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Abstract

We analyze a 2-class maintenance system within a single-server polling model frame-
work. There are C + f machines in the system, where C is the cap on the number
of machines that can be turned on simultaneously (and hence, be at risk of failure),
and the excess f machines comprise a maintenance float which can be used to replace
machines that are taken down for repair. The server’s behavior is dynamic, capable
of switching queues upon a machine failure or service completion depending on both
queue lengths. This generalized server behavior permits the analysis of several clas-
sic service policies, including preemptive resume priority, non-preemptive priority, and
exhaustive. More complicated polices can also be considered, such as threshold-based
ones and a version of the Bernoulli service rule. The system is modelled as a level-
dependent quasi-birth-and-death process and matrix analytic methods are used to find
the steady-state joint queue length distribution, as well as the distribution for the so-
journ time of a broken machine. An upper bound on the expected number of working
machines as a function of C is derived, and Little’s Law is used to find the relationship
between the expected number of working machines and the expected sojourn time of
a failed machine when f = 0 or f ≥ 1. Several numerical examples are presented, in-
cluding how one might optimize an objective function depending on the mean number
of working machines, with penalty costs attributed to increasing C or f .

Keywords: Maintenance model · Polling model · Dynamic server · Threshold policy
· Switch-in times · Quasi-birth-and-death process
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1 Introduction

In this paper, we investigate a closed queueing network tracking a finite population of ma-
chines which alternate between being functional or broken. Broken machines are separated
into one of two classes depending on their type of failure and service requirement, and we
allow for a single mechanic such that only a single machine may receive repairs at any one
time, so we elect to represent the system as a polling model. A standard single-server polling
model describes a system containing multiple queues which are visited by the server accord-
ing to a service policy which determines the order of the visits and the limit on how many
customers they can serve per visit to a particular queue. Two of the earliest papers analyzing
polling models described maintenance problems concerning a patrolling repairman (Mack et
al. 1957, Mack 1957). As we are allowing for the possibility to experience delays when
the mechanic switches between repairing either class of machine failures, this framework is
natural. For an overview on the wider study of polling models, one may refer to the surveys
of Boon (2011), Boon et al. (2011), Levy and Sidi (1990), Takagi (1988), and Vishnevskii
and Semenova (2006).

Our model assumes a given capacity limiting the number of machines that may be in use
at one time (and hence at risk of failure) with an optional inventory of spare machines called
a maintenance float which may be immediately turned on to replace failed machines. Some
other works concerned with inventories of spare or reserve machines include Buyukkramikli
et al. (2015), Gross et al. (1983), Kim and Dshalalow (2003), Liang et al. (2013), and
Madu (1988). In particular, both the works of Gross et al. (1983) and Madu (1988) concern
closed queueing networks of machines that can suffer two levels of failures having different
service requirements; however in Gross et al. (1983), there are repair stations allowing
multiple dedicated servers for each failure type while in Madu (1988) there is only a single
server in each station and only a single machine may be put to use at a time. Moreover,
every distributional assumption is exponential in these two works and a broken machine
may require service at both stations prior to being returned to functionality. Some other
examples of closed queueing maintenance networks are papers by Abboud (1996), Iravani et
al. (2007), Lin et al. (1994), and Righter (2002).

In addition to the inclusion of a maintenance float, this work expands that of Granville
and Drekic (2018) by generalizing the server’s allowed behaviors. In particular, we allow
for the probability of the server switching to the opposite queue at decision epochs after
repair completions or machine failure instants to depend on both queue lengths, similar to
Iravani et al. (2007) and Liang et al. (2013) within the context of using Markov decision
processes to find the optimal server behavior. This dynamic behavior contains as special
cases the exhaustive, preemptive resume priority, and non-preemptive priority service policies
considered in Granville and Drekic (2018), as well as the (a, b) threshold and smart Bernoulli
policies which we define later in Section 3.1.1. Standard threshold policies in a two queue
polling model that assign priority to a class of customers once their queue length reaches
or exceeds a certain value (e.g., Avram and Gómez-Corral 2006, Boxma et al. 1995, Lee
and Sengupta 1993) can allow for a more precise and optimal application of priority than

2



applying a static priority policy that always favours one queue over the other, and our (a, b)
threshold aims to further improve this precision. In our analysis, we employ matrix analytic
methods, which can be used to analyze 2-class threshold models as in the recent papers by
Avrachenkov et al. (2016) and Perel and Yechiali (2017).

Of course, a Bernoulli service policy (first introduced in the context of a GI/G/1 vacation
model by Keilson and Servi 1986), which generalizes the exhaustive and 1-limited service
policies, can also be used to optimize a polling model (e.g., Blanc and van der Mei 1995).
Specifically, a server following a Bernoulli policy serves at least one customer per visit to a
queue and assigns varying importance to each queue by way of a class-dependent probability
(which may be varied) of the server initiating another service after a completion (should
their queue be non-empty) rather than switching away. In Section 5.3, we argue for the
optimality of setting one of our smart Bernoulli probabilities to 1 as in Blanc and van der
Mei (1995), reducing to a two queue polling model with exhaustive service at one queue and
smart Bernoulli at the other. For an example of a 2-class polling model with exhaustive
and the standard Bernoulli policy, one can refer to Weststrate and van der Mei (1994). For
examples of Bernoulli service in a polling model with a general number of queues, with or
without switchover times, see Blanc (1990, 1991).

In the next section, we outline the features and distributional assumptions of the main-
tenance system. This is followed by the formal definition of the state space and the server’s
decision epoch switching probabilities (including the specification of several special cases),
the derivation of the steady-state probabilities treating the system as a level-dependent
quasi-birth-and-death (QBD) process, as well as the derivation of the continuous phase-type
distributed sojourn time distribution in Section 3. We examine several results about the
expected number of working machines in Section 4, concerning the impact of increasing the
number of machines in the system capacity as well as the connection to the mean sojourn
time of a failed machine. Finally, we present a series of numerical examples in Section 5,
followed by some concluding remarks in Section 6.

2 The Maintenance System

We consider a maintenance system of C + f identical machines, where C ∈ Z+ is the
system’s capacity, or the cap on how many machines may be in use at once (and hence at
risk of failure), and f ∈ N denotes the number of machines in the maintenance float. The
float provides an extra inventory of functional machines that replace machines that are taken
down for repair after suffering a failure. It is assumed that a machine is not at risk of failure
while turned off and stored in the float, and that they can instantaneously be put to use and
turned on when needed. Following a machine repair, it is instantly turned on if the number
of working machines immediately prior to the repair completion was less than C; otherwise,
it is stored in the maintenance float.

The system is modelled as a 2-class polling model attended to by a lone mechanic (or
server), where each class represents a grouping of one or more types of failure, and the service
time distributions for each type of failure are allowed to be different. Let αi, i = 1, 2, be
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the total exponential class-i failure rate, such that each machine, when turned on, has an
effective failure rate of α = α1 +α2. It is assumed that the failure times of the machines are
independent, machines fail individually, and a machine may only suffer one type of failure
at a time. This last assumption may be worked around if the types of failure are within the
same class by defining a combination of failure types as a new type of failure (to be included
in the same class).

Upon experiencing a class-i failure (and henceforth being referred to as a class-i machine
until it is repaired), a class-i machine waits in the ith queue to receive service on a first-come-
first-served basis with respect to other class-i machines in the same queue. To contrast the
two classes of failures, we denote functional machines (either in use or stored in the float)
as being of class 0. When every machine is class 0, rather than waiting at class 1 or class 2,
the mechanic moves to a neutral third location, similarly named class 0.

It is assumed that class-i service times are strictly positive and follow a continuous
phase-type distribution with representation PH(β

i
, Bi) of order bi (e.g., see He 2014, p.

10). This is inherently a more restrictive assumption than generally distributed service
times, although it is possible to approximate a (non-negative) non-phase-type distribution
by fitting a phase-type one (most notably via the classic EM algorithm outlined by Asmussen
et al. 1996). However, they have a difficult time approximating some distributions well
(particularly heavy-tailed ones), and increasing the number of phases to improve the fit can
introduce computational issues due to the impact on the size of the state space of the model.

Fortunately, phase-type distributions do have many appealing features. Since phase-type
distributions are closed under finite mixtures, it is straightforward to construct the underly-
ing class-i service time distribution from the individual continuous phase-type distributions
corresponding to each type of failure within the same class. Depending on the assigned
behavior of the mechanic, it may be possible for a service time to be interrupted. In these
cases, the service progress is not lost as the service phase is tracked to allow the mechanic to
resume service where it left off, after eventually returning to that queue. Each service time
is assumed to be independent of other services, as well as machine failure times.

Similarly, the time it takes the mechanic to “switch” from class j to class i (henceforth
referred to as a class-i switch-in) is assumed to follow a continuous phase-type distribution
with representation PH(γ

ji
, Si) of order si, where the rate matrix Si depends only on the

destination class, while the initial probability row vector γ
ji

may also depend on the de-

parture class. Switch-ins are also assumed to be independent of other switch-ins, as well as
machine service and failure times. A switch-in having positive duration may, for example,
represent any combination of the times necessary for the mechanic to change their instru-
ments, retrieve spare parts, or physically relocate themselves to a different queue. If the
time required to complete these tasks not directly related to serving an individual machine
are insignificant, then it may make sense to allow the switch-in times to be identically zero.
We let γ

[0]
ji = 1− γ

ji
e′ denote the probability of a class-i switch-in (from class j) being equal

to zero in duration, where e′ represents an appropriately-dimensioned column vector of ones.
Henceforth, the notation ′ will represent matrix transpose (such that e is a row vector).

As the mechanic may be allowed to preempt a switch-in within this system (if, say, one
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Figure 1: Depiction of the maintenance system with a maintenance float and the server at
queue 2.

class has higher priority over the other at a given combination of queue lengths), we make
the assumption that switching out of a class-i switch-in is the same as beginning a switch-
in after the completion (or preemption) of a class-i service time. That is, for example, if
class 1 has a higher priority than class 2 and the mechanic observes a class-1 failure while
conducting a switch from class 0 to class 2, then they will start a new class-1 switch-in with
initial probability vector γ

21
. We remark that a class-0 switch-in will always be interrupted

if the mechanic observes a machine failure from either class.
We provide a depiction of the maintenance system as described above in Figure 1. Note

that the notation X1, X2, and L are as they will be defined in Section 3.1, representing the
first and second queue lengths, and the position of the server, respectively. Machines are
represented by solid black circles, while slots that machines may take within class 0 (whether
to be put in use or in the maintenance float) are represented by empty circles. Similarly, the
larger solid grey circle and dashed empty circles represent current and potential locations
where the server either works or idles, with the grey circle in this example implying that
the mechanic is currently serving class-2 machines. As defined above, the distribution of
the time between service completions is PH(β

i
, Bi) (in this example, we would have i = 2),

and if the server switches between the three locations, the time to complete the switch has
a PH(γ

ji
, Si) distribution. Repaired machines are brought to the maintenance float, where

they will automatically be put to use if there are any open slots for functional machines.

5



Figure 1 does assume that a float exists (i.e., f ≥ 1), but we do in fact allow the choice of
f = 0. In the f = 0 case, the diagram would change by way of having no float, and repaired
machines would automatically be put to use.

A defining feature of polling models is the chosen service policy which dictates the server’s
behavior. In our model, we allow our mechanic be dynamic, whose decision to start a
switch-in (i.e., the probability of deciding to switch) may depend on both queue lengths as
well as what type of event is causing the server to make a decision, namely after a service
completion (when the other queue has a positive length), or after observing an arrival to
the opposite queue during a switch-in or a service. As these decision probabilities are state-
dependent, we must first define the state space of the Markov chain describing this system
before constructing the decision probability matrices.

3 Model Construction and Analysis

3.1 State Space and State-Dependent Decision Probabilities

In order to model this maintenance system as a continuous-time Markov chain (CTMC)
without restricting the server’s behavior, we must track six variables within our state space,
(X1, X2, L, Y, Y1, Y2). Here, X1 ∈ {0, 1, . . . , C + f} is the length of the class-1 queue and is
treated as the level of the process. Next, X2 ∈ {0, 1, . . . , C + f − X1} is the length of the
class-2 queue. L ∈ {0, 1, 2, 3, 4, 5} denotes the location of the server (0: idle at class 0; 1:
switching into class 1; 2: serving class 1; 3: switching into class 2; 4: serving class 2; 5:
switching into class 0). Y denotes the phase of a switch-in time or takes the value of 0 when
the mechanic is either idle or repairing a machine, i.e.,

Y ∈ ΩY (L) =



{0} , if L = 0,

{1, 2, . . . , s1} , if L = 1,

{0} , if L = 2,

{1, 2, . . . , s2} , if L = 3,

{0} , if L = 4,

{1, 2, . . . , s0} , if L = 5.

Lastly, Y1 and Y2 are the current phases of service of the class-1 and class-2 machines leading
their respective queues. Yi takes on a value of zero if the ith queue is empty, so that

Yi ∈ ΩYi(Xi) =

{
{0} , if Xi = 0,

{1, 2, . . . , bi} , if Xi ≥ 1.

Note that this variable is initialized as soon as either X1 or X2 changes from 0 to 1 (after
observing a class-1 or class-2 failure), which is in general not the same time when its service
actually begins.
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With the above notation in place, we can now define the decision probability matrices.
As mentioned previously, we categorize decision epochs into one of three types, with the
first type occurring after a service completion. Define P1S

i,j as the probability of initiating a
class-1 switch-in (from class 2) immediately after a class-2 service completion that reduces
X2 from j + 1 to j, when X1 = i. For ease of presentation (and storage), we let

P1S =



1 2 3 · · · C+f−3 C+f−2

1 P1S
1,1 P1S

1,2 P1S
1,3 · · · P1S

1,C+f−3 P1S
1,C+f−2

2 P1S
2,1 P1S

2,2 P1S
2,3 · · · P1S

2,C+f−3 0
3 P1S

3,1 P1S
3,2 P1S

3,3 · · · 0 0
...

...
...

...
...

...
C+f−3 P1S

C+f−3,1 P1S
C+f−3,2 0 · · · 0 0

C+f−2 P1S
C+f−2,1 0 0 · · · 0 0


.

Note that we do not need to define probabilities where X1 + X2 = i + j = C + f , since
there must be at least one functional machine after a service completion, and we do not
consider probabilities for i = 0 or j = 0, as we make the assumption that the mechanic will
always choose to serve the class having a non-zero queue length should the other queue be
empty. A corresponding matrix P2S is also constructed in the same way, such that P2S

i,j is
the probability of switching to serve class 2 after a class-1 service completion which reduces
X1 from i+ 1 to i, when X2 = j.

Next, we define P1P
i,j (P2P

i,j ) and P1N
i,j (P2N

i,j ) to be the probabilities of the server initiating a
class-1 (class-2) switch-in after observing a class-1 (class-2) failure that results in (X1, X2) =
(i, j) after said failure when L = 4 (L = 2) or L = 3 (L = 1) immediately prior to the
failure epoch, respectively. We distinguish these probabilities with a P or N to denote the
fact that they represent switch-ins that are either preemptive or non-preemptive in nature,
with respect to service times of the opposite class. We now let

P1P =



1 2 3 · · · C+f−3 C+f−2 C+f−1

1 P1P
1,1 P1P

1,2 P1P
1,3 · · · P1P

1,C+f−3 P1P
1,C+f−2 P1P

1,C+f−1
2 P1P

2,1 P1P
2,2 P1P

2,3 · · · P1P
2,C+f−3 P1P

2,C+f−2 0
3 P1P

3,1 P1P
3,2 P1P

3,3 · · · P1P
3,C+f−3 0 0

...
...

...
...

...
...

