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Abstract 

The solute transport distribution in a tumor is an important criterion in the evaluation of the 

cancer treatment efficacy. The fraction of killed cells after each treatment can quantify the 

therapeutic effect and plays as a helpful tool to evaluate the chemotherapy treatment schedules. 

In the present study, an image-based spatio-temporal computational model of a solid tumor is 
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provided for calculation of interstitial fluid flow and solute transport. Current model incorporates 

heterogeneous microvasculature for angiogenesis instead of synthetic mathematical modeling. In 

this modeling process, a comprehensive model according to Convection-Diffusion-Reaction 

(CDR) equations is employed due to its high accuracy for simulating the binding and the uptake 

of the drug by tumor cells. Based on the velocity and the pressure distribution, transient 

distribution of the different drug concentrations (free, bound, and internalized) is calculated. 

Then, the fraction of killed cells is obtained according to the internalized concentration. Results 

indicate the dependence of the drug distribution on both time and space, as well as the 

microvasculature density. Free and bound drug concentration have the same trend over time, 

whereas, internalized and total drug concentration increases over time and reaches a constant 

value. The highest amount of concentration occurred in the tumor region due to the higher 

permeability of the blood vessels. Moreover, the fraction of killed cells is approximately 78.87% 

and 24.94% after treatment with doxorubicin for cancerous and normal tissues, respectively. In 

general, the presented methodology may be applied in the field of personalized medicine to 

optimize patient-specific treatments. Also, such image-based modeling of solid tumors can be 

used in laboratories that working on drug delivery and evaluating new drugs before using them 

for any in vivo or clinical studies. 

Keywords: Drug delivery, Solid tumor, Microvasculature, Image-based spatio-temporal model, 

Heterogeneous capillary network, Fraction of killed cells, Mathematical modeling. 

Introduction 

Cancer is one of the major public health problems all over the world (Zhang et al., 2014, 

2015). The key to successful cure of tumor is mostly an efficient delivery of anticancer drugs 

after the surgery (Soltani and Chen, 2011). In solid tumors, physiological barriers such as high 
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density of extracellular matrix (ECM), solid stress elevation/vessel compression, and leaky and 

irregularly shaped microvascular networks are the main reasons in decreasing the efficacy of 

drug delivery and treatment (Stylianopoulos et al., 2018; Dewhirst and Secomb, 2017). These 

barriers and also the lack of lymphatic system have contribution in high values of interstitial 

fluid pressure (IFP). Elevated IFP prevents the systematic drug delivery by an outward 

convection against inward drug diffusion (Stylianopoulos et al., 2018; Dewhirst and Secomb, 

2017; Jain and Baxter; 1988, Soltani and Chen, 2011). Each tumor has its own structure and 

physiochemical characteristics such as surface per volume of vasculatures, capillary networks 

pattern, and hydraulic conductivity to name a few. This makes drug delivery and therefore, 

treatment of solid tumor very complicated and case specific. On the other hand, quantitative 

prediction of drug delivery to solid tumor using patient-specific data is noteworthy in clinical 

decision for therapeutic planning (Meghdadi et al., 2016). The aim of mathematical modeling 

and simulation is to better understand the tumor behaviors which will ultimately improve the 

treatment outcome.  

Due to the multiple processes involved in drug delivery and tumor microenvironment 

complexity, mathematical modeling is an effective tool to find out the restriction agents of 

inefficient anti-cancer drug delivery. There exist two major methodologies to simulate delivery 

of drugs to solid tumors: macroscopic and microscopic. In the first approach, distribution of 

variables including interstitial fluid velocity (IFV), IFP, and drug concentration over the tumor 

radius length-scale is significant. In the second one, some characteristics such as microvascular 

network structure, blood flow within microvessels, and interaction between blood flow and 

microvascular wall are incorporated in the model. Following macroscopic approach, Baxter and 

Jain (1989, 1990, 1991) applied a continuous porous medium model to investigate the influences 
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of different factors on the drugs concentration in ECM of solid tumors. Soltani and Chen (2011, 

2013) improved the mathematical model and applied it to investigate two new parameters of 

spherical tumors: critical radius of the tumor and critical radius of the necrotic zone. Also, to 

study the shape and size effects of tumors on drug delivery, they applied the model to different 

geometries (Soltani, 2012; Soltani and Chen, 2012; Soltani et al., 2014). El-Kareh and Secomb 

