
Appropriateness of Imperfect
CNFET Based Circuits for Error

Resilient Computing Systems

by

Kaship Nabi Sheikh

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2020

c© Kaship Nabi Sheikh 2020

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Jie Han
Associate Professor, Dept. of Electrical and Computer Engineering,
University of Alberta

Supervisor(s): Lan Wei
Assistant Professor, Dept. of Electrical and Computer Engineering,
University of Waterloo

Internal Member: David Nairn
Associate Professor, Dept. of Electrical and Computer Engineering,
University of Waterloo

Internal Member: Youngki Yoon
Associate Professor, Dept. of Electrical and Computer Engineering,
University of Waterloo

Internal-External Member: Armaghan Salehian
Associate Professor, Dept. of Mechanical and Mechatronics Engineering,
University of Waterloo

ii

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

With superior device performance consistently reported in extremely scaled dimensions,

low dimensional materials (LDMs), including Carbon Nanotube Field Effect Transistor

(CNFET) based technology, have shown the potential to outperform silicon for future

transistors in advanced technology nodes. Studies have also demonstrated orders of mag-

nitude improvement in energy efficiency possible with LDMs, in comparison to silicon at

competing technology nodes. However, the current fabrication processes for these mate-

rials suffer from process imperfections and still appear to be inadequate to compete with

silicon for the mainstream high volume manufacturing. Among the LDMs, CNFETs are

the most widely studied and closest to high volume manufacturing. Recent works have

shown a significant increase in the complexity of CNFET based systems, including demon-

stration of a 16-bit microprocessor. However, the design of such systems has involved

significantly wider-than-usual transistors and avoidance of certain logic combinations. The

resulting complexity of several thousand transistors in such systems is still far from the

requirements of high-performance general-purpose computing systems having billions of

transistors. With the current progress of the process to fabricate CNFETs, their introduc-

tion in mainstream manufacturing is expected to take several more years. For an earlier

technology adoption, CNFETs appear to be suited for error-resilient computing systems

where errors during computation can be tolerated to a certain degree. Such systems relax

the need for precise circuits and a perfect process while leveraging the potential energy

benefits of CNFET technology in comparison to conventional Si technology. In this thesis,

we explore the potential applications using an imperfect CNFET process for error-resilient

computing systems, including the impact of the process imperfections at the system level

and methods to improve it.

The current most widely adopted fabrication process for CNFETs (separation and

placement of solution-based CNTs) still suffers from process imperfections, mainly from

open CNTs due to missing of CNTs (in trenches connecting source and drain of CNFET). A

fair evaluation of the performance of CNFET based circuits should thus take into consider-

ation the effect of open CNTs, resulting in reduced drive currents. At the circuit level, this

iv

leads to failures in meeting 1) the minimum frequency requirement (due to an increase in

critical path delay), and 2) the noise suppression requirement. We present a methodology

to accurately capture the effect of open CNT imperfection in the state-of-the-art CNFET

model, for circuit-level performance evaluation (both delay and glitch vulnerability) of CN-

FET based circuits using SPICE. A Monte Carlo simulation framework is also provided

to investigate the statistical effect of open CNT imperfection on circuit-level performance.

We introduce essential metrics to evaluate glitch vulnerability and also provide an effective

link between glitch vulnerability and circuit topology.

The past few years have observed significant growth of interest in approximate com-

puting for a wide range of applications, including signal processing, data mining, machine

learning, image, video processing, etc. In such applications, the result quality is not com-

promised appreciably, even in the presence of few errors during computation. The ability

to tolerate few errors during computation relaxes the need to have precise circuits. Thus

the approximate circuits can be designed, with lesser nodes, reduced stages, and reduced

capacitance at few nodes. Consequently, the approximate circuits could reduce critical

path delays and enhanced noise suppression in comparison to precise circuits. We present

a systematic methodology utilizing Reduced Ordered Binary Decision Diagrams (ROBDD)

for generating approximate circuits by taking an example of 16-bit parallel prefix CNFET

adder. The approximate adder generated using the proposed algorithm has ∼ 5× reduc-

tion in the average number of nodes failing glitch criteria (along paths to primary output)

and 43.4% lesser Energy Delay Product (EDP) even at high open CNT imperfection, in

comparison to the ideal case of no open CNT imperfection, at a mean relative error of

3.3%.

The recent boom of deep learning has been made possible by VLSI technology ad-

vancement resulting in hardware systems, which can support deep learning algorithms.

These hardware systems intend to satisfy the high-energy efficiency requirement of such

algorithms. The hardware supporting such algorithms adopts neuromorphic-computing

architectures with significantly less energy compared to traditional Von Neumann archi-

tectures. Deep Neural Networks (DNNs) belonging to deep learning domain find its use in

a wide range of applications such as image classification, speech recognition, etc. Recent

v

hardware systems have demonstrated the implementation of complex neural networks at

significantly less power. However, the complexity of applications and depths of DNNs are

expected to drastically increase in the future, imposing a demanding requirement in terms

of scalability and energy efficiency of hardware technology. CNFET technology can be an

excellent alternative to meet the aggressive energy efficiency requirement for future DNNs.

However, degradation in circuit-level performance due to open CNT imperfection can re-

sult in timing failure, thus distorting the shape of non-linear activation function, leading

to a significant degradation in classification accuracy. We present a framework to obtain

sigmoid activation function considering the effect of open CNT imperfection. A digital neu-

ron is explored to generate the sigmoid activation function, which deviates from the ideal

case under imperfect process and reduced time period (increased clock frequency). The

inherent error resilience of DNNs, on the other hand, can be utilized to mitigate the impact

of imperfect process and maintain the shape of the activation function. We use pruning

of synaptic weights, which, combined with the proposed approximate neuron, significantly

reduces the chance of timing failures and helps to maintain the activation function shape

even at high process imperfection and higher clock frequencies. We also provide a frame-

work to obtain classification accuracy of Deep Belief Networks (class of DNNs based on

unsupervised learning) using the activation functions obtained from SPICE simulations.

By using both approximate neurons and pruning of synaptic weights, we achieve excellent

system accuracy (only < 0.5% accuracy drop) with 25% improvement in speed, signifi-

cant EDP advantage (56.7% less) even at high process imperfection, in comparison to a

base configuration of the precise neuron and no pruning with the ideal process, at no area

penalty.

In conclusion, this thesis provides directions for the potential applicability of CNFET

based technology for error-resilient computing systems. For this purpose, we present

methodologies, which provide approaches to assess and design CNFET based circuits,

considering process imperfections. We accomplish a DBN framework for digit recognition,

considering activation functions from SPICE simulations incorporating process imperfec-

tions. We demonstrate the effectiveness of using approximate neuron and synaptic weight

pruning to mitigate the impact of high process imperfection on system accuracy.

vi

Acknowledgements

This dissertation would not have been possible without the support, guidance of my

research supervisor Prof. Lan Wei. I am grateful to her for trusting and allowing me to

explore exciting research directions. I am also thankful to her for her easy availability for

discussing research ideas that helped in maintaining continued progress towards achieving

the goals of this Ph.D. research. Prof. Wei is considerate, respectful to her students, and

care about their long term growth. I owe my deepest gratitude to her for my success,

achievements, and support in difficult times during my stay here.

I would also like to thank my committee members Prof. David Nairn, Prof. Youngki

Yoon, Prof. Armaghan Salehian for serving on my dissertation committee and providing

me with valuable feedback that has helped in making this work more comprehensive.

I would also like to thank my collaborator Dr. Shu Jen Han (currently at HFC Semi-

conductor Corp), for providing the important initial directions for my research. I am also

thankful to Daniel Zhou and An Qi Zhang for their assistance while working as URA in

our research group.

I am thankful to my colleagues Zongxian Yang, Hao Zhang, Hazem Elgabra, Xuesong

Chen, Shubham Ranjan, Rubaya Absar, Yiju Zhao, Sid Zarabi, and Egon Fernandes, for

all the discussions and feedback during group meetings. During my time at Waterloo, I

have made some excellent friends. Special thanks to Aimal Khan for providing consistent

help and valuable inputs from the time I arrived in Waterloo. I have spent countless hours

discussing a wide variety of topics with Mohammed Zeeshan. The time spent with him

has helped in my life outside work.

vii

My deepest gratitude to my parents for their encouragement, love, and never-ending

support. I am thankful to my parents-in-law for their patience and encouragement during

my graduate studies. I would also like to thank my siblings and cousins for their love

and support. Above all, this thesis would not have been possible without support, love,

encouragement of my wonderful wife Mahvesh. During my graduate studies, I was faced

with stress numerous times. She was always there with the kind support and listening ear.

I thank her for the patience and sacrifices. I humbly dedicate this thesis to her.

viii

Table of Contents

List of Tables xiii

List of Figures xiv

Abbreviations xxiv

1 Introduction 1

1.1 Motivation . 1

1.2 Approach and Scope . 3

1.2.1 Quantifying impacts of CNFET process imperfection on circuit-level
performance . 4

1.2.2 Explore potential applications of CNFETs for approximate computing 5

1.2.3 Explore potential applications of CNFETs for neuromorphic computing 5

1.3 Thesis outline . 6

2 Literature Review of Carbon Nanotube FET: Process, Device, Circuits
and Systems 8

2.1 CNFET devices: advantages and challenges 9

2.2 CNFET Process . 11

2.2.1 CVD process . 11

2.2.2 Solution processed sorting and placement 12

2.3 Recent advances in CNFET based circuits and systems 13

ix

2.4 Overview of work in the thesis . 17

2.5 Conclusions . 17

3 Capture Effect of CNFET Process Imperfections on Circuit-Level Per-
formance 19

3.1 CNFET Process Imperfections . 20

3.2 Effect of CNT imperfection on circuit-level performance 23

3.3 VSCNFET model . 25

3.4 Capture open CNT imperfection in SPICE 26

3.5 Monte carlo simulation for capturing statistical effect of open CNT imper-
fection . 29

3.6 Methodology for evaluating CNFET performance 34

3.6.1 Noise tolerance . 34

3.6.2 Circuit-level Delay . 40

3.6.3 16-Bit Han Carlson CNFET adder 43

3.7 Conclusions . 47

4 Carbon Nanotube FET — Appropriateness for Approximate Computing 48

4.1 Introduction . 48

4.2 Reduce process induced violations with approximate circuits 51

4.3 ROBDD for obtaining approximate circuit 52

4.4 Methodology to generate approximate circuit for reduced process induced
degradation . 54

4.5 Approximate CNFET adders for reduced process induced degradation . . . 59

4.6 Conclusions . 66

5 Carbon Nanotube FET — Appropriateness for Neuromorphic Comput-
ing 67

5.1 Introduction . 67

5.2 Basics of Deep Neural Network . 69

x

5.3 Sigmoid generation using digital neuron . 71

5.3.1 Effect of open CNT imperfection on activation function 71

5.3.2 Digital neuron circuit . 71

5.3.3 Factors affecting timing failure for digital neuron 78

5.3.4 Simulation framework for sigmoid generation 79

5.4 Classification accuracy methodology . 86

5.5 Effect of increased process imperfection and frequency on P (spike|v) and
classification accuracy . 89

5.6 Conclusions . 90

6 Techniques to Mitigate Impact of CNFET Process Imperfections 93

6.1 Introduction . 93

6.2 Modified simulation framework for sigmoid generation 94

6.3 Pruning with bias compensation to reduce timing violations 97

6.4 Approximate neuron . 105

6.5 Results and discussion . 108

6.5.1 Best configuration for maintaining P (spike|v) shape at high PCNTopen108

6.5.2 Classification accuracy using P (spike|v) curves 110

6.5.3 Key comparison for choosing best configuration 113

6.6 Conclusions . 115

7 Conclusions and Future Work 116

7.1 Conclusion and summary . 116

7.1.1 Methodologies for effective capture of CNFET process imperfection
on circuit-level performance . 116

7.1.2 CNFET based circuits for approximate computing 117

7.1.3 CNFET based circuits for neuromorphic computing 118

7.2 Future research directions . 119

xi

References 121

A Circuit-Level Yield Analysis with Short CNT Imperfection 139

A.1 On and Off currents of a single CNFET . 140

A.2 Conducting/Non-Conducting Criteria for Pull-Up/Pull-Down Branches in
CMOS Circuits . 141

A.3 Circuit-level Pass Rate . 145

A.4 Single Stage CMOS circuits . 148

A.5 Cascaded Stages . 151

A.6 Determine Process Requirement Based on Circuit-Level Pass Rate Target . 152

B Glitch Analysis for Additional Approximate Circuits 154

B.1 4-bit CNFET RCA Precise/Approximate Circuits 155

B.2 4-bit CNFET Wallace Multiplier Precise/Approximate Circuits 159

B.3 RESULTS AND DISCUSSION . 160

B.3.1 Fail Nodes in the whole Circuit . 160

B.3.2 Fail Nodes along a path . 163

B.3.3 Choosing Optimum Circuit . 163

C Framework for CNFET Monte Carlo Seed Generation 166

C.1 Codes for CNFET Monte Carlo Seed Generation 169

D Publications from this Work 179

xii

List of Tables

3.1 VSCNFET parameter values [69]. 27

4.1 Comparison of precise(orig) and approximate(app int, app out) 16-bit adders. 66

6.1 Comparison of peak accuracy (%) with A − X(PCNTopen = 0%), A −
Y (PCNTopen = 40%) and B − Y (PCNTopen = 40%) for different network
sizes. 113

6.2 Comparison of A − X(PCNTopen = 0%), A − Y (PCNTopen = 40%) and
B − Y (PCNTopen = 40%). Best results for each metric are highlighted in
green. 114

xiii

List of Figures

1.1 Organization of thesis. 7

2.1 Schematic of CNFET with CNTs as conducting channels connecting source
and drain. 11

2.2 Overview of steps in sorting and placement process for CNFET fabrication. 14

2.3 Overview of work in the thesis. 16

3.1 (Top Left) Ideal Carbon Nanotube Field Effect Transistor (CNFET) (I-
CNFET) with no process imperfection (all semiconducting Carbon Nan-
otube (CNT)s). (Top Right) Real CNFET (R-CNFET) with process im-
perfections (mixture of open and semiconducting CNTs). The presence of
open CNTs would mean a reduced drive current for R-CNFET in comparison
to its ideal case I-CNFET; consequently affecting the circuit performance
with increased delay and reduced glitch suppression. 23

3.2 Schematic showing (a) top, (b) front view of a CNFET device with some of
dimensions parameters used in VSCNFET model. 26

3.3 (Left) Schematic of a CNFET with process imperfections (N = 6, Nopen =
1, Nnor = 5). (Right) Cross-sectional view of the CNFET with W = Width
of the CNFET, s = spacing between the CNTs in CNFET. The presence
of Nopen can be effectively modeled in HSPICE by changing the spacing pa-
rameter ‘s’, which effectively modifies the number of semiconducting CNTs
under the CNFET for a given width ‘W ’. No modification in ‘W ’ would
mean the parasitic capacitance is nearly unaffected by this technique to
model Nopen. 28

xiv

3.4 (Top) Cross-sectional view for three CNFETs with GAA or TG configura-
tion, represented as GAA/TG(s=1x), GAA/TG(s=2x), GAA/TG(s=5x).
Each of the three CNFETs have spacing ‘s’ and width ‘W ’ in the ratio of
1 : 2 : 5 respectively. The number of semiconducting CNTs shown is just
for illustration. (Bottom) (a) Ion plotted as a function of N − Nopen for
three different CNFETs (width and spacing both in the ratio of 1 : 2 : 5
respectively), for both GAA and TG configuration. At each N −Nopen, Ion
is the same across the three CNFETs with GAA configuration, but slightly
different for CNFETs with TG configuration, (b) RelativeIon plotted for
each GAA and TG configuration for (s=2x) and (s=5x). 30

3.5 Overview of Monte Carlo Seed generation. Multiple copies of the circuit
netlist are created (each acting a seed/sample for Monte Carlo run), with
the spacing (between CNTs in CNFET) of CNFETs having statistical dis-
tribution corresponding to the given PCNTopen. 32

3.6 Generation of the SpaceF ile at given PCNTopen, involves mapping of the
random numbers (NUM#1, NUM#2, NUM#3, . . . etc) from a uniform
random number generator on to y-axis of cumulative distribution function
corresponding to the particular PCNTopen. The next highest cumulative dis-
tribution point closest to each mapped random number is chosen and corre-
sponding space value is stored in SpaceF ile (e.g. NUM#1, NUM#2, NUM#3
would result in selection of C2, C0, C1 respectively, eventually leading to stor-
ing space values s2, s0, s1 respectively in the SpaceF ile). Cumulative distri-
bution points C0, C1, C2, . . . , CN−1 corresponds to spacing values s0, s1, s2,, sN−1
respectively. 33

3.7 Schematic shows the case of aggressors (Aggr1, Aggr2) (shaded in grey),
inducing glitches at victim nodes n1, n2 respectively. In the absence of
aggressors, the node voltages at n1, n2 would be close to V DD, GND
respectively. However, with the aggressors and given input transitions, the
induced glitches at nodes n1, n2 would cause the voltage to go below V DD
and above GND respectively. 35

3.8 Steps to compute peak glitch magnitude for each internal/output (victim)
node in the circuit involving transient Monte Carlo (MC) HSPICE simula-
tion, at a given PCNTopen. 36

xv

3.9 (a) Voltage at a victim node S2 of a 4-bit Ripple Carry Adder (RCA) circuit
(Figure 3.10) resulting from the transient HSPICE simulation for seed 21 of
Monte Carlo run for PCNTopen = 0% and 40%. The peak of the glitches
(highlighted by dotted circles) at PCNTopen = 0% and 40%, have magni-
tude ∼64mV and ∼154mV respectively. (b) Peak glitch magnitude at the
victim node S2 for 100 seeds (Seed#0 to Seed#99) for PCNTopen = 0%
and 40%. At PCNTopen = 0%, the peak glitch magnitude is the same
across the seeds; however at PCNTopen = 40%, the peak glitch magnitude
vary between ∼70mV and ∼154mV . 38

3.10 Schematic shows 4-bit RCA with each (primary, internal, output) node
shown. S3 with highest LN# (LN# = 9), is expected to have highest
MeanFailNodesPATH among the primary outputs. 39

3.11 Steps to obtain Delay/Slope LUTs for single arc of an input circuit. 42

3.12 Schematic of 16 bit precise Han Carlson Tree Adder (orig) with Sum block
formed using XOR gates to generate sum signals from S0(LSB) to S15(MSB).
S2, S7, S15 are highlighted by dotted circles. 43

3.13 (a) MeanFailNodesPATH plotted for S2(orig), S7(orig), S15(orig) as func-
tion of PCNTopen. (b) LN# of orig plotted for each sum output from
S0(LSB) to S15(MSB) including Cout. The x-axis is the bit position with
Bit#(0, 1, . . . , 15, 16) representing S0, S1,, S15, Cout respectively. S15 with
the highest LN# has expectedly highest MeanFailNodesPATH at a given
PCNTopen. 45

3.14 Worst Delay (among 100 random input vectors) for S2(orig), S7(orig) and
S15(orig) plotted as function of PCNTopen. The Delay values are normalized
to that of S15(orig) with PCNTopen = 0%. Among S2, S7 and S15, S2 has
the least delay (39.7% less in comparison to S15 at PCNTopen = 0%). S15

has worst delay with delay degradation of ∼ 30% at PCNTopen = 20% in
comparison to delay at PCNTopen = 0%. 46

4.1 Approximate circuit helps to improve process imperfection tolerance for low
yield emerging technologies, by reducing the delay and reduced glitch viola-
tions. 50

4.2 (a) Example shows a circuit to realize Boolean function AB+CD+E+F .
(b) Approximate circuit obtained for circuit in (a). 52

xvi

4.3 (a) ROBDD for example circuit in Figure 4.2 (a) for variable ordering E >
F > A > B > C > D. (b) ROBDD for the circuit in Figure 4.2 for
variable ordering E > F > A > B. ROBDD in (b) is derived from (a)
using Cudd SubSetShortPaths [97]. 53

4.4 Steps to obtain approximate circuit by replacing the circuit portions, which
contribute to the critical output. The approximate circuit obtained will act
as input circuit for the next iteration and each of the steps 1− 4 are to be
repeated to obtain the circuit for next iteration till final approximate circuit
is obtained. 55

4.5 Schematics of 16 bit precise Han Carlson Tree adder (orig), approximate
circuits with partial circuit approximated (app int) and whole circuit ap-
proximated (app out). The broken line on top of ‘b’ and ‘s’ in app out (full
connection not shown to avoid congestion) represents bit wise propagate
signal (Pi). There is Sum block consisting of XOR gates at the output of
orig and app int for generating sum signals (S0, S1, . . . , S15). The portions
highlighted by dotted circles in orig represents the circuit blocks which are
replaced by approximate circuit block to obtain app int. 57

4.6 Schematics of 1-bit adder modules ‘b’, ‘s’ utilized to generate sum outputs
(S0, S1, . . . , S15) of app out. Gi:j, Pi:j and Pi refer to group generate, group
propagate and bit wise propagate signal respectively. 58

4.7 Histogram shows %RelativeError for approximate circuit (a) app int and
(b) app out. Approximate circuit app int achieves significantly low mean
RelativeError 3.3% with > 90% of the input vector combination having
RelativeError < 10%. 60

4.8 Linked Nodes (LN#) plotted for each sum output S0(LSB) to S15(MSB) in-
cluding Cout, with x-axis representing the bit position. Bit#(0, 1, . . . , 15, 16)
represent outputs (S0, S1,. . . ., S15, Cout) respectively. There is significant
reduction in LN# using approximate circuits (app int and app out). The
output with highest LN# of orig, app int and app out have LN# 64, 14
and 11 respectively. 61

4.9 Worst Delay (normalized to that of orig at PCNTopen = 0%) as a function
of PCNTopen. The worst Delay for approximate circuits app out, app int
are lower by 46.7%, 8.1% respectively in comparison to precise circuit (orig)
at PCNTopen = 0%. 62

xvii

4.10 MeanFailNodesCKT for precise ‘orig’ and approximate adders (app int,
app out) as a function of PCNTopen. At PCNTopen = 40%, Using approx-
imate circuits app int, app out reduces the MeanFailNodesCKT by 18.5%,
33.1% respectively, in comparison to precise circuit (orig). 63

4.11 MeanFailNodesPATH for critical primary output of precise ‘orig’ and ap-
proximate adders (app int, app out) as a function of PCNTopen. At PCNTopen =
40%, the MeanFailNodesPATH reduces significantly by 80.6% and 84.9%
with app int and app out respectively in comparison to orig. 64

4.12 Energy Delay Product (EDP) (normalized to EDP of orig at PCNTopen =
0%) for orig, app int and app out, at different PCNTopen. At PCNTopen =
40%, the EDP for app int and app out is still lesser by 43.4% and 69.5%
respectively in comparison to EDP for orig at PCNTopen = 0%. 65

5.1 DNN with example neuron N1 shown. N1 receives inputs y1, y2, y3 from the
previous layer through synaptic connections w1, w2, w3 respectively. f is the
non-linear activation function (sigmoid considered in this work). 70

5.2 Comparison of CNFETs under no process imperfection and with high per-
centage of open CNTs. With increase in open CNTs [%] (PCNTopen), the ef-
fective drive current reduces, for similar parasitic capacitance, consequently
resulting in higher circuit delay. The activation function ‘P (spike|v)‘ for
neuron circuit can observe distortion in shape from ideal sigmoid, at high
PCNTopen. 72

5.3 (a) CNFET based neuron circuit. (b) Crossbar architecture with axons, den-
drites, neurons as horizontal, vertical lines and blue boxes respectively. Pres-
ence of dot (Cij = 1) at axon and dendrite intersection, represent synapse.
Neuron adds contribution of each synapse in serial manner (indicated by red
arrow). (c) Timing diagram explaining the sequence of important signals of
neuron circuit for spike generation. THALF is half of the time period between
consecutive synaptic events. 75

5.4 Timing diagram explaining the sequence of important signals during synap-
tic addition with Syn#j, followed by successive stochastic leak and thresh-
old steps over multiple runs. The case of no timing failure and timing failure
encountered are represented in form of VX with green, red color respectively.
Under the event of timing failure (red color), vcircuit = 80 6= v, generates
false spike (spike = 1), which otherwise is not generated for normal case of
no timing failure (green color). 76

xviii

5.5 tCQ as function of setup skew (termed as tSU−SKEW) of flop at (a) PCNTopen =
0%, (b) PCNTopen = 40% respectively. tSU is defined as tSU−SKEW where
tCQ degradation is ∼ 10% of the nominal value obtained for high tSU−SKEW . 77

5.6 Histogram showing delay of adder (tAdder) at PCNTopen = 0% and PCNTopen =
40%. 79

5.7 Simulation framework for sigmoid (activation function) generation using ac-
tual neuron circuit. 81

5.8 Steps to extract small number of seeds from large seed set at a given
PCNTopen. The output 3 seeds (WC, BC, MID) shown correspond to
neuron netlists having worst, best and median probability of observing tim-
ing failure due to CNFET process imperfection. 82

5.9 PMATCH (probability of vcircuit = 0) for different seeds at PCNTopen =
40% (THALF = 80 ps). WC, BC corresponds to the seeds with minimum
and maximum PMATCH value respectively. Seed#40 is the WC seed with
PMATCH = 0. 83

5.10 P (spike|v) variation with (a) THALF at PCNTopen = 0%, (b) Different
seeds at THALF = 90ps, PCNTopen = 40%. 85

5.11 Comparison of P (spike|v) at different PCNTopen, for MID seed at a) THALF

= 90 ps, b) THALF = 70 ps, c) THALF = 50 ps, d) THALF = 40 ps. At THALF

= 90 ps, only small deviation is observed across different PCNTopen in
comparison with ideal sigmoid (scale = 10). PCNTopen = 40%, significant
deviation is observed from ideal sigmoid (scale = 10) at THALF = 70 ps. At
THALF = 40 ps, significant deviation from ideal sigmoid is observed at each
considered PCNTopen (0%/10%/20%/40%). 87

5.12 Schematic showing setup for tagging sigmoids, for classification accuracy of a
Deep Belief Network (DBN) with 3 Neurons (N1, N2, N3) in Layer#1. N1,
N2, N3 are each being assigned P (spike|v) (sigmoid) curves corresponding
to a Syn#j. e.g. For Ex#1 of dataset: N1, N2, N3 are assigned sigmoids
pertaining to Syn#3, Syn#5, Syn#1 respectively. 88

5.13 Comparison of P (spike|v) at different THALF with (a) PCNTopen = 0%, (b)
PCNTopen = 40%. (c) Comparison of accuracy (%) as function of THALF

at PCNTopen = 0% and PCNTopen = 40%. 91

xix

6.1 DNN with (a) no pruning (X), pruning of synaptic weights and neuron
bias compensation (Y) (b) Comparison of critical path Delay versus open
CNTs [%] (PCNTopen) with precise (A) and approximate (B) neuron. (c)
Comparison of activation function ‘P (spike|v)‘ for different configurations
(based on combination of precise (red) /approximate(green) neuron and no
pruning/pruning of synaptic weights) at different PCNTopen. 96

6.2 Overview of steps for P (spike|v) (sigmoid) curves generation, at given CN-
FET process quality (PCNTopen) and particular frequency (THALF) for con-
figuration B − Y . 98

6.3 Timing Diagram for (a) X (NoPrune), (b) Y (Prune + BiasCOMP) case. 100

6.4 Multiple synaptic combinations (M = 100) for (a) X (NoPrune), (b) Y
(Prune + BiasCOMP) case shown, with effective synaptic weight at each
clock cycle [#] of synaptic addition step. 102

6.5 (a) RMSE(avg) as function of BiasCOMP , (b) System accuracy as a func-
tion of BiasCOMP , for configuration A − Y (PreciseNeuron – Prune +
BiasCOMP), for M = 10, M = 100 Synapsecomb. Inset of (b) shows com-
parison of P (spike|v) with corresponding BiasCOMP (opt) values, for config-
uration A− Y with M = 10, M = 100 Synapsecomb. 103

6.6 Schematics of 8-bit (a) precise Han Carlson Tree adder (orig), (b) approxi-
mate adder (app acc). 104

6.7 a) Delay comparison of orig and app acc at PCNTopen = 40%, (b) Error
for app acc. 106

6.8 (a) Part of digital neuron circuit shown with approximate adder app acc and
circuitry for error compensation. (b) Modified circuit for 4th bit position of
neuron circuit. (c) Schematic of app acc with NOR3 gate for COMP signal.
Timing diagram showing important signals for error compensation for (d)
Lk = 0, (e) Lk = 1. 107

6.9 Comparison of P (spike|v) at different THALF for different configuration (a)
A−X at PCNTopen = 0%, (b) A−X at PCNTopen = 40%, (c) A− Y at
PCNTopen = 40%, (d) B − Y at PCNTopen = 40%. 109

xx

6.10 (a) Comparison of accuracy (%) as function of THALF for different configura-
tion A−X at PCNTopen = 0%, A−X, A−Y , B−Y at PCNTopen = 40%.
Accuracy at PCNTopen = 0% and 40% is represented by solid and dot-
ted curves respectively. At THALF = 40ps, Accuracy for B − Y even at
PCNTopen = 40% is better (15.32% higher) than accuracy for A − X (at
PCNTopen = 0%) (also shown by arrows). (b) Accuracy (%) as function
of THALF (limited THALF range 50 ps to 70 ps) shown for different config-
urations A −X at PCNTopen = 0%, A − Y , B − Y at PCNTopen = 40%
(Only data points without lines shown for better clarity). The figure in (b)
is included for purpose of showing peak accuracy. 111

6.11 Comparison of accuracy (%) as function of THALF with different network
sizes, for different configuration (a) A−X at PCNTopen = 0%, (b) A−X
at PCNTopen = 40%, (c) A − Y at PCNTopen = 40%, (d) B − Y at
PCNTopen = 40%. 112

6.12 EDP normalized to base configuration A−X at PCNTopen = 0%. 114

A.1 CNFET with process imperfections with N = 7, Nnor = 3, Nopen = 2, Nshort

= 2. The current computation for device is shown for both on and off modes.142

A.2 (Left) Actual inverter circuit with imperfect CNFET for input A = 0, ex-
pected out = 1. (Right) Reference inverter circuit with ideal CNFET (all
semiconducting CNTs) for input A = 0, out = 1. 143

A.3 (Left) Block diagram shows pass rate computation of single stage CMOS
circuits incorporates process parameters (PCNTopen, PCNTshort) and input
vector combination (VEC). (Right) Pass rate computation for single stage
for expected output out = 1 following Equation A.3. 147

A.4 Pass rate for single stage circuits for PCNTshort = 0.1% (a) Inverter, (b)
2-input NAND, (c) 3-input NAND, (d) 2-input NOR, (e) MA (output =
!Cout), (f) MA (output = !S). All other topologies are sized in accordance
to the reference inverter (Ninv = 6). The inverter shows the lowest pass rate
compared to all other topologies. 149

A.5 (a) Mirror Adder schematic, (b) Block diagram of 4-bit RCA. Assume both
true and inverted inputs, available for 4-bit RCA. 150

A.6 Computation of pass rate for cascaded stages. The pass rate (probability)
computation for 2nd stage output (input to 3rd stage) is shown for expected
2nd stage output to be 0 or 1. 152

xxi

A.7 (a) Process requirements (PCNTopen, PCNTshort) to achieve an 80% pass
rate for FO1 inverter chain with Ninv=6 with different number of stages.
(b) Process requirements (PCNTopen, PCNTshort) to achieve 80% pass rate
for Cout of different numbers of bits of RCA under worst case input. 153

B.1 (From Left to Right) (a) Precise Mirror Adder ‘MA’. (b) Approximate Mir-
ror Adder schematic ‘MA2’ taken from [39]. ‘MA2’ has the accurate circuitry
for carry (!Cout), however, the sum (!S) is approximated. Both circuits ‘MA’,
‘MA2’ would be represented by their box symbol or by letters ‘MA’, ‘MA2’
for rest of this chapter. 156

B.2 Shows the schematic of 4-bit precise Ripple Carry adder ‘RCA (orig)’, 4-bit
approximate adders ‘RCA (app-a)’, ‘RCA (app-b)’. %ErrorLogic is com-
puted over all the possible 512 input vectors. The area of RCA (app-a) and
RCA (app-b) are 0.78X and 0.39X that of the precise adder RCA (orig)
respectively. 157

B.3 Schematic shows different stages of precise 4-bit Wallace Multiplier. 158

B.4 (Starting from left) shows the schematic of 4-bit precise Wallace multi-
plier ‘WM (orig)’, 4-bit approximate multiplier ‘WM (app-a)’, ‘WM (app-
b)’.%ErrorLogic is computed over all the possible 256 input vectors. The
area of WM (app-a) and WM (app-b) are 0.90X and 0.69X that of the
precise multiplier WM (orig) respectively. 159

B.5 MeanFailNodesCKT for different precise and approximate circuits of (a)
4-bit adder, (b) 4-bit multiplier. Using approximate circuits significantly
reduces the number of vulnerable nodes which fail the glitch criteria. . . . 161

B.6 MeanFailNodesPATH for (a) RCA (orig). (b) RCA (app-b), (c) WM (orig),
(d) WM (app-b). Black dotted circle indicate the critical output (worst
MeanFailNodesPATH) at PCNTopen =40%. Highlighted blue line and blue
dotted circle indicate that using WM (app-b) instead of WM (orig), the re-
quirement of PCNTopen is largely reduced to achieve MeanFailNodesPATH

below certain target value (5 in this case). 162

B.7 Plot for 4-bit adder between (a) MeanFailNodesCKT and %ErrorLogic, (b)
MeanFailNodesPATH for S3 and %ErrorLogic. Plot for 4-bit multiplier be-
tween (c) MeanFailNodesCKT and %ErrorLogic, (d) MeanFailNodesPATH

for S6 and %ErrorLogic. 165

xxii

C.1 (a) Steps (along with list of codes) for generation of multiple copies of CN-
FET based netlist (each acting as seed/sample for Monte Carlo run). . . . 166

C.2 (a) Set of commands for generation of multiple copies of CNFET based
netlist (each acting as seed/sample for Monte Carlo run) (b) Description of
files/directories referred in (a). 168

xxiii

Abbreviations

BDD Binary Decision Diagram 52, 56

BP Black Phosphorous 2

CNFET Carbon Nanotube Field Effect Transistor xiv, xv, xviii, xix, xxi, 2–6, 8–10, 13,
15–26, 28–32, 37, 40, 41, 43, 47, 49, 68, 69, 71, 72, 75, 80, 82, 90, 94, 116–120,
140–145, 167

CNN Convolutional Neural Network 120

CNNs Convolutional Neural Networks 120

CNT Carbon Nanotube xiv, xv, xxi, 2, 9–13, 17, 20–26, 28–32, 37, 40, 47, 51, 71, 80, 90,
117–119, 139–141, 143–146

CVD Chemical Vapor Deposition 11

DBN Deep Belief Network xix, 69, 86, 88–90, 115, 118, 119

DNN Deep Neural Network 68, 69, 90

DNNs Deep Neural Networks 5, 6, 15–17, 67–69, 90, 93, 94, 118

EDP Energy Delay Product xviii, xxi, 3, 15, 64–66, 113–115, 117, 118

GAA Gate All Around 28, 29

ITRS International Technology Roadmap for Semiconductors 2

LBG Local Bottom Gate 25

xxiv

LDMs Low Dimensional Materials 2, 3

LUT Lookup Table 19, 41, 42

MC Monte Carlo 80

Pd Palladium 25

PUF Physical Unclonable Function 13

RCA Ripple Carry Adder xvi, 37–40

ROBDD Reduced Order Binary Decision Diagram 52, 53, 55, 56, 66, 117

RRAM Resistive Random-Access Memory 15

SCE Short Channel Effects 1, 2, 9

Si Silicon 31, 167

STA Static Timing Analysis 4, 20, 41

TG Top Gate 29

TMDs Transition Metal Dichalcogenides 2

TRNG True Random Number Generator 13

VS Virtual Source 25

VSCNFET Virtual-Source Carbon Nanotube Field-Effect Transistor 19, 25, 26, 47, 117

xxv

Chapter 1

Introduction

1.1 Motivation

The scaling down of silicon transistor dimensions has driven the semiconductor industry

over the past several decades. With every new technology generation, scaling results in

more transistors (high packing density, reduced cost per transistor), with the tremendous

benefit of high performance for the same or less power [1, 2, 3]. Transistor scaling has

faced numerous challenges, including difficult gate control, increased Short Channel Ef-

fects (SCE), mobility degradation at reduced dimensions, non-scalable leakage, parasitic

components, and so on [4, 1]. In addition to traditional geometrical dimensional scaling,

several remarkable innovations including strain [5, 6], high-k [6, 7], metal gate [6, 7] were

introduced over the years to provide sustained benefits from scaling. The introduction of

FinFET in 22 nm [8, 9] was a major milestone for the semiconductor industry by deviating

1

from the traditional planar devices. The FinFET transistor provides better gate control

over the channel, reduced SCE, reduced leakage power [9]. With tremendous efforts, 7 nm

FinFETs were also successfully fabricated [10], and 5 nm FinFETs with extreme ultraviolet

lithography (EUV) have also entered risk production phase [11, 12]. However, continuing

with FinFETs in more advanced technology nodes looks quite challenging [13].

