
ual invoking the RTBF). By contrast, our work aims to infer
whether an adversary can recover knowledge of a particular
class, once a model has been modified to forget that class.

Other recent research has touched on the issue of removing
learned properties from machine learning models. Ginart et
al. [?] devised a notion they term removal efficiency and give
two algorithms for efficiently removing specific data points
from k-means clustering models. Guo et al. [?] defined an ap-
proach they term certified removal that was evaluated for lin-
ear classification models. In this system, a model is trained on
a dataset including sensitive data, and then the sensitive data
is removed in some way from the model. A different model
is trained on the same dataset without the sensitive data, and
removal algorithms are evaluated based on the difference be-
tween the models. However, these approaches are unlikely
to work in the case of DNNs, which are more opaque and
difficult to analyze.

Very recently, Bourtoule et al. [?] introduced a method for
dealing with individual data removal requests. They proposed
SISA training, a method consisting of an aggregate model
made of multiple models trained on disjoint partitions of the
data. Because of this segmentation, when requests for re-
moval are made the model owner can retrain only the effected
sub-models instead of having to retrain everything. By con-
trast, our method focuses on deep learning models that have
already been trained. Further, we have no requirement to have
the model be an aggregate of weak learners. We use MI at-
tacks as a way of evaluating what information such models
retain. Finally, we propose several defense mechanisms that
model owners can use to forget learned data, and we pro-
vide detailed empirical evaluation of these mechanisms on
cost and model accuracy. Unfortunately, the work presented
in Ginart et al. [?] and Guo et al. [?] are both focused on such
different methods that it is impossible to make a direct com-
parison with our work. We hope in the future more research
is done on comparable models, because we believe that this
area of research is still in its infancy.

3 Model Inversion Attacks and Threat Model
An MI attack is best explained with a motivating example.
Consider the following scenario: an airport security chief has
trained a facial recognition system to recognize individuals
on their do-not-fly list. Each class represents an individual
who has been identified as a potential security threat. An

2



insider leaks a copy of the facial recognition system model
to an attacker, but no other data. A motivated attacker who
wishes to find out who’s on the do-not-fly list can perform an
MI attack on the leaked model to extract images of the indi-
viduals, compromising airport security. In this paper, we fo-
cus on similar situations where a model classifies individuals,
with each class marking one unique individual. MI attacks
were chosen because they can be used to extract class infor-
mation from a trained model with only white box access to
that model. We introduce several defense mechanisms that
may be used by the model owner to forget a class. To test
the effectiveness of these forgetting methods, we use Fred-
erikson et al’s MI algorithm [?] with some alterations that
make it more effective against convolutional neural networks
(CNNs) (see section 3.2).

3.1 Threat Model
Notation: In this work we use D to refer to the entire dataset
a model M is trained on. ci represents a class, while {ci}
denotes the set of all examples belonging to that class.

In our threat model, a DNN M is trained on a dataset con-
sisting of n classes D = {c1, ..., cn}. Each class ci ∈ D
represents an individual. After training, the individual whose
data belongs to class ct invokes the right to be forgotten. The
model owner takes action to make M forget ct and we de-
note this new model as M ′. An adversary gets white box
access to M ′ and, using only the label information of the tar-
get, tries to extract information about ct. We consider an at-
tack successful if the attacker can generate an example that is
“identifiable” as belonging to ct. We assume the attacker has
computational resources that are polynomial in the size of the
DNN, which is sufficient to mount an MI attack.

3.2 Model Inversion Algorithm
The typical MI attack is a deterministic attack on a machine
learning model to which the attacker has white box access.
The algorithm starts with an example with all features at 0
(or a suitable starting point for the domain) and labels this
blank example with the target class label ct. The algorithm
then iteratively processes the example through the model (in
the forward pass) and calculates the gradient of the loss with
regard to the example itself. The example is updated each
iteration, altering it in a way such that it is closer to what the
model considers to be that class. For a detailed explanation
of the algorithm see [?].