(2005) and Eikenberry (2009) used a mathematical model tool to determine the drug 

concentration respectively in the extracellular and intracellular spaces of solid tumors. There 

exist many new efforts in mathematical modeling and simulation of drug delivery to solid 

tumors, in the literature (Pishko et al., 2011; Sefidgar et al., 2014a, 2014b, 2015, Asgari et al., 

2018; Soltani et al., 2017; Chou et al., 2017; Zhan and Xu, 2013; Zhan et al., 2014, 2017; 

Stylianopoulos et al., 2015; Mpekris et al., 2017; Steuperaert et al., 2017; Shamsi et al., 2018) to 

study the effect of different factors and parameters including IFP, IFV, capillary network, and 

concentration.  

Tumor microvasculature is blood vessels which provide nutrients, oxygen or glucose for 

growth of the tumor (Baxter and Jain, 1989). Various studies have been developed on the 

vascular structure and formation of the capillaries around the tumor. Most of these studies used a 

mathematical modeling to generate tumor microvasculature based on the work of Anderson et al. 

(1998, 2012). Anderson and Chaplain (1998) developed an angiogenesis model, in which new 

vessels began to grow from a parent vessel in keeping with a special probability calculated 

according to physiological conditions such as concentration of VEGF and density of endothelial 

cells. Welter et al. (2008, 2009, 2010) by considering some phenomena including co-option of 

adjacent vasculature to the tumor, growth of the tumor, and collapse of the vessels, developed 

remodeling of microvascular structure. Zhang (2018) modeled the fluid flow in two types of 
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capillary channels: a narrow constricted capillary and a leaky one. Recently, Stephanou et al. 

(2005), J. Wu et al. (2008), Welter and Rieger (2013), M. Wu et al. (2014), Sefidgar et al. 

(2015), and Soltani et al. (2017) simulated the drug delivery to solid tumors in the presence of 

heterogeneous microvasculature but their mathematical approach is not absolutely accurate and 

real. These models are helpful for investigating the interaction of various physiological 

phenomena within the tumor during drug transport; however, they cannot accurately predict the 

tumor behavior in a specific patient, as the tumor microenvironment changes widely from one 

case to another. Therefore, unlike these synthetic microvascular mathematical models, an 

imaged-based approach is employed to calculate the spatio-temporal distribution of the drug 

within the tumor in the present study.  

Medical images are the most common resources of clinical data which are used in 

personalized models. Recent computational fluid dynamics (CFD) methodologies for modeling 

the drug delivery to solid tumors have generated a novel domain of personalized clinical 

possibilities by integrating more patient-specificity with the medical imaging data. Some of these 

previously published investigations used magnetic resonance imaging (MRI) such as the works 

of Bhandari et al. (2018) and Tan et al. (2003) for brain tumor or Pishko et al. (2011) for mice 

tumor. No one of the literature studies used the image-based geometry of the capillary networks 

as their main geometry and instead, only the mathematical modeling has been used to generate a 

synthetic capillary network. Using image-based geometry for capillaries in CFD simulations, can 

help researchers to better understand in vivo model behavior. Nevertheless, capturing an image 

of the capillaries is one of the main challenges because of two major problems: first, the way of 

capturing an image of the capillaries with existent medical devices where their accuracy cannot 

provide microvasculature precisely and second, the way of using capillaries as a geometry in 
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CFD analysis. There exist several investigations and algorithms proposed to detect the 

microvasculature from an image which contain the capillary network and also, a noisy 

background, for example, single-scale and multi-scale matched filters (Chaudhuri et al., 1989; 

Zhang et al., 2010; Malek et al., 2015; Sofka and Stewar; 2005), single-scale and multi-scale 

Gabor filters (Rangayyan et al., 2007; Janko et al., 2005), and bar-selective combination of 

shifted filter responses (Strisciuglio et al., 2015). Abdallah et al. (2015) proposed a novel 

algorithm for detection of the retinal vascular tree which eliminate some noises in the image and 

connect discontinuity among the blood vessels.  

