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Abstract 

This paper explores the construction and validation of an artificial neural network (ANN) in 

order to accurately and efficiently predict the performance of a pilot-scale gasifier unit. This 

ANN model consists of multiple sub-networks that individually predict each of the desired 

gasifier outputs as a function of key system parameters. The ANN was trained using data 

generated for a large set of randomly-generated input conditions from a pilot-scale gasifier 

reduced order model (ROM) developed previously. The fully-trained ANN was validated by 

comparing its performance to the aforementioned ROM model. The validated ANN model was 

subsequently implemented into two optimization studies in order to determine the operating 

conditions necessary to maximize the carbon conversion under different limitations for the peak 

temperature of the gasifier and to determine the ideal input conditions of maximizing both the 

carbon conversion and production of hydrogen gas which are two conflicting objectives. This 

case study further showcases the benefit of the ANN, which was able to obtain accurate 

predictions for the gasifier results similar to the results generated by the ROM model at a much 

lower computational cost. 

Keywords: Artificial Neural Networks; Pulverized Coal Technology; IGCC Gasifier; Syngas 

Production; Multi-Objective Optimization 
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1. Introduction 

Approximately one third of total CO2 emissions at the present are produced from coal-fired 

electricity generation, making it the second largest production source of greenhouse gases.1,2 The 

demand for coal-based power plants is expected to continue to rise over the next several decades, 

which is expected to increase CO2 emissions and thus contribute negatively towards global 

warming. Motivated by the fight against climate change and the desire to reduce global 

greenhouse gas emissions, there is a current incentive and interest to develop and implement 

carbon capturing techniques and advanced pulverized coal combustion in the industry in order to 

reduce the footprint of coal energy production.3,4 In advanced pulverized coal combustion, coal 

is finely-ground such that it will burn as easily and efficiently as natural gas. There are several 

different advanced pulverized-coal technologies already on the market, including the integrated 

gasification combined cycle (IGCC) power plant. The IGCC power generation system is an 

advanced power system consisting of a gasification and quench unit, a water-gas shift reactor, a 

purification unit, a gas turbine, a heat recovery steam generator, a steam turbine and an air 

separation unit. In the IGCC process, fuel, oxygen, and steam are fed into a gasification unit to 

produce raw syngas mainly consisting of CO, H2 and CO2. IGCC has a number of key benefits 

over other pulverized-coal technologies, such as higher fuel flexibility, higher efficiency, 

reduced production of solid wastes, lower SOx, NOx, and CO2 emissions, marketable by-products, 

and higher energy output, which all have a positive benefit on air and water quality.5 

One of the most important processes in an IGCC is the gasification unit, in which the solid coal 

is converted into syngas (i.e. CO and ��). This syngas has a higher heating value than coal and 

thus it is a superior fuel to utilize in subsequent IGCC processes. As a result, there has been 

substantial interest in studying and optimizing the performance of IGCC gasification unit in 
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order to improve the efficiency of fuel and power generation, versatility, reliability, and 

economics in IGCC systems.6,7,8 Computational fluid dynamics (CFD) models are often used to 

simulate gasifiers because of their ability to explicitly handle gasification flows and mixing and 

therefore provide sufficiently accurate predictions.9 CFD modelling techniques have been 

frequently applied to simulate gasification and combustion in fluidized beds, and extensive 

reviews for this subject can be found in the literature.9,10 Most notably, Fletcher et al. developed 

a CFD model to simulate the flow and reaction in an entrained flow gasifier that they built based 

on the CFX package, which is a useful tool for gasifier design and analysis.11 Although CFD 

models are accurate and provide a more detailed outlook compared to other gasification 

simulation models, they are often found to be computational intensive which can significantly 

limit their implementation for optimization, online monitoring, and process control applications. 

This has motivated the development of alternative, computationally-efficient modelling 

techniques such as Reduced Order Models (ROMs),12 equilibrium models,13,14 and two-phase 

combustion models.15 Sahraei et al. proposed a reactor network ROM which utilizes plug flow 

reactor (PFR) and continuous stirred tank reactor (CSTR) models to simulate the different zones 

inside an entrained-flow gasifier, which is the most common gasifier unit used in IGCCs.12,16,17 

Similarly, Shastri et al. proposed an approximate gasifier model developed in ASPEN Plus in 

order to perform optimization using the CAPE-OPEN stochastic simulation capability on the 

gasification unit of an IGCC system.18 However, even though the ROMs and other equilibrium 

models require substantially lower computational costs compared to CFD models, they still 

require considerable numerical analysis and thus they are still computationally expensive for 

optimization, monitoring and online control applications. 

Artificial neural network (ANNs) is an alternative modelling method that can be used to predict 
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the performance of the gasification unit in IGCCs at reduced computational costs. ANNs require 

short CPU times to predict the system outputs given a set of input parameters, and thus they are a 

computationally attractive tool for predicting and optimizing complex systems such as a gasifier 

when compared to the ROMs and CFD models.16,19 As a result, there have been a handful of 

works within the literature that have applied ANNs to gasification systems.20,21,22 Ongen et al. 

proposed an ANN model to observe variations in the syngas related to operational conditions in a 

tannery industry wastewater treatment sludge gasification system.20 Mikulandric et al. analyzed 

the possibilities of neural networks to predict process parameters of a fixed bed gasifier in a 

biomass gasification process with high speed and accuracy.21  Puig-Arnavat presented an ANN 

model for biomass gasification process in fluidized bed reactors.22 Each of those works 

exemplifies how ANNs are a good and efficient mathematical tool for generating models to 

predict the input/output relationship between important parameters of gasification units. 

However, to the authors’ knowledge, ANNs have not been previously used to build up a model 

and perform optimization on entrained flow gasifiers in IGCC system. 

 

Motivated by this, the aim of this work is to produce an ANN model to describe and predict the 

behaviour between the main features of an IGCC pilot-scale gasification unit such as the 

composition, temperature distribution, and carbon conversion, and the main reactor inputs such 

as the inlet flowrates, inlet fuel temperature, and fuel composition. The proposed ANN model 

was trained and tested using sets of input and output data generated from a ROM model 

previously developed within our research group.23,12,16,24 We optimized our ANN architecture by 

incrementing the number of neurons in each networks’ hidden layers in order to obtain the ANN 

architecture with the minimum square error. Subsequently, we used the fully-developed 
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nonlinear ANN model to perform two different optimization studies on the gasifier system and 

gain insight on the optimal operation of this unit.  

This paper is organized as follows. Section 2 describes the pilot-scale gasifier configuration 

which is modeled in this work and introduces the ROM used this study to model the gasification 

unit. Section 3 describes the ANN model implemented in this work and presents the optimization 

of the network architecture. In Section 4, the ANN model is validated through comparison to the 

ROM developed previously. Section 5 subsequently presents an optimization case studies of a 

pilot-scale gasifier under different peak temperature limitations using ANN-based optimization 

and compare the computational time to the ROM-based optimization. Section 6 describes a 

multi-objective optimization to maximize both the carbon conversion and the production of H2 

using the generated ANN model. Concluding remarks are provided at the end. 