The first alteration we make to the MI algorithm is to the
PROCESS function that is performed each iteration after the
gradient descent step. In the original algorithm this func-
tion helps make the inverted image recognizable by option-
ally performing some image processing steps. In their exam-
ples, PROCESS either does nothing or it applies a de-noising
filter followed by a sharpening filter to the example. We im-
plement a variant of this approach into our defense mecha-
nism using function refine(). Instead of being applied every
iteration, we apply this image refinement periodically during
the inversion process. We found that this approach has the
benefits of image refinement without washing out important
features, unlike the case where the step is performed every
iteration.

Figure 1: Left: MI attack from Fredrikson et al. Right: our modified
MI attack

We also note that because the MI attack is a determinis-
tic process, beginning each inversion from a static “blank”
example results in the same inverted example each time. In-
stead, we start with a small amount of noise applied to each
feature. This results in a variety of inverted images, with a
slightly different result each time the inversion is performed.
We found that larger amounts of noise resulted in noisier in-
verted images but were sometimes necessary to generate in-
versions from models with very small gradients.

Finally, the Frederikson et al. attack continues the attack
process until loss starts increasing. We found that a signifi-
cant amount of change happens even after the loss starts in-
creasing, and we instead run the inversion attack for a set
number of iterations regardless of change in loss.

An interesting observation we made is that these modifica-
tions result in an MI attack that is very successful even when
applied to CNNs, a class of neural networks that are notori-
ously difficult for MI attacks. Hitaj et al. [?] explored this
question and concluded “MI works well for MLP networks
but clearly fails with CNNs”. Not only were we able to per-
form MI attacks using our algorithm, but we did so on the
architecture that was used by Hitaj et al. using the digit “3”
as a target. The differences can be seen in figure 1.

4 Defense Mechanisms for DNNs
In this section, we discuss defense mechanisms and their
properties. Recall that a defense mechanism is defined as any
computational method that can be applied to DNNs to cause
them to become resistant to a certain class of attacks. In this
section we explore methods that cause DNNs to be resistant
to leaking information about a class. To this end, we define
a set of desirable properties that we believe defense mecha-
nisms must possess:

• A defense mechanism should maintain the quality of the
original model, not harming it’s efficacy on any of the
non-forgotten data. One way to measure the quality is by
the model’s test accuracy on the non-forgotten classes.

• A defense mechanism should also be efficient in terms
of model training time or algorithm runtime.

• A defense mechanism should be effective at making
models robust to inversion attacks on the forgotten class.
We acknowledge that using metrics to evaluate efficacy
of a defense mechanism is a difficult task and we are
currently evaluating them based on observing inversion
attacks.

3



We define four defense mechanisms that we evaluate based
on the above-mentioned properties:

4.1 Defense Mechanisms
1. Retraining: we remove all data belonging to ct from

the dataset D to produce D′ = D \ {ct} and continue
training the model for some iterations on D′.

2. Neuron removal: we remove the output neuron cor-
responding to ct. We then optionally remove all data
belonging to ct from the dataset D to produce D′ =
D \ {ct} and continue training the model for some iter-
ations on D′.

3. Scattered unlearning: we remove all data belonging to
ct from the dataset D to produce D′ = D \ {ct}. For
each example in D′, with probability p, we replace that
example’s label with ct and retrain the model for some
iterations on this modified dataset.

4. Class unlearning: for each example labeled ct we ran-
domly assign another label from C \ ct and retrain for
some iterations on this modified dataset before removing
the ct data.

Retraining: In the naive method of retraining, when the
model owner receives a request for deletion from the indi-
vidual represented by ct, they remove all examples labeled ct
from D to produce a modified dataset D′ = D \ {ct}. Us-
ing the same training algorithm used to train the model, they
continue training on D′ for some iterations to produce up-
dated model M ′ and inform the user that their data has been
forgotten.

