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Abstract

We begin a systematic study of the relations between subword complexity of infinite
words and their power avoidance. Among other things, we show that
– the Thue-Morse word has the minimum possible subword complexity over all overlap-
free binary words and all (73)-power-free binary words, but not over all (73)

+-power-free
binary words;
– the twisted Thue-Morse word has the maximum possible subword complexity over
all overlap-free binary words, but no word has the maximum subword complexity over
all (73)-power-free binary words;
– if some word attains the minimum possible subword complexity over all square-free
ternary words, then one such word is the ternary Thue word;
– the recently constructed 1-2-bonacci word has the minimum possible subword com-
plexity over all symmetric square-free ternary words.

Keywords: combinatorics on words, subword complexity, power-free word, critical
exponent, Thue-Morse word
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1 Introduction

Two major themes in combinatorics on words are power avoidance and subword complexity
(also called factor complexity or just complexity). In power avoidance, the main goals are to
construct infinite words avoiding various kinds of repetitions (see, e.g., [31]), and to count or
estimate the number of length-n finite words avoiding these repetitions (see, e.g., [42]). In
subword complexity, the main goal is to find explicit formulas for, or estimate, the number
of distinct blocks of length n appearing in a given infinite word (see, e.g., [14]). In this paper
we combine these two themes, beginning a systematic study of infinite binary and ternary
words satisfying power avoidance restrictions. We follow two interlaced lines of research.
First, given a power avoidance restriction, we study the set of infinite words satisfying this
restriction, focusing on upper and lower bounds on their subword complexity, and examples
of words of “large” and “small” complexity. Second, given a subword complexity restriction,
we seek lower bounds on the powers avoided by infinite words of restricted complexity, and
for words attaining these bounds. We also tried to cover the remaining blank spots with open
questions and conjectures. Most of the results are gathered in Table 1; precise definitions
are given below in Section 1.1.

The paper is organized as follows. After giving definitions, we study α-power-free infinite
binary words for α ≤ 7/3 in Section 2. The number of distinct blocks of length n in this case
is quite small, and all such infinite words are strongly related to the Thue-Morse word. We
provide answers for most (but not all) questions about the complexity of these words. Next,
in Section 3, we study low-complexity α-power-free infinite binary and ternary words for the
case where α is large enough to provide sets of length-n blocks of size exponential in n. Here
we leave more blank spots, but still obtain significant results, especially about square-free
ternary words. Finally, in Section 4 we briefly consider high-complexity infinite words and
relate the existence of words of “very high” complexity to an old problem of Restivo and
Salemi.

1.1 Definitions and notation

Throughout we let Σk denote the k-letter alphabet {0, 1, . . . , k−1}. By Σ∗
k we mean the

set of all finite words over Σk, including the empty word ε. By Σω
k we mean the set of all

one-sided right-infinite words over Σk; throughout the paper they are referred to as “infinite
words”. The length of a finite word w is denoted by |w|.

If x = uvw, for possibly empty words u, v, w, x, then we say that u is a prefix of x,
w is a suffix of x, and v is a subword (or factor) of x. A prefix (resp., suffix, factor) v
of x is proper if v �= x. A factor v of x can correspond to different factorizations of x:
x = u1vw1 = u2vw2 = · · · . Each factorization corresponds to an occurrence of v in x; the
position of an occurrence is the length of the prefix of x preceding v. Thus occurrences of
v (and, in particular, occurrences of letters) are linearly ordered by their positions, and we
may speak about the “first” or “next” occurrence. An infinite word is recurrent if every
factor has infinitely many occurrences.
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Table 1: Infinite power-avoiding binary and ternary words of small and large complexity.
Question marks indicate conjectured results.

Avoidance restriction Small complexity Large complexity

Binary words

symmetric overlap-free,
symmetric (7

3
)-power-free

minimum: Thue-Morse
word (Cor 4)

maximum: Thue-Morse
word (Thm 18)

overlap-free
minimum: Thue-Morse
word (Cor 4)

maximum: twisted
Thue-Morse word (Thm 5)

(7
3
)-power-free

minimum: Thue-Morse
word (Cor 4)

maximum: no (Thm 16);
upper bound:<4n (Thm15)

(7
3
)+-power-free

Thue-Morse word is not
minimum (Thm 33)

exponential (Thm 38)

(5
2
)+-power-free

minimum(?): 2n
(new word—Thm 37)

exponential (Thm 38)

(5+
√
5

2
)-power-free

minimum: n+ 1 ( [7],
Fibonacci word); for
n+O(1) see Thm 35

exponential (Thm 38)

Ternary words

symmetric (7
4
)+-power-free

minimal(?) growth const: 12
(Arshon word, Thm 27)

symmetric (5+
√
5

4
)-power-free

minimal growth const: 6
(1-3-bonacci word, Rem24)

symmetric square-free
minimum: 6n− 6
(1-2-bonacci word, Thm23)

(7
4
)+-power-free exponential (Thm 38)

square-free
minimum(?): ternary Thue
word (Thm 20)

exponential (Thm 38)

(5
2
)-power-free

minimum(?): 2n+ 1
(new word, Thm 31)

exponential (Thm 38)

Every map f : Σk → Σ∗
m (k,m ≥ 1) can be uniquely extended to all finite and infinite

words over Σk by setting f(a0a1 · · · ) = f(a0)f(a1) · · · , where ai ∈ Σk for all i. Such extended
maps are called morphisms. A morphism is a coding if it maps letters to letters.

The Thue-Morse word

t = t0t1t2 · · · = 0110100110010110 · · ·
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is a well-studied infinite word with many equivalent definitions (see, e.g., [1]). The first is
that ti counts the number of 1’s, modulo 2, in the binary expansion of i. The second is that
t is the fixed point, starting with 0, of the morphism μ sending 0 to 01 and 1 to 10.

A language is a set of finite words over Σk. A language L is said to be factorial if x ∈ L
implies that every factor of x is also in L. If u is a one-sided or two-sided infinite word,
then by Fac(u) we mean the factorial language of all finite factors of u. We call a language
L ⊆ Σ∗

k symmetric if it is invariant under every permutation of the underlying alphabet;
more precisely, if f(L) = L for every bijective coding f : Σ∗

k → Σ∗
k. An infinite word u is

symmetric if Fac(u) is symmetric. For example, the Thue-Morse word is symmetric.
The so-called subword complexity or factor complexity of an infinite word x is the func-

tion px(n) that maps n to the number of distinct subwords (factors) of length n in x. If the
context is clear, we just write p(n). A more general notion is the growth function (or com-
binatorial complexity, or census function) of a language L; it is the function pL(n) counting
the number of words in L of length n. Thus, px(n) = pFac(x)(n). These complexity functions
can be roughly classified by their growth rate lim supn→∞(p(n))1/n; for factorial languages,
the lim sup can be replaced by lim, as was observed, e.g., in [20]. Exponential (resp., subex-
ponential) words and languages have growth rate > 1 (resp., 1); growth rate 0 implies a
finite language. Infinite words constructed by some regular procedure (e.g., those generated
by morphisms) usually have small, often linear, complexity (see, e.g., [2]).

We say that an infinite word has minimum (resp., maximum) subword complexity in a
set of words S if pu(n) ≤ pv(n) (resp., pu(n) ≥ pv(n)) for every word v ∈ S and every n ≥ 0.

An integer power of a nonempty word x is a word of the form xn =

n︷ ︸︸ ︷
xx · · · x; by xω we

mean the infinite word xxx · · · . Integer powers can be generalized to fractional powers as
follows: by xα, for a real number α ≥ 1, we mean the prefix of length �α|x|	 of the infinite
word xω. If u is a finite word and x is the shortest word such that u is a prefix of xω, then
the ratio |u|/|x| is called the exponent of u and denoted by exp(u). The critical (or local)
exponent of a finite or infinite word u is the supremum of the exponents of its factors. Thus,
for example, the French word contentent (as in ils se contentent) has a suffix that is the
(3 +

√
5)/2 = 2.61803 · · · ’th power of the word nte, as well as the (8/3)’th power of this

word; the exponent of the word contentent is 1, and its critical exponent is 8/3.
We say a finite or infinite word is α-power-free or avoids α-powers if it has no factors

that are β-powers for β ≥ α. Similarly, a finite or infinite word is α+-power-free or avoids
α+-powers if it has no factors that are β-powers for β > α. In what follows, we use only the
term “α-power”, assuming that α is either a number or a “number with a +”. We write Lk,α

for the language of all finite k-ary α-power-free words. The criterion for a language Lk,α to be
infinite is α ≥ RT (k)+, where the values of the repetition threshold RT (k) are RT (2) = 2 [46],
RT (3) = 7/4 [12], RT (4) = 7/5 [28], and RT (k) = k/(k − 1) for k ≥ 5 (the crucial steps
were done in [6, 10, 33]). The growth functions of the languages Lk,α also were studied in
a number of papers; see the survey [42] for details. For our study, we need the following
rough classification of growth functions of infinite power-free languages [18,22,34,44,47]: the
languages L2,α for 2+ ≤ α ≤ 7/3 have polynomial growth functions, while all other infinite
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power-free languages are conjectured to have exponential growth functions. This conjecture
has been proved for all power-free languages over the alphabets of even size up to 10 and
of odd size up to 101. The “polynomial plateau” of binary power-free languages possesses
several distinctive properties due to their intimate connection to the Thue-Morse word (see,
e.g., [42, Section 2.2]).

An infinite word is called periodic if it has a suffix xω for some nonempty word x; oth-
erwise, it is called aperiodic. Obviously, all power-free words are aperiodic. The minimum
subword complexity of an aperiodic word is n+1, reached by the class of Sturmian words [25].

A finite word x from a language L is right-extendable in L if for every integer n there is
a word v such that |v| > n and xv ∈ L. Left-extendability is defined in a dual way. Further,
x is two-sided extendable in L if for every integer n there are words u, v such that |u|, |v| > n
and uxv ∈ L. We write

rext(L) = {x ∈ L | x is right-extendable in L}
ext(L) = {x ∈ L | x is two-sided extendable in L}

Note that all factors of an infinite word u are right-extendable in Fac(u). It is known
known [39] that for every language L the languages ext(L) and rext(L) have the same growth
rate as L.

For a word u over Σ2 = {0, 1}, we say that we flip a letter a when we replace it with
1− a. The word u obtained from u by flipping all letters is the complement of u.

2 Minimum and maximum subword complexity in small

languages

The 2+-power-free words are commonly called overlap-free due to the following equivalent
characterization: a word w contains an α-power with α > 2 if and only if two different
occurrences of some factor in w overlap. It has been known since Thue [46] that the Thue-
Morse word t is overlap-free. The morphism μ satisfies the following very strong property.

Lemma 1 ( [37]). For every real α > 2, an arbitrary word u ∈ Σ2 avoids α-powers iff the
word μ(u) does.

Moreover, all (7/3)-power-free (in particular, overlap-free) binary words can be expressed
in terms of the morphism μ. Below is the “infinite” version of a well-known result proved by
Restivo and Salemi [34] for overlap-free words and extended by Karhumäki and Shallit [18]
to all (7

3
)-power-free words. The second statement of this lemma and the uniqueness in the

general case were proved in [32].

Lemma 2. Let u be an infinite (7/3)-power-free binary word, k ≥ 0 be an integer. Then u
is uniquely representable in the form

u = xoμ(x1μ(· · · xkμ(v) · · · )) = x0μ(x1) · · ·μk(xk)μ
k+1(v), (1)
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where v is also an infinite (7/3)-power-free binary word, x0, . . . , xk ∈ {ε, 0, 1, 00, 11}. More-
over, for every i ≥ 1 the condition |xi| = 2 implies either |xi−1| = 0, or |xi−1| = · · · = |x0| =
1, or |xi−1| = · · · = |xj| = 1, |xj−1| = 0 for some j ∈ {1, . . . , i−1}.