2. Pilot-Scale entrained-flow gasifier model 

The entrained-flow IGCC gasifier system modeled in this work consists of a tonne-per-day (TPD) 

pilot-scale gasifier owned by CanmetENERGY, Natural Resources Canada, which is briefly 

illustrated in Fig.1.25  This pilot gasifier is lined with refractory and insulation materials in order 

to reduce its heat loss, as it has a large surface area to volume ratio. As shown in Fig. 1, fuel, 

steam (H2O), oxygen (O2) and nitrogen (N2) are fed into the gasifier to produce raw syngas. At 

the gasifier inlet, oxygen is injected through the burner by eight jets and mixed with the fuel 

stream at a high velocity. Subsequently, steam preheated to 500 K is passed through the outer 

burner annulus at a low velocity, and the fuel is carried through the reactor inlet by a stream of 

nitrogen carrier gas. The pet-coke’s temperature often ranges from 270K to 330K before it is 

loaded into the gasifier, as the initial temperature significantly affects the gasifier temperature 

profile when the fuel is mixing with the steam. In addition, the composition of the pet-coke in the 
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fuel (i.e. the mass fraction of ash, volatiles, and moisture) plays a crucial role in the reaction 

process and the formation of the volatile products.  

As mentioned above, IGCC gasifier models are conventionally modelled using CFD models7,9,26, 

which can provide an accurate and detailed outlook for the gasification system but they can be 

extremely computationally expensive. This has motivated the development of more efficient 

modelling methods such as reduced order models (ROMs). These ROMs are an alternative 

approach that can be used to provide detailed information about the multi-phase flow structure of 

a gasification unit such as its solid particle concentration, composition, and temperature 

distribution along the length of the gasifier. Sahraei et al.12,16 proposed a reactor network ROM 

consisting of different plug flow reactor (PFR) and continuous stirred tank reactor (CSTR) 

models to simulate each of the different zones at steady state inside the entrained-flow gasifier 

mentioned above. The key input parameters of the ROM are inlet flow rate of pet-coke, steam, 

oxygen and nitrogen, the initial temperature of the pet-coke, and the percent composition of ash, 

volatiles, and moisture within the pet-coke. The pet-coke composition contained a molar fraction 

of 0.046 ash, 0.127 volatiles, and 0.005 moisture and 0.822 carbon. The ROM was developed 

over an explicit input parameter range determined experimentally on the pilot-scale gasifier, and 

consequently the ROM is only valid for this specific range of operating conditions.  

The performance of a gasifier can be described by the conversion of its reactants, the 

concentration of its desired products at the outlet, and the temperature distribution throughout the 

unit.17 In the ROM model, the carbon conversion is the main important output parameter for 

characterizing the gasifier performance, as it serves to measure the fraction of solid coal 

converted into the more useful syngas form. In addition, the gasifier products, i.e. CO and H2, 

provide a much lower heating value and require lower operating temperatures, and thus they are 
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able to achieve much greater efficiency than their solid fuel alternatives. Consequently, it is 

important to be able to predict the molar percentage of CO and H2 in the outlet gas flow as a 

function of the input parameters. Another significant observable of the gasifier system is the 

internal temperature, which has a significant effect on the reactions taking place. Specifically, the 

peak temperature of the gasifier are monitored in order to keep it below the maximum 

temperature that the refractory brick layer within the gasifier can bear.27 Furthermore, standard 

measurement devices such as thermocouples are often used in industrial reactors to monitor the 

temperature at key locations inside the unit. For the specific IGCC gasifier unit considered in the 

ROMs model work, there are four thermocouples located on the wall of the gasifier reactor, so 

that the operations can observe and monitor the temperature distribution at these discrete 

locations. The location of each thermocouple is detailed in Fig. 1. 

The ROM reactor network considered in this work decomposes the gasifier system into three 

different types of zones referred to as the jet expansion zone (JEZ), external recirculation zone 

(ERZ), and down-stream zone (DSZ) regions, as outlined in the Fig. 2.  

As shown in this figure, the JEZ and DSZ are modeled as plug flow reactors (PFRs) whereas the 

ERZ zones are modeled as continuous stirred tank reactors (CSTRs). Rather than solving the 

differential equations across the entire gasifier domain using CFD techniques, the ROM reduces 

the order of equations inside each gasifier zone, e.g. ERZ zones can be considered as a single 

node because of uniform particle and temperature distributions. In the JEZ region, the steam, and 

oxygen are suddenly expanded at the gasifier inlet, which causes the flow of fuel to spread out. 

When the flow reaches the gasifier wall, a portion of the stream recycles back to the top of the 

gasifier through the ERZ region while the rest of the stream flows towards the DSZ region at the 

bottom of the reactor. Inside each reaction zone, the gasifier’s behaviour is simulated based on 
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the flow characteristics (i.e. whether they are mixed or laminar) and the one-dimensional 

governing equations of gas and solid phases for mass, energy, and momentum are solved for 

each zone to provide a distribution of different properties. The conservation equations of mass, 

energy and momentum used to simulate each zone of the gasifier are listed in Table 1 (see the 

Nomenclature section for the definition of the model parameters). As indicated in previous 

studies,  the ROM used in this work was validated using both CFD simulation results and 

experimental data12 obtained from CanmetENERGY’s pilot-scale gasifier. A more detailed 

model description of the ROM as well as the descriptions for the model parameters presented in 

this table can be found elsewhere in the literature.12,16 However, it is important to note that even 

though the ROMs require substantially lower computational costs compared to CFD models, 

they still require considerable numerical analysis and thus they are still computationally 

expensive for optimization, monitoring and online control applications.  

3. ANN model development 

In this work, an artificial neural network was developed to calculate the key outputs of the pilot-

scale gasification unit such as the carbon conversion, outlet composition, peak temperature, and 

temperature at the thermocouples’ location, as a function of the relevant system parameters, such 

as the inlet gas flowrates, the inlet temperature, and the fuel composition. The developed ANN 

consisted of a number of sub-ANNs that were each developed to predict the performance of each 

output parameter individually as a function of the inputs. The sub-ANNs were developed using a 

two-layer neural network structure that consisted of a single hidden layer with a tan-sigmoid 

transfer function and an output layer with a linear transfer function, as illustrated in Fig.3. Note 

that the two-layer neural network structure was selected as the basis for the ANN as it is 

considered to be the most suitable structure for nonlinear model fitting regression problems.28 
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Furthermore, no significant performance improvements were observed when the number of 

layers in the ANN sub-networks were increased. Each ANN was trained using data obtained 

from the ROM reported previously in Section 2.12 The following sections will provide a brief 

overview of the ANN methodology implemented in this work. A general overview of the 

feedforward ANN structure and its backpropagation algorithm is provided, followed by a brief 

description of the gasifier variables that serve as the input and output parameters to the ANNs. 