The attacker simply performs a MI attack on M ′ to try to
generate an example of ct. Our findings show that retraining
is entirely insufficient to protect the individual, with inversion
attacks successful even after a significant number of retrain-
ing iterations. Retraining maintains the quality of the model
on all non-forgotten classes, but it requires a very substan-
tial amount of training time to be even moderately effective,
making it insufficiently efficient.
Neuron Removal: The slightly more savvy model owner
may instead choose to remove the final layer neuron corre-
sponding to ct from the network entirely and release the new
model M ′ that classifies n−1 classes. The owner may naively
believe that if there is no output neuron for ct then the individ-
ual is protected. The attacker can query M ′ to get an (n-1)-
dimensional prediction vector P , calculate predictions, and
can launch an MI attack on n-dimensional prediction vector
P ∪ 0, relating the added dimension to the forgotten class ct.

Our findings show that a disconnected neuron does very
little to protect the class from MI attacks. Unfortunately, in
addition to removing the neuron, the model owner also has
to perform a moderate amount of retraining on the modified
dataset D′ = D \ {ct} in order to ensure privacy. However,
neuron removal does maintain the quality of the model on all
non-forgotten classes. Also, even with the moderate amount
of retraining described above, it is fairly efficient.
Scattered Unlearning: The intuition behind the scattered un-
learning method is to dilute the unique aspects of the target
class ct with other random characteristics. As an example,

Figure 2: Effect of probability p on forgotten class accuracy

Figure 3: Effect of probability p on non-forgotten class accuracy

consider trying to uniquely identify an animal from descrip-
tions such as “the animal sometimes has 2 legs, sometimes
has 4 legs, sometimes has 8 legs, and sometimes has no legs
at all”. The information learned is so diverse that no consen-
sus can be gained.

First, the model owner removes all instances of ct from D
to obtain the modified dataset D′. Second, for each example
e in D′, with some probability p, the model owner relabels e
with ct. The model M is retrained on the resulting dataset D′

for some iterations to produce an updated model M ′ that is
now defended by the scattered unlearning method.

Consider a scenario where the attacker performs an MI at-
tack on M ′ to try to generate an example of ct. As discussed
below, our results show that a moderate amount of scattered
unlearning makes MI attacks extremely difficult. One inter-
esting note is that while inversion attacks are unsuccessful
after a moderate amount of retraining, it takes a significant
amount of retraining for the classification accuracy of ct to
reduce. This highlights the unsuitability of classification ac-
curacy as a metric for how well ct has been forgotten from
the model.

In our experiments, we observed that the probability value
p (with which the model owner may relabel examples with ct)
we choose has non-negligible effect on the efficacy of the de-
fense mechanism. As seen in figure 2, the smaller the p value
the faster the model loses the ability to correctly classify the
forgotten class. However, larger p values cause more diffi-
culty for inversion attacks with less retraining. However, as
seen in figure 3, a sufficiently large p will cause the model to
lose it’s ability to correctly classify the rest of the data, render-
ing the model less suitable for classification. It’s worth not-
ing that when p = 0, scattered unlearning is indistinguishable
from relearning which provides no defense against inversion
attacks. We found p = 0.1 is a rule of thumb value to main-
tain model quality while providing robust defenses against
inversion attacks.

4



Scattered unlearning maintains the quality of the model on
non-forgotten classes. While modifying the dataset is a com-
putationally expensive task, it is not significant enough to im-
pact the efficiency of the method. Hence, this method is both
effective and efficient.
Class Unlearning: In class unlearning, the model owner ran-
domly relabels all examples in ct with a new label from C \ct
to produce modified dataset D′. They then train M on D′ for
some iterations to produce updated model M ′. Finally, they
remove all examples of ct from the dataset. Our results show
class unlearning to be the most effective forgetting method
for both classification accuracy and defense against inversion
attacks while maintaining the quality of the model on non-
forgotten classes. However, the data owner must hold a copy
of the user’s data during the retraining process - a restriction
that could possibly have legal significance. Modifying the
dataset is a computationally expensive task much like scat-
tered unlearning, but class unlearning is both more efficient
in terms of how much retraining is necessary and more effec-
tive in terms of resistance to inversion attacks.