The factorization (1) implies that an infinite (7/3)-power-free binary word contains the
words μk(0) and μk(1) as factors, for all k ≥ 0. So we immediately get two corollaries of
Lemma 2.

Corollary 3. Every (7/3)-power-free infinite binary word contains, as factors, all elements
of Fac(t). In particular, this is true of every overlap-free word.

Corollary 4. The Thue-Morse word t has the minimum subword complexity among all
binary (7/3)-power-free (in particular, overlap-free) infinite words.

The subword complexity pt of the Thue-Morse sequence t has been known since the
independent work of Brlek [5], de Luca and Varricchio [24], and Avgustinovich [4]. For
n ≥ 2 it is as follows:

pt(n+ 1) =

{
4n− 2i, if 2i ≤ n ≤ 3 · 2i−1;

2n+ 2i+1, if 3 · 2i−1 ≤ n ≤ 2i+1.
(2)

We now consider the analogue of the Thue-Morse sequence, where for n ≥ 0 we count the
number of 0’s, mod 2, (instead of the number of 1’s, mod 2) in the binary representation of
n. By convention, we assume that the binary expansion of 0 is ε. We call this word

t′ = 001001101001011001101001100101101001011 · · · =
00μ(1)μ2(0) · · ·μ2n(0)μ2n+1(1) · · · (3)

the twisted Thue-Morse word. The word t′ was mentioned in [36] and has appeared previously
in the study of overlap-free and (7/3)-power-free words [13]. It is the image, under the coding
{0, 2} → 0, 1 → 1, of the fixed point of the morphism 0 → 02, 1 → 21, 2 → 12, and is
known to be overlap-free.

We now state one of our main results. The proof follows after a series of preliminary
statements.

Theorem 5. The twisted Thue-Morse word t′ has maximum subword complexity among all
overlap-free infinite binary words, and is the unique word with this property, up to comple-
ment.

Remark 6. The word t′ has linear subword complexity, as is proved below, and so contains,
as factors, only a small fraction of all right-extendable overlap-free words: the number of
such words has superlinear growth (see [21]). This fact is explained in a broader context in
Theorem 15.
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Remark 7. The uniqueness of t′, stated in Theorem 5, differs strikingly from the situation
with minimum complexity, described by Corollary 4. Namely, the language of factors Fac(t),
and thus the subword complexity pt(n), is shared by a continuum of infinite words. The
explicit construction of all such words can be found in [37]. (Precisely, Section 2 of [37]
describes two-sided infinite words with the language of factors Fac(t), but all their suffixes
have exactly the same factors.)

A word w is minimal forbidden for a factorial language L if w /∈ L, while all proper
factors of w belong to L. Every overlap-free infinite word u having a factor not in Fac(t)
contains a minimal forbidden word x for Fac(t); moreover, every such word x appearing
in u is right-extendable in the language L2,2+ . These forbidden words are classified in the
following lemma.

Lemma 8. Let ak be the last letter of μk(0).

1. The minimal forbidden words for Fac(t) are exactly the following words and their com-
plements:

(a) 000;

(b) rk = akμ
k(010)0, k ≥ 0;

(c) sk = akμ
k(101)0, k ≥ 0.

2. Among these, only the words rk and their complements are right-extendable for L2,2+.

Statement 1 is Proposition 1 of [38]; alternatively, it can be proved automatically using
the Walnut prover [26]. Statement 2 follows from Proposition 3.7 and Example 1 of [43].
However, it is useful to provide some intuition. Let a binary word u of length ≥ 2 have
the form aμ(v)b, where v ∈ Σ∗

2, a, b ∈ {0, 1, ε} (if u has two different representations of
this form, choose the one with a = ε). We take an “approximate” μ-preimage, replacing
u with āvb (here ε̄ = ε), and repeat the procedure while possible, denoting the final result
by ũ. If u ∈ Fac(t), we will eventually arrive at ũ ∈ {01, 10}; if u /∈ Fac(t), we will stop
at some other word (often at u itself). Proposition 3.7 of [43] says that ũ is (right, left, or
two-sided) extendable for L2,2+ iff u is. One has r̃k = 00100, which is extendable, e.g., to t′,
and s̃k = 000, which is even not overlap-free.

Lemma 9. Let u be an infinite overlap-free binary word and let k ≥ 0. If u = xrk · · · or
u = xr̄k · · · for some word x, then |x| ≤ 2k−1. In particular, the words rk, r̄k have, in total,
at most one occurrence in u.

Proof. We prove the first statement by induction on k. Consider the base case k = 0. We
have r0 = 00100. Since u is overlap free, the letter following xr0 in u is 1. On the other
hand, if x is nonempty, it must end with either 0 or 1, and in both cases xr01 has an overlap.
So x must be empty.

Now the induction step. Assume the claimed result is true for k′ < k; we prove it for k.
Let u = xrkv = xakμ

k(010)0v and assume |x| ≥ 2k. We also have u = x0μ(u
′) for some

7



x0 ∈ {ε, 0, 00, 1, 11} and some infinite word u′ by Lemma 2. Note that |x0| ≤ 2 ≤ |x|, and
thus the prefix 0110 of μk(010) must be parsed as μ(01). Hence 0v equals μ(0v′) for some
infinite word v′, which is overlap-free by Lemma 1. Next, x = yāk for some nonempty word
y. Indeed, |xak| > |x0|, so the last two letters of xak should form the block μ(āk). Thus

u = yākakμ
k(010)μ(0v′) = yμ(ākμ

k−1(010)0v′).

Compare this to u = x0μ(u
′). The uniqueness of factorization in Lemma 2 implies y =

x0μ(x
′) for some word x′ (possibly empty). Observing that āk = ak−1, we finally write

u = x0μ(u
′), where u′ = x′ak−1μ

k−1(010)0v′.

Applying the inductive hypothesis to u′, we obtain |x′| ≤ 2k−1−1. Having |x| = |x0|+2|x′|+1
and |x| ≥ 2k, we obtain |x′| = 2k−1 − 1. Since |x′| has the maximum possible length, the
inductive hypothesis guarantees that both words 0u′ and 1u′ contain overlaps. Then the
word u′ has some prefix uu that ends with 0, and also some prefix vv that ends with 1 (e.g.,
u′ can be a word of the form 001001 · · · ). Hence μ(u′) has the prefix μ(u)μ(u) that ends with
1, and the prefix μ(v)μ(v) that ends with 0. This means that both words 0μ(u′) and 1μ(u′)
contain overlaps, and thus x0 = ε. So we have |x| = 2|x′|+ 1 = 2k − 1. This contradicts our
assumption |x| ≥ 2k and thus proves the inductive step.

For the second statement, observe that |rk| = |r̄k| = 3 · 2k +2, which is much bigger than
|x|. Since the occurrences of a factor cannot overlap, u has at most one occurrence of each
of the factors rk, r̄k. Let u contain both, with rk starting earlier. Then r̄k must contain the
suffix μk(10)0 of rk, which is not the case: the word r̄k = ākμ

k(101)1, being overlap free,
contains only one occurrence of μk(10), and this occurrence is followed by μk(1) which begins
with 1. So u contains at most one of rk, r̄k.

Recall that a factor v of u is (right) u-special if both v0 and v1 are factors of u. The set
of all special factors of u is denoted by Spec(u). We will omit u when it is clear from the
context. We use the following familiar fact:

Lemma 10. The number Du(n) = #(Spec(u) ∩ Σn
2 ) is the first difference of the subword

complexity of u: Du(n) = pu(n+ 1)− pu(n).

Proof. Consider the function mapping every word from Fac(u) of length n+1 to its prefix
of length n. Each special factor of u of length n has two preimages, while each non-special
factor of length n has a single preimage.

Corollary 11. For all n ≥ 1 and every infinite binary word u we have

pu(n) = 2 +
∑

1≤i<n

Du(i). (4)
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Since Du(0) = 1 for every binary word, below we restrict our attention to {Du(n)} for
n ≥ 1. For example,

Dt(n) =

{
4, if n = 2k + i for some k ≥ 1, i > 0, i ≤ 2k−1;

2, otherwise,

as was first computed in [5]. As an infinite word over {2, 4}, this sequence looks like

224244224444222244444444222222224 · · · (5)

where each subsequent block of equal letters is twice the size of the previous block of the
same letter (except for the second block of 2’s).

Let u be overlap-free. By Corollary 4, all t-special factors are u-special, soDu(n) ≥ Dt(n)
for all n. We call a u-special factor irregular if it is not t-special.

Lemma 12. For an overlap-free infinite binary word u, all u-special factors are Thue-Morse
factors.

Proof. Every word from Fac(u)\Fac(t) contains rk or r̄k by Lemma 8; so it occurs in u only
once by Lemma 9 and thus is not u-special. Hence Spec(u) ⊆ Fac(t).

Proof of Theorem 5. Let u be an overlap-free infinite binary word. We show the following
four facts:

(i) at every position in u, the first occurrence of at most one irregular u-special factor
begins;

(ii) all irregular u-special factors have different lengths;

(iii) for every k ≥ 0, there exist at most 2k irregular u-special factors of length ≤ 2k+2; the
length of each factor is in the range [3·2i+1..2i+2] for some i ≤ k;

(iv) for every k ≥ 0, there exist exactly 2k irregular t′-special factors of length ≤ 2k+2; their
lengths are given by (6) below.

(i) Let v be an irregular u-special factor. By Lemma 12, v ∈ Fac(t); but either v0 or v1
is not a Thue-Morse factor by definition of irregularity. W.l.o.g., v0 /∈ Fac(t). Then some
suffix of v0 is a minimal forbidden word for Fac(t). By Lemma 8, this suffix equals rk for
some k ≥ 0. So we can write v0 = v′rk and u = xv′rku′; by Lemma 9, |xv′| < 2k. In
particular, |x| < |v|. Thus, the first occurrence of v in u is at the position |x| and is followed
by 0 (v0 /∈ Fac(t)), while all other occurrences of v are followed by 1 (and v1 ∈ Fac(t)). Now
assume that some proper prefix w of v is also an irregular u-special factor. Since v ∈ Fac(t),
the occurrence of w at the position |x| is not the first occurrence of w in u. Hence the first
occurrences of each two irregular u-special factors begin in different positions.
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(ii) Take an irregular u-special factor v such that v0 = v′rk and another u-special factor w
such that w0 = w′ri or w1 = w′r̄i. Note that 3 · 2k + 1 ≤ |v| ≤ 4 · 2k since |v′| < 2k by
Lemma 9. The same calculation applies for w, so i �= k implies |w| �= |v|. By Lemma 9, u
has a unique occurrence of rk and no occurrences of r̄k. Hence i = k implies that v0 and w0
end at the same position of u, so |v| = |w| only if v = w.

(iii) Let v be an irregular u-special factor of length ≤ 2k+2. As above, we can write w.l.o.g.
v0 = v′ri for some i ≤ k and some word v′ of length < 2i; then |v| = 3 · 2i + 1 + |v′|, as
required. (Note that i > k implies |v| > 3 · 2i > 2k+2.) Further, u = xv′riu′. Then the first
occurrence of v in u is at the position |x| ∈ [0..2i−1]. Thus, there are 2k possible positions
for the first occurrence of v; the reference to (i) finishes the proof.