Subsequently, the performance of various back-propagation algorithms on the ANN training are 

compared, and the optimal number of hidden layer neurons are determined for each ANN in 

order to optimize their predictive capabilities.  

3.1 Feedforward Artificial Neural Network Overview 

An ANN model consists of several layers of simple computing nodes, referred to as neurons, 

which predict different aspects of the input-output parameter relationship using nonlinear 

summing techniques. These layers typically consist of a number of hidden layers, as well as an 

output layer. The hidden layer of the ANN determines the relationship between the inputs and 

the outputs, and the values calculated by hidden layer neurons are subsequently fed to the next 

layer. In the output layer, a linear transfer function maps the hidden layer outputs onto the range 

of the desired output parameters. The neurons in each layer of the ANN are interconnected via a 

series of weighted connection lines, as illustrated in Fig. 3. Each neuron consists of a weighted 

linear function and a transfer function, as denoted in Fig. 4. Note that in this figure, ξi denotes the 

linear weights function for the ith neuron, which is defined as the sum of each of the jth outputs 

from the previous layer (input layer); whereas �� denote the input value of the jth input parameter 

from the j th neuron in the input layer, and the terms wi,j and bi in ξi denote the weight and bias 

values applied to the ith neuron, respectively. Furthermore, the function ƒ denotes the transfer 
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function applied to ξi. The transfer function applied in the hidden layers of an ANN usually 

consists of a sigmoidal function that maps ξi onto a nonlinear curve, whereas a linear transfer 

function is typically applied to the output layer to map ξi onto the range of the output parameters. 

In order for the ANN to function properly, it is necessary to adjust the weights and the biases of 

each neuron so that the ANN can predict the output results for a given set of input 

parameters.29,30 This can be accomplished through supervised training, in which the network is 

provided with a series of input parameters and their corresponding output values. At the 

beginning of the network training, each of the weights and biases (wi,j and bi) are randomly 

generated from a uniform distribution within the active range of the tangent sigmoid transfer 

function and their values are subsequently updated via backpropagation (BP).31,32 

ANNs are a machine-learning approach that seeks to determine the relationship between the 

input and output parameters. An adequately-trained neural network will have no access to the 

original training data after training has been completed and therefore it must rely on the trained 

neuron functions in order to predict a system’s outputs. Consequently, it is imperative to train an 

ANN such that it does not simply memorize the training data but rather so it learns to predict the 

relational patterns between the input and output parameters. In order to avoid overfitting in the 

neural network model, it is necessary to analyze the ANN performance during training in order 

to prevent the network from simply memorizing the training data. For the ANN training 

algorithm implemented in this work, an early stopping method is utilized that sub-divides the 

provided input-output dataset into three parts: the training set, the validation set, and the testing 

set.33,34 The training set is used for network training, which optimizes the weights and biases of 

each neuron so as to minimize the error between the ANN model outputs and the training data 

outputs. The validation and testing set are used to validate the performance of the ANN model. 
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Specifically, the network is tested using the validation set during training in order to evaluate its 

generalization. On the other hand, the network is only validated using the testing data after 

training has been completed in order to validate its prediction capabilities for conditions that the 

network has not seen previously. Note that the validation and testing sets ensure that the network 

is able to sufficiently predict the relationship between the input and output parameters for 

operating conditions outside of the training dataset. As a result, they serve as an important 

diagnostic of the network’s generalization and its ability to predict outputs for conditions outside 

of the training dataset. Consequently, these sets can be used to stop the network training before 

the training data is merely memorized and thus they provide a measure of guarantee that the 

fully-trained ANN model is not merely interpolating between the training data. Further details 

about the early stopping method are reported elsewhere in the literature.35 

3.2 Input and output training data 

The carbon conversion (T1), the molar composition of CO (T2) and H2 (T3), peak temperature of 

the gasifier (T4), and the temperature at the four thermocouples located on the wall of the gasifier 

reactor (i.e. T5-T8), all serve as the desired measurable outputs for the gasifier system, and thus 

are considered as the key output parameters (T) to be predicted using the ANN model. On the 

other hand, the key input parameters (P) that affect the gasifier performance are the injected fuel 

flowrate (P1), the oxygen flowrate (P2), the nitrogen flowrate (P3), the steam flowrate (P4), the 

initial fuel temperature (P5), and the fuel compositions of ash (P6), volatiles (P7), and moisture 

(P8). Consequently, these parameters serve as the inputs which the ANN model would use to 

predict the desired outputs. More information about each of these input and output parameters 

can be found in Section 2. Furthermore, Table 2 provides a comprehensive list of the input (P) 

and output (T) parameters, their nominal values, and the corresponding minimum and maximum 
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input parameter values over which the ANN was trained. These input ranges were determined 

experimentally using the ROM in order to guarantee that they are feasible and capable of 

obtaining reasonable results for both the ROM and ANN models.12,23
 Note that the parameter 

ranges reported in this table only showcase the values over which the developed ANN model can 

be applied, and therefore the gasifier behaviour was not analyzed under these conditions. 

Additionally, note that the fuel composition parameters (P6, P7, & P8) cannot be accurately 

controlled, as the fuel composition can only be coarsely altered by changing the type of coal used. 

Consequently, the ranges for these parameters were determined by applying a ±5% fluctuation 

around the expected values for each fuel component, as this was determined to provide 

satisfactory composition bounds via laboratory experiments.16 

In order to train the ANN model, it is necessary to generate a large number of data points for 

each model output using various combinations of each of the input parameters. For the study 

presented in this work, the ANN data was generated using 8,000 combinations of input 

parameters randomly generated from a uniform distribution, between their upper and lower 

bounds as listed in Table 2. Trial-and-error simulations were performed to determine a suitable 

data set for the identification of the ANNs. Increasing the sample size beyond 8,000 samples 

increases the computational effort but it does not improve the prediction capabilities of the 

ANNs. Each of these input parameter combinations were passed through the ROM in order to 

determine their corresponding output parameter values; these input and output parameters were 

subsequently paired up and fed into the training process used to generate the ANNs model. 

3.3 Selection of back-propagation algorithm 

The backpropagation method is one of the most crucial concepts for enabling the self-learning 

capabilities of an ANN.36 This methodology refers to the ability of a neural network to adjust the 
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values of its weights and biases based on the error in the network outputs.37 As a result, it is 

important to select a good back-propagation method to ensure that the network can accurately 

and efficiently learn to predict the outputs of a system given a set of inputs without being subject 

to overfitting.  

In this study, we compared eight different BP algorithms with the aim of choosing the best fitting 

algorithm for the gasifier data collected. Each BP algorithm considered is not discussed within 

this paper for the sake of brevity; further discussion about these algorithms can be found within 

the literature.38,39 Each BP algorithm was used to train a two-layer ANN with 10 neurons in the 

hidden layer in order to predict the outlet CO composition (T2) as a function of each of the input 

parameters P. 

