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Modelling and Optimization of a Pilot-scale Entrained-Flow Gasifier using
Artificial Neural Networks

Han Wang, Donovan Chaffart, Luis A. Ricardez-Sarmdlov

Department of Chemical Engineering, University aft®¥loo, Waterloo, Canada, N2L 3G1

Abstract

This paper explores the construction and validabbran artificial neural network (ANN) in
order to accurately and efficiently predict thefpenance of a pilot-scale gasifier unit. This
ANN model consists of multiple sub-networks thatliudually predict each of the desired
gasifier outputs as a function of key system patarse The ANN was trained using data
generated for a large set of randomly-generatedtigpnditions from a pilot-scale gasifier
reduced order model (ROM) developed previously. Tuily-trained ANN was validated by
comparing its performance to the aforementioned R@ddiel. The validated ANN model was
subsequently implemented into two optimization ssdn order to determine the operating
conditions necessary to maximize the carbon cororersnder different limitations for the peak
temperature of the gasifier and to determine tl@lichput conditions of maximizing both the
carbon conversion and production of hydrogen gagtwhare two conflicting objectives. This
case study further showcases the benefit of the AWNich was able to obtain accurate
predictions for the gasifier results similar to tiesults generated by the ROM model at a much
lower computational cost.
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1. Introduction

Approximately one third of total COemissions at the present are produced from cuaal-fi
electricity generation, making it the second latgeeduction source of greenhouse gdsebhe
demand for coal-based power plants is expectedrbue to rise over the next several decades,
which is expected to increase £@®missions and thus contribute negatively towarndday
warming. Motivated by the fight against climate ©ba and the desire to reduce global
greenhouse gas emissions, there is a current imeemnd interest to develop and implement
carbon capturing technigues and advanced pulvedaablcombustion in the industry in order to
reduce the footprint of coal energy productidrin advanced pulverized coal combustion, coal
is finely-ground such that it will burn as easilydaefficiently as natural gas. There are several
different advanced pulverized-coal technologiesady on the market, including the integrated
gasification combined cycle (IGCC) power plant. TI&CC power generation system is an
advanced power system consisting of a gasificatimh quench unit, a water-gas shift reactor, a
purification unit, a gas turbine, a heat recoveigas generator, a steam turbine and an air
separation unit. In the IGCC process, fuel, oxygerd steam are fed into a gasification unit to
produce raw syngas mainly consisting of CQ,add CQ. IGCC has a number of key benefits
over other pulverized-coal technologies, such aghdr fuel flexibility, higher efficiency,
reduced production of solid wastes, lower, IO, and CQ emissions, marketable by-products,
and higher energy output, which all have a poshierefit on air and water quality.

One of the most important processes in an IGC@Gagyasification unit, in which the solid coal
is converted into syngas (i.e. CO aitg). This syngas has a higher heating value than auzl
thus it is a superior fuel to utilize in subsequEBCC processes. As a result, there has been

substantial interest in studying and optimizing trexformance of IGCC gasification unit in



order to improve the efficiency of fuel and poweengration, versatility, reliability, and
economics in IGCC systerfid? Computational fluid dynamics (CFD) models are mftsed to
simulate gasifiers because of their ability to @ify handle gasification flows and mixing and
therefore provide sufficiently accurate predictiSn€FD modelling techniques have been
frequently applied to simulate gasification and bastion in fluidized beds, and extensive
reviews for this subject can be found in the litera®° Most notably, Fletcher et al. developed
a CFD model to simulate the flow and reaction ireatrained flow gasifier that they built based
on the CFEX package, which is a useful tool for fimsidesign and analysts.Although CFD
models are accurate and provide a more detailetbasutcompared to other gasification
simulation models, they are often found to be campanal intensive which can significantly
limit their implementation for optimization, onlimaonitoring, and process control applications.
This has motivated the development of alternaticemputationally-efficient modelling
techniques such as Reduced Order Models (ROMsyuilibrium modeld** and two-phase
combustion modelS. Sahraei et al. proposed a reactor network ROM hwhidizes plug flow
reactor (PFR) and continuous stirred tank reac@@&TR) models to simulate the different zones
inside an entrained-flow gasifier, which is the mesmmon gasifier unit used in IGC&Es’
Similarly, Shastri et al. proposed an approximadsifger model developed in ASPEN Plus in
order to perform optimization using the CAPE-OPBENckastic simulation capability on the
gasification unit of an IGCC systefhHowever, even though the ROMs and other equilibriu
models require substantially lower computationastsocompared to CFD models, they still
require considerable numerical analysis and they #re still computationally expensive for
optimization, monitoring and online control appticas.

Artificial neural network (ANNS) is an alternativeodelling method that can be used to predict



the performance of the gasification unit in IGCEsealuced computational costs. ANNs require
short CPU times to predict the system outputs gaseat of input parameters, and thus they are a
computationally attractive tool for predicting aoptimizing complex systems such as a gasifier
when compared to the ROMs and CFD mod&l8.As a result, there have been a handful of
works within the literature that have applied ANfsgasification systenf8:*>*?Ongen et al.
proposed an ANN model to observe variations instyreas related to operational conditions in a
tannery industry wastewater treatment sludge gasifin systend® Mikulandric et al. analyzed
the possibilities of neural networks to predict gaes parameters of a fixed bed gasifier in a
biomass gasification process with high speed aedracy’* Puig-Arnavat presented an ANN
model for biomass gasification process in fluidizedd reactor§ Each of those works
exemplifies how ANNs are a good and efficient mathgcal tool for generating models to
predict the input/output relationship between int@or parameters of gasification units.
However, to the authors’ knowledge, ANNs have redtrbpreviously used to build up a model

and perform optimization on entrained flow gasgier IGCC system.

Motivated by this, the aim of this work is to preguan ANN model to describe and predict the
behaviour between the main features of an IGCCt-pdale gasification unit such as the
composition, temperature distribution, and carbonversion, and the main reactor inputs such
as the inlet flowrates, inlet fuel temperature, &mel composition. The proposed ANN model
was trained and tested using sets of input andubudpta generated from a ROM model
previously developed within our research grétis:****We optimized our ANN architecture by
incrementing the number of neurons in each netwdikislen layers in order to obtain the ANN

architecture with the minimum square error. Subeatly, we used the fully-developed



nonlinear ANN model to perform two different optiration studies on the gasifier system and

gain insight on the optimal operation of this unit.

This paper is organized as follows. Section 2 dlessrthe pilot-scale gasifier configuration
which is modeled in this work and introduces theMR@sed this study to model the gasification
unit. Section 3 describes the ANN model implememtetthis work and presents the optimization
of the network architecture. In Section 4, the ANNdel is validated through comparison to the
ROM developed previously. Section 5 subsequenthggmts an optimization case studies of a
pilot-scale gasifier under different peak tempamtimitations using ANN-based optimization
and compare the computational time to the ROM-bag&dnization. Section 6 describes a
multi-objective optimization to maximize both tharlbon conversion and the production of H

using the generated ANN model. Concluding remar&geovided at the end.