(iv) From (3) it is easy to see that for every k the prefix of t′ of length 5·22k equals vμ2k(0100),
where v = 0 = μ2k(0) for k = 0 and v has the common suffix μ2k−1(1) with the word μ2k(0)
for k > 0. Similarly, the prefix of t′ of length 5 · 22k+1 equals vμ2k+1(1011), where v has
the common suffix μ2k(0) with the word μ2k+1(1). According to the above description of the
irregular special factors, t′ has first occurrences of irregular special factors beginning at each
position:

Factor Position Length
0010 0 4
0100110 1 7
10011010010110 2 14
0011010010110 3 13
...

...
...

rμ2k(010), r is a suffix of μ2k−1(0) 22k−1 + i, 0 ≤ i < 22k−1 22k+2 − 22k−1 − i
rμ2k+1(101), r is a suffix of μ2k(1) 22k + i, 0 ≤ i < 22k 22k+3 − 22k − i

(6)

Let Irr(u) be the sequence of lengths of irregular u-special factors in increasing order; by (ii),
each length corresponds to a single factor. To finish the proof, we compare Irr(u) to Irr(t′)
using (iii) and (iv):

Irr(u) Irr(t′)
at most 1 of {4} 4
at most 2 of {4, 7, 8} 4, 7
at most 4 of {4, 7, 8, 13, 14, 15, 16} 4, 7, 13, 14
...

...
at most 2k of length ≤ 2k+2 exactly 2k, minimal possible

Hence for every m ≥ 0 the m’th element of Irr(u) is greater than or equal to the m’th element
of Irr(t′). Since u and t′ have the same regular special factors, one has, for every n,∑

1≤i<n

Du(i) ≤
∑

1≤i<n

Dt′(i),

10



The inequlities pt′(n) ≥ pu(n) for all n ≥ 0 now follow from (4). It remains to note that
the sequence Irr(t′) determines an overlap-free word up to the complement: there is only
one way, shown in (6), to associate the lengths of irregular special factors to the positions of
their first occurrences. Therefore, there are no words of complexity pt′(n) except for t

′ and
t̄′. The theorem is proved.

As a consequence of the proof, we can determine a closed form for the subword complexity
of t′.

Proposition 13. The number of special t′-factors of length n > 0 is given by the formula

Dt′(n) =

⎧⎪⎨
⎪⎩
4, 2k+1 < n ≤ 3 · 2k for some k ≥ 0;

3, n = 4 or 3 · 2k < n ≤ 7 · 2k−1 for some k ≥ 1;

2, otherwise.

Proof. The proposition states that the sequence {Dt′(n)} (n ≥ 1) can be written as the
following word over {2, 3, 4}:

224344324444332244444444333322224 · · ·
Comparing this to (5), we see that some 2’s have been changed to 3’s. This means an
additional t′-special factor for each corresponding length, and this factor must be irregular.
According to (6), the set of all positions of 3’s indeed coincides with the set of lengths of
irregular t′-special factors, thus proving the proposition.

Corollary 14. The maximum factor complexity of a binary overlap-free infinite word is the
factor complexity of the twisted Thue-Morse word t′ and is given, for n ≥ 4, by the formula

pt′(n+ 1) =

⎧⎪⎨
⎪⎩
4n− 3 · 2i−2, if 2i ≤ n ≤ 3 · 2i−1;

3n+ 3 · 2i−2, if 3 · 2i−1 ≤ n ≤ 7 · 2i−2;

2n+ 5 · 2i−1, if 7 · 2i−2 ≤ n ≤ 2i+1.

(7)

Proof. Immediate from Theorem 5, Proposition 13, and formula (4).

A table of the first few values of the subword complexity of t′ follows:

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
pt′(n) 1 2 4 6 10 13 17 21 24 26 30 34 38 42 45 48 50 52 56

2.1 Beyond overlap-free words

Now we turn to the case of α-power-free infinite binary words for arbitrary α from the
interval [2+, 7

3
]; in particular, all such words are

(
7
3

)
-power free. By Corollary 4, the Thue-

Morse word is a word of minimum complexity. Theorem 15 below shows that the asymptotic
growth of subword complexity belongs to a very small range. Theorem 16 demonstrates that
there is no (7/3)-power-free infinite binary word of maximum complexity.

11



Theorem 15. Every
(
7
3

)
-power-free infinite binary word u has linear subword complexity.

Moreover, for every n > 0 one has pu(n) <
6
5
· pt(n).

Proof. First assume that u = μm(v) for some word v and some m ≥ 0. Then v is
(
7
3

)
-power

free by Lemma 1. According to Lemma 8, the shortest word that can be a factor of v, but
does not occur in t, is either 00100 or 11011. Hence every factor of u that is contained in
four consecutive blocks of the form μm(a), a ∈ Σ2, is a factor of t. Thus the shortest factor
of u that is not in t has the length at least 3 · 2m + 2. (If v contains 00100, this factor is rm
from Lemma 8.) So we have

u = μm(v) =⇒ pu(n) = pt(n) for every n = 0, 1, . . . , 3·2m+1. (8)

Now let u be arbitrary. Still, u satisfies (8) with m = 0, so pu(n) = pt(n) for n ≤ 4. So
we take an arbitrary n ≥ 5 and choose a unique integer m ≥ 1 satisfying the condition
3 · 2m−1 + 1 < n ≤ 3 · 2m + 1. Consider the factorization of u of type (1):

u = x0μ(x1μ(· · · xm−1μ(v) · · · )) = x0μ(x1) · · ·μm−1(xm−1)μ
m(v).

By (8), all factors of μm(v) of length n are Thue-Morse factors, so we have

pu(n)− pt(n) ≤ |x0μ(x1) · · ·μm−1(xm−1)| =
m−1∑
i=0

2i|xi|.

This upper bound is a bit loose; to tighten it, consider xm−1. By Lemma 2, |xm−1| ≤ 2. Let
|xm−1| = 2 (w.l.o.g., xm−1 = 00). Since by Lemma 1 the word xm−1μ(v) is

(
7
3

)
-power free, v

cannot begin with 0, 11, or 100 (this would lead to forbidden factors 000, 01010, or 0010010,
respectively). Then v begins with 101, and

μm−1(xm−1)μ
m(v) = μm−1(0)μm−1(0100110) · · ·

Since 0100110 is a Thue-Morse factor, so is μm−1(0100110). Hence the number of length n
words in Fac(u)\Fac(t) is at most 2m−1 +

∑m−2
i=0 2i|xi|. Applying the second statement of

Lemma 2 to xm−1, we obtain
∑m−2

i=0 2i|xi| ≤
∑m−2

i=0 2i = 2m−1−1 (note that some of xi’s can
have length 2, but only if |xj| = 0 for some bigger j). Therefore,

pu(n)− pt(n) ≤ 2m − 1. (9)

Next let xm−1 = 0 and let v = abc · · · , a, b, c ∈ {0, 1}. If a = b = c or a = b = 1, then
u is not (7/3)-power free. Otherwise, 1abc is a Thue-Morse factor, as well as the suffix
μm−1(0)μm(abc) of μm(1abc). Then all length-n factors of u, that are not in Fac(t), begin in
u on the left of μm−1(xm−1). But

∑m−2
i=0 2i|xi| ≤

∑m−2
i=0 2i+1 = 2m − 2, so again we have (9).

For the same reason we obtain (9) in the case xm−1 = ε.
Finally, we apply (2) to get

pt(n) ≥ pt(3 · 2m−1 + 2) = 2 · (3 · 2m−1 + 1) + 2m+1 = 5 · 2m + 2 (10)

and compare (9) to (10) to obtain the required inequality.
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Theorem 16. There is no (7/3)-power-free infinite binary word of maximum complexity.

Proof. Along with giving an example, we provide some intuition about its appearance. From
the proof of Theorem 15 we see that for arbitrary (7/3)-power-free infinite words u,

(a) if n ≤ 4, then pu(n) = pt(n);

(b) if 5 ≤ n ≤ 7, we write u = x0μ(v) and see that pu(n) ≤ pt(n) + 1; the only length n
factor of u that is possibly not in Fac(t) is the prefix of u;

(c) if 8 ≤ n ≤ 13, we write u = x0μ(x1)μ
2(v) and see that Fac(u)\Fac(t) contains at most

22 − 1 = 3 words if |x1| = 2 (these words begin in u at positions 0, 1, 2) and at most
22− 2 = 2 words otherwise (these words begin in u at positions 0 and 1). First consider
a (7/3)-power-free infinite word u1 starting with 0 and satisfying pu1(n) = pt(n) + 3 for
some n ∈ [8..13]. From the proof of Theorem 15 for u1 = x0μ(x1)μ

2(v) we have, up to
flipping the letters, x0 = 0, x1 = 00, v = 101 · · · , so

u1 = 0μ(00)μ2(101 · · · ) = 0 0101 1001 0110 1001 · · ·

One has pu2(8) = pt(8) + 1 (the only additional factor 10110010 begins at position 2),
pu2(9) = pt(9) + 2 (the additional factors begin at positions 1 and 2), and pu2(n) =
pt(n) + 3 for n = 10, 11, 12, 13 (the additional factors begin at positions 0, 1, and 2);
hence we proved that no word u has pu(n) = pt(n) + 3 for n = 8, 9. An example of a
(7/3)-power-free word u1 is u1 = 0μ(t′); it is (7/3)-power free because μ(t′) is overlap
free by Lemma 1 and does not begin with a square of period ≤ 3. (One can check that
0μ(t′) has the only 2+-power 0(010110)2 at position 0.) Now construct a word u2 having
the property pu1(8) = pt(8)+2. The two additional factors of length 8 begin at positions
0 and 1 (otherwise u2 would have three additional factors of length 9, which is impossible
as mentioned above). Since u2 is (7/3)-power-free, it does not contain s0, s̄0, and can
contain r0, r̄0, s1, or s̄1 as a prefix only. So if u2 has the prefix awb with a, b ∈ {0, 1},
|w| = 7, and aw,wb /∈ Fac(t), then wb ∈ {r1, r̄1} and aw has r0, r̄0, s1, or s̄1 as a prefix.
A simple check reveals the only possibility:

u2 = 00μ(1)μ2(01 · · · ) = 00 10 0110 1001 · · ·

Since |x1| = 1, we have pu2(n) = pt(n) + 2 for n = 8, 9, . . . , 13. Using the fact that
the exponents of prefixes of t do not exceed 5/3 [43, Prop. 2.1(5)], it is easy to check
that the word u2 = 0010t is (7/3)-power-free. Indeed, if u2 contains a (7/3)-power of
period p, then 4 = |0010| ≥ 2p/3, so p ≤ 6 and it is enough to analyze the prefix of t of
length 6 · 5/3 = 10. (A more detailed check shows that u1 contains the only 2+-power
0(100110)2 at position 1).

Overall, we see that the word u1 reaches the maximum possible complexity for n = 10
but not for n = 8, while u2 reaches this maximum for n = 8 but not for n = 10.
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If there is no maximum subword complexity, it makes sense to look at some sort of
“asymptotically maximal” complexity. For a function y(n) of linear growth, let its linear

growth constant be lim supn→∞
y(n)
n
. For overlap-free infinite binary words, the maximum

subword complexity has linear growth constant 7/2, as can be easily derived from (7). From
(2) we see that the linear growth constant for the Thue-Morse word is 10/3. By Theorem 15,
this means that the linear growth constants of all (7/3)-power-free infinite binary words are
bounded above by 4.

Open Question 17. What is the maximum linear growth constant for the subword com-
plexity of a (7/3)-power-free infinite binary word? Which words have such complexity?