An image-based spatio-temporal solid tumor model can be applied to optimize and 

evaluate the treatment strategies for patient-specific therapies. In the current study, for the first 

time, a comprehensive approach for solving transport phenomenon of the chemotherapy, based 

on CDR equations, was combined with an image-based method to evaluate the drug delivery to 

solid tumor by considering the heterogeneous microvasculature network. The methodology is 

such that using an image-processing method, the tumor geometry was reconstructed from a 

previously obtained image, and then, the numerical simulations were performed. First, IFP and 

IFV were calculated in both microvascular network and interstitium, simultaneously. Then, 

different drug concentrations including free, bound, and internalized were obtained. Eventually, 

using the predicted intracellular drug concentration, the fraction of killed cells parameter was 

obtained and subsequently, anticancer drug efficacy and side effects of the drug on normal tissue 

were evaluated. This research provides a preliminary step forward towards the goal of 

personalized medicine. 

2. Materials and Methods 

In the current study, an image-based model employed to study the drug delivery process 
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in solid tumors. Mathematical modeling approach, image-processing procedure, model 

geometry, computational domain, boundary conditions, model parameters, solution strategy, and 

eventually grid independency test are investigated in the following sections. 

2.1. Mathematical modeling procedure 

The chemotherapy drugs (in this study, doxorubicin) are transmitted to the site of the 

tumor via the blood vessels. Then, they pass through the wall of the tumor vessel and after that, 

they travel the remaining distance from the vessel wall to the cancer cells. Free molecules of 

doxorubicin in tumor interstitial space can bind to receptors of the cell surface, unbind or get 

internalized (Soltani et al., 2017; Stylianopoulos et al., 2015). Fig. 1 represents the mentioned 

mechanisms of drug delivery considered in present study.  

 

Fig. 1. Schematic of the drug delivery mechanism considered in the present study 

The overall model for solute transport, which is called CDR model, consists of: drug 

transport across the vessels due to the diffusion and convection, drug transport in interstitial 
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space by diffusion and convection in tissue, and other mechanisms including drug binding to 

cancer cells and its internalization into the cells. Details of these equations are mentioned in the 

literature (Baxter and Jain, 1991; Sefidgar et al., 2015; Soltani et al., 2014, 2017; Stylianopoulos 

and Jain, 2013). This modeling is based on compartment models which are widely used to 

describe the drug delivery, as they are enable to quantify the biochemical and physiological 

phenomena (Soltani et al., 2017). In compartmental modeling, it is assumed that the 

concentration in each compartment is distributed independently. But, CDR equations supposed 

that the drug concentration in the second compartment is changing because of diffusion and 

convection processes and this is the difference between these two models (Soltani et al., 2017). 

In other words, the spatio-temporal distribution is added to the compartmental modeling in the 

present study. So, the drug distribution in compartments relies on both space and time. The 

block-diagram of the current study model is shown in Fig. 2. 

 

 

Fig. 2. Drug transport modeling of current study based on 5-K compartment model  

The equation system applied for the drug transport in interstitial space is as following 

(Soltani et al., 2017; Stylianopoulos et al., 2015): 
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where, CF, CB, and CINT are the free, bound, and internalized drug concentration, respectively. 

Crec is the concentration of cell surface receptors, v is the IFV obtained from Darcy's law, D is 

the coefficient of diffusion, KON, KOFF, and KINT are respectively the constants of association, 

dissociation, and internalization rate and also, φ is the volume fraction of tumor accessible to the 

drug. V  and L  are respectively the solute transport rates per unit volume from blood vessels 

into the interstitium (like a leakage from a capillary (Zhang, 2018)), and from the interstitium 

into the lymphatic vessels. These two parameters are obtained as following by Kedem-

Katchalsky equation (Curry, 1984; Jain, 1997): 

(1 ) ( )
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PS Pe
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V e
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where, 

(1 )V f V
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PS

 
  (6) 

𝜙𝑉 is the source term expressed the extravasation from microvessels, and L  is the drainage term 

represented the elimination by the lymphatic system. These parameters are defined as bellows: 
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In the modeling of fluid flow, three fronts are noteworthy: blood flow in microvessels, 

fluid flow in lymphatic systems, and fluid flow in interstitium. Fluid flow in tissue is considered 

in CDR equation. Here, the tissue is considered as a porous medium. For fluid transport in tissue, 

Darcy’s law is used. In the current study, the IFV is calculated by Darcy’s equation, as 

bellowing: 

i iv P    (9) 

while, the IFP is calculated as follows: 

2

i V LP       (10) 

The procedure of calculating the IFP is exactly explained in the previous works of our 

group (Soltani and Chen, 2013; Soltani et al., 2017). 