...
C+f−3 P1P

C+f−3,1 P1P
C+f−3,2 P1P

C+f−3,3 · · · 0 0 0
C+f−2 P1P

C+f−2,1 P1P
C+f−2,2 0 · · · 0 0 0

C+f−1 P1P
C+f−1,1 0 0 · · · 0 0 0


,

and similarly define P1N , P2P , and P2N , containing the same ranges of indexed probabilities.
In contrast to P1S and P2S, we now must consider cases with i+j = C+f , since it is possible
for there to be no functional machines after a failure. We still do not need to consider cases
with either i = 0 or j = 0, since the event of observing an arrival to one queue (in the form
of a machine failure) while switching into or serving at the other implies that both queue
lengths are positive after the failure.
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Finally, we define the class-1 adjusted decision probabilities

d
[i,j]
k (m,n) = PkSm+(C+f)−(i+j),n, k = 1, 2, (1)

a
[i,j]
k,p (m,n) = PkPm+(C+f)−(i+j),n, k = 1, 2, (2)

and
a
[i,j]
k (m,n) = PkNm+(C+f)−(i+j),n, k = 1, 2, (3)

such that, for example, d
[C−l,0]
2 (m,n) = P2S

m+l+f,n and a
[C,f ]
1 (m,n) = P1N

m,n. Note that the
inclusion of “(C + f)” in the subscripts above is treated as a constant (i.e., independent of
the superscript of generator blocks to be defined in Section 3.2), allowing us to accurately
determine the length of the class-1 queue as we reduce the effective number of machines from
[C, f ] to [i, j] in the system as part of the sojourn time analysis in Section 3.3.

3.1.1 Select Service Policies and Their Decision Probability Matrices

Within the numerical examples in Sections 4 and 5, we examine several service policies
of interest which we are able to construct from specific combinations of decision probabil-
ities. Before specifying these cases, we define A as the matrix P1P if we let P1P

i,j = 1,
i = 1, 2, . . . , C + f − 1, j = 1, 2, . . . , C + f − i. That is, A has the same dimension and
structure as the four failure instant decision probability matrices, but with each probability
set equal to 1. Similarly, define D as the matrix P1S with P1S

i,j = 1, i = 1, 2, . . . , C + f − 2,
j = 1, 2, . . . , C + f − i− 1. Finally, for j ∈ Z+ and i = 1, 2, . . . , j + 1, let

T [j]
i =



1 2 · · · j − i j + 1− i j + 2− i · · · j − 1 j

1 0 0 · · · 0 0 0 · · · 0 0
2 0 0 · · · 0 0 0 · · · 0 0
...

...
...

...
...

...
...

...
i− 1 0 0 · · · 0 0 0 · · · 0 0
i 1 1 · · · 1 1 0 · · · 0 0
i+ 1 1 1 · · · 1 0 0 · · · 0 0
...

...
...

...
...

...
...

...
j − 1 1 1 · · · 0 0 0 · · · 0 0
j 1 0 · · · 0 0 0 · · · 0 0


,

such that in its boundary cases,

T [j]
i =


A , if i = 1, j = C + f − 1,

D , if i = 1, j = C + f − 2,

0 , if i > j,

(4)

where 0 denotes an appropriately-dimensioned matrix of zeroes, which in this case has di-
mension j × j.
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We now discuss our service policies of interest, whose switch-in decision probability ma-
trices are specified in Table 1. The first service policy we consider is the classic exhaustive
service policy, where the server remains at a particular queue until it empties, at which time
a switch to the other queue is made, or for our model specifically, to class 0 if X1 = X2 = 0
at this time. Since the server will never leave a queue while it has a positive length, all
decision probabilities must be zero.

Next, we have a pair of priority policies wherein the mechanic prefers to serve one class
of failures before the other. We present the class-1 priority policies here, while the class-2
priority policies may be obtained by simply interchanging the class-1 and class-2 decision
probabilities. For class-1 non-preemptive priority, the server will always immediately begin
a class-1 switch-in upon observing a class-1 failure to an empty queue (note that the server
is only allowed to leave queue 1 once X1 = 0) so long as they do not have to interrupt, or
preempt, a class-2 service time. Thus, the decision probabilities when conducting a class-2
switch-in, or after completing a class-2 service, are all one, whereas the decision probabilities
during a class-2 service time are zero. In contrast, the preemptive resume priority policy
gives the server permission to interrupt a service time, which will later be resumed with no
work lost, so the decision probabilities during a class-2 service time are also set equal to
one. We remark that we chose to let P1S = D in the preemptive case, even though it is not
possible to observe a class-2 service completion when X1 > 0 (and hence these probabilities
will never be checked in practice by the CTMC).

A threshold policy is a modification of standard priority policies, in that a class’ higher
priority is conditional on it having a queue length equaling or exceeding a particular class-
dependent threshold. As we are already considering priority policies that are both preemptive
and non-preemptive in nature, we elect to use a variant of the threshold policy which can
assign non-preemptive priority to a class after reaching a threshold (a), and then preemptive
resume priority to a class after reaching another threshold (b) that is equal to or greater
than the non-preemptive threshold. That is, if X1 < a, then the server acts as if under an
exhaustive policy, if a ≤ X1 < b, the server acts as if under a class-1 non-preemptive policy,
and if b ≤ X1, the server acts as if under a class-1 preemptive resume priority policy. We
refer to this variant as an (a, b) threshold policy.

In order to handle the activation of priority, we make use of the above T [j]
i matrices which

change from having decision probabilities of zero to probabilities of one once X1 ≥ i (i.e.,
for row i and below). If we instead wanted to use a class-2 threshold policy, we would use

transposes of these matrices,
(
T [j]
i

)′
, so that the policy would adjust after observing X2 ≥ i

(i.e., for column i and to the right). As implied by Equation (4) and Table 1, an (a, b)
threshold policy can recover the exhaustive or priority policies. In fact, it can also represent
a non-preemptive threshold policy if we let b = C + f , or a preemptive resume threshold
policy if we let b = a.

Lastly, we consider a modification of the Bernoulli service discipline introduced by Keilson
and Servi (1986). In the original discipline, after every service completion, the server would
either switch away or go on vacation (in the case of a single queue system) depending on the
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result of an independent Bernoulli trial having a fixed class-dependent probability. In our
model, we are assuming that the mechanic has full information concerning queue lengths,
and as such would not be inclined to switch away from a queue without emptying it if the
opposite queue has no machines waiting to be serviced. Therefore, we implement a modified
policy that we refer to as (pSB1 , pSB2 ) smart Bernoulli, or simply smart Bernoulli, which only
conducts a class-dependent Bernoulli trial having probability pSBi of starting another class-i
service, i = 1, 2, rather than switching away to the opposite queue, if the opposite queue has
a positive length. Hence, under this policy, the only decisions the server has to make are at
service completions, and these decisions always have the same class-dependent probability
for each combination of queue lengths. Finally, we remark that if we let pSB1 = pSB2 = 1,
then the server never leaves a queue until it is empty and we recover the exhaustive service
policy.

Table 1: Switch-in decision probability matrices for select service policies.

Service Policy P1S P1P P1N P2S P2P P2N

Exhaustive 0 0 0 0 0 0
Class-1 Non-preemptive Priority D 0 A 0 0 0
Class-1 Preemptive Resume Priority D A A 0 0 0

Class-1 (a, b) Threshold T [C+f−2]
a T [C+f−1]

b T [C+f−1]
a 0 0 0

(pSB1 , pSB2 ) Smart Bernoulli (1− pSB2 )D 0 0 (1− pSB1 )D 0 0

3.2 Steady-state Probabilities

We are able to solve for the steady-state probabilities by representing the system as a level-
dependent quasi-birth-and-death (QBD) process, taking the length of the class-1 queue, X1,
as the level of the process. First of all, let πm,n,l,y,y1,y2 be the steady-state probability that
X1 = m, X2 = n, L = l, Y = y, Y1 = y1, and Y2 = y2, where the variables take on values
from their supports defined in Section 3.1. Next, we order the steady-state probabilities into
the row vector

π = (π0, π1, . . . , πC+f ), (5)

where
πm = (πm,0, πm,1, . . . , πm,C+f−m)

contains the ordered steady-state probabilities for level m, m = 0, 1, . . . , C + f . For level 0,

π0,0 = (π0,0,0,0,0,0, π0,0,5,1,0,0, . . . , π0,0,5,s0,0,0)

has length 1 + s0, and

π0,n = (π0,n,3,1,0,1, . . . , π0,n,3,1,0,b2 , π0,n,3,2,0,1, . . . , π0,n,3,s2,0,b2 ,

π0,n,4,0,0,1, . . . , π0,n,4,0,0,b2)
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has length (s2 + 1)b2 for n = 1, 2, . . . , C + f , resulting in 1 + s0 + (C + f)(s2 + 1)b2 total
states. For level m = 1, 2, . . . , C + f ,

πm,0 = (πm,0,1,1,1,0, . . . , πm,0,1,1,b1,0, πm,0,1,2,1,0, . . . , πm,0,1,s1,b1,0,

πm,0,2,0,1,0, . . . , πm,0,2,0,b1,0)

has length (s1 + 1)b1, and for m = 1, 2, . . . , C + f − 1 and n = 1, 2, . . . , C + f −m,

πm,n = (πm,n,1,1,1,1, . . . , πm,n,1,1,1,b2 , πm,n,1,1,2,1, . . . , πm,n,1,1,b1,b2 , πm,n,1,2,1,1, . . . ,

πm,n,1,s1,b1,b2 , πm,n,2,0,1,1, . . . , πm,n,2,0,1,b2 , πm,n,2,0,2,1, . . . , πm,n,2,0,b1,b2 ,

πm,n,3,1,1,1, . . . , πm,n,3,1,1,b2 , πm,n,3,1,2,1, . . . , πm,0,3,1,b1,b2 , πm,n,3,2,1,1, . . . ,

πm,n,3,s2,b1,b2 , πm,n,4,0,1,1, . . . , πm,n,4,0,1,b2 , πm,n,4,0,2,1, . . . , πm,n,4,0,b1,b2)

has length (s1 + s2 + 2)b1b2, resulting in (s1 + 1)b1 + (C+f −m)(s1 + s2 + 2)b1b2 total states.
The corresponding infinitesimal generator Q[C,f ] for this QBD process takes on the form

Q[C,f ] =



0 1 2 · · · C+f−2 C+f−1 C+f

0 Q
[C,f ]
0,0 Q

[C,f ]
0,1 0 · · · 0 0 0

1 Q
[C,f ]
1,0 Q

[C,f ]
1,1 Q

[C,f ]
1,2

. . . 0 0 0

2 0 Q
[C,f ]
2,1 Q

[C,f ]
2,2

. . . 0 0 0
...

...
. . . . . . . . .

...
...

...
C+f−2 0 0 0 · · · Q

[C,f ]
C+f−2,C+f−2 Q

[C,f ]
C+f−2,C+f−1 0

C+f−1 0 0 0 · · · Q
[C,f ]
C+f−1,C+f−2 Q

[C,f ]
C+f−1,C+f−1 Q

[C,f ]
C+f−1,C+f

C+f 0 0 0 · · · 0 Q
[C,f ]
C+f,C+f−1 Q

[C,f ]
C+f,C+f


, (6)

where each submatrix (or block) Q
[C,f ]
i,j contains all rates corresponding to state transitions

where the level changes from i to j. Here, we use superscript “[C, f ]” to denote the sizes of
the system’s capacity (C) and maintenance float (f). We will make use of this superscript
notation in the sojourn time analysis of Section 3.3.

We solve for π from the equation 0 = πQ[C,f ], where 0 is a row vector of zeroes having the
appropriate length. From Equations (5) and (6), we obtain the block equilibrium equations

0 = π0Q
[C,f ]
0,0 + π1Q

[C,f ]
1,0 , (7)

0 = πm−1Q
[C,f ]
m−1,m + πmQ

[C,f ]
m,m + πm+1Q

[C,f ]
m+1,m, m = 1, 2, . . . , C + f − 1, (8)

0 = πC+f−1Q
[C,f ]
C+f−1,C+f + πC+fQ

[C,f ]
C+f,C+f . (9)

We can express each level’s steady-state probability row vector in terms of π0 and apply
an algorithm based on the procedure for birth-and-death models with finite state spaces
proposed by Gaver et al. (1984). Specifically, applying Equations (8) and (9), it can be
shown that

πm = π0

m∏
j=1

Uj, m = 1, 2, . . . , C + f, (10)
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where

UC+f = −Q[C,f ]
C+f−1,C+f

(
Q

[C,f ]
C+f,C+f

)−1
,

and Uj, j = 1, 2, . . . , C + f − 1, are obtained from the recursive relationship

Uj = −Q[C,f ]
j−1,j

(
Q

[C,f ]
j,j + Uj+1Q

[C,f ]
j+1,j

)−1
.

Defining U0 = Q
[C,f ]
0,0 + U1Q

[C,f ]
1,0 , it immediately follows from Equation (7) that π0 satisfies

π0U0 = 0. (11)

Since the sum of all steady-state probabilities must equal 1, we also have

1 = π e′ =

C+f∑
m=0

πme
′ =

C+f∑
m=0

π0

m∏
j=1

Uje
′ = π0

(
C+f∑
m=0

m∏
j=1

Uje
′

)
, (12)

using the convention that
∏0

j=1 Uje
′ = e′. We may now calculate π0 from the system of

linear equations resulting from Equations (11) and (12), which can then be used in Equation
(10) to solve for πm, m = 1, 2, . . . , C + f .

We conclude this subsection by specifying the constructed blocks of Q[C,f ]. To this end, we
require the following notation. Let ⊗ represent the standard Kronecker product operator, let
Ii be an i× i identity matrix, and let ei be a row vector of ones having length i. In addition,
we define B′0,i = −Bie

′
bi

and S ′0,i = −Sie′si as the column vectors of absorption rates for
the PH(β

i
, Bi) distributed class-i service times and PH(γ

ji
, Si) distributed class-i switch-in

times, respectively, and let γ[+0]
ji

= (γ
ji
, γ

[0]
ji ) be the concatenated probability vector joining

the initial distribution of a class j to class i switch-in with the probability of the switch-in
being zero in duration. Finally, let ∆

[C,f ]
m,n = min{C,C + f −m − n} denote the number of

working machines when X1 = m and X2 = n.
For levels m = 0, 1, . . . , C + f , the main diagonal blocks of Q[C,f ] are given by

Q
[C,f ]
m,m =



0 1 2 · · · C+f−m−1 C+f−m
0 Q

[C,f ]
m,m,0 (UD)

[C,f ]
m,0 0 · · · 0 0

1 (LD)
[C,f ]
m,1 Q

[C,f ]
m,m,1 (UD)

[C,f ]
m,1

. . . 0 0

2 0 (LD)
[C,f ]
m,2 Q

[C,f ]
m,m,2

. . . 0 0
...

...
. . . . . . . . .

...
...