2. Pilot-Scale entrained-flow gasifier model

The entrained-flow IGCC gasifier system modelethia work consists of a tonne-per-day (TPD)
pilot-scale gasifier owned by CanmetENERGY, NatuRasources Canada, which is briefly
illustrated in Fig.> This pilot gasifier is lined with refractory aimsulation materials in order
to reduce its heat loss, as it has a large sudee® to volume ratio. As shown in Fig. 1, fuel,
steam (HO), oxygen (@) and nitrogen (B are fed into the gasifier to produce raw syndds.
the gasifier inlet, oxygen is injected through thener by eight jets and mixed with the fuel
stream at a high velocity. Subsequently, steamagateld to 500 K is passed through the outer
burner annulus at a low velocity, and the fuelasried through the reactor inlet by a stream of
nitrogen carrier gas. The pet-coke’s temperatutenofanges from 270K to 330K before it is
loaded into the gasifier, as the initial temperatsignificantly affects the gasifier temperature
profile when the fuel is mixing with the steam.dddition, the composition of the pet-coke in the
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fuel (i.e. the mass fraction of ash, volatiles, andisture) plays a crucial role in the reaction
process and the formation of the volatile products.

As mentioned above, IGCC gasifier models are catiweally modelled using CFD modéfs®
which can provide an accurate and detailed outfookhe gasification system but they can be
extremely computationally expensive. This has nat&d the development of more efficient
modelling methods such as reduced order models (HOWhese ROMs are an alternative
approach that can be used to provide detailednrdtion about the multi-phase flow structure of
a gasification unit such as its solid particle @nmtcation, composition, and temperature

distribution along the length of the gasifier. Sairet af->*®

proposed a reactor network ROM
consisting of different plug flow reactor (PFR) andntinuous stirred tank reactor (CSTR)
models to simulate each of the different zonededdy state inside the entrained-flow gasifier
mentioned above. The key input parameters of th&R@ inlet flow rate of pet-coke, steam,
oxygen and nitrogen, the initial temperature of pleécoke, and the percent composition of ash,
volatiles, and moisture within the pet-coke. Thegeke composition contained a molar fraction
of 0.046 ash, 0.127 volatiles, and 0.005 moisturé @822 carbon. The ROM was developed
over an explicit input parameter range determinggegmentally on the pilot-scale gasifier, and
consequently the ROM is only valid for this specifange of operating conditions.

The performance of a gasifier can be described Hgy d¢onversion of its reactants, the
concentration of its desired products at the oudlet the temperature distribution throughout the
unit!’ In the ROM model, the carbon conversion is thenmaiportant output parameter for
characterizing the gasifier performance, as it e®rto measure the fraction of solid coal

converted into the more useful syngas form. In i the gasifier products, i.e. CO and, H

provide a much lower heating value and require towgeerating temperatures, and thus they are



able to achieve much greater efficiency than tkeird fuel alternatives. Consequently, it is
important to be able to predict the molar percemtayCO and Hlin the outlet gas flow as a
function of the input parameters. Another significabservable of the gasifier system is the
internal temperature, which has a significant eftecthe reactions taking place. Specifically, the
peak temperature of the gasifier are monitored rideio to keep it below the maximum
temperature that the refractory brick layer witttie gasifier can beaf.Furthermore, standard
measurement devices such as thermocouples areusféehin industrial reactors to monitor the
temperature at key locations inside the unit. Rerdpecific IGCC gasifier unit considered in the
ROMs model work, there are four thermocouples kdtain the wall of the gasifier reactor, so
that the operations can observe and monitor thepeesmture distribution at these discrete
locations. The location of each thermocouple isited in Fig. 1.

The ROM reactor network considered in this workateposes the gasifier system into three
different types of zones referred to as the jetaesmn zone (JEZ), external recirculation zone

(ERZ), and down-stream zone (DSZ) regions, asreedlin the Fig. 2.

As shown in this figure, the JEZ and DSZ are matieke plug flow reactors (PFRs) whereas the
ERZ zones are modeled as continuous stirred taamttars (CSTRS). Rather than solving the
differential equations across the entire gasifemdin using CFD techniques, the ROM reduces
the order of equations inside each gasifier zorg, ERZ zones can be considered as a single
node because of uniform particle and temperatwteiloitions. In the JEZ region, the steam, and
oxygen are suddenly expanded at the gasifier imleich causes the flow of fuel to spread out.
When the flow reaches the gasifier wall, a portidrihe stream recycles back to the top of the
gasifier through the ERZ region while the restha stream flows towards the DSZ region at the

bottom of the reactor. Inside each reaction zame,g@asifier's behaviour is simulated based on



the flow characteristics (i.e. whether they are edixor laminar) and the one-dimensional
governing equations of gas and solid phases foseagergy, and momentum are solved for
each zone to provide a distribution of differenbgerties. The conservation equations of mass,
energy and momentum used to simulate each zoneeajdsifier are listed in Table 1 (see the
Nomenclature section for the definition of the mogarameters). As indicated in previous
studies, the ROM used in this work was validated using bGfRD simulation results and
experimental datd obtained from CanmetENERGY’s pilot-scale gasifidr.more detailed
model description of the ROM as well as the desiomg for the model parameters presented in
this table can be found elsewhere in the literattt®However, it is important to note that even
though the ROMs require substantially lower comfpotel costs compared to CFD models,
they still require considerable numerical analyaisd thus they are still computationally

expensive for optimization, monitoring and onlirntrol applications.

3. ANN mode development

In this work, an artificial neural network was dyed to calculate the key outputs of the pilot-
scale gasification unit such as the carbon coneeysiutlet composition, peak temperature, and
temperature at the thermocouples’ location, aseation of the relevant system parameters, such
as the inlet gas flowrates, the inlet temperatang] the fuel composition. The developed ANN
consisted of a number of sub-ANNSs that were eaekldped to predict the performance of each
output parameter individually as a function of theuts. The sub-ANNs were developed using a
two-layer neural network structure that consistéd single hidden layer with a tan-sigmoid
transfer function and an output layer with a lingansfer function, as illustrated in Fig.3. Note
that the two-layer neural network structure wasdeld as the basis for the ANN as it is

considered to be the most suitable structure fodimear model fitting regression probleAfs.