Using the predicted intracellular drug concentration (CINT), efficacy of anticancer drug 

and also, side effects of chemotherapy on normal tissue are evaluated according to the previously 

measured experimentally formulation for doxorubicin (Kerr et al., 1986). Results were fitted to 

an exponential expression as the function of CINT. In other words, SF is the fraction of surviving 

cells which is calculated as following (Mpekris et al., 2017): 

exp( )F INTS C    (11) 

in which, ω is a fitting parameter defined in literature (Kerr et al., 1986) for doxorubicin and CINT 

is the intracellular concentration of the doxorubicin.  

Summaries of model parameters of interstitial transport and also, solute transport for 

tumor and normal tissue used in the numerical simulations are listed in Table 1 and Table 2. 
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Table 1 Interstitial transport parameters for tumor and normal tissue used in simulation  

Parameter Description Value References 

πb [mmHg] Capillary oncotic pressure 
20 (Normal) 

20 (Tumor) 

Soltani and Chen (2011) & 

Sefidgar et al. (2014a) 

𝜋𝑖 [mmHg] Interstitial fluid oncotic pressure 
10 (Normal) 

15 (Tumor) 

Soltani and Chen (2011) & 

Sefidgar et al. (2014a) 

(S/V)L [1/cm] 
Lymphatic surface area per unit 

volume for transport 

70 (Normal) 

20 (Tumor) 
Chou et al. (2017) 

σs Average osmotic reflection coefficient 
0.91 (Normal) 

0.82 (Tumor) 

Soltani and Chen (2011) & 

Sefidgar et al. (2014a) 

𝐿𝑝 [cm/((mmHg)*s)] 
Hydraulic conductivity of the 

microvascular wall 

0.36e-7 (Normal) 

2.8e-7 (Tumor) 

Soltani and Chen (2011) & 

Sefidgar et al. (2014a) 

𝜅 [cm
2
/(mmHg*s)] Interstitium hydraulic conductivity 

8.53e-9 (Normal) 

4.13e-8 (Tumor) 

Soltani and Chen (2011) & 

Sefidgar et al. (2014a) 

 

Table 2. Solute transport parameters used in simulation 

Parameter Description Value References 

Deff  [cm
2
/s] Effective diffusion coefficient 

1.58e-6 (Normal) 

3.40e-6 (Tumor) 

Chou et al. (2017) & Zhan et 

al. (2014) 

Pm [cm/s] Microvessel permeability coefficient 
3.75e-5 (Normal) 

3.00e-4 (Tumor) 

Chou et al. (2017) & Zhan et 

al. (2014) 

σf Filteration reflection coefficient 0.9 
Soltani and Chen (2011) & 

Sefidgar et al. (2014a) 

KON [1/(M·s)] Constant of binding rate 1.5e3 
Stylianopoulos et al. (2015) & 

Stylianopoulos and Jain (2013) 

KOFF [1/s] Constant of unbinding rate 8e-3 
Stylianopoulos et al. (2015) & 

Stylianopoulos and Jain (2013) 

KINT [1/s] Constant of cell uptake rate 5e-5 
Stylianopoulos et al. (2015) & 

Stylianopoulos and Jain (2013) 

φ Tumor volume fraction accessible to drugs 0.4 Zhan and Xu (2013) 

Crec [M] Concentration of cell surface receptors 1e-5 Stylianopoulos et al. (2015) 

PL [Pa] Hydrostatic pressure of lymphatic vessels 0 
Soltani and Chen (2011) & 

Sefidgar et al. (2014a) 

ω [m
3
/mole] Cancer cell survival constant 0.6603 Mpekris et al. (2017) 
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2.2. Image-processing procedure of the input image 

The first step for the creation of the 2-dimensional geometry from an image consisted the 

capillaries, is image-processing which is consisted some crucial steps to improve the contrast and 

quality of input image. Basically, raw input RGB images have noises, low contrast, and 

homogeneous colors. Consequently, some image-processing techniques such as histogram 

equalization of color intensity and removing details by making a binary image (black and white 

image), must be taken into account to capture the microvasculature area from a background of 

the image more effectively. In the final step, the contour of the processed image is evaluated and 

the minimum values of them are used to create the closed surface from them which in reality is 

the capillaries. Step by step descriptions of image-processing procedure applied to input image 

are explained in Fig. 3. Furthermore, it is worth mentioning that due to the lack of availability of 

clinical image and data set with a high resolution, the synthetic image from the research of 