C+f−m−1 0 0 0 · · · Q
[C,f ]
m,m,C+f−m−1 (UD)

[C,f ]
m,C+f−m−1

C+f−m 0 0 0 · · · (LD)
[C,f ]
m,C+f−m Q

[C,f ]
m,m,C+f−m


,

where for m = 0

Q
[C,f ]
0,0,0 = −CαI1+s0 +

[
0 0s0
S ′0,0 S0

]
,
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Q
[C,f ]
0,0,n = −∆

[C,f ]
0,n αI(s2+1)b2 +

[
S2 ⊗ Ib2 S ′0,2 ⊗ Ib2

0 B2

]
, n = 1, 2, . . . , C + f,

(UD)
[C,f ]
0,0 = Cα2e

′
1+s0

γ[+0]

02
⊗ β

2
,

(UD)
[C,f ]
0,n = ∆

[C,f ]
0,n α2I(s2+1)b2 , n = 1, 2, . . . , C + f − 1,

(LD)
[C,f ]
0,1 =

[
0′s2b2 0

γ
[0]
20B

′
0,2 B′0,2γ20

]
,

and

(LD)
[C,f ]
0,n =

[
0′s2b20s2b2 0

0 B′0,2β2

]
, n = 2, 3, . . . , C + f,

while for m = 1, 2, . . . , C + f ,

Q
[C,f ]
m,m,0 = −∆

[C,f ]
m,0 αI(s1+1)b1 +

[
S1 ⊗ Ib1 S ′0,1 ⊗ Ib1

0 B1

]
,

and

Q[C,f ]
m,m,n = −∆[C,f ]

m,n αI(s1+s2+2)b1b2 +


S1 ⊗ Ib1b2 S ′0,1 ⊗ Ib1b2 0 0

0 B1 ⊗ Ib2 0 0
0 0 S2 ⊗ Ib1b2 S ′0,2 ⊗ Ib1b2
0 0 0 Ib1 ⊗B2


for n = 1, 2, . . . , C + f −m,

(UD)
[C,f ]
m,0 = ∆

[C,f ]
m,0 α2

[
(1−a[C,f ]2 (m, 1))Is1b1 ⊗ β2

0 a
[C,f ]
2 (m, 1)e′s1γ

[+0]
12
⊗ Ib1 ⊗ β2

0 (1−a[C,f ]2,p (m, 1))Ib1 ⊗ β2
a
[C,f ]
2,p (m, 1)γ[+0]

12
⊗ Ib1 ⊗ β2

]
,

and

(UD)
[C,f ]
m,n = ∆

[C,f ]
m,n α2

 (1−a[C,f ]2 (m,n+1))Is1b1b2 0 a
[C,f ]
2 (m,n+1)e′s1γ

[+0]
12
⊗ Ib1b2

0 (1−a[C,f ]2,p (m,n+1))Ib1b2 a
[C,f ]
2,p (m,n+1)γ[+0]

12
⊗ Ib1b2

0 0 I(s2+1)b1b2


for n = 1, 2, . . . , C + f −m− 1, and

(LD)
[C,f ]
m,1 =

[
0′(s1+s2+1)b1b2

0(s1+1)b1

γ[+0]
21
⊗ Ib1 ⊗B′0,2

]
,

and

(LD)
[C,f ]
m,n =

[
0′(s1+s2+1)b1b2

0(s1+1)b1b2
0′(s1+s2+1)b1b2

0s2b1b2 0′(s1+s2+1)b1b2
0b1b2

d
[C,f ]
1 (m,n−1)γ[+0]

21
⊗ Ib1 ⊗B′0,2β2

0 (1−d[C,f ]1 (m,n−1))Ib1 ⊗B′0,2β2

]

for n = 2, 3, . . . , C + f −m.
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Next, for levels m = 0, 1, . . . , C+f −1, the upper diagonal blocks of Q[C,f ] have the form

Q
[C,f ]
m,m+1 =



0 1 2 · · · C+f−m−1

0 Q
[C,f ]
m,m+1,0 0 0 · · · 0

1 0 Q
[C,f ]
m,m+1,1 0

. . . 0

2 0 0 Q
[C,f ]
m,m+1,2

. . . 0
...

...
. . . . . . . . .

...
C+f−m−1 0 0 0 · · · Q

[C,f ]
m,m+1,C+f−m−1

C+f−m 0 0 0 · · · 0


,

where for m = 0,
Q

[C,f ]
0,1,0 = Cα1e

′
1+s0

γ[+0]

01
⊗ β

1
,

and

Q
[C,f ]
0,1,n = ∆

[C,f ]
0,n α1

[
a
[C,f ]
1 (1, n)e′s2γ

[+0]
21
⊗ β

1
⊗ Ib2 (1−a[C,f ]1 (1, n))Is2 ⊗ β1

⊗ Ib2 0

a
[C,f ]
1,p (1, n)γ[+0]

21
⊗ β

1
⊗ Ib2 0 (1−a[C,f ]1,p (1, n))β

1
⊗ Ib2

]
for n = 1, 2, . . . , C + f − 1, while for m = 1, 2, . . . , C + f − 1,

Q
[C,f ]
m,m+1,0 = ∆

[C,f ]
m,0 α1I(s1+1)b1 ,

and

Q
[C,f ]
m,m+1,n = ∆

[C,f ]
m,n α1

 I(s1+1)b1b2 0 0

a
[C,f ]
1 (m+1, n)e′s2γ

[+0]
21
⊗ Ib1b2 (1−a[C,f ]1 (m+1, n))Is2b1b2 0

a
[C,f ]
1,p (m+1, n)γ[+0]

21
⊗ Ib1b2 0 (1−a[C,f ]1,p (m+1, n))Ib1b2


for n = 1, 2, . . . , C + f −m− 1.

Lastly, for levels m = 1, 2, . . . , C + f , the lower diagonal blocks of Q[C,f ] are given by

Q
[C,f ]
m,m−1 =



0 1 2 · · · C+f−m−1 C+f−m C+f−m+1

0 Q
[C,f ]
m,m−1,0 0 0 · · · 0 0 0

1 0 Q
[C,f ]
m,m−1,1 0

. . . 0 0 0

2 0 0 Q
[C,f ]
m,m−1,2

. . . 0 0 0
...

...
. . . . . . . . .

...
...

...
C+f−m−1 0 0 0 · · · Q

[C,f ]
m,m−1,C+f−m−1 0 0

C+f−m 0 0 0 · · · 0 Q
[C,f ]
m,m−1,C+f−m 0


,

where for m = 0

Q
[C,f ]
1,0,0 =

[
0′s1b1 0

γ
[0]
10B

′
0,1 B′0,1γ10

]
,

and

Q
[C,f ]
1,0,n =

 0′s1b1b20(s2+1)b2

γ[+0]
12
⊗B′0,1 ⊗ Ib2

0′(s2+1)b1b2
0(s2+1)b2

 , n = 1, 2, . . . , C + f − 1,
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while for m = 2, 3, . . . , C + f ,

Q
[C,f ]
m,m−1,0 =

[
0′s1b10s1b1 0

0 B′0,1β1

]
,

and

Q
[C,f ]
m,m−1,n =

 0′s1b1b20s1b1b2 0 0

0 (1−d[C,f ]2 (m−1, n))B′0,1β1
⊗ Ib2 d

[C,f ]
2 (m−1, n)γ[+0]

12
⊗B′0,1β1

⊗ Ib2
0′(s2+1)b1b2

0s1b1b2 0 0


for n = 1, 2, . . . , C + f −m.

3.3 Sojourn Time Distribution

In this subsection, we derive the continuous phase-type representation for the sojourn time
(i.e., the time between a machine’s failure and when its repairs are complete) distribution
of a target machine that suffers a class-1 failure, S1. Our analysis considers the system
at steady state, and hence we require the steady-state probabilities of the maintenance
system immediately prior to a class-1 failure. Letting C1,h denote the event of observing
only a single class-1 failure within the next h time units and Sm,n,l,y,y1,y2 denote the event
that (X1, X2, L, Y, Y1, Y2) = (m,n, l, y, y1, y2) at steady state (such that P (Sm,n,l,y,y1,y2) =
πm,n,l,y,y1,y2), it follows that (e.g., Lakatos et al. 2012, Chapter 9)

qm,n,l,y,y1,y2
= P ((X1, X2, L, Y, Y1, Y2) = (m,n, l, y, y1, y2) immediately prior to a class-1 failure)

= lim
h→0

P (Sm,n,l,y,y1,y2|C1,h)

= lim
h→0

P (C1,h|Sm,n,l,y,y1,y2)P (Sm,n,l,y,y1,y2)∑
x1,x2,w,z,z1,z2

P (C1,h|Sx1,x2,w,z,z1,z2)P (Sx1,x2,w,z,z1,z2)

= lim
h→0

(α1 min{C,C + f −m− n}h+ o(h))πm,n,l,y,y1,y2∑
x1,x2,w,z,z1,z2

(α1 min{C,C + f − x1 − x2}h+ o(h))πx1,x2,w,z,z1,z2

= lim
h→0

α1 min{C,C + f −m− n}πm,n,l,y,y1,y2 + o(h)/h∑
x1,x2,w,z,z1,z2

α1 min{C,C + f − x1 − x2}πx1,x2,w,z,z1,z2 + o(h)/h

=
min{C,C + f −m− n}πm,n,l,y,y1,y2∑

x1,x2,w,z,z1,z2
min{C,C + f − x1 − x2}πx1,x2,w,z,z1,z2

. (13)

That is, the probability that the system was in state (m,n, l, y, y1, y2) immediately prior to a
class-1 failure is the ratio of the steady-state class-1 failure rate from state (m,n, l, y, y1, y2)
and the total steady-state class-1 failure rate over all states.

Now that we have the distribution of the system before the failure, we must consider
how the failure causes the state of the system to change. If the mechanic was previously
conducting a switch-in and this failure causes a class-1 switch-in to begin, then the switch-in
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phase occupied prior to the failure has no bearing on the future development of the system
since we track interrupted service times, but not interrupted switch-in times. Thus, let

qm,n,3,•,y1,y2 =

s2∑
y=1

qm,n,3,y,y1,y2

be the total probability that the server was conducting a class-2 switch-in, and define

q
0,n,3,• = (q0,n,3,•,0,1, q0,n,3,•,0,2, . . . , q0,n,3,•,0,b2)

and
q
m,n,3,• = (qm,n,3,•,1,1, qm,n,3,•,1,2, . . . , qm,n,3,•,1,b2 , qm,n,3,•,2,1, . . . , qm,n,3,•,b1,b2).

Similarly, for the case of the queue being empty prior to the failure, let

q0,0,•,•,•,• = q0,0,0,0,0,0 +

s0∑
y=1

q0,0,5,y,0,0.

We otherwise group the pre-failure probabilities into the following row vectors. For level
m = 1, 2, . . . , C + f − 1, let

q
m,0

= (qm,0,1,1,1,0, . . . , qm,0,1,1,b1,0, qm,0,1,2,1,0, . . . , qm,0,1,s1,b1,0,

qm,0,2,0,1,0, . . . , qm,0,2,0,b1,0),

and for n = 1, 2, . . . , C + f −m,

q
m,n,1

= (qm,n,1,1,1,1, . . . , qm,n,1,1,1,b2 , qm,n,1,1,2,1, . . . , qm,n,1,1,b1,b2 ,

qm,n,1,2,1,1, . . . , qm,n,1,s1,b1,b2),

q
m,n,2

= (qm,n,2,0,1,1, . . . , qm,n,2,0,1,b2 , qm,n,2,0,2,1, . . . , qm,n,2,0,b1,b2),

q
m,n,3

= (qm,n,3,1,1,1, . . . , qm,n,3,1,1,b2 , qm,n,3,1,2,1, . . . , qm,0,3,1,b1,b2 ,

qm,n,3,2,1,1, . . . , qm,n,3,s2,b1,b2),

q
m,n,4

= (qm,n,4,0,1,1, . . . , qm,n,4,0,1,b2 , qm,n,4,0,2,1, . . . , qm,n,4,0,b1,b2).

Also, for level 0 and n = 1, 2, . . . , C + f − 1, let

q
0,n,3,y

= (q0,n,3,y,0,1, . . . , q0,n,3,y,0,b2), y = 1, 2, . . . , s2,

and
q
0,n,4

= (q0,n,4,0,0,1, . . . , q0,n,4,0,0,b2).

Now, for level m, m = 0, 1, . . . , C + f − 1, define the probability row vector

p
m+1

= (p
m+1,0

, p
m+1,1

, . . . , p
m+1,C+f−m−1).
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For m > 0, p
m+1,0

= q
m,0

and

p
m+1,n

= (p
m+1,n,1

, p
m+1,n,2

, p
m+1,n,3

, p
m+1,n,4

), n = 1, 2, . . . , C + f −m− 1,

where

p
m+1,n,1

= q
m,n,1

+ a
[C,f ]
1 (m+ 1, n)γ

21
⊗ q

m,n,3,• + a
[C,f ]
1,p (m+ 1, n)γ

21
⊗ q

m,n,4
,

p
m+1,n,2

= q
m,n,2

+ a
[C,f ]
1 (m+ 1, n)γ

[0]
21 qm,n,3,• + a

[C,f ]
1,p (m+ 1, n)γ

[0]
21 qm,n,4,

p
m+1,n,3

=
(

1− a[C,f ]1 (m+ 1, n)
)
q
m,n,3

,

p
m+1,n,4

=
(

1− a[C,f ]1,p (m+ 1, n)
)
q
m,n,4

.

Here, we observe that the initial “level” of the sojourn time distribution will be increased by
the new class-1 machine’s presence, which is why the first index of the p’s are one larger than
their component q’s. Additionally, if the mechanic was already at queue 1 or conducting a
class-1 switch-in, then the new failure will not require them to make a decision. However, if
a class-2 switch-in or service time was underway, then the failure would cause the mechanic
to begin a class-1 switch-in with probability a

[C,f ]
1 (m+ 1, n) or a

[C,f ]
1,p (m+ 1, n), respectively

(and this switch-in will have a duration of zero with probability γ
[0]
21 ). Note as well that

since there was already at least one class-1 machine at queue 1, the service phase of the lead
class-1 machine was already determined.

For m = 0, in addition to the probability of the failure inducing server movements, we
need to initialize the lead class-1 machine’s service phase according to the probability vector
β
1

since there was an empty queue previous to this failure. Hence, we have

p
1,0

= (q0,0,•,•,•,•γ01 ⊗ β1
, q0,0,•,•,•,•γ

[0]
01β1

)

and
p
1,n

= (p
1,n,1

, p
1,n,2

, p
1,n,3

, p
1,n,4

), n = 1, 2, . . . , C + f − 1,

where

p
1,n,1

= a
[C,f ]
1 (1, n)γ

21
⊗ β

1
⊗ q

0,n,3,• + a
[C,f ]
1,p (1, n)γ

21
⊗ β

1
⊗ q

0,n,4
,

p
1,n,2

= a
[C,f ]
1 (1, n)γ

[0]
21β1

⊗ q
0,n,3,• + a

[C,f ]
1,p (1, n)γ

[0]
21β1

⊗ q
0,n,4

,

p
1,n,3

=
(

1− a[C,f ]1 (1, n)
)

(β
1
⊗ q

0,n,3,1
, β

1
⊗ q

0,n,3,2
, . . . , β

1
⊗ q

0,n,3,s2
),

p
1,n,4

=
(

1− a[C,f ]1,p (1, n)
)
β
1
⊗ q

0,n,4
.

We can now construct the complete steady-state probability row vector of length

(C + f)

(
(s1 + 1)b1 + (s1 + s2 + 2)b1b2

C + f − 1

2

)
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describing the state of the system immediately after a class-1 failure, namely

p = (p
C+f

, p
C+f−1, . . . , p1), (14)

which satisfies p e′ = 1. Before constructing the rate matrix for the machine’s sojourn time
distribution, we make the following observation. Since we are assuming a first-come-first-
served order within each queue, no matter the service policy, a target class-1 machine will
never have to wait for the service time of any machines that suffer class-1 failures after their
own. However, subsequent class-1 failures may still have an impact on the target machine’s
sojourn time. The reason for this is twofold. A machine that fails after the target and enters
behind them in their queue is a machine that cannot be at risk of entering the opposite queue
and potentially receiving service before the target. Also, further class-1 machine failures
behind the target may yet influence the mechanic, as the switch-in decision probabilities can
be unique for every combination of both (positive) queue lengths.

It then follows that to model the sojourn time, we must track both the position of the
target class-1 machine within their queue, as well as the total length of their queue. We
achieve this by effectively reducing the number of machines that the system needs to track
after every class-1 failure following that of the target, such that the number of reductions is
the excess queue length behind the target. This is where we make use of the previous QBD
block superscripts, [C, f ], as it allows us to construct our generator blocks as functions of C
and f , which otherwise would have simply been treated as constants. Note that by reducing
the number of considered machines, we are not necessarily reducing the maximum that may
be in use at a given time. Therefore, it is important to reduce f to zero before reducing
C. Combined with this use of notation, the application of Equations (1)-(3) ensure that the
true queue lengths are used when referencing the switch-in decision probabilities.

The sojourn time’s rate matrix can thus be constructed as follows:

R1 =



[C, f ] [C, f − 1] [C, f − 2] · · · [C, 1] [C, 0] [C − 1, 0] · · · [2, 0] [1, 0]

[C, f ] Q̃[C,f ] Q̃
[C,f ]
− 0 · · · 0 0 0 · · · 0 0

[C, f − 1] 0 Q̃[C,f−1] Q̃
[C,f−1]
−

. . . 0 0 0
. . . 0 0

[C, f − 2] 0 0 Q̃[C,f−2] . . . 0 0 0
. . . 0 0

...
...

. . . . . . . . . . . . . . . . . . . . . . . .
...