Furthermore, no significant performance improvermenere observed when the number of
layers in the ANN sub-networks were increased. B&NIN was trained using data obtained
from the ROM reported previously in Sectiot?2The following sections will provide a brief
overview of the ANN methodology implemented in thigrk. A general overview of the
feedforward ANN structure and its backpropagatitgoithm is provided, followed by a brief
description of the gasifier variables that serveahasinput and output parameters to the ANNS.
Subsequently, the performance of various back-gafien algorithms on the ANN training are
compared, and the optimal number of hidden layerores are determined for each ANN in

order to optimize their predictive capabilities.

3.1 Feedforward Artificial Neural Network Overview
An ANN model consists of several layers of simptemputing nodes, referred to as neurons,

which predict different aspects of the input-outm#rameter relationship using nonlinear
summing techniques. These layers typically cortfist number of hidden layers, as well as an
output layer. The hidden layer of the ANN deterrsitiee relationship between the inputs and
the outputs, and the values calculated by hiddger laeurons are subsequently fed to the next
layer. In the output layer, a linear transfer fimetmaps the hidden layer outputs onto the range
of the desired output parameters. The neuronsadn keger of the ANN are interconnected via a
series of weighted connection lines, as illustrate#fig. 3. Each neuron consists of a weighted
linear function and a transfer function, as denatefeig. 4. Note that in this figuré, denotes the
linear weights function for th&" neuron, which is defined as the sum of each of'thmutputs
from the previous layer (input layer); whereasienote the input value of thfBinput parameter
from thej™ neuron in the input layer, and the termsg andb; in & denote the weight and bias

values applied to thé" neuron, respectively. Furthermore, the functiodefiotes the transfer



function applied to%. The transfer function applied in the hidden layef an ANN usually
consists of a sigmoidal function that mapento a nonlinear curve, whereas a linear transfer
function is typically applied to the output layerrapd; onto the range of the output parameters.
In order for the ANN to function properly, it is cessary to adjust the weights and the biases of
each neuron so that the ANN can predict the outgsults for a given set of input
parameteré?>° This can be accomplished through supervised trgjrin which the network is
provided with a series of input parameters andrtleerresponding output values. At the
beginning of the network training, each of the vmsgand biasesn; and b)) are randomly
generated from a uniform distribution within thetiae range of the tangent sigmoid transfer
function and their values are subsequently updétetiackpropagation (BBj:*?

ANNs are a machine-learning approach that seekdetermine the relationship between the
input and output parameters. An adequately-trammaral network will have no access to the
original training data after training has been ctatga and therefore it must rely on the trained
neuron functions in order to predict a system’patg. Consequently, it is imperative to train an
ANN such that it does not simply memorize the tragrdata but rather so it learns to predict the
relational patterns between the input and outpurpaters. In order to avoid overfitting in the
neural network model, it is necessary to analyeeANN performance during training in order
to prevent the network from simply memorizing thairiing data. For the ANN training
algorithm implemented in this work, an early stogpimethod is utilized that sub-divides the
provided input-output dataset into three parts:tthming set, the validation set, and the testing
set®*** The training set is used for network training, ethbptimizes the weights and biases of
each neuron so as to minimize the error betweeNMN model outputs and the training data

outputs. The validation and testing set are usedlidate the performance of the ANN model.
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Specifically, the network is tested using the vatiion set during training in order to evaluate its
generalization. On the other hand, the networkrily @alidated using the testing data after
training has been completed in order to validaerediction capabilities for conditions that the
network has not seen previoudNote that the validation and testing sets enswaethie network

is able to sufficiently predict the relationshiptween the input and output parameters for
operating conditions outside of the training datages a result, they serve as an important
diagnostic of the network’s generalization andaltdity to predict outputs for conditions outside

of the training dataset. Consequently, these satse used to stop the network training before
the training data is merely memorized and thus {w@yide a measure of guarantee that the
fully-trained ANN model is not merely interpolatingetween the training data. Further details

about the early stopping method are reported elseih the literaturé®

3.2 Input and output training data
The carbon conversion {)l the molar composition of CO {rand B (T3), peak temperature of

the gasifier (1), and the temperature at the four thermocouplestéal on the wall of the gasifier
reactor (i.e. ¥-Tg), all serve as the desired measurable outputhégasifier system, and thus
are considered as the key output paramefiérsq be predicted using the ANN model. On the
other hand, the key input parametd?} that affect the gasifier performance are theciigjé fuel
flowrate (R), the oxygen flowrate @, the nitrogen flowrate ¢p, the steam flowrate (f the
initial fuel temperature @, and the fuel compositions of ashs)(Psolatiles (B), and moisture
(Pg). Consequently, these parameters serve as thésimgich the ANN model would use to
predict the desired outputs. More information abeath of these input and output parameters
can be found in Section 2. Furthermore, Table Zides a comprehensive list of the inpB) (

and outputT) parameters, their nominal values, and the coomdipg minimum and maximum
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input parameter values over which the ANN was #&dinThese input ranges were determined
experimentally using the ROM in order to guaranteat they are feasible and capable of
obtaining reasonable results for both the ROM afNAmodels'*?*Note that the parameter
ranges reported in this table only showcase theegabver which the developed ANN model can
be applied, and therefore the gasifier behavious wat analyzed under these conditions.
Additionally, note that the fuel composition parders (R, P, & Ps) cannot be accurately
controlled, as the fuel composition can only bersely altered by changing the type of coal used.
Consequently, the ranges for these parameters deteemined by applying #5% fluctuation
around the expected values for each fuel comporentthis was determined to provide

satisfactory composition bounds via laboratory expents:®

In order to train the ANN model, it is necessarygenerate a large number of data points for
each model output using various combinations ohezcthe input parameters. For the study
presented in this work, the ANN data was generatsithg 8,000 combinations of input
parameters randomly generated from a uniform Oigion, between their upper and lower
bounds as listed in Table 2. Trial-and-error sirtiakes were performed to determine a suitable
data set for the identification of the ANNSs. In@gig the sample size beyond 8,000 samples
increases the computational effort but it does ingirove the prediction capabilities of the
ANNSs. Each of these input parameter combinationsevpassed through the ROM in order to
determine their corresponding output parametereglthese input and output parameters were

subsequently paired up and fed into the trainirmg@ss used to generate the ANNs model.

3.3 Sdlection of back-propagation algorithm
The backpropagation method is one of the most arwcncepts for enabling the self-learning

capabilities of an ANNP This methodology refers to the ability of a neuretwork to adjust the
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values of its weights and biases based on the @rrtite network output¥. As a result, it is
important to select a good back-propagation metboensure that the network can accurately
and efficiently learn to predict the outputs ofyatem given a set of inputs without being subject
to overfitting.

