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Abstract 

Peatlands are a dominant land feature in the Athabasca Oil Sands Region (AOSR) of the Western 

Boreal Plain (WBP), comprising >50% of the total land area, many of which are moderate–rich 

fens. The carbon stocks of moderate–rich fens in the WBP are susceptible to degradation through 

anthropogenic– and climate–related factors, yet, few studies have aimed to understand their 

hydrologic function. This study, located in a meltwater channel belt characterized by relatively 

thin outwash sand and gravel (~6 m) underlying the peat, provides the first hydrological 

assessment of a moderate–rich fen in the AOSR. The lithology, hydrological function and 

groundwater geochemistry all point to the dominance of a local flow system supplying 

groundwater to the fen areas, evidenced by a thick (~16 m) and shallow (~7 m below ground 

surface) aquitard underlying the outwash, restricting hydrological connectivity between the fen 

and underlying regional aquifers. Vertical hydraulic gradients between the peat and underlying 

outwash aquifer, and horizontal hydraulic gradients between the fen and upland varied in 

response to both short–term and seasonal precipitation trends.  Groundwater discharge to the fen 

was enhanced during wet periods characterized by high rainfall. Conversely, flow reversals 

(groundwater recharge; fen to underlying aquifer and upland), and subsequently, enhanced fen 

water table drawdown persisted during extended dry periods. This local groundwater flow–



  

system influences recharge/discharge patterns at Poplar Fen, with hydraulic head in the 

underlying outwash aquifer highly susceptible to fluctuations in the presence and absence of 

precipitation–driven recharge from adjacent uplands. Moderate–rich fens similar to that studied 

here will likely become more susceptible to drying in the future due to a changing climate, 

leading to enhanced water table drawdown, peat oxidation and subsequent decomposition, 

vulnerability to wildfire, and seral succession to a more ombrogenous peatland system. 

1 Introduction 

Within the Western Boreal Plain (WBP), northern Alberta, Canada, peatlands are a 

ubiquitous feature on the landscape, representing a large proportion of the total land area (Vitt et 

al., 1996). The peatlands in this region comprise a relatively large pool of terrestrial carbon 

(Gorham, 1991), with stocks susceptible to enhanced drying and decomposition under 

anticipated climate change scenarios (Flannigan et al., 2016), as well as other disturbances, 

including oil sands mining (Rooney et al., 2012) and wildfire (Turetsky et al., 2004). This 

susceptibility is compounded by the sub–humid climate of the WBP, where annual precipitation 

is typically less than potential evapotranspiration (PET), with storage deficits replenished by 

infrequent wet periods occurring over 10 to 15–year cycles (Marshall et al., 1999). The 

combination of these stressors can induce changes to the water balance from subsequent 

alterations to the hydrophysical properties of peat (Waddington et al., 2014) as well as the 

hydrological connectivity of the peatland to the surrounding surficial geology (Devito et al., 

2012). 

Peatlands in the WBP range from ombrotrophic bogs to minerotrophic swamps and poor, 

moderate–rich, extreme–rich (Chee and Vitt, 1989), and saline fens (Wells and Price, 2015a), 

with peatland type ultimately controlled by the local and regional hydrogeologic setting (Winter 

et al., 2001, 2003; Devito et al., 2005; Wells and Price, 2015b). Bogs and poor–fens generally 

form over groundwater recharge areas, where fine–grained substrates minimize landscape 

connectivity and restrict recharge of peat subsurface water to underlying mineral aquifers 

(Ferone and Devito, 2004; Wells et al., 2017; Riddell, 2008). Conversely, base–rich fens receive 

solute–laden runoff and/or groundwater, and generally form over groundwater discharge areas 



  

(Siegel and Glaser, 1987; Winter et al., 2003), where coarse–grained substrates can enhance 

groundwater connectivity (Reeve et al., 2000) and help sustain near–surface water tables. 

Groundwater discharge has been linked to several important ecological and biogeochemical 

functions within peatlands. For example, groundwater can influence peatland water chemistry 

(Siegel, 1983) and drive the geochemical and ecological gradients associated with specific 

peatland types (Sjörs, 1950; Siegel, 1983; Siegel and Glaser, 1987; Chee and Vitt, 1989). 

Gorham (1953) suggested that modest amounts of base–rich groundwater were sufficient enough 

to maintain fen surface water pH above 4.5. By buffering the organic (humic and fulvic) acids 

that are produced in–situ through peat decomposition, base–rich groundwater can therefore 

inhibit the dominance of Sphagnum mosses that succeed in peatlands with low–pH surface 

waters (Dasgupta et al., 2015). 

Peat accumulation (carbon uptake) is highly influenced by hydrology, with lower water 

tables resulting in enhanced oxygen availability and concomitant peat decomposition (Ise et al., 

2008; Waddington et al., 2014). Consequently, carbon accumulation and storage in peatlands is 

in part controlled by water table position (Clymo, 1984; Adkinson et al., 2011). Fens can be 

adaptive to water stress as groundwater discharge has been shown to partially offset water losses 

during years of low annual precipitation (Siegel and Glaser, 1987). The strength and scale of 

groundwater connection influences the hydraulic head distribution, and thus the patterns in 

discharge and flow direction (Tóth, 1999; Winter et al., 2001, 2003). Peatlands connected to 

intermediate/regional flow systems will receive discharge from groundwater associated with 

longer travel times and therefore are less susceptible to seasonal and annual hydrometeorological 

variability (Smerdon et al., 2005). Conversely, peatlands connected to shallower local flow 

systems receive groundwater that is more susceptible to short–term (e.g., seasonal and annual) 

trends in precipitation–driven recharge in adjacent topographic highs (Tóth, 1999). Thus, 

peatlands influenced primarily by local, rather than regional flow systems are likely to be more 

susceptible to vertical flow reversals in the absence of precipitation (Devito et al., 1997; Fraser et 

al., 2001), potentially becoming groundwater recharge areas during periods of low water 

availability. 

Within the WBP, the hydrologic function of pond–peatland complexes have been 

explored in the Utikuma Region Study Area (URSA), located ~300 km north of Edmonton, AB. 



  

There, peatlands overlying clay plains and till moraines act as diffuse recharge features, with 

little or no supplemented discharge from adjacent uplands and underlying mineral substrates 

(Ferone and Devito, 2004). The hydrogeology of bogs (Scarlett and Price, 2013) and poor fens 

(Wells et al., 2017) in the Athabasca Oil Sands Region (AOSR) have also been shown to exhibit 

limited groundwater connectivity. Conversely, pond–peatland complexes in the URSA situated 

within coarser–grained substrates have been shown to exhibit a greater connection to regional 

groundwater, receiving supplemented discharge during drier periods (Smerdon et al., 2005). 

Similar results were illustrated at a moderate–rich fen overlying a glaciofluvial outwash plain in 

central Saskatchewan, highlighting a dynamic lateral groundwater connection with adjacent 

upland areas, which was enhanced during wetter conditions (Barr et al., 2012). Saline fens in the 

AOSR receive diffuse discharge from a saline groundwater plume sourced by the Grand Rapids 

formation, a regional saline aquifer (Wells and Price, 2015a, 2015b). 