The results of the network training for each BP algorithm are presented in Table 3. These results 

reveal that the Levenberg-Marquardt algorithm is the best BP algorithm for the ANN system 

considered in this work, as it managed to achieve the lowest mean squared training error with a 

minimum value of 2.30×10-7. Furthermore, the training was stopped after 138 epochs. Even 

though the Scaled conjugate gradient and One-step secant BP can achieve the similar error 

magnitude and R value to the Levenberg-Marquardt algorithm, both of them needed more 

training iterations which means that they required more time to obtain the optimal weights and 

bias of their corresponding ANN models. The weakest BP training algorithms are Gradient 

descent with momentum and Gradient descent, which needed the most iteration numbers to find 

the optimal weights and bias and produced the largest magnitude of mean squared errors of the 

trained ANN models. These results are further validated in Fig. 5 which showcases the training 

and validation mean square errors at each epoch of the network training using the Levenberg-

Marquardt algorithm. This figure additionally illustrates that the network training results were 
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reasonable, as the train and validation errors both displayed similar characteristics, and these two 

errors did not change significantly upon further training. As shown in Fig. 5, the validation error 

reached the minimum best validation mean squared error (MSE), when MSE of validation does 

not decrease for six consecutive epochs. As a result, the Levenberg-Marquardt algorithm was 

implemented to train the ANN model developed in this work. 

3.4 Neural network structure 

The aim of this section is to perform optimization on the number of hidden layer neurons for 

each of the eight sub-ANNs developed in this work to predict each gasifier output. Each sub-

network was developed using the two-layer architecture described previously, using the 

Levenberg-Marquardt algorithm for back-propagation. In this study, each sub-network was 

initialized with a hidden layer containing only a single neuron, and the sub-networks were 

trained to predict each of the model outputs as a function of the inputs. Subsequently, the number 

of neurons in each hidden layer was incremented by one and the networks were re-trained using 

the same data. This data was used to calculate the mean squared validation and testing errors for 

each network as a function of the number of hidden layer neurons. This process was repeated 

until the sub-network was observed to be memorizing the data, (i.e. when sub-network’s 

validation error decreased but its testing error was observed to increase), at which point the 

optimization process was terminated for that network. 

The results of the identification of the optimal structure for each of the ANNs developed in this 

work are shown in Table 4. The mean squared errors of carbon conversion (T1), CO composition 

(T2) and H2 composition (T3) are less than 1×10-6, which is sufficiently small, while mean 

squared errors of peak temperature (T4) and thermocouple temperatures (T5-T8) are notably 

larger than the remaining output parameter errors due to the higher orders of magnitude of values 



15 

 

compared to composition and conversion and these errors are still less than 1×102. Furthermore, 

the maximum percentage errors between the actual output by trained ANN and the target output 

generated by ROM for test set and validation set in training process are sufficiently low, i.e. < 3% 

for all the output parameters except for the temperature at thermocouple 1 (T5). Even though the 

maximum percentage error of temperature at thermocouple 1 (T5) are 6.0075% and 5.2366% for 

test set and validation set separately, which are larger than the errors of other output parameters, 

they are still relatively low enough and acceptable. Note that the maximum percentage errors 

between test and validation set are similar to each other for each output parameter, which means 

that there’s no overfitting in each ANN model. Figure 6 illustrates the optimal neural network 

structure for each of the sub-networks and provides the general framework of the ANN model 

considered in this study. Furthermore, Fig. 7 showcases the linear regression analysis between 

the ANN outputs generated using the optimal number of hidden neurons and the corresponding 

output targets for T2, the molar fraction of CO at the outlet. As can be seen by these results, the 

ANN can adequately predict the target output data given the non-linear relationship between the 

inputs and outputs for the output parameter (T2). A similar performance was observed for the rest 

of the output parameters but it is not shown here for brevity. A complete list of the weights and 

biases for each sub-ANN can be found in the supplementary material. These weights highlight 

that the gasifier conversion and temperature profile are strongly affected by the oxygen flowrate, 

mildly affected by the inlet fuel temperature, and inversely affected by the fuel flowrate. In 

addition, the peak temperature is inversely affected by the steam flowrate. Similarly, the outlet 

CO composition is strongly affected by the oxygen and steam flowrate and inversely affected by 

the fuel flow rate and the percent volatile composition within the fuel, whereas the outlet H2 
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composition experiences the opposite trends. These are in similar agreement with the trends 

reported elsewhere within the literature40.  

 

4. Model Validation 

The objective of this section is to test and validate the performance of the ANN model described 

previously in Section 2. The ANN’s performance was evaluated with respect to the ROM which 

has been reported previously in the literature.12,16 Note that this ROM has further been previously 

validated through comparison against CFD and experimental results, as detailed in the 

aforementioned articles. Note that the accuracy of the ANN is dependent on the predictive 

capabilities achieved via the training process described in Section 2. Therefore, the ANN output 

performance was validated subject to changes in each of the input parameters P listed in Table 2. 

In order to ensure good generalization for each ANN model, the trained ANN model was tested 

using 2,500 combinations of input parameter values that had not been previously used during the 

network training. As a result, each combination of the eight input parameters utilized in this 

study was generated afresh via random selection from a uniform distribution within the 

parameter ranges showcased in Table 2, i.e. the parameter ranges over which the networks were 

trained. Each of these combinations were inspected a priori in order to ensure that they were 

different from the data used to train the ANN model and its sub-networks. Table 5 presents 10 

out of the 2,500 combinations of input parameters used to validate the performance of the ANN. 

The performance of both the ROM and ANN models for these ten combinations of input 

parameters, as assessed through each of the eight output parameters, are illustrated in Fig. 8. 

Note that the outputs for the remaining 2,490 sample points used for model validation are not 

shown here for the sake of brevity; however, their results were comparable to those illustrated in 
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Fig. 8. In addition, Table 6 displays the sum of squared errors of the outputs between the results 

of the ROM and the ANN model for the full batch of 2,500 input operating condition 

combinations. These results show that the ANNs model is able to adequately capture the 

behavior of the gasifier unit, and that the ANN model is not overfitting. As shown in Fig. 8, the 

profile of each eight outputs determined using the ROM match those determined using each of 

the ANN sub-networks. Furthermore, Table 6 shows that the errors in the ANN-predicted 

outputs remain sufficiently low, i.e. < 2.5 × 10-3 and < 6 × 10-2 for the mean and maximum 

relative errors respectively for all eight output parameters.  Note that the sum of squared errors 

for each of the temperatures (i.e. the peak temperature and the temperatures at the thermocouple 

locations), as shown in Table 6, are notably larger than the remaining output parameter errors; 

this is because the temperatures are of higher orders of magnitude compared to the other outputs, 

and thus they are subject to larger absolute errors. With regards to the computational cost, the 

ROM model and the ANN model required on average about 257s and 1.6 × 10-3s of CPU time 

per simulation, respectively (Intel® Core™ i7-4770 CPU @ 3.40Hz, 3392 Mhz, 4 Core(s), 8 

Logical Processor(s)). This difference in the computational time illustrates that the ANN is 

approximately 1.6 × 105 times faster than the ROM model. This demonstrates that the ANN is 

significantly more computationally efficient compared to the ROM, while achieving sufficiently 

similar results. Overall, this validation study demonstrates that the ANN model is able to predict 

the steady state behavior of the gasification reactor accurately and can be used to perform 

optimization studies. 