[C, 1] 0 0 0
. . . Q̃[C,1] Q̃

[C,1]
− 0

. . . 0 0

[C, 0] 0 0 0
. . . 0 Q̃[C,0] Q̃

[C,0]
−

. . . 0 0

[C − 1, 0] 0 0 0
. . . 0 0 Q̃[C−1,0] . . . 0 0

...
...

. . . . . . . . . . . . . . . . . . . . . . . .
...

[2, 0] 0 0 0
. . . 0 0 0

. . . Q̃[2,0] Q̃
[2,0]
−

[1, 0] 0 0 0 · · · 0 0 0 · · · 0 Q̃[1,0]



,
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where

Q̃[i,j] =



i+j i+j−1 i+j−2 · · · 2 1

i+j Q
[i,j]
i+j,i+j Q

[i,j]
i+j,i+j−1 0 · · · 0 0

i+j−1 0 Q
[i,j]
i+j−1,i+j−1 Q

[i,j]
i+j−1,i+j−2

. . . 0 0

i+j−2 0 0 Q
[i,j]
i+j−2,i+j−2

. . . 0 0
...

...
. . . . . . . . .

...
...

2 0 0 0 · · · Q
[i,j]
2,2 Q

[i,j]
2,1

1 0 0 0 · · · 0 Q
[i,j]
1,1


and

Q̃
[i,j]
− =



i+j−1 i+j−2 · · · 2 1

i+j 0 0 · · · 0 0
i+j−1 Q

[i,j]
i+j−1,i+j 0 · · · 0 0

i+j−2 0 Q
[i,j]
i+j−2,i+j−1

. . . 0 0
...

...
. . . . . .

...
...

2 0 0 · · · Q
[i,j]
2,3 0

1 0 0 · · · 0 Q
[i,j]
1,2


,

such that R1 is a square matrix of dimension

(C + f)(C + f + 1)

2

(
(s1 + 1)b1 + (s1 + s2 + 2)b1b2

C + f − 1

3

)
.

If f = 0, then R1 is the bottom right quadrant starting with level [C, 0] and top-left block

Q̃[C,0]. From the above, the absorption rates are contributed from Q
[i,j]
1,0 subblocks, corre-

sponding to possible transitions which would result in the lead machine (in this case, the
target) receiving service and exiting the queue.

With the rate matrix in hand, we return to the initial probability row vector, p. This
vector contains probabilities for the system immediately after the target machine’s failure,
which considers all C + f machines, as only one machine can fail at a time. This of course
implies that at the time instant when the target machine enters its queue, there cannot be
any other machines queued behind it. Thus, the initial probability vector corresponding to
the phase-type distribution having rate matrix R is Φ1 = (p, 0, 0, . . . , 0), and so it holds that
S1 ∼ PH(Φ1,R1).

We conclude this subsection with the following comment. We have so far considered only
the sojourn time distribution of a class-1 machine. If we want the distribution of S2 for a
machine that suffers a class-2 failure, the distribution can be obtained via the interchange of
exponential failure rates, service and switch-in time distributions, and transposes of switch-
in decision probability matrices (e.g., replace P1S by

(
P2S

)′
and P2S by

(
P1S

)′
). Following
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this, the class-2 sojourn time distribution can be obtained by simply repeating the analysis
contained within this section, treating it as the new class 1 (and hence class 1 as the new
class 2), and calculating the equivalent Φ2 and R2.

4 Results Concerning the Expected Number of Work-

ing Machines

4.1 Limit Theorems

In this section, we investigate some behaviors of the expected number of working machines
at steady state, defined as

E[NW ] = E[min{C,C + f −X1 −X2}]
=
∑
m

∑
n

∑
l

∑
y

∑
y1

∑
y2

min{C,C + f −m− n}πm,n,l,y,y1,y2 . (15)

Specifically, we are interested in the impact of C and f on E[NW ], so for the sake of clar-

ity within the theorems of this section, we adjust our notation slightly so that N
[C,f ]
W =

min{C,C+ f −X [C,f ]
1 −X [C,f ]

2 } and π
[C,f ]
m,n,l,y,y1,y2

denote the number of working machines and
steady-state probabilities, respectively, as functions of C and f .

Our first theorem demonstrates the effect of reducing the maximum number of working
machines by one to begin a maintenance float.

Theorem 1 For a system at steady state with k = 2, 3, . . . total machines, E[N
[k,0]
W ] >

E[N
[k−1,1]
W ].

Proof Refer to the Appendix.

�

Remark 1 At the end of the proof of Theorem 1, we show that E[N
[k,0]
W ] = ckE[N

[k−1,1]
W ]

where 1 < ck <
k
k−1 , k = 2, 3, . . ., so it follows that the negative impact of reducing the

maximum number of working machines to begin a maintenance float goes to 0 as k → ∞.
Therefore, we observe that

lim
k→∞

E[N
[k,0]
W ] = lim

k→∞
E[N

[k−1,1]
W ] = lim

k→∞
E[N

[k,1]
W ],

implying that the act of including a maintenance float of size f = 1 does not impact the limit
of the expected number of working machines in comparison to not using a maintenance float.
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Figure 2: Plot of the expected number of working machines E[NW ] against the total number
of machines k for maintenance floats f = 0, 1, . . . , 10, under an exhaustive service policy.

To get an idea if this also holds true for larger maintenance floats, we have plotted in
Figure 2 E[NW ] against the total number of machines k (minimum 2), for the cases [k, k−f ],
f = 0, 1, . . . , 10. In this plot, we have used an exhaustive service policy with exponentially
distributed service times having means 1 and 20 for classes 1 and 2, respectively. Switch-in
times between classes are also exponentially distributed with means 1, 0.5, and 1 for classes
0, 1, and 2, respectively. The total failure rate was α = 0.05, with α1 = 0.9α and α2 = 0.1α,
so that most jobs were “small”. This 90:10 split will be used throughout this paper unless
otherwise specified.

From Figure 2, we observe that independent of how many machines we divert to the
float, as the total number of machines k is increased, all of the E[N

[k,k−f ]
W ] values converge

to a single limit as the distance between vertically adjacent points goes to 0. Additionally,
we can see that increasing f for a fixed C increases E[NW ], but of course cannot increase
it past the value of C based on the definition in Equation (15). This limit result is not a
coincidence, nor unique to the exhaustive service policy, as we state in our next theorem.

Theorem 2 For any service policy and fixed maintenance float size of f = 0, 1, 2, . . . ma-
chines, the limit of the number of working machines satisfies

E[N
[∞]
W ] = lim

C→∞
E[N

[C,f ]
W ] ≤ −1

α1β1
B−11 e′b1 + α2β2

B−12 e′b2
. (16)

Additionally, if switch-in times between the class-1 and class-2 queues are identically zero
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(i.e., γ
[0]
ji = 1 ∀ i, j ∈ {1, 2}), then the upper bound will surely be reached, i.e.,

E[N
[∞]
W ] =

−1

α1β1
B−11 e′b1 + α2β2

B−12 e′b2
. (17)

Proof Refer to the Appendix.

�

Remark 2 We can re-express Equation (17) as

αE[N
[∞]
W ] = E[Zm]−1,

where αE[N
[∞]
W ] is the average rate of machine failures as C →∞ and E[Zm]−1 is the average

rate of machine repairs when the fraction of time that the mechanic is servicing machines
goes to 1. Therefore, we can interpret E[N

[∞]
W ] as the expected queue length that reaches

an equilibrium which balances the rate of failures with the server’s fastest possible rate of
repairs. If there are no switch-in times, then any policy can reach this repair rate. However,
if switch-ins are possibly incurred when transiting between the class-1 and class-2 queues,
then the quantity of these switch-ins (dependent on the service policy) will cause the server
to spend a larger fraction of their time idle, lowering their peak repair rate and hence low-
ering the value of E[N

[∞]
W ] that a policy can reach.

Remark 3 For a given service policy, if the expected time servicing machines between re-
newals as defined in the proof of Theorem 2, E[BP [C,f ]

ser ], increases faster than the expected

time switching between queues, E[BP
[C,f ]
swi ], then by Equation (48), the aggregate rate of

machine repairs, λ
[C,f ]
r , and hence the expected number of working machines, E[N

[C,f ]
W ], are

monotonically increasing in C for a given f .

From our numerical analysis, this appears to be normal behavior, but we were able to
replicate a non-monotonic or monotonic decreasing relationship between E[NW ] and C. For
example, we observed this in some cases using an unreasonable service policy that sets ev-
ery decision epoch probability to 1 for both queues (i.e., the mechanic would always switch
after observing any arrival to the opposite queue, and after service completions if the op-
posite queue had a positive length), with the aim of maximizing the number of switches.
In Figure 3, under this policy, we plot E[NW ] against C with f = 0, symmetric classes
having failure rates α1 = α2 = 0.05 and exponentially distributed service times with mean
2, and exponentially distributed switch-in times for the three classes having equal means of
MS ∈ {0.5, 1, 2, 3, 4, 5, 10, 15, 20, 25, 50}. It is clear that a slight non-monotonic relationship
is visible in the MS = 0.5 case which becomes more pronounced as MS increases, eventually
turning into a monotonic decreasing relationship in C. Omitted from these plots, we also
considered the impact of f , which had no bearing on the limiting value of E[N

[∞]
W ].
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Figure 3: Plots of the expected number of working machines E[NW ] against the capacity C
for f = 0, α1 = α2 = 0.05, and exponentially distributed services and switch-in times having
means 2 or MS, respectively, under a service policy that maximizes the number of switches.

To accompany Theorem 2, Table 2 presents E[N
[C,f ]
W ] obtained using the methods in Sec-

tion 3, λ
[C,f ]
r = E[N

[C,f ]
W ]/E[W [C,f ]] = αE[N

[C,f ]
W ], simulated values of Ẽ[BP [C,f ]

ser ] and Ẽ[BP
[C,f ]
swi ]

obtained from 500,000 simulated renewal cycles as defined in the proof, as well as the corre-
sponding simulated value

λ̃[C,f ]r =
Ẽ[BP [C,f ]

ser ]/E[Zm]
1
Cα

+ Ẽ[BP [C,f ]
ser ] + Ẽ[BP

[C,f ]
swi ]

.

Select values of C and f are considered, along with several service policies (exhaustive,
preemptive resume priority (P), non-preemptive priority (NP), smart Bernoulli (SB), and
class-1 (a, b) threshold priority (Thr)). Note that we suppress the superscripts for space
considerations. In all cases, the total failure rate was set to α = 0.05, and the service times
followed hyperexponential-2 (henceforth referred to as H2 service) distributions with initial
probability vectors

β
1

= β
2

= (0.9, 0.1) (18)

and rate matrices

B1 = 2

(
−1 0
0 − 1

11

)
, B2 =

1

10MB

(
−1 0
0 − 1

11

)
, (19)

resulting in means of 1 and 20MB for classes 1 and 2, respectively, such that MB can be used
as a scaling factor to adjust the expected size of class-2 jobs, with MB set to 1 by default.
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For the switch-in time distributions, we used initial probability vectors

γ
10

= (p>0, 0), γ
20

= (0, p>0), γ0i = (0, p>0, 0), i = 1, 2, (20)

and
γ
ji

= (p>0, 0, 0), i, j ∈ {1, 2}, i 6= j, (21)

where p>0 = 1 − γ[0]ji is the probability of a switch-in time being positive in duration, and
rate matrices

S1 =
1

MS

 −1 1 0
0 −2 2
0 0 −2

 , S2 =
1

MS

 −2 2 0
0 −1 1
0 0 −1

 , (22)

and

S0 =
1

MS

(
−2 0
0 −1

)
, (23)

where MS is a scaling factor for all mean switch-in times that is set to 1 by default. These
rate matrices imply class-dependent Erlang-2 (denoted by E2) distributed setup times before
beginning service, and exponentially distributed takedown times before leaving either class
1 or 2. If the opposite queue is empty and the mechanic would switch to class 0, then they
will complete the takedown and only be required to perform a setup after the next failure.
As class 1 is being used to denote the smaller jobs, we let these times for class 1 be faster
than those for class 2.

For these cases, note that E[BP
[C,f ]
swi ] = 0 when p>0 = 0, so we omit the corresponding

column. In all cases, based on the results of Theorem 2, it follows that E[N
[∞]
W ] ≤ 6.896552

and λ
[∞]
r ≤ 0.3448276. Comparing the p>0 = 0 and p>0 = 1 cases, it is clear that the presence

of switch-in times reduces the rate at which machines are repaired, as is evident in the values
of λ

[C,f ]
r .
In the absence of switch-in times, the class-1 preemptive resume priority policy outper-

forms the others as it prioritizes increasing the expected number of working machines (at
the cost of longer class-2 sojourn times) by always choosing to repair small class-1 failures
as they occur, to get those machines up and working again as soon as possible. As repaired
machines that are put to work are again at risk of failure, a machine that would have oth-
erwise had to wait for a class-2 machine service time to complete could be repaired multiple
times (if it suffers another class-1 failure) during this time span, effectively increasing the
aggregate rate of machine failures.

However, when switch-ins are present, every time a class-1 failure causes the mechanic
to leave the class-2 queue, an extra idle period is incurred which reduces the mechanic’s
efficiency at a noticeable cost to λ

[C,f ]
r . In contrast to all other policies, the ratio of Ẽ[BP

[C,f ]
swi ]

to Ẽ[BP [C,f ]
ser ] is by far the highest. The magnitudes of these values for class-1 preemptive

priority is due to the fact that the preemptive nature with switch-ins requires a long period
of time to actually empty the class-2 queue. With switch-ins, we see the (5, 5) threshold,
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(6, 7) threshold, and (9, 9) threshold policies maximize E[N
[C,f ]
W ] for the [8, 2], [8, 6], and

[14, 0] cases, respectively. In fact, these are the optimal choices of a and b for (a, b) threshold
policies in these positive switch-in cases, as we will demonstrate in Section 4.2 for the [8, 6]
and [14, 0] cases.