Despite considerable efforts in characterizing their vegetation and water chemistry (Chee 

and Vitt, 1989; Vitt and Chee, 1990; Thormann and Bayley, 1997; Locky and Bayley, 2010), the 

hydrology of moderate–rich fen systems in northern Alberta requires further exploration (Elmes 

et al., 2018). The purpose of study was to examine the hydrologic setting of a moderate–rich fen 

watershed in the AOSR to better understand the natural variability in wetland function in the 

WBP. The primary objective is to identify the hydrogeologic connectivity of a moderate–rich fen 

to the local watershed and link this connection to the hydrologic function of the watershed. The 

results generated in this study can help to better understand how moderate–rich fen systems in 

the region may respond to climate change and other natural and anthropogenic stressors, and 

may help in expanding our understanding of the range of peatland function in a region 

characterized by a high degree of wetland and associated species diversity (Vitt et al., 1996). 

Here, field data are analyzed and presented from a moderate–rich fen watershed over a five–year 

period, between 2011 and 2015. 

2 Site Description and regional hydrogeologic setting 

The AOSR is located on the northeastern edge of the Alberta Basin, a sub–basin of the 

Western Canadian Sedimentary Basin (Grasby and Chen, 2005). The regional groundwater 

regime follows a south to north direction, primarily through Cambrian sandstones and Devonian 



  

through Mississippian carbonates. Cretaceous shales and silts associated with the Clearwater 

formation act as regional aquitards; however, interbedded sandstones often act as local and 

regional aquifers (Bachu, 1995). Drift thickness is variable in the region, ranging from <1 m to 

>200 m. The thickest drift deposits are located in topographic highs, including Muskeg Mountain 

(~600 m ASL) and the Birch Mountains (~800 m ASL), thinning to <20 m towards the Dover 

and Kearl Lake plain regions adjacent to the Athabasca River (at ~240 m ASL) (Andriashek and 

Atkinson, 2007). The topographic highs are underlain by cretaceous shales and sandstones, and 

act as regional recharge areas, creating confined regional aquifers that eventually discharge into 

the Athabasca River (Andriashek, 2003). 

                                                          W  ~  0 m ASL),    .  km
2 

treed moderate–rich channel fen watershed (total relief: ~11 m) located 25 km north of Fort 

McMurray, within the Dover Plain region of the AOSR, northern Alberta (Fig. 1). The watershed 

is located within the Central Mixedwood Subregion of the Boreal Plains Ecozone (Natural 

Regions Committee, 2006). The climate in the region is defined as sub–humid (Bothe and 

Abraham, 1993; Marshall et al., 1999), with annual potential evapotranspiration (PET) typically 

exceeding annual precipitation (P) (Devito et al., 2012). The average annual air temperature 

(1981–2010) is 1°C and average annual precipitation is 419 mm, with ~75% falling as rain 

(Environment Canada, 2017). Drift is relatively thin (<20 m) in the Poplar Fen area and is 

dominated by fine to coarse sand with heterogeneous deposits of boulders, gravel, silt, and clay 

(Andriashek and Atkinson, 2007). The site is situated within a long ~10 km belt of meltwater 

channels extending northward to the southern portion of the Syncrude basemine (Fig. 1). Prior to 

glaciation, relict channels in this area were incised into the Cretaceous strata (McPherson and 

Kathol, 1977) during a period of erosion extending from the late Cretaceous into the late 

Pleistocene (Andriashek, 2003). It was hypothesized that these lows were later infilled with 

lacustrine sediment prior to, till during, and outwash following glaciation. Following the 

deposition of the outwash, meltwater eroded into the channels forming them into the existing 

post–glacial features. Since deglaciation, the original depositional surface has been modified by 

        m         f                  g                                              g    

(McPherson and Kathol, 1977). 



  

Poplar Fen is composed primarily of brown moss–dominated (Goetz et al., 2014) 

moderate–rich channel fens (~0.7 km
2
), with two additional Sphagnum and feather moss–

dominated elongated depressional wetlands,                                       g        g    

                      g           f            g.  ).                             m   ,  ~0.    ) 

          W                                  0  W)     g                      f              , 

and a larg    ~    )                                                 W)     g                     

of the watershed. The Poplar Fen watershed was delineated using an airborne LiDAR (Light 

Detection And Ranging) digital elevation model (Airborne Imaging Inc. licensed to the 

Government of Alberta). The area has been altered by linear disturbances associated with 

resource exploration and extraction, including the construction of several cut lines with areas 

cleared for drill logs, and a pipeline and corridor extending west to east along the north end of 

the watershed (Fig. 1). 

Tamarack (Larix laricina) and black spruce (Picea mariana) are the dominant tree 

species within Poplar Fen, with saplings (<1 m height) dominant in the West wetland, saplings 

and mid–sized trees (<3 m height) dominant in channel fen areas, and taller trees (>3 m height) 

dominant in the East wetland. Surface cover in moderate–rich channel fen areas is characterized 

primarily by mosses Tomenthypnum nitens, Aulacomnium palustre, Pleurozium schreberi, and 

from the genus Sphagnum (S. fuscum and S. capillifolium). Surface cover in the East and West 

wetland areas is dominated primarily by S. fuscum, and feathermosses Hylocomium splendens, 

and P. schreberi. Upland areas are dominated by P. mariana and feather mosses in riparian 

zones, with jack pine (Pinus banksiana) and aspen (Populus tremuloides) mixedwood overstorey 

and lichen ground cover in topographically higher areas. 

3 Methodology 

  Field lithology drill logs were obtained from Suncor Energy Inc. (personal 

communication), and used to construct geologic cross–sections of Poplar Fen. Logs included 

interpretations of specific geological sequences extending down to the Precambrian Shield, 

which were ultimately used to construct cross–sections. Two primary west–east transects (A–A  

and B–B       g.  )            f                ,  x      g      g                    .        

with the interpolation of shallow substrate attributes between drill logs (e.g., surface elevation, 



  

peat thickness, and mineral grain size directly underlying the basal peat), information obtained 

during groundwater monitoring nest installation was also used in producing the cross–sections. 

 Hydrological investigations at Poplar Fen began in June of 2011, and instrumentation 

initially comprised three transects at the northwestern portion of the channel fen (NT1–NT3; Fig. 

1), extending southward with nests installed along the fen–upland ecotone. In 2014 and early 

2015, additional nests were installed elsewhere throughout the watershed to capture a greater 

representative area. Nests were installed at several fen and adjacent upland locations, comprising 

four transects along a narrow and gentle–sloping upland on the west side of the watershed 

(WT1–WT4; Fig. 1) to the adjacent fen, and four transects along a more expansive and steeper 

upland on the east side of the watershed (ET1–ET4; Fig. 1) to the adjacent fen. A nest was also 

installed in both the West and East wetlands (Fig. 1). Nests were also installed into margins at all 

transects, although water levels and hydraulic gradients are not reported in this study. Screened 

wells and piezometers (20 cm screened intake) were constructed from PVC (2.5 cm inner 

diameter) pipe and installed into the different substrates in grouped nests. Nests typically 

comprised a fully–slotted well, with piezometers installed in mid–peat (0.6–0.75 m depth) and 

underlying mineral sediment (1.25–1.5 m depth). The depth to water table and piezometer head 

at nests were measured manually on a weekly basis during the spring and summer from 2011–

2015 and once in October for all years with the exception of 2014. A continuous record of 

channel fen water table was obtained at a nest in NT1 using a logging pressure transducer (from 

2011–12; Schlumberger Mini–Diver) or a capacitance water level recorder (from 2013–15; 

Odyssey Dataflow Systems Ltd.). Average manual water table was then extrapolated into a 

continuous record, based on highly correlated values between average manual water table and 

logged water table. Saturated hydraulic conductivities (Ksat) of peat, mineral sediment underlying 

the peat, and upland sediment were determined by bail tests on all piezometers (and wells in 

uplands) installed at Poplar Fen between 2011–15 using the hydrostatic time–lag method 

(Hvorslev, 1951). Triplicate Ksat measurements were performed for all pipes measured in which 

the arithmetic average was taken. For the upper 60 cm of peat, Ksat was determined in the lab 

using peat cores extracted from channel fen (n= 2), Margin (n= 2), and West wetland (n= 1) 

areas. Cores were extracted using a Wardenaar coring device and samples were frozen and 

shipped for processing at the lab. Cores were subdivided into 10–cm stratigraphic intervals, and 

horizontal and vertical Ksat were determined using a constant head method (e.g. Freeze and 



  

Cherry, 1979). Lab and field Ksat values were grouped and arranged by depth to estimate average 

Ksat versus depth, which were later used in groundwater flux calculations. 