5 Experimental Results
We trained a CNN on MNIST data [?] D for 5 epochs. Our
network consists of 2 convolutional layers followed by 2 fully
connected layers. We then separately applied each defense
method to cause the models to forget the class 3 and trained
each model for another 10 epochs (for scattered unlearning,
we set p = 0.1). Using separate test sets, we evaluated model
accuracy on {ct} and on D \ {ct} frequently during training.
After each epoch we generated multiple MI attacks to eval-
uate how the inversion effectiveness changed as the defense
was applied. All of our experiments were performed on an
the Amazon SageMaker platform, using an EC2 P3.2xLarge
instance.

We compare defense mechanisms along the following vec-
tors: prediction accuracy on the class designated to be forgot-
ten (for brevity we say forgotten class) as well as prediction
accuracy on non-forgotten classes, resistance to MI attacks
(evaluated based on observations). The ideal defense mecha-
nism, according to this evaluation criteria, must have 0% pre-
diction accuracy on forgotten class, must perform nearly as
well as the original unmodified model on unforgotten classes,
must be observationally resistant to MI attacks, and must be
more efficient than other mechanisms considered. We found
that class unlearning was the best along all these vectors.

5.1 Prediction Accuracy
Figure 4 shows the test accuracy results on the forgotten class
during training. We see that for the models defended by class
unlearning, the prediction accuracy quickly drops to 0% for
the forgotten class (and as we show below, it is also resis-
tant to MI attacks). Unfortunately, for the scattered unlearn-
ing defense mechanism, the prediction accuracy on forgotten
class never goes to 0%, whereas the neuron removal model
immediately loses any ability to classify the forgotten class.
As we found, prediction accuracy is a necessary metric, but
not sufficient to measure how well a class has been forgot-
ten (e.g., neuron removal is excellent on this measure, but

Figure 4: Test prediction accuracy on the forgotten class

Figure 5: Test prediction accuracy on non-forgotten classes

performs poorly against MI attacks). Additionally, we found
that for all four defense mechanisms the prediction accuracy
on the non-forgotten classes was unaffected. This shows that
these methods do not damage the model’s quality, a neces-
sary property for a defense mechanism. Figure 5 shows the
test accuracy on non-forgotten classes through training.

5.2 Inversion Results
Retraining: As a baseline we considered retraining of the
model with a modified data set where all examples labeled
with to-be-forgotten label ct removed. We found that retrain-
ing is an entirely insufficient method of protecting user data.
The prediction accuracy of the forgotten class decreases very
slowly, showing that this defense is insufficient in this regard
as well. Additionally, MI attacks can reliably produce identi-
fiable examples of ct even after the prediction accuracy drops
to 0% (see Figure 7). This highlights the fact that prediction
accuracy cannot be used as a meaningful metric for data re-
moval and showcases that inversions are an effective method
to evaluate removal.
Neuron Removal: Our findings show that neuron removal
alone isn’t sufficient to protect data. A network that has
learned to recognize ct has also learned to reduce the like-
lihood that an example from ct gets predicted to be an-
other class. Hence, the values of the other final layer neu-
rons (that are not responsible for predicting ct) tend to be
negative when given an example from ct. If all other neu-
rons have negative values, the “replaced neuron” with value
0 is the most probable class. As an example, a test for-
ward pass of a digit 3 through such a network results in
logit values of {-13.7, -2.31, -6.75, 0, -15.73, -2.44, -
19.82, -3.87, -3.19, -4.7} which translate to probabilities
{0, 0.08, 0, 0.79, 0, 0.07, 0, 0.02, 0.03, 0.01}. Not only does
this allow the attacker to get a moderately successful predic-
tion accuracy on ct, but it allows them to very effectively per-
form MI attacks. Figure 6 shows an example of one such

5



Figure 6: An inversion attack on M ′ with replaced neuron.

Epoch R NR SU CU

1

6

10

Figure 7: MI attack examples after 1, 6, and 10 epochs of retraining.
Defense methods: R: retraining, NR: neuron removal, SU: scattered
unlearning, CU: class unlearning

attack.