In this study, we compared eight different BP alipons with the aim of choosing the best fitting
algorithm for the gasifier data collected. Each @gorithm considered is not discussed within
this paper for the sake of brevity; further disémissabout these algorithms can be found within
the literature’®>° Each BP algorithm was used to train a two-layeMNAith 10 neurons in the
hidden layer in order to predict the outlet CO cosifion (T;) as a function of each of the input

parameter®.

The results of the network training for each BRoathm are presented in Table 3. These results
reveal that the Levenberg-Marquardt algorithm is iest BP algorithm for the ANN system
considered in this work, as it managed to achieeeldwest mean squared training error with a
minimum value of 2.30xI0 Furthermore, the training was stopped after 188cks. Even
though the Scaled conjugate gradient and One-s&tepns BP can achieve the similar error
magnitude and R value to the Levenberg-Marquargordhm, both of them needed more
training iterations which means that they requimnaate time to obtain the optimal weights and
bias of their corresponding ANN models. The weal®Bt training algorithms are Gradient
descent with momentum and Gradient descent, wieelded the most iteration numbers to find
the optimal weights and bias and produced the sang@gnitude of mean squared errors of the
trained ANN models. These results are further &éid in Fig. 5 which showcases the training
and validation mean square errors at each epotheofietwork training using the Levenberg-

Marquardt algorithm. This figure additionally illuates that the network training results were
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reasonable, as the train and validation errors Oisiilayed similar characteristics, and these two
errors did not change significantly upon furthaining. As shown in Fig. 5, the validation error
reached the minimum best validation mean squanedl 6W1ISE), when MSE of validation does
not decrease for six consecutive epochs. As atrdabel Levenberg-Marquardt algorithm was

implemented to train the ANN model developed i thork.

3.4 Neural network structure

The aim of this section is to perform optimization the number of hidden layer neurons for
each of the eight sub-ANNs developed in this warkptedict each gasifier output. Each sub-
network was developed using the two-layer architectdescribed previously, using the

Levenberg-Marquardt algorithm for back-propagatiém.this study, each sub-network was

initialized with a hidden layer containing only agle neuron, and the sub-networks were
trained to predict each of the model outputs asation of the inputs. Subsequently, the number
of neurons in each hidden layer was incrementednayand the networks were re-trained using
the same data. This data was used to calculated¢la@ squared validation and testing errors for
each network as a function of the number of hididger neurons. This process was repeated
until the sub-network was observed to be memorizing data, (i.e. when sub-network’s

validation error decreased but its testing erros whserved to increase), at which point the

optimization process was terminated for that nekwor

The results of the identification of the optimaiusture for each of the ANNs developed in this
work are shown in Table 4. The mean squared eofocarbon conversion ¢J, CO composition
(T») and H composition () are less than xIL0°, which is sufficiently small, while mean
squared errors of peak temperaturg) (dnd thermocouple temperatures-Tg) are notably
larger than the remaining output parameter erroestd the higher orders of magnitude of values

14



compared to composition and conversion and theseseare still less tharx10?. Furthermore,
the maximum percentage errors between the actwaliohy trained ANN and the target output
generated by ROM for test set and validation sétaiming process are sufficiently low, i.e. < 3%
for all the output parameters except for the termupee at thermocouple 14T Even though the
maximum percentage error of temperature at theromedl (Ts) are 6.0075% and 5.2366% for
test set and validation set separately, whichangel than the errors of other output parameters,
they are still relatively low enough and acceptablete that the maximum percentage errors
between test and validation set are similar to exdloar for each output parameter, which means
that there’s no overfitting in each ANN model. Figw illustrates the optimal neural network
structure for each of the sub-networks and provitdesgeneral framework of the ANN model
considered in this study. Furthermore, Fig. 7 stases the linear regression analysis between
the ANN outputs generated using the optimal nunadbdridden neurons and the corresponding
output targets for Zthe molar fraction of CO at the outlet. As can bersby these results, the
ANN can adequately predict the target output datargthe non-linear relationship between the
inputs and outputs for the output parametey.(A similar performance was observed for the rest
of the output parameters but it is not shown heredfevity. A complete list of the weights and
biases for each sub-ANN can be found in the suppheany material. These weights highlight
that the gasifier conversion and temperature @eaiie strongly affected by the oxygen flowrate,
mildly affected by the inlet fuel temperature, aingtersely affected by the fuel flowrate. In
addition, the peak temperature is inversely affedig the steam flowrate. Similarly, the outlet
CO composition is strongly affected by the oxygad ateam flowrate and inversely affected by

the fuel flow rate and the percent volatile composi within the fuel, whereas the outlet H
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composition experiences the opposite trends. Thesen similar agreement with the trends

reported elsewhere within the literattfre

4. Modd Validation

The objective of this section is to test and vdédhe performance of the ANN model described
previously in Section 2. The ANN'’s performance weaaluated with respect to the ROM which
has been reported previously in the literafdr@Note that this ROM has further been previously
validated through comparison against CFD and empmral results, as detailed in the
aforementioned articles. Note that the accuracyhef ANN is dependent on the predictive
capabilities achieved via the training process idesd in Section 2. Therefore, the ANN output
performance was validated subject to changes ih efthe input parameteBslisted in Table 2.

In order to ensure good generalization for each ANddel, the trained ANN model was tested
using 2,500 combinations of input parameter vathashad not been previously used during the
network training. As a result, each combinationtl# eight input parameters utilized in this
study was generated afresh via random selectiom feo uniform distribution within the
parameter ranges showcased in Table 2, i.e. tleangder ranges over which the networks were
trained. Each of these combinations were inspeatedori in order to ensure that they were
different from the data used to train the ANN modedl its sub-networks. Table 5 presents 10
out of the 2,500 combinations of input parametesesduo validate the performance of the ANN.
The performance of both the ROM and ANN models tfogse ten combinations of input
parameters, as assessed through each of the eitghtt parameters, are illustrated in Fig. 8.
Note that the outputs for the remaining 2,490 senmalints used for model validation are not

shown here for the sake of brevity; however, thesults were comparable to those illustrated in
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Fig. 8. In addition, Table 6 displays the sum aiagd errors of the outputs between the results
of the ROM and the ANN model for the full batch 2f500 input operating condition
combinations. These results show that the ANNs inaeable to adequately capture the
behavior of the gasifier unit, and that the ANN rabid not overfitting. As shown in Fig. 8, the
profile of each eight outputs determined using R@M match those determined using each of
the ANN sub-networks. Furthermore, Table 6 showat the errors in the ANN-predicted
outputs remain sufficiently low, i.e. < 2.5 x3@nd < 6 x 18 for the mean and maximum
relative errors respectively for all eight outpatrgmeters. Note that the sum of squared errors
for each of the temperatures (i.e. the peak tenyrerand the temperatures at the thermocouple
locations), as shown in Table 6, are notably latgan the remaining output parameter errors;
this is because the temperatures are of higherooadenagnitude compared to the other outputs,
and thus they are subject to larger absolute erkbith regards to the computational cost, the
ROM model and the ANN model required on averageuaB67s and 1.& 10%s of CPU time
per simulation, respectively (Intel® Core™ i7-47C®PU @ 3.40Hz, 3392 Mhz, 4 Core(s), 8
Logical Processor(s)). This difference in the cotapanal time illustrates that the ANN is
approximately 1.6« 10° times faster than the ROM model. This demonstritasthe ANN is
significantly more computationally efficient compdrto the ROM, while achieving sufficiently
similar results. Overall, this validation study dmmstrates that the ANN model is able to predict
the steady state behavior of the gasification oeaatcurately and can be used to perform

optimization studies.