D       L        z      C     ,  979)           o estimate groundwater fluxes in and 

out of the channel fen (NT1–NT3) and West wetland areas: 

   –     
  

  
                                                               (1) 

where q is the specific discharge (m
 
s
–1

), Ksat is the saturated hydraulic conductivity (m s
–1

), and 

dh/dl is the hydraulic gradient (dimensionless).  

Vertical fluxes were calculated using vertical hydraulic gradients between the mid–peat 

and underlying mineral layer for each channel fen nest and for the West and East wetlands. 

Vertical area–weighted groundwater flux rates (mm d
–1

) were estimated at each nest (with the 

exception of the East wetland) by multiplying the vertical hydraulic gradient by a weighted 

harmonic mean Ksat between the piezometers measured, using all available Ksat data at Poplar 

Fen (including Ksat data obtained outside of NT1–NT3). The harmonic mean is typically used 

for calculating vertical flux rates through horizontally layered strata (Freeze and Cherry, 1979). 

Given negligible differences between laboratory–measured vertical and horizontal Ksat (not 

shown), an anisotropy of 1 was used for field–measured Ksat values. 

Horizontal groundwater fluxes, laterally into the channel fen, were calculated using the 

differences in channel fen and upland water table elevations. To prevent overestimation of Ksat, 

depth–weighted arithmetic means were calculated individually for fen and margin areas, using 

Ksat data that were grouped and averaged by depth using a geometric mean. The weighted 

arithmetic mean is typically used for calculating flux rates for horizontal flow through 

horizontally layered strata (Freeze and Cherry, 1979). Depth–weighted arithmetic means were 

calculated for fen and margin at each transect depending on their average water table positions. 

For example, if the average fen water table position was 15 cm below ground surface at NT1, 

Ksat values measured at 0–10 cm depth were not used in the calculation, and 5 cm weighting was 

given to the Ksat values measured at 10–20 cm depth. Once mean Ksat values were calculated, a 

harmonic mean was taken between the weighted arithmetic mean fen and margin Ksat values, and 

the geometric mean upland Ksat. Final Ksat values were then multiplied by the horizontal 



  

hydraulic gradient to calculate the specific discharge fluxes (mm d
–1

) at each transect. Average 

fluxes were applied across a flow face (thickness and length of NT1–NT3 peat flow face) to 

obtain a volumetric flux (m
3
). Then, the volumetric flux was divided by the estimated fen surface 

area of NT1–NT3 (~47,000 m
2
) to which this flow face was assumed to contribute to.  

Precipitation was measured in an open area of the site with a logging Onset RG3–M 

tipping bucket rain gauge. Missing daily totals (fall to early spring) were supplemented with 

rainfall data for the Poplar Fen area (township: T092R10W4), which were estimated using an 

inverse-distance weighting interpolation procedure (closest climate station located ~12 km north 

of Poplar Fen) (Alberta Agriculture and Forestry, 2017). The same interpolated data were 

obtained from Oct. 1995 to Sept. 2015 to produce a 30–year record of precipitation of the area. 

Mean precipitation was calculated for each hydrologic year (Oct. 01 – Sept. 30). 

 In August 2014, June 2015, and July 2015, porewater samples were taken from specific 

nests within the channel fen, West and East wetland, and upland water table wells, as well as 

specific underlying mineral piezometers at channel fen nests and the West wetland. All water 

samples wer       f     b                  f m j                     ,             x g    δ
18

O) 

         g    δD)         . A           m          f                            g 0.   μm 

nitrocellulose membrane filters. Samples for ion analyses were stored in 60 mL high–density 

polyethylene bottles and kept frozen prior to analyses. Isotope samples were stored in tightly 

sealed 20 mL scintillation vials with no head space, at 4°C, for isotope analyses. Major ions were 

measured with a Dionex ICS–1600 Method EPA 300.0 with AS–DV auto–sampler, with 

analytical precision to ±1.0 mg L
–1

 or less. Isotopes were measured with a Picarro L2120–i 

Cavity Ring–Down Spectroscopy analyzer. This technique yields an analytical precision of 

±0. ‰ f   δD     ±0. ‰ f   δ
18

O. 

4 Results 

4.1 Lithology 

Within the watershed boundaries – along cross–sections A–A      B–B  – there was a 

combined average drift and recent sediment thickness of 12.3 m (range: 5–23 m) overlying the 

Cretaceous Clearwater formation (Fig. 2). Although not reported in the lithology drill logs, a thin 



  

(~0.1 m) silty sand layer is dominant at most channel fen nest locations, detected during well and 

piezometer installations. A similar underlying silty sand layer is located at the West wetland at 

~1 m depth below ground surface (b.g.s.); however, between this and the peat layer is a ~0.5 m 

thick sand and gravel layer. Underlying the peat at the East wetland is a ~1 m sand layer, which 

             b                ≥0.  m).          m    m           m         m       f        

outwash sand and gravel, which averages 6.2 m in thickness, ranging from 0.5–13.4 m (Fig. 2). 

Outwash depth is thicker, more elevated, and more consistent along the more elevated eastern 

side of the watershed. Underlying the outwash is a fine–grained silt–dominated till unit, which 

averages 5.3 m in thickness, ranging from 0–9.5 m. This unit becomes shallower and more 

elevated along the west side of the watershed. Underlying the silty–till is the Clearwater 

formation, a known regional aquitard, which varies in thickness and texture ranging from sandy 

silt to pure clay, with an average combined thickness of 10.9 m (range: 0.5–19 m). Underlying 

the Clearwater formation is the bitumen–bearing McMurray formation, which has an average 

depth below ground surface of 22.7 m. 