The International Technology Roadmap for Semiconductors (ITRS) has predicted the

need for novel materials as channel to address transistor scaling in coming years [14]. With

superior properties over bulk silicon in various aspects, the family of Low Dimensional

Materials (LDMs) including graphene [15, 16], Transition Metal Dichalcogenides (TMDs)

[17, 18, 19, 20], Black Phosphorous (BP) [21, 22, 23], CNT [24, 25, 26] has been actively

explored to replace or complement silicon for future technology nodes. The striking feature

of LDMs is naturally thin body (free from dangling bonds) at ultra-scaled dimensions, pro-

viding high mobility (free from surface scattering) [27] and excellent gate control. Because

of high carrier mobility ∼ 20,000 cm2V−1s−1 at room temperature, graphene has attracted

significant interest for LDMs based FETs. However, graphene due to zero bandgap [28] is

not suitable for digital applications. BP among LDMs is also actively pursued, since its

demonstration of mobility ∼ 1000 cm2V−1s−1 [22, 23] with on/off current ratio > 105 [29].

TMDs with the demonstration of 1 nm gate length MOS2 based FET [18], showed sig-

nificant potential of TMDs as channel material for advanced technology nodes. Recently,

1 bit microprocessor based on MOS2 FETs, consisting of 115 transistors was fabricated

[20], demonstrating the potential for large scale manufacturing of TMDs based FETs. In

comparison to other LDMs, CNT has been extensively studied for almost two decades and

has shown the potential of being close to high-volume manufacturing [24, 25, 26]. CN-

2

FET technology has demonstrated strong electrostatics and excellent transport with the

potential of operating CNFETs at low voltages; consequently providing the promise of

achieving order of magnitude improvement in Energy Delay Product (EDP) over the com-

peting silicon-based transistors in advanced technology nodes [30, 31, 32, 33]. Recently,

CNFET based brain-inspired computing system was fabricated with the capability of pro-

viding ∼ 35× EDP improvement (after place and route) over competing silicon technology

[34]. Recent works have also experimentally shown the possibility of scaling both the

channel and contact length in CNFET to < 10 nm, with remarkably low contact resistance

[35]. However, large scale manufacturing of LDMs including CNFETs is facing significant

challenges and still seem quite far from competing with the scale of silicon-based general-

purpose computing systems. The issue with imperfect process is a major roadblock for

large scale manufacturing. It is a challenge which requires improvements from materials,

devices, circuits and systems. An early technology adoption of LDMs including CNFETs

is still possible for error-resilient computing paradigms such as approximate and neuromor-

phic computing. These paradigms on one hand provide the necessary tolerance to process

imperfections and on the other leverage from the tremendous energy efficiency benefit of

CNFET based technology.

1.2 Approach and Scope

With extensive research and the potential of being closest to high volume manufacturing

in comparison to other LDMs [36, 34, 37, 38], we have focused on CNFET based circuits

in this work. The work in the dissertation can be divided into the following three main

3

portions.

1.2.1 Quantifying impacts of CNFET process imperfection on

circuit-level performance

In this dissertation, we first find out the process imperfections arising from the currently

popular processes for CNFET fabrication. Specifically, we identify the process imperfec-

tions having a prominent effect on CNFET circuit-level performance. A methodology is

provided to effectively include the effect process imperfections, in the state of art CNFET

model. We then provide a simulation framework to evaluate circuit-level performance in

terms of common digital VLSI performance metrics delay, noise tolerance. Moreover, a

Monte Carlo simulation methodology is also provided to capture the statistical effect of

CNFET process imperfections on circuit-level performance. This part of the dissertation

achieves the goal of evaluating CNFET performance in the presence of imperfection, using

the traditional SPICE simulators HSPICE, Ultrasim. Moreover, we also provide a look up

table based methodology for the fast evaluation of CNFET circuit-level delay, which can

be easily integrated with the industry standard Static Timing Analysis (STA) tools such

as PrimeTime.

4

1.2.2 Explore potential applications of CNFETs for approximate

computing

In the second section, we apply the circuit-level performance evaluation methodology (de-

veloped in the first section), to common conventional circuits. Specifically, we focus on

adders, which form an integral part of a wide variety of approximate computing appli-

cations, including DSP, image processing [39]. We first investigate the potential of ap-

proximate circuits in increased tolerance to process imperfections, followed by systematic

methodology of generating approximate circuits for reduced glitch and delay violations due

to process imperfections. This part of the dissertation achieves the goal of 1) showing the

potential of approximate circuits in reducing the violations due to process imperfections,

with a slight compromise in logic accuracy; 2) developing a systematic methodology of

obtaining approximate circuits with reduced process-induced glitch and timing violations.

1.2.3 Explore potential applications of CNFETs for neuromor-

phic computing

In the last section of the dissertation, we explore the appropriateness of CNFETs for neuro-

morphic computing. Neuromorphic computing architectures are inspired by the structure

of the human brain and consume significantly less power, in comparison to traditional Von

Neumann based architectures [40, 41]. Deep Neural Networks (DNNs) have attracted sig-

nificant attention for a wide range of applications including image classification [42, 43],

speech recognition [44], natural language processing [45], with their hardware implemen-

5

tation requiring energy-efficient neuromorphic computing architectures. CNFETs have

the potential to meet the growing energy efficiency demands of neuromorphic comput-

ing applications. But a careful evaluation of performance impact due to imperfection in

neuromorphic architectures is required. We first investigate the role of increased process

imperfection on the accuracy of DNNs. We then show that the error resilience feature of

DNNs can be utilized to overcome the substantial accuracy degradation due to process

imperfections.

1.3 Thesis outline

The thesis is organized as follows, with the outline shown in Figure 1.1. In Chapter 2, we

include the works from literature demonstrating the potential and challenges with CNFET

based circuits and systems. Specifically, we focus on device imperfections with current

immature processes for the CNFET fabrication and introduce potential applications for

error-resilient computing. In Chapter 3, we present the framework to incorporate the effect

of CNFET process imperfections on circuit-level performance. In Chapter 4, we investigate

potential applications of CNFET based circuits for approximate computing and provide a

systematic methodology to obtain approximate circuits with sustained performance even in

the presence of process imperfections. In Chapter 5, we present the framework evaluating

the effect of process imperfections on the accuracy of DNNs. In Chapter 6, we utilize the

techniques of network pruning and approximate circuit to maintain accuracy even at high

process imperfection. In Chapter 7, we summarize and conclude this dissertation.

6

CNFET Process/Device/
System

CNT imperfection
Model/Capture

Chapter 2

Chapter 3

Neuromorphic Computing
•  DNN

Chapter 5

Approximate Computing
•  Adders

Chapter 4

- Approximate Neuron

Chapter 6

- Network Pruning

Chapter 6

Reduce CNT Imperfection
•  DNN

Chapter 6

Figure 1.1: Organization of thesis.

7

Chapter 2

Literature Review of Carbon

Nanotube FET: Process, Device,

Circuits and Systems

In this chapter, we first introduce several challenges associated with fabricated CNFET

devices, followed by a comparison of the two popular processes for CNFET fabrication. We

then present the works in the literature related to CNFET based circuits and systems. We

also briefly discuss the appropriateness of CNFETs for error-resilient computing. Eventu-

ally, we provide an overview of work in the remaining chapters of this thesis.

8

2.1 CNFET devices: advantages and challenges

Scaling in advanced technology nodes can be continued with CNFET devices having CNTs

as conducting channel with an ultra-thin body (∼ 1−2 nm), providing excellent electro-

static gate control, reduced SCE in advanced technology nodes [30, 46]. The naturally thin

body in CNT means reduced scattering, and consequently, high mobility/carrier velocity is

guaranteed even at ultra-scaled dimensions [47, 35, 46]. Moreover, the strong electrostatic

control and high mobility would facilitate low voltage of operation, thus enhancing energy

efficiency of circuits based on CNFETs [30, 32, 33]. The experimental demonstration of

CNFET scaled to 9 nm channel length was a great step showing potential of superior low

voltage performance with CNFETs in sub−10 nm nodes [30]. Systems based on CNFETs

have shown order of magnitude energy efficiency in comparison to competing silicon node

[34, 33]. Also, NFETs and PFETs in CNFETs have nearly the same mobility resulting in

similar current for the same transistor width [48], thus enabling efficient layout in compar-

ison with silicon. Recent work also demonstrated CNFETs with a small footprint of 40

nm, indicating the potential scalability of CNFETs to advanced technology nodes [46].

Despite several advantages of CNFETs, the fabrication processes for CNFETs are still

immature and face several challenges as listed below:

• Alignment: The CNTs in a CNFET can deviate by a certain angle (Figure 2.1). The

angular deviation results in variation in CNT length and contact length, consequently

causing variation in device performance [24].

• Contact Length: Reducing contact length to small dimensions without increasing

9

contact resistance is an important requirement for the scalability of CNFETs in the

sub−10 nm regime [30, 35, 46].

• Density: The density of CNTs deposited per µm is another key factor for the per-

formance of CNFET based circuits. Researchers at IBM presented a CNT density

requirement of 125 CNTs/µm for realizing high performance general-purpose com-

puting systems based on CNFETs [49].

• Semiconducting purity: The semiconducting purity is expressed as the percentage

of semiconducting CNTs of the total CNTs. In general, CNT synthesis results in 33%

of metallic CNTs and 66% of desired semiconducting CNTs. The metallic CNTs

have to be reduced by a significant amount either pre-transfer [25, 50, 36] or post-

transfer [51, 52, 53] to substrate, for realizing any meaningful logic functionality out

of CNFET based circuits.

• Missing CNTs: The trenches connecting source and drain of CNFETs may not be

covered by CNTs, leading to ”open CNTs” which do not conduct current even in

”on” state. The open (missing) CNTs is currently the major issue as explained in

later sections (2.2.2 and 3.1).

10

Drain

Source

θ

Contact
Length

Misalignment
Semiconducting

CNT

Device Width (W)

Metallic
CNT

Figure 2.1: Schematic of CNFET with CNTs as conducting channels connecting source
and drain.

2.2 CNFET Process

2.2.1 CVD process

Chemical Vapor Deposition (CVD) process has demonstrated the potential to grow aligned

CNT arrays on crystalline substrates, such as quartz, sapphire. One of the well-known

method is using pattern catalyst lines on a crystalline quartz substrate, resulting in aligned

CNTs ∼ 99.5% [52]. However, the average density reported with single growth is low ∼

5−10 CNTs/µm [54]. Hong et al. [55] presented a method of using multiple growth cycles,

resulting in average and peak CNT density of ∼ 20− 30 CNTs/µm and 45 CNTs/µm re-

spectively [55]. Patil et al. [56] demonstrated a CNT transfer technique to help effectively

transfer CNTs to target silicon substrate using gold film, which was removed by etchant

leaving behind CNTs on the silicon substrate. The CVD procedures were able to produce

11

aligned CNTs and achieve CNT density > 45 CNTs/µm. But the metallic CNT content is

∼ 33%, which needs to be reduced significantly using post CNT transfer technique. Joule

heating is one such technique, employed by applying high voltage across the CNFETs,

eventually leading to a breakdown of metallic CNTs due to high current and leaving the

majority of the semiconducting CNTs nearly unaltered [56, 52]. High voltage can be detri-

mental as it can lead to a dielectric breakdown in a few devices, making them inoperable

[57]. There are other techniques as well [58, 51] for elimination of metallic CNTs post CNT

transfer. However, it has been repeatedly mentioned in ref. [57, 26] that metallic CNTs

removal post CNT transfer, would result in unexpected number of semiconducting CNTs

in devices, leading to undesired device to device variation. A recent technique of growing

chirality specific CNTs has shown promise to avoid the problem of metallic CNTs, however

the average CNT density reported is still poor ∼ 10 CNTs/µm [59].

2.2.2 Solution processed sorting and placement

The solution-processed sorting (purification) and placement is currently the most popu-

lar approach for high-density aligned CNT growth. As mentioned before, the raw CNT

synthesis results in 33% of metallic CNTs. The first step of this method involves purifi-

cation (reducing metallic CNT percentage) by dispersing CNTs in the solution and then

extracting the semiconducting CNTs and leaving behind the metallic CNTs in the solution

[24, 25]. Two popular approaches have been dispersing CNTs into aqueous solution using

surfactant [24] and the other one utilizing conjugated polymers for CNT dispersion in solu-

tion [25]. Conjugated polymer approach is preferred because of its potential to achieve high

12

purity and high density CNTs [25, 26]. A number of recent works have reported achieving

semiconducting purity > 99.99% [50, 36]. The next step to follow after sorting is the place-

ment of purified CNTs selectively into trenches, onto the substrate, to connect the source

and drain region of CNFETs. The placement of surfactant wrapped CNTs in aqueous so-

lution onto the patterned HfO2/SiO2 substrate (with HfO2 as trenches) was carried using

ion-exchange transfer [24]. In [25], the purified CNTs after sorting (purification) step were

selectively placed by binding the polymer wrapped CNTs to HfO2 trenches. In comparison

to the placement of purified CNTs from the aqueous solution, the density achieved with

the binding of polymer wrapped CNTs was at least two times higher [25]. With a trench

width of 100 nm, the yield (trench coverage) achieved was reported to be > 90%, but with

scaled trench width of 50 nm, the reported yield was > 70% [25]. Figure 2.2 provides the

summary of steps in sorting and placement process for CNFET fabrication.

2.3 Recent advances in CNFET based circuits and

systems

With over 20 years of extensive research, significant progress has been made in digital

circuits based on CNFETs, ranging from simple logic gates [56], flip flops [60], to small scale

circuits such as Physical Unclonable Function (PUF) [61], True Random Number Generator

(TRNG) [62] and first carbon nanotube computer (1-bit) with 178 p-type CNFETs [52],

was a big step towards showing the potential of CNFETs for large scale integration. In

recent years, the complexity of CNFET based systems, has witnessed tremendous growth

13

typically < 0.01%
Metallic CNTs

1 2

~ 33% Metallic CNTs

Metallic CNT

Silicon

SiO2 missing CNT

HfO2

CNT

3

After CNT synthesis After CNT Sorting

After CNT Placement

Figure 2.2: Overview of steps in sorting and placement process for CNFET fabrication.

14

even extending to heterogeneous systems. Some of recent heterogeneous systems include

three dimensional (3D) imaging system with 2,784 CNFETs (distributed over two layers)

integrated over top of silicon imager [63], 3D computing system involving > 2 million

CNFETs (logic) integrated with Resistive Random-Access Memory (RRAM) (memory)

and silicon [38]. A brain inspired computing system with 35× EDP advantage (after place

and route) in comparison to 28 nm silicon node and classification accuracy > 98% was also

presented [34]. Recently, 1 Kbit SRAM with 1,024 (6,144 CNFETs in total) fully functional

memory cells was also experimentally demonstrated [37]. The recent introduction of 16-bit

microprocessor having > 14, 000 CNFETs [36] is considered to be a milestone towards the

potential large-scale integration with CNFET based technology.

Although the recent CNFET based systems have shown great promise, they are still

far in comparison to the scale of a general-purpose computing system having billions of

transistors. The reason is the immature process technology, imposing design constraint of

limiting the number of stages [52, 36], avoiding some logic gate combinations [36], sizing

constraint (using significantly wider transistors) [36] for ensuring no failure requirement

of general-purpose computing systems. However, early technology adoption is still possi-

ble with error-resilient computing systems, having the excellent feature of inherent error

tolerance. Neuromorphic computing-based architectures inspired by brain [64, 65], pro-

vides the implementation of complex Deep Neural Networks (DNNs) [66] at significantly

low power. Neural networks, including DNNs, are inherently error-resilient and produce

acceptable results even with slightly imprecise computations [67, 68]. The relaxation in ex-

act computation can be utilized to have imperfection tolerant circuits and also preventing

the occurrence of major failures with system-level modifications. With the complexity of

15

DNNs, expected to increase in future, CNFET technology (even with the immature pro-

cess) can help in meeting the growing energy-efficiency requirements of the future hardware

systems implementing DNNs.

7:6

7:4

7:0

5:4

5:2

5:0

3:0

3:2
1:0

0:0 1:0 2:0 3:0 4:0 5:0 6:0 7:0

0 1 2 3 4 5 6 7

5:4

5:2

6:2

3:2

0:0 1:0 2:0 4:0 5:0 6:0 7:0

0 1 2 3 4 5 6 7

3:0

Precise Circuit Approximate Circuit

•  Fewer gates
•  Reduced Capacitances
•  Lesser Nodes

Silicon

SiO2 missing CNT

HfO2

CNT

•  High Process Imperfection

Drive Current

Delay Violation
Noise Failure

Device-level Circuit-level

•  Fewer computations
•  Approximate
Computations

Inaccuracy

System-level

Precise DNN Imprecise DNN

Delay Violation
Energy

Inaccuracy

Chapter 3 Chapter 4, 6

Chapter 5, 6

Figure 2.3: Overview of work in the thesis.

16

2.4 Overview of work in the thesis

In Section 2.3, we discussed several recent and prior works related to CNFET based cir-

cuits and systems. These works have focused on CNFET technology enablement for a wide

variety of circuits and systems. But the work in this dissertation specifically investigates

the appropriateness of CNFETs for error-resilient computing systems. Figure 2.3 provides

an overview of the work in the thesis. At the device-level, we capture the effect of process

imperfection for circuit-level performance evaluation. At the circuit and system level, we

introduce approximate circuits and imprecise DNNs, respectively, to reduce the impact of

CNFET process imperfections, with marginal degradation in accuracy. The major contri-

butions of this dissertation are first, providing the set of methodologies for evaluating the

circuit-level performance impact of process imperfections and secondly, providing the set

of techniques at circuit and system level to reduce the impact of process imperfections.

The techniques presented in the dissertation are not just restricted to CNFETs but can

be effectively applied to other emerging materials based technologies suffering from the

immature process.

2.5 Conclusions

The solution-based process of sorting and placement of CNTs is currently the most popular

process for CNFET fabrication, because of high semiconducting purity > 99.99% [50, 36].

However, missing CNTs in the trenches is still > 30% for narrow trenches [25] and expected

to increase further with the scaling of trench widths in the future. The recent works

17

on CNFET based circuits and systems show great advancement in increasing complexity

(> 14, 000 CNFETs for recent reported microprocessor [36]). However, it is still quite far

from the general-purpose computing systems, typically having billion of transistors. With

the current process quality, CNFETs can still be appropriate for error-resilient computing

systems, which can tolerate few imprecise computations and thus, can be modified to

provide the necessary tolerance for increased process imperfection.

18

Chapter 3

Capture Effect of CNFET Process

Imperfections on Circuit-Level

Performance

In Chapter 2, we discussed about process imperfections arising from the immature pro-

cess for CNFET fabrication. In this Chapter, we first provide the methodology to include

the effect of process imperfection in Virtual-Source Carbon Nanotube Field-Effect Tran-

sistor (VSCNFET) model [69], used for SPICE simulations. The methodology is utilized

to evaluate the impact of process imperfections on circuit-level performance in terms of

common VLSI metrics delay, noise tolerance. A Monte Carlo simulation based framework

is also proposed to accurately capture the statistical effect of process imperfections on

circuit-level performance. Eventually, a Lookup Table (LUT) based methodology is intro-

19

duced for fast evaluation of CNFET circuit-level delay, which can be easily integrated with

industry-standard STA tools such as PrimeTime. Parts of this chapter are published in

ref. [70, 71, 72].

3.1 CNFET Process Imperfections

As discussed previously, the 2-step process of sorting (purification) and placement of so-

lution processed CNTs is currently the popular choice for CNFET fabrication. CNFETs

fabricated from 2-step sorting and placement process can suffer from two major imperfec-

tions: (1) left over metallic CNTs in sorting (separation) step, resulting in “short CNTs”

always conducting even under the bias of “off” state; (2) trenches connecting source and

drain of CNFETs, not covered by CNTs during placement step leading to “open CNTs”

which do not conduct current even in the “on” state. We now define shorthand notations

PCNTshort as percentage of short CNTs left in the solution after the completion of sorting

step and PCNTopen as probability of a trench not covered by CNT, during the placement

step.

With process imperfections, a CNFET designed to have N CNTs under the gate has

combination of short, open and semiconducting CNTs with

Nshort +Nopen +Nnor = N (3.1)

Where Nshort, Nopen, Nnor are number of short, open and semiconducting CNTs respec-

tively.

20

Given PCNTopen and PCNTshort from the 2-step sorting and placement process of

solution-processed CNTs, we now determine the probability of a particular CNT in a

CNFET to open, short or semiconducting. As explained before, the bulk of the metallic

CNTs are removed in the first step(sorting). But there is still some percentage (PCNTshort)

of metallic CNTs left in the solution. Thus, after the first step, among all the remaining

CNTs in the solution, the percentage of metallic and semiconducting CNTs is PCNTshort

and (1−PCNTshort) respectively. In the second step(placement), the CNTs in the solution

are to be placed along the trenches. But, some percentage (PCNTopen) of trenches have

missing(open) CNT. Thus, among the trenches in a CNFET, the percentage of trenches

having missing or filled with CNT (metallic or semiconducting) is given by PCNTopen and

(1− PCNTopen) respectively. Hence, the probability of a particular CNT in a CNFET to

be open, short, and semiconducting is given by PCNTopen, (1− PCNTopen) · PCNTshort,

and (1− PCNTopen) · (1− PCNTshort), respectively.

The probability of CNFET with N trenches to have Nopen of open tubes and Nshort of

short tubes (and thus Nnor = N −Nopen −Nshort of normal semiconducting tubes) can be

expressed by trinomial distribution formula (Equation 3.2)

PNopen,Nshort
=

N !

Nopen!Nshort!Nnor!
· PCNTNopen

open · [(1− PCNTopen) · PCNTshort]Nshort

· [(1− PCNTopen) · (1− PCNTshort)]Nnor

(3.2)

which on further simplication leads to Equation 3.3 [73].

21

PNopen,Nshort
= (C

Nopen

N · PCNTNopen
open) · (1− PCNTopen)N−Nopen ·

(CNshort
N−Nopen

· PCNTNshort
short) · (1− PCNTshort)Nnor

(3.3)

The current works report achieving semiconducting purity > 99.99% [37, 36, 74] means

percentage of short CNTs PCNTshort < 0.01%, while the percentage of open CNTs

(PCNTopen) is still reported > 30% for a trench width of 50 nm [25].

As discussed in Section 2.1, a low density of placed CNTs directly limits the realization

of high-performance CNFETs. From the past several years, there have been consistent

efforts to reduce the width of trenches for increasing the density of placed CNTs [24,

25]. However, scaling the trench width increases the percentage of trenches (connecting

source and drain of CNFETs) missing CNTs, meaning higher PCNTopen. There are other

challenges of controlling CNT diameter, length variations. However, the performance of

CNFETs is still primarily limited by the problem of scaling trench widths (affecting CNT

density) [24, 25, 26]. With trench width expected to scale further in the future, PCNTopen

is expected to be even higher and continue to remain the major issue in the future CNFETs

as well. In this work, we focus on only open CNT imperfection.

The probability of Nopen (PNopen) CNTs among N total trenches can be obtained from

Equation 3.3, by ignoring the short CNT imperfection (with (PCNTshort < 0.01% consis-

tently reported).

PNopen = (C
Nopen

N · PCNTNopen
open) · (1− PCNTopen)N−Nopen (3.4)

22

R-CNFET		

 I-CNFET

 R-CNFET I d
ri

ve
_c

ur
re

nt

Drain	

Source	

Drain	

Source	

 Missing (open) CNT

	I-CNFET		

Noise Tolerance
(Glitch Suppression)

Delay		

Circuit	Performance		

 Semiconducting CNT

1

2

Figure 3.1: (Top Left) Ideal CNFET (I-CNFET) with no process imperfection (all semi-
conducting CNTs). (Top Right) Real CNFET (R-CNFET) with process imperfections
(mixture of open and semiconducting CNTs). The presence of open CNTs would mean a
reduced drive current for R-CNFET in comparison to its ideal case I-CNFET; consequently
affecting the circuit performance with increased delay and reduced glitch suppression.

3.2 Effect of CNT imperfection on circuit-level per-

formance

In Section 3.1, we discussed about the major source of imperfection arising from the sorting

and placement process of solution processed CNTs, is the open CNT imperfection. The

presence of open CNTs (Nopen > 0) would have a direct impact on the total number

23

of semiconducting tubes in a CNFET. A higher percentage of open CNT (PCNTopen)

would effectively mean reduced number of semiconducting tubes for CNFETs, consequently

leading to reduction in drive currents. Figure 3.1 shows an example of Ideal CNFET (I-

CNFET) with all semiconducting CNTs, and Real CNFET (R-CNFET) with a mixture

of open and semiconducting CNTs. I-CNFET refers to the desired case of no process

imperfection (PCNTopen = 0%); however, from the actual process (suffering from open

CNT imperfection) the expected CNFET is R-CNFET (having some of percentage of open

CNTs). Ignoring diameter variation, the drive current in a CNFET can be assumed to

be proportional to effective number of CNTs (N − Nopen) (only semiconducting CNTs).

With open CNTs present in some cases, R-CNFET would have reduced drive current in

comparison to I-CNFET. The reduced driving current consequently leads to degradation

in circuit-level performance. In this paper, we have focused on impact of open CNT

imperfection on two major circuit-level performance metrics:

1. Noise Tolerance: We define “Noise Tolerance” in terms of glitch suppression, as

the ability of the circuit to suppress the induced glitches. The presence of glitches of

significant magnitude creates a risk of logic failure (glitches of high magnitude can

propagate to flop inputs, and can lead to wrong data capture in latch/flop) [75, 76].

We thus put a limit on maximum allowable glitch magnitude in the circuit and count

the number of nodes in the circuit or path to the primary output failing maximum

allowable glitch value. The degraded drive current in CNFETs (due to presence

of open CNTs) would reduce the ability of a driving stage to suppress the glitch

occurring at its output node; consequently increasing the number of nodes failing

24

glitch criteria.

2. Delay: In a circuit, the delay of the critical path has to be kept below the target

value to meet the minimum frequency requirement. The presence of open CNTs

would reduce the driving current in CNFETs while parasitic capacitance remains

nearly unaffected, hence consequently increasing the critical path delay, which might

result in failure of the circuit to meet certain target frequency value.

3.3 VSCNFET model

We have used Stanford VSCNFET model [69] for our SPICE simulations. The VSCN-

FET model is a semi empirical model based on virtual source concept [77]. The model

is extracted from data, obtained through experiments [47, 30] and numerical simulations

[78, 79]. The important model parameter Virtual Source (VS) carrier velocity is extracted

from experimental data of a device, fabricated for different channel lengths [47]. The de-

vice contains a single CNT (the CNT is grown on quartz substrate and transferred to

silicon substrate) as channel, with Palladium (Pd) as Local Bottom Gate (LBG), HfO2 as

dielectric and Pd as drain/source contacts [47].

The VSCNFET model provides prediction for device behavior with scaling of dimen-

sions for future sub-10nm nodes [78, 79]. For our analysis, we have used the default

parameter values provided in the Table 3.1 [69], if not otherwise specified. The parameters

in Table 3.1 are provided for a projected CNFET device (Figure 3.2) at 5 nm technology

node, with contacted gate pitch of 31 nm [79].

25

It should be noted that the work in the thesis is not just applicable for the VSCN-

FET model but can be easily extended to other improved CNFET models, calibrated to

experimental data in the future technology nodes.

Gate Drain Source

LC Lg Lext

s

d

Gate Drain Source

LC Lg Lext

Hg

Substrate

(a)

(b)

Figure 3.2: Schematic showing (a) top, (b) front view of a CNFET device with some of
dimensions parameters used in VSCNFET model.

3.4 Capture open CNT imperfection in SPICE

VSCNFET model considers all CNTs as semiconducting CNTs. So, we use a modified

version of VSCNFET model to capture the effect of open CNT imperfection. As discussed

before, the effect of Nopen is reduction in effective number of CNTs (N−Nopen) in a CNFET.

One way to model Nopen in SPICE is to effectively change the number of CNTs for a given

26

Name Description Value

Vdd Supply voltage 0.71 V
Lg Physical gate length 11.7 nm
Lc Contact length 12.9 nm
Lext Source/drain extension length 3.2 nm
Hg Gate height 20 nm
d CNT diameter 1.2 nm
tox Gate oxide thickness 3 nm
kox Gate oxide dielectric constant 23
kcnt CNT dielectric constant 1
ksub Substrate dielectric constant 3.9
kspa Spacer dielectric constant 7.5

Efsd
fermi level to band edge at
source/drain related to doping density

0.258 eV

Vfb
flat band voltage
(for threshold voltage adjustment)

0.015 V

Geomod

device geometry
1 : cylindrical gate-all-around
2 : top-gate with charge screening effect
3 : top-gate without charge screening effect

1

Table 3.1: VSCNFET parameter values [69].