2.2 The symmetric case

Instead of studying all (7/3)-power-free words, we can restrict our attention to the symmetric
ones.

Theorem 18. The only possible subword complexity function of a (7/3)-power-free symmet-
ric infinite binary word is the function pt(n).

Proof. Let u be a (7/3)-power-free infinite binary word such that pu(n) �= pt(n). By Corol-
lary 4, u contains a factor that is not Thue–Morse. By Lemma 8, u contains one of the
factors rk, sk, or their complements. Assume that u contains rk = akμ

k(010)0. Taking the
representation (1) of u and observing that μk(01) has no factors of the form μk(a) except
for the prefix and the suffix, we see that u has the suffix μk(0100 · · · ). If this suffix contains
the factor r̄k = ākμ

k(101)1, then r̄k occurs inside a factor of the form μk(b11011c). Hence
u contains either μk(111) or μk(0110110), which is impossible because u is (7/3)-power free.
Thus, r̄k cannot occur in u to the right of an occurrence of rk. Similarly, if u contains
sk = akμ

k(101)0, then the suffix μk(1010 · · · ) of u cannot contain s̄k without containing the
(5/2)-power μk(10101).

Repeating the same argument for the factors r̄k, s̄k in u we conclude that u contains
neither rk, r̄k simultaneously, nor sk, s̄k simultaneously. So u is not symmetric. Hence every
(7/3)-power-free symmetric infinite binary word has subword complexity pt(n).

3 Small subword complexity in big languages

In this section we study binary and ternary words. Note the interconnection of the results
over Σ2 and Σ3 through the encodings of words in both directions. To improve readability,
we will denote words over Σ3 by capital letters and other words by small letters.

Our study follows two related questions about small subword complexity:

• Given a pair (k, α), how small can the subword complexity of an α-power-free infinite
k-ary word be?
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• Given an integer k and a function f(n), what is the smallest power that can be avoided
by an infinite k-ary word with a subword complexity bounded above by f(n)?

3.1 Ternary square-free words

Among α-power-free infinite ternary words, the most interesting are the square-free (= 2-
power-free) words, the existence of which was established by Thue [45], and in particular,
the (7

4
)+-power-free words, because α = (7

4
)+ is the minimal power that can be avoided by

an infinite ternary word, as shown by Dejean [12].
Consider the ternary Thue word T [46], which is the fixed point of the morphism θ defined

by 0→ 012, 1→ 02, 2→ 1:

T = T1T2T3 · · · = 012021012102012021020121012021012102012101202102 · · ·
This word has critical exponent 2, which is not reached, so T is square-free. Also, T has
two alternative definitions in terms of the Thue-Morse word. The first definition says that
for all i ≥ 1, Ti is the number of zeroes between the i’th and (i+1)’th occurrences of 1 in t.
The second definition is

Ti =

⎧⎪⎨
⎪⎩
0, if ti−1ti = 01;

1, if ti−1 = ti;

2, if ti−1ti = 10.

(11)

The definition (11) easily implies a bijection between the length-n factors of t and length-
(n−1) factors of T for all n ≥ 3. Hence, pT(n) = pt(n+1) for all n ≥ 2, and one can use
formula (2). In [15], the complexity of T was computed directly from the morphism θ.

Conjecture 19. The ternary Thue word T has the minimum subword complexity over all
square-free ternary infinite words.

The above conjecture is supported by the following result, showing that T is the only
candidate for a square-free word of minimum complexity.

Theorem 20. If a word U has minimum subword complexity over all square-free ternary
infinite words, then Fac(U) = ζ(Fac(T)), where ζ is a bijective coding.

Before proving this theorem and presenting further results, we need to recall an encoding
technique introduced in [41] by the second author as a development of a particular case of
Pansiot’s encoding [28]. In what follows, a, b, c are unspecified pairwise distinct letters from
Σ3. Ternary square-free words contain three-letter factors of the form aba, called jumps (of
one letter over another). Jumps occur quite often: if a square-free word u has a jump aba
at position i, then the next jump in u occurs at one of the positions i+2 (u = · · · abaca · · · ),
i+3 (u = · · · abacbc · · · ), or i+4 (u = · · · abacbab · · · ). Note that a jump at position i+1
would mean that u has the square abab at position i, while no jump up to position i+5 would
lead to the square bacbac at position i+1. Also note that a jump in a square-free word can
be uniquely reconstructed from the previous (or the next) jump and the distance between
them. Thus,
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(�) a square-free ternary word u can be uniquely reconstructed from the following infor-
mation: the leftmost jump, its position, the sequence of distances between successive
jumps, and, for finite words only, the number of positions after the last jump.

The property (�) allows one to encode square-free words by walks in the weighted K3,3 graph
shown in Fig. 1. The weight of an edge is the number of positions between the positions of
two successive jumps. A square-free word u is represented by the walk visiting the vertices
in the order in which jumps occur when reading u left to right. If the leftmost jump occurs
in u at position i > 1, then we add the edge of length i−1 to the beginning of the walk; in
this case the walk begins at an edge, not a vertex. A symmetric procedure applies to the
end of u if u is finite. By (�), we can omit the vertices (except for the first one), keeping
just the weights of edges and marking the “hanging” edges in the beginning and/or the
end. Due to symmetry, we can omit even the first vertex, retaining all information about
u up to renaming the letters. The result is a word over {1, 2, 3} with two additional bits
of information (whether the first/last letters are marked; for infinite words, only one bit is
needed). This word is called a codewalk of u and denoted by cwk(u). For example, here
is some prefix of T (with first letters of jumps written in boldface) and the corresponding
prefix of its codewalk (the marked letter is underlined):

T = 012220211101112100020122202100020111211101222021110111210002011121110122202100020 · · ·
cwk(T) = 2 2 1 2 3 3 2 1 2 2 1 2 2 1 2 3 · · ·

010 121 202

020 101 212

1

3

2
2 1 3

3

2

1

Figure 1: The graph of jumps in ternary square-free words. Vertices are jumps; two jumps that can
follow each other in a square-free word are connected by an edge of weight i, where i is the number
of positions between the positions of these jumps. Due to symmetry, the graph is undirected.

Codewalks are undefined for square-free words with no jumps (such words have length
≤ 5). Note that two words have the same codewalk if and only if they are images of each other
under bijective codings and thus have the same structure, the same subword complexity, and
the same properties related to power-freeness. A codewalk is closed if it corresponds to a
closed walk without hanging edges in K3,3; e.g., 212212 is closed and 212 is not.

Clearly, not all walks in the weighted K3,3 graph correspond to square-free words. How-
ever, there is a strong connection between square-freeness of a word and forbidden factors
in its codewalk, as the next lemma shows. (More restrictions can be added to statement 2
of this lemma, but we do not need them in our proofs.)
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Lemma 21.

1. If a codewalk has (a) no factors 11, 222, 223, 322, 333, and (b) no factors of the form
vxyv, where v ∈ {1, 2, 3}∗, x, y ∈ {1, 2, 3} and the codewalk vxy is closed, then the
word with this codewalk is square-free.

2. The codewalk of a square-free word contains (a) no proper factors vxv such that v ∈
{1, 2, 3}∗, x ∈ {1, 2, 3}, and vx is a closed codewalk; (b) no squares of closed codewalks;
(c) no proper factors 11, no factors 223 except for the prefix, and no factors 322 except
for the suffix.

Proof. Statement 1 is proved in [41] as Lemma 4 (plus definitions), so we omit the proof.
Statement 2 is close to the results of [41] but has no direct analogs there, so let us prove it.

The words with the codewalks 11, 223, and 322 are abacaba, abacbcabacbab, abacbabcacbab,
respectively. Obviously, adding any letter from the left to the first two words, as well as
adding any letter from the right to the first and third words, gives a square, so we have
(c). For (a) and (b), let vx be a closed codewalk. A word with the codewalk vx looks like
abaUaba for some word U , because a closed codewalk begins and ends with the same jump.
Then the word with the codewalk vxvx is W = (abaU)2aba, so we have (b). To get the word
with the codewalk vxv, we should delete (x+ 1) last letters of W . So if x ∈ {1, 2}, then the
resulting word contains a square, and if x = 3, then this word will contain a square if we add
any letter on either side (the letter following or preceding a jump is uniquely determined by
this jump). So (a) also holds.

Proof of Theorem 20. Thue [46] showed that a square-free infinite ternary word contains all
six factors of the form ab and all six factors of the form abc. As for the jumps, Thue proved
that any two factors from different parts of the K3,3 graph in Fig. 1 can be absent. (This is
an optimal result: if only one jump from some part is present, the codewalk is the product of
factors 11, 22, 33 and then does not encode a square-free word by Lemma 21(2).) All three
possible cases (up to symmetry) with two absent jumps are depicted in Fig. 2. We say that
a square-free ternary word is of type i, i ∈ {1, 2, 3}, if it lacks two jumps connected by an
edge of weight i (in [46], types 1 and 2 are switched). Note that T has no factors 010 and
212 and thus is of type 2.

Assume that a square-free infinite ternary word U has the minimum subword complexity
among all such words. Observe thatU is recurrent since no suffix ofU has smaller complexity.
Then by Lemma 21(2) cwk(U) has no factors 11, 222, 223, 322, 333. Further, U avoids two
jumps, for otherwise pU(3) > pT(3). W.l.o.g., the two missing jumps are those indicated in
Fig. 2, depending on the type of U (if this is not the case, we replace U with its image under
an appropriate bijective coding). Note that all four remaining jumps occur in U infinitely
often due to recurrence. Hence U has eight factors of length 4, containing a jump. Let us
compute pU(4). For this, we need to consider the factors without jumps. First, let U have
type 1. Then 1021 and 2012 are factors of U because they are the only right extensions
of 102 and 201, respectively. If the factor 0120 is absent, then it is impossible to move by
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010 121 202

020 101 212

1 3

2

1

010 121 202

020 101 212

2 1
3

2

010 121 202

020 101 212

2 3
3

1

a (type 1) b (type 2) c (type 3)

Figure 2: Avoidance of two jumps in ternary square-free words. “Type” is the weight of the edge
between the avoided jumps.

the edge of weight 2 from the vertex 101 to the vertex 202; since cwk(U) cannot contain 11
or 333, there is a unique extendable closed work, labeled by 1312, from the vertex 101 to
itself. Visiting this vertex infinitely often, the codewalk of U must contain a square of 1312
in contradiction with Lemma 21(2). So the word 0120 must be a factor of U. The same
argument works for the factors 0210, 1201, 2102, which are responsible, respectively, for the
moves from 202 to 101; from 212 to 121; and from 121 to 212. Thus pU(4) = 14.

If U has type 3, the argument is similar. Namely, the factors 2012 and 2102 occur in U
as unique extensions of 201 and 210, respectively. The remaining four factors 0120, 0210,
1021, and 1201 are responsible for the moves by the edges of weight 3; if, say, 0120 is absent,
one cannot move directly from 020 to 202; hence the only extendable closed walk from 020 to
itself is labeled by 2313, because 11, 222, 223, 322, and 333 are forbidden by Lemma 21(2).
Hence we again have pU(4) = 14.

The situation changes if U has type 2: due to recurrence, neither of the words 1021, 1201
occurs in U (1021 is followed by 0, and thus can be preceded neither by 0 nor by 2; similar
for 1201). The remaining factors must present by the same argument as in the previous
cases. So U has type 2 and pU(4) = 12. (Moreover, T and U have the same factors up to
length 4.) To prove the theorem, it is enough to show that Fac(T) ⊆ Fac(U); the equality
then follows by minimality of complexity of U.