4.2 Hydraulic Conductivity 

Peat thickness measured in this study ranged from 1.3–1.5 m in channel fen areas, 

commonly thinning to 0.3–0.7 m in margins between fen and upland; however, drill logs 

obtained for the area report peat thickness can reach up to 3 m. Peat depth averaged ~0.5 m in the 

West wetland and ~0.3 m in the East wetland. Ksat of the channel fen peat declined with depth by 

orders of magnitude, ranging from 4.7 x 10
–3 

m s
–1

 in the upper 10 cm to as low as 1.2 x 10
–8

 m 

s
–1 

at the basal layer (Fig. 3). The peat at the base of the channel fen (1.0–1.1 m depth) had a 

geometric mean Ksat of 4.5 x 10
–7

 m s
–1

,
 
ranging from 3.1 x 10

–5
 m s

–1 
to 1.2 x 10

–8
 m s

–1
 (n=11), 

spanning three orders of magnitude (Fig. 3). Directly underlying the channel fen peat (below 

1.2–1.5 m) is a ~0.3 m thick, heterogeneous mineral layer above the outwash layer, ranging from 

fine–medium sand to silty sand. Ksat in this layer and the outwash layer ranged by four orders of 

magnitude, and had a geometric mean of 5.6 × 10
–6 

m s
–1 

(n=33). Ksat measured at the West 

wetland ranged by two orders of magnitude, from 3.5 × 10
–3 

m s
–1

 at the surface, to 2.7 × 10
–5 

m 

s
–1 

at the basal layer (0.5–0.6 m depth). Directly underlying the West wetland is a ~0.4 m thick 

sand layer (Ksat not measured at this depth). Below the sand layer (at 1 m depth b.g.s.) is a silt–

dominated layer with a Ksat of 3.4 × 10
–8 

m s
–1

. Ksat was not measured for the peat layer at the 



  

East wetland; however, the sand–dominated mineral layer directly underlying the peat (0.3–1.4 

m) had a measured Ksat of 1.0 × 10
–5 

m s
–1

. Underlying the sand layer is a clay–dominated layer 

which had a Ksat of 3.9 × 10
–10 

m s
–1

 (not shown). In upland areas, composed primarily of sand 

and gravel, Ksat was relatively high with a geometric mean of ~3.0 x 10
-4

 m s
-1

 (n = 8) (not shown 

in Fig. 3). 

4.3 Hydrology 

4.3.1 Precipitation 

 Total rainfall interpolated for the Poplar Fen area averaged 412 mm between hydrologic 

years 1985–86 and 2014–15. The first twelve years of the 30–year record were characterized by 

relatively wetter conditions, with nine of these years having above average rainfall. Conversely, 

the latter half (1999–00 to 2014–15) of the record was characterized by several years that did not 

depart far from the mean (eight years ranging from –26 to +25 mm from the mean). In addition, 

six years were characterized by precipitation more than 35 mm lower than the mean, with only 

two years that were particularly wet. With respect to the five–year period during which this study 

was conducted, it began towards the end of a drying period. The 2010–11 year was the driest on 

record (–191 mm from mean); 2011–12 (+25 mm) and 2012–13 (+80 mm) were above average 

(wetting period), and 2013–14 (–36 mm) and 2014–15 (–85 mm) were below average (drying 

period). 

4.3.2 Water table 

Average channel fen water table position at NT1–NT3 ranged by ~0.77 m (+0.1 m to –

0.66 m) between Jun. 08, 2011 and Oct. 04, 2015 (Fig. 4a). The general five–year water table 

trend was relatively low water tables (dry conditions) at the beginning (2011 to mid–2012), 

increased water table in the middle years (late 2012 to mid–2014), and lower water tables in a 

drying period towards the end (mid–2014 to late 2015) of the 5–year record (Fig. 4a). Over this 

time, horizontal hydraulic gradients were relatively stable down the channel fen towards the 

culvert (location shown in Fig. 1), averaging 0.0026 ± 0.0005 (SE) (data not shown on Fig. 4). 

Horizontal groundwater flow was typically low during the drier periods (2011 to summer 2012 

and 2015), ranging from 0.004–0.254 mm d
–1

 (average = 0.05 ± 0.01 (SE) mm d
–1

). During wet 



  

periods (fall 2012 to summer 2014), horizontal flow was higher, ranging from 0.07–0.30 mm d
–1

 

(average = 0.26 ± 0.01 (SE) mm d
–1

). 

4.3.3 Vertical groundwater connection between channel fen and underlying outwash  

Between 2011 and 2015, hydraulic head in the underlying outwash aquifer (Fig. 4b) and 

vertical hydraulic gradients between the peat and underlying mineral substrate at the channel fen 

(Fig. 4c) varied in correspondence with diurnal and seasonal precipitation trends. Vertical flow 

direction at NT1–NT3 fen nests (location shown in Fig. 1) was downward (indicating 

groundwater recharge) throughout most of 2011 (95% of the field season), corresponding to a 

period of low water tables and below average rainfall (Fig. 4a). Over this period vertical 

discharge averaged –0.13 mm d
–1

 (Table. 1). In 2012, several large rain events had occurred (Fig. 

4a), with several vertical flow reversals occurring during these events (Fig. 4c). For the majority 

of this period (87% of the field season), vertical flow was directed primarily upwards (indicating 

groundwater discharge), with average vertical discharge equaling +0.04 mm d
–1

. Discharge 

conditions persisted throughout 2013 until Aug. 2014, during an extended period of above 

average rainfall and high fen water tables, reaching upward gradients as high as +0.016 (Fig. 4c). 

Throughout this period, average vertical discharge equaled +0.13 mm d
–1

 (Fig. 4c). In July 2014, 

fen water tables began declining steadily into the fall (Fig. 4a), and another vertical flow reversal 

was initiated, back to groundwater recharge. Recharge conditions persisted for roughly half of 

the 2014 study period, and vertical discharge averaged –0.04 mm d
–1

 over this time (Fig. 4c). 

Spring 2015 exhibited high (near–surface) fen water tables (Fig. 4a), and at this time, Poplar Fen 

was a groundwater discharge area. However, throughout the growing season, several more flow 

reversals were initiated, including recharge during a period of low rainfall in June, discharge in 

mid–July during a period of increased rainfall, and recharge from early August until the late fall 

(Fig. 4c). Over this period, recharge conditions persisted for 65% of the time, and vertical 

discharge averaged –0.09 mm d
–1

 (Table. 1). The annual net groundwater fluxes measured over 

each respective field season were –13.9 mm in 2011 (111 days), +8.1 mm in 2012 (170 days), 

+17.8 mm in 2013 (147 days), +5.2 mm in 2014 (84 days), and –11.0 mm in 2015 (125 days). 

Average vertical hydraulic gradients measured at NT1–NT3 (–0.008) were lower in 2015 

than those calculated from new nests (WT1–WT4; ET1–ET4; Fig. 1) that were installed in 2014 



  

and 2015 (–0.001) (Fig. 4c). The newer nests exhibited flow reversals throughout 2015 in 

response to precipitation; however, vertical hydraulic gradients did not reach values as low as 

those measured at NT1–NT3 and therefore did not experience the same variation (Fig. 4c). This 

resulted in smaller loss (–0.02 mm d
–1

) of water to the underlying outwash aquifer compared to 

NT1–NT3 (–0.11 mm d
–1

). 

4.3.4 Lateral upland–channel fen groundwater connection 

The fen to upland slope along NT1–NT3 transects (Fig. 1) averaged 0.5% and had a relief 

of ~1.1 m. Horizontal hydraulic gradients between fen and upland at these transects were 

positive throughout most of the five–year record (Fig. 4d), indicating that the lateral flow was 

directed primarily towards the fen (average: +0.001). On average, horizontal gradients were 

weaker by an order of magnitude than vertical gradients (see Fig. 4c). Flow reversals occurred 

only in late June, mid–August, and early October 2015, corresponding to periods of low rainfall. 