Table 2: E[N
[C,f ]
W ], λ

[C,f ]
r , and simulated values of E[BP [C,f ]

ser ] and E[BP
[C,f ]
swi ] for select C,

f , and p>0 and various service policies, with α = 0.05, H2 service, and MB = MS = 1.
E[N

[∞]
W ] ≤ 6.896552 and λ

[∞]
r ≤ 0.3448276.

p>0

[C, f ] = [8, 2] 0 1

Service Policy E[NW ] λr Ẽ[BP ser] λ̃r E[NW ] λr Ẽ[BP ser] Ẽ[BP swi] λ̃r

Exhaustive 5.0419 0.2521 6.8018 0.2521 4.8525 0.2426 10.2967 1.8395 0.2426
Class-1 P 5.8966 0.2948 14.6109 0.2944 4.0018 0.2001 206.5702 147.1180 0.2000
Class-1 NP 5.1829 0.2591 7.5561 0.2591 4.9006 0.2450 17.6155 4.7238 0.2445
Class-2 P 4.9782 0.2489 6.4578 0.2486 4.7242 0.2362 9.4712 1.8473 0.2363
Class-2 NP 4.9927 0.2496 6.5196 0.2492 4.7503 0.2375 9.5967 1.8281 0.2376
(1,0.2) SB 5.1544 0.2577 7.3341 0.2572 4.9016 0.2451 12.2305 2.4778 0.2451
(1,0.8) SB 5.0689 0.2534 6.9446 0.2536 4.8657 0.2433 10.6010 1.9495 0.2429
(5,5) Thr 5.5130 0.2756 9.9895 0.2758 5.0858 0.2543 17.6209 3.7948 0.2541
(6,7) Thr 5.3217 0.2661 8.4661 0.2662 5.0288 0.2514 13.5382 2.5496 0.2512
(9,9) Thr 5.1035 0.2552 7.1373 0.2554 4.8971 0.2449 10.9218 1.9408 0.2451

[C, f ] = [8, 6]

Exhaustive 5.3341 0.2667 8.4668 0.2662 5.1970 0.2599 13.7285 1.9851 0.2599
Class-1 P 6.3007 0.3150 26.0904 0.3147 4.0234 0.2012 5186.4519 3701.8065 0.2012
Class-1 NP 5.5949 0.2797 10.7111 0.2796 5.3015 0.2651 39.8718 9.5118 0.2650
Class-2 P 5.2502 0.2625 8.0464 0.2631 5.0338 0.2517 12.1819 2.0277 0.2514
Class-2 NP 5.2616 0.2631 8.0887 0.2634 5.0591 0.2530 12.3493 1.9994 0.2527
(1,0.2) SB 5.5457 0.2773 10.2455 0.2772 5.3380 0.2669 20.2300 3.4138 0.2668
(1,0.8) SB 5.3846 0.2692 8.8813 0.2691 5.2331 0.2617 14.7609 2.1864 0.2617
(5,5) Thr 6.1168 0.3058 19.3409 0.3054 5.5402 0.2770 51.5775 10.1664 0.2768
(6,7) Thr 5.9823 0.2991 16.5053 0.2995 5.5911 0.2796 33.4503 5.3725 0.2791
(9,9) Thr 5.7850 0.2892 13.0782 0.2895 5.5203 0.2760 23.1265 3.3062 0.2756

[C, f ] = [14, 0]

Exhaustive 6.1840 0.3092 12.3103 0.3090 5.8612 0.2931 22.7827 2.5702 0.2933
Class-1 P 6.7814 0.3391 83.5556 0.3390 4.0222 0.2011 71885.4765 51371.5087 0.2011
Class-1 NP 6.3934 0.3197 18.0328 0.3195 5.4919 0.2746 216.4525 53.9657 0.2746
Class-2 P 6.0973 0.3049 10.9145 0.3049 5.6571 0.2829 18.4622 2.6176 0.2828
Class-2 NP 6.1098 0.3055 11.0118 0.3052 5.6904 0.2845 18.7949 2.5705 0.2843
(1,0.2) SB 6.3526 0.3176 16.6906 0.3176 5.8373 0.2919 41.9483 6.1635 0.2920
(1,0.8) SB 6.2231 0.3112 13.2559 0.3113 5.8672 0.2934 25.2003 2.9786 0.2935
(5,5) Thr 6.6466 0.3323 38.3886 0.3325 5.7470 0.2874 142.2960 27.0132 0.2874
(6,7) Thr 6.5632 0.3282 28.2071 0.3282 5.9142 0.2957 73.7993 10.8060 0.2958
(9,9) Thr 6.4484 0.3224 20.5086 0.3224 5.9709 0.2985 43.3606 5.3009 0.2985
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In Figure 2, we observed in the case of the exhaustive service policy that E[NW ] converged
to a limit as we increased the number of machines in the system, a result supported by
Theorem 2. We now aim to expand on this by plotting in Figures 4 and 5 E[N

[C,f ]
W ] for

exhaustive, class-i preemptive resume and non-preemptive priority, i = 1, 2, as well as (1, 0.2)
and (1, 0.8) smart Bernoulli service policies against C for f = 0 or f = 4. We used the same
phase-type service and switch-in distributions used for Table 2. As Theorem 2 states, the
presence of switch-ins will affect the limit of E[N

[C,f ]
W ], so we consider p>0 = 0 in Figure 4

and p>0 = 1 in Figure 5. In Figure 4, we focus on the MB = MS = 1 and α = 0.05 case,
while in Figure 5 we also allow α = 0.1 and MB = 0.5. Note that due to space constraints,
the legend provided in Figure 4 is representative of itself as well as Figure 5. In all plots,
the horizontal grey line is the corresponding limit or upper bound from Equations (16) and
(17).

In Figure 4, we confirm that in the absence of switch-in times, this range of service
policies all eventually reach the same limiting expected number of working machines, with
or without a maintenance float. Unlike Figure 2, we are specifically plotting against C, and
hence the systems plotted in Figure 4 (b) have 4 more total machines for a given C. An
increase in E[NW ] is observed from the presence of a maintenance float, which increases the

speed at which each policy approaches E[N
[∞]
W ]. Consistent with Table 2, with p>0 = 0

the preemptive resume priority policy converges to E[N
[∞]
W ] at the highest rate, followed by

the other policies in an order depending on their preference to serve class-1 machines (the
small jobs) over class-2 machines (the large jobs), with class-2 priority policies performing
the worst. Not surprisingly, (1, 0.2) smart Bernoulli is comparable to class-1 non-preemptive
priority (which is equivalent to a (1, 0) smart Bernoulli policy), and (1, 0.8) smart Bernoulli
is comparable to exhaustive (which is equivalent to a (1, 1) smart Bernoulli policy). There
appears to be very little difference between class-2 preemptive resume and non-preemptive
priorities, resulting from a combination of low class-2 failure rates relative to class 1 as well
as small class-1 service times.

In Figure 5, we overlay both the f = 0 and f = 4 cases on the same plots. In every
plot, we observe the same order of service policies in terms of magnitude of E[N

[∞]
W ], with

exhaustive having the highest limit (as it incurs the fewest switch-ins) followed by the other
policies in reverse order depending on their relative fraction of times spent in a switch-in
during a busy period as defined in the proof of Theorem 2, i.e., relative to each policy’s value
of

lim
C→∞

E[BP
[C,f ]
swi ]

E[BP [C,f ]
ser ]

.

Comparing Figure 5 (a) and (c) to (b) and (d), doubling α approximately halves E[N
[∞]
W ].

Comparing the Figure 5 (a) and (b) to (c) and (d), decreasing MB and hence reducing the
size of large jobs increases E[Zm]−1, increasing the mechanic’s peak rate of repair and hence

E[N
[∞]
W ]. It is also intuitive to observe that the number of machines required to converge

to a policy’s limiting expected number of working machines depends on the magnitude of
E[N

[∞]
W ], and by including a maintenance float without reducing C, this limit is reached at a
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Figure 4: Plots of E[N
[C,f ]
W ] against C for f = 0, 4 and select service policies with H2 service,

p>0 = 0, MB = 1, MS = 1, and α = 0.05, where E[N
[∞]
W ] = 6.896552.

lower value of C. For all the plots in Figures 4 and 5, the convergence to a policy’s E[N
[∞]
W ]

is monotonic, demonstrating that they satisfy the condition described in Remark 3.

4.2 Connection to Mean Sojourn Times

In Section 3.3, we showed that the amount of time between a class-1 machine failure and
when it is repaired (i.e., its sojourn time) has a PH(Φ1,R1) distribution, and noted that
an equivalent PH(Φ2,R2) distribution can be derived for class-2 machines by using the
same method after interchanging the class-1 and class-2 failure rates, service and switch-in
distributions, and transposes of switch-in decision probability matrices. It then follows that
the sojourn time for an arbitrary failed machine, S, is the mixture of S1 and S2 having
mixing weights equal to the probability of a given failure being of either class, resulting in
the probability density function (pdf)

fS(t) =
α1

α
Φ1 exp{R1t}R′0,1 +

α2

α
Φ2 exp{R2t}R′0,2,

where R′0,i = −Rie
′ is the column vector of absorption rates for the class-i sojourn time

distribution. It is straightforward to confirm that the rth moment for S has formula

E[Sr] = (−1)rr!
(α1

α
Φ1R−r1 e′ +

α2

α
Φ2R−r2 e′

)
. (24)

If we are specifically interested in the first moment of the sojourn time, then we can obtain
an alternate formula using Little’s Law (Little 1961) in terms of the mean queue lengths
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Figure 5: Plots of E[N
[C,f ]
W ] against C for f = 0, 4 and select service policies with H2 service,

p>0 = 1, MB = 0.5, 1, MS = 1, and α = 0.05, 0.1.

and expected number of working machines. Treating the length of the class-i queue as a
subsystem, the mean arrival rate to that subsystem is the mean class-i failure rate, ᾱi =
αiE[NW ], and the time spent in the subsystem by a target machine is of course distributed
as a class-i sojourn time. Thus, applying Little’s Law, we obtain

E[Xi] = αiE[NW ]E[Si], i = 1, 2. (25)

As S is a mixture of S1 and S2, it holds that E[S] = α1

α
E[S1] + α2

α
E[S2]. Summing
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Equation (25) for i = 1, 2, we observe that

E[X1] + E[X2] = α1E[NW ]E[S1] + α2E[NW ]E[S2]
= αE[NW ]

(α1

α
E[S1] +

α2

α
E[S2]

)
= αE[NW ]E[S], (26)

which can also be obtained through Little’s Law by treating the total collection of failed ma-
chines as a single subsystem. The advantage of these formulas is that it produces a quicker
way to calculate the mean sojourn times, as the mean queue lengths and E[NW ] only require
calculation of the steady-state probabilities and avoids inverting the large rate matrices R1

and R2 in Equation (24). Equation (26) leads us to our third theorem.

Theorem 3 For a maintenance system with [C, f ] machines and a given failure rate α,
E[NW ] will simultaneously be maximized while E[S] is minimized if f = 0.

Proof: Recall Equation (15), which when f = 0 simplifies to

E[NW ] = E[C −X1 −X2] = C − E[X1]− E[X2]. (27)

Subtracting both sides of Equation (26) from C, applying Equation (27), and isolating for
E[NW ], we find

E[NW ] =
C

1 + αE[S]
. (28)

While Equation (28) is not a linear relationship, it is clear that the selection of a service
policy that maximizes E[NW ] for a given C and α must simultaneously minimize E[S].

�

Remark 4 Equations (28) and (42) provide an alternate formula for the aggregate rate at
which machines fail and are repaired when f = 0, namely

λ[C,0]r =
C

1
α

+ E[S [C,0]]
. (29)

The denominator is equal to the sum of the mean time it takes a working machine to fail
and the expected time until it is working again after suffering an arbitrary failure (in a [C, 0]
system), and hence is equivalent to the expected time between repairs for a given machine
(since there is no maintenance float, a repaired machine is put back to work immediately
after it is repaired). The inverse of the time between repairs is the rate of repairs for a single
machine, which when multiplied by C, results in the aggregate rate of repairs for the entire
system.
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Remark 5 If f ≥ 1, we can obtain an alternative relationship than Equation (28) between
E[NW ] and E[S]. Subtracting Equation (26) from 2C + f and applying the fact that for any
two random variables X and Y , E[min{X, Y }] + E[max{X, Y }] = E[X] + E[Y ], we obtain

2C + f − αE[NW ]E[S] = 2C + f − E[X1]− E[X2]

= E[NW ] + E[max{C,C + f −X1 −X2}],

which if we rearrange for E[NW ],

E[NW ] =
2C + f − E[max{C,C + f −X1 −X2}]

1 + αE[S]

=
C + f − E[max{0, f −X1 −X2}]

1 + αE[S]
, (30)

where E[max{0, f −X1−X2}] is the expected number of functional machines in the mainte-
nance float. Unlike in Equation (28) where E[NW ] and E[S] were the only “variable” compo-
nents such that one must be maximized when the other is minimized, E[max{0, f−X1−X2}]
will also change if we adjust model parameters or service policies and as such, the simulta-
neous optimization of E[NW ] and E[S] is not guaranteed.

Remark 6 From Equations (30) and (42), we find an alternate equation for the aggregate
rate at which machines fail and are repaired to be

λ[C,f ]r =
C + f − E[max{0, f −X [C,f ]

1 −X [C,f ]
2 }]

1
α

+ E[S [C,f ]]
, (31)

where the numerator is the expected number of machines in the maintenance system that
are in the process of failing (i.e., in use) or the process of being repaired (i.e., are receiving
service or are waiting in a queue), and the denominator is the expected amount of time for

a machine to fail and then be repaired, agreeing with the intended interpretation of λ
[C,f ]
r .

Unsurprisingly, Equation (31) reduces to Equation (29) if we let f = 0.

We demonstrate the simultaneous and non-simultaneous optimizations of E[NW ] and E[S]
by plotting them over all possible (a, b) threshold policies for the [8, 6] and [14, 0] systems
(with switch-ins) considered in Table 2. For both figures, grey dashed vertical lines are
presented to visually separate the (a, b) threshold policies according to values of a. All
(a, b) threshold policies are plotted as grey dots by default, while we reuse the symbols from
Figures 4 and 5 for the cases that replicate exhaustive (i.e., (14, 14) threshold) or standard
class-1 priority policies (i.e., (1, 1) and (1, 14) threshold). Additionally, the (a, b) threshold
policies that maximizes E[NW ] and/or minimize E[S] are plotted as black dots. Finally,
black dashed lines are provided on the optimal policies on their corresponding optimal plots
for even further visual contrast and to point to their policy on the horizontal axis.

In Figure 6, we examine the case of [C, f ] = [8, 6], and begin by also plotting the class-1
and class-2 mean sojourn times, E[S1] and E[S2]. We observe that the two class-i expected
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Figure 6: Plots of E[S1], E[S2], E[S], and E[NW ] for all possible class-1 (a, b) threshold
policies with [C, f ] = [8, 6], α = 0.05, H2 service, p>0 = 1, and MB = MS = 1.

sojourn times have opposite relationships with a and b. By increasing the value of a and/or
b, the strength of the server’s preference to serve class 1 before class 2 decreases, as the
threshold priorities need larger class-1 queue lengths to activate. Therefore, it follows that
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Figure 7: Plots of E[S] and E[NW ] for all possible class-1 (a, b) threshold policies with
[C, f ] = [14, 0], α = 0.05, H2 service, p>0 = 1, and MB = MS = 1.

increasing a and/or b increases (decreases) E[S1] (E[S2]).
As the class-2 expected sojourn times are much larger than the class-1 expected sojourn

times, it is not surprising to see in both figures that the overall mean sojourn times are largely
decreasing with a and b, despite the low 10% mixing weight for class-2 failures, although
it begins to increase as a function of a and b for large values of a as the benefit to class
2 for further increasing the thresholds diminishes. In some cases not presented here, it is
also possible to see a pronounced concave relationship between E[S] and b for small a when
there are fewer total machines in the system, but the relation “flattens” for the higher b
values as the number of machines (and hence the expected number of working machines) are
increased.

The relationship between E[NW ] and the threshold boundaries is also clearly non-monotonic,
as we observe a convex function of b in Figure 6 for low values of a before becoming a de-
creasing function of b for larger a’s. This convex relation is “flattened” for high b in Figure
7 (similar to the expected sojourn times as mentioned above) as we increase C at the cost

of f which results in a net increase in E[NW ]. As these are cases with switch-ins, E[N
[∞]
W ] is

increasing in a and b since increasing the thresholds reduces extra switch-ins. Therefore, the
decreasing relationship between E[NW ] and the thresholds for certain ranges of a and b is
much less prominent in Figure 7 than Figure 6, as purely having working machines with no
float results in the [14, 0] cases being closer to their limit. In fact, this relationship should
approach monotonic increasing in a and b as C → ∞, and the exhaustive policy becomes
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optimal having the fewest possible switch-ins and hence the highest E[N
[∞]
W ].

Finally, agreeing with the result of Theorem 3, we observe simultaneous optimization in
the [14, 0] case at (a, b) = (9, 9), resulting in E[NW ] = 5.9709 and E[S] = 26.8941. Also, the
[8, 6] case demonstrates Remark 5, where E[NW ] is maximized at (a, b) = (6, 7) resulting in
E[NW ] = 5.5911 and E[S] = 25.9373, and E[S] is minimized at (9, 9) where E[NW ] = 5.5203
and E[S] = 25.4357.

5 Numerical Examples

5.1 (a, b) Threshold Optimization

We now imagine a factory setting where an array of identical machines represent an important
component of their production process. To avoid creating a production bottleneck at this
step, it is of interest to maximize the average rate at which work is processed by maximizing
the expected number of working machines. From Theorem 2, we know that there exists
a limit E[N

[∞]
W ] dependent on the failure rates and mean service times, which can only be

reached if there are no switch-in times. If cost was no object, then this limit could be reached
using any service policy given an arbitrarily large C if there were no switch-in times (in fact,
it would be advantageous to use class-1 preemptive resume priority which we have seen will
reach E[N

[∞]
W ] at the smallest value of C). If there are switch-in times corresponding to

set-up times for one or both classes, then the exhaustive service policy will have the highest
peak service rate and hence the maximum E[N

[∞]
W ].