Welter et al. (2009) is employed in current study. In the study of Welter et al. (2009), each lattice 

site of the space occupied by a tumor is identified with one tumor cell. A lattice site which was 

occupied by a tumor cell in the past represents cancerous tissue, otherwise unoccupied sites 

represent normal tissue. In this way, the tumor region can be distinguished from normal sites.  
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Fig. 3. Step by step description of image-processing procedure applied to the input image  
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2.3. Model geometry, computational domain, and boundary conditions 

After image-processing, computational domain is considered as 2-dimensional 

rectangular normal tissue with the dimension of 1.8 cm × 1.6 cm and tumor has the diameter of 1 

cm, as is shown in Fig. 4. Also, there exist three parent vessels which capillary network grows 

from them.  

In the current study, a bolus injection of chemotherapy drug is modeled so that the 

concentration at the inlet of the vascular network decreases exponentially, as bellowing (Sefidgar 

et al., 2015): 

Cp= exp (-t/Kd) (12) 

Kd is a time constant that describes the exponential decay in the blood and corresponds to the 

blood half-life. In this study, it is assumed that the process of drug delivery is modeled instantly 

after the drug distribution within the capillaries reached to uniform state. 

Due to having 2-dimensional geometry for capillary network, the pipe flow model (which 

is used for 1-dimensional geometries) cannot be used and therefore, blood flow is assumed to be 

modeled as a laminar flow (Asgari et al. 2018). For blood flow modeling, the pressure value of 

inlet and outlet parent vessels are as follows: 

PInlet,1 =25 mmHg PInlet,2 =25 mmHg POutlet,1 =10 mmHg 

For the boundary between tumor and normal tissue, continuity of the IFV, IFP, and also 

concentration and its flux are considered as appropriate boundary conditions for inner boundary; 

where Ω
−
 and Ω

+
 demonstrate the tumor and normal tissue at the boundary. Boundary conditions 

of the presented investigations are outlined in Table 3. For outer boundary, where the interstitial 

pressure is constant; the boundary condition of Dirichlet-type must be applied (Soltani and Chen, 

2011), and for concentration, the open boundary condition is used (Sefidgar et al., 2014a).  
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Table 3. Boundary conditions employed for the present study 

Region 

                                Boundary condition 

Fluid flow Concentration 

Center of the tumor 0iP                 for r=0 0eff iD C v C            for r=0 

Inner boundary 
t i n ik P k P  

      

i iP P  
  

( ) ( )t n

eff i i eff i iD C v C C D C v C C  
      

i iC C  
  

Outer boundary Pi = Constant 0n C    

 

 

Fig. 4. Computational domain and boundary conditions of the current study which includes 

tumor, normal tissue, and microvascular network 

2.4. Solution strategy 

The general flowchart of solution strategy used to describe the simulation procedure of 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

16 
 

drug delivery to solid tumor is shown in Fig. 5. First, computational domain is generated based 

on the input image. Then, there is two different phases of the solution: steady-state phase and 

time-dependent one. Laminar intravascular flow, IFV, and IFP are modeled in steady-state phase. 

In time-dependent phase, by using the information achieved from the previous steps, drug 

concentrations (CF, CB, and CINT) and fraction of killed cells (SF) are modeled.   

 

Fig. 5. The flowchart used to describe the simulation procedure of drug delivery to solid tumor 

2.5. Grid independency test 

Grid independency test is performed to show the impact of change in the number of mesh 
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elements on the simulation results. The appropriate number of elements is chosen by a trade-off 

between the cost of computational resources and the results of numerical solution (Soltani et al., 

2019; Mehryan et al., 2018; Zargar et al., 2016). When the finer mesh does not change the 

numerical results significantly, the refined mesh is considered as suitable mesh (Soltani et al., 

2019, 2018). Five different versions of the computational mesh (coarse, normal, fine, finer, and 

extra fine) are created to evaluate the mesh independency. With fine mesh elements (which is 4 

times the initial number of mesh elements), less than 2% variation in simulated drug 

concentration and fluid flow parameters is found. By increasing the number of mesh elements to 

finer and extra fine (that is 8 and 16 times the initial number of mesh elements, respectively), 

almost no variation in the drug concentration and fluid flow parameters is observed. Therefore, 

the fine mesh elements due to the lowest computational costs are used for the whole simulation. 