Average horizontal discharge ranged from –0.01 to +1.15 mm d
–1 

(Fig. 4d). During drier periods 

characterized by lower rainfall and water tables (Aug. 2011–Aug. 2012, 2015; Fig. 4a), 

horizontal discharge averaged +0.01 mm d
–1

. During wetter periods characterized by higher 

rainfall and water tables (Fall 2012–July. 2014; Fig. 4a), horizontal discharge averaged +0.50 

mm d
–1

. The annual net groundwater fluxes measured over each respective field season were 

+2.8 mm in 2011 (111 days), +10.7 mm in 2012 (170 days), +79.2 mm in 2013 (147 days), 

+44.5 in 2014 (84 days), and +1.2 mm in 2015 (125 days). 

In the more expansive East upland (transects ET1–ET4; average upland to channel fen 

slope = 1.5%; total relief = ~7.0 m), horizontal hydraulic gradients in 2015 were stronger by an 

order of magnitude along this flow face than those measured at NT1–NT3 (Fig. 4d). Although 

weakening in the absence of precipitation, horizontal hydraulic gradients at ET1–ET4 remained 

positive in 2015 and no flow reversals were detected over this relatively dry (–86 mm from 30–

year mean) summer. This resulted in horizontal discharge ranging from +0.09 to 1.08 mm d
–1

 

(not shown on Fig. 4d). Conversely, average horizontal gradients at the narrower and more 

gently–sloping West upland (transects WT1–WT4; average upland to channel fen slope = 0.5%; 

total relief = ~1.0 m) were generally lower and more variable than at NT1–NT3 (Fig. 4d). This 

resulted in horizontal discharge ranging from –0.08 to +0.19 mm d
-1

 (not shown on Fig. 4d). 



  

4.3.5 Hydrology of West and East wetlands 

Water tables in the East and West wetlands were below ground surface for the entire 

instrumental period (Fig. 5a). Water table position was nearly identical between the East and 

West wetlands in 2014. Conversely, water tables differed more in 2015, as the West wetland was 

consistently lower (Fig. 5a); it had fallen below the base of the peat layer and into the underlying 

sand layer (not shown) by October, 2015. 

Vertical hydraulic gradients differed notably between wetlands (Fig. 5b). Vertical 

gradients were negative in the East wetland throughout all of 2014–15, indicating that the peat 

was recharging the underlying mineral layers throughout this whole period. In contrast, vertical 

flow reversals were detected in the West wetland during both years. Unlike in channel fen areas, 

where gradients became positive in response to rainfall, vertical flow direction showed opposite 

patterns in the West wetland, as it became a recharge zone during wetter periods and a discharge 

zone following extended periods of water table drawdown (Fig. 5b). Due to the relatively high 

saturated hydraulic conductivity of the basal peat layer (Fig. 3), vertical flux rates in the West 

wetland were typically higher compared to the channel fen, ranging from –0.9 mm d
–1

 during 

wet periods to +0.7 mm d
–1

 during dry periods. Due to insufficient information on the hydraulic 

properties of the 30 cm deep peat in the East wetland, fluxes were not calculated. 

Horizontal gradients also differed greatly between wetlands in 2015 (Fig. 5c). Horizontal 

gradients between the West wetland and adjacent uplands were negative throughout the entire 

sampling period, indicating that the wetland received no supplemented lateral discharge, and 

instead, recharged the adjacent uplands. Contrary to the West wetland, a strong and consistent 

positive gradient was measured between the East wetland and the upland to the east throughout 

2015 (Fig. 5c). 

4.4 Water chemistry 

Porewater samples obtained from channel fen, underlying outwash, and upland pipes all 

had similar pH (6.8–7.0), electrical conductivity (EC; 411–532 µS cm
–1

), and concentrations of 

calcium (Ca
2+

; 59–79 mg l
–1

) and magnesium (Mg
2+

; 13.9–17.1 mg l
–1

) (Fig. 6). Comparatively, 

the West and East wetland wells, as well as the sandy silt layer underlying the West wetland, had 



  

lower pH (4.5–5.6), EC (109–165 µS cm
–1

), Ca
2+ 

(8.2–14.2 mg l
–1

), and Mg
2+ 

(1.2–2.6 mg l
–1

). 

All locations had similar chloride (Cl
–
) concentrations, ranging from 1.3–3.5 mg l

–1
 (Fig. 6). 

 

All water samples obtained from these three locations appeared to be of similar recent 

meteorological origin, plotting close to the local meteoric water line (LMWL), and showing little 

or no evidence of isotopic enrichment or depletion. The West wetland water table well sample 

plotted close to the corresponding underlying mineral piezometer, both in the middle of the 

LMWL. The East wetland water table in June 2015 was virtually similar in isotopic composition 

to upland water table samples obtained during that period. However, by July, 2015, the East 

wetland water table and corresponding underlying sand piezometer sample had isotopic 

composition characteristic of late summer precipitation (Fig. 7). 

5 Discussion 

5.1 Conceptualizing Water Movement at Poplar Fen Watershed 

Based on what was observed at Poplar Fen, the following conceptual model is proposed 

(Fig. 8), which highlights the hydrogeologic setting and hydrologic function of fens and uplands 

that are thought to be typical of moderate–rich fen watersheds in the AOSR. Given that this 

study included two seasons with less than typical rainfall, the conceptual model may be a useful 

guide for understanding the likely response of moderate–rich fens in the AOSR under a future 

climate, where increases in precipitation are not expected to effectively offset increases in 

evapotranspiration due to warming (Collins et al., 2013). 

5.2 Geologic Setting 

Field lithology drill logs identified a veneer–type layering of coarse– over fine–grained 

glacial deposits over the Cretaceous Clearwater formation at Poplar Fen. This establishes a 

relatively thick (~16 m) and shallow aquitard throughout the watershed (Fig. 2). The combined 

low Ksat units restrict the connectivity between the watershed and underlying regional flow 

systems. Overlying the aquitard, outwash sand and gravel are the dominant sediment textures in 

adjacent uplands and outwash underlying the channel fen. These higher Ksat units allow for a 

local unconfined flow–system to develop, which focusses discharge to low–lying channel fen 



  

areas. The silty sand layer underlying the channel fen, although thin and heterogeneous, limits 

the strength of this connection, lowering specific discharge during wet periods, while also 

reducing water loss (via downward flow through the basal peat) during drier periods. In addition, 

the West and East wetlands have a relatively shallow, low Ksat unit underlying the organic soil, 

which helps confine the downward flow of subsurface water and promotes more saturated peat–

forming conditions. 

5.3 Hydrogeologic Setting and its Influence on the Hydrologic Regime of Poplar Fen 

Vertical recharge–discharge patterns between the peat and underlying outwash aquifer 

were variable both spatially and temporally over the five–year instrumental period at channel fen 

nests (Fig. 4c). Vertical flow reversals occurred several times (Fig. 4c), with discharge 

conditions (upward flow from underlying outwash to peat) initiating and persisting over 

relatively wet periods, and recharge conditions (downward flow from peat to underlying 

outwash) over extended dry periods (summarized in Fig. 8). These flow patterns are different 

from those reported on pond–peatland complexes overlying outwash sediments at the URSA 

(Smerdon et al., 2005), a spring fen (Siegel and Glaser, 1987) and raised–bog (Glaser et al., 

1997) in northwestern Minnesota, and fens overlying esker aquifers in northern Finland (Kløve 

et al., 2012). These locations comprise relatively thick coarse-grained sediments that extend 

deeper than those underlying Poplar Fen, and subsequently, water table drawdown is moderated 

by more consistent sources of groundwater discharge, which the authors all attribute to deep 

regional flow. The variability in hydraulic head in the relatively thin coarse–grained outwash 

sediment underlying Poplar Fen, in correspondence with short-term precipitation trends, 

indicates a local groundwater flow–system characterized by short travel times (Tóth, 1999; 

Kløve et al., 2012). Although localized, this hydrogeologic setting is different from bog and poor 

fen watersheds connected to local flow systems at URSA (Ferone and Devito, 2004), where low 

Ksat clay or till underlying the peat confined the hydrological connectivity between peatlands and 

underlying groundwater. Thus, flow direction and magnitude at Poplar Fen are more responsive 

to precipitation–driven recharge from adjacent uplands leading to subsequent discharge from 

underneath the channel fen (Fig. 8a). However, without a regional groundwater connection to 

supplement discharge during extended dry periods, recharge conditions will likely become more 

dominant in moderate–rich fens with a climatic and hydrogeologic setting similar to Poplar Fen 



  

(Fig. 8b), rendering them susceptible to enhanced water table decline during dry periods. 