Consider the language C of all finite codewalks that can be read in the graph in Fig. 2b
and correspond to square-free words. We define two sequences of codewalks by induction:

A0 = 212, B0 = 3,

Ai+1 = BiBiAiAiAi, Bi+1 = BiBiAi.

Below we prove the following three statements, which immediately imply the desired inclusion
Fac(T) ⊆ Fac(U). We include in the preimage cwk−1(X) only the words of type 2 avoiding
the factors 010 and 212, as in Fig. 2b.

(i) Fac(U) ⊇ cwk−1(Ai) for every i ≥ 0;

(ii) ext(C) =
⋃

i≥0 Fac(Ai);

(iii) Fac(T) ⊆ Fac(cwk−1(ext(C))).
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(i) The codewalks AiAi, AiBi, BiAi, and BiBi are closed for all i. This fact immediately
follows by induction from the definition (for the base case, one may consult Fig. 2b).

We prove by induction that for each i some suffix of cwk(U) is an infinite product of
blocks Ai and Bi. The base case follows from the fact that cwk(U) has no factors 11, 222,
223, and 322. Hence, as the codewalk reaches one of the vertices 020, 202 (see Fig. 2b) it
infinitely proceeds between these two vertices with the paths labeled by A0 and B0; each
path occurs infinitely many times because cwk(U) is aperiodic.

Now we proceed with the inductive step. First let i = 1. The factors A0B0A0 and
B0B0B0 do not appear in the codewalks of square-free words by Lemma 21,2. Hence, B0’s
always occur in pairs. Further, the factor B0A0A0B0 cannot appear far from the beginning
of cwk(U), because otherwise it will be uniquely extended to A0B0B0A0A0B0B0A0, which
is the square of a closed codewalk, impossible by Lemma 21,2. Observing that the factor
A0A0A0A0 is also forbidden as the square of a closed codewalk, we see that there may be
either one or three consecutive blocks A0. Hence some suffix of cwk(U) can be partitioned
into the blocks B0B0A0A0A0 = A1 and B0B0A0 = B1. As in the base case, both blocks must
appear infinitely often to prevent periodicity. For the general case i > 1 the argument is
essentially the same. The only difference is in proving the fact that AiBiAi and BiBiBi are
forbidden: now Bi is a prefix of Ai by construction, so these two codewalks are extended to
the right by Bi, which gives us the square of the closed codewalk AiBi (resp., BiBi). The
inductive step is finished.

Thus we know that cwk(U) contains Ai (and even AiAi) for any i. Clearly, Ai is not
closed, so it corresponds to a walk from the vertex 020 to 202 or vice versa. Hence cwk−1(Ai)
consists of two words, each one corresponds to a walk in one direction. But Ai’s in the factor
AiAi correspond to walks in opposite directions (the codewalk AiAi is closed), so both words
from cwk−1(Ai) are factors of U. Statement (i) is proved.

(ii) As shown in the proof of (i), each Ai occurs infinitely often in cwk(U). Hence ext(C) ⊇⋃
i≥0 Fac(Ai). For the reverse inclusion, first note the following property implied by the proof

of (i). There is a function f(n) such that for every U of type 2 its suffix, equal to the product
of the blocks An and Bn, starts before the position f(n). Let V ∈ ext(C) and let n be such
that |V | ≤ |Bn|. Since C is factorial, a two-sided infinite word, all finite factors of which
belong to C, can be built by a standard procedure (start with V ; choose a, b ∈ {0, 1, 2} such
that aV b ∈ ext(C) and replace V with aV b; repeat infinitely and take the limit). Now we
take a suffix W of the constructed word such that W contains V at a position greater than
f(n). (Note that W = cwk(U) for a square-free infinite word U of type 2.) Then V is a
factor of one of the codewalks AnAn, AnBn, BnAn, BnBn. In each case, V is a factor of
An+2, and we have the desired inclusion ext(C) ⊆ ⋃

i≥0 Fac(Ai).

(iii) Since T is recurrent, its codewalk is recurrent as well, implying Fac(cwk(T)) ⊆ ext(C).
The result now follows.

Remark 22. The encoding (11) is such that if we replace t with any other word having
the language Fac(t), we get a ternary word with the language Fac(T). Now Remark 7 and
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Theorem 20 imply that the set of ternary infinite square-free words of minimum complexity
either is empty or has the cardinality of the continuum.

For symmetric words, the square-free ternary infinite word of minimum subword com-
plexity does exist. Recall that the Fibonacci word f is the fixed point of the binary morphism
defined by φ(0) = 01, φ(1) = 0. We define the coding ξ : (0→ 2, 1→ 1) and write f12 = ξ(f).
Now consider the 1-2-bonacci word F12 ∈ Σω

3 , which is the word beginning with 01 and hav-
ing the codewalk f12. This word was introduced by Petrova [29], who proved that F12 has
critical exponent 11/6 (reachable) and no length-5 factors of the form abcab. Also, F12 ap-
peared to have a nice extremal property related to square-free partial words [17, Proposition
13].

Theorem 23. The 1-2-bonacci word F12 has the minimum subword complexity over all
symmetric square-free ternary infinite words. This complexity equals 6n− 6 for all n ≥ 2.

Proof. Let u be a symmetric square-free ternary infinite word. Since u is aperiodic, it has a
special factor of length n for each n ≥ 0. (In the ternary case, a word v is called a u-special
factor if at least two of the words v0, v1, v2 are factors of u.) If v is u-special, then the
word ζ(v), where ζ is any bijective coding, is u-special as well, because of the symmetry
of u. Thus, there are at least six u-special factors of length n for each n ≥ 2. Together
with the fact pu(2) = 6 mentioned above, this gives the lower bound for the complexity of
u: pu(n) ≥ 6n − 6 for all n ≥ 2. So we are going to prove that the 1-2-bonacci word is
symmetric and its complexity matches this lower bound.

The codewalk f12 of the 1-2-bonacci word F12 has no 3’s and thus corresponds to a walk
in the subgraph of the K3,3 graph (see Fig. 3). By definition of F12, this walk begins at the
vertex 010. Let v be a factor of f12. Let us write fi = ξ(φi(0)) for all i ≥ 0. Then there is
i such that fi = uvw for some words u and w. Note that fi occurs in f12 infinitely often, in
particular, as a prefix and after each prefix fi+k, where k > 0.

010 121 202

020 101 212

1
2

2 1

2

1

Figure 3: The graph of jumps in the 1-2-bonacci word.

We call two codewalks equivalent (and write u ∼ v) if the corresponding walks, beginning
in the same vertex, end in the same vertex. For example, 21221 ∼ 2, because the walk 1221
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is closed. Similar to [29], we observe that

fi ∼

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

21, if i mod 6 = 1;

212, if i mod 6 = 2;

2, if i mod 6 = 0 or 3;

12, if i mod 6 = 4;

1, if i mod 6 = 5.

We note that the paths from the vertex 010, labeled by 21, 212, 2, 12, and 1, end in all five
remaining vertices. Thus, when reading the codewalk of F12, we read fi starting from each
vertex. Reading the word u from all vertices generates a bijection on the set of vertices;
thus, we read v from each vertex. Therefore, F12 contains all six factors with the codewalk
v. Since v is arbitrary, this means that F12 is symmetric.

Finally we compute the subword complexity of F12. Consider a F12-special factor V
such that |V | ≥ 6 and V a, V b ∈ Fac(F12). The codewalk of V has the form xv1 for some
v ∈ Fac(f12), x ∈ {ε, 1, 2}. The factors V a and V b of F12 have codewalks xv1 and xv2.
Hence both v1 and v2 are factors of f12, so v is f12-special. If U is another F12-special factor
of length |V |, then, similarly, its codewalk is of the form yu1 for some f12-special factor u
and y ∈ {ε, 1, 2}. Since f12 is a Sturmian word, it has only one special factor of each length.
But every suffix of a special factor is special, so w.l.o.g. u is a suffix of v.

Let v = v′u and assume v′ nonempty. The words U and V have suffixes of equal length
encoded by u1. Note that v′ encodes at least two letters of V (just two if v′ = 1), while y
encodes at most two letters of U (exactly two if y = 2). But f12 ∈ {1, 2}ω, so if y = 2 then
2u is f12-special and thus a suffix of v. Hence in this case the last letter in v′ is 2, implying
that v′ encodes at least three letters of V . Therefore, |V | > |U | in all cases, contradicting
the assumption v′ �= ε. Then v′ = ε, u = v, and x = y. Thus we proved that two F12-special
factors of the same length have the same codewalk. Due to symmetry, this means that F12

has exactly six special factors of every length n ≥ 5. Computing pF12(2) = 6, pF12(3) = 12,
pF12(4) = 18, pF12(5) = 24, pF12(6) = 30, we get pF12(n) = 6n−6 for all n ≥ 2, as desired.

Remark 24. As demonstrated in the proof of Theorem 23, the minimal linear growth constant
of an aperiodic symmetric infinite ternary word is 6. However, there exist such words with
linear growth constant 6 and critical exponent smaller than 11/6. An example of such word
is the 1-3-bonacci word F13 obtained similar to the 1-2-bonacci word: take the Fibonacci
word f , replace all 0’s with 3’s to get the codewalk f13 and take the word with this codewalk
as F13. The critical exponent of F13 is

5+
√
5

4

.
= 1.8090 · · · [29]; the fact that F13 is symmetric

and the equality pF13(n) = 6n for all n ≥ 5 can be proved as in Theorem 23.

Remark 24 suggests the following question.

Open Question 25. What is the minimal critical exponent of a symmetric infinite ternary
word with linear growth constant 6?
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As to the case of (7
4
)+-power-free words, our knowledge is quite limited. There are only

two well-known such words: the Dejean word [12] and the Arshon word [3]. The former one
is a fixed point of a morphism and possesses a partial symmetry: its language is stable under
cyclic permutations of the alphabet but not under transpositions; e.g., this language contains
only three of six possible factors with codewalks 12, 21, 22, 22. Due to such symmetry, the
Dejean word seems to contain too many factors to have a minimal complexity over all
(7
4
)+-power-free words, so we do not study it here. The Arshon word A, proved (7/4)+-

power free in [19], can be defined as follows: take the fixed point 0 · · · of the morphism
ρ : 0 → 01̃2, 1 → 12̃0, 2 → 20̃1, 0̃ → 2̃10̃, 1̃ → 0̃21̃, 2̃ → 1̃02̃ and apply the coding which
deletes all ∼’s. The word A is recurrent by [2, Thm 10.8.6 + Thm 10.9.5] and symmetric (for
any k ≥ 1, having ρ(a) one can obtain ρ(b) applying a cyclic permutation of the alphabet,
and ρ(ã) applying a transposition on the alphabet and switching all ∼’s). So we consider A
as a candidate word of minimal complexity over all symmetric (7

4
)+-power-free words. We

compute the subword complexity of A using the following characterization.

Lemma 26 ( [30], Lemma 2). Let η : 0 → 010, 1 → 011 and ξ : 0 → 132, 1 → 123 be
morphisms and let h be the fixed point of η. Then cwk(A) = 2ξ(h).

Theorem 27. The subword complexity of the Arshon word equals 12n− 12 for all n ≥ 9.