5. Optimization: Carbon Conversion

Integrated Gasification Combined Cycle (IGCC) systesing coal gasification is an crucial

component of future energy alternatives. Sincefigasion is the most important component of

17



this system, it is particularly critical to undemting the operation and optimizing the
gasification unif In industrial applications, the performance ofasification unit in an IGCC
plant is characterized by its conversion of carfbj) into gaseous products such as CO,CO
and CH; as a result, it is crucial to manufacture IGCGat tmeet or exceed specific carbon
conversion requirements in order to maximize thsifiga performancé®*® Note that the peak
temperature of the gasifier reactor should be cams&d to be within a reasonable range to avoid
damaging the refractory wall due to the high terapee. For different gasifier reactor types, the
material of the reactor wall would be different atitkrefore, the constraints of the peak
temperature of gasifier can be adjusted so thgtdbenot impose a safety hazard. Motivated by
this, the first objective of this section is to iopize the gasifier carbon conversion at the reactor
outlet under different peak temperature limitatiosgng the ANN gasification model developed
in Section 3. This optimization study was performeéth respect to each of the input parameters

P mentioned in Section 3.2 according to the followamgimization formulation:

maxp T; (P) 1)
Subject to:

ANN model

Ty (P) < Ty max

Poin < P <P

where P,,;, andP,,,, represents the lower and the upper bounds forthal eight input
parameters considered By which can be found in Table Z,,,,, denotes the maximum
allowable temperature that the refractory wall baar, and the function of carbon conversion
(T;) is a nonlinear function estimated by the ANN §eation model. The above optimization
formulation was performed using different boundshef peak temperature, i®,,,,, Was set to
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2,400K, 2,500K, 2,600K, and 2,700K. This was damelbtain an insight to the effect of peak
temperature limitation on the optimized resultcafbon conversion and the remaining gasifier
parameters. The results of the input parameterasirsdat from the different optimization runs
were additionally fed into the ROM in order to waie the results of the ANN model, and the
corresponding results of carbon conversion from R@M similar to the optimized carbon
conversion values run by ANN model. Then, thesaltesrom optimization by ANN were
compared to the nominal reactor conversion preditte the ROM using the nominal input
values presented in Table 2. Note that the refwlts this optimization study were compared to
the training data in order to ensure that they wmrteincluded among the original data used to

train and validate the network.

The results of the optimization study are preseimetable 7. As can be seen by these results,
the maximum carbon conversion increases correspglydiwith the limitations of peak
temperature rising. Notably, the maximum carbonveosion increases drastically from 0.8111
to 0.9702 when the limitation of peak temperaturanges from 2,400K to 2,600K. While peak
temperature limitation increases from 2,600K to0RK, the maximum carbon conversion does
not increase notably (differences noted beyonddeemal digits). This result is consistent with
the results obtained by ROM, as the percent enrting optimal carbon conversion between both
modelling methods remain below 0.3% for the foufedéent peak temperature limitation case
studies considered here. At the nominal operatorglitions @,,,,,) listed in Table 7, the ROM
predicted a carbon conversion of 0.9134, whichbisua 5.85% lower than the value obtained
from the present optimization case study (Case Ga&e 4 in Table 7). Note that according to
the results in Table 7, higher carbon conversiaesaagsociated with higher steam flow rates;

thus, increasing the steam flow rates can promigleeh carbon conversions. The results from

19



the optimization also indicate that, as the maximallowed peak temperature constraint is
relaxed, the carbon conversion tends to increggefisantly up until it reaches approximately
0.97 conversion, which seems to be the highestarsion that can be achieved for the nominal
operation of the pilot-scale gasification unit cdiesed in this study, when the limitation increase
beyondT, ,,q.x = 2,600K, the conversion does not tend to changsifgiantly. Furthermore, the

results also illustrate that a lower fuel flowrage higher steam flowrate, a higher inlet fuel
temperature, and higher mass fraction of ash, ledaand moisture would also lead to a higher
carbon conversion. As a result, the optimizatiardgtpredicts that higher ratios of steam and
oxygen to pet-coke are required in order to obthigher carbon conversions. Table 7
additionally shows that the optimization resultdanted using the ANNs are similar to the
values obtained using the ROM, which demonstratasthe ANN is able to accurately predict
the gasifier outputs for optimization applicatiofsach of the optimization runs required an
averaged CPU time of 0.0808s, however, the sammiagtion study using the ROM required

7,573s; i.e. at least four orders of magnitudetitne needed to perform the same optimization

using the ANN.

6. M ulti-objective optimization

Another key performance indicator of an IGCC gasifis the composition of the syngas it
produces. Specifically, specific syngas componesush as K require lower operating
conditions than others, and it is thus benefi@ahiximize the molar fraction of hydrogen in the
final syngas composition so as to improve its &fficy. In an ideal gasifier system, it is
desirable to maximize both the carbon conversiahtha production of H However, these two
objectives have been observed to be in conflich wach other, as the input conditions required

to maximize carbon conversion negatively impact hiydrogen production, and vice verda.
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Motivated by this, a second optimization study vpesformed with the aim to analyze the
relationship and determine the optimal trade-ofhditons between these two conflicting
objectives. This multi-objective optimization studias performed with respect to each of the
input parameterB mentioned in Section 3.2 according to the followapgimization formulation:
maxp[(1 —w) T;(P) + wT5(P)] 2)
Subiject to:

ANN model

Ty (P) < Ty max

Poin < P <Py

where the parameter is a weight which denotes the significance of eathhe individual
objective functions, i.e. carbon conversi@h)(and hydrogen molar fraction in outlg). In the
above optimization formulation, the maximum allowsehk temperature was fixedTat, q, =
2,600K based on the optimization results obtainedtiie first case study discussed above.
Furthermore, the upper and lower bouiRrgg, andP,,;, are defined by the values listed in Table
2. For this multi-objective optimization study, thweight parametewr was changed from 0 to 1
by increments of 0.1. The results of the multi-abjee optimization obtained using the ANN
model were validated by running the ROM as shownhahle 8. Note that the errors between the
two modeling methods remained below 2.2%, showgatsiat the ANN is capable of predicting
the gasifier behaviour with sufficient accuracy @amred to the ROM. Fig. 9 provides a graphical
illustration of the pareto front for the feasibkmasch space accessible to the gasifier modelghat i
formed based on the solutions to problem (2). Aicated in this figure and in Table 8, when
increases, the mole fraction o id the outlet syngas increases whereas the carsoversion
decreases, as was expected. Note that since thenceonversion valued() are much larger
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than the hydrogen molar fraction valu&g)( there is a slowly-decreasing trend of the resoft
carbon conversion betwean= 0 andw = 0.8. Wherw reaches 0.9, the value wfl;(P) is
similar to(1 — w)T; (P), and consequently the optimized fraction begins to rise significantly
whereas the carbon conversion starts to decreasstiadlly corresponding to the notable

decrease in the oxygen-to-fuel rationat 0.9.