27

Drain	

Source	

Missing (open) CNT

Semiconducting CNT

Nopen = 1
Nnor = 5

s

Cross sectional view

Keep CNFET width fixed but change
the spacing parameter ‘s’ in HSPICE
to model the effect of Nopen .

W

W = Width of CNFET
s = spacing between the CNTs

Figure 3.3: (Left) Schematic of a CNFET with process imperfections (N = 6, Nopen = 1,
Nnor = 5). (Right) Cross-sectional view of the CNFET with W = Width of the CNFET, s
= spacing between the CNTs in CNFET. The presence of Nopen can be effectively modeled
in HSPICE by changing the spacing parameter ‘s’, which effectively modifies the number
of semiconducting CNTs under the CNFET for a given width ‘W ’. No modification in
‘W ’ would mean the parasitic capacitance is nearly unaffected by this technique to model
Nopen.

width of the CNFET, by changing the spacing parameter ‘s’ (spacing between CNTs

for SPICE). Increasing ‘s’ would effectively reduce the number of semiconducting CNTs

(N −Nopen), but keeping the width constant avoids changes to the parasitic capacitance.

Figure 3.3 shows example of CNFET suffering from process imperfections with N = 6,

Nopen = 1. The CNFET can be modeled in SPICE by changing ‘s’ such that number of

semiconducting CNTs are N −Nopen = 5.

The stated method to capture Nopen would be accurate for the case where overall

current of the CNFET is mainly affected by number of semiconducting CNTs (N −Nopen)

but least affected by the spacing between the CNTs. We define term ‘Ion’ as the on

current of CNFET (|V gs| = V dd, |V ds| = V dd) where V gs, V ds, and V dd are the gate to

source, drain to source, and supply voltages, respectively. Figure 3.4(a) shows Ion for Gate

28

All Around (GAA) and Top Gate (TG) configuration each for three different CNFET

widths with spacing in the ratio of (1 : 2 : 5) respectively for a given N − Nopen. The

main difference between GAA and TG is how gate controls the channel CNT, with gate

completely surrounding CNT in GAA [49] and only from the top in TG [80]. GAA(s=1x),

TG(s=1x) represent the base cases with the nominal spacing values while for the other

cases GAA/TG(s=2x) and GAA/TG(s=5x), having spacing two and five times compared

to the base case GAA/TG(s=1x) for a given N−Nopen. For GAA configuration, we observe

no change in Ion among the CNFETs for given N − Nopen (Figure 3.4(b)). However, for

TG configuration, there is difference observed in Ion for different spacing CNFETs. The

difference at a given spacing is expressed with respect to the base case (s=1x) asRelativeIon

= [Ion - Ion (s=1x)]/Ion(s=1x), where Ion is the on current at the given spacing value.

RelativeIon becomes more appreciable for higher value of N −Nopen (For a given CNFET,

the charge screening effect becomes more prominent for higher N−Nopen or reduced spacing

between CNTs). However, even for case TG(s=5x), the RelativeIon < 1.5% is observed,

revealing no significant change in Ion with spacing. Without loss in generality, the further

simulation results shown are with GAA device configuration.

3.5 Monte carlo simulation for capturing statistical

effect of open CNT imperfection

Nopen can be different in CNFETs with same width, even for the same overall percentage of

open CNTs (PCNTopen). Figure 3.5 provides an overview of Monte Carlo simulation based

29

1 2 3 4 5 6
N-Nopen

0

10

20

30

40

50

I on
 [�

A
]

GAA (s = 1x)
GAA (s = 2x)
GAA (s = 5x)
TG (s = 1x)
TG (s = 2x)
TG (s = 5x)

1 2 3 4 5 6
N-Nopen

0

0.5

1

1.5

2
R

el
at

iv
e

I on
 [%

]
GAA (s = 2x)
GAA (s = 5x)
TG (s = 2x)
TG (s = 5x) TG

GAA
(b)

GAA

TG

(a)

W

s = 1x

GAA/TG (s = 1x)

s = 2x

2W

GAA/TG (s = 2x)

s = 5x

5W

GAA/TG (s = 5x)

Figure 3.4: (Top) Cross-sectional view for three CNFETs with GAA or TG configuration,
represented as GAA/TG(s=1x), GAA/TG(s=2x), GAA/TG(s=5x). Each of the three
CNFETs have spacing ‘s’ and width ‘W ’ in the ratio of 1 : 2 : 5 respectively. The number
of semiconducting CNTs shown is just for illustration. (Bottom) (a) Ion plotted as a
function of N −Nopen for three different CNFETs (width and spacing both in the ratio of
1 : 2 : 5 respectively), for both GAA and TG configuration. At each N −Nopen, Ion is the
same across the three CNFETs with GAA configuration, but slightly different for CNFETs
with TG configuration, (b) RelativeIon plotted for each GAA and TG configuration for
(s=2x) and (s=5x).

30

methodology to accurately capture the statistical effect of open CNTs. The methodology

involves the generation of seeds for the Monte Carlo run (Each trial or sample of the Monte

Carlo run is referred to as seed in this work), followed by SPICE simulation for each such

seed.

At a given PCNTopen, we first obtain list of possible spacing values (captured in

SpaceF ile (Figure 3.5)) for each CNFET in the circuit, corresponding to the PCNTopen.

s0, s1, s2, . . . , sN−1 in Figure 3.5, are list of spacing values corresponding to given PCNTopen.

Our simulation framework utilizes existing Silicon (Si) based library for the schematic gen-

eration in Cadence Virtuoso, followed by generating Si based netlist with connectivity

information (Figure 3.5). We have provided codes in Section C.1 that can utilize the Si

based netlist with the connectivity information and generate multiple seeds with each CN-

FET in the netlist being assigned from the obtained spacing values, to generate multiple

copies of original netlist each acting as seed for Monte Carlo run (Figure 3.5).

Figure 3.6 shows the procedure for generation of SpaceF ile at given PCNTopen. The

numbers obtained from a pseudo random number generator (uniform distribution between

0 to 1) are mapped onto the cumulative distribution Ck (Equation 3.5) and each corre-

sponding spacing value is stored in SpaceF ile (Figure 3.6).

Ck =
k∑

i=0

PNopen=i (3.5)

where Ck represents the cumulative distribution for Nopen <= k (k = 0, 1, 2, . . . ,

N-1). The expression for PNopen is provided in Equation 3.4.

Each seed for the Monte Carlo run can be generated by assigning space values (from

31

out in

Schematic
Editor

Si Netlist CNFET Netlist
(Monte Carlo Seeds)

2 3
4

PCNTopen Space File

1
PCNTopen Monte Carlo

Seeds
Glitch Vulnerability

Netlist	

FOM
•  Mean Fail NodesCKT

•  Mean Fail NodesPATH

s0 s1 sN-1

1 4

.subckt INV in out vdd vss
xt1 out in vss nfet l=lx w=Wx …
xt0 out in vdd pfet l=lx w=Wx …
.ends INV_d0

xi1 ck ckb vdd vss INV

.subckt INV in out vdd vss spc1='s' spc2='s'
xmn1 out in vss vscnfet_1_0_1 FETtype=1
+ W=Wy s=spc1 …
xmp0 out in vdd vscnfet_1_0_1 FETtype=-1
+ W=Wy s=spc2 …
.ends INV

xi1 ck ckb vdd vss INV spc1=s0 spc2=s1

Figure 3.5: Overview of Monte Carlo Seed generation. Multiple copies of the circuit netlist
are created (each acting a seed/sample for Monte Carlo run), with the spacing (between
CNTs in CNFET) of CNFETs having statistical distribution corresponding to the given
PCNTopen.

32

SpaceF ile at given PCNTopen) to spacing parameter “s” of each transistor in the circuit

netlist. Similarly, multiple copies of the netlist can be generated, differing in space val-

ues assigned to the transistors. The number of space values in SpaceF ile ≥ #seeds ∗

#transistors, where #transistors are the total transistors in the netlist and #seeds are

the total seeds for the Monte Carlo run. In this thesis, we have used 100 seeds for the

Monte Carlo run if not specified.

C0 C1 C2 CN-1

NUM#1

NUM#2

NUM#3

0

1

s0 s1 s2 sN-1

NUM#1

NUM#2

NUM#3
Random Numbers
between 0 ! 1

Space File

s2
s0
s1

Figure 3.6: Generation of the SpaceF ile at given PCNTopen, involves mapping of the ran-
dom numbers (NUM#1, NUM#2, NUM#3, . . . etc) from a uniform random number
generator on to y-axis of cumulative distribution function corresponding to the particu-
lar PCNTopen. The next highest cumulative distribution point closest to each mapped
random number is chosen and corresponding space value is stored in SpaceF ile (e.g.
NUM#1, NUM#2, NUM#3 would result in selection of C2, C0, C1 respectively, even-
tually leading to storing space values s2, s0, s1 respectively in the SpaceF ile). Cumulative
distribution points C0, C1, C2, . . . , CN−1 corresponds to spacing values s0, s1, s2,, sN−1
respectively.

33

3.6 Methodology for evaluating CNFET performance

3.6.1 Noise tolerance

Glitch circuit setup

We now explain our circuit set up for glitch simulation, by referring to example in Fig-

ure 3.7. Figure 3.7 shows the example where aggressors Aggr1, Aggr2, are attacking nodes

n1, n2 (victim nodes) in the main circuit respectively. In the absence of aggressors, the

node n1, n2 would have voltages close to V DD, GND respectively for the given input

vector combination [00]. However, the rising and falling transitions at inputs of Aggr1,

Aggr2 respectively would result in glitches at both n1, n2. The size of glitches at both

nodes n1, n2 depends on multitude of factors including coupling capacitances, aggressors

type/width, timing, transition, drive currents etc [81, 82]. In our circuit set up for glitch

simulation, we assume our main circuit is under DC condition and aggressor (external to

main circuit) of similar type/drive strength is attacking each node in the circuit. It is

further assumed, that each aggressor is having an input transition (rise/fall) to result in

glitches at the victim node. Practically, the coupling capacitances and aggressors depend

upon the actual layout. However, without the layout information, it is still reasonable to

say that the coupling capacitance at the output of victim driver is expected to be more

with more number of gates connected to that output. Without the loss in generality, we

assume coupling capacitance at each node to be 0.5fF/µm. Moreover, if actual layout

information is available, the rest of the simulation framework still remains the same.

34

0
0

Cc1 Cc2

Aggr2

Victim

n1 n2

Aggr1

Figure 3.7: Schematic shows the case of aggressors (Aggr1, Aggr2) (shaded in grey),
inducing glitches at victim nodes n1, n2 respectively. In the absence of aggressors, the
node voltages at n1, n2 would be close to V DD, GND respectively. However, with the
aggressors and given input transitions, the induced glitches at nodes n1, n2 would cause
the voltage to go below V DD and above GND respectively.

Glitch Monte Carlo simulation setup

We now provide the simulation framework for obtaining peak glitch magnitude at each

internal/output node of the circuit, at given PCNTopen (Figure 3.8). In our current frame-

work, each node in the main circuit (excluding primary inputs) is assumed to be attacked

by aggressor (external to main circuit). Thus, each internal/output node is also termed as

victim node. The simulation setup for finding peak glitch magnitude at each victim node,

involves two main phases:

1. DC sim phase: This phase helps in finding out the transition type (rise/fall) at the

input of aggressor to result in glitches at each internal/output (victim) node in the

main circuit (Figure 3.8). e.g. In order to induce glitches at node n1 and n2, the

transition type at input of Aggr1, Aggr2 should be rise, fall respectively, for input

vector combination [00] (Figure 3.7).

35

Input Circuit

Netlist
(Nominal space)

VEC

Run HSPICE

Transistion (Rise/
Fall) for aggressor

Netlist
(Space Parameterized)

Input Circuit

Space File

PCNTopen

Netlist
Files

Run HSPICE

Node Glitch
Magnitude

DC Sim Phase

Glitch Sim Phase

Figure 3.8: Steps to compute peak glitch magnitude for each internal/output (victim)
node in the circuit involving transient Monte Carlo (MC) HSPICE simulation, at a given
PCNTopen.

36

2. Glitch sim phase: In this phase, we first assign the spacing values from the

SpaceF ile (at given PCNTopen), to “s” parameter of each CNFET in the netlist,

for obtaining multiple copies of the netlist which act as seeds for the Monte Carlo

run. Then we run transient HSPICE simulation to obtain peak glitch magnitude

for each victim node in the circuit, for each seed (Figure 3.9). Figure 3.9 shows the

instance of transient simulation by plotting voltage at victim node S2 of 4-bit RCA

(Figure 3.10). At PCNTopen = 40%, the peak glitch magnitude at node S2 varies

between ∼70mV and ∼154mV over 100 seeds, showing the statistical effect of open

CNT imperfection on glitch magnitude (Figure 3.9(b)).

Figures of merit

For our analysis, we set a criterion for maximum allowable glitch (Vpeak glitch limit) of

0.175V (= 0.25V DD). For a given seed, if peak magnitude of glitch at a node exceeds

Vpeak glitch limit, we say that node failing glitch criteria for that seed. In order to compare cir-

cuit in terms of glitch vulnerability, we define few more terms: (i) MeanFailNodesPATH as

the number of nodes (excluding primary inputs) along a path to the primary output in the

circuit, failing glitch criteria, averaged over total number of seeds. (ii) MeanFailNodesCKT

as the total number of nodes in the circuit, failing glitch criteria, averaged over total number

of seeds.

MeanFailNodesPATH =
1

S

S∑
i=1

#FailNodesPATH(Seedi) (3.6)

37

80 100 120 140 160 180 200
time [ps]

-20

0

20

40

60

80

100

120

140

160

V(
vi

ct
im

 n
od

e)
 [m

V]

PCNTopen = 0%
PCNTopen = 40%(a)

0 20 40 60 80 100
Seed#

60

80

100

120

140

160

180

Pe
ak

 G
lit

ch
 [m

V]

PCNTopen = 0%
PCNTopen = 40%(b)

Figure 3.9: (a) Voltage at a victim node S2 of a 4-bit RCA circuit (Figure 3.10) resulting
from the transient HSPICE simulation for seed 21 of Monte Carlo run for PCNTopen = 0%
and 40%. The peak of the glitches (highlighted by dotted circles) at PCNTopen = 0% and
40%, have magnitude ∼64mV and ∼154mV respectively. (b) Peak glitch magnitude at
the victim node S2 for 100 seeds (Seed#0 to Seed#99) for PCNTopen = 0% and 40%.
At PCNTopen = 0%, the peak glitch magnitude is the same across the seeds; however at
PCNTopen = 40%, the peak glitch magnitude vary between ∼70mV and ∼154mV .

38

MeanFailNodesCKT =
1

S

S∑
i=1

#FailNodesCKT (Seedi) (3.7)

where S is the total number of seeds (S = 100 in this work), #FailNodesPATH ,

#FailNodesCKT are the total number of failing nodes along a path and circuit respec-

tively. MeanFailNodesCKT provides an estimate of average number of nodes in the circuit

failing glitch criterion, without providing the specific details of which path or portions of

the circuit are more probable to fail glitch criterion. However, a more important metric is

MeanFailNodesPATH , which provides an estimate of which primary output of the circuit

is more vulnerable to effect of induced glitches. Often the primary outputs in the combi-

national circuit are being captured by flops. Glitch at the primary output can result in

wrong data capture at a clock cycle and the correct value cannot be restored till the next

clock cycle [75, 76].

MA MA MA MA

A0 B0 A1 B1 A2 B2 A3 B3

Cin

S0 S1 S2 S3

Co0b Co1 Co2b
A1b B1b A3b B3b

S0b S2b

Cout

Figure 3.10: Schematic shows 4-bit RCA with each (primary, internal, output) node shown.
S3 with highest LN# (LN# = 9), is expected to have highest MeanFailNodesPATH

among the primary outputs.

We define a term “Linked Node Number” (LN#) as the total number of nodes (except

39

primary inputs), along all the paths from the contributing primary inputs to that output.

Figure 3.10 shows the schematic of 4-bit RCA with all nodes (primary, internal, output)

nodes highlighted. Each of the internal nodes (Co0b, A1b, B1b, Co1, Co2b, A3b, B3b, Cout)

and S3, can contribute to #FailNodesPATH for S3 and their total count (9) correspond

to LN# for S3. Similarly, the LN# for S0, S1, S2, and Cout is 3, 5, 7 and 8 respectively.

MeanFailNodesPATH holds a similar relation to LN# (MeanFailNodesPATH ≤ LN#),

as MeanFailNodesCKT to total nodes (except primary inputs) in the circuit. The relation

simply means that MeanFailNodesPATH for a primary output cannot exceed LN# for

that output.

3.6.2 Circuit-level Delay

In this section, we present the methodology to link open CNT imperfection (PCNTopen)

with the circuit-level delay. The imperfect CNFETs (Nopen > 0) would have reduced

driving current, but as mentioned before, the parasitic capacitances would stay the same

as ideal CNFETs (Nopen = 0); resulting in overall increase in circuit-level delays with

increase in PCNTopen compared to CNFETs without process imperfection (PCNTopen =

0).

In general, the delay of the circuit depends on multitude of factors like input slopes,

output loads, arc etc. In addition to this, different possible combinations of Nopen for CN-

FETs make circuit-level delay computation for CNFET circuits even more computationally

expensive, when all of the mentioned factors have to be considered. Hence, a methodology

that could avoid running the dynamic HSPICE simulation for the whole circuit should be

40

provided. STA has been used extensively for several years, to perform timing analysis of

complex circuits, with significantly less run-time. STA is based on finding the cell libraries

consisting of output Delay/Slope LUTs for the gates, as function of input slope and output

load [83, 84]. However, compared to traditional STA, the delay methodology even need

to consider Nopen in gates while performing delay computation for CNFET based circuits.

The delay for the CNFET circuits is computed in following steps:

1. Pre-characterization: HSPICE simulations are conducted to obtain realistic wave-

forms with certain input slope values. These waveforms are utilized in the charac-

terization step for obtaining Delay/Slope LUTs for the different gates in the circuit.

2. Gate arc capture: The delay of a gate varies among the different possible input to

output arcs for that gate. In this step, we identify all the possible input to output

arcs of the gate e.g. for an inverter with ‘a’ input, ‘o’ output, both a(0→ 1), o(1→ 0)

and a(1→ 0), o(0→ 1) is considered. In the characterization step, the Delay/Slope

LUTs are to be obtained for each such possible arc.

3. Characterization: In this step, the Delay/Slope LUTs are obtained for each arc of

the gate determined in step 2. For a given arc, HSPICE simulations are conducted

considering each combination of (input slope, output load, Nopen) where Nopen range

from 0 toN−1. Figure 3.11 shows the steps to obtain Delay/Slope LUTs for single arc

of the input circuit/gate under consideration. The simulations provide DelayNopen

/SlopeNopen LUTs at different Nopen (DelayNopen , SlopeNopen are the Delay, Slope

LUTs respectively, at given Nopen), which can be combined to obtain Delay/Slope

LUTs for a particular PCNTopen. DelayPCNTopen (delay at particular PCNTopen)

41

is given by Equation 3.8. In a similar manner, an expression can be obtained for

SlopePCNTopen (Slope at particular PCNTopen).

DelayPCNTopen =

∑N−1
Nopen=0(DelayNopen .PNopen)∑N−1

Nopen=0 PNopen

(3.8)

4. Delay calculation: Starting from the primary inputs, the Delay/Slope LUTs are

utilized to obtain Delay/Slope values at each gate output. Delay at output of each

gate is sum of delay of the late arriving input and the delay of the gate itself for

the slope at that input and load at the gate output. This is continued till primary

output is reached.

Netlist		
Files	

Run	HSPICE	

Delay/
Slope	

Input	Circuit	
Nopen	=	0	

Nopen	=	1	

Delay/
Slope	

Precharacteriza?on	

Input	
Waveforms	

Figure 3.11: Steps to obtain Delay/Slope LUTs for single arc of an input circuit.

42

15:14

10:0 11:0 12:0 13:0 14:0 15:0

12 13 14 15

15:12

13:12

15:8

11:8

7:0

13:12

13:10

11:10

13:6

9:6

5:0

10 11

11:10

11:8

9:8

11:4

7:4

3:0

8:0

8 9

9:8

9:6

7:6

9:2

5:2

1:0

9:0

7:6

6:0 7:0

6 7

7:4

5:4

3:0

5:4

4 5

5:2

3:2

1:0

3:2

2 3

1:0

0 1

4:0 5:0 2:0 3:0 0:0 1:0

Sum Block

S0 S1 S14 S15 S13 S7 S2

orig

Figure 3.12: Schematic of 16 bit precise Han Carlson Tree Adder (orig) with Sum block
formed using XOR gates to generate sum signals from S0(LSB) to S15(MSB). S2, S7, S15

are highlighted by dotted circles.

3.6.3 16-Bit Han Carlson CNFET adder

Next we apply the methodology to evaluate the performance degradation in CNFET cir-

cuits. Without the loss in generality, we have taken 16-bit Han Carlson Adder (Figure 3.12)

for case study. For the purpose of fast addition, parallel prefix adders are commonly used;

however they might suffer from increased energy and area compared to other adder topolo-

gies. We have chosen Han Carlson Adder [85] as it is one among the several prefix parallel

adders with comparable performance with other prefix parallel adders, and at the same

time reasonable power consumption. The precise 16-bit Han Carlson Adder has a bit-

wise propagate/generate block (not shown in Figure 3.12), followed by Han Carlson Tree,

and sum block providing the sum outputs from S0(LSB) to S15(MSB) (Figure 3.12). The

adder schematic in (Figure 3.12) follow the conventional notation in [86], with black and

43

grey (types of group generate/propagate) cells. The black cells in (Figure 3.12) compute

both group generate and propagate signals. However, the gray cells only compute group

generate signal. The circuits for group generate/propagate are the same as provided in

[86].

MeanFailNodesPATH for 16-bit precise Han Carlson Adder (orig) is plotted as function

of PCNTopen (Figure 3.13 (a)). Figure 3.13 (a) shows that MeanFailNodesPATH for each

of the outputs S2, S7, S15 of orig increases with increase in PCNTopen. MeanFailNodesPATH

is quite small (< 0.5) for PCNTopen ≤ 10% but significant at PCNTopen = 40%. Ex-

cept at lower PCNTopen where MeanFailNodesPATH is negligible, S15 has the highest

MeanFailNodesPATH (Figure 3.13 (a)). Figure 3.13 (b) shows that the LN# increases

for the sum outputs LSB towards MSB, with S15 having the highest LN# = 64. A direct

relation is observed between MeanFailNodesPATH and LN#; S15 having the highest LN#

has the highest MeanFailNodesPATH at given PCNTopen in comparison to S7 (LN# =

34) and S2 (LN# = 14). At PCNTopen = 40%, the MeanFailNodesPATH for S15 is

36.1, in comparison to MeanFailNodesPATH for S7, S2 which is 19.8, 7.9 respectively

(Figure 3.13 (a)). For orig, MeanFailNodesPATH of S15 is highest and S15 is also the

one with highest LN# (LN# = 64). We thus define term critical primary output as the

primary output providing highest MeanFailNodesPATH or probably the one with highest

LN#.

We have also plotted the worst-case Delay (among a set of 100 random vectors) for S2,

S7 and S15 of orig (Figure 3.14). The Delay values are normalized to worst-case Delay

of S15 (at PCNTopen = 0%). With increase in PCNTopen, Delay for each of the output

S2, S7 and S15 increases, which was expected because of reduced drive currents at high

44

0 5 10 15
Bit #

0

10

20

30

40

50

60

70

Li
nk

ed
 N

od
es

 (L
N

#)

S2

S7

S15 (b)

0 10 20 30 40
PCNTopen [%]

0

10

20

30

40

M
ea

n
Fa

il
N

od
es

PA
TH

S2(orig)
S7(orig)
S15(orig)

(a)

Figure 3.13: (a) MeanFailNodesPATH plotted for S2(orig), S7(orig), S15(orig) as func-
tion of PCNTopen. (b) LN# of orig plotted for each sum output from S0(LSB) to
S15(MSB) including Cout. The x-axis is the bit position with Bit#(0, 1, . . . , 15, 16) repre-
senting S0, S1,, S15, Cout respectively. S15 with the highest LN# has expectedly highest
MeanFailNodesPATH at a given PCNTopen.

45

PCNTopen. S15 encounters more stages (in critical path) in comparison to S2 and S7,

and expectedly has the worst delay among S2, S7 and S15. Among S2, S7 and S15, S2

encounters least number of stages and has the least delay (39.7% less in comparison to

S15 at PCNTopen = 0%). But at PCNTopen = 40%, the Delay for S2 is even 8.4% more

than Delay of S15 at PCNTopen = 0%. S7 Delay is only 5.5% less in comparison to S15

at PCNTopen = 0%, which is expected as S7 and S15 encounters nearly similar number of

stages from the primary inputs.

0 5 10 15 20 25 30 35 40
PCNTopen [%]

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

W
or

st
 D

el
ay

 (N
or

m
al

iz
ed

)

S2 (orig)
S7 (orig)
S15 (orig)

39.7%

~ 30%

Figure 3.14: Worst Delay (among 100 random input vectors) for S2(orig), S7(orig) and
S15(orig) plotted as function of PCNTopen. The Delay values are normalized to that of
S15(orig) with PCNTopen = 0%. Among S2, S7 and S15, S2 has the least delay (39.7% less
in comparison to S15 at PCNTopen = 0%). S15 has worst delay with delay degradation of
∼ 30% at PCNTopen = 20% in comparison to delay at PCNTopen = 0%.

46

3.7 Conclusions

We present modifying spacing between CNTs in a CNFET as an effective way to model

the effect of open CNT imperfection in circuit-level performance evaluation, using SPICE

simulations with VSCNFET model [69]. A simulation framework is also provided to create

CNFET based Monte Carlo seeds, from netlist containing circuit connectivity. Linked

Nodes (LN#) associated with each primary output provides an effective link between noise

tolerance and open CNT imperfection. For a 16-bit Han Carlson adder, the primary output

towards the MSB (S15) has the highest number of nodes failing glitch criteria in comparison

to other primary outputs. S15 has 36.1 nodes failing glitch criteria, in comparison to 19.8,

7.9 nodes failing glitch criteria in S7, S2 respectively. This is directly linked to LN#, with

S15 having LN# = 64, in comparison to LN# = 34, 14 in S7, S2 respectively. Thus, high

LN# with a primary output is linked to the probability of more failing nodes along the

path to the output.

47

Chapter 4

Carbon Nanotube FET —

Appropriateness for Approximate

Computing

4.1 Introduction

Recently, the area of approximate computing has attracted widespread interest among the

research community. Approximate computing targets a wide range of applications hav-

ing inherent error resilience, including signal processing, data mining, machine learning,

image, video processing, etc [87, 88]. These applications can tolerate errors during compu-

tation because they can involve computations in multiple iterations [89] or utilize system

architecture that has inherent error tolerance [90] or target limited perceiving ability of

48

humans, etc. This can significantly relax the computation requirement; thus can be uti-

lized for the benefits of energy efficiency, performance, area, etc [91, 39]. For the digital

circuits, the approximate computing can be realized mainly by two approaches 1) voltage

over scaling, 2) functional approximation. In voltage over scaling, the circuits are operated

at reduced voltage resulting in timing violations of some paths but get power saving with

reduced voltage [92, 93]. Functional approximation, on the other hand, refers to realizing

an approximate logic function instead of exact function [91, 39, 94]. The approximate

logic function, however, should vary only slightly compared to original function in terms of

logic equivalence. But it still provides tremendous opportunity to reduce circuit complex-

ity. The approximate logic function can thus be realized using fewer logic gates, simpler

circuits, etc, eventually providing the benefits of reduced area, energy, etc. For emerging

technologies, including CNFETs, the functional approximation technique can provide the

opportunity for obtaining circuits less affected by the process. With a careful consideration

of each primary output, the approximate circuit can be designed encountering fewer gates,

lesser nodes along path, lesser nodes in entire circuit, reduced capacitances; consequently

providing greater process imperfection tolerance compared to precise circuits.

In this chapter, we first discuss about how approximate circuits can be used to reduce

process-induced degradation in CNFET circuits, followed by the methodology to generate

approximate circuits for that purpose. As discussed before, Approximate circuits obtained

using functional approximation technique do not need to exactly match the functionality

of the original circuit. Thus approximate circuits can have the luxury of lesser gates,

simpler circuits; bringing in the obvious benefits of reduced area and energy efficiency

[91, 94]. Generally, approximate circuits are obtained for the purpose of energy efficiency

49

and reduced area at a minimal logic penalty [39]. But, the approximate circuits with lesser

gates, simpler circuits can be less affected by process induced degradation and thus can be

effectively obtained to provide additional benefit of process imperfection tolerance for low

yield technologies (suffering from process imperfections) (Figure 4.1). Thus, compared to

existing methods for obtaining approximate circuits, the approximate circuits for reduced

process-induced degradation would have to be obtained/designed in a different way as

the main focus now is reduced process-induced degradation; not just reduction in energy

efficiency and area. Parts of this chapter are published in ref. [95].

Approximate Ckt

Delay

Energy
Efficiency

Process imperfection
tolerance

Reduced
Area

Glitch violation

Figure 4.1: Approximate circuit helps to improve process imperfection tolerance for low
yield emerging technologies, by reducing the delay and reduced glitch violations.

50

4.2 Reduce process induced violations with approxi-

mate circuits

In this section, we discuss in little more detail about how the approximate circuit can be

utilized to reduce process-induced degradation. In Section 3.2, we discussed two aspects

of circuit-level degradation due to open CNT imperfection (Nopen > 0) 1) Increased delay,

2) Increased glitch violations. We thus restrict our discussion to how approximate cir-

cuits lead to reduced delay and reduced glitch violations (reduced MeanFail NodesPATH ,

MeanFailNodesCKT). Figure 4.2 shows an example where original circuit (Figure 4.2 (a))

consists of 6 gates and 6 LN#. If the gates g1,g2, g4, g5 in the original circuit (highlighted

by dotted rectangle in Figure 4.2 (a)) are being replaced by gate a1 to obtain approximate

circuit (Figure 4.2 (b)); the LN# for the primary output (g6 output) with approximate

circuit are being reduced by 50% (from 6 to 3). The reduction in LN# is expected to

reduce the MeanFail NodesPATH for primary output and thus reducing the chance of

glitch violations. Moreover, the critical path delay from primary inputs to primary output

will have 2 stages instead of 4 stages (Figure 4.2 (b)); thus reducing the circuit delay. Ad-

ditionally, in most of the cases, there is an additional reduction in capacitances (because

of reduced connections), leading to a further reduction in delay with approximate circuits.

From the perspective of process imperfection tolerance, the overall impact is reduced delay

and reduced chances of glitch violation. Assuming equal probability for all inputs, the ap-

proximate circuit (Figure 4.2 (b)) has logic inaccuracy of < 5% compared to the original

circuit (Figure 4.2 (a)).

51

(a) (b)

a1

g3

A
B

E
F

g6

g1

g2

g3

A
B

C
D

E
F

g4 g5 g6

Figure 4.2: (a) Example shows a circuit to realize Boolean function AB + CD + E + F .
(b) Approximate circuit obtained for circuit in (a).

4.3 ROBDD for obtaining approximate circuit

The logic function of a particular node in the circuit would be a function of contributing

primary inputs in its fan-in cone. e.g. In Figure 4.2 (a), the logic function of node (output

g4) is a function of A, B, C, D. Similarly, the node (output g6) is function of all 6 pri-

mary inputs A, B, C, D, E, F . If we take the case of node (g6 output),an approximate

logic function for node (g6 output), would lead to reduced logic expression, consequently

lesser number of gates; however, the approximate logic expression should be very similar

in functionality to the original logic function (i.e. very less logic error). One-way of effi-

ciently obtaining approximate logic expression are Reduced Order Binary Decision Diagram

(ROBDD)s [96]. We have utilized Cudd package [97] to obtain ROBDD representation for

the original logic function and then utilized Cudd SubSetShortPaths to obtain ROBDD

with fewer nodes [97]. The new ROBDD obtained would have reduced minterms and would

consequently be realized with fewer gates. Figure 4.3 (a) shows ROBDD of circuit in Fig-

ure 4.2 (a) for variable ordering E > F > A > B > C > D. Assuming equal probability

for all the inputs, the short paths (encountering few nodes) in the Binary Decision Dia-

52

gram (BDD) (e.g. Removing path E = 1 will hurt logic accuracy by 50%) would affect

the logic accuracy to a great extent; however, removing longer paths has minimal effect

on the logic accuracy. Cudd SubSetShortPaths operates with the principle of retaining

the short paths; while removing the longer paths. Applying Cudd SubSetShortPaths to

ROBDD in Figure 4.3 (a), can to lead to ROBDD (Figure 4.3 (b)) with fewer nodes (nodes

C, D removed). The small size ROBDD (Figure 4.3 (b)) can provide approximate logic

function; which can be realized with fewer gates (Figure 4.2 (b)) in comparison to original

circuit and also at mean logic error < 5%.