Proof. Let us prove that ph(n) = 2n for every n ≥ 1. We show by induction that Fac(h) has
exactly two special words of each length n ≥ 1. As usual, images of letters are called blocks.
The base case n ≤ 2 is checked by hand. For the induction step, note that all u ∈ Fac(h)
with |u| ≥ 3 have a unique factorization of the form u = v1η(v)v2, where v1 is a proper suffix
of a block, v2 is a proper prefix of a block, and v ∈ Fac(h) (one or two of the words v, v1, v2
can be empty). If u is special, i.e., u0, u1 ∈ Fac(h), then v2 = 01. Consider two cases.

If v1 is empty, the condition η(v)010, η(v)011 ∈ Fac(h) is equivalent to v0, v1 ∈ Fac(h);
hence u is special iff v is. The function that maps u to v is a bijection between the set
of special factors of length |u| and the set of special factors of smaller length |v|, which is
two-element by the inductive hypothesis.

In the second case, v1 is a non-empty suffix of η(a), and such a letter a is unique. As
above, we see that u is special iff the shorter word av is, and the reference to the inductive
hypothesis finishes the proof.

Now turn to the Arshon word. Due to its symmetry, to prove the theorem it suffices
to check directly that pA(9) = 96 and to show that for each n ≥ 9 there are exactly two
codewalks of A-special factors of length n (recall that the codewalk determines the length
of the word). For n = 9, such codewalks 131 and 212 can be found by hand; let V be an
A-special factor of length ≥ 10. Then cwk(V ) ends with 1 or 2 (if it ends with 1, 2, 3, or
3, then the letter following V is determined). Further, cwk(V ) contains one of the factors
1, 22, 22, 23, 32, 23, 32, which determines its position w.r.t. the blocks of ξ (see Lemma 26). So
if cwk(V ) ends with 1, 22, or 32, then the next letter of V is determined by ξ. Hence cwk(V )
ends with 12 and can be parsed as cwk(V ) = x′x12, where x is a (possibly empty) product
of ξ-blocks and x′ is a proper suffix of a ξ-block (the first letter of x′ can be underlined).
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Next we observe that in the case x′ ∈ {ε, 1, 2} V is A-special iff ξ−1(x) is h-special; in the
remaining case x′ determines a ξ-block ξ(a) and then V is A-special iff aξ−1(x) is h-special.
We call the obtained h-special word the approximate ξ-preimage of cwk(V ). Note that if
W is an A-special factor of length |V |, then the approximate ξ-preimages of cwk(V ) and
cwk(W ) have equal positive length.

Now take an h-special word u and consider the (A-special) word U such that cwk(U) =
2ξ(u)12. We observe that |U | = 9(|u| + 1) and u is the approximate ξ-preimage of cwk(U ′)
for every suffix U ′ of U of length > 9|u|, including U itself. In total, we have proved that the
approximate ξ-preimage defines a bijection between codewalks of A-special factors of any
given length n ≥ 10 and h-special factors of some other fixed length; so there are exactly
two such codewalks, as required.

If the answer to Open Question 25 is greater than 7/4, which looks plausible, then the Ar-
shon word will be a candidate for a symmetric (7/4)+-power-free word of minimal/minimum
complexity. However, the growth constants between 6 and 12 cannot be excluded from
consideration: note that the growth of the Thue-Morse word is strictly between the corre-
sponding growth constants 2 and 4 for binary words.

Open Question 28. Is there a symmetric (7
4
)+-power-free infinite ternary word of minimum

subword complexity? If yes, is the Arshon word an example of such word?

Open Question 29. What is the minimal linear growth constant of a (7
4
)+-power-free infi-

nite ternary word (in the general case and in the symmetric case)?

3.2 Other ternary words

When squares are allowed in ternary words, we can build words of smaller complexity. Here
we consider the special case of words with the complexity upper bounded by the function
2n+ 1. Let

G = 012020102012010201202 · · · (12)

be the fixed point of the morphism γ defined by 0 → 01, 1 → 2, 2 → 02. The word G is a
recoding of the sequence A287104 from Sloane’s Encyclopedia.

Lemma 30. pG(n) = 2n+ 1 for all n ≥ 0.

Proof. We use standard techniques (see, e.g., [8]), so we try to keep the proof short. Observe
that pG(2) = 5: the factors 00, 11, 21, and 22 are forbidden. It is sufficient to prove that
there are exactly two G-special words of length n for all n ≥ 1. For n ∈ {1, 2} one can
check that there is a unique special word ending in 0 and a unique such word ending in
1 (a G-special word cannot end in 2 because 21, 22 /∈ Fac(G)). Let V 0 be special; then
V 01, V 02 ∈ Fac(G), implying that γ(V )012, γ(V )0102 ∈ Fac(G) and thus γ(V )01 is special.
Similarly, if U1 is special, then U10, U12 ∈ Fac(G); γ(U)201, γ(V )202 ∈ Fac(G) and thus
γ(U)20 is special. Since each suffix of a special word is special, there are special words of
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every length ending in 0 and in 1. Now assume that the lemma is false; then for some n one
has DG(n) > 2, DG(1) = · · · = DG(n− 1) = 2.

Some case analysis is needed; all cases are similar, so we consider one of them. Assume
that two special words of length n end with 0. Since their suffixes are special, and only one
special word of length n− 1 ends with 0, these two words are aV 0 and bV 0, where a, b ∈ Σ3.
Let a = 0, b = 1 (the other case is a = 1, b = 2). Then we can write V = 2V ′. We have

02V ′01, 02V ′02, 12V ′01, 12V ′02 ∈ Fac(G) and hence

2γ−1(V ′)0, 2γ−1(V ′)2, 1γ−1(V ′)0, 1γ−1(V ′)2 ∈ Fac(G)

Then 2γ−1(V ′), 1γ−1(V ′) are two special words of the same length < n, ending with the same
letter 1; this is impossible by the choice of n. Studying all cases in the same way, we reach
the same contradiction. Thus the lemma holds.

Theorem 31. The critical exponent of the word G is 2 + 1
λ2−1

= 2.4808627 · · · , where
λ = 1.7548777 · · · is the real zero of the polynomial x3 − 2x2 + x− 1.

Proof. The critical exponent of G can be computed by Krieger’s method [23]. We recall the
necessary tools suitable for analyzing G specifically, rather than in full generality.

For a word w ∈ Σ∗
k, we let |w|a denote the number of occurrences of the letter a in w.

The Parikh vector of w is the vector �P (w) = (|w|0, . . . , |w|k−1). By norm of a vector we

mean the sum of its coordinates; so ‖�P (w)‖ = |w|. If w is a prefix of xω for some word x, we
say that w has period |x|. In this case, all factors of w of length |x| share the same Parikh

vector �P (x), so we can speak about “Parikh vector of the period”. If |x| is the minimal
period of w, we call x the root of w. The exponent of w then can be written as

exp(w) =
|w|
|x| =

‖�P (w)‖
‖�P (x)‖ .

The matrix Af of a morphism f : Σ∗
k → Σ∗

m is a nonnegative integer k ×m matrix, the i’th
row of which is the Parikh vector of f(i−1), where i = 1, . . . , k. For example, the morphism
γ has the matrix

A = Aγ =

⎛
⎝1 1 0
0 0 1
1 0 1

⎞
⎠

One has �P (f(w)) = �P (w)·Af . Note that the characteristic polynomial of A is x3−2x2+x−1,
so the maximal (and unique) real eigenvalue of A is λ.

A run in a finite or infinite word w is an occurrence of a factor v of w such that (a)
exp(v) ≥ 2 and (b) this occurrence cannot be extended in w to a longer factor with the same
minimal period. For example, the word G has run 2020 at position 2 with period 2, run
02010201 at position 3 with period 4, and run 2010201201020120 at position 4 with period
7; see (12). For G, as for every word containing squares, the critical exponent equals the
supremum of exponents of its runs. Since G is a fixed point of a morphism, its runs can be
grouped into infinite series in the following way:
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— take a run V at position i with root X (let G = UV · · · , |U | = i);

— take the occurrence of γ(V ) at position |γ(U)| and extend it to a run with period
|γ(X)|;

— take the obtained run as V and repeat.

For example, the runs mentioned above form the beginning of a series:

2020 → 02010201 → 22201020120102012000 → · · ·
at 2 at 3 at 4
U = 01 γ(U) = 012 γ2(U) = 01202
X = 20 γ(X) = 0201 γ2(X) = 0102012

no extensions extended left by 2, right by 0

In the case of G, the left (resp., right) extension is a longest common suffix (resp., prefix)
of γ-images of corresponding letters. Thus, the left extension is either 2 (the common suffix
of γ(1) and γ(2)) or ε, and the right extension is either 0 (the common prefix of γ(0) and
γ(2)) or ε. Empty and non-empty extensions alternate on the left as well as on the right.
Note that, for a run V , the first letter of X, the last letter of X, and the last letter of U are
all distinct because G contains no squares of letters; in addition, X[1] is preceded in G by
two other letters, so X[1] �= 1 because G contains no factor 21. This gives us the following
picture of left extensions in a series of runs (Xm is the root of the m’th run in the series):

γ−→ · · · 1 0 · · · 2︸ ︷︷ ︸
Xm

· · · γ−→ · · · 1222 · · · 0︸ ︷︷ ︸
Xm+1

· · · γ−→ · · · 2 0 · · · 1︸ ︷︷ ︸
Xm+2

· · · γ−→ · · · 0222 · · · 1︸ ︷︷ ︸
Xm+3

· · · γ−→ · · · 1 0 · · · 2︸ ︷︷ ︸
Xm+4

· · · γ−→

The boldface 2’s are non-empty left extensions; so empty and non-empty left extensions
alternate. The picture for the right extensions is similar (X ′

m is the length-|X| suffix of the
m’th run in the series, the boldface 0’s are right extensions):

γ−→ · · · 2 · · · 1︸ ︷︷ ︸
X′

m

0 · · · γ−→ · · · 2 · · ·000︸ ︷︷ ︸
X′

m+1

1 · · · γ−→ · · · 0 · · · 1︸ ︷︷ ︸
X′

m+2

2 · · · γ−→ · · · 1 · · ·000︸ ︷︷ ︸
X′

m+3

2
γ−→ · · · 2 · · · 1︸ ︷︷ ︸

X′
m+4

0 · · · γ−→

It is possible to compute the exponents of a run in a series in a uniform way. Namely, if one
has a series {Vm}∞0 such that V0 has root X, then the exponent of each Vm can be computed
by the following formula:

exp(Vm) =
‖�P (V0) · Am +

∑m
i=1

�Pi · Am−i‖
‖�P (X) · Am‖ , (13)

where �Pi is the sum of the Parikh vectors of the extensions which were added to γ(Vi−1) to
get Vi. Consider the series introduced above, with V0 = 2020. From the above description
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of extensions we have �Pi = (0, 0, 0) for odd i and �Pi = (1, 0, 1) for even i. Observing that
�P (X) = (1, 0, 1), �P (V0) = 2�P (x), we simplify (13) to get

exp(Vm) = 2 +
‖(1, 0, 1) · (Am−2 + Am−4 + · · ·+ Am−2	m/2
)‖

‖(1, 0, 1) · Am‖ . (14)

In the same way, we consider the series {V ′
m}∞0 starting with V ′

0 = 201201 at position 8. For

this run, �Pi = (1, 0, 0) for odd i and �Pi = (0, 0, 1) for even i. Thus we get an analog of (14):

exp(V ′
m) = 2 +

‖(1, 0, 0) · (Am−1 + Am−3 + · · · )+ (0, 0, 1) · (Am−2 + Am−4 + · · · )‖
‖(1, 1, 1) · Am‖

= 2 +
‖(1, 1, 1) · (Am−2 + Am−4 + · · ·+ Am−2	m/2
)‖+ [m is odd]

‖(1, 1, 1) · Am‖ . (15)

(The last equality stems from observing that (1, 0, 0)A + (0, 0, 1) = (1, 1, 1); We use the
Iverson bracket [..] to convert a boolean value into an integer.)