It is worth mentioning that free triangular mesh is used in the current study for both normal and 

tumorous tissue as shown in Fig. 6. 

 
Fig. 6. Schematic view of optimum grid generation within a computational domain 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

18 
 

3- Results and discussion 

In the present study, an image-based solid tumor model employed for solving drug 

transport phenomenon based on CDR equations. Complex microvascular network adopted from 

three parent vessels are located within the tumor and normal tissue. In the following, the 

parameters of IFV, IFP, and concentration in tumor and normal tissue will be investigated in 

detail. 

The intravascular blood pressure (IBP) and IFP distributions are illustrated in Figs. 7 (a) 

and (b), respectively. In the capillary network, the ratio of minimum IBP to maximum IBP is 0.4. 

This is in a good agreement to the predicted values of Sefidgar et al. (2015) and Cai et al. (2011) 

which is reported 0.4 and 0.3, respectively. The higher amount of IBP has both favorable and 

unfavorable influences on drug delivery. Because on one side, it increases the convective rate of 

drug transport from vessels and on the other side, increases the transvascular flow which 

terminates to increase in IFP in tumor region as one of the main obstacles of drug delivery to the 

tumor.   

IFP in tumor and its surrounding tissue plays an important role in determining the 

convective drug transport between microvessels and interstitium driven by the gradient of 

transvascular pressure and also, drug convection in ECM. According to Fig. 7 (b), the IFP in 

tumor region has its highest value in comparison with normal tissue. The reason for elevated 

pressure in the tumor is the weakness of lymphatic system and the existence of high leakage of 

blood vessels. Also, in both tumor and normal tissues, in the areas where the vessels are closer 

together (higher microvascular density), the IFP is more. In other words, the predicted IFP is 

proportional to the microvascular density and reflects the heterogeneity in the tumor area. The 

heterogeneous microvascular network as source terms in interstitial fluid flow equation cause 
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non-uniform distribution of IFP in the tumor area. This effect is also reported by Stylianopoulos 

et al. (2013), and Wu et al. (2013). Here, the maximum value of IFP is 2.3 kPa, whereas the 

average value is approximately 1.8 kPa. These value is approximately close to the values 

reported by Boucher et al. (1990), Sefidgar et al. (2015), Soltani et al. (2017), and experimental 

results of Huber et al. (2005).  

  

(a) Intravascular space 

  

(b) Interstitial space 

Fig. 7. Pressure distribution in (a) intravascular space (b) interstitial space 
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Velocity distributions in intravascular and interstitial spaces are shown in Figs. 8 (a) and 

(b). Blood velocity has the maximum value of 0.18 m/s in microvessels. As shown in the results, 

the IFV distribution is non-uniform. According to Darcy’s law, in tissues, IFV depends on the 

gradient of IFP. Because IFP distribution is heterogeneous, the gradient of IFP and as a result, 

IFV have non-uniform distribution in tumor area as is reported in the works of Zhao et al. (2007) 

and Pishko et al. (2011). IFV has very low values in the whole computational domain. So, it can 

be said that the convection terms related to the interstitial flow are negligible (Soltani et al., 

2017). In previous works (Zhao et al., 2007; Soltani et al., 2015), it is shown that these terms 

only affect on specific shapes and small sizes of tumors. The maximum value of IFV occurs at 

the tumor boundary, which is almost matched to the presented value of Sefidgar et al. (2015) and 

Pishko et al. (2011), and close to the measured values of Butler et al. (1975).  

  

(a) Intravascular space 
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(b) Interstitial space 

Fig. 8. Velocity distribution in (a) Intravascular space (b) Interstitial space 

Figs. 9 (a)-(d) show the distribution of CF, CB, CINT, and CTOT, 1-hour after the drug has 

been injected, respectively. The results show that at this time, the value of bounded drug is more 

than the others, which indicates that due to convection and diffusion mechanisms, the free drug 

in ECM is converted to the bounded drug, gradually. In addition, during the same period, 

bounded drug also gradually develops into internalized drug.  