5. Optimization: Carbon Conversion 

Integrated Gasification Combined Cycle (IGCC) system using coal gasification is an crucial 

component of future energy alternatives. Since gasification is the most important component of 
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this system, it is particularly critical to understanding the operation and optimizing the 

gasification unit.41 In industrial applications, the performance of a gasification unit in an IGCC 

plant is characterized by its conversion of carbon (T1) into gaseous products such as CO, CO2 

and CH4; as a result, it is crucial to manufacture IGCCs that meet or exceed specific carbon 

conversion requirements in order to maximize the gasifier performance.42,43 Note that the peak 

temperature of the gasifier reactor should be constrained to be within a reasonable range to avoid 

damaging the refractory wall due to the high temperature. For different gasifier reactor types, the 

material of the reactor wall would be different and therefore, the constraints of the peak 

temperature of gasifier can be adjusted so that they do not impose a safety hazard. Motivated by 

this, the first objective of this section is to optimize the gasifier carbon conversion at the reactor 

outlet under different peak temperature limitations using the ANN gasification model developed 

in Section 3. This optimization study was performed with respect to each of the input parameters 

�	mentioned in Section 3.2 according to the following optimization formulation: 

max� ��
��            (1) 

Subject to:	
���	�����  
��	
�� ≤ ��,���  
���� ≤ 	� ≤ ����  
where ����  and ����  represents the lower and the upper bounds for all the eight input 

parameters considered in � , which can be found in Table 2. ��,���  denotes the maximum 

allowable temperature that the refractory wall can bear, and the function of carbon conversion 

(��) is a nonlinear function estimated by the ANN gasification model. The above optimization 

formulation was performed using different bounds of the peak temperature, i.e. ��,���	 was set to 
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2,400K, 2,500K, 2,600K, and 2,700K. This was done to obtain an insight to the effect of peak 

temperature limitation on the optimized results of carbon conversion and the remaining gasifier 

parameters. The results of the input parameters obtained from the different optimization runs 

were additionally fed into the ROM in order to validate the results of the ANN model, and the 

corresponding results of carbon conversion from ROM are similar to the optimized carbon 

conversion values run by ANN model. Then, these results from optimization by ANN were 

compared to the nominal reactor conversion predicted by the ROM using the nominal input 

values presented in Table 2. Note that the results from this optimization study were compared to 

the training data in order to ensure that they were not included among the original data used to 

train and validate the network. 

The results of the optimization study are presented in Table 7. As can be seen by these results, 

the maximum carbon conversion increases correspondingly with the limitations of peak 

temperature rising. Notably, the maximum carbon conversion increases drastically from 0.8111 

to 0.9702 when the limitation of peak temperature changes from 2,400K to 2,600K. While peak 

temperature limitation increases from 2,600K to 2,700K, the maximum carbon conversion does 

not increase notably (differences noted beyond five decimal digits). This result is consistent with 

the results obtained by ROM, as the percent error in the optimal carbon conversion between both 

modelling methods remain below 0.3% for the four different peak temperature limitation case 

studies considered here. At the nominal operating conditions (��� � listed in Table 7, the ROM 

predicted a carbon conversion of 0.9134, which is about 5.85% lower than the value obtained 

from the present optimization case study (Case 3 & Case 4 in Table 7). Note that according to 

the results in Table 7, higher carbon conversions are associated with higher steam flow rates; 

thus, increasing the steam flow rates can promote higher carbon conversions. The results from 
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the optimization also indicate that, as the maximum allowed peak temperature constraint is 

relaxed, the carbon conversion tends to increase significantly up until it reaches approximately 

0.97 conversion, which seems to be the highest conversion that can be achieved for the nominal 

operation of the pilot-scale gasification unit considered in this study, when the limitation increase 

beyond ��,���	= 2,600K, the conversion does not tend to change significantly. Furthermore, the 

results also illustrate that a lower fuel flowrate, a higher steam flowrate, a higher inlet fuel 

temperature, and higher mass fraction of ash, volatiles and moisture would also lead to a higher 

carbon conversion. As a result, the optimization study predicts that higher ratios of steam and 

oxygen to pet-coke are required in order to obtain higher carbon conversions. Table 7 

additionally shows that the optimization results obtained using the ANNs are similar to the 

values obtained using the ROM, which demonstrates that the ANN is able to accurately predict 

the gasifier outputs for optimization applications. Each of the optimization runs required an 

averaged CPU time of 0.0808s, however, the same optimization study using the ROM required 

7,573s; i.e. at least four orders of magnitude the time needed to perform the same optimization 

using the ANN.  

6. Multi-objective optimization 

Another key performance indicator of an IGCC gasifier is the composition of the syngas it 

produces. Specifically, specific syngas components such as H2 require lower operating 

conditions than others, and it is thus beneficial to maximize the molar fraction of hydrogen in the 

final syngas composition so as to improve its efficiency. In an ideal gasifier system, it is 

desirable to maximize both the carbon conversion and the production of H2. However, these two 

objectives have been observed to be in conflict with each other, as the input conditions required 

to maximize carbon conversion negatively impact the hydrogen production, and vice versa.12 
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Motivated by this, a second optimization study was performed with the aim to analyze the 

relationship and determine the optimal trade-off conditions between these two conflicting 

objectives. This multi-objective optimization study was performed with respect to each of the 

input parameters �	mentioned in Section 3.2 according to the following optimization formulation: 

max�[
1 − $� ��
�� + $�&
��]         (2) 

Subject to:	
���	�����  
��	
�� ≤ ��,���  
���� ≤ 	� ≤ ����  
where the parameter $  is a weight which denotes the significance of each of the individual 

objective functions, i.e. carbon conversion (��) and hydrogen molar fraction in outlet (�&). In the 

above optimization formulation, the maximum allowed peak temperature was fixed at ��,���	 = 

2,600K based on the optimization results obtained for the first case study discussed above. 

Furthermore, the upper and lower bounds �)*+ and �),-	are defined by the values listed in Table 

2. For this multi-objective optimization study, the weight parameter $ was changed from 0 to 1 

by increments of 0.1. The results of the multi-objective optimization obtained using the ANN 

model were validated by running the ROM as shown in Table 8. Note that the errors between the 

two modeling methods remained below 2.2%, showcasing that the ANN is capable of predicting 

the gasifier behaviour with sufficient accuracy compared to the ROM. Fig. 9 provides a graphical 

illustration of the pareto front for the feasible search space accessible to the gasifier model that is 

formed based on the solutions to problem (2). As indicated in this figure and in Table 8, when $ 

increases, the mole fraction of H2 in the outlet syngas increases whereas the carbon conversion 

decreases, as was expected. Note that since the carbon conversion values (��) are much larger 
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than the hydrogen molar fraction values (�&), there is a slowly-decreasing trend of the results of 

carbon conversion between $ = 0 and $ = 0.8. When $ reaches 0.9, the value of $�&
�� is 

similar to 
1 − $���
��, and consequently the optimized H2 fraction begins to rise significantly 

whereas the carbon conversion starts to decrease drastically corresponding to the notable 

decrease in the oxygen-to-fuel ratio at $ = 0.9. 