Unfortunately, increasing your machines would have a real cost related to initial invest-
ment (e.g., purchase price), recurring costs (e.g., fuel, replacement parts, operational staff),
space constraints (e.g., storage space for spares, space on the factory floor for operational
machines), and so on. Due to these costs, it may be optimal to invest in a C and f which
do not reach the highest possible rate of output. If this is the case, a different policy than
exhaustive may be optimal as they have different rates of convergence to the server’s peak
repair rate and hence could have a higher E[N

[C,f ]
W ] at a given C and f as seen in Figures 6

and 7.
With this motivation in mind, we introduce a basic cost function E[N

[C,f ]
W ]− rCC − rff ,

where rC is the cost to purchase a machine and to increase the maximum capacity of working
machines by one and rf is the cost per additional machine purchased as a spare and the
corresponding cost of storage. Here, we assume that rC and rf are normalized with respect
to the profit per unit time that a working machine produces, so that maximizing the cost
function maximizes the average profit per unit time. We aim to optimize with respect to
C, f , and all possible class-1 (a, b) threshold policies for a given number of machines (i.e.,
1 ≤ a ≤ b ≤ C + f).

For the purposes of our example, we consider a factory with space for a total of C +
f = 14 machines. We allow α ∈ {0.05, 0.075, 0.10}, MB ∈ {0.5, 1}, MS ∈ {1, 2}, and
p>0 ∈ {0, 0.5, 1}, while we assume that the switch-in distributions are of the kind defined in
Equations (20)-(23) in Section 4.1. Along with the H2 service time distributions outlined in
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Equations (18) and (19), we also consider Erlang-3 distributions (henceforth referred to as
E3 service) having initial probability row vectors

β
1

= β
2

= (1, 0, 0), (32)

and rate matrices

B1 =

 −3 3 0
0 −3 3
0 0 −3

 , B2 =
1

20MB

 −3 3 0
0 −3 3
0 0 −3

 , (33)

resulting in the same means as the H2 service time distributions and maintaining the same
interpretation of MB. The E3 distributions act as good examples of distributions which may
be preempted and have a residual service time after the server’s return that is less than if
they had to restart their work.

We begin by considering optimization when rC = rf (i.e., when every machine costs the
same whether it will increase the system’s capacity or act as a spare in the maintenance float).

Table 3 contains the optimal [C, f ], (a, b), and E[N
[C,f ]
W ] (with suppressed superscripts) at

rC = rf = 0.10 over the combinations of parameters and service time distributions outlined
above. The first observation that stands out is that in no cases is it optimal to have f ≥ 1,
even when C < 14 allows for more additional machines before hitting the cap. Recalling
Theorem 1, we have that E[N

[k,0]
W ] > E[N

[k−1,1]
W ]. We have also seen that for the exhaus-

tive service policy example in Figure 2, E[N
[k−f,f ]
W ] is a decreasing function of f (although

E[N
[C,f ]
W ] is an increasing function of f). Therefore, it makes sense in this case to never

invest in a maintenance float if putting all machines towards C maximizes E[N
[C,f ]
W ] for a

given C + f , when rC = rf reduces the cost function to E[N
[C,f ]
W ] − rC(C + f). Thus, it is

only ever of financial interest to invest in a maintenance float if it is cheaper to add a spare
machine to the system than it is to increase C (i.e., rC > rf ). This brings us to our next
result.

Theorem 4 Under cost function E[NW ]− rCC − rff , if rC > rf , then for a system with k
total machines, k = 2, 3, . . ., it will be suboptimal to not use a maintenance float if

E[N
[k,0]
W ] < k(rC − rf ). (34)

Proof Recall from the proof of Theorem 1, E[N
[k,0]
W ] = ckE[N

[k−1,1]
W ], where 1 < ck <

k
k−1 ,

k = 2, 3, . . .. It will be suboptimal to select f = 0 in a system having k total machines if

E[N
[k−1,1]
W ]− (k − 1)rC − rf > E[N

[k,0]
W ]− krC ,

or equivalently,
E[N

[k,0]
W ]− E[N

[k−1,1]
W ] < rC − rf .

We observe that

E[N
[k,0]
W ]− E[N

[k−1,1]
W ] = E[N

[k,0]
W ](1− c−1k ) < E[N

[k,0]
W ]

(
1− k − 1

k

)
=

1

k
E[N

[k,0]
W ].
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Table 3: Optimal C, f , a, and b, under H2 and E3 service for equal machine costs, r =
(rC , rf ) = (0.10, 0.10).

p>0

H2 service 0 0.5 1

MB MS α [C, f ] (a, b) E[NW ] [C, f ] (a, b) E[NW ] [C, f ] (a, b) E[NW ]

1 1 0.05 [13, 0] (1, 1) 6.6948 [14, 0] (7, 7) 6.2251 [14, 0] (9, 9) 5.9709
0.075 [10, 0] (1, 1) 4.4827 [11, 0] (6, 7) 4.1487 [11, 0] (8, 8) 3.9681
0.10 [8, 0] (1, 1) 3.3439 [8, 0] (5, 5) 2.9854 [9, 0] (8, 8) 2.9386

2 0.05 [13, 0] (1, 1) 6.6948 [14, 0] (9, 9) 5.9549 [14, 0] (11, 11) 5.5953
0.075 [10, 0] (1, 1) 4.4827 [11, 0] (8, 8) 3.9548 [12, 0] (11, 12) 3.8182
0.10 [8, 0] (1, 1) 3.3439 [9, 0] (7, 7) 2.9251 [9, 0] (8, 9) 2.7411

0.5 1 0.05 [14, 0] (1, 1) 9.4562 [14, 0] (5, 6) 8.5465 [14, 0] (8, 8) 8.1463
0.075 [13, 0] (1, 1) 6.8193 [14, 0] (9, 9) 6.3171 [14, 0] (11, 11) 6.0460
0.10 [11, 0] (1, 1) 5.1484 [12, 0] (9, 9) 4.7611 [13, 0] (12, 12) 4.6616

2 0.05 [14, 0] (1, 1) 9.4562 [14, 0] (8, 8) 8.0974 [14, 0] (11, 11) 7.5325
0.075 [13, 0] (1, 1) 6.8193 [14, 0] (11, 11) 6.0146 [14, 0] (13, 14) 5.6166
0.10 [11, 0] (1, 1) 5.1484 [13, 0] (12, 12) 4.6391 [14, 0] (13, 14) 4.4440

E3 service

1 1 0.05 [11, 0] (1, 1) 6.7993 [13, 0] (7, 8) 6.3602 [14, 0] (10, 11) 6.1970
0.075 [8, 0] (1, 1) 4.5144 [10, 0] (7, 7) 4.2129 [11, 0] (9, 10) 4.1143
0.10 [6, 0] (1, 1) 3.3179 [8, 0] (5, 6) 3.1112 [9, 0] (8, 9) 3.0543

2 0.05 [11, 0] (1, 1) 6.7993 [14, 0] (10, 10) 6.1884 [14, 0] (12, 14) 5.8122
0.075 [8, 0] (1, 1) 4.5144 [11, 0] (9, 10) 4.1065 [12, 0] (11, 12) 3.9632
0.10 [6, 0] (1, 1) 3.3179 [9, 0] (8, 9) 3.0466 [9, 0] (8, 9) 2.8523

0.5 1 0.05 [14, 0] (1, 1) 10.2076 [14, 0] (5, 7) 9.0983 [14, 0] (8, 10) 8.6314
0.075 [11, 0] (1, 1) 6.9260 [14, 0] (11, 14) 6.6001 [14, 0] (13, 14) 6.3492
0.10 [9, 0] (1, 1) 5.2021 [11, 0] (9, 11) 4.8821 [12, 0] (11, 12) 4.7810

2 0.05 [14, 0] (1, 1) 10.2076 [14, 0] (7, 11) 8.5985 [14, 0] (12, 14) 7.9602
0.075 [11, 0] (1, 1) 6.9260 [14, 0] (13, 14) 6.3362 [14, 0] (13, 14) 5.9164
0.10 [9, 0] (1, 1) 5.2021 [12, 0] (11, 12) 4.7730 [14, 0] (13, 14) 4.6623
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Thus, if Equation (34) holds, then

rC − rf >
1

k
E[N

[k,0]
W ] > E[N

[k,0]
W ]− E[N

[k−1,1]
W ],

and so it would be suboptimal to select f = 0 under the given cost function.

�

Note that it may be optimal to use a float when the inequality of Theorem 4 does not hold
(i.e., for small k), so long as rC > rf is still true. Theorem 4 simply provides an inequality
that, if it holds, guarantees that f = 0 is not optimal at k total machines. By Theorem
2, we know that limC→∞ E[N

[C,0]
W ] has a finite upper bound, which implies that there must

exist a k ∈ Z+ such that Equation (34) is satisfied if rC > rf . Additionally, this implies that
if we increase rC for a given k ≥ 2 and rf , we will eventually reach a point for sure where it
becomes optimal to use a maintenance float.

Other conclusions also follow from Table 3. In particular, when p>0 = 0, it is optimal
to use class-1 preemptive resume priority, as it reaches its E[N

[∞]
W ] at the smallest value of

C out of the considered policies, and this limit is not penalized by its additional switches
due to identically zero switch-in times. We observe that some optimal C are less than 14,
corresponding to situations where there is no (a, b) which would result in E[N

[C+1,0]
W ] that is

at least rC = 0.10 greater than the optimal E[N
[C,0]
W ]. In fact, the E3 distribution in contrast

to H2 often results in a smaller optimal C while simultaneously allowing a larger E[N
[C,0]
W ],

an advantage of having a lower service time variance and a type of partitioned sequential
work which benefits more from the nature of the preemptive resume priorities (whereas H2

simply remembers which exponential distribution from the mixture the job belonged to).
Decreasing MB results in faster class-2 services, thereby increasing E[Zm]−1 (and hence

E[N
[∞]
W ]). The higher limit requires more total machines to reach it, and hence increments in

optimal E[N
[C,0]
W ] (i.e., at optimal (a, b) threshold cases for given C) will outweigh the cost of

an additional machine until larger values of C. This results in larger optimal C and E[N
[C,0]
W ].

Increasing α has the opposite effect on E[N
[∞]
W ], resulting in a lower limit and hence lower

optimal C values. Increasing MS for a given p>0 > 0 or increasing p>0 for a given MS (or
increasing both) causes switch-ins to be more costly, penalizing a priority policy inversely

proportional to a and b, while lowering E[N
[∞]
W ]. This has the effect of increasing optimal

threshold limits while lowering the optimal E[N
[C,0]
W ].

Next, we allow increasing float machines to cost half as much as increasing the system
capacity (i.e., rf = rC/2) and consider a range of costs rC ∈ {0.05, 0.10, 0.25} for H2 service
in Table 4 and E3 service in Table 5. Comparing the rC = 0.10 cases from these two tables
to Table 3, it is possible (for the cases that did not already select C = 14) to increase the
maintenance float by 2 machines for the cost of 1 capacity slot, which allows those cases to
“afford” to increase the total number of machines. While a single increase in C is worth
more than a single increase in f , the benefit of multiple spares can outweigh that of a single
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capacity machine when C is already a few machines over E[N
[∞]
W ]. This follows since the

fraction of time that the system spends near capacity decreases as C becomes large and
so the marginal benefit of increasing C over f will reduce, and increasing f multiple times
can outweigh a unit increase of C when it is larger than E[N

[∞]
W ] (recall that increasing f

cannot result in NW surpassing C, and so the benefit of increasing C over f is much larger
for C < E[N

[∞]
W ]). We also observe some cases where C = 14 in Table 3 but some capacity

is diverted to the float, slightly decreasing E[N
[C,f ]
W ] but saving much more in costs.

Our earlier observations concerning parameters MB, MS, α, and p>0 clearly still hold
true in Tables 4 and 5. Also, we still observe E3 service achieving higher E[N

[C,f ]
W ] while

typically selecting optimal C that are no larger than those selected for H2 service, with the
exception of the rC = 0.25, MB = 0.5, MS = 2, α = 0.10 case where the faster rate at
which E[N

[C,f ]
W ] approaches its limit for E3 allows it to “afford” to increase C longer than H2

service. Finally, we observe that by increasing the cost per machine, the system will want
to optimize at fewer machines as the incremental costs will begin to outpace the increases
in E[N

[C,f ]
W ] at fewer machines. When optimizing the (a, b) threshold at fewer machines, the

decreases in peak repair rate caused by extra incurred switch-ins are smaller due to fewer
observed failures, and so the optimal a and b are non-increasing in rC (and rf ).

5.2 Class-1 Sojourn Time Densities For (a, a) Threshold Policies

In Section 3.3, we derived the distribution for a class-1 machine’s sojourn time, S1, to be
PH(Φ1,R1), resulting in the pdf

fS1(t) = Φ1 exp{R1t}R′0,1. (35)

As an illustration, we plot some of these densities for a family of service policies. For the
sake of brevity, we constrain ourselves to the set of (a, a) threshold policies (i.e., preemptive
resume threshold policies), which exhibited notable sensitivities to the selection of thresh-
old parameter a, much more so than the (a, C + f) threshold policies (i.e., non-preemptive
threshold policies) in the numerical cases we considered. As computing the matrix expo-
nential function in Equation (35) can be quite time consuming for systems with large state
spaces, we consider only exponential service time distributions within this example (having
the typical means of 1 and 20MB for class 1 and class 2, respectively), along with the modest
number of machines C = 8 and f = 2. We still elect to use the switch-in time distributions
defined in Equations (20)-(23), as the size of the state space is less sensitive to the number
of switching phases, as they are not always tracked like service phases are by Y1 and Y2.

In Figure 8, we plot fS1(t) for t ∈ [0, 15] and a = 1, 2, . . . , 10, letting α = 0.05 and
MB = MS = 1. We consider both p>0 = 0 and p>0 = 1 to visualize the impact of switch-in
times. Upon first inspection, it is clearly evident that the densities differ greatly for low
values of a, when class 1’s relative priority to class 2 is at its highest, while its shape is more
consistent at higher values of a, requiring larger queue lengths (which are rarer to observe)
and hence reducing the threshold’s impact. Unsurprisingly, as we are considering class-1
sojourn times, the lower threshold policies result in more density towards small sojourn times
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Table 4: Optimal C, f , a, and b, under H2 service and cheaper reserve machines (rf = rC/2).

p>0

r = (0.05, 0.025) 0 0.5 1

MB MS α [C, f ] (a, b) E[NW ] [C, f ] (a, b) E[NW ] [C, f ] (a, b) E[NW ]

1 1 0.05 [12, 2] (1, 1) 6.7511 [13, 1] (7, 7) 6.2110 [13, 1] (9, 9) 5.9579
0.075 [9, 3] (1, 1) 4.5526 [9, 5] (8, 8) 4.2851 [10, 4] (11, 11) 4.1606
0.10 [7, 3] (1, 1) 3.4093 [7, 7] (9, 9) 3.2572 [8, 6] (11, 12) 3.1780

2 0.05 [12, 2] (1, 1) 6.7511 [13, 1] (9, 9) 5.9411 [13, 1] (11, 11) 5.5850
0.075 [9, 3] (1, 1) 4.5526 [10, 4] (10, 11) 4.1517 [11, 3] (13, 14) 3.9622
0.10 [7, 3] (1, 1) 3.4093 [8, 6] (11, 11) 3.1728 [9, 5] (13, 14) 3.0523

0.5 1 0.05 [14, 0] (1, 1) 9.4562 [14, 0] (5, 6) 8.5465 [14, 0] (8, 8) 8.1463
0.075 [12, 2] (1, 1) 6.8780 [13, 1] (9, 9) 6.3040 [12, 2] (11, 11) 6.0114
0.10 [9, 4] (1, 1) 5.1964 [11, 3] (11, 11) 4.8967 [11, 3] (13, 13) 4.7217

2 0.05 [14, 0] (1, 1) 9.4562 [14, 0] (8, 8) 8.0974 [14, 0] (11, 11) 7.5325
0.075 [12, 2] (1, 1) 6.8780 [13, 1] (11, 11) 6.0035 [12, 2] (13, 14) 5.5904
0.10 [9, 4] (1, 1) 5.1964 [11, 3] (13, 13) 4.7008 [11, 3] (13, 14) 4.4221

r = (0.10, 0.05)