In order to determine the ideal trade-off pointwistn the carbon conversion and the hydrogen
production, the ANN gasifier model was implementetd a 1-norm bi-objective optimization
scheme. This optimization approach seeks to mimrthe 1-norm distance between the feasible
search space, as defined by the pareto front, lenditopia point (i.e. the infeasible point that
optimally satisfies both objectives simultaneousfyin order to determine which set of feasible
conditions yield results that are closest to thepmt point (measured in terms of a 1-norm

distance). The 1-norm minimization problem candrenulated as follows:

. T1max—T1(P) T3max—T3(P)
minp max max (3)
T1,max—T1,min T3 max—T3min

Subiject to:
ANN model

Ty (P) < Tymax

Poin < P<P,.

whereT] ;max andTs 4, denote the maximum conversion and tdolar fractions obtainable
within the optimization constraints of problem @)d define the utopia pointi(y,ay, T3max)-
Note that the maximum conversiof £,,,) and minimum Hmolar fraction (5 ,,;,) values are
obtained by solving a single-objective optimizatgindy that maximizes the carbon conversion,
i.e. whenw = 0 in problem (2); similarly, the minimum conversi¢f, ,,,;,) and maximum ki
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fraction (T3.,4x) Values are obtained by solving the optimizatioimdg that maximizes the
hydrogen production, i.e. whem= 1. In addition, the constraint parametBs,,, Pyqx, and
Tixmax Were fixed to the same values used in problemT(&¢. results of this optimization study
are listed in Table 8 (1-norm); in addition, thepits point and the optimal trade-off point are
denoted in Fig. 9. Under these optimal conditidhs,carbon conversidhl = 0.7494 is at 52.2%
of the utopia point conversion, whereas the makaetion of H in the outlet syngak; = 0.265

is at 42.7% of the syngas hydrogen fraction atutopia point, as shown in the Fig. 9. These
results reveal that it is not possible to signifita improve the hydrogen production within the
gasifier without also noticeably reducing the carlmonversion. Note that the ANN model only
required about 0.1617s of CPU time to determineaibigmized results for the multi-objective
optimization described above. However, it is chadlag to conduct the same optimization study
using the ROM model due to the computation costech, this demonstrates that the ANN is
significantly more computationally efficient compdrto the ROM, while achieving sufficiently
similar results. Hence, the optimization using ANNows that it is particularly efficient and

accurate to perform optimization studies on thetgstale gasification unit.

6. Conclusions

The main objective of this work was to build an AMBnsisting of eight sub-networks in order
to predict the key outputs of an IGCC gasificateystem as a function of eight key system
parameters. These sub-ANNs were constructed usiwg-éayer structure consisting of a single
hidden layer in addition to the output layer. Themner of neurons in the hidden layer were
determined via optimization for each network. Irdi&idn, tests were performed to determine
which back-propagation algorithm would provide thstest and most reliable network training.

The networks were each trained by a series of laptgut data generated using a ROM
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developed in a previous study. The ANN was sucaltgsfalidated and was able to accurately
predict the gasifier outputs at significantly lonewsmputational costs compared to the ROM
model. The ANN was subsequently used to perform diff@rent optimization studies on the
pilot-scale gasifier unit. In the optimization siesl we found that increasing the peak
temperature limitation of the reactor can lead togher maximum carbon conversion, and from
the utopia point of the multi-objective optimizatjat seems unlikely to improve,Hbroduction
significantly without reducing the carbon conversiwithin the gasifier. The results also show
that the computational time of the optimization AMN is at least four orders of magnitude
faster when compared to the ROM-based optimiza#i@aordingly, as part of the future work,
we can extend the application of ANNs to modeltthasient behaviour of a gasification system

and perform online optimization and control of thystem.
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Nomenclature

7]

2]

A Area (nf)

b; Bias applied tath neuron

c Concentration (mole/M

Cp Heat capacity (J/kg/K)

f Transfer function applied

F' Volumetric force (N/m)

g Gravitational acceleration (M)s

h Convection coefficient (W/AK)

H Enthalpy (J/kg)

k Thermal conductivity (W/m/K)

m Mass (kg)

m’ Mass flux (kg/m/s)

M Mass flow (kg/s)

N Density of particle (1/r)

P Vector of key input parameters
Prnax Upper bounds on key input parameter
Prin Lower bounds on key input parameter
Prom Gasifier nominal operating conditions

2 Injected fuel flowrate (kg/h)

P, Oxygen flowrate (kg/h)

Py Nitrogen flowrate (kg/h)

P, Steam flowrate (kg/h)

Py Initial fuel temperature (K)

Py Mass fraction of ash in fuel

P; Mass fraction of volatiles in fuel

Py Mass fraction of moisture in fuel

Q Heat flux (W/nf)
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[

Q Heat flux (W/nf)
r Radius (m)
t Time (s)
T Temperature (K)
T Vector of key output parameters
T Carbon conversion
T max Maximum gasifier carbon conversion
T min Minimum gasifier carbon conversion
T, Molar composition of CO in the synga
T; Molar composition of Hin the syngas
T3 max Maximum gasifier H molar fraction
T3 min Minimum gasifier H molar fraction
Ty Peak gasifier temperature (K)
Tamax Maximum allowable peak gasifier
temperature (K)
Ts Temperature, thermocouple 1 (K)
Ts Temperature, thermocouple 2 (K)
T; Temperature, thermocouple 3 (K)
Tg Temperature, thermocouple 4 (K)
u Velocity (m/s)
w Multi-objective significance weight
Wi Weight applied tath neuronjth input
x Molar fraction
X;j Input value,jth input
z Axial domain (m)
€ Volume fraction
8 Slag thickness (m)
$i Linear weights functionith neuron
p Density (kg/m)
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Figure Captions