Further, assume that some other series {V ′′
m}∞0 exists. Then V ′′

0 appeared through ex-
tension of some word γ(ZaZ) on at least one side (given that G has no factor 11, a factor
of the form γ(ZabZ) needs at least three more letters to become a square). From the
above description of extensions it is easy to check that either ZaZ = 0 · · · 120 · · · 1 and then
V ′′
0 = (201 · · · 20)2 (the case Z = ε leads to V0 = (20)2), or ZaZ = 0 · · · 010 · · · 0 and then

V ′′
0 = (201 · · · 01)2 (the case Z = 0 leads to V ′

0 = (201)2); in particular, V ′′
0 = X ′′

0X
′′
0 . Com-

puting (13) for V ′′
m, we obtain the numerator as in (14) in the former case and as in (15) in

the latter one. On the other hand, it can be checked by hand that the shortest valid option
for the word ZaZ is 020120201, implying �P (X ′′

0 ) ≥ (4, 2, 3); so the denominator will be much
bigger than in (14), (15). Hence exp(V ′′

m) < min{exp(Vm), exp(V
′
m)}, so we can exclude from

consideration all series of runs, except for {Vm}∞0 and {V ′
m}∞0 .

Let us compute the limit limm→∞ exp(Vm) using standard machinery of Perron–Frobenius
theory; for details consult, e.g., [16, Ch. 13]. We describe the idea, omitting the plain
calculus. For large m, the vector (1, 0, 1) · Am is very close to the eigenvector of the matrix
A corresponding to its maximal eigenvalue λ; so the multiplication of this vector by A
corresponds, up to a small error, to its multiplication by λ. Next note that if we multiply
the matrix in the numerator of (14) by (A2 − I), where I is the identity matrix, we obtain
either Am − I or Am −A, depending on the parity of m. Hence, as m→∞, the numerator
multiplied by (λ2 − 1) approaches the denominator. Therefore,

lim
m→∞

exp(Vm) = 2 +
1

λ2 − 1
,

as in the statement of the theorem. The same argument applied to (15) leads to the same
limit for {exp(V ′

m)}. Thus it remains to show that for eachm the exponents exp(Vm), exp(V
′
m)

are below this limit. This fact is computationally obvious (both sequences {exp(Vm)} and
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{exp(V ′
m)} monotonically increase up to the limits of precision of floating-point arithmetic),

but its formal proof is rather tedious. For the sake of completeness, we provide it below.

We use (14), (15) to write, for �x ∈ {(1, 0, 1), (1, 1, 1)},

Cm =
Xm

Ym

=
‖�x · (Am−2 + Am−4 + · · ·+ Am−2	m/2
)‖+ [m is odd]·[�x = (1, 1, 1)]

‖�x · Am‖ . (16)

We have to show that Cm < 1
λ2−1

. We check this by hand form ≤ 2 and assumem ≥ 3 below.
First we note that the two eigenvalues of A, except for λ, are conjugate complex numbers
ν and ν∗; by Vieta’s formulas, the product of all eigenvalues of A equals 1, so |ν| = 1/

√
λ.

Let us represent an arbitrary nonnegative vector �x �= �0 in the basis of eigenvectors: �x =
x1�zλ+x2�zν +x3�zν∗ (�zλ is a positive vector by Perron–Frobenius theorem [16, Ch. 13, Thm2]
and x1 is positive). We define D�x = x1·‖�zλ‖ and E�x = |x2|·‖[�zν ]‖ + |x3|·‖[�zν∗ ]‖; here [�z]
denotes the vector having components which are absolute values of the components of �z.
Then |‖�x‖ −D�x| < E�x. Furthermore one has, for any m ≥ 0,

|‖�x·Am‖ − λm·D�x| = |λmx1·‖�zλ‖+ ‖νmx2�zν + ν∗mx3�zν∗‖ − λm·D�x| < λ−m/2·E�x, (17)

thus getting a two-sided bound for Ym. Next we show by induction that

Xm <
D�x

λ2 − 1
· λm − λE�x

λ− 1
· λ−m/2 (18)

for every m ≥ 3. The base cases m = 3 and m = 4 are checked directly; the approximate
numerical values are as follows:

�zλ ≈ (1.3247, 0.7549, 1)
�zν ≈ (−0.6624− 0.5623i,−0.8774 + 0.7449i, 1)
�zν∗ ≈ (−0.6624 + 0.5623i,−0.8774− 0.7449i, 1)

�x D�x E�x (18),m = 3 (18),m = 4
(1, 0, 1) ≈ 0.7221�zλ + (0.1389 + 0.2023i)�zν + (0.1389− 0.2023i)�zν∗ 2.2239 1.4820 4 < 4.2972 9 < 9.0231
(1, 1, 1) ≈ 0.9566�zλ + (0.0217− 0.2121i)�zν + (0.0217 + 0.2121i)�zν∗ 2.9460 1.2876 6 < 6.3682 12 < 12.463

For the step case we note that Xm+2 = Xm + Ym by (16) and use the upper bound for Ym:

Xm+2 = Xm + Ym <
D�x

λ2 − 1
· λm − λE�x

λ− 1
· λ−m/2 + λm·D�x + λ−m/2·E�x

=
D�x

λ2 − 1
· λm+2 − λE�x

λ− 1
· λ−(m+2)/2

Finally, using the bounds (17), (18) we compute

Cm =
Xm

Ym

<

D�x

λ2 − 1
· λm − (λ2 + λ)E�x

λ2 − 1
· λ−m/2

λm·D�x − λ−m/2·E�x

<
1

λ2 − 1
− (λ2 + λ− 1)E�x

(λ2 − 1)D�x

· λ−3m/2,

implying Cm < 1
λ2−1

and thus exp(Vm), exp(V
′
m) < 2 + 1

λ2−1
for all m.
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Conjecture 32.

1. The minimum subword complexity of a ternary
(
5
2

)+
-power-free infinite word is 2n+1;

2. Among all ternary infinite words with subword complexity bounded above by 2n + 1,
the word G has the lowest possible critical exponent.

3.3 Binary words

When we switch from (7
3
)-power-free to (7

3
)+-power-free infinite binary words, the Thue–

Morse word loses its status as the word of minimum complexity. Let us give an example of
a (7

3
)+-power-free infinite word with subword complexity incomparable to pt(n). Consider

the morphism g : Σ3 → Σ2 defined by the rules

0→ 01100100110 1001 0110 1001 1001,

1→ 01100100110 1001 0110 0110 1001,

2→ 01100100110 1001 1001 0110 1001.

It maps square-free ternary words to (7
3
)+-power-free binary words (see [37, Section 3]).

Theorem 33. Let g = g(T), where the morphism g and the ternary Thue word T are
defined above. Then pg(n) < pt(n) for infinitely many values of n.

Proof. Let m = 2k for some k ≥ 2 and compare the number of factors of length n = 27m−7
in g and t. Note that images of letters under g differ only by the factor of length 8 at
position 15. Hence a length-n factor of g contains exactly m such “identifying” factors (one
of them, possibly, only partially). Thus every length-n factor of g is uniquely identified
by its g-preimage of length m and its initial position inside the g-image of a letter. So
pg(n) ≤ 27 ·pT(m) = 27 ·3m = 81 ·2k. By (2) we have pt(n) = 2(n−1)+2k+5 = 86 ·2k−16.
Since 5 · 2k > 16, we obtain pg(n) < pt(n).

Open Question 34. What is the minimum value of α such that some α-power-free infinite
binary word u has smaller complexity than the Thue-Morse word? (Recall that “smaller”
means pu(n) ≤ pt(n) for all n and pu(n) < pt(n) for some n.)

It is known [7] that the critical exponent of a Sturmian word is at least (5 +
√
5)/2

.
=

3.61803 · · · , and the minimum is reached by the Fibonacci word f defined above. This result
can be slightly extended.

Theorem 35. For all integer constants c > 1, the minimum critical exponent of an infinite
binary word of subword complexity n+ c is (5 +

√
5)/2.

Proof. Infinite binary words of subword complexity n+c were characterized by Cassaigne [9,
Proposition 8] as having the form uf(v), where u is a finite word, v is a Sturmian word and
f is a morphism. Clearly, for any word z one has exp(f(z)) ≥ �exp(z)�. So it is enough to
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consider the case when v is 4-power-free. Fortunately, there are very few Sturmian words
with such small critical exponents.

Recall some necessary facts about Sturmian words. Every Sturmian word v is balanced :
for some irrational constant βv and all n > 0, every factor of v of length n contains either
�βvn� or �βvn	 zeroes. An infinite standard word beginning with 0 is defined by a positive
integer directive sequence {dn} as the limit of the sequence {sn} of finite words:

s−1 = 1, s0 = 0, sn = (sn−1)
dnsn−2 for n ≥ 1. (19)

Every Sturmian word has the same language as some standard word or its complement, so
we can assume v to be standard. Theorem 4 of [7] implies that a standard word having
dn > 1 in its directive sequence for at least one large enough value of n, is not 4-power-free.
(A closer analysis following the lines of [7, Prop. 15] shows that any n ≥ 3 works.) The
standard word satisfying dn = 1 for all n is the Fibonacci word f , and any standard word
s satisfying dn = 1 for all n > n0 is, according to (19), the image of f under the morphism
0→ sn0 , 1→ sn0−1. Hence it is enough to estimate subword complexity for the words having
the form uf(f). Consider a sequence of runs in f with exponents converging to (5 +

√
5)/2.

Since the limit is irrational, the lengths of these runs approach infinity. Due to the balance
property, the exponents of morphic images of the runs tend to the same limit. Hence the
critical exponent of uf(f) is at least (5 +

√
5)/2.

So, for the critical exponents smaller than (5 +
√
5)/2 we look at the infinite words with

linear growth constant bigger than 1; the next natural candidate is 2. As Theorem 37 below
shows, such words can have the critical exponent as small as 5/2. This gives an upper bound
for the value of α in Open Question 34. Note that the gap between 5/2 and (5 +

√
5)/2

is quite big, so the words with the linear growth constant between 1 and 2 also can play a
nontrivial role.

Remark 36. By backtracking, one can prove that the longest binary words avoiding 5/2-
powers and with subword complexity ≤ 2n are of length 38. They are

00110011010011001001101001100100110010,

00110011010011001001101001100100110011,

and their reversals and complements.

Theorem 37. Let τ : Σ3 → Σ2 be the morphism defined by 0 → 0, 1 → 01, 2 → 011 and
G be the word defined in Section 3.2. Then

τ(G) = 0010110011001001100101100100110010110011001 · · ·

has the lowest critical exponent among all binary words with subword complexity ≤ 2n. It
(i) avoids (5

2
)+-powers and (ii) has subword complexity exactly 2n for all n > 0.
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Proof. In the proof we refer to the properties of the word G (Lemma 30 and Theorem 31)
and their proofs. Recall that G has two special factors of each positive length n: one ends
in 0 and the other ends in 1. If V 0 (resp., V 1) is G-special, then τ(V )01 (resp., τ(V )0) is
τ(G)-special; since suffixes of special factors are special, τ(G) has, for each n ≥ 1, length-n
special factors ending in 0 and in 1. For (ii), we check by hand that for n ≤ 3 the word τ(G)
has just two special words. As in the proof of Lemma 30, we then assume that statement
(ii) is false, choose n such that Dτ(G)(n) > 2, Dτ(G)(n−1) = · · · = Dτ(G)(1) = 2, and do
case analysis. There are two τ(G)-special length-n words ending with the same letter; these
words have common suffix of length n− 1 by the choice of n. Consider the case where this
suffix equals 0v0 for some v ∈ Fac(τ(G)). From the condition

00v00, 00v01, 10v00, 10v01 ∈ Fac(τ(G))

we conclude that 0v = τ(V ) for some V ∈ Fac(G), and all words 0V 0, 0V 2, 1V 0, 1V 2 are
factors of G (the second conclusion uses the fact that G has no factor 21). Then both 0V
and 1V are G-special, contradicting the fact that G has at most one special word of a given
length ending with a given letter. The cases where the common suffix has the form 0v1, 1v0,
or 1v1 are similar and imply the same contradiction. Hence Dτ(G)(n) = 2 for all n ≥ 1, and
then pτ(G)(n) = 2n.