1 1 0.05 [11, 3] (1, 1) 6.7098 [11, 3] (6, 6) 6.1403 [11, 3] (8, 8) 5.8850
0.075 [8, 3] (1, 1) 4.4901 [8, 5] (7, 7) 4.2039 [8, 6] (9, 9) 4.0882
0.10 [6, 3] (1, 1) 3.3414 [6, 5] (6, 6) 3.1177 [6, 5] (8, 8) 2.9792

2 0.05 [11, 3] (1, 1) 6.7098 [11, 3] (8, 8) 5.8708 [11, 3] (11, 11) 5.5148
0.075 [8, 3] (1, 1) 4.4901 [8, 6] (9, 9) 4.0810 [9, 5] (12, 12) 3.8996
0.10 [6, 3] (1, 1) 3.3414 [6, 5] (7, 8) 2.9720 [7, 5] (11, 11) 2.8933

0.5 1 0.05 [14, 0] (1, 1) 9.4562 [14, 0] (5, 6) 8.5465 [13, 1] (8, 8) 8.1062
0.075 [11, 3] (1, 1) 6.8373 [11, 3] (8, 8) 6.2307 [11, 3] (11, 11) 5.9649
0.10 [9, 3] (1, 1) 5.1613 [9, 5] (9, 9) 4.8288 [9, 5] (12, 12) 4.6434

2 0.05 [14, 0] (1, 1) 9.4562 [13, 1] (7, 8) 8.0555 [13, 1] (11, 11) 7.5060
0.075 [11, 3] (1, 1) 6.8373 [11, 3] (10, 10) 5.9331 [11, 3] (13, 13) 5.5533
0.10 [9, 3] (1, 1) 5.1613 [9, 5] (11, 11) 4.6228 [9, 5] (13, 14) 4.3509

r = (0.25, 0.125)

1 1 0.05 [9, 2] (1, 1) 6.2249 [9, 3] (3, 5) 5.7651 [9, 3] (6, 6) 5.4992
0.075 [6, 2] (1, 1) 4.0503 [6, 2] (1, 4) 3.6371 [6, 2] (5, 5) 3.4244
0.10 [5, 1] (1, 1) 2.9977 [4, 2] (1, 3) 2.5299 [4, 2] (3, 4) 2.3718

2 0.05 [9, 2] (1, 1) 6.2249 [8, 4] (4, 6) 5.3665 [8, 4] (7, 8) 5.0121
0.075 [6, 2] (1, 1) 4.0503 [6, 2] (1, 5) 3.4294 [5, 3] (5, 6) 3.0341
0.10 [5, 1] (1, 1) 2.9977 [4, 2] (1, 4) 2.3846 [4, 1] (4, 5) 2.0562

0.5 1 0.05 [13, 1] (1, 1) 9.3829 [12, 2] (3, 6) 8.3904 [12, 2] (8, 8) 8.0157
0.075 [10, 2] (1, 1) 6.5878 [9, 3] (4, 6) 5.8294 [9, 4] (8, 9) 5.6796
0.10 [7, 2] (1, 1) 4.7393 [7, 2] (2, 5) 4.2149 [7, 3] (7, 7) 4.1154

2 0.05 [13, 1] (1, 1) 9.3829 [12, 2] (5, 8) 7.9720 [11, 3] (10, 10) 7.3296
0.075 [10, 2] (1, 1) 6.5878 [9, 4] (6, 9) 5.6500 [9, 4] (11, 11) 5.2731
0.10 [7, 2] (1, 1) 4.7393 [6, 3] (3, 6) 3.8452 [6, 3] (8, 8) 3.5430
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Table 5: Optimal C, f , a, and b, under E3 service and cheaper reserve machines (rf = rC/2).

p>0

r = (0.05, 0.025) 0 0.5 1

MB MS α [C, f ] (a, b) E[NW ] [C, f ] (a, b) E[NW ] [C, f ] (a, b) E[NW ]

1 1 0.05 [9, 4] (1, 1) 6.8564 [11, 3] (8, 8) 6.4220 [12, 2] (10, 10) 6.1761
0.075 [7, 2] (1, 1) 4.5630 [8, 6] (10, 10) 4.3862 [9, 5] (11, 12) 4.2653
0.10 [5, 3] (1, 1) 3.4224 [6, 6] (9, 9) 3.2713 [7, 7] (12, 13) 3.2401

2 0.05 [9, 4] (1, 1) 6.8564 [12, 2] (10, 10) 6.1678 [12, 2] (11, 13) 5.7829
0.075 [7, 2] (1, 1) 4.5630 [9, 5] (11, 12) 4.2624 [10, 4] (13, 14) 4.0810
0.10 [5, 3] (1, 1) 3.4224 [8, 6] (12, 13) 3.2635 [9, 5] (13, 14) 3.1579

0.5 1 0.05 [13, 1] (1, 1) 10.1838 [14, 0] (5, 7) 9.0983 [14, 0] (8, 10) 8.6314
0.075 [9, 4] (1, 1) 6.9852 [12, 2] (10, 13) 6.5812 [12, 2] (13, 14) 6.3296
0.10 [7, 4] (1, 1) 5.2438 [10, 4] (13, 14) 5.0609 [10, 4] (13, 14) 4.9010

2 0.05 [13, 1] (1, 1) 10.1838 [14, 0] (7, 11) 8.5985 [13, 1] (12, 14) 7.9388
0.075 [9, 4] (1, 1) 6.9852 [12, 2] (13, 14) 6.3152 [12, 2] (13, 14) 5.9028
0.10 [7, 4] (1, 1) 5.2438 [10, 4] (13, 14) 4.9054 [10, 4] (13, 14) 4.6350

r = (0.10, 0.05)

1 1 0.05 [9, 3] (1, 1) 6.8209 [9, 5] (7, 7) 6.3457 [10, 4] (9, 9) 6.1118
0.075 [6, 3] (1, 1) 4.5221 [6, 6] (7, 7) 4.2330 [7, 6] (9, 10) 4.1480
0.10 [5, 2] (1, 1) 3.3846 [5, 5] (6, 6) 3.1620 [6, 5] (9, 9) 3.1047

2 0.05 [9, 3] (1, 1) 6.8209 [10, 4] (9, 9) 6.1043 [11, 3] (11, 12) 5.7471
0.075 [6, 3] (1, 1) 4.5221 [7, 6] (9, 10) 4.1440 [8, 6] (12, 13) 3.9933
0.10 [5, 2] (1, 1) 3.3846 [6, 5] (8, 9) 3.1012 [7, 4] (10, 11) 2.9589

0.5 1 0.05 [13, 1] (1, 1) 10.1838 [13, 1] (5, 7) 9.0686 [13, 1] (7, 10) 8.6039
0.075 [9, 3] (1, 1) 6.9509 [10, 4] (9, 10) 6.5099 [11, 3] (12, 14) 6.2959
0.10 [7, 3] (1, 1) 5.2185 [8, 5] (9, 11) 4.9492 [9, 5] (13, 14) 4.8775

2 0.05 [13, 1] (1, 1) 10.1838 [13, 1] (7, 10) 8.5707 [13, 1] (12, 14) 7.9388
0.075 [9, 3] (1, 1) 6.9509 [11, 3] (12, 14) 6.2804 [11, 3] (13, 14) 5.8745
0.10 [7, 3] (1, 1) 5.2185 [9, 5] (13, 14) 4.8714 [9, 5] (13, 14) 4.5977

r = (0.25, 0.125)

1 1 0.05 [8, 3] (1, 1) 6.6525 [8, 4] (5, 5) 6.0695 [8, 5] (7, 7) 5.8679
0.075 [6, 2] (1, 1) 4.4527 [5, 4] (4, 4) 3.8974 [5, 4] (5, 5) 3.6552
0.10 [4, 2] (1, 1) 3.1785 [4, 2] (1, 3) 2.7359 [4, 2] (4, 4) 2.5211

2 0.05 [8, 3] (1, 1) 6.6525 [8, 5] (7, 7) 5.8587 [8, 5] (9, 9) 5.4209
0.075 [6, 2] (1, 1) 4.4527 [5, 3] (1, 5) 3.5254 [5, 4] (6, 7) 3.3174
0.10 [4, 2] (1, 1) 3.1785 [4, 2] (1, 4) 2.5387 [4, 2] (5, 6) 2.2780

0.5 1 0.05 [12, 2] (1, 1) 10.1016 [11, 3] (4, 6) 8.8776 [11, 3] (6, 8) 8.4141
0.075 [8, 3] (1, 1) 6.7758 [8, 4] (6, 6) 6.1325 [8, 5] (8, 9) 5.9258
0.10 [6, 2] (1, 1) 4.9274 [6, 3] (4, 5) 4.4154 [7, 3] (7, 10) 4.3951

2 0.05 [12, 2] (1, 1) 10.1016 [11, 3] (5, 9) 8.3872 [11, 3] (10, 14) 7.7659
0.075 [8, 3] (1, 1) 6.7758 [8, 5] (7, 9) 5.9073 [9, 4] (12, 13) 5.5994
0.10 [6, 2] (1, 1) 4.9274 [6, 4] (5, 8) 4.2553 [7, 3] (9, 10) 4.0371
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Figure 8: Plots of class-1 sojourn time densities for (a, a) threshold policies, a = 1, 2, . . . , 10,
with exponentially distributed service times, MB = MS = 1, p>0 = 0, 1, C = 8, f = 2, and
α = 0.05.

and have lighter tails. Letting p>0 = 0, sojourn times for a class-1 machine will be shortened
on average due to not having to potentially wait for the server to switch depending on the
state of the system at the failure epoch, as well as having fewer class-1 machines queued
ahead of it caused by the system’s higher rate at which machines are repaired, λ

[C,f ]
r , as a

consequence of the server never being idle when there are still broken machines to repair (as
observed in Table 2 for a range of policies).

Of these plots, the (4, 4) threshold policy stands out as having a particularly interesting
density, exhibiting a bimodal structure in the p>0 = 1 case as it has two local maxima. A
sojourn time of a machine will depend greatly on the initial state of the system immediately
after its failure epoch, particularly on the location of the server, so we decompose the density
fS1(t) into components fS1,LI

(t) where LI ∈ {1, 2, 3, 4} are the possible server locations after
observing the failure. We achieve this decomposition by considering each case separately,
modifying Equation (14) (and hence Φ1) by setting any element pm,n,l,y,y1,y2 of the probability
vector with l 6= LI equal to zero. If we re-normalized the modified Φ1’s, then this would
alternatively result in the conditional distributions of a class-1 sojourn time given different
initial server locations.

Due to the nature of our considered preemptive resume threshold policies, sojourn times
when LI = 3 (class-2 switch-in) or LI = 4 (class-2 service) will be comparable in the majority
of cases due to a class-2 switch-in time being small relative to a service time and the threshold
being commonly triggered prior to the next class-2 service completion. Thus, we keep these
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Figure 9: Plots of class-1 sojourn time densities and their component densities fS1,LI
for (a, a)

threshold policies, a = 3, 4, 5, with exponentially distributed service times, MB = MS = 1,
p>0 = 1, C = 8, f = 2, and α = 0.05.

two cases grouped together, leaving us with LI = 1, LI = 2, and LI ∈ {3, 4}, so that

fS1(t) = fS1,1(t) + fS1,2(t) + fS1,{3,4}(t).

In Figure 9, we plot the densities and their three components for a = 3, 4, 5. We observe
that the components fS1,2(t) are very comparable, whereas fS1,{3,4}(t) has its density allocated
to larger sojourn times as a increases, representing the requirement of more total class-1
machine failures to trigger the higher thresholds (which also increases the probability of
needing to wait for one or more class-2 repairs to complete prior to receiving service). Note
that fS1,{3,4}(t) appears to be solely responsible for the remaining tails of these distributions,
as the machine will almost surely be repaired within 15 time units if the server is either
already serving class 1 or is switching to class 1 after the target machine fails.

It is in fS1,1(t) that we observe great variability between the adjacent thresholds, including
the bimodal structure observed in the (4, 4) threshold policy. We note that this second local
maxima is near 5 time units. If the target machine triggered the threshold, then it would
take on average 2 time units for the class-1 switch-in time and 4 time units to repair the
target machine and the three machines queued ahead of it, for a total of 6 time units. In fact,
plotting the density of the sojourn time in this specific case (which we omit here) results in
a right-skewed density possessing a single maxima just after t = 5. We therefore suspect a
large portion of initial states to be of this type, causing the observed second maxima.

Letting pm,•,1,•,•,• =
∑

n,y,y1,y2
pm,n,1,y,y1,y2 denote the marginal probability of the server

conducting a class-1 switch-in immediately after a class-1 machine failure fills the mth slot
in queue 1, we compare these probabilities for m = 1, 2, . . . , 8 and a = 3, 4, 5 in Table 6.
It would seem that in the LI = 1 cases, there is indeed a large jump in initial probability
for cases where the target machine is indeed the threshold trigger. The other most likely
cases denote a failure to an empty system (i.e., m = 1) which is more likely the higher the
threshold (as it lets the class 2 queue empty faster) and at m = a+ 1 indicating cases where
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the target machine failed during a switch-in time in progress which was triggered by the
preceding class-1 machine failure. Other choices of m have much less probability as they
require there to be multiple failures during the short switch-in time.

Table 6: Marginal LI = 1 class-1 sojourn time distribution initial probabilities, pm,•,1,•,•,•, for
the (a, a) threshold service policy with a = 3, 4, 5, exponentially distributed service times,
MB = MS = 1, p>0 = 1, C = 8, f = 2, and α = 0.05.

m
(a, b) 1 2 3 4 5 6 7 8

(3, 3) 0.0395 0.0127 0.2181 0.0597 0.0106 0.0014 0.0001 < 0.0001
(4, 4) 0.0688 0.0213 0.0074 0.1512 0.0376 0.0058 0.0006 < 0.0001
(5, 5) 0.0992 0.0300 0.0095 0.0049 0.1076 0.0228 0.0028 0.0002

We therefore conclude that the jumps in pm,•,1,•,•,• near m = 1 and m = a are respon-
sible for the shapes of density components fS1,1(t) (as they of course represent mixtures of
distributions), namely the bimodal structure of the (4, 4) threshold policy as well as the flat
region in the (5, 5) threshold policy. For the (3, 3) threshold policy, p3,•,1,•,•,• is much larger
than p1,•,1,•,•,•, which hides this obvious mixture appearance.

5.3 Smart Bernoulli Optimization

Among other service policies, we considered (1, 0.2) and (1, 0.8) smart Bernoulli in Table 2
and Figures 4 and 5. It was evident that due to (1, 0.2) smart Bernoulli’s higher preference

for serving class-1 machines (causing additional switch-ins), it both converged to E[N
[∞]
W ] at

fewer total machines when switch-in times were identically zero in duration, and to a lower
limit when switch-in time durations had positive expected values, in comparison to (1, 0.8)

smart Bernoulli. In Table 2, (1, 0.2) had a larger E[N
[C,f ]
W ] in every considered case except

when p>0 = 1 and [C, f ] = [14, 0]. In this subsection, we will investigate some new examples
to observe the impact of switch-ins and the number of machines on the optimal selection of
smart Bernoulli probabilities that maximizes E[N

[C,f ]
W ].

First of all, we justify the choice of pSB1 = 1. The cµ rule (Meilijson and Yechiali 1977,
Van Mieghem 1995) states that in a priority queue, if class-i customers have a holding cost
of ci per time unit and an expected service time of 1/µi, then the classes should be served
in decreasing order of ciµi, independent of arrival rate. For finite-population systems, this is
not necessarily true, as the presence of a broken machine waiting to be serviced reduces the
number of machines that can fail of that type (i.e., despite a potentially fast service time, if
each class of machines comes from its own independent population and the time to failure for
class-i machines is small, then it may not be optimal to give them higher service priority).
A modified cµλ rule (Iravani and Kolfal 2005) was investigated for a fully exponential model
of this type (an example of the machine-repairman problem). Based on certain assumptions
and conditions, it was concluded that priority may be given to class j with positive queue
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length if
cjµj
λj
≥ ckµk

λk
∀ k 6= j, such that there is at least one class-k machine waiting to be

repaired.
In our model, since both classes of failure come from the same pool of machines, we

can effectively ignore the fact that we are using a finite-population system since no matter
which machine type is repaired, the time until it fails again has an identical distribution.
Thus, we can consider the standard cµ rule. For our model under the case of zero duration
switch-in times, we would assign priority to the class with the highest value of ciµi, and
as such always prefer to serve it over the other class. In our investigation, we simply want
to maximize the expected number of working machines, so we would select equal holding
costs (e.g., c1 = c2 = 1), as a broken machine of either type equally lowers the expected
number of working machines. Therefore, by the cµ rule, the class with the highest µi (i.e.,
shortest expected service time) should have priority, corresponding to class 1 in our numerical
examples.