Horizontal recharge–discharge patterns between upland and channel fen were also highly 

variable between 2011–2015 (Fig. 4d); however, the flow direction was typically from upland to 

fen with flow reversals only occurring during in the fall of 2011 and in the summer and fall of 

2015, two relatively dry years (Environment and Climate Change Canada, 2018). During these 

dry periods (2011 and 2015), discharge from upland to fen averaged +0.05 and +0.02 mm d
–1

, 

roughly equaling lateral discharge (0.04 and 0.02 mm d
–1

) measured down the fen towards the 

culvert during those years, respectively. Conversely, during wetter periods (2013–2014), specific 

discharge fluxes along the NT1–NT3 flow face became higher by up to several orders of 

magnitude (Fig. 4d). This resulted in average area–weighted fluxes of +0.54 mm d
–1 

in 2013, and 

+0.53 mm d
–1

 in 2014, roughly two times higher than the lateral discharge measured down the 

fen during those years. The results presented in this study differed from poor–fen and bog 

systems studied at the URSA, where fine–grained sediment dominant in the uplands limited 

connectivity, resulting in negligible groundwater fluxes (Ferone and Devito, 2004). Results were 

more similar to those reported on a minerotrophic fen overlying a coarse-grained glaciofluvial 

outwash plain in central Saskatchewan (Barr et al., 2012), where bidirectional flow was 

measured between fen and adjacent black spruce– and jack pine–dominated upland areas, with 

higher groundwater fluxes directed towards the fen during wet periods. 

The difference in lateral flux rates to channel fen areas between dry and wet years at 

Poplar Fen is explained largely by the hydraulic conductivity of the upper peat, which increases 

by several orders of magnitude from base to surface (Fig. 3), and is regarded as a common 

physical characteristic of peat (Price and Maloney, 1994; Hoag and Price, 1995; Ferone and 

Devito, 2004; Whittington and Price, 2006; Wells et al., 2017). The presence of the water table 

within shallower and relatively high Ksat layers had greatly increased the transmissivity of the fen 

peat layer (McCarter and Price, 2017). In addition, the hydraulic gradient between upland and 

fen becomes much higher during wet periods as the fen water table reaches the surface and 

specific yield approaches 1, causing it to rise at a slower rate than the upland water table. These 

two primary attributes, when combined, produce a transmissivity feedback mechanism (Bishop, 

1991; Waddington et al., 2014), which conveys relatively higher groundwater fluxes from upland 

to fen (summarized in Fig. 8). Despite these high fluxes, margin water table position exhibited a 



  

relatively important control on the overall transmissivity of the fen–upland flow path, due to its 

lower water tables and therefore lower arithmetic Ksat. This suggests that margins operate as 

distinct hydrological units and should be understood better in future studies. Conversely, lower 

horizontal gradients during dry periods (Fig. 4d), along with the water table (Fig. 4a) positioned 

in deeper, lower Ksat peat (Fig. 3), results in fluxes that are much lower (Table 1). This weak 

connection during flow reversals; however, results in negligible flux rates from fen to upland. 

This negative feedback is regarded as an important feature for water conservation in peatlands 

(Waddington et al., 2014); however, it does not account for potential water losses via 

transpiration by aspen trees (deep clonal roots) via hydraulic lift from deeper substrates and 

adjacent wetlands (Depante et al., 2016). Therefore, uplands may still act as water sinks despite 

this limited hydrological connection between fen and upland. It is important to outline the degree 

of uncertainty regarding our calculated fluxes, primarily due to the heterogeneity of Ksat that is 

characteristic of peat (Beckwith et al., 2003). However, despite this potential for error, we are 

confident with the differences in magnitude observed between wet and dry years (Table 1), at 

least sufficiently to support our conceptual model (Fig. 8). 

Transects NT1–NT3 provided replicates of a similar upland–fen setting that is common 

in the watershed, but not ubiquitous. Additional insight is gained from installations and 2015 

data from WT1–WT4 and ET1–ET4, which illustrate contrasting patterns of landscape 

connection. The upland area west of WT1–WT4 has a relatively small contributing area (~0.05 

km
2
) and low relief (~1 m), and consequently, its horizontal hydraulic gradients were more 

variable than NT1–NT3, and susceptible to flow reversals. In contrast, the upland east of ET1–

ET4 has a larger contributing area (~0.68 km
2
) and steeper (relief ~7 m) than the West upland 

(see Fig. 8). This yielded stronger and consistently positive flow towards the fen in 2015 (cf. 

Hokanson et al., 2016). It also helps explains why the local vertical hydraulic gradients in the 

channel fen remained stronger than those measured at NT1–NT3. This upland apparently plays a 

pivotal role in providing water to the channel fen areas in Poplar Fen watershed. In addition, a 

shallower depth to confining layer on the west side of the watershed (Fig. 2) may also promote 

enhanced and extended discharge conditions within this area, which could help in explaining 

why WT1–WT4 had stronger vertical hydraulic gradients in 2015 than ET1–ET4, a fen system 

located farther east and at a higher topographic position (Elmes et al., 2018). 



  

The West wetland had a net loss of groundwater to adjacent uplands throughout 2014 and 

2015, as evidenced by consistent negative horizontal hydraulic gradients. However, vertical 

hydraulic gradients were susceptible to flow reversals during both years (Fig. 5b), and in contrast 

to channel fen areas, the West wetland became a groundwater recharge area during periods of 

high precipitation. The elevation and position relative to the adjacent upland can explain why the 

West wetland became a recharge zone during wet periods (Fig. 8), as uplands and topographic 

highs typically recharge topographic lows (Tóth, 1999; Winter, 1999). Conversely, flow 

reversals in the West wetland occurred in between rainfall events in the summer. It is postulated 

that although the wetland is a predominant recharge feature, the relatively low specific yield 

(~0.08) of humified peat causes water table drawdown at a faster rate than the decrease in 

hydraulic head in the underlying outwash aquifer. Large fluctuations in the vertical hydraulic 

gradient resulted, and when multiplied by the relatively high harmonic mean hydraulic 

conductivity of the West wetland peat, resulted in vertical groundwater fluxes that were up to 

twenty times higher than those measured in channel fen areas. This dynamic groundwater 

connection can help explain why the water table declined below the base of the peat in the West 

wetland twice in 2015, highlighting its heavy reliance on rainfall for a stable source of water 

storage. 