Figure 1

Figure 2

Figure 3
Figure 4
Figure 5

Figure 6
Figure 7
Figure 8

Figure 9

(a) Configuration of the pilot-scale gasif(b) Inflow structure of the gasifier
and its feeds

(a) Reactor network of the gasifier; (loyi@sponding regions of the reactor
network inside the gasifier

Brief overview of the neural network strue
The structure of a neuron and its actiwatunction

Mean square errors obtained during trginmlidation, and testing, using the
Levenberg-Marquardt algorithm

Optimal neural network structure for t&&IC pilot-scale gasifier
Regression between the network outpuiesadund the target output values fer T

Comparison of the gasifier outputs obthifoe the first ten combinations of input
validation data as generated by the ANN model ésgmted as blue circles) and
the ROM (represented as red dots)

Multi-objective optimization: pareto fromntopia point and 1-norm point
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Table 1
Mathematical model of the multi-phase flow in th@R

Gasphase
0(AcsEgPgUl) dpP , ,
Momentum  —  ax T Ae(Tg; T P8 Fpw —Fgp) =0
a 0(4Ce)\  0(AcseguigCe))
Mass  o(AeDeen o) - St (e 4 wsgon) = 0
or\ 9 (AcstgusCop o Te) , , |
Energy (Acskg,eff an) - ™ £ 2 4 A (ggHSHeter + HSHOmO) + QLoy e h — Qhony gow — Qs = 0
Solid phase
a 2 1]
Momentum ox (Acseppptiy) + Acs(epppg + Fy p) = 0
O(A & U, C. ) ,
Mass g+ A (MSF™) = Miygging = 0
9 Hetero ’ ! ’
Energy —5 (Acsepu,,c,,cppT,,) + Acs (£pHSP®™) — Qony posg = Qrad pow — Mitagginghp = 0
Number of O(A“ONpu”) . Mstagging _
particles X my
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Table 2
List of the key gasifier input and output param&téneir nominal values, and the upper and
lower input parameter bounds over which the ANNsaweined.

Nominal conditions Lower bound Upper bound

Input parameter

putp SPO (Pnom) (Pmin) (Pmax)
P1: Fuel flowrate (kg/h) 41.2 41.2 52.3
P2: O, flowrate (kg/h) 37.2 28.4 37.2
Ps: N2 flowrate (kg/h) 12.1 11.0 12.1
P4 Steam flowrate (kg/h) 10.7 0 21.8
Ps: Fuel temperature (K) 300 270 330
Ps: Mass fraction of ash in fuel 0.046 0.0414 0.0506
P7: Mass fraction of volatiles in fuel 0.127 0.1143 0.1397
Pg: Mass fraction of moisture in
fuel 0.005 0.0045 0.0055
Output parameterg { Output values at nominal condition
T1: Conversion 0.9134
T,: Outlet CO composition 05135
T3: Outlet H, composition 02176
T4 Peak temperature (K) 2.6631x 10°
Ts: Temperature: Thermocouple 1 (K) 19114x 10°
Te: Temperature: Thermocouple 2 (K) 1.7864x 10°
T+: Temperature: Thermocouple 3 (K) 16726x 10

1.6090x 10°

Tg: Temperature: Thermocouple 4 (K)
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Table 3

Comparison of the backpropagation algorithms

BP algorithm R values Mean squared Iteration
error number
Levenberg-Marquardt 0.999 2.30%10 138
Scaled conjugate gradient 0.999 6.36%10 363
One-step secant BP 0.999 3.71%10 349
BFGS Quasi-Newton 0.996 1.12%10 128
Gradient descent with momentum and 0.998 1.85%x10 227
adaptive LR
Gradient descent with momentum 0.980 0.0178 1,000
Resilient backpropagation 0.999 1.70%10 600
Gradient descent 0.998 0.0155 1,000
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Table 4

The optimal number of hidden layer neurons, andltieg testing and validation errors, for each
output parameter captured by the ANN

Neuron MSE Maximum percentage error
Output parameters number _ _

test validation test validation

Conversion (1) 5 4.7259% 10°  4.7259% 10° 2.5641% 2.6741%

CO composition (3) 4 5.1430 x 10 4.4308x 10" 1.2188% 1.5834%

H2 composition (%) 3 3.0349x 10’  4.3752x 10" 2.2514% 1.7657%
Peak temperature I 5 47.6507 57.6080 2.4972% 2.2134%
Thermocouple 1 (d) 6 46.1238 43.5570 6.0075% 5.2366%
Thermocouple 2 (d) 6 15.2896 17.2068 2.9233% 2.5796%
Thermocouple 3 () 6 3.9126 3.6703 1.5751% 1.4401%
Thermocouple 4 (d) 6 2.2825 2.6484 0.7688% 1.2136%
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Table 5
First ten combination of input parameters usedalaate the ANN

Input
parameter

9

10

P (Fuel
flowrate,
kg/h)

44.93

48.19

50.80

43.67

45.4

o

43.6

0 46.11 46

68 6849

.42.90

P2 (Oz
flowrate,
kg/h)

35.48

34.31

32.08

31.57

29.4

D 29.]

8 30.p6 36

48 2235

.35.87

Ps (N2
flowrate,
kg/h)

11.40

11.63

11.37

11.28

11.6

o

11.8

9 1202 11

91 9911

.11.63

P, (Steam
flowrate,
kg/h)

20.46

0.12

20.99

18.05

16.4¢

5 16.3

6.7

2 20|

4201

Ps (Fuel
temperature,
K)

280.24

277.59

324.9(

313.38

309

%®19.86

306.71

287.15

272.94

321.78

Ps (Mass
fraction of
ash)

0.0466

0.0484

0.0469

0.045p

0.04

aB0429

0.0428

0.0470

0.0490

0.0449

P; (Mass
fraction of
volatiles)

0.1389

0.1346

0.1397

0.1376

0.12

17.1390

0.1210

0.1272

0.1267

0.1269

Ps (Mass
fraction of
moisture)

0.0046

0.0048

0.0048§

0.0051

0.00

47.0050

0.0054

0.0047

0.0049

0.0050
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Table 6

The mean squared, mean, and maximum errors obtiinad eight output parameters over
2,500 input combinations

Output parameters MSE Mean error Max error
T: (Conversion) 4.7259x 10° 0.2204% 2.5641%
T, (CO composition) 3.1658x 10" 0.0662% 1.4744%
T3 (H, composition) 4.2342x 10" 0.2085% 1.5247%
T, (Peak temperature, K) 60.8380 0.1740% 2.1374%
Ts (Thermocouple 1, K) 45.5503 0.1421% 5.3596%
Te (Thermocouple 2, K) 17.4942 0.1236% 2.8246%
T7 (Thermocouple 3, K) 3.5040 0.0532% 1.7441%
Tg (Thermocouple 4, K) 2.5240 0.0523% 1.0516%
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Table 7 Carbon conversion optimization results