In order to determine the ideal trade-off point between the carbon conversion and the hydrogen 

production, the ANN gasifier model was implemented into a 1-norm bi-objective optimization 

scheme. This optimization approach seeks to minimize the 1-norm distance between the feasible 

search space, as defined by the pareto front, and the utopia point (i.e. the infeasible point that 

optimally satisfies both objectives simultaneously),44 in order to determine which set of feasible 

conditions yield results that are closest to the utopia point (measured in terms of a 1-norm 

distance). The 1-norm minimization problem can be formulated as follows: 

min� 0 12,345612
��12,345612,378 + 19,345619
��
19,345619,378:        (3) 

Subject to: 
��� �����  

�� 
�� ≤ ��,���  

���� ≤  � ≤ ����  

where ��,���  and �&,���  denote the maximum conversion and H2 molar fractions obtainable 

within the optimization constraints of problem (2) and define the utopia point, (��,���, �&,���). 

Note that the maximum conversion (��,���) and minimum H2 molar fraction (�&,���) values are 

obtained by solving a single-objective optimization study that maximizes the carbon conversion, 

i.e. when $ = 0 in problem (2); similarly, the minimum conversion (��,���) and maximum H2 
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fraction (�&,��� ) values are obtained by solving the optimization study that maximizes the 

hydrogen production, i.e. when $ = 1. In addition, the constraint parameters ����, ����, and 

��,��� were fixed to the same values used in problem (2). The results of this optimization study 

are listed in Table 8 (1-norm); in addition, the utopia point and the optimal trade-off point are 

denoted in Fig. 9. Under these optimal conditions, the carbon conversion �� = 0.7494 is at 52.2% 

of the utopia point conversion, whereas the molar fraction of H2 in the outlet syngas �& = 0.265 
is at 42.7% of the syngas hydrogen fraction at the utopia point, as shown in the Fig. 9. These 

results reveal that it is not possible to significantly improve the hydrogen production within the 

gasifier without also noticeably reducing the carbon conversion. Note that the ANN model only 

required about 0.1617s of CPU time to determine the optimized results for the multi-objective 

optimization described above. However, it is challenging to conduct the same optimization study 

using the ROM model due to the computation costs; hence, this demonstrates that the ANN is 

significantly more computationally efficient compared to the ROM, while achieving sufficiently 

similar results. Hence, the optimization using ANN shows that it is particularly efficient and 

accurate to perform optimization studies on the pilot-scale gasification unit.  

6. Conclusions 

The main objective of this work was to build an ANN consisting of eight sub-networks in order 

to predict the key outputs of an IGCC gasification system as a function of eight key system 

parameters. These sub-ANNs were constructed using a two-layer structure consisting of a single 

hidden layer in addition to the output layer. The number of neurons in the hidden layer were 

determined via optimization for each network. In addition, tests were performed to determine 

which back-propagation algorithm would provide the fastest and most reliable network training. 

The networks were each trained by a series of input/output data generated using a ROM 
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developed in a previous study. The ANN was successfully validated and was able to accurately 

predict the gasifier outputs at significantly lower computational costs compared to the ROM 

model. The ANN was subsequently used to perform two different optimization studies on the 

pilot-scale gasifier unit. In the optimization studies, we found that increasing the peak 

temperature limitation of the reactor can lead to a higher maximum carbon conversion, and from 

the utopia point of the multi-objective optimization, it seems unlikely to improve H2 production 

significantly without reducing the carbon conversion within the gasifier. The results also show 

that the computational time of the optimization by ANN is at least four orders of magnitude 

faster when compared to the ROM-based optimization. Accordingly, as part of the future work, 

we can extend the application of ANNs to model the transient behaviour of a gasification system 

and perform online optimization and control of this system. 
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Nomenclature 

A	 Area (m2) 

D� Bias applied to Eth neuron 

C	 Concentration (mole/m3) 

GH Heat capacity (J/kg/K) 

I Transfer function applied to J� 
K	 L Volumetric force (N/m3) 

M Gravitational acceleration (m/s2) 

h	 Convection coefficient (W/m2/K) 

H	 Enthalpy (J/kg) 

k	 Thermal conductivity (W/m/K) 

m	 Mass (kg) 

m	L Mass flux (kg/m2/s) 

M	 Mass flow (kg/s) 

N	 Density of particle (1/m-3) 

� Vector of key input parameters 

����  Upper bounds on key input parameters 

���� Lower bounds on key input parameters 

���  Gasifier nominal operating conditions 

S� Injected fuel flowrate (kg/h) 

S� Oxygen flowrate (kg/h) 

S& Nitrogen flowrate (kg/h) 

S� Steam flowrate (kg/h) 

ST Initial fuel temperature (K) 

SU Mass fraction of ash in fuel 

SV Mass fraction of volatiles in fuel 

SW Mass fraction of moisture in fuel 

Q	L Heat flux (W/m2) 
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  Q	L Heat flux (W/m2) 

r	 Radius (m) 

t Time (s) 

�	 Temperature (K) 

[ Vector of key output parameters 

�� Carbon conversion 

��,��� Maximum gasifier carbon conversion 

��,��� Minimum gasifier carbon conversion 

�� Molar composition of CO in the syngas 

�& Molar composition of H2 in the syngas 

�&,��� Maximum gasifier H2 molar fraction 

�&,��� Minimum gasifier H2 molar fraction 

�� Peak gasifier temperature (K) 

��,��� Maximum allowable peak gasifier 
temperature (K) 

�T Temperature, thermocouple 1 (K) 

�U Temperature, thermocouple 2 (K) 

�V Temperature, thermocouple 3 (K) 

�W Temperature, thermocouple 4 (K) 

\	 Velocity (m/s) 

$ Multi-objective significance weight  

$�,� Weight applied to Eth neuron, ]th input 

�	 Molar fraction 

�� Input value, ]th input 

z Axial domain (m) 

_	 Volume fraction 

δ	 Slag thickness (m) 

J� Linear weights function, Eth neuron 

ρ	 Density (kg/m3) 
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Figure Captions 

Figure 1 (a) Configuration of the pilot-scale gasifier; (b) Inflow structure of the gasifier 
and its feeds 

Figure 2 (a) Reactor network of the gasifier; (b) Corresponding regions of the reactor 
network inside the gasifier 

Figure 3 Brief overview of the neural network structure 

Figure 4 The structure of a neuron and its activation function  

Figure 5 Mean square errors obtained during training, validation, and testing, using the 
Levenberg-Marquardt algorithm 