The East wetland was characterized by negative vertical hydraulic gradients throughout 

2014 and 2015 (Fig. 5b), suggesting that it is a prominent recharge feature. This is likely due to 

the relative position of the wetland, located within an expansive upland system and at an 

elevation ~2.5 m higher than the channel fen area directly to the west. The East wetland, with an 

organic layer thickness of only ~30 cm, does not classify as a peatland, and has characteristics 

more like a basin swamp (NWWG, 1997). It hosts peat–forming mosses (S. fuscum and P. 

schreberi), as the underlying low Ksat clay layer (4.0 x 10
–10

 m s
–1

) helps to sustain high, yet 

strongly variable, water tables. In addition, the strong positive horizontal hydraulic gradients 

measured from the upland to the wetland (Fig. 5c) highlight the importance of throughflow as a 

means of maintaining high water tables in the East wetland. 

Geochemical results supported the lithological and hydrological evidence of a localized 

flow system influencing recharge–discharge patterns at Poplar Fen. Virtually indistinguishable 

pH and similar EC and Ca
2+

 and Mg
2+

 concentrations between channel fen, underlying outwash 



  

aquifer, and upland suggests that waters in these locations are of similar origin. Furthermore, Cl
–
 

concentrations 4.7 times lower than SO4
2–

 concentrations (not shown in Fig. 6) in the underlying 

outwash aquifer points to local groundwater with virtually no contact with regional groundwater, 

as Cl
–
 is typically the dominant anion in deep regional groundwater due to a longer time and 

distance of travel (Domenico, 1972). Lower pH, EC, Ca
2+

, and Mg
2+

 in the West and East 

wetlands points to a reliance on precipitation–driven recharge rather than groundwater, 

suggesting that these wetlands act predominantly as recharge rather than discharge features 

within the watershed. The 
2
H and 

18
O signatures also confirmed the dominance of a local–flow 

system at the Poplar Fen watershed (Fig. 7). Channel fen and West and East wetland water table 

well samples and corresponding underlying mineral substrates and adjacent upland samples were 

nearly indistinguishable in isotopic composition between 2014 and 2015. Samples from the 

majority of these locations plotted in the middle of the LMWL, suggesting that they receive 

recently precipitated meteoric water in the form of both snowfall and rainfall. Groundwater 

        b      g            ) g                                       δ
18
O/δD     ,     g   

             .g., C WL & H  WL    g    8)          ff                δD–excess (y–intercept) 

more reflective of the hydrometeorological conditions (e.g., relative humidity and temperature) 

during the time of recharge (Kendall and Caldwell, 2006). The heavy reliance on precipitation, 

combined with relatively low pH and base cation concentrations, suggests that the West wetland 

functions as a poor or intermediate fen (Chee and Vitt, 1989; Vitt et al., 1995). 

5.4 Implications of Climate Change on the Hydrologic Function of Poplar Fen 

The results from this study suggest that peatlands in the region that are fed by localized 

flow systems are particularly susceptible to drainage and drying under a climate characterized by 

warmer and drier conditions (Flannigan et al., 2016), especially during extended drought periods 

that are becoming more frequent (IPCC, 2013). Unlike fen systems connected to regional 

groundwater sources (Winter et al., 2003; Smerdon et al., 2005; Kløve et al., 2012), those with 

only a local hydrogeological connectivity similar to Poplar Fen may receive substantially less 

groundwater discharge from coarse–grained uplands and underlying mineral aquifers during 

periods of water table drawdown. Consequently, these fen systems may be subjected to enhanced 

peat decomposition and carbon release (Roulet et al., 2007), as well as seral succession to more 

ombrogenous peatlands characterized by shifts in vegetation community composition to more 



  

drought–tolerant species (e.g., Hylocomium splendens; Vitt, 1990). 

Caution is required in generalizing the results of this study of one moderate–rich fen 

system to all such systems in the AOSR, although it does include a variety of transects and 

wetland configurations. The plain regions of the AOSR are typically dominated by outwash sand 

and gravel; however, are not all situated within meltwater channel features (McPherson and 

Kathol, 1977). Slight modifications in grain size, watershed area, and topographic relief may 

result in large differences in the connection to, and scale of, groundwater flow systems (Reeve et 

al., 2000; Tóth, 1999; Winter, 2001). The results presented in this study are consistent with 

conceptual models developed for the Utikuma Region Study Area (Devito et al., 2005; 2012), 

which stress the need for careful consideration of the local physiography when predicting the 

hydrologic function of peatlands on this heterogeneous and low–relief post–glacial landscape. It 

is recommended that additional hydrological studies be conducted on base–rich fen systems 

overlying coarse–grained glacial deposits in the AOSR outside of the Poplar Fen vicinity. This 

will help refine our understanding of the potential variability in hydrogeological connectivity of 

peatlands in the WBP and how they will respond to future climate– and potential human–related 

disturbances. 

6 Conclusions 

The purpose of study was to examine the hydrogeologic setting and hydrologic regime of 

a moderate–rich fen watershed in the AOSR to better understand the natural variability in 

wetland function in the WBP. Groundwater flow direction between moderate–rich fen areas and 

the surrounding mineral landscape was transient during the 2011–2015 sampling period at Poplar 

Fen, changing between recharge and discharge during dry and wet periods, respectively. The 

variability in vertical and horizontal hydraulic gradients in response to precipitation patterns, 

along with supporting lithological and geochemical evidence, points to the dominance of a local 

flow–system generated by precipitation–driven recharge in the upland areas of Poplar Fen. 

During years of above average precipitation, hydrological connection is strong, with discharge 

higher than dry years by orders of magnitude. These results are contrary to results from previous 

studies of peatlands connected to deep regional flow systems (Siegel and Glaser, 1987; Glaser et 

al., 1997; Winter et al., 2003; Smerdon et al., 2005; Kløve et al., 2012), where peatland water 



  

levels are moderated by more consistent sources of groundwater discharge characterized by 

longer travel times (Tóth, 1999). This local groundwater connection; however, may render 

Poplar Fen, and peatlands watersheds with a similar hydrogeologic connectivity more susceptible 

to dramatic changes in the face of climate change, including drainage, enhanced peat 

decomposition, seral succession and wildfire. 

Considerable time, effort, and resources have been invested in oil sands wetland 

reclamation in recent years. Regulatory requirements require mined lands to be returned to the 

                  f   q             b        OSWWG,  000),          m               f    

focused on testing the feasibility of engineering fen peatlands (i.e. Nikanotee Fen watershed: 

Price et al., 2010; Ketcheson et al., 2016; 2017). Reclaimed watersheds must be engineered as 

                    m     m   m z         g                             g              b          

et al., 2010), at least during the period of mine operation. The results presented in this thesis 

suggest that the hydrologic function of natural fen systems (i.e. moderate–rich fens) in the AOSR 

can be replicated. The physiography of Poplar Fen, including coarse–grained drift, low relief, 

veer–type (coarse over fine) layering, and shallow depth to confining layer, are all conducive for 

generating local flow–systems in the sub–humid WBP. However, considering the susceptibility 

of fen watersheds with local flow systems, to drying over WBP climate cycles, fen reclamation 

should focus on engineering landscapes to minimize vertical flow reversals, water loss, and 

susceptibility to carbon degradation from enhanced decomposition and/or wildfire. 
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Figure 1. (a) Map showing the regional setting of the study area, and (b) map of Poplar Fen study site, including 

transect locations and instrumentation. The channel fen extends south of the watershed boundary, but has a 

hydraulic gradient towards the south. 