Scattered Unlearning: While the prediction accuracy for
scattered unlearning method declines slower than the other
methods, it is robust to MI attacks. The inverted images are
recognizable for the first epoch but become unrecognizable
soon after. Interestingly, after 6 epochs the prediction accu-
racy is around 45% while the inverted image is completely
unrecognizable - highlighting again the fact that prediction
accuracy on the forgotten class and resistance to inversion
are not correlated. Further, since the model owner would not
need to modify architecture of M or use the data from ct to
apply this method, this method may be the best option in cer-
tain contexts.

Class Unlearning: In terms of both prediction accuracy and
robustness against inversion, class unlearning far outperforms
other methods we considered in our experiments. Inversion
attacks are completely unrecognizable after only 1 retraining
epoch, while prediction accuracy on the forgotten class is 0%
after a fraction of an epoch. A caveat of class unlearning is
that it requires the model owner to keep a copy of the data
that needs to be forgotten while they perform the retraining.
While we do not know of any legal complications that could
arise from holding this data during the forgetting process, we
do not presume there are none.

Model Inversion Examples: We generated MI attack exam-
ples after each retraining epoch to test the effectiveness of
the attacks. Some selected examples that were generated 1,
6, and 10 epochs after the RTBF request can be seen in fig-
ure 7. As can be seen, both the class and scattered unlearning
methods vastly outperform the retraining and neuron removal
methods on this measure.

6 Discussion
Metrics: We emphasize that MI attacks are not an exhaus-
tive method of measuring privacy leaks from networks. Some
models aren’t as vulnerable to MI attacks, and MI attacks
have a limited ability to give information about specific data
examples themselves. However, finding a comprehensive
method of evaluating all vulnerabilities of a model is very
difficult, and to-date we have not found a good metric for this
evaluation.
Black Box Attacks: One might argue that the impact of MI
attacks can be limited by allowing clients to have only black
box access to models. Unfortunately, model extraction at-
tacks [?; ?; ?] have the ability to steal functionality of models
even with only black box access. Further, the existence of
these attacks mean that limiting clients to black box access
is not sufficient to deter attackers who can steal models and
then attack them under white box settings.
Stochastic Defenses: A straw defense we considered was
a stochastic system where the model owner provides only
black-box access to their system and modifies their model
such that when it outputs the forgotten class, a post-
processing filter randomly returns some other class. Other-
wise, the model behaves as before. In keeping with the spirit
of Kerckhoffs’s principle, a defense that relies upon the at-
tacker’s ignorance cannot be considered secure. An attacker
can make multiple queries using examples from the forgotten
class to realize the presence of a stochastic defense, and this
offers no more protection than a standard black-box model.

7 Conclusion
In this paper, we investigated how DNN models can be made
to comply with the Right to be Forgotten regulation. In this
scenario, model owners would not want to train a new model
from scratch due to cost considerations, and there is a need to
make the model forget target data without affecting its accu-
racy on rest of the data. We introduce several defense meth-
ods, namely, neuron removal, scattered unlearning, and class
unlearning, that can be used to protect data privacy without
incurring the significant cost of retraining a model. Further,
we evaluated these models for model accuracy and weakness
to model inversion attacks. We found that while all three
methods are efficient and maintain model quality, the class
unlearning method outperforms other methods on effective-
ness against MI attacks as well as prediction accuracy. Given
that this line of research into machine learning and law is new
and a potentially very rich field, there remains a number of
important problems to be resolved, including a mathematical
formulation of the problem and solutions in the DNN setting
that characterize defense mechanisms that are efficient, effec-
tive, and maintain model quality.

6


	Introduction
	Contributions

	Prior Work
	Model Inversion Attacks and Threat Model
	Threat Model
	Model Inversion Algorithm

	Defense Mechanisms for DNNs
	Defense Mechanisms

	Experimental Results
	Prediction Accuracy
	Inversion Results

	Discussion
	Conclusion