  

(a) CF (b) CB 
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(c) CINT (d) CTOT= CF+CB+CINT 

Fig. 9. Distribution of different drug concentrations (CF, CB, CINT, and CTOT), 1-hour post-injection 

In order to better demonstrate the spatio-temporal variation of drug concentration within 

the tumor, a non-dimensional illustration of different drug concentrations (i.e. CF, CB, CINT, and 

CTOT) are shown in Fig. 10. The values FC , BC , INTC and TOTC  are the dimensionless forms of 

CF, CB, CINT, and CTOT, respectively. Each parameter has been calculated by dividing the related 

concentration at a given point within the geometry by the maximum value of concentration 

within the entire domain, at a designated time. It is worth mentioning that total drug 

concentration is defined as a sum of three concentrations (free, bound, and internalized). In the 

beginning, the drug molecules are located in the blood microvessels but they are quickly 

transmitted to the tissue. After a relatively long time, the drug molecules are transmitted to the 

next regions of the domain through the mechanisms of convection and diffusion. FC  is dominant 

at early time steps. As the time goes ahead, BC  and INTC  are increasing gradually because of 

converting the free drug molecules to the bound and then, internalized molecules by means of 

binding and internalization processes. It is significant that free drug and bound drug 

concentration changes are going in the opposite directions. Also, it is obvious that drug 

concentration in the tumor area is more than the normal tissue in all snapshots of the tumor. The 
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maximum value of total concentration occurs in tumor region. This value is several times higher 

than the concentration in the normal tissue around it. The dependency of concentration to the 

vascular network structure is visible, so that, regions with a higher vascular density have a higher 

concentration compared to the other regions which there is no or there are just a few blood 

vessels.  

Time FC  BC  INTC  TOT F B INTC C C C     

0.5-hr 

    

 

1-hr 

    

2-hr 

    

5-hr 
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10-hr 

    

15-hr 

    

20-hr 

    

30-hr 

    

40-hr 

    

 Fig. 10. Spatio-temporal distribution of non-dimensional concentration ( FC , BC , INTC , and TOTC ) at 

different times post-injection. 

 

Fig. 11 represents different time-variant concentration profiles of the drug across the 

tumor and normal tissue. Average free, bound, internalized, and total drug concentration are 
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investigated in whole domain including tumor and normal tissue. In the beginning, total 

concentration increases with time according to the increase of plasma concentration and the 

source terms of drug extravasation. The maximum amount of average concentration occurs at a 

few minutes post-injection. After the end of the injection, the free and bound concentrations start 

falling immediately. At after approximately 30-hr post-injection, the average drug concentration 

is reached to a constant value. This trend generally exists for free and bound drug concentrations 

in both tumorous and normal tissues. The only difference is that the bound and free drug 

concentrations are reached to zero value. The internalized drug concentration increases over time 

and reaches a constant value after a specified time. By comparing the average concentration in 

tumor and normal tissue regions, it can be concluded that the highest amount of concentration 

occurred in the tumor region. The reason for this phenomenon is the higher permeability of the 

blood vessels in tumor compared to normal tissue.  

  

(a) Tumor (b) Normal tissue 

Fig. 11. Different time-variant concentration profiles of the drug across the (a) Tumor (b) Normal tissue  

To check the concentration changes in the computational domain, five different cut-lines 

are selected and shown in Fig. 12. The trend of concentration changes in all cut-lines is exactly 
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the same as in the general trend in Fig. 11, as demonstrated in Fig. 13. Similarly, for cut-lines 5 

and 2, which pass through the center of the tumor, concentration has the maximum values. Cut-

line 4 which located in normal tissue region has the minimum value compared to the other ones. 

Moreover, low density of microvessels can affect the average concentration value so that, the 

value of cut-line 1 is lower than the cut-line 3. Therefore, the cut-lines which located in tumor 

region and also near the well-vascularized regions have the higher amount of concentration. 

 

Fig. 12. The location of five different cut lines in computational domain 
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(a) CF (b) CB 

  

(c) CINT (d) CTOT 

Fig. 13. Variations of different concentrations in five determined cut-lines 

The killing ability of the drug for tumor cells and also, side effects of the drug in 

damaging surrounding tissue play an important role in selecting an efficient chemotherapy drug. 