E

F

A

C

1

D

0 1

B

E

F

A

1 0 1

B

(a) (b)

Figure 4.3: (a) ROBDD for example circuit in Figure 4.2 (a) for variable ordering E >
F > A > B > C > D. (b) ROBDD for the circuit in Figure 4.2 for variable ordering
E > F > A > B. ROBDD in (b) is derived from (a) using Cudd SubSetShortPaths
[97].

53

4.4 Methodology to generate approximate circuit for

reduced process induced degradation

As discussed in Section 3.6.3, MeanFail NodesPATH of primary output is closely de-

pendent on LN#. If the LN# associated with critical primary output are reduced, the

MeanFail NodesPATH of the critical primary output is expected to reduce, meaning lesser

nodes vulnerable to glitch failure. It is usually expected that the critical primary output

(one with highest LN#) also has the worst Delay among the primary outputs; so the

reduction in LN# can also reduce the number of stages in critical path or reduce intercon-

nections that effectively reduce capacitances at few nodes in the critical path; improving

the critical path Delay.

Approximate circuits can help to reduce the LN# and worst-case Delay but with logic

error penalty. A systematic methodology is thus required to obtain an approximate circuit

for an original circuit, which reduces the glitch violations and reduce critical path Delay

but with a minimal logic error. The approximate circuit should be obtained in such a

manner wherein overall reduction in LN# for the primary outputs is obtained such that

the critical primary output for the approximate circuit should have significantly less LN#

in comparison to critical primary output of the precise circuit.

Figure 4.4 shows the procedure of generating an approximate circuit for reduced process-

induced degradation. The first step in the procedure is to identify the node in the circuit,

which is to be approximated. e.g. Figure 4.2(a) shows the example of a circuit with single

primary output (g6 output). If the node selected for approximation is output of g6, then the

54

Iden%fy	cri%cal	output	
signal	for	approxima%on		

Replace	target	circuit	
por%ons	with	approximate	
circuit	block	in	Input	circuit	

Input	Circuit	

Eliminate	unimportant	
nodes	in	BDD	to	achieve	

short	paths	

Generate	approximate	
logic	func%on/gates	

2

1

3

4

Approximate	Circuit		
(to	be	used	as	Input	Circuit	

in	the	next	itera%on)	

Figure 4.4: Steps to obtain approximate circuit by replacing the circuit portions, which
contribute to the critical output. The approximate circuit obtained will act as input circuit
for the next iteration and each of the steps 1 − 4 are to be repeated to obtain the circuit
for next iteration till final approximate circuit is obtained.

entire circuit consisting of g1 , g2, g3, g4, g5, g6 enter into the approximation procedure.

However, if the output of g4 is selected for approximation, then only g1, g2, g4 enter into

the approximation procedure, and so on. There is more opportunity for approximation if

node g6 (LN# = 6) is selected for approximation instead of node g4 (LN# = 3); however

more approximation can lead to increased logic error.

The procedure in Figure 4.4 is explained by taking 16 Bit Han Carlson Tree adder as case

study. We first explain the procedure for a relatively simpler case, where the entire circuit

is considered for the approximation. In the first iteration, the whole precise circuit act as

input circuit (Figure 4.4). (1) The procedure starts with first identification of the critical

output (The primary output with highest LN#, e.g. S15 in precise adder in Figure 4.5).

(2) ROBDD is obtained for the critical output using Cudd SubSetShortPaths to eliminate

55

unimportant nodes while retaining short paths in BDD, which holds importance for logic

accuracy consideration (explained in Section 4.3). (3) The ROBDD with fewer nodes

will consequently provide an approximate logic function realized using fewer gates. (4)

The circuit portions in the input circuit exclusively contributing to the critical output are

being replaced by the approximate circuit block (from step 3) to obtain overall approximate

circuit. The approximate circuit obtained now is used as input circuit in the next iteration.

In the next iteration, the next critical output (e.g. S14 will be the critical output after

circuit portions contributing to S15 are approximated) is selected for approximation and

the steps from 2 to 4 (Figure 4.4) are followed to obtain the approximate circuit for next

iteration, this procedure continues till we reach the primary outputs in the circuit having

equal or less LN# in comparison to approximated primary outputs.

Next we discuss about the steps to obtain approximate circuit where only “partial

circuit” is affected by approximation procedure. In this case, an intermediate node is

chosen as the critical output for step 1 (Figure 4.4) along the path to the primary output,

instead of the primary output itself. The circuitry following the selected intermediate node

to the primary output node is not affected by the approximation (e.g. At the start, S15

is having highest LN# and if G13:0 is the intermediate node selected as critical output,

then the circuitry following G13:0 to S15 is not affected by the approximation). Steps 2

to 4 (Figure 4.4) are being followed in a similar manner to the case of “whole circuit”

discussed previously. The procedure from step 1 to 4 (Figure 4.4) is followed iteratively,

with the similar terminating condition that the primary outputs having equal or less LN#

in comparison to approximate primary outputs (the primary outputs whose intermediate

nodes were approximated).

56

b	 b	 b	 b	 b	

S2 S3 S13 S14 S15

15 14 13 3 2 1

S	

S1

S	

S0

0

orig

app_int app_out

12:0 13:0 14:0 15:0

12 13 14 15 2 3 0 1

2:0 3:0 0:0 1:0

Sum Block

S0 S1 S13 S14 S15

15:14

10:0 11:0 12:0 13:0 14:0 15:0

12 13 14 15

15:12

13:12

15:8

11:8

7:0

13:12

13:10

11:10

13:6

9:6

5:0

10 11

11:10

11:8

9:8

11:4

7:4

3:0

8:0

8 9

9:8

9:6

7:6

9:2

5:2

1:0

9:0

7:6

6:0 7:0

6 7

7:4

5:4

3:0

5:4

4 5

5:2

3:2

1:0

3:2

2 3

1:0

0 1

4:0 5:0 2:0 3:0 0:0 1:0

Sum Block

S0 S1 S14 S15 S13

ap
pr

ox
im

at
ed

sa

m
e

as
 o

ri
g

Figure 4.5: Schematics of 16 bit precise Han Carlson Tree adder (orig), approximate cir-
cuits with partial circuit approximated (app int) and whole circuit approximated (app out).
The broken line on top of ‘b’ and ‘s’ in app out (full connection not shown to avoid conges-
tion) represents bit wise propagate signal (Pi). There is Sum block consisting of XOR gates
at the output of orig and app int for generating sum signals (S0, S1, . . . , S15). The portions
highlighted by dotted circles in orig represents the circuit blocks which are replaced by
approximate circuit block to obtain app int.

57

Pi-1:i-1
Pi

Pi

Gi-1:i-2

b

Si

b	

Gi:j =Gi:k +Gk−1:j.Pi:k

Pi:j = Pi:k .Pk−1:j

Pi = Ai xorBi
Gi-1:0

Pi

Si

s

S	

Figure 4.6: Schematics of 1-bit adder modules ‘b’, ‘s’ utilized to generate sum outputs
(S0, S1, . . . , S15) of app out. Gi:j, Pi:j and Pi refer to group generate, group propagate and
bit wise propagate signal respectively.

In the case of “partial circuit”, the intermediate node chosen as critical output, might

affect more than 1 primary output (e.g. G13:0 affect both S14 and S15 (Figure 4.5)). This

would result in logically more accurate circuit in comparison to case of “whole circuit”.

However, there can be increased LN# or increased capacitances at nodes for the “partial

circuit” in comparison to “whole circuit” case. But, irrespective of whether “whole” or

“partial” case consideration, the approximate circuit would have reduced LN#, reduced

number of stages, and reduced capacitances at some nodes; consequently leading to lesser

process induced degradation with approximate circuit in comparison to precise circuit.

58

4.5 Approximate CNFET adders for reduced process

induced degradation

The methodology to generate approximate circuits (discussed in Section 4.4) is applied to

16-bit precise Han Carlson Adder orig to construct two approximate 16-bit Adders app int,

app out (Figure 4.5) based on whether the partial or whole precise circuit is entered into the

approximation procedure. In comparison to the precise circuit, app out has approximations

being done for all the sum outputs ranging from S2 to S15. Each of the sum outputs from

S2 to S15 in app out (Figure 4.5) are composed of 1 bit modules ‘b’ (Figure 4.6), while S0

and S1 are composed of ‘s’ block (similar to precise version). In comparison to app out,

app int was obtained by having only partial circuit considered for approximation. Thus, for

app int the approximations are done only in the internal tree structure while the sum block

providing S0 to S15 outputs remains the same as precise adder (Figure 4.5). In comparison

to precise adder, app int has lesser number of gray/black blocks (required for generation

of group generate signal). Both app int and app out are obtained with the purpose of

reduced LN# in comparison to precise circuit for reduced process induced degradation;

however at the same time it is important to compare the approximate adders in terms of

logic accuracy which is critical while considering approximate circuits.

We define a term %RelativeError to represent the logic error

%RelativeError =

∣∣∣∣Sapprox − Sorig

Sorig

∣∣∣∣ ∗ 100 (4.1)

where Sorig is the original sum value based on input vector combination and Sapprox is

59

0 20 40 60 80 100
Relative Error [%]

0

100

200

300

400

500

600

700

800

900
C

ou
nt

 #

0 20 40 60 80 100
Relative Error [%]

0

50

100

150

200

250

300

350

400

C
ou

nt
 #

> 90% of input vector
combination result in
Relative Error < 10%

> 20% of input vector
combination result in
Relative Error > 50%

(a)

(b)

Mean = 3.3%

Mean = 24.0%

Figure 4.7: Histogram shows %RelativeError for approximate circuit (a) app int and (b)
app out. Approximate circuit app int achieves significantly low mean RelativeError 3.3%
with > 90% of the input vector combination having RelativeError < 10%.

60

the sum value computed based on the outputs from the approximate adders. Figure 4.7

shows the %RelativeError for both app int and app out for 1000 random input vector com-

bination. app out shows high mean %RelativeError = 24%, with considerable proportion

of vectors > 20% of input vector combination resulting in %RelativeError > 50% (Fig-

ure 4.7(b)). app int provides significantly better performance with mean %RelativeError

only 3.3% and majority of input vectors (> 90%) having %RelativeError < 10% (Fig-

ure 4.7(a)).

0 5 10 15
Bit #

0

10

20

30

40

50

60

70

Li
nk

ed
 N

od
es

 (L
N

#)

orig
app_int
app_out

-50 nodes

64 nodes

14 nodes
11 nodes

Figure 4.8: Linked Nodes (LN#) plotted for each sum output S0(LSB) to S15(MSB)
including Cout, with x-axis representing the bit position. Bit#(0, 1, . . . , 15, 16) represent
outputs (S0, S1,. . . ., S15, Cout) respectively. There is significant reduction in LN# using
approximate circuits (app int and app out). The output with highest LN# of orig, app int
and app out have LN# 64, 14 and 11 respectively.

As discussed before, MeanFail NodesPATH is heavily dependent on LN#. Reducing

the LN# associated with the critical primary output can significantly improve the glitch

61

suppression. Figure 4.8 shows that LN# for the precise adder (orig) increases monoton-

ically for sum outputs from S0 to S15 with S15 having the highest LN# (64 nodes). For

both app int and app out there are significantly lesser LN#. LN# = 14, 11 is achieved

for the critical primary output for app int and app out respectively. The significantly less

LN# for app int and app out would mean a tremendous reduction in process induced

degradation (both in terms of MeanFail NodesPATH and critical path Delay).

0 5 10 15 20 25 30 35 40
PCNTopen [%]

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

W
or

st
 D

el
ay

 (N
or

m
al

iz
ed

)

orig
app_int
app_out

46.7%

Figure 4.9: Worst Delay (normalized to that of orig at PCNTopen = 0%) as a function of
PCNTopen. The worst Delay for approximate circuits app out, app int are lower by 46.7%,
8.1% respectively in comparison to precise circuit (orig) at PCNTopen = 0%.

Figure 4.9 shows the Worst Delay (among a set of 100 vectors) for the critical path

in each orig, app int and app out. The Delay values are normalized to Worst Delay in

orig at PCNTopen = 0%. Significantly lesser Delays are observed for both app int and

app out in comparison to precise version. This is again due the reason that significantly

lesser LN# for both app int and app out would result in lesser number of stages in critical

62

path compared to orig. Moreover, there will be reduced number of interconnections at few

nodes resulting in reduced capacitances, which also reduce the critical path Delay. Even

at PCNTopen = 40%, the Delay for app int and app out are lower by 8.1% and 46.7%

respectively in comparison to Delay of orig at PCNTopen = 0% (Figure 4.9). The result

shows that with both app int and app out, frequency target (achieved by precise circuit

orig at PCNTopen = 0%) can be met even at process degradation (PCNTopen = 40%).

0 10 20 30 40
PCNTopen [%]

0

20

40

60

80

100

M
ea

n
Fa

il
N

od
es

C
K

T

orig
app_int
app_out

	-18.5	%	
(-16.8	nodes)	

Figure 4.10: MeanFailNodesCKT for precise ‘orig’ and approximate adders (app int,
app out) as a function of PCNTopen. At PCNTopen = 40%, Using approximate cir-
cuits app int, app out reduces the MeanFailNodesCKT by 18.5%, 33.1% respectively, in
comparison to precise circuit (orig).

Figure 4.10 showsMeanFailNodesCKT for precise ‘orig’ and approximate adders (app int,

app out) as a function of PCNTopen. At PCNTopen = 40%, Using approximate cir-

cuits app int, app out reduces the MeanFailNodesCKT by 18.5%, 33.1% respectively,

in comparison to precise circuit (orig). With significantly reduced number of LN# for

the critical primary output, the approximate circuits app int, app out yield even more

63

significant reduction in terms of MeanFailNodesPATH . Figure 4.11 shows the plot of

MeanFailNodesPATH for critical primary output of precise ‘orig’ and approximate adders

(app int, app out) as a function of PCNTopen. At PCNTopen = 40%, theMeanFailNodesPATH

reduces significantly by 80.6% and 84.9% with app int and app out respectively in com-

parison to orig. The MeanFailNodesPATH is reduced to just 7 and 5.4 with app int and

app out respectively in comparison to 36.1 with orig (Figure 4.11).

0 10 20 30 40
PCNTopen [%]

0

5

10

15

20

25

30

35

40

M
ea

n
Fa

il
N

od
es

P
A

TH

orig
app_int
app_out

	-80.6	%	
(-29.1	nodes)	

Figure 4.11: MeanFailNodesPATH for critical primary output of precise ‘orig’ and approx-
imate adders (app int, app out) as a function of PCNTopen. At PCNTopen = 40%, the
MeanFailNodesPATH reduces significantly by 80.6% and 84.9% with app int and app out
respectively in comparison to orig.

Both delay and energy should be considered while comparing digital circuits. One

important metric to hold such comparison is energy delay product (EDP). For a digital

circuit, a minimum value for EDP is always desired. With the increase in PCNTopen,

the Delay is expected to increase while Energy is not expected to vary significantly (With

increase in PCNTopen, there would be minimal change in overall capacitances, consequently

64

leading to nearly similar dynamic energy values even at different PCNTopen); thus EDP

is expected to increase with PCNTopen. Figure 4.12 shows the EDP for orig, app int and

app out at different PCNTopen with each EDP normalized to EDP for orig at PCNTopen =

0%. EDP for orig at PCNTopen = 40% is increased by 55.4% in comparison to EDP for

orig at PCNTopen = 0%. However, with app int and app out the EDP at PCNTopen =

40% is still lesser by 43.4% and 69.5% respectively, in comparison to EDP for orig at

PCNTopen = 0%, showing a significant EDP advantage with approximate circuits even at

high process imperfection (PCNTopen = 40%).

PCNTopen = 0% PCNTopen = 10% PCNTopen = 40%
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

N
or

m
al

iz
ed

 E
D

P

orig
app_int
app_out

43.4%

Figure 4.12: EDP (normalized to EDP of orig at PCNTopen = 0%) for orig, app int
and app out, at different PCNTopen. At PCNTopen = 40%, the EDP for app int and
app out is still lesser by 43.4% and 69.5% respectively in comparison to EDP for orig at
PCNTopen = 0%.

Table 4.1 provides a summary for comparison of 16 bit precise (orig) and approximate

65

CKT
MeanRelative

Error [%]

NormalizedDelay†
[PCNTopen = 40%]

MFNPATHo

[PCNTopen = 40%]

EDP¶
[PCNTopen = 40%]

Normalized

Area

orig 0% 1.78X 36.1 1.55X 1X

app out 24.0% 0.53X 5.4 0.30X 0.78X

app int 3.3% 0.92X 7.0 0.56X 0.78X
† Normalized to Delay of orig at PCNTopen = 0%
¶ Normalized to EDP of orig at PCNTopen = 0%
o MFNPATH is the MeanFailNodesPATH of the critical primary output

Table 4.1: Comparison of precise(orig) and approximate(app int, app out) 16-bit adders.

(app int, app out) adders.

4.6 Conclusions

This chapter presents a systematic methodology using ROBDD [96], to obtain approxi-

mate circuit. By taking an example of 16-bit Han Carlson tree adder (one of the popular

parallel prefix adders) as a reference; the 16-bit approximate adder obtained by performing

approximations in internal tree structure (app int) has manageable MeanRelativeError

of 3.3% but significant benefits in providing tolerance to process imperfection. app int has

less delay in comparison to the precise adder, even at high process imperfection. More-

over, there is significant reduction of nodes failing glitch criteria (∼ 5× reduction) and

significantly lesser EDP (∼ 43.4% less EDP), even at high process imperfection.

66

Chapter 5

Carbon Nanotube FET —

Appropriateness for Neuromorphic

Computing

5.1 Introduction

In recent years, DNNs have achieved tremendous success for a wide range of applications

including image classification [42, 43], speech recognition [44], etc. Advancement in hard-

ware with the adoption of neuromorphic architectures inspired by brain [64, 65, 98] and

improvement in technology, have drastically improved energy efficiency and thus made

possible the implementation of systems supporting DNNs, requiring tremendous energy ef-

ficiency. TrueNorth chip by IBM demonstrated implementation of complex neural networks

67

with real time power < 70mW [64]. Intel Lohihi chip on 14nm [65] has demonstrated

capability of achieving 100 times lower power consumption for a Deep Neural Network

(DNN) implemented benchmark, compared to conventional GPU [99]. With the scalabil-

ity [13] becoming increasingly difficult for silicon based systems, a possible option to keep

up with the growing complexity of datasets, applications, and growing depth/size of DNNs

[100, 68]; is to leverage the scaling capability and potential for tremendous energy efficiency

possible with emerging technologies like CNFETs. Neural networks including DNNs, being

inherently error resilient, [67, 68] can produce acceptable results even in the presence of

some errors during computation. The relaxation in the requirement of precise computa-

tion is extensively used to improve the energy efficiency of hardware systems implementing

DNNs [67, 68, 98, 101]. The flexibility of marginal imprecise computation in DNNs can be

further utilized to reduce the unpredictable and high magnitude errors due to imperfect

fabrication process for CNFETs and still leverage the tremendous energy efficiency benefit

of CNFETs. With all these reasons in mind, we take CNFET based DNNs for further

study in this work.

The shape of the non-linear activation function plays a vital role in the accuracy of

DNNs. The imperfect process can lead to timing failures, thus distorting the shape of

activation function and, consequently, degradation in classification accuracy. In this chap-

ter, we have considered the sigmoid activation function [102] as an example for non-linear

activation function. We first explore CNFET based digital neuron for sigmoid generation.

We then provide simulation framework to capture the effect of process imperfection and

frequency on the shape of the activation function. Towards the end of the chapter, we also

utilize the activation functions to obtain classification accuracy for simple digit recogni-

68

tion using DBN (class of DNNs based on unsupervised learning using sigmoid activation

function).

In this chapter, we have only considered the sigmoid activation function. However,

the simulation framework in this chapter can easily be adapted for the generation of other

activation functions, including ReLU, hyperbolic tangent, etc. At high process imperfection

and increased frequency, the other activation functions would also observe distortion in the

activation function shape and, consequently, degradation in classification accuracy, similar

to the case of the sigmoid activation function. Parts of this chapter are published in ref.

[103].

5.2 Basics of Deep Neural Network

DNN is a multilayer neural network with at least one hidden layer [104, 68]. Figure 5.1

shows an example of feed-forward DNN. The output of a neuron ‘j’ in the current layer

(Figure 5.1) is provided in Equation 5.1.

yj = f

(∑
i

wijyi + bj

)
(5.1)

Where bj is the bias of neuron ‘j’, wij is the weight between neuron ‘j’ of current layer

and neuron ‘i’ of previous layer, yi is the neuron from lower layer, f(x) is the non-linear

activation function. Among the non-linear activation functions, sigmoid activation function

[102] is quite popular and commonly used. We have considered sigmoid activation function

realized using CNFET digital neuron for further study in this work. Sigmoid activation

69

Σ

w1
f ()

y1

w2

w3 y2

y3
N1

N1

Figure 5.1: DNN with example neuron N1 shown. N1 receives inputs y1, y2, y3 from the
previous layer through synaptic connections w1, w2, w3 respectively. f is the non-linear
activation function (sigmoid considered in this work).

70

function is given by following equation.

fx =
1

(1 + e−x)
(5.2)

5.3 Sigmoid generation using digital neuron

5.3.1 Effect of open CNT imperfection on activation function

We now discuss the link between an increase in PCNTopen to shape of the sigmoid activation

function. As discussed in the previous section, the open CNT imperfection reduces the

drive current of the CNFETs but parasitic capacitance remains nearly unaffected, thus

in the presence of high PCNTopen, the circuit-level delays including critical path delay

can increase (Figure 5.2), resulting in failure to meet given frequency target. The digital

neuron can experience timing failures, and thus the shape of the activation function can

deviate from the ideal sigmoid shape.

5.3.2 Digital neuron circuit

We have used crossbar architecture (Figure 5.3(b)) for neurosynaptic core, similar to

TrueNorth core architecture, with axons, dendrites, and neurons represented by horizontal,

vertical lines and blue boxes respectively. The connection between axon and dendrite is

synapse represented by black dot (Cij = 1). In the absence of synapse, Cij = 0 between

axon and dendrite. Figure 5.3(a) shows the circuit of our digital CNFET neuron. The neu-

71

Drain

Source
PCNTopen

Drain

Source

Open CNT

PCNTopen

Delay

0% 40%
v

P(spike|v) 0%

40%)

Figure 5.2: Comparison of CNFETs under no process imperfection and with high per-
centage of open CNTs. With increase in open CNTs [%] (PCNTopen), the effective drive
current reduces, for similar parasitic capacitance, consequently resulting in higher circuit
delay. The activation function ‘P (spike|v)‘ for neuron circuit can observe distortion in
shape from ideal sigmoid, at high PCNTopen.

72

ron circuit comprises of 8-bit Han Carlson adder, 8-bit comparator, flops and muxes. The

membrane potential of ’jth’ neuron, at time step ’t’ (without leak) is given by Equation 5.3.

Vj(t) = Vj(t− 1) +
∑

Ai ∗ Cij ∗ wij (5.3)

Vj(t) is the membrane potential value (at the output of store flop in Figure 5.3(a)) at

time step ’t’, to be stored in the memory. Here Ai represents the spike at ith axon, Vj(t−1)

is the membrane potential at previous time step (also represented as Vj(t − 1)) retrieved

from memory; wij is the weight of the synapse, applied through ‘sj’ (Figure 5.3(a)). The

neuron is event driven with signal E (Figure 5.3(a)) only activates when both Ai and Cij

are 1 or else 0.

Figure 5.3(c) shows the timing diagram of digital neuron circuit, explaining sequence of

signals for spike generation at neuron output. VX denotes the membrane potential (at the

output of capture flop in Figure 5.3(a)) internal to the neuron circuit. The spike generation

typically involves following steps:

1. Capture Vj(t− 1): The neuron captures the membrane potential from the previous

time step.

2. Synaptic addition: The neuron integrates the contribution of active synapses at

the given time step.

3. Leak: After synaptic addition is completed, the neuron apply the leak value to the

membrane potential of the neuron.

73

4. Threshold: In this step, the membrane potential VX is compared with the threshold

value. The generation of spike and resulting Vj(t) value can be summarized as follows.

if VX > V+ then

Spike = 1

Vj(t) = Vreset

else if V− ≤ VX ≤ V+ then

Spike = 0

Vj(t) = VX

else

Spike = 0

Vj(t) = Vreset

end if

where Vreset is the reset value; V+, V− are the positive and negative threshold values

respectively. The generation of spike is represented by Spike = 1 in Figure 5.3(c).

We use a shorthand notation v to represent the expected VX value (after synaptic

addition is completed (Figure 5.3(c)) and without applying leak). v is given by following

equation [105] .

v = Vinit +
∑

Ai ∗ Cij ∗ wij (5.4)

Here Vinit is the membrane potential at previous time step (also represented as Vj(t−1)).

We use the methodology of stochastic leak and threshold developed by [106] to realize

74

(a)

(b) (c)

N1 N2 NN

A
xo

ns

Neurons

dendrites

C(2,2) = 1

A1
A2

AK

Synaptic
addition

Leak Threshold

Capture
Vj(t-1)

E

tstart

sj

Lk

Thr

Spike

THALF

λ

sj

Lk
E

E = Ai*Cij

tstart

Vreset

C

Vj(t)

Spike Thr

SpK

V-

V+

Vx(MSB)

Vx

Vx(MSB)

0 Vx(MSB)

Vinit

Figure 5.3: (a) CNFET based neuron circuit. (b) Crossbar architecture with axons, den-
drites, neurons as horizontal, vertical lines and blue boxes respectively. Presence of dot
(Cij = 1) at axon and dendrite intersection, represent synapse. Neuron adds contribution
of each synapse in serial manner (indicated by red arrow). (c) Timing diagram explaining
the sequence of important signals of neuron circuit for spike generation. THALF is half of
the time period between consecutive synaptic events.

75

sigmoid generation using digital neuron (Figure 5.3(a)). After the synaptic addition is

completed, the neuron can be applied successive stochastic leak and threshold steps (Fig-

ure 5.4). We define term P (spike|v) to refer to activation function as the probability of

spike given v (Figure 5.4). We define another term vcircuit as the actual VX value in the

circuit, after synaptic addition is completed. In the event of timing failure, vcircuit can be

different from v (Figure 5.4), consequently resulting in P (spike|v) different from ideal sig-

moid 1
1 + e

−v
scale

(where scale > 1 is used to increase the precision of v in the linear region

of sigmoid [106]). Syn#j (Figure 5.4) denote the effective synaptic weight combination

encountered by neuron ‘j’ during the synaptic addition step Syn#j =
∑
Ai ∗ Cij ∗ wij.

E

sj

THALF

2 1 1

Vx -30 -28 -11 -10

Vx -30 -28 +79 +80

Syn#j v = -10

-10

+80

0

+90

E

Vx

Vx

Lk

Thr

spike = 0
spike = 1

Synaptic Addition Stochastic Leak
& Threshold

Multiple
Runs

Figure 5.4: Timing diagram explaining the sequence of important signals during synaptic
addition with Syn#j, followed by successive stochastic leak and threshold steps over mul-
tiple runs. The case of no timing failure and timing failure encountered are represented in
form of VX with green, red color respectively. Under the event of timing failure (red color),
vcircuit = 80 6= v, generates false spike (spike = 1), which otherwise is not generated for
normal case of no timing failure (green color).

76

5 10 15 20 25
tSU-SKEW [ps]

24

25

26

27

28

29
t C

Q
 [p

s]
PCNTopen = 0%

5 10 15 20 25
tSU-SKEW [ps]

46

47

48

49

50

51

52

t C
Q

 [p
s]

PCNTopen = 40%

(a)

(b)

Figure 5.5: tCQ as function of setup skew (termed as tSU−SKEW) of flop at (a) PCNTopen =
0%, (b) PCNTopen = 40% respectively. tSU is defined as tSU−SKEW where tCQ degradation
is ∼ 10% of the nominal value obtained for high tSU−SKEW .

77

5.3.3 Factors affecting timing failure for digital neuron

The neuron adds contribution from each synapse connected in a serial manner (Fig-

ure 5.3(b), (c)). A typical neurosynaptic core contains 256 axons per neuron (means a

maximum of 256 synapses) [105]. So, the majority of time neuron spends is in the synaptic

addition (
∑
Ai ∗Cij ∗wij) step. Thus, time period or frequency of operation of the whole

neuromorphic system is mainly determined by time period between consecutive synaptic

events. We define a term THALF as half of the time period between consecutive synaptic

events (Figure 5.3(c)). The circuit frequency f = 1/(2THALF). The choice of THALF has

significant impact on shape of sigmoid activation function. THALF should satisfy the tim-

ing requirement of the critical path encountered with synaptic addition. The launch and

capture of data at flip flop (following adder circuit in Figure 5.3(a)) should complete within

the time period (2*THALF). The following condition for THALF should thus be satisfied to

avoid timing violation.

THALF ≥
1

2
(tSU + tCQ + tAdder + tcomb) (5.5)

Where tCQ, tSU is the clock to Q, setup time respectively, of the D-flip flop for synaptic

addition (Figure 5.3); tAdder, tcomb is the delay of adder, combinational circuit (apart from

adder and flop) respectively. Figure 5.5(a), (b) shows the plots of tCQ as function of

setup skew (termed as tSU−SKEW) of flop at PCNTopen = 0%, 40% respectively. Both

tCQ and tSU increases by 80.9% and 66.7% respectively for increase in PCNTopen from

0% to 40% (Figure 5.5(a), (b)). A similar trend is observed for adder with significant

increase in worst-case delay (tAdder) by 73.5% at PCNTopen = 40% in comparison to

78

0 20 40 60 80 100
tAdder [ps]

0

10

20

30

40

50

60

70

80

90

C
ou

nt
#

PCNTopen = 0%
PCNTopen = 40%

Figure 5.6: Histogram showing delay of adder (tAdder) at PCNTopen = 0% and
PCNTopen = 40%.

PCNTopen = 0% (Figure 5.6). A higher THALF value is thus required to avoid timing

violations at high PCNTopen. Hence, both PCNTopen and THALF play a role in the shape

of the activation function and results for activation function in this paper, are presented

as a function of both PCNTopen and THALF .

5.3.4 Simulation framework for sigmoid generation

Figure 5.7 provides the procedure of obtaining sigmoids from the simulation of actual

neuron circuit, at the given THALF . Synapsecomb in Figure 5.7 is a generic term to refer

to the effective synaptic weight combination. Each synaptic weight combination (Syn#j)

at the given THALF considered is first used to generate signals E and sj (Figure 5.3(a)).

79

Neuron netlist (at a given PCNTopen) containing circuit connectivity, along with signals

(E, sj), different Vinit values considered are used to generate netlist files for the SPICE run.

After SPICE run, multiple vcircuit (#Synapsecomb*#Vinit in total) values are obtained, each

corresponding to particular Vinit, Syn#j considered. After obtaining vcircuit, the next step

to follow is applying stochastic leak and threshold [106] steps, to obtain sigmoids. In order

to complete simulation within feasible run time, we implement stochastic leak (λ) and

threshold (V+) steps in software (MATLAB), to avoid the excessive circuit simulation

time to implement multiple runs of stochastic leak and threshold, needed for sigmoid

generation [106].

Neuron netlist

One should conduct Monte Carlo simulation in order to accurately capture the statistical

effect of open CNTs (Nopen). At a given PCNTopen, 50 Monte Carlo (MC) seeds are gen-

erated to assign a Nopen to each transistor in the circuit following the methodology in [70].

In each MC seed, average Nopen/N (averaging over all transistors) equals to PCNTopen.

However, for each individual CNFET, Nopen/N could be anywhere between 0 to 1, and is

different from seed to seed. E.g. For a sample seed (seed#0) of a circuit with only two

CNFETs CN1, CN2 in Figure 5.8, Nopen/N for CN1, CN2 is 0.33. 0.17 respectively, for an

overall PCNTopen = 25%.

Running circuit simulations for sigmoid generation for large set of seeds (#Seeds = 50)

of the neuron circuit would be very time consuming. A simple alternative to reduce run

time is to select limited number of seeds out of the large set of seeds generated. Figure 5.8

80

Generate Netlist Files
(#Synapsecomb* #Vinit)

Vinit

THALF

Netlist Files

SPICE

E/sj (signal
 generation)

E, sj

MATLAB
λ

V+

vcircuit

Netlist
generation

Neuron Circuit

PCNTopen

P(spike|v)

Synapsecomb

Sigmoid
Generation

Synapsecomb

Neuron
Circuit

PCNTopen THALF

P(spike|v)

Figure 5.7: Simulation framework for sigmoid (activation function) generation using actual
neuron circuit.