Case 3 (Tmax=2600K)

Case 4 (Tmax= 2700K)

parameter name Nom_lr_lal Case 1 (T max=2400K) Case 2 (Tmax=2500K)
condition
P; (Fuel Flow Rate, kg/h) 41.2 40 40 40 40
P, (O, Flow Rate, kg/h) 37.2 30.8921 34.449 37.2 37.2
P, (N, Flow Rate, kg/h) 12.1 12.1 12.1 11 11
P, (Steam Flow Rate, kg/h) 10.7 21.8 21.8 19.2112 19.2111
Ps (Fuel Temperature, K) 300 330 330 330 330
Ps (Mass Fraction Ash) 0.046 0.0506 0.0506 0.0506 0.0506
P, (Mass Fraction Volatiles) 0.127 0.1397 0.1397 0.1397 0.1397
P, (Mass Fraction Moisture) 0.005 0.0055 0.0055 0.0055 0.0055
Optimized parameter
T1(Conversion) in 0.8111 0.9033 0.9702 0.9702
optimization using ANN
. 0.9134 0.8114 0.9009 0.9690 0.9690
T, (Conversion) run by ROM
) 0.04% 0.27% 0.12% 0.12%
Relative error
Parameter in constrain
T,(Peak temperature, K) in 2400 2500 2600 2620.2
optimization using ANN
T.(Peak temperature, K) run  2663.1 2399.8 2501 2605.3 2627.2
by ROM
. 0.01% 0.04% 0.20% 0.27%
Relative error
T, (CO molar fraction) results 0.3616 0.3897 0.4345 0.4345
using ANN
T3(Hz molar fraction) results 0.2542 0.245 0.24 0.24
using ANN
Ts(Thermocouple 1 1778.80 1845.50 1896.40 1896.40
Temperature, K) results using
ANN
Te(Thermocouple 2 1664.90 1733.20 1779.10 1779.10
Temperature, K) results using
ANN
T7(Thermocouple 3 1564.30 1620.00 1663.00 1663.00
Temperature, K) results using
ANN
1502.40 1555.50 1598.30 1598.30

Tg(Thermocouple 4
Temperature, K) results using
ANN
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parameter name w=0 w=0.1 w=0.2 w=0.3 w=04 w=0.5 w#H0 w=0.7 w=0.8 w=0.9 w=1 1-norm
P, (Fuel Flow Rate, kg/h) 40 40 40 40 40 40 40 40 40 40 52.3 40
P, (O, Flow Rate, kg/h) 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 28.4 8.42 28.4
P, (N, Flow Rate, kg/h) 11 11 11 11 11 11 11 11 11 11 11 11
P, (Steam Flow Rate, kg/h) 19.2112 19.5424 19.9225 20.366 20.8952 21.5464 21.8 21.8 21.8 18.1061 14.5294 18.0935
P, (Fuel Temperature, K) 330 330 330 330 330 330 330 330 330 330 330 330
P, (Mass Fraction Ash) 0.0506 0.0506 0.0506 0.0506  0.0506 0.0506 0.0506 0.0506 0.0506 0.0506 0.0506 0.0506
. ) 0.1397 0.1397 0.1397 0.1397  0.1397 0.1397 0.1397 0.1397 0.1397 0.1397 0.1397 0.1397
P; (Mass Fraction Volatiles)
. . 0.0055 0.0055 0.0055 0.0055  0.0055 0.0045 0.0055 0.0055 0.0055 0.0045 0.0045 0.0045
Pg(Mass Fraction Moisture)
Optimized parameter
T, (Conversion) results using ANN  0.9702 0.9702 0.9701 0.9701 0.9699 0.9697 0.9696 9696.  0.9696 0.7494 0.5471 0.7494
. . 0.9690 0.9690 0.9689 0.9688 0.9687 0.9684 0.9683 9688.  0.9683 0.7492 0.5476 0.7492
T, (Conversion) results using ROM
Relative error 0.12% 0.12% 0.12% 0.13% 0.12% 0.13% 0.13% 0.13% 0.13% 0.03% 0.09% 0.03%
T3 (H2 molar fraction) results using  0.2400 0.2401 0.2404 0.2406 0.2408 0.2411 0.2412 241Q.  0.2412 0.265 0.2836 0.265
ANN
Tz (H2 molar fraction) results using  0.2354 0.2356 0.2357 0.2358 0.2359 0.2360 0.2360 2360.  0.2360 0.2638 0.2843 0.2638
ROM
Relative error 1.95% 1.91% 1.99% 2.04% 2.08% 2.16% 2.20% 2.20% 2.20% 0.45% 0.25% 0.45%
T,(CO molar fraction) results using 0.4345 0.4317 0.4285 0.4247 0.4203 0.4157 0.413 1304 0.413 0.3755 0.3704 0.3756
ANN
T4(Peak temperature, K) in 2596.60 2594.50 2592.20 2589.50 2586.30 2583.50 1.268 2581.20 2581.20 2346.00 2245.30 2346.10
optimization using ANN
Ts(Thermocouple 1 Temperature, 1896.40 1896.10 1895.80 1895.50 1895.10 1894.00 4.189 1894.70 1894.70 1735.90 1679.60 1735.90
K) results using ANN
Ts(Thermocouple 2 Temperature, 1779.10 1779.10 1779.20 1779.30 1779.50 1780.20 0.068 1780.00 1780.00 1617.90 1561.10 1617.90
K) results using ANN
Tz(Thermocouple 3 Temperature, 1663.00 1662.80 1662.60 1662.40 1662.20 1661.50 2.066 1662.00 1662.00 1520.40 1469.10 1520.40
K) results using ANN
Tg(Thermocouple 4 Temperature, 1598.30 1598.20 1598.10 1598.00 1598.00 1597.90 8.069 1598.00 1598.00 1462.20 1411.40 1462.20

K) results using ANN
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Table 8 Multi-objective optimization results
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Figure 2
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Figure 3

INPUT HIDDEN LAYER OUTPUT LAYER

I (1) Input parameter

I (2) Input parameter

Output parameter

I(k—l)lnput parameter

I (k) Input parameter
| | ‘ | tan-sigmoid linear transfer

function function

information -

1

tansig purelin

42



Figure 4
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Figure 5

Train and Validation Performance
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Figure 6
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Figure 7
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Figure 8
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Figure 9
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Highlights

» Thedesign of an artificial nueral networks model on a pilot-scale gasifier is presented
» Optimization studies using the ANN gasification model were performed and validated
* ANN mode is at least 4 orders of magnitude faster than reduced order models
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