Fig. 14. shows the fraction of killed cells in the tumor and normal tissue over time during the 

treatment. The overall rate of killed cells is about 78.65% after treatment with doxorubicin. In 

addition to the effectiveness of killing cancer cells, the side effects to normal tissues during 
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chemotherapy should also be considered. The side effects of drug injection act as a limiting 

factor for drug delivery, because if side effects in a healthy tissue or other tissues exceed a 

specific amount, they will cause serious damage and even gradual death of the tissues and 

ultimately organs. Therefore, the fraction of killed cells for normal tissue is also investigated. 

From Fig. 14, the rate of killed cells for a normal tissue after treatment of doxorubicin is about 

24.94%. It is worth mentioning that the anticancer drug kills both cancer and normal cells 

without any distinction. On the other hand, delivery outcomes of doxorubicin obtained by 

modeling are compared with simulations carried out by Stylianopoulos et al. (2015). Results 

obtained from current modeling for the fraction of killed cells, were in good agreements with 

those reported by (Stylianopoulos et al., 2015). Error between the simulation results and 

literature are mainly due to difference in the geometry of heterogeneous capillary network and 

computational domain, and considering the lymphatic system in tumor region.  

 

Fig. 14. The fraction of killed cells in the tumor and normal tissue over time 
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By incorporating heterogeneous microvessel’s density in a tumor model, the current 

study has provided more percipience into the influence of non-uniform distribution of the tumor 

microvasculature on drug delivery. The effects of intravascular transport and geometric 

characteristics of tumor microvasculature are also considered. This model takes into account the 

chemotherapy release, its binding, and uptake by cancer cells. In general, results indicate the 

dependency of the drug distribution on both time and space. Also, results show that the 

concentration changes with the microvasculature density. Moreover, the fraction of killed cells is 

presented as a criterion for evaluating the drug efficacy.  

The tumor microenvironment is very complicated to be precisely represented by using a 

single mathematical model. So, the mathematical modeling employed in this study involves 

some assumptions. The main assumption is considering 2-dimensional tumor model instead of a 

full 3-dimensional model. According to the works of Zhan et al. (2014) on the prostate tumor, 

the effect of 3-dimensional on spatial-mean parameters like internalized drug is ignorable. This is 

in agreement with the study of Teo et al. (2005) who found qualitatively the same results 

between 2-dimensional and 3-dimensional models of a brain tumor. A 2-dimensional region is 

also employed in other works such as Jain and co-authors (Stylianopoulos et al., 2013, 2015; 

Mperkis et al., 2017; Stylianopoulos and Jain, 2013), Stephanou and co-authors (2005), Soltani 

and co-authors (2015, 2017, 2018), and Chou et al. (2017). Another assumption is such that the 

uniform transport properties and also, uniform tumor cell density are assumed without 

considering the heterogeneity of intra-or inter-tumor. Moreover, due to using an image as input 

for capillary networks, the authors had to assume the laminar flow in capillaries. In general, 

because of the limitations and the lack of experimental validation, the model predictions 

described in the present study should be regarded as qualitative rather than quantitative. 
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Conclusion 

The present approach bridges the techniques of image analysis for reconstructing the capillary 

network and CDR modeling for extracting the various measures of fluid properties including 

IFP, IFV, and drug concentration. The coupling mathematical model which solves both blood 

flow in the capillary network, as well as the fluid flow in the interstitial space, is employed to 

calculate the distribution of IFP and IFV. Then, a comprehensive model based on CDR equations 

is used to simulate the drug binding and uptake by tumor cells. Efficacy of anticancer drug and 

also, side effects of the drug on normal tissue are evaluated based on the fraction of killed cells 

parameter by using the predicted intracellular drug concentration. The presented computational 

model provides the necessary first steps toward personalized medicine. By considering such 

image-based model, numerical simulations will shed more light on important mechanisms of 

drug delivery inside the tumor and, simultaneously, suggest a better and more practical 

evaluation of the tumor treatment. The main limitations of current model are: using 2-

dimensional tumor model instead of a full 3-dimensional model, considering static network for 

capillaries, assuming the laminar flow model for blood flow through microvascular network, and 

considering uniform transport properties for normal and tumor tissues. 
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Highlights 

 An imaged-based computational modeling of drug distribution is considered 

 A comprehensive spatio-temporal drug delivery model in tumor and normal tissue is 

developed 

 For more accuracy of the modeling, blood flow and interstitial flow are considered  

 The fraction of killed cells is evaluated both for tumor and normal tissue 
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