81

Generate Netlist Files
(#Seeds * #Synapsecomb)

PCNTopen

Vinit

Synapsecomb
(Syn#j)

THALF

Netlist Files

SPICE

Sort/Extract seeds

E/sj (signal
 generation)

E, sj

Neuron
Circuit

Main Netlist
generation

Neuron Netlist
(WC/MID/BC)

PMATCH

Seed#0

Open CNT

Drain

Source

CN1

Drain

Source

CN2

Nopen = 2
N = 6

CN1

Nopen = 1
N = 6

CN2

Monte Carlo Seeds
(large seed set)

Figure 5.8: Steps to extract small number of seeds from large seed set at a given PCNTopen.
The output 3 seeds (WC, BC, MID) shown correspond to neuron netlists having worst,
best and median probability of observing timing failure due to CNFET process imperfec-
tion.

82

0 10 20 30 40 50
Seed [#]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P M
A

TC
H

PCNTopen = 40%

BC THALF = 80p

WC

Figure 5.9: PMATCH (probability of vcircuit = 0) for different seeds at PCNTopen = 40%
(THALF = 80 ps). WC, BC corresponds to the seeds with minimum and maximum PMATCH

value respectively. Seed#40 is the WC seed with PMATCH = 0.

83

provides the series of steps to extract small number of seeds from a large seed set. At

a given PCNTopen, we first generate a large set of seeds (#Seeds = 50) for the neuron

circuit, followed by obtaining signals E, sj in a similar manner as discussed earlier. Once

we have the large set of seeds available, along with the signals (E, sj), we can combine

them to generate netlist files (#Seeds*#Synapsecomb in total) for SPICE run. We now

define another term PMATCH as the probability or average number of synaptic combination

(Syn#j) for which vcircuit = v. Here we conduct SPICE simulations for only v = 0, in

order to keep reasonable simulation time. We then evaluate PMATCH for the condition

vcircuit = 0. After obtaining PMATCH (with condition vcircuit = 0) for each seed, we sort

the seeds and choose the worst case (WC), best case (BC), and median (MID) seeds

based on the value of PMATCH . PMATCH is an indicator of timing failure observed. e.g.

PMATCH = 1 would mean no timing failure observed for any Syn#j at the given conditions.

Thus, BC, WC, MID seeds intended to replicate best, worst and median timing failure

scenarios, should correspond to seeds with highest, lowest and median PMATCH values

respectively. Figure 5.9 shows the Monte Carlo simulation results of PMATCH for 50 seeds

at PCNTopen = 40%, THALF = 80 ps, where PMATCH is the probability of (vcircuit = 0)

obtained over different Syn#j. For the seeds with close PMATCH values, the choice of

exact seed would have only a marginal impact on the actual sigmoids and consequently

minimal effect on system classification accuracy.

Effect of increased process imperfection and frequency

We now study the effect of both increased process imperfection (high PCNTopen) and

increased frequency (reduced THALF) on P (spike|v). Instead of showing P (spike|v) curves

84

-75 -60 -40 -20 0 20 40 60 75
v

0

0.2

0.4

0.6

0.8

1

P(
sp

ik
e|

v)

THALF = 90p (PCNTopen = 40%)

Seed = WC
Seed = MID
Seed = BC

(b)

-75 -60 -40 -20 0 20 40 60 75
v

0

0.2

0.4

0.6

0.8

1
Pr

ob
ab

ili
ty

THALF = 30p
THALF = 50p
THALF = 70p
THALF = 90p

P(
sp

ik
e|

v)

(PCNTopen = 0%)

Deviation from
ideal sigmoid
behavior

(a)

Figure 5.10: P (spike|v) variation with (a) THALF at PCNTopen = 0%, (b) Different seeds
at THALF = 90ps, PCNTopen = 40%.

85

for each Syn#j we show average P (spike|v) curves over all Syn#j for rest of the paper.

Figure 5.10(a), shows the effect of reduced time period resulting in timing violations on

average P (spike|v). At PCNTopen = 0% (no process imperfections and thus all seeds are

identical), a significant deviation from ideal sigmoid behavior is only observed for THALF

= 30ps and below (Figure 5.10(a)). Figure 5.10(b) compares average P (spike|v) for three

different seeds (WC, BC, and MID seeds), at PCNTopen = 40%, THALF = 90 ps. Only

P (spike|v) for the WC seed, deviates from the ideal sigmoid behavior, showing difference

in P (spike|v) curves with different seeds. For rest of the paper, the result displayed will

be with MID seed unless specified.

Figure 5.11 compares average P (spike|v) for PCNTopen = 0%/10%/20%/40% at dif-

ferent THALF . At THALF = 90 ps, P (spike|v) for each PCNTopen match nearly with ideal

sigmoid; however, at THALF = 70 ps, P (spike|v) show significant deviation from ideal

sigmoid for PCNTopen = 40%, indicating timing failure at high PCNTopen. At THALF

= 50 ps, significant deviation from ideal sigmoid is observed for all PCNTopen except

PCNTopen = 0% (Figure 5.11(c)). For THALF = 40 ps, even PCNTopen = 0% deviates

appreciably from ideal sigmoid behavior (Figure 5.11(d)).

5.4 Classification accuracy methodology

We use the P (spike|v) curves and test the classification accuracy of DBN for a simple

MNIST dataset classification. Since the accuracy is always linked to shape of activation

function P (spike|v), more complicated datasets would yield similar noticeable drop in

accuracy as MNIST dataset (considered in this work), once P (spike|v) starts to deviate

86

-75 -60 -40 -20 0 20 40 60 75
v

0

0.2

0.4

0.6

0.8

1

P(
sp

ik
e|

v)

THALF = 90p (MID)

PCNTopen = 0%
PCNTopen = 10%
PCNTopen = 20%
PCNTopen = 40%
ideal (scale=10)

-75 -60 -40 -20 0 20 40 60 75
v

0

0.2

0.4

0.6

0.8

1

P(
sp

ik
e|

v)

THALF = 70p (MID)

PCNTopen = 0%
PCNTopen = 10%
PCNTopen = 20%
PCNTopen = 40%
ideal (scale=10)

-75 -60 -40 -20 0 20 40 60 75
v

0

0.2

0.4

0.6

0.8

1

P(
sp

ik
e|

v)

THALF = 50p (MID)

PCNTopen = 0%
PCNTopen = 10%
PCNTopen = 20%
PCNTopen = 40%
ideal (scale=10)

-75 -60 -40 -20 0 20 40 60 75
v

0

0.2

0.4

0.6

0.8

1

P(
sp

ik
e|

v)

THALF = 40p (MID)

PCNTopen = 0%
PCNTopen = 10%
PCNTopen = 20%
PCNTopen = 40%
ideal (scale=10)

(a) (b)

(c) (d)

Figure 5.11: Comparison of P (spike|v) at different PCNTopen, for MID seed at a) THALF

= 90 ps, b) THALF = 70 ps, c) THALF = 50 ps, d) THALF = 40 ps. At THALF = 90 ps, only
small deviation is observed across different PCNTopen in comparison with ideal sigmoid
(scale = 10). PCNTopen = 40%, significant deviation is observed from ideal sigmoid (scale
= 10) at THALF = 70 ps. At THALF = 40 ps, significant deviation from ideal sigmoid is
observed at each considered PCNTopen (0%/10%/20%/40%).

87

v

P(
sp

ik
e

| v
)

Syn#3

Syn#5

Syn#1

N1

N2

N3

Layer #1

Ex#1 : 3 – 5 – 1
Ex#2 : 4 – 2 – 9

Ex#1000 : 3 – 6 – 7

Layer#1

N1 – N2 – N3

MNIST	Digits	(Inputs)	

1	 2	 3	 4	 5	

996	 997	 998	 999	 1000	

Figure 5.12: Schematic showing setup for tagging sigmoids, for classification accuracy of
a DBN with 3 Neurons (N1, N2, N3) in Layer#1. N1, N2, N3 are each being assigned
P (spike|v) (sigmoid) curves corresponding to a Syn#j. e.g. For Ex#1 of dataset: N1,
N2, N3 are assigned sigmoids pertaining to Syn#3, Syn#5, Syn#1 respectively.

88

from the ideal case. During training of the DBN, ideal sigmoid (scale = 10) is used to

obtain the weights and bias of the considered DBN using the MATLAB code in [107]. In

the testing phase, the P (spike|v) curves (obtained for different Synapsecomb) are randomly

assigned (with equal probability) to neurons of the DBN for each testing example. E.g. In

Figure 5.12, Layer#1 in DBN contains neurons N1, N2, N3 which are assigned P (spike|v)

(sigmoid) corresponding to Syn#3, Syn#5, Syn#1 respectively for example #1 (Ex#1).

Similar procedure is followed for rest of the examples. Once the tagging of P (spike|v) to

DBN neurons is completed, the MATLAB code (adapted from [107]) utilizes the weights

(wij) and bias (bj) from training to determine classification accuracy over entire 10,000

test images of MNIST dataset.

5.5 Effect of increased process imperfection and fre-

quency on P (spike|v) and classification accuracy

In this section, we first present the results of P (spike|v) obtained from circuit simula-

tion (using methodology in Section 5.3.4) at different PCNTopen and THALF , followed by

classification accuracy (obtained using the testing methodology in Section 5.4) utilizing

the P (spike|v) from circuit simulation. Figure 5.13(a), (b) show the effect of increased

frequency (reduced THALF) on average P (spike|v) (average over all Synapsecomb consid-

ered) at PCNTopen = 0%, 40% respectively. In general, we see a significant deviation

of P (spike|v) for all listed THALF except THALF = 90ps at PCNTopen = 40% (Fig-

ure 5.13(b)). However for PCNTopen = 0%, appreciable deviation is observed only for

89

THALF = 40 ps (Figure 5.13(a)), confirming increased presence of timing violations at high

PCNTopen at given THALF , resulting in significant deviation from ideal sigmoid shape. Fig-

ure 5.13(c) shows classification accuracy (shorthand notation ‘accuracy’) of DBN with size

784-500-500-10. As expected, the accuracy at given THALF , PCNTopen is driven by shape

of P (spike|v), with accuracy degrading to 82.4% at THALF = 40 ps for PCNTopen = 0%

(highlighted in red circle in Figure 5.13(c)), in accordance to P (spike|v) which deviates ap-

preciably from ideal sigmoid at THALF = 40ps (Figure 5.13(a)). With PCNTopen = 40%,

significant decrease in accuracy (with difference of 9.2%) in comparison to PCNTopen = 0%

is observed at THALF = 70ps and even more for lower THALF values, relating to significant

deviation observed for P (spike|v) at high PCNTopen (PCNTopen = 40%) in comparison

to PCNTopen = 0% (Figure 5.13(a), (b)).

5.6 Conclusions

In this chapter, we investigate the effect of CNFET process imperfections on classifica-

tion accuracy of DNNs. Specifically, we focus on distortion in activation function shape

with increased process imperfection. The simulation framework also considers the statis-

tical effect of open CNT imperfection during activation function generation from CNFET

based digital neuron. Both reduced time period between synaptic events and high open

CNT imperfection is observed to result in timing failures, thus distortion in the shape of

the activation function. The framework for DNN classification accuracy implemented in

MATLAB, utilizes the activation functions generated from SPICE simulations. Expect-

edly, the classification accuracy is linked to the shape of the activation function, with a

90

-75 -60 -40 -20 0 20 40 60 75
v

0

0.2

0.4

0.6

0.8

1

P(
sp

ik
e|

v)

A-X [PCNTopen = 0%]

THALF = 40p
THALF = 50p
THALF = 60p
THALF = 90p
ideal (scale=10)

-75 -60 -40 -20 0 20 40 60 75
v

0

0.2

0.4

0.6

0.8

1

P(
sp

ik
e|

v)

A-X [PCNTopen = 40%]

THALF = 40p
THALF = 50p
THALF = 60p
THALF = 90p
ideal (scale=10)

(a) (b)

30 40 50 60 70 80 90
THALF [ps]

70

75

80

85

90

95

100

A
cc

ur
ac

y
[%

]

PCNTopen = 0% PCNTopen = 40%

9.2%	

(c)

Figure 5.13: Comparison of P (spike|v) at different THALF with (a) PCNTopen = 0%, (b)
PCNTopen = 40%. (c) Comparison of accuracy (%) as function of THALF at PCNTopen =
0% and PCNTopen = 40%.

91

noticeable drop in accuracy once the activation function deviates from the ideal case.

92

Chapter 6

Techniques to Mitigate Impact of

CNFET Process Imperfections

6.1 Introduction

Neural networks, including DNNs, are inherently error resilient [67, 68], and can produce

acceptable results even in the presence of some errors during computation. The relax-

ation in the requirement of precise computation is extensively used to improve the energy

efficiency of hardware systems implementing DNNs. Pruning of synaptic connections is

widely used to reduce the size of DNNs, computation, and improvement in energy effi-

ciency [67, 68]. Another way is to utilize approximate circuits [108, 109] realized using

the functional approximation for computation, which itself are energy efficient compared

to their precision counterparts. Utilizing pruning and approximate circuit can affect the

93

accuracy of DNNs, but the improvement in energy efficiency with pruning and approximate

circuits outweighs the marginal degradation in accuracy. Moreover, the flexibility of prun-

ing few synaptic connections and using approximate circuit components can significantly

reduce the unpredictable and high accuracy degradation due to CNFET process imperfec-

tion and still leveraging from energy efficiency benefit (order of magnitude improvement

compared to silicon [33]) of CNFETs.

In this chapter, we first present the modified simulation framework, with the option

of including both synaptic weights after pruning and approximate neuron for sigmoid

generation. We then explain in detail the way pruning can be utilized to reduce timing

violations. We then propose an approximate neuron (realized using approximate adder

with significantly lesser critical path delay) to further reduce timing violations. Towards

the end of the chapter, we compare activation functions and classification accuracy achieved

with different configurations, obtained using precise or approximate neuron and with or

without synaptic weight pruning. Parts of this chapter are published in ref. [103].

6.2 Modified simulation framework for sigmoid gen-

eration

In previous chapter, we observed the effect of PCNTopen and THALF on P (spike|v). High

PCNTopen is linked with reduced drive current of CNFETs (but same parasitic capaci-

tance), resulting in increased circuit-level delays, thus requiring high THALF to maintain

the shape of P (spike|v). One efficient way to mitigate the effect of high PCNTopen is prun-

94

ing of synaptic weights. Pruning can reduce the number of synaptic events, and its effective

use to suppress certain synaptic events can provide option to reduce THALF (Figure 6.1(a)),

even without encountering timing violation at the same high PCNTopen. However, prun-

ing of synaptic weights contribute to inaccuracy, but the magnitude of synaptic weights is

usually small [67, 68] and result in relatively small inaccuracy impact compared to the case

of timing violations. The inaccuracy impact can further be compensated by adjusting the

bias (bj) to reduce the inaccuracy over a set of Synapsecomb, encountered by the neuron.

The neuron circuit (Figure 5.3(a)) can be modified by replacing the precise adder with

an approximate adder. The approximate neuron circuit thus obtained can have reduced

adder (tAdder) delay, consequently reduced critical path delay (tDelay) in Figure 6.1(b))

and hence, reducing the probability of occurrence of timing violation at given THALF and

PCNTopen. The pruning and approximate neuron can be effectively utilized to reduce the

timing violations even at high PCNTopen, thus maintaining the shape of P (spike|v) (Fig-

ure 6.1(c)) and help to achieve or surpass frequency requirement even at high PCNTopen.

We introduce a term Syn#j(mod) to refer to the modified Synapsecomb (with pruning

and bias compensation applied, explained in Section 6.3), in comparison to Syn#j. We now

discuss the framework to obtain sigmoid P (spike|v) curves, including the effect of pruning

and approximate neuron. Figure 6.2 provides overview of steps to obtain P (spike|v) curves

(equal to M) at given PCNTopen and THALF , where M refers to number of synaptic weight

combination (Synapsecomb) considered. Additional steps of “Circuit Modification” and

“Pruning + Bias Compensation” are included to obtain approximate neuron and modified

Synapsecomb (Syn#j(mod)) as input to the “Sigmoid Generation” block. The rest of the

procedure remains the same as the sigmoid generation discussed in Section 5.3.4. The

95

No Prune Prune + Bias Compensation

v

P(spike|v) A-X (0%)

A-X (40%)
B-Y (40%)

N1

Y
w1

w3

N1
w1

w2

w3

X

(c)

(Less #synaptic
events)

THALF

tAdder

(a)

Precis
e Neuron

Approx. Neuron

PCNTopen

Delay
A

B

0% 40%

tDelay
(b)

tDelay = tSU + tCQ + tAdder + tcomb

Figure 6.1: DNN with (a) no pruning (X), pruning of synaptic weights and neuron bias
compensation (Y) (b) Comparison of critical path Delay versus open CNTs [%] (PCNTopen)
with precise (A) and approximate (B) neuron. (c) Comparison of activation function
‘P (spike|v)‘ for different configurations (based on combination of precise (red) /approxi-
mate(green) neuron and no pruning/pruning of synaptic weights) at different PCNTopen.

96

details of “Circuit Modification” and “Pruning + Bias Compensation” are provided in

later subsections.

Later in the paper, we also compare different configurations. Each configuration is de-

noted by generic notation Neuron-Synapsecomb, where Neuron can be precise or approxi-

mate neuron circuit and Synapsecomb can be Syn#j or Syn#j(mod) (Figure 6.2). We use

shorthand notations A, B to represent precise, approximate neuron circuit respectively and

X, Y to represent Syn#j, Syn#j(mod) respectively (Figure 6.2). P (spike|v) curves for

any configuration can be obtained by having required neuron circuit and Synapsecomb type

as input to “Sigmoid Generation” block e.g. Configuration A−Y will have precise neuron,

Syn#j(mod) as inputs to “Sigmoid Generation”, with “Circuit Modification” being absent

in comparison to sigmoid generation for configuration B−Y in Figure 6.2. After choosing

the neuron circuit (A or B) and the Synapsecomb (X or Y), circuit simulation using VSC-

NFET model is conducted at different levels of PCNTopen, to obtain P (spike|v) curves

(Figure 6.2). For each PCNTopen, multiple Monte Carlo seeds are fed into the circuit to

mimic the random distribution of open CNTs.

6.3 Pruning with bias compensation to reduce timing

violations

We now explain the pruning method with the help of timing diagram. As explained before,

the neuron is event driven with E = Ai∗Cij. In the absence of synaptic connection between

axon and dendrite, Cij = 0 implies E = 0. Zero skipping technique is extensively pursued

97

v

P(spike | v)

Neuron Circuit Synapsecomb

A : Precise

B : Approx.

X : Syn#j

Y : Syn#j(mod)

Sigmoid	
Generation	

CNFET	Process	
(PCNTopen)	

Frequency	
(THALF)	

Neuron	Circuit	
(Approx.)	

Pruning	+	Bias	
Compensation	

Circuit	
Modification	

Neuron	Circuit	
(Precise)	

Synapsecomb	
(Syn#j)	

Synapsecomb		
(Syn#j	(mod))	

(A) (B)

(X)
(Y)

Figure 6.2: Overview of steps for P (spike|v) (sigmoid) curves generation, at given CNFET
process quality (PCNTopen) and particular frequency (THALF) for configuration B − Y .

98

to skip the zero weights [67, 68, 98] to reduce power. In our base case X (Syn#j), we

employ zero skipping by having Cij = 0 meaning E = 0. Figure 6.3(a), (b) shows that

when wij = 0, that value is not applied to sj and sj continue to hold the previous value.

Moreover, E = 0 because Cij = 0 when wij = 0. With pruning (Y), we avoid having

events of E = 1 in consecutive cycles (Figure 6.3(b)). Consequently, the circuit does not

need to perform any calculation in the next cycle following an event of E = 1, which

relaxes timing and reduction in timing errors. It should be noted that sj and E have been

used as input signals for the neuron block. wij (weight stored in memory) is included in

Figure 6.3(a), (b) for illustration purposes, explaining the case how wij value would affect

sj and E, when whole of neuromorphic system is implemented.

Pruning of synaptic weights however, can result in deviation of vcircuit from v. Nev-

ertheless, the deviation is relatively small in comparison to the case of timing violations

[98, 110], which generally happens for the higher order bits. The higher order bits towards

MSB are more likely to form critical path in adder of neuron circuit (Figure 5.3(a)), thus

leading to more deviation of vcircuit from v and consequently significant and unpredictable

deviation of P (spike|v) from ideal sigmoid. Further, deviation of vcircuit from v (with

pruning) can be reduced, by tuning the bias (bj) associated with neuron. We define a

term BiasCOMP (Figure 6.3(b)) as additional value added to bj of neuron to reduce the

deviation. We choose optimum value of BiasCOMP (denoted as BiasCOMP (opt)) resulting

in minimum value of average root mean square error (RMSE) given by following equation

RMSE(avg) =
1

M

M∑
k=1

RMSE(Syn#j(mod)k) (6.1)

99

X (No Prune)

Y (Prune + BiasCOMP)
(a)

(b)

4 2 0 -8 1 1

4 2 1 sj

E

clock

wij

-8

Zero
skipping

T0 T1 T2 T3 T4 T5 T6

4 2 0 -8 1 1

4 sj

E

clock

wij

-8

Cij = 0

T0 T1 T2 T3 T4 T5 T6 4
2
0

-8

1

bj + BiasCOMP

A1

A3
A4

A5

Ak

A2

4
2
0

-8

1

bj

A1

A3
A4

A5

Ak

A2

Figure 6.3: Timing Diagram for (a) X (NoPrune), (b) Y (Prune + BiasCOMP) case.

100

whereRMSE(Syn#j(mod)k) is theRMSE of P (spike|v) (generated using kth Syn#j(mod))

with respect to ideal sigmoid and M is the total number of Syn#j(mod) considered.

Figure 6.4(a), (b) shows multiple Synapsecomb (M = 100) forX (NoPrune), Y (Prune+

BiasCOMP) case respectively. Figure 6.5(a) shows RMSE(avg) as a function of BiasCOMP

for configuration A − Y (PreciseNeuron–Prune + BiasCOMP), for M = 10 and M =

100. For A − Y (M = 100), we observe a minimum value of RMSE(avg) =0.084, corre-

sponding to BiasCOMP (opt) = 12 (Figure 6.5(a)). At the BiasCOMP (opt) value, average

of P (spike|v) curves over all Synapsecomb, for A − Y (M = 100) is pretty close to ideal

sigmoid (inset of Figure 6.5(b)). Moreover, Figure 6.5(b) shows system accuracy which

is obtained by using P (spike|v) curves, explained in detail in Section 5.4 and plotted as

a function of BiasCOMP . The system yield a high value of system accuracy (97.91%) at

BiasCOMP (opt) value for A−Y (M = 100) (Figure 6.5(b)). We also obtain the results for

A − Y (M = 10), by considering first 10 Synapsecomb of Syn#j(mod) in Figure 6.4(b).

RMSE(avg) for A − Y (M = 10) (Figure 6.5(a)) follow a similar trend with BiasCOMP

as A − Y (M = 100), yielding nearly identical minimum RMSE(avg) of 0.065 (close to

0.084 for A − Y (M = 100)), resulting in BiasCOMP (opt) of 15 (Figure 6.5(a)). Again,

average P (spike|v) curves for A − Y (M = 10) at BiasCOMP (opt), match close to ideal

sigmoid, yielding in system accuracy of 97.98% (just slightly higher than for A− Y (M =

100)) (Figure 6.5(b)). Without loss in generality, we have considered M = 10 number of

Synapsecomb for each X (NoPrune), Y (Prune + BiasCOMP) cases for rest of the paper,

resulting in reduced compute time for circuit simulations but still efficient to mimic case

with higher values for M .

101

X (No Prune)

10 20 30 40 50 60 70 80 90 100
Syn#j

5

10

15

20

25

30
C

yc
le

 [#
]

-8

-6

-4

-2

0

2

4

Y (Prune)

10 20 30 40 50 60 70 80 90 100
Syn#j(mod)

5

10

15

20

25

30

C
yc

le
 [#

]

-8

-6

-4

-2

0

2

4

(a)

(b) Y (Prune + BiasCOMP)

X (No Prune)

Figure 6.4: Multiple synaptic combinations (M = 100) for (a) X (NoPrune), (b) Y
(Prune + BiasCOMP) case shown, with effective synaptic weight at each clock cycle [#]
of synaptic addition step.

102

-20 -10 0 10 20
BiasCOMP

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

RM
SE

(a
vg

)

A-Y(M = 10)
A-Y(M = 100)

(a)

A : Precise Neuron Y : Prune + BiasCOMP X : No Prune

0 5 10 15 20
BiasCOMP

95

95.5

96

96.5

97

97.5

98

Ac
cu

ra
cy

 [%
]

A-Y(M = 10)
A-Y(M = 100)(b)

-75 -30 0 30 75
v

0

0.5

1

P(
sp

ik
e|

v)

A-Y (M = 10)
A-Y (M = 100)
ideal (scale=10)

-75 -30 0 30 75
v

0

0.5

1

P(
sp

ik
e|

v)

A-Y (M = 10)
A-Y (M = 100)
ideal (scale=10)

Figure 6.5: (a) RMSE(avg) as function of BiasCOMP , (b) System accuracy as a function
of BiasCOMP , for configuration A− Y (PreciseNeuron – Prune + BiasCOMP), for M =
10, M = 100 Synapsecomb. Inset of (b) shows comparison of P (spike|v) with corresponding
BiasCOMP (opt) values, for configuration A− Y with M = 10, M = 100 Synapsecomb.

103

7:6

7:4

7:0

5:4

5:2

5:0

3:0

3:2
1:0

0:0 1:0 2:0 3:0 4:0 5:0 6:0 7:0

0 1 2 3 4 5 6 7

orig

app_acc

5:4

5:2

6:2

3:2

0:0 1:0 2:0 4:0 5:0 6:0 7:0

0 1 2 3 4 5 6 7

3:0

(a)

(b)

Figure 6.6: Schematics of 8-bit (a) precise Han Carlson Tree adder (orig), (b) approximate
adder (app acc).

104

6.4 Approximate neuron

Since the delay of adder is the most significant contributor to critical path delay limiting

frequency, we generate our approximate neuron circuit by replacing precise adder with ap-

proximate adder in neuron circuit (Figure 5.3(a)). Approximate neuron obtained by using

approximate adder has been used in the past for enhanced energy efficiency [111, 109]. Since

our focus is towards reducing timing failures due to open CNT imperfection, we plan to ob-

tain approximate adder with focus on speed. The approximate adder should have reduced

critical path delay even compared to that in fast parallel prefix adders. For fair comparison,

we have chosen 8-bit precise Han Carlson tree adder ‘orig’ (Figure 6.6(a)) as adder circuit

in precise neuron. We obtain 8-bit approximate adder ‘app acc’ (Figure 6.6(b)), which has

fewer stages in critical path in comparison to even the fast adder topology ‘orig’ chosen

in this work. Delay for sum outputs (S0(LSB) to S7(MSB)) for both orig and app acc is

plotted in Figure 6.7(a) for PCNTopen = 40%. Significant improvement in critical path

delay is obtained with app acc having 67 ps (34.9% lower) worst-case delay in comparison

to 103 ps in orig. However, there are some errors due to the approximate computation

(denoted as Error, Error = |Sorig − Sapp acc|, where Sapp acc, Sorig as the sum value based

upon the output of app acc, orig respectively) shown in Figure 6.7(b). To compensate

the inaccuracy due to approximate adder, signal ‘COMP ’ (Figure 6.8(c)) is generated to

detect the error. Part of the neuron circuit is modified accordingly (Figure 6.8(a), (b))

to compensate for the error. The timing diagram explaining important signals for error

compensation is provided in Figure 6.8(d), (e). Circuit related with COMP added some

area while the approximate adder is smaller than the precision counterpart. The over-

105

all approximate neuron area (including circuitry for error compensation) is slightly lesser

(0.56% below) in comparison to the original neuron area.

0 20 40 60 80 100
Delay [ps]

0

20

40

60

80

100
C

ou
nt

#

PCNTopen = 40%

orig
app_acc

(a)

0 4 8 12 16
Error

0

100

200

300

400

500

600

700

800

900

C
ou

nt
 #

Error to be
compensated

(b)

Figure 6.7: a) Delay comparison of orig and app acc at PCNTopen = 40%, (b) Error for
app acc.

106

λ<7:0>
Sj<7:0>

E

Vx<7:0>

Leak/Syn
+

Error Comp.

E

COMP COMP

(b)

5:4

5:2

6:2

3:2

0:0 1:0 2:0 4:0 5:0 6:0 7:0

0 1 2 3 4 5 6 7

3:0

(c)

(a)

0

1
1

0
Sj<4>

λ<4>

1

COMP
COMP

Lk

Sj-int<4> G
3:2

G
1:0

P
3:2

C
O

M
P

0 1 0

Sj-int<4>

E

T0 T1 T2

Sj<4>

T3

@T2 : Compensate Error

COMP

Lk = 0

1 Sj<4>

0 1

Sj-int<4>

E

T0 T1 T2

0

λj<4>

T3

@T2 : Compensate Error

COMP

Lk = 1

1 λj<4>

(d)

(e)

Figure 6.8: (a) Part of digital neuron circuit shown with approximate adder app acc and
circuitry for error compensation. (b) Modified circuit for 4th bit position of neuron circuit.
(c) Schematic of app acc with NOR3 gate for COMP signal. Timing diagram showing
important signals for error compensation for (d) Lk = 0, (e) Lk = 1.

107

6.5 Results and discussion

In this section, we first compare the P (spike|v) obtained (refer to section 6.2) with different

configurations (A − X, A − Y , B − Y introduced before) for different CNFET process

(PCNTopen) and frequency (THALF) conditions. Next, we compare classification accuracy

(using testing methodology in Section 5.4) with different configurations for a standard

network size (784-500-500-10). The classification accuracy analysis is even extended to

other smaller network sizes as well. Eventually, we provide best configuration in terms of

key metrics comparison, towards end of the section.

6.5.1 Best configuration for maintaining P (spike|v) shape at high

PCNTopen

As discussed earlier, P (spike|v) with base configuration A−X deviates significantly from

ideal sigmoid at high PCNTopen (PCNTopen = 40%), with deviation observed for all listed

THALF except THALF = 90 ps (Figure 6.9(b)). With pruning and approximate neuron, the

deviation is expected to happen only at lower THALF values. Even at PCNTopen = 40%,

P (spike|v) with A−Y (PreciseNeuron, Prune + BiasCOMP) deviates from ideal sigmoid

only for THALF = 40ps (Figure 6.9(c)). But even better results are observed for P (spike|v)

with B − Y (ApproximateNeuron, Prune + BiasCOMP), with only negligible deviation

observed at THALF = 40ps (Figure 6.9(d)). B−Y performs best in maintaining P (spike|v)

shape at high PCNTopen = 40%, even better compared to base case A−X at PCNTopen =

0% (no process imperfection) (Figure 6.9(a)).

108

-75 -60 -40 -20 0 20 40 60 75
v

0

0.2

0.4

0.6

0.8

1

P(
sp

ik
e|

v)

A-X [PCNTopen = 0%]

THALF = 40p
THALF = 50p
THALF = 60p
THALF = 90p
ideal (scale=10)

-75 -60 -40 -20 0 20 40 60 75
v

0

0.2

0.4

0.6

0.8

1

P(
sp

ik
e|

v)

A-X [PCNTopen = 40%]

THALF = 40p
THALF = 50p
THALF = 60p
THALF = 90p
ideal (scale=10)

-75 -60 -40 -20 0 20 40 60 75
v

0

0.2

0.4

0.6

0.8

1

P(
sp

ik
e|

v)

A-Y [PCNTopen = 40%]

THALF = 40p
THALF = 50p
THALF = 60p
THALF = 90p
ideal (scale=10)

-75 -60 -40 -20 0 20 40 60 75
v

0

0.2

0.4

0.6

0.8

1

P(
sp

ik
e|

v)

B-Y [PCNTopen = 40%]

THALF = 40p
THALF = 50p
THALF = 60p
THALF = 90p
ideal (scale=10)

(a) (b)

(c) (d)

A : Precise Neuron B : Approx. Neuron X : No Prune Y : Prune + BiasCOMP

Figure 6.9: Comparison of P (spike|v) at different THALF for different configuration (a)
A−X at PCNTopen = 0%, (b) A−X at PCNTopen = 40%, (c) A− Y at PCNTopen =
40%, (d) B − Y at PCNTopen = 40%.

109

6.5.2 Classification accuracy using P (spike|v) curves

In section 5.5, we observed significant degradation in accuracy (9.2% less) even for much

higher THALF values (THALF = 70ps) for A−X(PCNTopen = 40%), in comparison to ac-

curacy for base case A−X(PCNTopen = 0%). However with configuration A−Y , B−Y ,

high value of accuracy is maintained even up to low THALF values at high PCNTopen

(PCNTopen = 40%) (Figure 6.10). At THALF = 40ps, accuracy with B− Y (PCNTopen =

40%) is even better (15.32% higher) than base case A − X(PCNTopen = 0%), demon-

strating potential of high frequency of operation with B − Y even at high PCNTopen

(PCNTopen = 40%) (Figure 6.10). But peak accuracy with B − Y is lesser, but only by

0.19% in comparison to 98.14% for base case A−X(PCNTopen = 0%).