Let us prove (i). Since G has no factors 00, 11, 22, 21, 101, and 0202, the word τ(G)
has no factors 000, 1010, 1101, 010010, and 00110011; it also has no factor 111 by definition.
Hence the runs in τ(G) with periods ≤ 4 are 00, 11, 0101, 1001001, and 0110011001; consider
the last one. It is a (5

2
)-power obtained by extending the image of the run V0 in G by the

common prefix of τ(1) and τ(2): 0110011001 = τ(20201). From this point, we consider
runs of periods ≥ 5. By definition of τ , every u ∈ Fac(τ(G)) with |u| ≥ 5 can be uniquely
decomposed as u = u1τ(V )u2, where u1 ∈ {ε, 1, 11}, u2 ∈ {ε, 0, 01}, and u2 = ε iff V
ends with 2. If in addition u is a run, then u1 �= 11 and u2 �= ε by the non-extendability
condition. So if V has prefix X and the period |X|, then the period |τ(X)| is extended in u
by 1 or 2 letters to the right and by 0 or 1 letters to the left. Thus if V is not a run, then
exp(u) < 5

2
. So we assume that V is a run, i.e., V = Wm for some series {Wm}∞0 of runs in G.

According to the analysis given in Theorem 31, if {Wm}∞0 differs from {Vm}∞0 , {V ′
m}∞0 and

V = Lγm(W0)R for some L,R ∈ Σ∗
3, then either V ′

m = Lγm(V ′
0)R or Vm = Lγm(V0)R, and

both V0, V
′
0 are subsequences of W0. Hence exp(τ(V )) < min{exp(τ(Vm)), exp(τ(V

′
m))} and

the factor τ(V ) has exactly the same period-preserving extension in τ(G) as either τ(Vm) or
τ(V ′

m). Since we are interested in maximum exponents, we can further assume V = Vm or
V = V ′

m for some m.

It is easy to see that ‖�P (x)‖ equals the inner product of �P (x) by the vector (1, 1, 1) (we

count each letter once for computing length). Now observe that ‖�P (τ(x))‖ equals the inner

product of �P (x) by the vector (1, 2, 3) (computing the length of the τ -image of a word, we
count 0’s, 1’s, and 2’s in this word once, twice, and thrice, respectively). If vm, v

′
m are the

runs in τ(G) obtained from the τ -images of the runs Vm and V ′
m respectively, we observe that

τ(Vm) is always extended by 2 letters, while τ(V ′
m) is extended by 1 or 3 letters depending on
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the parity of m. So we get the following analogs of (14), (15) (the inner product is denoted
by 〈·, ·〉):

exp(vm) = 2 +

〈
(1, 0, 1) · (Am−2 + Am−4 + · · ·+ Am−2	m/2
), (1, 2, 3)

〉
+ 2〈

(1, 0, 1) · Am, (1, 2, 3)
〉 ,

exp(v′m) = 2 +

〈
(1, 1, 1) · (Am−2 + Am−4 + · · ·+ Am−2	m/2
), (1, 2, 3)

〉
+ 1 + 3 · [m is odd]〈

(1, 1, 1) · Am, (1, 2, 3)
〉 .

Now we define Xm, Ym, and Cm similar to (16) and proceed as in the proof of Theorem 31,
replacing all norms with the inner products by the vector (1, 2, 3). Namely, we define and
compute D�x and E�x, get the analog of (17) and prove the analog of (18) with the base cases
m = 3,m = 4 for �x = (1, 1, 1) and m = 3,m = 6 for �x = (1, 0, 1). Using (18) for big values
of m and checking the small values up to the base cases manually, we show that Cm < 1

λ2−1

for all m except for m = 0, �x = (1, 0, 1) (this is the exclusive case exp(v0) =
5
2
mentioned

above).
So we conclude that τ(G) has critical exponent 5/2, as required, and moreover this

exponent is reached solely by the factor 0110011001.

4 Large subword complexity in big languages

If a language Lk,α has an exponential growth function, then it seems quite natural that there
would be infinite α-power-free words over Σk having exponential subword complexity. For
example, Currie and Rampersad [11, Prop. 9] gave an example of a square-free word over Σ3

having exponential subword complexity.
Additional examples of such words can be provided using some standard techniques.

Below we give the examples for the minimal binary and minimal ternary power-free languages
of exponential growth.

Theorem 38.

(a) There is an infinite binary (7
3
)+-power-free word having exponential subword complexity.

(b) There is an infinite ternary (7
4
)+-power-free word having exponential subword complexity.

Proof. (a) First, create an infinite square-free word over Σ4 with exponential subword com-
plexity. For this, take an infinite square-free word u over Σ3 and an infinite word v of
exponential complexity over {2, 3}. For each i ≥ 1, replace the i’th occurrence of the symbol
2 in u with the i’th symbol of v. The resulting word obviously satisfies the desired prop-
erties. Now apply the 21-uniform morphism h : Σ∗

4 → Σ∗
2 from [18, Lemma 8]. The lemma

guarantees that the image of a square-free word is (7/3)+-power-free, and every uniform
injective morphism preserves the property of having exponential subword complexity.

(b) Start with an infinite (7/5)+-power-free word over Σ4, which exists by Pansiot’s result
[28]. As in (a), replace the occurrences of 3 in this word by an infinite word over {3, 4}
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with exponential subword complexity, getting an infinite (7/5)+-power-free word over Σ5

with exponential subword complexity. Now apply the 59-uniform morphism of Ochem [27,
Thm 4.2]. The result is guaranteed to be (7/4)+-free and to have exponential subword
complexity.

As usual, in such examples the growth rate of the subword complexity is barely above
1. Are there words having the subword complexity comparable to the growth function of
the whole language? It turns out that this problem is closely related to an old problem
by Restivo and Salemi [35, Problem 4]: given two square-free words u, v ∈ Σ∗

3, provide an
algorithm deciding whether there is a word w ∈ Σ∗

3 such that uwv is square-free. The same
decidability problem can be posed for any infinite language Lk,α (the solution does not need
to be uniform with respect to α). The only solved case is the case of small binary languages
(due to the existence of factorizations of type (1), it is easy to connect any right-extendable
u to any left-extendable v by an appropriate Thue–Morse factor).

Clearly, the interesting part of the problem is formed by the case where u is right-
extendable and v is left-extendable. To the best of our knowledge, there are no known tuples
(k, α, u, v) such that u is right-extendable in Lk,α, v is left-extendable in Lk,α, and no word
of the form uwv belongs to Lk,α. For our purposes, we restrict ourselves to the consideration
of two-sided extendable words.

We say that a language Lk,α has the Restivo–Salemi property if for every u, v ∈ ext(Lk,α)
there is a word w such that uwv ∈ ext(Lk,α).

Theorem 39. A power-free language Lk,α has the Restivo–Salemi property if and only if all
words from ext(Lk,α) are factors of some α-power-free infinite recurrent k-ary word u.

An already mentioned result of [39] says that L and ext(L) have the same growth rate,
so Theorem 39 implies the following.

Corollary 40. If a power-free language Lk,α possesses the Restivo–Salemi property, then
there is a symmetric α-power-free infinite recurrent k-ary word u with subword complexity
having the same growth rate as Lk,α.

Proof of Theorem 39. For the forward implication we endow Σ∗
k with the radix order (the

words are ordered by length, and the words of equal length are ordered lexicographically) and
build the word u by induction. As the base case, we build the prefix u0 = 0. For the inductive
step, assume that the prefix un was constructed so far. Let vn be the smallest in radix order
word from ext(Lk,α) that is not a factor of un. Then we take wn such that unwnvn ∈ ext(Lk,α)
and put un+1 = unwnvn. The resulting word u is α-power-free by construction. Further,
every word v ∈ ext(Lk,α) is a factor of some un and thus of u. Finally, for an arbitrary
v ∈ ext(Lk,α) and every n, there is a word x such that |x| > |un| and xv ∈ ext(Lk,α); since u
contains the factor xv, there is an occurrence of v in u outside the prefix un. Hence v occurs
in u infinitely many times. Thus u is recurrent and we proved this implication.

Now turn to the reverse implication. For arbitrary words u, v ∈ ext(Lk,α) each of them
occurs in u infinitely often, so we can find a factor of the form uwv. This factor also occurs in
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u infinitely often, allowing us to find arbitrarily long words x, y such that xuwvy is a factor
of u. Then uwv ∈ ext(Lk,α). Hence we proved the Restivo–Salemi property for Lk,α.

Remark 41. It is worth mentioning that for small binary languages, Theorem 39 works in an
extremal form. Since 2+ ≤ α ≤ 7/3 implies ext(L2,α) = Fac(t), the language L2,α trivially
has the Restivo–Salemi property; as we know from Corollary 3, all α-power-free infinite
binary words contain all words of ext(L2,α) as factors.

The following conjecture is based on extensive numerical studies.

Conjecture 42. [40, Conjecture 1] All power-free languages satisfy the Restivo–Salemi
property.

As an approach to Conjecture 42, we suggest the following.

Open Question 43. Prove the converse of Corollary 40.

Acknowledgement. The authors express their gratitude to the referees whose efforts help
to greatly improve the presentation.
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[12] F. Dejean. Sur un théorème de Thue. J. Combin. Theory. Ser. A 13 (1972), 90–99.

[13] C. F. Du, J. Shallit, and A. M. Shur. Optimal bounds for the similarity density of the
Thue-Morse word with overlap-free and (7/3)-power-free infinite binary words. Int. J.
Found. Comput. Sci. 26(8) (2015), 1147–1166.

[14] S. Ferenczi. Complexity of sequences and dynamical systems. Discrete Math. 206
(1999), 145–154.

[15] A. E. Frid and S. V. Avgustinovich. On bispecial words and subword complexity of D0L
sequences. In C. Ding, T. Helleseth, and H. Niederreiter, editors, Sequences and Their
Applications, Proceedings of SETA ’98, pages 191–204. Springer-Verlag, 1999.

[16] F. R. Gantmacher. The Theory of Matrices. Chelsea, 1960.

[17] D. Gasnikov and A. M. Shur. Ternary square-free partial words with many wildcards. In
Proceedings DLT 2016, Vol. 9840 of Lecture Notes in Computer Science, pages 177–189.
Springer, 2016.
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[46] A. Thue. Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske vid.
Selsk. Skr. Mat. Nat. Kl. 1 (1912), 1–67.

[47] I. N. Tunev and A. M. Shur. On two stronger versions of Dejean’s conjecture. In Proc.
37th Internat. Conf. on Mathematical Foundations of Computer Science. MFCS 2012,
Vol. 7464 of Lect. Notes in Computer Science, pages 801–813, 2012.

36