Figure 6 Optimal neural network structure for the IGCC pilot-scale gasifier 

Figure 7 Regression between the network output values and the target output values for T1   

Figure 8 Comparison of the gasifier outputs obtained for the first ten combinations of input 
validation data as generated by the ANN model (represented as blue circles) and 
the ROM (represented as red dots) 

Figure 9 Multi-objective optimization: pareto front, utopia point and 1-norm point 
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Table 1  
Mathematical model of the multi-phase flow in the ROM 

 

  
  

Gas phase 
 

Momentum −∂
Acd_efe\e��∂x + Acd
−�S�g + _efeg − Ke	,iL − Ke	,jL � = 0 

Mass 
∂
∂x kAcdle	,mnn	

o
_eCe7�o� p − ∂qAcd_e\eCe7r∂x + AcdqMSe7tmumvw +MSe7twxwr = 0 

Energy kAcdye	,mnn ∂�z∂x p −
∂{Acd_e\eCe|}|~���e�e�

∂x + Acdq_eHS	tmumvw + HSe	twxwr + Q�w��	e→�L − Q�w��	e→�L − Q�→�L = 0 
 

Solid phase 
 

Momentum 
− ∂∂x qAcd_jfj\j�r + Acdq_jfjg + Ke	,jL r = 0 

Mass −∂qAcd_j\jGj	 r∂x + AcdqMS�twxwr − m���ee��eL = 0 

Energy 
− ∂∂x {Acd_j\jGj�jj�j� + Acdq_�HS	tmumvwr − Q�w��	�→eL − Qv��	�→�L −m���ee��eL h� = 0 

Number of 
particles 

∂
AcdN�\j�∂x + m���ee��eL
m� = 0 
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Table 2 
List of the key gasifier input and output parameters, their nominal values, and the upper and 

lower input parameter bounds over which the ANNs were trained. 

Input parameters (P) 
 

Nominal conditions 
(��� � 

Lower bound 
(����� 

Upper bound 
(����� 

P1: Fuel flowrate (kg/h) 41.2 41.2 52.3 
P2: O2 flowrate (kg/h) 37.2 28.4 37.2 
P3: N2 flowrate (kg/h) 12.1 11.0 12.1 
P4: Steam flowrate (kg/h) 10.7 0 21.8 
P5: Fuel temperature (K) 300 270 330 
P6: Mass fraction of ash in fuel  0.046 0.0414 0.0506 

P7: Mass fraction of volatiles in fuel  0.127 0.1143 0.1397 

P8: Mass fraction of moisture in 
fuel  0.005 0.0045 0.0055 

Output parameters (T) 
 

Output values at nominal condition 

T1: Conversion  
0.9134 

T2: Outlet CO composition 
0.5135 

T3: Outlet H2 composition 
0.2176 

T4: Peak temperature (K) 
2.6631 × 103 

T5: Temperature: Thermocouple 1 (K) 
1.9114 × 103 

T6: Temperature: Thermocouple 2 (K)  
1.7864 × 103 

T7: Temperature: Thermocouple 3 (K) 
1.6726 × 103 

T8: Temperature: Thermocouple 4 (K) 
1.6090 × 103 
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Table 3 
Comparison of the backpropagation algorithms 

BP algorithm R values 
Mean squared 

error 
Iteration 
number 

Levenberg-Marquardt  0.999 2.30×10-7 138 
Scaled conjugate gradient  0.999 6.36×10-7 363 
One-step secant BP  0.999 3.71×10-7 349 
BFGS Quasi-Newton  0.996 1.12×10-5 128 
Gradient descent with momentum and 
adaptive LR  

0.998 1.85×10-4 227 

Gradient descent with momentum  0.980 0.0178 1,000 
Resilient backpropagation  0.999 1.70×10-6 600 
Gradient descent  0.998 0.0155 1,000 
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Table 4 

The optimal number of hidden layer neurons, and resulting testing and validation errors, for each 
output parameter captured by the ANN 

Output parameters 
Neuron 
number 

MSE Maximum percentage error  

test validation test validation 

Conversion (T1) 5 4.7259 × 10-6 4.7259 × 10-6 2.5641% 2.6741% 

CO composition (T2) 4 5.1430 × 10-7 4.4308 × 10-7 1.2188% 1.5834% 

H2 composition (T3) 3 3.0349 × 10-7 4.3752 × 10-7 2.2514% 1.7657% 

Peak temperature (T4) 5 47.6507 57.6080 2.4972% 2.2134% 

Thermocouple 1 (T5) 6 46.1238 43.5570 6.0075% 5.2366% 

Thermocouple 2 (T6) 6 15.2896 17.2068 2.9233% 2.5796% 

Thermocouple 3 (T7) 6 3.9126 3.6703 1.5751% 1.4401% 

Thermocouple 4 (T8) 6 2.2825 2.6484 0.7688% 1.2136% 

 
 

 

 

 



35 

 

Table 5 
First ten combination of input parameters used to validate the ANN 

 
 

Input 
parameter 

1 2 3 4 5 6 7 8 9 10 

P1 (Fuel 
flowrate, 

kg/h) 

44.93 48.19 50.80 43.67 45.42 43.60 46.11 46.68 49.68 42.90 

P2 (O2 
flowrate, 

kg/h) 

35.48 34.31 32.08 31.57 29.40 29.18 30.06 36.48 35.22 35.87 

P3 (N2 
flowrate, 

kg/h)  

11.40 11.63 11.37 11.28 11.62 11.89 12.02 11.91 11.99 11.63 

P4 (Steam 
flowrate, 

kg/h)  

20.46 0.12 20.99 18.05 16.46 16.39 3.92 6.72 20.42 6.01 

P5 (Fuel 
temperature, 

K)  

280.24 277.59 324.90 313.38 309.90 319.86 306.71 287.15 272.94 321.78 

P6 (Mass 
fraction of 

ash) 

0.0466 0.0484 0.0469 0.0452 0.0498 0.0429 0.0428 0.0470 0.0490 0.0449 

P7 (Mass 
fraction of 
volatiles) 

0.1389 0.1346 0.1392 0.1376 0.1277 0.1390 0.1210 0.1272 0.1267 0.1269 

P8 (Mass 
fraction of 
moisture) 

0.0046 0.0048 0.0048 0.0051 0.0047 0.0050 0.0054 0.0047 0.0049 0.0050 
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Table 6 

The mean squared, mean, and maximum errors obtained for all eight output parameters over 
2,500 input combinations  