Accuracy for different configurations is even compared for different network sizes. We

have considered four network sizes 784-30-30-10, 784-70-70-10, 784-300-300-10 and 784-

500-500-10 also represented as NN1, NN2, NN3, and NN4 respectively. For each con-

figuration, we observe nearly similar trend as function of THALF for each of the different

network sizes (Figure 6.11(a), (b), (c), (d)). However as expected, the minimum and max-

imum peak accuracy among the considered network sizes is observed with smallest (NN1)

and largest (NN4) network sizes respectively. At PCNTopen = 40%, B − Y is still best

among different configurations, in achieving high accuracy at low THALF (THALF = 40ps)

(Figure 6.11(d)). For a given network, peak accuracy with B − Y (PCNTopen = 40%) is

lowest, but only by small amount 0.39%, 0.19% for NN1, NN4 respectively in comparison

to base case A−X(PCNTopen = 0%) (Table 6.1).

110

A : Precise Neuron

B : Approx. Neuron

X : No Prune

Y : Prune + BiasCOMP

45 50 55 60 65 70 75
THALF [ps]

97.85

97.9

97.95

98

98.05

98.1

98.15

A
cc

ur
ac

y
[%

]

0.19%	

30 40 50 60 70 80 90
THALF [ps]

0

20

40

60

80

100

A
cc

ur
ac

y
[%

]
A-X(PCNTopen = 0%) A-X(PCNTopen = 40%)
A-Y(PCNTopen = 40%) B-Y(PCNTopen = 40%)

9.2%

(a)

(b)

Figure 6.10: (a) Comparison of accuracy (%) as function of THALF for different configura-
tion A−X at PCNTopen = 0%, A−X, A− Y , B − Y at PCNTopen = 40%. Accuracy
at PCNTopen = 0% and 40% is represented by solid and dotted curves respectively. At
THALF = 40ps, Accuracy for B − Y even at PCNTopen = 40% is better (15.32% higher)
than accuracy for A−X (at PCNTopen = 0%) (also shown by arrows). (b) Accuracy (%)
as function of THALF (limited THALF range 50 ps to 70 ps) shown for different configura-
tions A−X at PCNTopen = 0%, A− Y , B − Y at PCNTopen = 40% (Only data points
without lines shown for better clarity). The figure in (b) is included for purpose of showing
peak accuracy.

111

A : Precise Neuron B : Approx. Neuron X : No Prune Y : Prune + BiasCOMP

30 40 50 60 70 80 90
THALF [ps]

70

75

80

85

90

95

100

A
cc

ur
ac

y
[%

]

A-X [PCNTopen = 0%]

784-30-30-10
784-70-70-10
784-300-300-10
784-500-500-10

30 40 50 60 70 80 90
THALF [ps]

70

75

80

85

90

95

100

A
cc

ur
ac

y
[%

]

A-X [PCNTopen = 40%]

784-30-30-10
784-70-70-10
784-300-300-10
784-500-500-10

30 40 50 60 70 80 90
THALF [ps]

70

75

80

85

90

95

100

A
cc

ur
ac

y
[%

]

A-Y [PCNTopen = 40%]

784-30-30-10
784-70-70-10
784-300-300-10
784-500-500-10

30 40 50 60 70 80 90
THALF [ps]

70

75

80

85

90

95

100

A
cc

ur
ac

y
[%

]

B-Y [PCNTopen = 40%]

784-30-30-10
784-70-70-10
784-300-300-10
784-500-500-10

(a) (b)

(c) (d)

Figure 6.11: Comparison of accuracy (%) as function of THALF with different network sizes,
for different configuration (a) A−X at PCNTopen = 0%, (b) A−X at PCNTopen = 40%,
(c) A− Y at PCNTopen = 40%, (d) B − Y at PCNTopen = 40%.

112

Configuration
(CNFET Process) NN1 NN2 NN3 NN4

A-X (PCNTopen = 0%) 93.68 96.28 97.83 98.14

A-Y (PCNTopen = 40%) 93.39 96.12 97.71 97.98

B-Y (PCNTopen = 40%) 93.29 96.02 97.65 97.95

A : Precise Neuron B : Approx. Neuron X : No Prune Y : Prune + BiasCOMP

NN1 : 784-30-30-10 NN2 : 784-70-70-10 NN3 : 784-300-300-10 NN4 : 784-500-500-10

Table 6.1: Comparison of peak accuracy (%) with A − X(PCNTopen = 0%), A −
Y (PCNTopen = 40%) and B − Y (PCNTopen = 40%) for different network sizes.

6.5.3 Key comparison for choosing best configuration

EDP is also computed to compare different configurations. Figure 6.12 shows EDP for

different configurations, normalized to EDP with base case A−X (PCNTopen = 0%). For

base configuration A−X, EDP at PCNTopen = 40% is increased by 69.3% in comparison

to EDP at PCNTopen = 0%. But even at PCNTopen = 40%, EDP with configurations

A − Y , B − Y is less by 38.0% and 56.7% respectively in comparison to EDP of A − X

(PCNTopen = 0%) (Figure 6.12), showing the tremendous EDP advantage even at high

PCNTopen, by using pruning and approximate neuron.

Table 6.2 shows the key comparison of three configurations, with B − Y even at high

PCNTopen (PCNTopen = 40%) showing the best results for all the listed metrics except

the peak accuracy, where it is only 0.19% less than peak accuracy in base case A − X

(PCNTopen = 0%).

113

PCNTopen = 0% PCNTopen = 40%
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

N
or

m
al

iz
ed

 E
D

P

A-X
A-Y
B-Y

56.7%

A : Precise Neuron
B : Approx. Neuron

X : No Prune
Y : Prune + BiasCOMP

Figure 6.12: EDP normalized to base configuration A−X at PCNTopen = 0%.

Configuration
(CNFET Process)

Normalized
EDP

Normalized
Area

Min THALF *(ps)
(Accuracydrop

< 0.5%)

Peak
Accuracy

(%)

A-X (PCNTopen = 0%) 1x 1x 50 98.14

A-Y (PCNTopen = 40%) 0.62x 1x 50 97.98

B-Y (PCNTopen = 40%) 0.43x 0.99x 40 97.95

A : Precise Neuron B : Approx. Neuron X : No Prune Y : Prune + BiasCOMP

∗ Min THALF (Accuracydrop < 0.5%) is the minimum THALF for which accuracy is within 0.5%
of the peak accuracy (98.14%) for base configuration A−X.

Table 6.2: Comparison of A − X(PCNTopen = 0%), A − Y (PCNTopen = 40%) and
B − Y (PCNTopen = 40%). Best results for each metric are highlighted in green.

114

6.6 Conclusions

In this chapter, we compare the activation functions for different configurations (ob-

tained by combination of precise/approximate neuron and no pruning/pruning of synaptic

weights). For a fair comparison of activation functions obtained with different configura-

tions, we also compare accuracy of DBN for digit recognition application (taken as example)

utilizing the activation functions for each considered configuration. The proposed config-

uration obtained by combination of approximate neuron and pruning of synaptic weights,

even at high process imperfection (PCNTopen = 40%), achieves several advantages com-

pared with the base case with perfect process, including (1) excellent system accuracy at a

higher speed (only < 0.5% accuracy drop with 25% improvement in speed) (2) significant

EDP advantage (56.7% less), and (3) marginally smaller area (0.56% less).

115

Chapter 7

Conclusions and Future Work

This dissertation aims to investigate the possible adoption of CNFET based circuits suf-

fering from process imperfections, for error resilient computing systems. This chapter

summarizes the key contributions towards that target and also provides future research

goals.

7.1 Conclusion and summary

7.1.1 Methodologies for effective capture of CNFET process im-

perfection on circuit-level performance

The dissertation initially discusses the major source of imperfection arising from the cur-

rently popular process, affecting the circuit-level performance of CNFET based circuits.

116

With > 30% of missing CNTs (in trenches connecting source and drain of CNFET) for

currently reported trench widths and further scaling of trench widths expected in future,

the open CNT imperfection is currently and probably will remain a major source of im-

perfection affecting CNFET performance. In Chapter 3, we showed the use of modified

version of VSCNFET model to capture open CNT imperfection. A Monte Carlo simulation

framework is provided to accurately capture the statistical effect of open CNT imperfection

on circuit-level performance. In Chapter 3, we also present a link between noise tolerance

and circuit topology in terms of LN# associated with each primary output. Generally,

high LN# associated with a primary output is linked to more nodes failing glitch criteria,

along paths to the primary output.

7.1.2 CNFET based circuits for approximate computing

In Chapter 4, we investigate the appropriateness of CNFET based circuits for approximate

computing by taking example of 16-bit Han Carlson adder [85] (high speed parallel prefix

adders). We present a systematic methodology using ROBDD to obtain an approximate

adder with a reduced LN#, consequently less impact of the imperfect process on circuit-

level performance. Approximate adder obtained using the methodology has less delay,

significant reduction in nodes failing glitch criteria (∼ 5× reduction) and significantly less

EDP (∼ 43.4% less EDP) even at high process imperfection, with MeanRelativeError of

3.3%.

117

7.1.3 CNFET based circuits for neuromorphic computing

In Chapter 5, we provide simulation framework to capture the effect of process imperfec-

tion and frequency on shape of activation function generated using digital CNFET neuron.

Timing failures arising due to increased open CNT imperfection and frequency is shown to

distort the activation function shape, and consequently, significant degradation in classifi-

cation accuracy is observed for DBN, using the activation functions obtained from SPICE

simulations. Neural networks, including DBNs, are inherently error resilient and several

works in literature have demonstrated pruning of synaptic weights to reduce the size of

DNNs for the reduction in consumed energy [112, 68]. But pruning of specific synaptic

weights can also significantly reduce the probability of timing failure with slight expected

degradation in accuracy. Also, approximate circuits can be used in place of precise circuits

to have reduced stages, reduced capacitance at nodes, and consequently reduced critical

path delay, which further reduces the probability of timing failure. In Chapter 6, we pro-

pose an approximate neuron circuit, which combined with the pruning of synaptic weights,

is demonstrated to maintain the shape of activation function even at high process imper-

fection and higher frequency. For comparison, the activation functions are obtained for

different configurations (obtained by the combination of precise/approximate neuron and

no pruning/pruning of synaptic weights). By using both approximate neuron and pruning

of synaptic weights, we achieve excellent system accuracy (only < 0.5% accuracy drop)

with 25% improvement in speed, significant EDP advantage (56.7% less) even at high pro-

cess imperfection, in comparison to base configuration of precise neuron and no pruning

with ideal process, at no area penalty.

118

In conclusion, this dissertation provides directions for potential applicability of CN-

FET based technology for error resilient computing systems. For this purpose, we present

methodologies, which provide an assessment of the circuit-level performance of CNFET

based circuits, considering process imperfections. We accomplish DBN framework for digit

recognition, considering activation functions from SPICE simulations incorporating pro-

cess imperfections. We demonstrate the effectiveness of approximate neuron and synaptic

weight pruning to mitigate the impact of high process imperfection on system accuracy.

7.2 Future research directions

This dissertation provides circuit and system solutions to address major source of process

imperfection arising from immature process, for CNFET based error resilient computing

systems. However, successful adoption of CNFET technology for the implementation of

advanced computing systems would still require work across the device, circuit, and system

level. Our future work would thus focus on the following goals:

• Device-level modifications: In our current analysis, we have focused on open

CNT imperfection, which is the major source of process imperfection affecting CN-

FET circuit-level performance. For more precise results and comparison with other

competing technologies, we plan to incorporate other sources of process imperfections

in our future analysis, including diameter variations, length variations, etc.

• Complicated neural networks and datasets: The complexity of neural net-

works has increased significantly over the past few years. We plan to implement

119

these complex neural networks as part of our future work. Current state of art Con-

volutional Neural Networks (CNNs) [42] including ResNet [43], VGGNet [113] have

shown significantly low error rates even for complicated dataset ImageNet [114]. For

implementing these networks, we would first need to have a simulation framework

to implement the convolution, pooling, and softmax layers of Convolutional Neural

Network (CNN). The simulation results could then be utilized to get the system

accuracy of these networks for complicated datasets like ImageNet [114], CIFAR-10

[115] etc.

• Integration with standard frameworks: We further plan to integrate our work

with some of the popular deep learning frameworks like Caffe [116], TensorFlow [117]

etc. This integration would be necessary to have reasonable computation time for

complicated DNNs like ResNet [43], VGGNet [113]. Moreover, it would provide

the common platform, thus increasing the possibility of more people to contribute

towards this work.

• Standard cell design: The design of the entire complicated CNFET based comput-

ing system in hardware would require the use of automatic place and route tools, for

which a library of standard cells should be designed. The standard cell library should

possess different drive strengths even for the same functionality, with circuit design

effort involving a special emphasis on reducing the impact of process imperfection.

120

References

[1] M. T. Bohr and I. A. Young, “CMOS scaling trends and beyond,” IEEE Micro,

vol. 37, no. 6, pp. 20–29, Nov. 2017.

[2] W. M. Holt, “1.1 moore’s law: A path going forward,” in Proc. IEEE Int. Solid-State

Circuits Conf. (ISSCC), Jan. 2016, pp. 8–13.

[3] T. N. Theis and H.-. P. Wong, “The end of moore’s law: A new beginning for

information technology,” Computing in Science Engineering, vol. 19, no. 2, pp. 41–

50, Mar. 2017.

[4] K. Kuhn, CMOS and Beyond CMOS: Scaling Challenges. Elsevier, 2018.

[5] T. Ghani, M. Armstrong, C. Auth, M. Bost, P. Charvat, G. Glass, T. Hoffmann,

K. Johnson, C. Kenyon, J. Klaus et al., “A 90nm high volume manufacturing logic

technology featuring novel 45nm gate length strained silicon cmos transistors,” in

IEEE International Electron Devices Meeting 2003. IEEE, 2003, pp. 11–6.

[6] K. Mistry, C. Allen, C. Auth, B. Beattie, D. Bergstrom, M. Bost, M. Brazier,

M. Buehler, A. Cappellani, R. Chau et al., “A 45nm logic technology with high-

121

k+ metal gate transistors, strained silicon, 9 cu interconnect layers, 193nm dry pat-

terning, and 100% pb-free packaging,” in 2007 IEEE International Electron Devices

Meeting. IEEE, 2007, pp. 247–250.

[7] P. Packan, S. Akbar, M. Armstrong, D. Bergstrom, M. Brazier, H. Deshpande et al.,

“High performance 32nm logic technology featuring 2¡ sup¿ nd¡/sup¿ generation high-

k+ metal gate transistors,” in Electron Devices Meeting (IEDM), 2009 IEEE Inter-

national, 2009.

[8] J. Cartwright, “Intel enters the third dimension,” nature news, 2011.

[9] C. Auth, C. Allen, A. Blattner, D. Bergstrom, M. Brazier, M. Bost, M. Buehler,

V. Chikarmane, T. Ghani, T. Glassman et al., “A 22nm high performance and low-

power cmos technology featuring fully-depleted tri-gate transistors, self-aligned con-

tacts and high density mim capacitors,” in 2012 Symposium on VLSI Technology

(VLSIT). IEEE, 2012, pp. 131–132.

[10] S.-Y. Wu, C. Lin, M. Chiang, J. Liaw, J. Cheng, S. Yang, C. Tsai, P. Chen,

T. Miyashita, C. Chang et al., “A 7nm cmos platform technology featuring 4 th

generation finfet transistors with a 0.027 um 2 high density 6-t sram cell for mobile

soc applications,” in 2016 IEEE International Electron Devices Meeting (IEDM).

IEEE, 2016, pp. 2–6.

[11] ””, “Tsmc’s 5nm fin field-effect transistor (finfet) process technology,” 2019. [Online].

Available: https://www.tsmc.com/english/dedicatedFoundry/technology/5nm.htm

122

https://www.tsmc.com/english/dedicatedFoundry/technology/5nm.htm

[12] J. Hruska, “Tsmc completes 5nm node design, node in risk produc-

tion,” 2019. [Online]. Available: https://www.extremetech.com/computing/

289157-tsmc-completes-5nmnode-design-node-in-risk-production

[13] T. B. Hook, “Power and technology scaling into the 5 nm node with stacked

nanosheets,” Joule, vol. 2, pp. 1–4, 2018.

[14] I. Roadmap, “International technology roadmap for semiconductors 2.0 (itrs2. 0),”

Semiconductor Industry Association, 2015.

[15] Y.-M. Lin, A. Valdes-Garcia, S.-J. Han, D. B. Farmer, I. Meric, Y. Sun, Y. Wu,

C. Dimitrakopoulos, A. Grill, P. Avouris et al., “Wafer-scale graphene integrated

circuit,” Science, vol. 332, no. 6035, pp. 1294–1297, 2011.

[16] S.-J. Han, A. V. Garcia, S. Oida, K. A. Jenkins, and W. Haensch, “Graphene radio

frequency receiver integrated circuit,” Nature communications, vol. 5, 2014.

[17] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer

mos2 transistors,” Nature nanotechnology, vol. 6, pp. 147–150, 2011.

[18] S. B. Desai, S. R. Madhvapathy, A. B. Sachid, J. P. Llinas, Q. Wang, G. H. Ahn,

G. Pitner, M. J. Kim, J. Bokor, C. Hu, H.-S. P. Wong, and A. Javey, “Mos2 transis-

tors with 1-nanometer gate lengths,” Science, vol. 354, pp. 99–102, 2016.

[19] A. Nourbakhsh, A. Zubair, R. N. Sajjad, A. Tavakkoli KG, W. Chen, S. Fang,

X. Ling, J. Kong, M. S. Dresselhaus, E. Kaxiras et al., “Mos2 field-effect transistor

with sub-10 nm channel length,” Nano letters, vol. 16, no. 12, pp. 7798–7806, 2016.

123

https://www.extremetech.com/computing/289157-tsmc-completes-5nmnode-design-node-in-risk-production
https://www.extremetech.com/computing/289157-tsmc-completes-5nmnode-design-node-in-risk-production

[20] S. Wachter, D. K. Polyushkin, O. Bethge, and T. Mueller, “A microprocessor based

on a two-dimensional semiconductor,” Nature communications, vol. 8, 2017.

[21] D. J. Perello, S. H. Chae, S. Song, and Y. H. Lee, “High-performance n-type black

phosphorus transistors with type control via thickness and contact-metal engineer-

ing,” Nature communications, vol. 6, 2015.

[22] L. Li, M. Engel, D. B. Farmer, S. jen Han, and H.-S. P. Wong, “High-performance

p-type black phosphorus transistor with scandium contact,” ACS nano, vol. 10, pp.

4672–4677, 2016.

[23] T. Li, Z. Zhang, X. Li, M. Huang, S. Li, S. Li, and Y. Wu, “High field transport of

high performance black phosphorus transistors,” Applied Physics Letters, vol. 110,

p. 163507, 2017.

[24] H. Park, A. Afzali, S.-J. Han, G. S. Tulevski, A. D. Franklin, J. Tersoff, J. B. Hannon,

and W. Haensch, “High-density integration of carbon nanotubes via chemical self-

assembly,” Nature nanotechnology, vol. 7, pp. 787–791, 2012.

[25] B. Kumar, A. L. Falk, A. Afzali, G. S. Tulevski, S. Oida, S.-J. Han, and J. B. Hannon,

“Spatially selective, high-density placement of polyfluorene-sorted semiconducting

carbon nanotubes in organic solvents,” ACS nano, vol. 11, pp. 7697–7701, 2017.

[26] S.-J. Han, J. Tang, B. Kumar, A. Falk, D. Farmer, G. Tulevski, K. Jenkins, A. Afzali,

S. Oida, J. Ott, J. Hannon, and W. Haensch, “High-speed logic integrated circuits

with solution-processed self-assembled carbon nanotubes,” Nature nanotechnology,

vol. 12, pp. 861–865, 2017.

124

[27] W. Cao, J. Kang, D. Sarkar, W. Liu, and K. Banerjee, “2D semiconductor

fets—projections and design for sub-10 nm VLSI,” IEEE Transactions on Electron

Devices, vol. 62, no. 11, pp. 3459–3469, Nov. 2015.

[28] A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, “The electronic

properties of graphene,” Reviews of modern physics, vol. 81, no. 1, p. 109, 2009.

[29] Y. Xu, Z. Shi, X. Shi, K. Zhang, and H. Zhang, “Recent progress in black phosphorus

and black-phosphorus-analogue materials: properties, synthesis and applications,”

Nanoscale, vol. 11, no. 31, pp. 14 491–14 527, 2019.

[30] A. D. Franklin, M. Luisier, S.-J. Han, G. Tulevski, C. M. Breslin, L. Gignac, M. S.

Lundstrom, and W. Haensch, “Sub-10 nm carbon nanotube transistor,” Nano letters,

vol. 12, pp. 758–762, 2012.

[31] N. Patil, J. Deng, S. Mitra, and H.-. P. Wong, “Circuit-level performance benchmark-

ing and scalability analysis of carbon nanotube transistor circuits,” IEEE Transac-

tions on Nanotechnology, vol. 8, no. 1, pp. 37–45, Jan. 2009.

[32] L. Wei, D. J. Frank, L. Chang, and H.-. P. Wong, “A non-iterative compact model

for carbon nanotube fets incorporating source exhaustion effects,” in Proc. IEEE Int.

Electron Devices Meeting (IEDM), Dec. 2009, pp. 1–4.

[33] G. Hills, M. G. Bardon, G. Doornbos, D. Yakimets, P. Schuddinck, R. Baert, D. Jang,

L. Mattii, S. M. Y. Sherazi, D. Rodopoulos et al., “Understanding energy efficiency

benefits of carbon nanotube field-effect transistors for digital vlsi,” IEEE Transac-

tions on Nanotechnology, vol. 17, no. 6, pp. 1259–1269, 2018.

125

[34] T. F. Wu, H. Li, P. Huang, A. Rahimi, J. M. Rabaey, H.-. P. Wong, M. M. Shu-

laker, and S. Mitra, “Brain-inspired computing exploiting carbon nanotube fets and

resistive RAM: Hyperdimensional computing case study,” in Proc. IEEE Int. Solid -

State Circuits Conf. - (ISSCC), Feb. 2018, pp. 492–494.

[35] Q. Cao, S.-J. Han, J. Tersoff, A. D. Franklin, Y. Zhu, Z. Zhang, G. S. Tulevski,

J. Tang, and W. Haensch, “End-bonded contacts for carbon nanotube transistors

with low, size-independent resistance,” Science, vol. 350, pp. 68–72, 2015.

[36] G. Hills, C. Lau, A. Wright, S. Fuller, M. D. Bishop, T. Srimani, P. Kanhaiya, R. Ho,

A. Amer, Y. Stein, D. Murphy, Arvind, A. Chandrakasan, and M. M. Shulaker,

“Modern microprocessor built from complementary carbon nanotube transistors,”

Nature, vol. 572, pp. 595–602, 2019.

[37] P. S. Kanhaiya, C. Lau, G. Hills, M. Bishop, and M. M. Shulaker, “1 Kbit 6T SRAM

arrays in carbon nanotube FET CMOS,” in Proc. Symp. VLSI Technology, Jun.

2019, pp. T54–T55.

[38] M. M. Shulaker, G. Hills, R. S. Park, R. T. Howe, K. Saraswat, H.-S. P. Wong,

and S. Mitra, “Three-dimensional integration of nanotechnologies for computing and

data storage on a single chip,” Nature, vol. 547, no. 7661, p. 74, 2017.

[39] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy, “Low-power digital sig-

nal processing using approximate adders,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 32, no. 1, pp. 124–137, Jan. 2013.

126

[40] D. Monroe, “Neuromorphic computing gets ready for the (really) big time,” Com-

munications of the ACM, vol. 57, pp. 13–15, 2014.

[41] C. D. Schuman, T. E. Potok, R. M. Patton, J. D. Birdwell, M. E. Dean, G. S.

Rose, and J. S. Plank, “A survey of neuromorphic computing and neural networks

in hardware,” arXiv preprint arXiv:1705.06963, 2017.

[42] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” in Advances in neural information processing sys-

tems, 2012, pp. 1097–1105.

[43] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

in Proceedings of the IEEE conference on computer vision and pattern recognition,

2016, pp. 770–778.

[44] L. Deng, J. Li, J. Huang, K. Yao, D. Yu, F. Seide, M. Seltzer, G. Zweig, X. He,

J. Williams, Y. Gong, and A. Acero, “Recent advances in deep learning for speech

research at microsoft,” in Proc. Speech and Signal Processing 2013 IEEE Int. Conf.

Acoustics, May 2013, pp. 8604–8608.

[45] R. Sarikaya, G. E. Hinton, and A. Deoras, “Application of deep belief networks for

natural language understanding,” and Language Processing IEEE/ACM Transac-

tions on Audio, Speech, vol. 22, no. 4, pp. 778–784, Apr. 2014.

[46] Q. Cao, J. Tersoff, D. B. Farmer, Y. Zhu, and S.-J. Han, “Carbon nanotube transis-

tors scaled to a 40-nanometer footprint,” Science, vol. 356, no. 6345, pp. 1369–1372,

2017.

127

[47] A. D. Franklin and Z. Chen, “Length scaling of carbon nanotube transistors,” Nature

nanotechnology, vol. 5, no. 12, p. 858, 2010.

[48] C. Qiu, Z. Zhang, M. Xiao, Y. Yang, D. Zhong, and L.-M. Peng, “Scaling carbon

nanotube complementary transistors to 5-nm gate lengths,” Science, vol. 355, no.

6322, pp. 271–276, 2017.

[49] A. D. Franklin, S. O. Koswatta, D. B. Farmer, J. T. Smith, L. Gignac, C. M. Breslin,

S.-J. Han, G. S. Tulevski, H. Miyazoe, W. Haensch, and J. Tersoff, “Carbon nanotube

complementary wrap-gate transistors,” Nano letters, vol. 13, pp. 2490–2495, 2013.

[50] D. Zhong, Z. Zhang, L. Ding, J. Han, M. Xiao, J. Si, L. Xu, C. Qiu, and L.-M. Peng,

“Gigahertz integrated circuits based on carbon nanotube films,” Nature Electronics,

vol. 1, no. 1, p. 40, 2018.

[51] S. H. Jin, S. N. Dunham, J. Song, X. Xie, J.-h. Kim, C. Lu, A. Islam, F. Du, J. Kim,

J. Felts et al., “Using nanoscale thermocapillary flows to create arrays of purely semi-

conducting single-walled carbon nanotubes,” Nature nanotechnology, vol. 8, no. 5, p.

347, 2013.

[52] M. M. Shulaker, G. Hills, N. Patil, H. Wei, H.-Y. Chen, H.-S. P. Wong, and S. Mitra,

“Carbon nanotube computer,” Nature, vol. 501, no. 7468, p. 526, 2013.

[53] M. M. Shulaker, G. Hills, T. F. Wu, Z. Bao, H.-. P. Wong, and S. Mitra, “Efficient

metallic carbon nanotube removal for highly-scaled technologies,” in Proc. IEEE Int.

Electron Devices Meeting (IEDM), Dec. 2015, pp. 32.4.1–32.4.4.

128

[54] S. J. Kang, C. Kocabas, T. Ozel, M. Shim, N. Pimparkar, M. A. Alam, S. V. Rotkin,

and J. A. Rogers, “High-performance electronics using dense, perfectly aligned arrays

of single-walled carbon nanotubes,” Nature nanotechnology, vol. 2, no. 4, p. 230, 2007.

[55] S. W. Hong, T. Banks, and J. A. Rogers, “Improved density in aligned arrays of

single-walled carbon nanotubes by sequential chemical vapor deposition on quartz,”

Advanced materials, vol. 22, no. 16, pp. 1826–1830, 2010.

[56] N. Patil, A. Lin, J. Zhang, Hai Wei, K. Anderson, H.-. P. Wong, and S. Mitra,

“Vmr: VLSI-compatible metallic carbon nanotube removal for imperfection-immune

cascaded multi-stage digital logic circuits using carbon nanotube fets,” in Proc. IEEE

Int. Electron Devices Meeting (IEDM), Dec. 2009, pp. 1–4.

[57] G. S. Tulevski, A. D. Franklin, D. Frank, J. M. Lobez, Q. Cao, H. Park, A. Afzali,

S.-J. Han, J. B. Hannon, and W. Haensch, “Toward high-performance digital logic

technology with carbon nanotubes,” ACS nano, vol. 8, no. 9, pp. 8730–8745, 2014.

[58] G. Zhang, P. Qi, X. Wang, Y. Lu, X. Li, R. Tu, S. Bangsaruntip, D. Mann, L. Zhang,

and H. Dai, “Selective etching of metallic carbon nanotubes by gas-phase reaction,”

Science, vol. 314, no. 5801, pp. 974–977, 2006.

[59] S. Zhang, L. Kang, X. Wang, L. Tong, L. Yang, Z. Wang, K. Qi, S. Deng, Q. Li,

X. Bai et al., “Arrays of horizontal carbon nanotubes of controlled chirality grown

using designed catalysts,” Nature, vol. 543, no. 7644, p. 234, 2017.

129

[60] D.-m. Sun, M. Y. Timmermans, Y. Tian, A. G. Nasibulin, E. I. Kauppinen, S. Kishi-

moto, T. Mizutani, and Y. Ohno, “Flexible high-performance carbon nanotube inte-

grated circuits,” Nature nanotechnology, vol. 6, no. 3, p. 156, 2011.

[61] Z. Hu, J. M. M. L. Comeras, H. Park, J. Tang, A. Afzali, G. S. Tulevski, J. B.

Hannon, M. Liehr, and S.-J. Han, “Physically unclonable cryptographic primitives

using self-assembled carbon nanotubes,” Nature nanotechnology, vol. 11, no. 6, p.

559, 2016.

[62] W. A. Gaviria Rojas, J. J. McMorrow, M. L. Geier, Q. Tang, C. H. Kim, T. J. Marks,

and M. C. Hersam, “Solution-processed carbon nanotube true random number gen-

erator,” Nano letters, vol. 17, no. 8, pp. 4976–4981, 2017.

[63] T. Srimani, G. Hills, C. Lau, and M. Shulaker, “Monolithic three-dimensional imag-

ing system: Carbon nanotube computing circuitry integrated directly over silicon

imager,” in Proc. Symp. VLSI Technology, Jun. 2019, pp. T24–T25.

[64] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan,

B. L. Jackson, N. Imam, C. Guo, Y. Nakamura et al., “A million spiking-neuron

integrated circuit with a scalable communication network and interface,” Science,

vol. 345, no. 6197, pp. 668–673, 2014.

[65] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou,

P. Joshi, N. Imam, S. Jain et al., “Loihi: A neuromorphic manycore processor with

on-chip learning,” IEEE Micro, vol. 38, no. 1, pp. 82–99, 2018.

130

[66] S. K. Essera, P. A. Merollaa, J. V. Arthura, A. S. Cassidya, R. Appuswamya, A. An-

dreopoulosa, D. J. Berga, J. L. McKinstrya, T. Melanoa, D. R. Barcha et al., “Con-

volutional networks for fast energy-efficient neuromorphic computing,” Proc. Nat.

Acad. Sci. USA, vol. 113, no. 41, pp. 11 441–11 446, 2016.

[67] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. M. Hernández-

Lobato, G. Wei, and D. Brooks, “Minerva: Enabling low-power, highly-accurate deep

neural network accelerators,” in Proc. ACM/IEEE 43rd Annual Int. Symp. Computer

Architecture (ISCA), Jun. 2016, pp. 267–278.

[68] V. Sze, Y. Chen, T. Yang, and J. S. Emer, “Efficient processing of deep neural

networks: A tutorial and survey,” Proceedings of the IEEE, vol. 105, no. 12, pp.

2295–2329, Dec. 2017.

[69] C.-S. Lee and H.-S. P. Wong, “Stanford virtual-source carbon nanotube field-

effect transistors model,” Apr 2015. [Online]. Available: https://nanohub.org/

publications/42/2

[70] K. Sheikh and L. Wei, “Methodology to capture statistical effect of process imperfec-

tions on glitch suppression in CNFET circuits and to improve by using approximate

circuits,” in Proceedings of the 2018 on Great Lakes Symposium on VLSI, GLSVLSI

2018, Chicago, IL, USA, May 23-25, 2018, D. Chen, H. Homayoun, and B. Taskin,

Eds. ACM, 2018, pp. 27–32.

131

https://nanohub.org/publications/42/2
https://nanohub.org/publications/42/2

[71] K. Sheikh and L. Wei, “Evaluation of circuit performance degradation due to cnt pro-

cess imperfection,” in 2018 International Symposium on VLSI Technology, Systems

and Application (VLSI-TSA). IEEE, 2018, pp. 1–2.

[72] K. Sheikh and L. Wei, “Using approximate circuits to counter process imperfections

in cnfet based circuits,” in Proc. Automation and Test (VLSI-DAT) 2018 Int. Symp.

VLSI Design, Apr. 2018, pp. 1–4.