Figure 2. Field lithology drill logs of transects A–A      B–B             x gg        =  . )               
watershed (see Figure 1 for locations). 
 
Figure 3. Laboratory (0–0.6 m) and field estimates (0.6–1.5 m) of saturated horizontal hydraulic conductivities for 

channel fen and West wetland peat and underlying mineral sediments. 

Figure 4. Average hydrological results for NT1–NT3 (see Fig. 1) from 2011–2015, including (a) channel fen water 

table with daily regional precipitation illustrated, (b) change in hydraulic head since last measurement in outwash 

piezometers underlying channel fen areas, (c) average vertical hydraulic gradients between channel fen peat and 

underlying mineral substrate (open and black circles) and corresponding average vertical groundwater fluxes (grey 

circles), and (d) average horizontal hydraulic gradients between upland and channel fen (open and black circles) and 

corresponding average horizontal groundwater fluxes (grey circles). Also included are vertical (c) and horizontal (d) 

hydraulic gradients for newly installed 2015 nests (black circles). Positive gradients and fluxes represent flow 

towards the fen. Note that calculated discharge in (c) and (d) in 2015 correspond only to gradients measured at 

NT1–NT3 and not the newly installed nests. 

Figure 5. (a) Comparison of water table position, (b) vertical hydraulic gradients between wetland water table and 

underlying mineral, and (c) horizontal gradients between wetland water table and upland to the west (hashed lines) 

and east (solid lines) of the West and East wetland areas (see Fig. 1). 

 
Figure 6. Average pH, electrical conductivity (EC), and concentrations of major cations (Na

+
, Ca

2+
, and Mg

2+
) and 

Cl
–
 for samples obtained from channel fen, upland, and West and East wetland wells, as well as underlying mineral 

piezometers from channel fen and West wetland nests obtained throughout 2015. 

Figure 7. Isotopic signat     δ
18
O     δD f                  b       ~  km f  m                             

LMWL), and for water samples obtained at channel fen, West and East wetlands, and upland water table wells and 

underlying outwash piezometers (see legend for colour scheme), at Poplar Fen in August, 2014 (circles), June, 2015 

(squares), and July, 2015 (triangles). Additional water lines were plotted, including the GMWL, as well as water 

lines of regional Alberta Basin formation water samples reported in Connolly et al., 1990 (CFWL) and Hitchon and 

Friedman, 1969 (HFFWL), adapted from Lemay, 2002. 

Figure 8. Conceptual model of fen landscape connectivity at Poplar Fen for moderate–rich channel fen, poor–fen, 

and spruce swamp systems, comprising lithological information from cross–section A–A     g.  )      g             

and dry conditions observed between 2011–15 (vertical exaggeration = 4.6). Due to insufficient hydrological 

information below 2.0 m, equipotential and flow lines are idealized. 
 

 

 

 

 



  

Road
Cutline

Pipeline

Fen-upland transect

Surface contour

Channel fen

West and East wetlands

Upland
Cleared areas

Drill log location

Legend: b)

Dover
Plain

a)

b)

Edmonton

Fort McMurray

Rain gauge

Legend: a)

Surface contour

Waterway

Standing water/
Athabasca river

Study site location

Meltwater channel
boundary

Groundwater
monitoring nest

NT1   NT2    NT3

Discharge
Culvert

Discharge
Culvert

 
 

 

 

 

N
 5

6
.9

3
4

W
 1

1
1

.5
5

5

N
 5

6
.9

3
5

W
 1

1
1

.5
4

9

N
 5

6
.9

3
4

W
 1

1
1

.5
4

6

N
 5

6
.9

3
4

W
 1

1
1

.5
4

2

N
 5

6
.9

3
4

W
 1

1
1

.5
3

5

N
 5

6
.9

3
4

W
 1

1
1

.5
2

8

N
 5

6
.9

3
5

W
 1

1
1

.5
2

3

N
 5

6
.9

3
5

W
 1

1
1

.5
1

8

Peat

Sandy silt

Sand and Gravel

Silty-till

McMurray formation

Clearwater formation
(Sandy silt to pure clay)

N
 5

6
.9

2
7

W
 1

1
1

.5
5

0

N
 5

6
.9

2
8

W
 1

1
1

.5
4

6

N
 5

6
.9

2
7

W
 1

1
1

.5
4

2

N
 5

6
.9

2
9

W
 1

1
1

.5
3

8

N
 5

6
.9

2
8

W
 1

1
1

.5
3

2

N
 5

6
.9

2
9

W
 1

1
1

.5
2

6

N
 5

6
.9

3
0

W
 1

1
1

.5
2

1

N
 5

6
.9

3
1

W
 1

1
1

.5
1

9

N
 5

6
.9

3
1

W
 1

1
1

.5
1

0

A                                            A’

B                                              B’

Channel

fen

Channel

fen

West

wetland

East

wetland

W
a
te

rs
h
e
d

B
o
u
n
d
a
ry

W
a
te

rs
h
e
d

B
o
u
n
d
a
ry

W
a
te

rs
h
e
d

B
o
u
n
d
a
ry

W
a
te

rs
h
e
d

B
o
u
n
d
a
ry



  

 



  

 

 



  

 
 

 

 

 

 

 

 



  

 

Moderate-Rich

Channel Fen

West Wetland

(Poor Fen)

East Wetland

(Spruce Swamp)

Moderate-Rich

Channel Fen

West Wetland

(Poor Fen)

East Wetland

(Spruce Swamp)

a) Extended Wet Conditions

b) Extended Dry Conditions

Peat

+

-

K
s
a
t+

-

S
p

e
c
if
ic

y
ie

ld

Confining unit

(silt & clay)

High Ksat unit

(sand and gravel)

Local water

table

Flow lines

(arrow denotes 

flow direction)

Equipotential

lines

0 500 1000 1500
Distance (m)

0

5

10

0

5

10

H
e
ig

h
t 
(m

)

 
 

 

 

 

 

 

 

 

 

 

 

 
Table 1. Summary of estimated vertical and horizontal groundwater fluxes averaged (weighted) annually for 2011–

2015 field seasons, along with average daily precipitation over the same time period. Note: a negative gradient and 

flux represents a loss of water from the fen. 

 Year 2011 2012 2013 2014 2015 

Number of days in study period 111 170 147 84 125 



  

Total Rainfall during study period (mm) 

Jun. 26 – 

Oct. 14 

May 10 – 

Oct. 26 

May 24 – 

Oct. 17 

May 22 – 

Aug. 13 

Jun. 04 – 

Oct 06 

Vertical discharge to fen 

Average vertical hydraulic gradient between fen and 

underlying outwash 
–0.011 +0.004 +0.011 +0.006 –0.008 

Net groundwater exchange over study period (mm) –17.9 +7.7 +24.6 +7.4 –13.6 

Horizontal discharge to fen 

Average horizontal hydraulic gradient between fen 

and upland 
+0.0004 +0.0007 +0.0019 +0.0017 +0.0001 

Net groundwater exchange over study period (mm) +2.8 +10.7 +77.7 +44.9 +1.1 

 

 

Highlights 

 Groundwater connectivity at Poplar Fen is restricted to shallow local flow systems. 

 During wetter periods lateral groundwater discharge from the upland was the major 

source of groundwater to fens. 

 During extended dry periods fen areas experienced vertical flow reversals (downward to 

outwash aquifer). 

 Local groundwater connectivity makes moderate-rich fen systems like Poplar Fen more 

susceptible to drying in the future due to climate change. 

 

 