 
Output parameters MSE Mean error  Max error  

T1 (Conversion) 4.7259 × 10-6 0.2204% 2.5641% 

T2 (CO composition) 3.1658 × 10-7 0.0662% 1.4744% 

T3 (H2 composition) 4.2342 × 10-7 0.2085% 1.5247% 

T4 (Peak temperature, K) 60.8380 0.1740% 2.1374% 

T5 (Thermocouple 1, K) 45.5503 0.1421% 5.3596% 

T6 (Thermocouple 2, K) 17.4942 0.1236% 2.8246% 

T7 (Thermocouple 3, K) 3.5040 0.0532% 1.7441% 

T8 (Thermocouple 4, K) 2.5240 0.0523% 1.0516% 
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 Table 7 Carbon conversion optimization results 

parameter name 
Nominal 
condition 

Case 1 (T4, max =2400K) Case 2 (T4, max =2500K) Case 3 (T4, max =2600K) Case 4 (T4, max = 2700K) 

P1 (Fuel Flow Rate, kg/h) 41.2 40 40 40 40 

P2 (O2 Flow Rate, kg/h) 37.2 30.8921 34.449 37.2 37.2 

P3 (N2 Flow Rate, kg/h) 12.1 12.1 12.1 11 11 

P4 (Steam Flow Rate, kg/h) 10.7 21.8 21.8 19.2112 19.2111 

P5 (Fuel Temperature, K) 300 330 330 330 330 

P6 (Mass Fraction Ash) 0.046 0.0506 0.0506 0.0506 0.0506 

P7 (Mass Fraction Volatiles) 0.127 0.1397 0.1397 0.1397 0.1397 

P8 (Mass Fraction Moisture) 0.005 0.0055 0.0055 0.0055 0.0055 

 

     

Optimized parameter      

T1 (Conversion) in 
optimization using ANN 

 0.8111 0.9033 0.9702 0.9702 

T1 (Conversion) run by ROM 
0.9134 0.8114 0.9009 0.9690 0.9690 

Relative error 
 0.04% 0.27% 0.12% 0.12% 

 
     

Parameter in constrain      

T4 (Peak temperature, K) in 
optimization using ANN 

 2400 2500 2600 2620.2 

T4 (Peak temperature, K) run 
by ROM 

2663.1 2399.8 2501 2605.3 2627.2 

Relative error 
 0.01%  0.04%  0.20%  0.27% 

 
     

T2 (CO molar fraction) results 
using ANN 

 0.3616 0.3897 0.4345 0.4345 

T3 (H2 molar fraction) results 
using ANN 

 0.2542 0.245 0.24 0.24 

T5 (Thermocouple 1 
Temperature, K) results using 

ANN 

 1778.80 1845.50 1896.40 1896.40 

T6 (Thermocouple 2 
Temperature, K) results using 

ANN 

 1664.90 1733.20 1779.10 1779.10 

T7 (Thermocouple 3 
Temperature, K) results using 

ANN 

 1564.30 1620.00 1663.00 1663.00 

T8 (Thermocouple 4 
Temperature, K) results using 

ANN 

 1502.40 1555.50 1598.30 1598.30 
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parameter name w = 0 w = 0.1 w = 0.2 w = 0.3 w = 0.4 w = 0.5 w = 0.6 w = 0.7 w = 0.8 w = 0.9 w = 1 1-norm  

P1 (Fuel Flow Rate, kg/h) 40 40 40 40 40 40 40 40 40 40 52.3 40 

P2 (O2 Flow Rate, kg/h) 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 28.4 28.4 28.4 

P3 (N2 Flow Rate, kg/h) 11 11 11 11 11 11 11 11 11 11 11 11 

P4 (Steam Flow Rate, kg/h) 19.2112 19.5424 19.9225 20.366 20.8952 21.5464 21.8 21.8 21.8 18.1061 14.5294 18.0935 

P5 (Fuel Temperature, K) 330 330 330 330 330 330 330 330 330 330 330 330 

P6 (Mass Fraction Ash) 
0.0506 0.0506 0.0506   0.0506 

  
  0.0506 
  

0.0506 0.0506 0.0506 0.0506 0.0506 0.0506 0.0506 

P7 (Mass Fraction Volatiles) 
0.1397 0.1397 0.1397   0.1397 

  
  0.1397 
  

0.1397 0.1397 0.1397 0.1397 0.1397 0.1397 0.1397 

P8 (Mass Fraction Moisture) 
0.0055 0.0055 0.0055   0.0055 

  
  0.0055 
  

0.0045 0.0055 0.0055 0.0055 0.0045 0.0045 0.0045 

Optimized parameter             

T1 (Conversion) results using ANN 0.9702 0.9702 0.9701 0.9701 0.9699 0.9697 0.9696 0.9696 0.9696 0.7494 0.5471 0.7494 

T1 (Conversion) results using ROM 
0.9690 0.9690 0.9689 0.9688 0.9687 0.9684 0.9683 0.9683 0.9683 0.7492 0.5476 0.7492 

Relative error 0.12% 0.12% 0.12% 0.13% 0.12% 0.13% 0.13% 0.13% 0.13% 0.03% 0.09% 0.03% 

 
            

T3 (H2 molar fraction) results using 
ANN  

0.2400 0.2401 0.2404 0.2406 0.2408 0.2411 0.2412 0.2412 0.2412 0.265 0.2836 0.265 

T3 (H2 molar fraction) results using 
ROM 

0.2354 0.2356 0.2357 0.2358 0.2359 0.2360 0.2360 0.2360 0.2360 0.2638 0.2843 0.2638 

Relative error 1.95% 1.91% 1.99% 2.04% 2.08% 2.16% 2.20% 2.20% 2.20% 0.45% 0.25% 0.45% 

             

T2 (CO molar fraction) results using 
ANN 

0.4345 0.4317 0.4285 0.4247 0.4203 0.4157 0.413 0.413 0.413 0.3755 0.3704 0.3756 

T4 (Peak temperature, K) in 
optimization using ANN 

2596.60 2594.50 2592.20 2589.50 2586.30 2583.50 2581.20 2581.20 2581.20 2346.00 2245.30 2346.10 

T5 (Thermocouple 1 Temperature, 
K) results using ANN 

1896.40 1896.10 1895.80 1895.50 1895.10 1894.00 1894.70 1894.70 1894.70 1735.90 1679.60 1735.90 

T6 (Thermocouple 2 Temperature, 
K) results using ANN 

1779.10 1779.10 1779.20 1779.30 1779.50 1780.20 1780.00 1780.00 1780.00 1617.90 1561.10 1617.90 

T7 (Thermocouple 3 Temperature, 
K) results using ANN 

1663.00 1662.80 1662.60 1662.40 1662.20 1661.50 1662.00 1662.00 1662.00 1520.40 1469.10 1520.40 

T8 (Thermocouple 4 Temperature, 
K) results using ANN 

1598.30 1598.20 1598.10 1598.00 1598.00 1597.90 1598.00 1598.00 1598.00 1462.20 1411.40 1462.20 
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 Table 8 Multi-objective optimization results  
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Figure 9 
 
 

 



Highlights 

 

• The design of an artificial nueral networks model on a pilot-scale gasifier is presented 

• Optimization studies using the ANN gasification model were performed and validated 

• ANN model is at least 4 orders of magnitude faster than reduced order models 
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