[73] K. Sheikh, S. Han, and L. Wei, “Cnfet with process imperfection: Impact on circuit-

level yield and device optimization,” IEEE Transactions on Circuits and Systems I:

Regular Papers, vol. 63, no. 12, pp. 2209–2221, Dec. 2016.

[74] G. J. Brady, A. J. Way, N. S. Safron, H. T. Evensen, P. Gopalan, and M. S. Arnold,

“Quasi-ballistic carbon nanotube array transistors with current density exceeding si

and gaas,” Science advances, vol. 2, p. e1601240, 2016.

[75] R. Levy, D. Blaauw, G. Braca, A. Dasgupta, A. Grinshpon, Chanhee Oh, B. Orshav,

S. Sirichotiyakul, and V. Zolotov, “Clarinet: a noise analysis tool for deep submicron

design,” in Proc. 37th Design Automation Conf, Jun. 2000, pp. 233–238.

[76] K. L. Shepard, “Design methodologies for noise in digital integrated circuits,” in

Proc. Design and Automation Conf.. 35th DAC. (Cat. No.98CH36175), Jun. 1998,

pp. 94–99.

[77] A. Khakifirooz, O. M. Nayfeh, and D. Antoniadis, “A simple semiempirical short-

channel MOSFET current–voltage model continuous across all regions of operation

132

and employing only physical parameters,” IEEE Transactions on Electron Devices,

vol. 56, no. 8, pp. 1674–1680, Aug. 2009.

[78] C.-. Lee, E. Pop, A. D. Franklin, W. Haensch, and H.-. P. Wong, “A compact virtual-

source model for carbon nanotube fets in the sub-10-nm regime—part i: Intrinsic

elements,” IEEE Transactions on Electron Devices, vol. 62, no. 9, pp. 3061–3069,

Sep. 2015.

[79] C. Lee, E. Pop, A. D. Franklin, W. Haensch, and H. P. Wong, “A compact virtual-

source model for carbon nanotube fets in the sub-10-nm regime—part ii: Extrinsic

elements, performance assessment, and design optimization,” IEEE Transactions on

Electron Devices, vol. 62, no. 9, pp. 3070–3078, Sep. 2015.

[80] S. J. Wind, J. Appenzeller, R. Martel, V. Derycke, and P. Avouris, “Vertical scaling

of carbon nanotube field-effect transistors using top gate electrodes,” Applied Physics

Letters, vol. 80, pp. 3817–3819, 2002.

[81] P. Heydari and M. Pedram, “Capacitive coupling noise in high-speed VLSI circuits,”

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

vol. 24, no. 3, pp. 478–488, Mar. 2005.

[82] M. Nanua and D. Blaauw, “Investigating crosstalk in sub-threshold circuits,” in Proc.

8th Int. Symp. Quality Electronic Design (ISQED’07), Mar. 2007, pp. 639–646.

[83] F. Dartu, N. Menezes, J. Qian, and L. T. Pillage, “A gate-delay model for high-speed

CMOS circuits,” in Proc. 31st Design Automation Conf, Jun. 1994, pp. 576–580.

133

[84] J. Qian, S. Pullela, and L. Pillage, “Modeling the ”effective capacitance” for the

RC interconnect of CMOS gates,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 13, no. 12, pp. 1526–1535, Dec. 1994.

[85] T. Han and D. A. Carlson, “Fast area-efficient VLSI adders,” in Proc. IEEE 8th

Symp. Computer Arithmetic (ARITH), May 1987, pp. 49–56.

[86] D. Harris and I. Sutherland, “Logical effort of carry propagate adders,” in The Thrity-

Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 1. IEEE,

2003, pp. 873–878.

[87] J. Han and M. Orshansky, “Approximate computing: An emerging paradigm for

energy-efficient design,” in 2013 18th IEEE European Test Symposium (ETS). IEEE,

2013, pp. 1–6.

[88] Q. Xu, T. Mytkowicz, and N. S. Kim, “Approximate computing: A survey,” IEEE

Design & Test, vol. 33, no. 1, pp. 8–22, 2015.

[89] S. T. Chakradhar and A. Raghunathan, “Best-effort computing: re-thinking parallel

software and hardware,” in Design Automation Conference. IEEE, 2010, pp. 865–

870.

[90] B. Moons, B. De Brabandere, L. Van Gool, and M. Verhelst, “Energy-efficient con-

vnets through approximate computing,” in 2016 IEEE Winter Conference on Appli-

cations of Computer Vision (WACV). IEEE, 2016, pp. 1–8.

134

[91] S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and A. Raghunathan, “Salsa:

systematic logic synthesis of approximate circuits,” in DAC Design Automation Con-

ference 2012. IEEE, 2012, pp. 796–801.

[92] A. B. Kahng, S. Kang, R. Kumar, and J. Sartori, “Slack redistribution for graceful

degradation under voltage overscaling,” in 2010 15th Asia and South Pacific Design

Automation Conference (ASP-DAC). IEEE, 2010, pp. 825–831.

[93] S. G. Ramasubramanian, S. Venkataramani, A. Parandhaman, and A. Raghunathan,

“Relax-and-retime: A methodology for energy-efficient recovery based design,” in

Proceedings of the 50th Annual Design Automation Conference. ACM, 2013, p. 111.

[94] M. Soeken, D. Große, A. Chandrasekharan, and R. Drechsler, “Bdd minimization for

approximate computing,” in 2016 21st Asia and South Pacific Design Automation

Conference (ASP-DAC). IEEE, 2016, pp. 474–479.

[95] K. Sheikh and L. Wei, “Methodology to generate approximate circuits to reduce

process induced degradation in cnfet based circuits,” in Proc. Int. Conf. Simulation

of Semiconductor Processes and Devices (SISPAD), Sep. 2018, pp. 360–363.

[96] R. E. Bryant, “Graph-based algorithms for boolean function manipulation,” Com-

puters, IEEE Transactions on, vol. 100, no. 8, pp. 677–691, 1986.

[97] F. Somenzi, “Cudd: Cu decision diagram package release 3.0. 0 (2015),” URL:

http://vlsi. colorado. edu/˜ fabio/CUDD.

[98] P. N. Whatmough, S. K. Lee, H. Lee, S. Rama, D. Brooks, and G.-Y. Wei, “14.3 a

28nm soc with a 1.2 ghz 568nj/prediction sparse deep-neural-network engine with¿

135

0.1 timing error rate tolerance for iot applications,” in 2017 IEEE International

Solid-State Circuits Conference (ISSCC). IEEE, 2017, pp. 242–243.

[99] P. Clarke, “Intel scales up self-learning neuromorphic comput-

ing,” 2019. [Online]. Available: https://www.eenewsanalog.com/news/

intel-scales-self-learning-neuromorphic-computing

[100] S. Pouyanfar, S. Sadiq, Y. Yan, H. Tian, Y. Tao, M. P. Reyes, M.-L. Shyu, S.-C.

Chen, and S. Iyengar, “A survey on deep learning: Algorithms, techniques, and

applications,” ACM Computing Surveys (CSUR), vol. 51, no. 5, p. 92, 2019.

[101] S. Koppula, L. Orosa, A. G. Yağlıkçı, R. Azizi, T. Shahroodi, K. Kanellopoulos, and

O. Mutlu, “Eden: Enabling energy-efficient, high-performance deep neural network

inference using approximate dram,” arXiv preprint arXiv:1910.05340, 2019.

[102] M. M. Lau and K. H. Lim, “Investigation of activation functions in deep belief

network,” in 2017 2nd international conference on control and robotics engineering

(ICCRE). IEEE, 2017, pp. 201–206.

[103] K. Sheikh and L. Wei, “Reducing impact of cnfet process imperfections on shape of

activation function by using connection pruning and approximate neuron circuit,” in

International Symposium on Quality Electronic Design (ISQED), 2020 (accepted).

[104] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

[105] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam,

Y. Nakamura, P. Datta, G.-J. Nam et al., “Truenorth: Design and tool flow of

136

https://www.eenewsanalog.com/news/intel-scales-self-learning-neuromorphic-computing
https://www.eenewsanalog.com/news/intel-scales-self-learning-neuromorphic-computing

a 65 mw 1 million neuron programmable neurosynaptic chip,” IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, vol. 34, no. 10, pp.

1537–1557, 2015.

[106] S. Das, B. U. Pedroni, P. Merolla, J. Arthur, A. S. Cassidy, B. L. Jackson, D. Modha,

G. Cauwenberghs, and K. Kreutz-Delgado, “Gibbs sampling with low-power spiking

digital neurons,” in 2015 IEEE International Symposium on Circuits and Systems

(ISCAS). IEEE, 2015, pp. 2704–2707.

[107] M. Tanaka and M. Okutomi, “A novel inference of a restricted boltzmann machine,”

in 2014 22nd International Conference on Pattern Recognition. IEEE, 2014, pp.

1526–1531.

[108] Z. Du, A. Lingamneni, Y. Chen, K. V. Palem, O. Temam, and C. Wu, “Leveraging the

error resilience of neural networks for designing highly energy efficient accelerators,”

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

vol. 34, no. 8, pp. 1223–1235, 2015.

[109] Y. Kim, Y. Zhang, and P. Li, “Energy efficient approximate arithmetic for error

resilient neuromorphic computing,” IEEE Transactions on Very Large Scale Integra-

tion (VLSI) Systems, vol. 23, no. 11, pp. 2733–2737, 2014.

[110] J. Zhang, K. Rangineni, Z. Ghodsi, and S. Garg, “Thundervolt: enabling aggressive

voltage underscaling and timing error resilience for energy efficient deep learning ac-

celerators,” in Proceedings of the 55th Annual Design Automation Conference. ACM,

2018, p. 19.

137

[111] Y. Kim, Y. Zhang, and P. Li, “An energy efficient approximate adder with carry

skip for error resilient neuromorphic vlsi systems,” in 2013 IEEE/ACM International

Conference on Computer-Aided Design (ICCAD). IEEE, 2013, pp. 130–137.

[112] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural

networks with pruning, trained quantization and huffman coding,” arXiv preprint

arXiv:1510.00149, 2015.

[113] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[114] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-

thy, A. Khosla, M. Bernstein et al., “Imagenet large scale visual recognition chal-

lenge,” International journal of computer vision, vol. 115, no. 3, pp. 211–252, 2015.

[115] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features from tiny

images,” Citeseer, Tech. Rep., 2009.

[116] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,

and T. Darrell, “Caffe: Convolutional architecture for fast feature embedding,” in

Proceedings of the 22nd ACM international conference on Multimedia. ACM, 2014,

pp. 675–678.

[117] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,

A. Davis, J. Dean, M. Devin et al., “Tensorflow: Large-scale machine learning on

heterogeneous systems, 2015,” Software available from tensorflow. org, vol. 1, no. 2,

2015.

138

Appendix A

Circuit-Level Yield Analysis with

Short CNT Imperfection

In Chapter 3, we discussed about the two types of process imperfections introduced from

the solution processed sorting and placement of CNTs: (1) the left-over metallic tubes in

the separation step resulting in “short CNTs”, always conducting even under the bias of

the “off state”; (2) the trenches not fully covered by the CNTs during the placement step

lead to “open CNTs”, where CNTs are missing or unable to cover the entire trench. Thus

the channel does not conduct current even under the bias of “on” state. In this chapter,

we provide a methodology that links the two process imperfections short and open CNTs

to the circuit-level yield. With the proposed methodology, we demonstrate that the open

CNTs (with high percentage > 30%) is of significant concern for the circuit-level yield and

the effect of short CNTs (with low percentage < 0.01%) on the circuit-level yield, can be

safely ignored.

139

For expressing circuit-level yield, we consider both the drive current offered by the

conducting branch, and the leakage current through the non-conducting branch. Since the

purpose is to provide first-order estimation of the circuit-level yield for process guidelines

and early technology assessment for digital applications, we will focus on the “on” and

“off” states rather than the detailed DC/transient behavior of the transistor or circuit.

We first calculate the on and off currents of every single CNFET with a given number

of semiconducting (Nnor), open (Nopen), and short (Nshort) CNTs. The currents of these

CNFETs are then combined to obtain the currents of pull-up and pull-down branches in a

CMOS circuit given the input. Finally, the probability of generating correct output under

this input is evaluated by enumerating all possible combination of Nnor, Nshort, Nopen in

each CNFET for single-stage and cascade circuits. Various contributions discussed in this

chapter are published in ref. [73].

A.1 On and Off currents of a single CNFET

We use an ideal CNFET with N CNTs under the gate as the baseline device, where “ideal”

means all of the N CNTs are semiconducting tubes (i.e. Nnor = N , Nopen = Nshort = 0).

For this baseline CNFET, the current at “on” state (where |VGS| = |VDS| = VDD) and

“off” state (where |VGS| = 0 and |VDS| = VDD) are calculated as Ion normal FET = N.Ion

and Ioff normal FET = N.Ioff , where Ion and Ioff are the on current and off current of a

single semiconducting CNT at on and off states, respectively. For the baseline reference,

we choose Ion/Ioff = 104 for the nominal devices based on practical design considerations

and state-of-the-art CNT technology [30]. VGS, VDS, and VDD are the gate to source, drain

140

to source, and supply voltages, respectively.

With process imperfections, a CNFET designed to have N tubes under the gate has a

combination of semiconducting, open and short CNTs, with Nshort + Nopen + Nnor = N .

We ignore charge-screening effect and diameter variation; thus, each semiconducting CNT

in a CNFET is assumed to have equal current (Ion during on state and Ioff during off

state). We also ignore the diameter and contact resistance differences between metallic and

semiconducting tubes, therefore, the short CNT carries the current equal to Ion, irrespective

of whether the CNFET is biased at on or off states. For the open CNT, the current is

considered zero for both on and off modes. Hence, the conducting capability of CNFET is

largely affected by the presence of open/short CNTs. For similar transistor geometry, the

currents for CNT based nFET and pFET can be considered to be the same. The on and

off currents for both nFET/pFET CNFETs are thus expressed as Ion FET = Nnor.Ion +

Nshort.Ion and Ioff FET = Nnor.Ioff +Nshort.Ion, respectively (Figure A.1).

A.2 Conducting/Non-Conducting Criteria for Pull-

Up/Pull-Down Branches in CMOS Circuits

CNFETs have symmetric bandstructure for nFETs and pFETs, thus n-type and p-type

CNFETs in an inverter can be sized with an equal number of CNTs for the same driving

current [36]. In CMOS circuits, the transistors are usually sized to achieve certain driving

capability equivalent to that of a reference inverter with Ninv tubes in both nFET and

pFET. For example, a 2-input NAND is sized to have nFETs with NN = 12 and pFETs

141

Semiconducting

Metallic (short)

Source

Drain

Missing CNT (open)

ON

Ion

Ion

I = 0

ICNFET [ON] = Nnor Ion + Nshort Ion
ICNFET [ON] = 5Ion

Nshort = 2
Nopen = 2
Nnor = 3

ICNFET [OFF] = Nnor Ioff + Nshort Ion
ICNFET [OFF] = 3Ioff + 2 Ion

Drain

Source

OFF

Ioff

Ion

I = 0

Figure A.1: CNFET with process imperfections with N = 7, Nnor = 3, Nopen = 2, Nshort

= 2. The current computation for device is shown for both on and off modes.

with NP = 6 for a reference inverter with Ninv = 6 for both nFET and pFET. Assuming

ideal transistors, Ninv is chosen to obtain the on and off currents (Ion inv and Ioff inv,

respectively) satisfying the speed, static power and noise margin requirements of the circuit.

Every single stage CMOS gate consists of pull-up (PU, for charging the output node

to VDD) and pull-down (PD, for pulling the output node to ground) branches. We first

consider the cases where the output is expected to be 1 with given input vectors.

For output = 1, the PU branch is the conducting branch responsible to provide a

current satisfying the speed requirement and PD branch is non-conducting with a leakage

current not exceeding the static power requirement. For determining whether the stage of

circuit with imperfect CNFETs is functional or not, the currents through PU (IPU) and

PD (IPD) branches of the circuit, are compared with currents of reference inverter (Ion inv,

142

out = 1 A = 0

CNFET

CNFET

Drain

Source

CNFET

IPU

IPD

out = 1 A = 0

CNFET

CNFET

Drain

Source

CNFET

Ion_inv

Ioff_inv

Actual Circuit Reference Inverter

Figure A.2: (Left) Actual inverter circuit with imperfect CNFET for input A = 0, expected
out = 1. (Right) Reference inverter circuit with ideal CNFET (all semiconducting CNTs)
for input A = 0, out = 1.

143

Ioff inv). For an inverter circuit with imperfect CNFETs, IPU and IPD are simply equal to

Ion FET or Ioff FET depending on the input vector, where Ion FET or Ioff FET are functions

of Nshort, Nopen, and Nnor of each transistor as described in Section A.1. Figure A.2 shows

the example of actual inverter circuit with imperfect CNFETs, and the reference inverter

with ideal CNFETs for the expected output = 1. Both inverters have Ninv = 6; however,

not all CNTs in the actual circuit are semiconducting tubes. For inverter circuit with

imperfect CNFETs to be qualified as “functional” while the expected output is 1, two

criteria must be satisfied:

1. Conducting criterion: The conducting branch (PU) has sufficient current to drive

the load and meet certain speed requirement. We use IPU > 0.7Ion inv in this analysis,

assuming a 30% speed design margin.

2. Non-conducting criterion: The non-conducting branch (PD) has a reasonably low

leakage current not to exceed the static power and noise margin requirement. We

use IPD < 100Ioff inv for devices with nominal Ion/Ioff =104 in this analysis.

A similar approach is used to determine whether the circuit is functional when the

output is expected to be 0. With output = 0, PU branch is non-conducting and PD

branch is conducting.

A similar treatment can be extended to the case of having multiple transistors in PU or

PD branch of the circuit. For such circuits again, each transistor is considered to contribute

either Ion FET or Ioff FET depending on the specific input vector. The total currents in

the PU and PD branches (IPU and IPD, respectively) are calculated using these on and off

144

currents from all the transistors in the branches according to the circuit configuration (i.e.

transistors in series or in parallel).

A.3 Circuit-level Pass Rate

We define a term “pass rate” as the probability of the circuit generating the correct output.

Criteria in previous section is used to determine whether the circuit output is considered

“correct” with given Nshort, Nopen, and Nnor of each CNFET. Pass rate is calculated by

summing the probabilities of all (Nshort, Nopen, Nnor) combinations that produce the cor-

rect output. It is expected that pass rate depends on process imperfection parameters

(PCNTopen and PCNTshort), as well as the circuit topology and the input vector.

We take the case of PU branch with expected output =1 as an example. For each

combination of Nshort, Nopen and Nnor, IPU is calculated. If IPU > 0.7Ion inv, PU branch is

considered a qualified conducting branch and the variable IFIc PU in Equation A.1 is set

to 1. Otherwise, IFIc PU is set to 0. PNopen,Nshort
in Equation A.1 refers to the probability

of Nopen, Nshort CNTs in CNFET provided by Equation 3.3. The overall probability of

PU to be conducting (PonPU) is calculated by summing the probability of (Nopen, Nshort)

combination which satisfies IPU > 0.7Ion inv.

PonPU =
N∑

Nopen=0

N−Nopen∑
Nshort=0

IFIc PU .PNopen,Nshort
(A.1)

The conducting probability (PonPD) for PD is defined in a similar manner. The same

method is used for finding non-conducting probability (PoffPU) for PU and non-conducting

145

probability (PoffPD) for PD with conditions of IPU < 100Ioff inv and IPD < 100Ioff inv,

respectively.

Both conducting and non-conducting criteria must be satisfied to qualify a stage as

functioning properly. Based on the input vector combination, the pass rate of expected

output being 0 or 1 is given by Equation A.2 and Equation A.3, respectively.

passrate(output = 0) = PoffPU .PonPD (A.2)

passrate(output = 1) = PonPU .PoffPD (A.3)

Figure A.3 shows the block diagram for the pass rate computation of single stage CMOS

circuits. The pass rate computation takes into account process parameters (PCNTshort,

PCNTopen) as well as the input vector combination (VEC) in addition to the circuit con-

figuration. Figure A.3 also shows the pass rate computation for single stage CMOS circuits

for expected out = 1. For expected out = 1, we expect PU to be conducting (ON) and

PD to be non-conducting (OFF). Thus, pass rate for expected out = 1 is calculated as

Equation A.3.

The pass rate thus gives a measure of functionality of a stage, for a particular set

of process imperfection parameters and circuit configuration under given input vectors.

This methodology can also be used to determine the requirements for the material process

quality in order to achieve target pass rate at the circuit level. The method of relating CNT

process parameters with conducting/non-conducting branches can be revised according to

specific processes of other channel materials, and the methodology can be extended for

146

PCNTshort

SINGLE STAGE

PCNTopen

VEC

pass rate

ON

OFF

out = 1

SINGLE STAGE

CNFET

CNFET
VEC

VEC

passrate(out= 1) =PonPU . PoffPD

Figure A.3: (Left) Block diagram shows pass rate computation of single stage CMOS
circuits incorporates process parameters (PCNTopen, PCNTshort) and input vector combi-
nation (VEC). (Right) Pass rate computation for single stage for expected output out = 1
following Equation A.3.

147

yield analysis of those materials as well. The acceptable circuit-level pass rate varies with

different error-resilient applications. For further analysis, we use 80% as the acceptable

pass rate as the reference.

A.4 Single Stage CMOS circuits

Pass rate of various commonly used CMOS circuit topologies are examined, including

NAND, NOR and mirror adder (MA). All circuits mentioned in Figure A.4 are sized to

have an equivalent driving capability as a reference inverter with Ninv = 6. For circuits

with multiple transistors in PU and PD branches, the circuit pass rates of these topologies

have a clear dependence on the input vectors, as illustrated in Figure A.4.

For most of the cases we discuss, the pass rate is dominated by the probability of having

a qualified conducting branch. Thus, the more number of parallel transistors are on and

the larger numbers of tubes in these transistors, the higher is the pass rate. With the same

driving capability, an inverter, with only one transistor in PU and PD branches, gives the

lower bound of the pass rate among all circuits and input.

Figure A.4 shows that 2-input and 3-input NAND gates achieve the best pass rates for

the input vector combination [00] and [000] respectively. With input of [00] and [000] for

2- and 3- input NAND gates, respectively, all pFETs in the PU path are on, boosting up

the drive current in the PU path, hence increasing the PonPU . With symmetric PU and PD

branches (Figure A.5), pass rate of MA is the same for vector combinations complement

to each other (e.g ABCin = [000] and [111]). Moreover, the pass rate for (!Cout) is the

148

0 6 12 18 24 30
PCNTopen [%]

0

20

40

60

80

100

pa
ss

 ra
te

 %

INV [PCNTshort = 0.1%]

A = 0
A = 1

0 6 12 18 24 30
PCNTopen [%]

0

20

40

60

80

100

pa
ss

 ra
te

 %

2-input NAND [PCNTshort = 0.1%]

AB = 00
AB = 01 or 10
AB = 11

0 6 12 18 24 30
PCNTopen [%]

0

20

40

60

80

100

pa
ss

 ra
te

 %

3-input NAND [PCNTshort = 0.1%]

ABC= 000
ABC = 001 or 010 or 100
ABC = 110 or 011 or 101
ABC = 111

0 6 12 18 24 30
PCNTopen [%]

0

20

40

60

80

100

pa
ss

 ra
te

 %

2-input NOR [PCNTshort = 0.1%]

AB = 00
AB = 01 or 10
AB = 11

0 6 12 18 24 30
PCNTopen [%]

0

20

40

60

80

100

pa
ss

 ra
te

 %

Mirror Adder (output = !Cout) [PCNTshort = 0.1%]

ABCin = 000 or 111
ABCin = 001 or 110
ABCin = 100 or 010 or 011 or 101

0 6 12 18 24 30
PCNTopen [%]

0

20

40

60

80

100

pa
ss

 ra
te

 %

Mirror Adder (output = !S) [PCNTshort = 0.1%]

ABCin = 000 or 111
ABCin = 001 or 110
ABCin = 100 or 010 or 011 or 101

(a) (b)

(c) (d)

(e) (f)

Figure A.4: Pass rate for single stage circuits for PCNTshort = 0.1% (a) Inverter, (b)
2-input NAND, (c) 3-input NAND, (d) 2-input NOR, (e) MA (output = !Cout), (f) MA
(output = !S). All other topologies are sized in accordance to the reference inverter (Ninv

= 6). The inverter shows the lowest pass rate compared to all other topologies.

149

best with ABCin = [000 or 111]. This is again due to more number of parallel transistors

that are on for these vector combinations. For the 2-input and 3-input NAND gates shown

in Figure A.4, the pass rate is the worst for the vectors having a single 0 in the vector

combination. This is because only one of the pFETs in PU path is on under such vector

combination. With input of [11] and [111] for 2- and 3- input NAND gates, respectively,

only one PD path is on, however, the size of the nFETs is larger than that of the pFETs,

hence the pass rate is higher than the cases with input of a single 0. For all the cases

examined, even at high PCNTshort (PCNTshort = 0.1%), an 80% pass rate can be achieved

with PCNTopen ≤ 13.5%.

A B B

A

A

B B A

Cin

A B

B A

!Cout

Cin

Cin

!S

Cin

B

A

VDD

VDD VDD

Cin

B

A

Mirror
Adder

Mirror
Adder

Mirror
Adder

Mirror
Adder

A0 B0 A2 B2 A3 B3 A1 B1

S0 S1 S2 S3

Cin Cout

(b) 4-bit Ripple Carry Mirror Adder (a) Mirror Adder

Figure A.5: (a) Mirror Adder schematic, (b) Block diagram of 4-bit RCA. Assume both
true and inverted inputs, available for 4-bit RCA.

150

A.5 Cascaded Stages

The pass rate for the cascaded circuits is computed by traversing from input to output, by

computing the pass rate after each stage. The pass rate after 1st stage is computed by cal-

culating the probability of 1st stage output to be 0 (defined as PR0
1) or 1 (defined as PR1

1).

The probability calculation is done using the single stage conducting/non-conducting cri-

teria described in Section A.3, assuming perfect input to stage 1. The pass rate after 2nd

stage is computed using two steps (Figure A.6). In the first step, the probability of 2nd

stage output to be 0 (defined as PR0
2) is calculated for two separate cases: (1) the output

of 1st stage (i.e. input of 2nd stage) is 0 with a probability of PR0
1 (the component of PR0

2

obtained from this case is represented as [PR0
2]0) and (2) the output of 1st stage is 1 with

a probability of PR1
1 (resulting in [PR0

2]1).

In the second step, the results from the two cases ([PR0
2]0 and [PR0

2]1) are summed up

to obtain the overall probability for 2nd stage output to 0. These two steps are repeated to

obtain the probability of 2nd stage output to be 1 (defined as PR1
2). In a similar manner,

the probability of output to be 0 or 1 for each subsequent stage is computed till the final

output is reached.

151

[PR2
0]0

[PR2
1]0

2nd stage PR1
0

[PR2
0]1

[PR2
1]1

2nd stage PR1
1

PR2
0

PR2
1

+

+

Probability of inputs
to 2nd stage

Probability of inputs
to 3rd stage

Figure A.6: Computation of pass rate for cascaded stages. The pass rate (probability)
computation for 2nd stage output (input to 3rd stage) is shown for expected 2nd stage
output to be 0 or 1.

A.6 Determine Process Requirement Based on Circuit-

Level Pass Rate Target

The requirements of material process quality (PCNTshort and PCNTopen) to achieve a

specific pass rate target can be determined using the same methodology, given the circuit

topology as well as the input vectors, if applicable.

The requirements of PCNTshort and PCNTopen to meet an 80% pass rate for different

number of stages of FO1 inverter chain is shown in Figure A.7. For a 4-stage inverter

chain, PCNTopen ≤ 2.5% is required with PCNTshort = 0.1% (Figure A.7 (a)).

Figure A.7 (b) shows the process requirements for Cout of different bits of RCA. It can

be seen from Figure A.7 (b), PCNTopen ≤ 5.6% for Cout of a 4-stage RCA is required to

achieve 80% pass rate with PCNTshort = 0.1%.

152

For the same number of stages or the same pass rate, an inverter chain has much tighter

process requirements compared to other circuits sized to have the same driving strength

at Ninv = 6. The pass rate is dominated by PCNTopen if PCNTshort is lower than 0.01%.

The benefit of further reducing PCNTshort below 0.01% is marginal.

1 2 3 4
No. of Stages

0

5

10

15

20

PC
N

T op
en

 [%
]

Inverter Chain [80% pass rate]
PCNTshort = 0.001%
PCNTshort = 0.01%
PCNTshort = 0.1%

1 2 3 4
No. of Stages

0

5

10

15

20

PC
N

T op
en

 [%
]

RCA [80% pass rate]
PCNTshort = 0.001%
PCNTshort = 0.01%
PCNTshort = 0.1%

50 60 70 80
pass rate [%]

0

2

4

6

8

10

12

PC
N

T op
en

 [%
]

4-stage inverter chain

PCNTshort = 0.001%
PCNTshort = 0.01%
PCNTshort = 0.1%

50 60 70 80
pass rate [%]

0

2

4

6

8

10

12

PC
N

T op
en

 [%
]

4-stage RCA

PCNTshort = 0.001%
PCNTshort = 0.01%
PCNTshort = 0.1%

(a) (b)

(c) (d)

Figure A.7: (a) Process requirements (PCNTopen, PCNTshort) to achieve an 80% pass rate
for FO1 inverter chain with Ninv=6 with different number of stages. (b) Process require-
ments (PCNTopen, PCNTshort) to achieve 80% pass rate for Cout of different numbers of
bits of RCA under worst case input.

153

Appendix B

Glitch Analysis for Additional

Approximate Circuits

In Chapter 4, we discussed that comparing with precise circuits, using approximate circuits

is an effective way to reduce the number of glitches exceeding glitch criteria due to process

imperfections. In this chapter, we provide glitch analysis for additional circuits, including

multiplier (4-bit Wallace Multiplier) circuit. We take the case of 4-bit Ripple Carry Adder

(RCA) and 4-bit Wallace Multiplier (WM) as reference. 4-bit Ripple Carry Adder (RCA)

is a simpler and small circuit (in total 14 internal/output nodes), which can help to easily

correlate the result to the circuit design. Additionally, we consider 4-bit Wallace Multi-

plier (WM), which would show the applicability of the methodology to slightly complex

circuits (> 50 internal/output nodes). Further, in this chapter, we will introduce different

approximate designs for 4-bit adder and 4-bit multiplier, which utilize the blocks in Fig-

ure B.1. This comes with a penalty of logic accuracy. However, the significant reduction

154

in the number of nodes failing glitch criteria justifies the logic accuracy degradation in

particular for high PCNTopen (> 10%). Moreover, as explained before, given the other

performance benefits such as delay, power, the improvement in glitch vulnerability to a

tolerable level enables the emerging technology to be used for circuit design targeting error

resilient applications. To account for the logic error in approximate designs, we define the

term %ErrorLogic in a standard way,

%ErrorLogic = mean

(∣∣∣∣Sapprox − Sorig

Sorig

∣∣∣∣ ∗ 100

)
(B.1)

where Sorig is the original sum/multiplier value based on input vector combination,

Sapprox is the sum/multiplier value computed based on output of the adder/multiplier.

The term ‘mean’ refers to the average over all possible input vector combination for the

4-bit adder/multiplier. Various contributions discussed in this chapter are published in ref.

[70].

B.1 4-bit CNFET RCA Precise/Approximate Circuits

We have constructed 2 approximate 4-bit adder circuits using combination of (MA, MA2

introduced in Figure B.1) and buffer circuits (Figure B.2). The idea of using MA2, buffer

circuits is taken from [39], which explains the advantage of using them over the precise MA

counterpart in terms of speed, power, area, with some compromise in logic accuracy. The

2 approximate adder circuits represented as [RCA (app-a), RCA (app-b)] differ in logic

accuracy and area (Figure B.2). The introduction of MA2 in place of MA replaces the two

155

A B B

A

A

B B A

Cin

A B

B A

!Cout

Cin

Cin

!S

Cin

B

A

VDD

VDD VDD

Cin

B

A

A B B

A

A

B B A

Cin
!Cout !S

VDD

VDD

MA MA2

(a) (b)

Figure B.1: (From Left to Right) (a) Precise Mirror Adder ‘MA’. (b) Approximate Mirror
Adder schematic ‘MA2’ taken from [39]. ‘MA2’ has the accurate circuitry for carry (!Cout),
however, the sum (!S) is approximated. Both circuits ‘MA’, ‘MA2’ would be represented
by their box symbol or by letters ‘MA’, ‘MA2’ for rest of this chapter.

156

MA2 MA

A0 A2 B2 A3 B3

S0 S2 S3

Cout

A1

S1

RCA (orig)

RCA (app-b)

MA MA MA

A1 B1 A2 B2 A3 B3

S1 S2 S3

Cout

A0

S0

RCA (app-a)

MA MA MA MA

A0 B0 A1 B1 A2 B2 A3 B3

Cin

S0 S1 S2 S3

Cout

CKT %ErrorLogic Norm. Area

RCA (orig) 0% 1X

RCA (app-a) 9.02% 0.78X

RCA (app-b) 17.45% 0.39X

Figure B.2: Shows the schematic of 4-bit precise Ripple Carry adder ‘RCA (orig)’, 4-bit
approximate adders ‘RCA (app-a)’, ‘RCA (app-b)’. %ErrorLogic is computed over all the
possible 512 input vectors. The area of RCA (app-a) and RCA (app-b) are 0.78X and
0.39X that of the precise adder RCA (orig) respectively.

157

stacked branches by single transistor in each PU/PD at sum (!S) node (Figure B.1). This

helps to improve glitch tolerance for a couple of reasons. 1) The single transistor provides

required driving current with a smaller size instead of stacked transistors in MA which

need increased sizes to provide the drive current, more number of transistors connected to

node !S, and thus suffers from increased coupling capacitor at the node !S in comparison

to MA2. 2) In MA2, there are fewer transistors connected to each input A, B, Cin in

comparison to MA; this reduces the number of connections and thus results in a reduction

in coupling capacitor for nodes driving each of the input A, B, Cin of MA2. So, both the

node !S and nodes driving A, B, Cin benefits from reduced coupling capacitor and thus

become more glitch tolerant for MA2 in place of MA. Similar explanation can be applied

for buffer circuits where both carry (!Cout) and !S are approximated, and the benefits are

even more in terms of glitch tolerance. An additional benefit with approximate circuits

is the reduced number of internal/output nodes. In comparison to 14 internal/output

nodes of precise RCA (orig), approximate circuits RCA (app-a), RCA (app-b) have 13, 11

internal/output nodes, respectively.

A0 A1 A2 A3

B0 B1 B2 B3
Partial Products

Intermediate Addition #1

Intermediate Addition #2

Final Addition

S0 S1 S2 S3 S4 S5 S6 S7

Figure B.3: Schematic shows different stages of precise 4-bit Wallace Multiplier.

158

A0 A1 A2 A3

B0 B1 B2 B3

S0 S1 S2 S3 S4 S5 S6 S7

A0 A1 A2 A3

B0 B1 B2 B3

S0 S1 S2 S3 S4 S5 S6 S7

A0 A1 A2 A3

B0 B1 B2 B3

S0 S1 S2 S3 S4 S5 S6 S7

WM (orig) WM (app-a) WM (app-b)

CKT %ErrorLogic Norm.Area

WM (orig) 0% 1X
WM (app-a) 8.78% 0.90X
WM (app-b) 21.42% 0.69X

Figure B.4: (Starting from left) shows the schematic of 4-bit precise Wallace multiplier
‘WM (orig)’, 4-bit approximate multiplier ‘WM (app-a)’, ‘WM (app-b)’.%ErrorLogic is
computed over all the possible 256 input vectors. The area of WM (app-a) and WM
(app-b) are 0.90X and 0.69X that of the precise multiplier WM (orig) respectively.

B.2 4-bit CNFET Wallace Multiplier Precise/Approximate

Circuits

Wallace Multiplier (WM) is commonly used for the purpose of fast multiplication. Fig-

ure B.3) shows the schematic of precise 4-bit Wallace Multiplier. The partial products

in the first stage are followed by intermediate addition stages consisting of full adder and

half adder blocks, followed by a 4-bit adder in the final stage. The full adder blocks can

159

be approximated using MA2, buffer circuits (as discussed in the previous section). We

have proposed two approximate 4-bit multiplier circuits using MA2, buffer circuits for full

adder blocks (Figure B.4). The two approximate multiplier circuits represented as [WM

(app-a), WM (app-b)] differ in logic accuracy and area (Figure B.4)). Gray dots in ‘WM

(app-a)’ and ‘WM (app-b)’ (Figure B.4)) represent the approximate sum (!S)/carry (!Cout)

signals from MA2 or buffer circuits. White dots represent approximate sum signal of half

adder where NAND2/NOR2 gates are used instead of XOR2 gates (this simplification also

reduces the number of nodes). Some of the partial products are not required as part of

the approximation approach and hence omitted in ‘WM (app-b)’. As explained before, the

overall effect of the simplifications in approximate circuits would be the enhancement of

glitch tolerance at some nodes and also the reduction in the number of nodes. In compar-

ison to 56 internal/output nodes of precise WM (orig), approximate circuits WM (app-a),

WM (app-b) have 52, 48 internal/output nodes respectively.

B.3 RESULTS AND DISCUSSION

B.3.1 Fail Nodes in the whole Circuit

MeanFailNodesCKT provides average estimate of total number of failing nodes of a cir-

cuit at given PCNTopen. Figure B.5(a) show that MeanFailNodesCKT for precise and all

approximate 4-bit RCA is quite small (< 2) for PCNTopen ≤ 10%. However, for higher

PCNTopen range, MeanFailNodesCKT for RCA (orig) cannot be ignored. At PCNTopen

= 40%, MeanFailNodesCKT for RCA (orig) becomes a significant percentage (70.2%)

160

of its total number of nodes (9.8 out of 14 nodes). However, with RCA (app-b) the

MeanFailNodesCKT at PCNTopen = 40% is lower by 59.4% down to 4.0 nodes in compar-

ison to precise RCA (orig). Similarly in Figure B.5(b), approximate 4-bit multiplier WM

(app-b) has significantly lower MeanFailNodesCKT over its precise WM (orig) counterpart

for PCNTopen ≥ 5%. At PCNTopen = 20%, with WM (app-b) the MeanFailNodesCKT is

only 5.6 compared with 20.6 of WM (orig) (lower by 72.7%) (Figure B.5(b)). For a circuit

with about 50 nodes, that is a significant reduction in the number of vulnerable nodes,

hence a prominent improvement in glitch tolerance. The reasons for the improvement in

glitch tolerance in both RCA (app-b) and WM (app-b) in comparison to their precise

counterparts are the reduction in number of nodes and improvement in glitch tolerance of

some of the nodes, as explained before.

0 10 20 30 40
PCNTopen [%]

0

2

4

6

8

10

M
ea

n
Fa

il
N

od
es

C
K

T

RCA (orig)
RCA (app-a)
RCA (app-b)

-59.4%
(-5.8 nodes)

0 10 20 30 40
PCNTopen [%]

0

5

10

15

20

25

30

35

40

M
ea

n
Fa

il
N

od
es

C
K

T

WM (orig)
WM (app-a)
WM (app-b)

-72.7%
(-14.9 nodes)

(a) (b)

Figure B.5: MeanFailNodesCKT for different precise and approximate circuits of (a) 4-bit
adder, (b) 4-bit multiplier. Using approximate circuits significantly reduces the number of
vulnerable nodes which fail the glitch criteria.

161

0 10 20 30 40
PCNTopen [%]

0

2

4

6

8

10

M
ea

n
Fa

il
N

od
es

P
A

TH

RCA (orig)
S0
S1
S2
S3 (a)

0 10 20 30 40
PCNTopen [%]

0

5

10

15

20

25

30

35

M
ea

n
Fa

il
N

od
es

P
A

TH

WM (orig)
S2
S3
S6 (c)

0 10 20 30 40
PCNTopen [%]

0

2

4

6

8

10

M
ea

n
Fa

il
N

od
es

P
A

TH

RCA (app-b)
S0
S1
S2
S3

-44.6%
(-3.1 nodes)

0 10 20 30 40
PCNTopen [%]

0

5

10

15

20

25

30

35

M
ea

n
Fa

il
N

od
es

P
A

TH

WM (app-b)

S2
S3
S6

 -32.0%
(-10.4 nodes)

(b)

(d)

Figure B.6: MeanFailNodesPATH for (a) RCA (orig). (b) RCA (app-b), (c) WM
(orig), (d) WM (app-b). Black dotted circle indicate the critical output (worst
MeanFailNodesPATH) at PCNTopen =40%. Highlighted blue line and blue dotted cir-
cle indicate that using WM (app-b) instead of WM (orig), the requirement of PCNTopen
is largely reduced to achieve MeanFailNodesPATH below certain target value (5 in this
case).

162

B.3.2 Fail Nodes along a path

Figure B.6(a), (b) show that MeanFailNodesPATH for both precise and approximate 4-bit

RCA is negligible for outputs S0, S1, S2, S3 for PCNTopen ≤ 10%. S3 with highest number

of internal nodes connected to its path from the primary inputs, has the expected worst

MeanFailNodesPATH over the entire PCNTopen range for both RCA (orig) and RCA

(app-b) (Figure B.6 (a), (b)). As towards the most significant bit, S3 is considered as a

critical output for both RCA (orig) and RCA (app-b). At PCNTopen = 40%, using RCA

(app-b) MeanFailNodesPATH of S3 is only 3.8 compared with 7 of RCA (orig) (lower

by 44.6%). For both WM (orig) and WM (app-b), S6 is the critical output with highest

MeanFailNodesPATH over the entire PCNTopen range. At PCNTopen = 40%, S6 of WM

(app-b) is 22.1 compared with 32.5 of WM (orig) (lower by 32.0%) (Figure B.6 (c), (d)).

Assuming a design target of MeanFailNodesPATH < 5 is set for this application, we can

observe that using WM (app-b) can largely relax the requirement of PCNTopen (from ∼

5% to ∼ 20%) in comparison to WM (orig) (Figure B.6 (c), (d)).

B.3.3 Choosing Optimum Circuit

The improvement of glitch tolerance, and imperfect process induced failure in general,

by using approximate circuits, comes with the penalty of logic inaccuracy. Tradeoff

between the two must be considered. Figure B.7(a) show that at PCNTopen = 40%,

MeanFailNodesCKT with RCA (app-b) reduces by 5.8 nodes (59.4%) in comparison to its

precise counterpart RCA (orig) with a penalty of logic error 17%. However, this reduction

of 5.8 nodes is significant considering the fact that RCA (orig) in total has only 14 inter-

163

nal/output nodes. Similar trend is observed in Figure B.7(b), where MeanFailNodesPATH

of S3 with RCA (app-b) are reduced by 44.6% at PCNTopen = 40% in comparison to RCA

(orig). In comparison to RCA (app-b), RCA (app-a) has lesser logic error of 9% but the

reduction in MeanFailNodesCKT and MeanFailNodesPATH of S3 is only 1.1 and 0.2

nodes respectively compared to RCA (orig) at PCNTopen = 40%. Hence, RCA (app-b)

is considered as a better option at PCNTopen = 40%. Figure B.7(c) show that in com-

parison to WM (orig) MeanFailNodesCKT with WM (app-b) is reduced by 14.9 nodes

and 13.6 nodes at PCNTopen = 20%/PCNTopen = 40% respectively, with a logic error

of 21%. Figure B.7(d) show a similar trend for MeanFailNodesPATH for S6, wherein

using WM (app-b) reduces the MeanFailNodesPATH by 13.1 nodes and 10.4 nodes at

PCNTopen = 20%/PCNTopen = 40% respectively. With WM (app-a), the reduction in

MeanFailNodesCKT in comparison to WM (orig) is 3.9 nodes and 4.6 nodes at PCNTopen

= 20%/PCNTopen = 40% respectively (Figure B.7(c)), which is much lesser compared to

improvement seen with WM (app-b). So, for applications where we want to reduce logic

error below 10%, WM (app-a) will be considered in place of WM (app-b). However, for

error resilient applications, WM (app-b) will be the optimum choice.

164

0 5 10 15 20 25
ErrorLogic (%)

2

4

6

8

10

12

M
ea

n
Fa

il
N

od
e C

K
T

PCNTopen = 20%
PCNTopen = 40%

-59.4%
(-5.8 nodes)

-62.2%
(-2.44 nodes)

RCA (orig)

RCA (app-a)

RCA (app-b)

0 5 10 15 20 25
ErrorLogic (%)

2

4

6

8

10

M
ea

n
Fa

il
N

od
e P

A
TH

PCNTopen = 20%
PCNTopen = 40%

-44.6%
(-3.1 nodes)

RCA (orig)

RCA (app-a)

RCA (app-b)

S3

0 5 10 15 20 25 30
ErrorLogic (%)

5

10

15

20

25

30

35

40

45

M
ea

n
Fa

il
N

od
e C

K
T

PCNTopen = 20%
PCNTopen = 40%

-37.0%
(-13.6 nodes)

-72.7%
(-14.9 nodes)

WM (orig)

WM (app-a)

WM (app-b)

0 5 10 15 20 25 30
ErrorLogic (%)

5

10

15

20

25

30

35

40

M
ea

n
Fa

il
N

od
e P

A
TH

PCNTopen = 20%
PCNTopen = 40%

-32.0%
(-10.4 nodes)

-70.1%
(-13.1 nodes)

WM (orig)

WM (app-a)

WM (app-b)

S6

(a)

(c) (d)

(b)

Figure B.7: Plot for 4-bit adder between (a) MeanFailNodesCKT and %ErrorLogic, (b)
MeanFailNodesPATH for S3 and %ErrorLogic. Plot for 4-bit multiplier between (c)
MeanFailNodesCKT and %ErrorLogic, (d) MeanFailNodesPATH for S6 and %ErrorLogic.

165

Appendix C

Framework for CNFET Monte Carlo

Seed Generation

CNFET Netlist
Template Generation

CNFET Netlist
Seed Generation

PCNTopen

numSeed

circuit.txt

circuit_si.txt

circuit_seed0.sp
circuit_seed1.sp

Netlist_Conv_soi12soi_to_vscnfet_cell.pl
Netlist_Subckt_spcParam_conv.pl
Netlist_MC_spcParam_conv.pl

Netlist_MC_popenSeed_gen.pl

Figure C.1: (a) Steps (along with list of codes) for generation of multiple copies of CNFET
based netlist (each acting as seed/sample for Monte Carlo run).

166

In Figure C.1, we provide further details of the framework (discussed briefly in sec-

tion 3.5) for CNFET based Monte Carlo Seed generation. As discussed before, our simula-

tion framework (Figure 3.5) utilizes existing Si based library for the schematic generation

in Cadence Virtuoso, followed by generating Si based netlist (circuit si.txt) with con-

nectivity information. The framework (Figure C.1) utilizes connectivity information in

circuit si.txt, converts it into CNFET based netlist (circuit.txt), followed by generation

of multiple copies (each acting as seed/sample for Monte Carlo run) of circuit.txt, by as-

signing values from SpaceF ile corresponding to given PCNTopen. Figure C.2(a) provides

the set of commands (utilizing the codes listed in Figure C.1) for generation of CNFET

based Monte Carlo seeds.

167

 perl Netlist_Conv_soi12soi_to_vscnfet_cell.pl -netlistFile TmpFiles/circuit_si.txt
 -cellFile TmpFiles/circuit_cell.txt > TmpFiles/circuit_SPACE.txt

 perl Netlist_Subckt_spcParam_conv.pl -netlistFile TmpFiles/circuit_SPACE.txt
 -cellFile TmpFiles/circuit_cell.txt > TmpFiles/circuit_spc.txt

 perl Netlist_MC_spcParam_conv.pl -inFile TmpFiles/circuit_spc.txt
 cat VSCNFET_HeaderFile.txt TmpFiles/circuit_spc.txt > TmpFiles/circuit_post_spc.txt
 mv TmpFiles/circuit_post_spc.txt circuit.txt

 perl Netlist_MC_popenSeed_gen.pl -inFile circuit.txt -spcDir spaceFiles
 -poFile dir_popen.txt -runDir . -numseed 50

circuit-si.txt

VSCNFET_Header.txt

dir_popen.txt

spaceFiles

TmpFiles

Silicon (Si) based circuit netlist

File containing list of parameter values used for VSCNFET model

File containing list of PCNTopen

Directory containing spaceFiles

Directory for temporary files generated

(a)

(b)

Figure C.2: (a) Set of commands for generation of multiple copies of CNFET based netlist
(each acting as seed/sample for Monte Carlo run) (b) Description of files/directories re-
ferred in (a).

168

C.1 Codes for CNFET Monte Carlo Seed Generation

##

Netlist_Conv_soi12soi_to_vscnfet_cell.pl

##

Usage text

$USAGE = "\n";

$USAGE .= "Usage:Netlist_Conv_soi12soi_to_vscnfet_cell.pl -netlistFile <NETLISTFILE>\n";

$USAGE .= " -cellFile <CELLFILE>\n";

Get switch information

ParseArgs();

my %num_xtor;

$cnfet_param = "+Lg=Lg Lc=Lc Lext=Lext Hg=Hg Geomod=Geomod Vfb=Vfbp d=Dia\n";

$cnfet_param .= "+SDTmod=SDTmod BTBTmod=BTBTmod Rcmod=Rcmod Rs0=Rs0";

CreateDictNumXtor();

open(FNET, "$netlistFile") or die "Cannot open $netlistFile";

while($line_net = <FNET>)

{

chop($line_net);

Modify FET description

if ($line_net =~ /\s*xt([0-9].*)\s+(\S+.*)d_([a-z]*)\s+l=(\S+)\s+w=(\S+).*/)

{

$inst = $1; $ports4 = $2; $model = $3; $len = $4; $width = $5;

if($ports4 =~ /\s*(\S+.*)\s+0/)

{

$ports3 = $1;

}

if ($model eq ’nfet’)

{

print "xmn$inst $ports3 vscnfet_1_0_1 FETtype=1 W=$width s=SPACE\n$cnfet_param\n";

} elsif ($model eq ’pfet’) {

print "xmp$inst $ports3 vscnfet_1_0_1 FETtype=-1 W=$width s=SPACE\n$cnfet_param\n";

}

}

169

Modify Instance description

elsif ($line_net =~ /\s*x[ig](\S+)\s+(.*)\s+(\S+)\s*$/)

{

$inst = $1; $ports = $2; $cell = $3;

my $numXtor = GetNumXtorPerCell($cell);

my $spaceExpr = GetSpaceParamlist($numXtor);

print "xi$inst $ports $cell $spaceExpr\n";

}

Modify subckt description

elsif ($line_net =~ /\s*.subckt\s+(\S+)\s+(.*)\s*$/)

{

$cell = $1; $ports = $2;

my $numXtor = GetNumXtorPerCell($cell);

my $spaceExpr = GetSpacelistForSubckt($numXtor);

print ".subckt $cell $ports $spaceExpr\n";

}

else

{

print "$line_net\n";

}

}

close FNET;

Parse Args

sub GetSpacelistForSubckt()

{

my $numXtor = $_[0];

my $spaceVar = 1; # Initialize (spc1)

my $spaceExpr = ’’;

while ($spaceVar < $numXtor)

{

$spacetemp = "spc${spaceVar}=’s’";

$spaceExpr = $spaceExpr . $spacetemp . ’ ’;

$spaceVar++;

}

$spacetemp = "spc${spaceVar}=’s’";

$spaceExpr = $spaceExpr . $spacetemp;

return $spaceExpr;

170

}

sub GetSpaceParamlist()

{

my $numXtor = $_[0];

my $spaceVar = 1; # Initialize (spc1)

my $spaceExpr = ’’;

while ($spaceVar < $numXtor)

{

$spacetemp = "spc${spaceVar}=SPACE";

$spaceExpr = $spaceExpr . $spacetemp . ’ ’;

$spaceVar++;

}

$spacetemp = "spc${spaceVar}=SPACE";

$spaceExpr = $spaceExpr . $spacetemp;

return $spaceExpr;

}

sub GetNumXtorPerCell()

{

my $cell = $_[0]; my $numXtor;

open(FNET_cell, "$cellFile") or die "Cannot open $cellFile";

while(my $line_cell = <FNET_cell>)

{

chop($line_cell);

if ($line_cell =~ /\s*${cell}\s*:\s*(\S+)\s*$/)

{

$numXtor = $1;

return $numXtor;

}

}

close FNET_cell;

}

sub CreateDictNumXtor()

{

my $num_xtor_cell = 0;

my $flag_cell = 0; # $flag_cell = 1 when inside the subckt

my $num_xtor_inst = 0;

my $inst;

open(FNET_local, "$netlistFile") or die "Cannot open $netlistFile";

171

while(my $line_net = <FNET_local>)

{

chop($line_net);

if ($line_net =~ /\s*\.subckt\s+(\S+)\s+.*/)

{

$curr_cell = $1; $flag_cell = 1;

}

if ($line_net =~ /\s*\.ends\s+${curr_cell}.*/)

{

$num_xtor_cell = $num_xtor_cell + $num_xtor_inst;

$num_xtor{$curr_cell} = $num_xtor_cell;

$flag_cell = 0;

$num_xtor_cell = 0;

$num_xtor_inst = 0;

}

if (($flag_cell == 1) && ($line_net =~ /\s*xt[0-9].*fet.*/))

{

$num_xtor_cell++;

}

if (($flag_cell == 1) && ($line_net =~ /\s*xi[0-9].*\s+(\S+)\s*$/))

{

$inst = $1;

$num_xtor_inst = $num_xtor_inst + $num_xtor{$inst};

}

}

close FNET_local;

}

sub ParseArgs

{ local $arg;

while (defined($arg = shift(@ARGV)))

{

if ($arg eq "-h")

{ print("$USAGE\n");

exit 1;

}

elsif ($arg eq "-netlistFile")

{ $netlistFile= shift(@ARGV);

}

172

elsif ($arg eq "-cellFile")

{ $cellFile= shift(@ARGV);

}

}

}

##

Netlist_Subckt_spcParam_conv.pl

##

Usage text

$USAGE = "\n";

$USAGE .= "Usage:Netlist_Subckt_spcParam_conv.pl -netlistFile <NETLISTFILE>";

$USAGE .= " -cellFile <CELLFILE>\n";

Get switch information

ParseArgs();

my $in_subckt = 0; # Switch for denoting line with subckt

my $cell;

my $spaceParCount = 1;

my @newSpaceList = qw//;

open(FNET, "$netlistFile") or die "Cannot open $netlistFile";

while($line_net = <FNET>)

{

chop($line_net);

if ($in_subckt == 1) {

print "$cell\n";

if ($line_net =~ /(\s*xm.*)\s+(s=SPACE)\s*$/) {

my $exprBeforeSpace = $1; my $spaceExpr = $2;

$spaceExpr =~ s/SPACE/spc${spaceParCount}/g;

$spaceParCount++;

print "$exprBeforeSpace $spaceExpr\n";

} elsif ($line_net =~ /(\s*xi.*)\s+(\S+)\s+(spc1=.*)$/) {

my $exprBeforeCurrCell = $1; my $currCell = $2; my $spaceList = $3;

my $numXtor = GetNumXtorPerCell($currCell);

my @spaceArray = split /\s+/, $spaceList;

foreach (@spaceArray) {

my $currSpace = $_;

173

my $newcurrSpace = $currSpace;

$newcurrSpace =~ s/SPACE/spc${spaceParCount}/g;

push @newSpaceList, $newcurrSpace;

print "$newcurrSpace\n";

$spaceParCount++;

}

my $exprAfterCurrCell = GetSpacelistInsideSubckt(@newSpaceList);

print "$exprBeforeCurrCell $currCell $exprAfterCurrCell\n";

@newSpaceList = qw//;

} else {

print "$line_net\n";

}

} else {

print "$line_net\n";

}

if ($line_net =~ /\s*.subckt\s+(\S+).*$/)

{

$cell = $1;

$in_subckt = 1;

}

if ($line_net =~ /\s*.ends\s+($cell).*$/)

{

$in_subckt = 0;

$spaceParCount = 1;

}

print "$in_subckt\n";

}

close FNET;

Parse Args

sub GetSpacelistInsideSubckt()

{

my @newSpaceList = @_;

my $spaceExpr = ’’;

print "$newSpaceList[0] $newSpaceList[1]\n";

my $spaceVar = 0;

foreach (@newSpaceList) {

$spaceExpr = $spaceExpr . $newSpaceList[$spaceVar] . ’ ’;

174

$spaceVar++;

}

return $spaceExpr;

}

sub GetNumXtorPerCell()

{

my $cell = $_[0]; my $numXtor;

open(FNET_cell, "$cellFile") or die "Cannot open $cellFile";

while(my $line_cell = <FNET_cell>)

{

chop($line_cell);

if ($line_cell =~ /\s*${cell}\s*:\s*(\S+)\s*$/)

{

$numXtor = $1;

return $numXtor;

}

}

close FNET_cell;

}

sub ParseArgs

{ local $arg;

while (defined($arg = shift(@ARGV)))

{

if ($arg eq "-h")

{ print("$USAGE\n");

exit 1;

}

elsif ($arg eq "-netlistFile")

{ $netlistFile= shift(@ARGV);

}

elsif ($arg eq "-cellFile")

{ $cellFile= shift(@ARGV);

}

}

}

##

Netlist_MC_spcParam_conv.pl

175

##

Usage text

$USAGE = "\n";

$USAGE .= "Usage:Netlist_MC_spcParam_conv.pl -inFile <INFILE>\n";

$USAGE .= "\n";

Get switch information

ParseArgs();

my $numspace = ‘grep -o SPACE ${inFile} | wc -l‘;

print $numspace;

my $i_var = 1;

while ($i_var <= $numspace)

{

$bash_cmd = "perl -0777 -p -i -e \"s/SPACE/s${i_var}/\" ${inFile}";

system(${bash_cmd});

$i_var++;

}

Parse Args

sub ParseArgs

{ local $arg;

while (defined($arg = shift(@ARGV)))

{

if ($arg eq "-h")

{ print("$USAGE\n");

exit 1;

}

elsif ($arg eq "-inFile")

{ $inFile= shift(@ARGV);

}

}

}

##

Netlist_MC_popenSeed_gen.pl

##

Usage text

$USAGE = "\n";

$USAGE .= "Usage:Netlist_MC_popenSeed_gen.pl -inFile <INFILE> -spcDir <SPCDIR>";

176

$USAGE .= "-poFile <POFILE> -runDir <RUNDIR> -numseed <NUMSEED>\n";

$USAGE .= "\n";

Get switch information

ParseArgs();

#my $numseed = 1;

my $fstLineNo = 1;

my $lstLineNo = ‘grep -o ’=s[0-9]\\+’ ${inFile} | wc -l‘;

$inFile =~ /(\S+).txt/;

my $outFilePrefix = $1;

print "${outFilePrefix}\n";

open(FPO, "$poFile") or die "Cannot open $poFile";

while($line = <FPO>)

{

chop($line);

my $spaceFile = "${spcDir}/CNFET_MC_RandomSpace_100000_PCNTopen_${line}pct.txt";

print "${spaceFile}\n";

my $idx = 0;

while ($idx < $numseed)

{

my $seedFile = "${runDir}/PCNTopen_${line}pct/netlists/${outFilePrefix}_seed${idx}.sp";

system("cp $inFile $seedFile");

my $u_var = ${fstLineNo} + ${idx} * ${lstLineNo};

my $v_var = ${u_var} + ${lstLineNo} - 1;

print "$u_var $v_var\n";

@spc_list = ‘awk ’NR>=${u_var} && NR<=${v_var}’ $spaceFile‘;

my $jj = 1;

foreach $spc (@spc_list)

{

chop($spc);

system("perl -p -i -e \"s/s${jj}([^0-9])/${spc}\\1/g\" ${seedFile}");

$jj++;

print "Space = $spc\n";

}

$idx++;

}

}

close FPO;

177

Parse Args

sub ParseArgs

{ local $arg;

while (defined($arg = shift(@ARGV)))

{

if ($arg eq "-h")

{ print("$USAGE\n");

exit 1;

}

elsif ($arg eq "-inFile")

{ $inFile= shift(@ARGV);

}

elsif ($arg eq "-spcDir")

{ $spcDir= shift(@ARGV);

}

elsif ($arg eq "-poFile")

{ $poFile= shift(@ARGV);

}

elsif ($arg eq "-runDir")

{ $runDir= shift(@ARGV);

}

elsif ($arg eq "-numseed")

{ $numseed= shift(@ARGV);

}

}

}

178

Appendix D

Publications from this Work

1. Kaship Sheikh, Lan Wei, “Reducing Impact of CNFET Process Imperfections on

Shape of Activation Function by Using Connection Pruning and Approximate Neu-

ron Circuit,” International Symposium on Quality Electronic Design, (ISQED), 2020

(accepted). (Chapter 5, 6)

2. Kaship Sheikh, Lan Wei, “Methodology to Generate Approximate Circuits to Re-

duce Process Induced Degradation in CNFET Based Circuits,” International Con-

ference on Simulation of Semiconductor Processes and Devices 2018 (SISPAD), pp.

360-363, 2018. (Chapter 4)

3. Kaship Sheikh, Lan Wei, ” Methodology to Capture Statistical Effect of Process

Imperfections on Glitch Suppression in CNFET circuits and Counter using Approx-

imate Circuits”, IEEE/ACM Great Lakes Symposium on VLSI (GLSVLSI), pp. 27-

32, 2018. (Chapter 3, B)

4. Kaship Sheikh, Lan Wei, ” Evaluation of Circuit Performance Degradation due to

CNT Process Imperfection”, IEEE International Symposium on VLSI Technology,

Systems and Application (VLSI-TSA), 2018. (Chapter 3)

179

5. Kaship Sheikh, Lan Wei, ” Using Approximate Circuits to Counter Process Imper-

fections in CNFET based Circuits”, IEEE International Symposium on VLSI Design,

Automation, and Test (VLSI-DAT), pp. 1-4, 2018. (Chapter 3)

6. Kaship Sheikh, Shu-Jen. Han, and Lan Wei, “CNFET With Process Imperfection:

Impact on Circuit-Level Yield and Device Optimization,” IEEE Transactions on

Circuits and Systems I: Regular Papers, (TCAS-I) vol. 63, no. 12, pp. 2209-2221,

2016. (Chapter 3, A)

7. Kaship Sheikh, Shu-jen Han, Lan Wei, ”Impact of CNT Process Imperfection on

Circuitlevel Functionality and Yield”, IEEE International Symposium on Circuits

and Systems (ISCAS), pp. 401-404, 2016.(Invited paper) (Chapter 3, A)

180

	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Motivation
	Approach and Scope
	Quantifying impacts of CNFET process imperfection on circuit-level performance
	Explore potential applications of CNFETs for approximate computing
	Explore potential applications of CNFETs for neuromorphic computing

	Thesis outline

	Literature Review of Carbon Nanotube FET: Process, Device, Circuits and Systems
	CNFET devices: advantages and challenges
	CNFET Process
	CVD process
	Solution processed sorting and placement

	Recent advances in CNFET based circuits and systems
	Overview of work in the thesis
	Conclusions

	Capture Effect of CNFET Process Imperfections on Circuit-Level Performance
	CNFET Process Imperfections
	Effect of CNT imperfection on circuit-level performance
	VSCNFET model
	Capture open CNT imperfection in SPICE
	Monte carlo simulation for capturing statistical effect of open CNT imperfection
	Methodology for evaluating CNFET performance
	Noise tolerance
	Circuit-level Delay
	16-Bit Han Carlson CNFET adder

	Conclusions

	Carbon Nanotube FET — Appropriateness for Approximate Computing
	Introduction
	Reduce process induced violations with approximate circuits
	ROBDD for obtaining approximate circuit
	Methodology to generate approximate circuit for reduced process induced degradation
	Approximate CNFET adders for reduced process induced degradation
	Conclusions

	Carbon Nanotube FET — Appropriateness for Neuromorphic Computing
	Introduction
	Basics of Deep Neural Network
	Sigmoid generation using digital neuron
	Effect of open CNT imperfection on activation function
	Digital neuron circuit
	Factors affecting timing failure for digital neuron
	Simulation framework for sigmoid generation

	Classification accuracy methodology
	Effect of increased process imperfection and frequency on P(spike|v) and classification accuracy
	Conclusions

	Techniques to Mitigate Impact of CNFET Process Imperfections
	Introduction
	Modified simulation framework for sigmoid generation
	Pruning with bias compensation to reduce timing violations
	Approximate neuron
	Results and discussion
	Best configuration for maintaining P(spike|v) shape at high PCNTopen
	Classification accuracy using P(spike|v) curves
	Key comparison for choosing best configuration

	Conclusions

	Conclusions and Future Work
	Conclusion and summary
	Methodologies for effective capture of CNFET process imperfection on circuit-level performance
	CNFET based circuits for approximate computing
	CNFET based circuits for neuromorphic computing

	Future research directions

	References
	Circuit-Level Yield Analysis with Short CNT Imperfection
	On and Off currents of a single CNFET
	Conducting/Non-Conducting Criteria for Pull-Up/Pull-Down Branches in CMOS Circuits
	Circuit-level Pass Rate
	Single Stage CMOS circuits
	Cascaded Stages
	Determine Process Requirement Based on Circuit-Level Pass Rate Target

	Glitch Analysis for Additional Approximate Circuits
	4-bit CNFET RCA Precise/Approximate Circuits
	4-bit CNFET Wallace Multiplier Precise/Approximate Circuits
	RESULTS AND DISCUSSION
	Fail Nodes in the whole Circuit
	Fail Nodes along a path
	Choosing Optimum Circuit

	Framework for CNFET Monte Carlo Seed Generation
	Codes for CNFET Monte Carlo Seed Generation

	Publications from this Work