Now, if in this zero switch-in case we would never want to switch away from class 1 (to
go serve class 2), then in the cases with positive switch-in times, it follows that it would still
never be optimal to switch away from class 1 since not only would the mechanic switch to
serving the less efficient-to-serve class, they must incur a period of idleness during the switch-
in which reduces their average rate of repair. Thus, similar to the arguments of Blanc and
van der Mei (1995), we can conclude that in the smart Bernoulli framework, class 1 (having
the smallest average repair times) should receive a probability of pSB1 = 1 to continue repairs
(and hence, not switching) after each service completion, should its queue not be empty.

It is not as clear for the lower priority class 2. If there were no switch-in times, then it
would be optimal to switch after every service completion and have a probability of starting
another service of pSB2 = 0. However, as each positive duration switch-in time incurs idleness,
in reality there may be an optimal pSB2 that is positive. This probability is what we must find
to optimize the use of smart Bernoulli in our model. To do this, we find the approximate p̂SB2
that maximizes E[NW ] using the algorithm outlined in the Appendix. For all approximated
optimal p̂SB2 in this subsection, we set precision = 4 (i.e., we approximate to four decimal
places).

We now investigate the impacts of reducing pSB1 from 1 (considering pSB1 ∈ {0.9, 0.95, 1})
and varying the expected switch-in time durations in Figure 10, where we plot the optimal
pSB2 against p>0 (with MS = 1) or MS (with p>0 = 1), so that the mean switch-in time
durations are equal and hence comparable. The corresponding values of E[NW ] calculated
using the optimal values of pSB2 for the α = 0.10 cases are plotted in Figure 11. We setMB = 1
and allow both class’ service time distributions to be exponential, H2, or E3, to observe the
effect of service variance, while letting α ∈ {0.075, 0.10}, C = 8, and f = 2. Additionally,
we approximate the impact of heavy-tailed service time distributions by applying the EM
algorithm (Asmussen et al. 1996) to fit log-normal (LN) distributions to continuous phase-
type distributions of order 5. A summary of the service time distributions’ expectations
and variances are provided in Table 7. Log-normal parameters were selected to match mean
repair time values, while being slightly less variable than the H2 distributions. While the
approximations of these LN distributions provide very close fits for the expected values, the
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difficulty of accurately fitting heavy tails is evident by their smaller variances.

Table 7: Expected values and variances for service time distributions Exp, H2, and E3, along
with the LN distributions of interest and their EM algorithm fits using continuous phase-type
distributions of order 5.

Class 1 Class 2
Service Expectation Variance Expectation Variance

H2 1 5.5 20 2200
Exp 1 1 20 400
E3 1 1/3 20 400/3
LN 1 4 20 2000
LN (fit) 0.99998 3.80365 19.97997 1227.85435

In Figure 10, we can see that for very small switch-in times it is optimal to maintain
pSB2 = 0 and act as a class-1 non-preemptive priority policy (or similar to one if pSB1 < 1),
but by increasing the mean switch-in times we make additional switches (relative to the
exhaustive service policy) more costly and it becomes optimal for pSB2 to become positive,
eventually reaching pSB2 = 1 in order to minimize the number of switch-ins (note that in the
pSB1 = 1 and α = 0.075 case, if we continue to increase MS beyond 1, then these curves will
also hit pSB2 = 1).

By decreasing pSB1 , it becomes possible to switch away from class 1 before its queue
empties and it is not hard to see that this will have the effect of increasing the fraction of
time that the mechanic is idle. This has the effect of increasing the slopes of the curves
in Figure 10, indicating that the behavior dictating how the mechanic treats class 2 is
more sensitive to the expected switch-in time durations and will opt to treat class 2 in an
exhaustive manner sooner, even if they are not allowed to do the same for class 1, in order
to compensate for the additional class-2 switch-ins out of class 1.

By decreasing α, there are fewer failures resulting in shorter queue lengths and less
opportunities for the smart Bernoulli policy to cause the server to leave before emptying
a queue. Therefore, increasing pSB2 has a smaller impact on reducing the number of extra
switch-ins and the mean switch-in durations need to be larger before it becomes optimal to
use a positive pSB2 .

Comparing the four sets of service time distributions, they transition from pSB2 = 0 to
pSB2 = 1 at comparable rates, but the more variable distributions require more incentive in
the form of higher costs from switch-in times to increase pSB2 from 0. This follows since
the more class-2 services that are completed before returning to the class-1 queue, the more
opportunities there are for the server to be stuck in a particularly long service time (e.g.,
the 10% case in the class-2 H2 distribution having mean 110) which will have a large effect
on the sojourn times of class-1 machines that are waiting to be serviced. As service variance
is reduced, there is less uncertainty accepted from additional class-2 service times and the
mechanic is willing to begin increasing pSB2 at smaller mean switch-in times. We observe
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Figure 10: Plots of optimal class-2 smart Bernoulli probability pSB2 against p>0 (with MS = 1)
or MS (with p>0 = 1) for α = 0.075, 0.1 and pSB1 = 0.9, 0.95, 1.

that the H2 and LN service time distributions result in very close optimal values of pSB2 . As
H2 is more variable, this would indicate that optimality must be less sensitive to changes in
variance when it is already large.

In Figure 11, we confirm that reducing pSB1 lowers the maximum E[NW ] possible at the
corresponding optimal pSB2 probabilities. The differences between the plots may not be large,
but note that these are not for fixed pSB2 , but rather the optimal pSB2 ’s at each p>0 or MS

given the different values of pSB1 . Additionally, we observe that increasing service variance
has a negative effect on the mean number of working machines (e.g., H2 has lower values
than LN, despite similar optimal pSB2 probabilities), but the relationship between E[NW ] and
switch-in times is primarily dependent on the first moments. Interestingly, these relationships
are approximately linear between E[NW ] and the mean switch-in times in ranges where the
optimal pSB2 are unchanged, either at 0 or 1.
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Figure 11: Plots of E[NW ] at optimal class-2 smart Bernoulli probabilities against p>0 (with
MS = 1) or MS (with p>0 = 1) for α = 0.10 and pSB1 = 0.9, 0.95, 1.

In Figure 12, we plot optimal pSB2 against C = 3, 4, . . . , 25 for f = 0, 2, 4, pSB1 = 1,
MB = MS = 1, p>0 = 0.5, and α ∈ {0.05, 0.075, 0.10}. We observe that increasing C results
in more failures, longer queue lengths, and more opportunities for a smart Bernoulli policy
to cause a switch from a queue before it is emptied. Therefore, as C becomes large, with the
exception of the fitted LN distributions, the server eventually increases pSB2 until class 2 is
treated in an exhaustive manner. Increasing f has a similar effect, and as the total number
of machines are greater for a given C, the mechanic begins the transition from class-1 non-
preemptive priority to an exhaustive policy at fewer C, acting largely as a horizontal shift
with minimal effect on the rate of increase in pSB2 . By increasing α, the sensitivity of the
optimal pSB2 on C is heightened as every increment of C has a larger impact on the average
failure rate, causing pSB2 to transition from 0 to 1 at fewer total machines and at a faster
rate. Finally, in comparing the Exp, H2, and E3 service time distributions, we observe results
consistent with those from Figure 10, in that it becomes optimal to increase pSB2 earlier (i.e.,
for smaller C) for service time distributions having smaller variances.

While the fitted LN distributions acted very similarly to the H2 distributions in Figure
10, they display a unique behavior in Figure 12. In Figure 12, rather than converging to
an exhaustive discipline as C increases, the optimal pSB2 peaks before decreasing to some
positive limit. This peak seems highest for the cases with f = 0, falling just short of 1 in
Figure 12 (d). In part (f), all three plots hit pSB2 = 1 before moving away from the exhaustive
policy at 20 total machines. As this behavior is not shared with the other pair of highly
variable service time distributions, this seems to suggest that it must be due to the more
general structure of the fitted continuous phase-type distributions. As these are intended
to behave similarly to heavy-tailed distributions, it would be of great interest to revisit this
problem using a like model within a semi-Markov framework. This would allow the usage of
general distributions for service and switch-in times, and hence, enable us to investigate the
true impact of heavy-tailed distributions.
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Figure 12: Plots of optimal class-2 smart Bernoulli probability pSB2 against C for f = 0, 2, 4,
α = 0.05, 0.075, 0.10, p>0 = 0.5, pSB1 = 1, and MB = MS = 1.

6 Concluding Remarks

We have investigated a closed maintenance system having a capacity of C machines and an
optional maintenance float of f spare machines. Working machines can suffer one of multiple
types of failures which are assigned to one of two classes, whose queues are visited by a single
mechanic according to a dynamic behavior which can replicate several classic service policies,
as well as the proposed (a, b) threshold and (pSB1 , pSB2 ) smart Bernoulli policies. The system
was modelled as a level-dependent QBD process and matrix analytic methods were applied
to obtain the steady-state probabilities as well as to derive the phase-type distribution of a
broken machine’s sojourn time. Limit results as well as connections to mean sojourn times
were presented for the expected number of working machines, and three numerical examples
were conducted.
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In our future work, we anticipate extending the number of classes to three or more. For
instance, in the 3-class system, allowing a class to hold medium jobs which were previously
grouped with small or large jobs may lead to further gains in system optimization, depending
on the presence and size of switch-in times. If we maintain the current assumption of phase-
type distributed service and switch-in times, our server decision process lends itself to the
framework of a Markov decision process. It is of interest to use MDPs to obtain the globally
optimal policy and to see if it can noticeably outperform the optimized (a, b) threshold
policies. Additionally, an alternative way in which we envision extending this work is to
relax these phase-type distributional assumptions to general ones and to analyze the model
as a semi-Markov process.
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Appendix

Proof of Theorem 1

We begin by remarking that the infinitesimal generator subblocks Q
[C,f ]
0,1,0 and (UD)

[C,f ]
0,0 are

both comprised of 1+s0 identical rows equal to Cα1γ
[+0]
01
⊗β

1
and Cα2γ

[+0]
02
⊗β

2
, respectively.

This implies that given a machine failure has occurred, the CTMC transitions away from any
of the empty queue states {(0, 0, 0, 0, 0, 0)}∪ {(0, 0, 5, y, 0, 0), y = 1, 2, . . . , s0} in an identical
fashion. This observation immediately follows from our assumption that interrupting and
switching away from a class-i switch-in is treated the same as the server switching away from
class i itself.

We now consider the differences between a system containing k machines where [C, f ] =
[k, 0] or [C, f ] = [k − 1, 1]. The two systems will act identically, in terms of infinitesimal
generator construction, with the exception of the rows for states where all k machines are
functional (the first system puts the kth machine to use, while the second stores it in the
maintenance float). In either case, the total time spent visiting any combination of the empty
queue states between the previous service completion and the next observed failure will have
an exponential distribution with rate Cα (i.e., Exp(Cα)). Hence, we may adjust the CTMCs
and consolidate the empty queue states into a single state (0, 0) with steady-state probability

π
[C,f ]
0,0 = π

[C,f ]
0,0 e′1+s0 , such that we do not track the potential phase-type class-0 switch-in time

and the sojourn time in this state is simply the time until the next machine failure. Note that
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this consolidation will not affect the other steady-state probabilities due to the identical rows
of Q

[C,f ]
0,1,0 and (UD)

[C,f ]
0,0 which each are now just present once, corresponding to transitions

out of state (0, 0). Thus, we have at steady state

E[N
[C,f ]
W ] = E[min{C,C + f −X [C,f ]

1 −X [C,f ]
2 }]

=
∑

m,n,l,y,y1,y2

min{C,C + f −m− n}π[C,f ]
m,n,l,y,y1,y2

= C

(
π
[C,f ]
0,0,0,0,0,0 +

s0∑
y=1

π
[C,f ]
0,0,5,y,0,0

)
+
∑

m+n6=0

∑
l,y,y1,y2

min{C,C + f −m− n}π[C,f ]
m,n,l,y,y1,y2

= Cπ
[C,f ]
0,0 +

∑
m+n6=0

∑
l,y,y1,y2

min{C,C + f −m− n}π[C,f ]
m,n,l,y,y1,y2

. (36)

That is, the expected number of working machines will be the same in the original CTMCs
and the corresponding adjusted CTMCs with the consolidated empty queue state.

Let ψ
[C,f ]
0,0 and ψ

[C,f ]
m,n,l,y,y1,y2

denote the steady-state probabilities of the embedded discrete-
time Markov chain, or DTMC (e.g., Syski 1992, p. 14), describing an adjusted CTMC with
a given [C, f ]. As the generators for [k, 0] and [k− 1, 1] are now identical outside of the first
rows for state (0, 0), which for [k, 0] is[ −kα kα2γ

[+0]
02
⊗ β

2
0 · · · 0 kα1γ

[+0]
01
⊗ β

1
0 · · · 0

]
and for [k − 1, 1] is[ −(k − 1)α (k − 1)α2γ

[+0]
02
⊗ β

2
0 · · · 0 (k − 1)α1γ

[+0]
01
⊗ β

1
0 · · · 0

]
,

it is clear that while the steady-state probabilities for the CTMCs differ, it holds that ψ
[k,0]
0,0 =

ψ
[k−1,1]
0,0 and ψ

[k,0]
m,n,l,y,y1,y2

= ψ
[k−1,1]
m,n,l,y,y1,y2

.
It is known from the theory of semi-Markov processes (e.g., Ross 2014, p. 445) that if

the long-run proportion of transitions by a semi-Markov process into state i is πi (i.e., the
steady-state probability of the embedded DTMC being in state i) and the amount of time
spent in state i before transitioning away has mean µi, then the long-run proportion of time
that the semi-Markov process is in state i is

πiµi∑N
j=1 πjµj

, (37)

where N is the total number of states. Since we are considering CTMCs, the time spent in
a state is exponentially distributed with a mean equal to the negative inverse of that state’s
corresponding main diagonal element from the infinitesimal generator. Let µ

[k,0]
m,n,l,y,y1,y2

=

µ
[k−1,1]
m,n,l,y,y1,y2

denote the mean time spent in a visit to state (m,n, l, y, y1, y2), and µ
[k,0]
0,0 = 1

kα
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and µ
[k−1,1]
0,0 = 1

(k−1)α be the mean times spent in visits to the empty queue state in either
adjusted CTMC. We then have

π
[C,f ]
m,n,l,y,y1,y2

=
ψ

[C,f ]
m,n,l,y,y1,y2

µ
[C,f ]
m,n,l,y,y1,y2

ψ
[C,f ]
0,0 µ

[C,f ]
0,0 +

∑
x1+x2 6=0

∑
w,z,z1,z2

ψ
[C,f ]
x1,x2,w,z,z1,z2µ

[C,f ]
x1,x2,w,z,z1,z2

and

π
[C,f ]
0,0 =

ψ
[C,f ]
0,0 µ

[C,f ]
0,0

ψ
[C,f ]
0,0 µ

[C,f ]
0,0 +

∑
x1+x2 6=0

∑
w,z,z1,z2

ψ
[C,f ]
x1,x2,w,z,z1,z2µ

[C,f ]
x1,x2,w,z,z1,z2

.

Let
D[C,f ] =

∑
x1+x2 6=0

∑
w,z,z1,z2

ψ[C,f ]
x1,x2,w,z,z1,z2

µ[C,f ]
x1,x2,w,z,z1,z2

,

which we know satisfies D[k,0] = D[k−1,1]. It now follows that

π
[k,0]
m,n,l,y,y1,y2

=
ψ

[k,0]
m,n,l,y,y1,y2

µ
[k,0]
m,n,l,y,y1,y2

ψ
[k,0]
0,0 µ

[k,0]
0,0 +D[k,0]

=
ψ

[k−1,1]
m,n,l,y,y1,y2

µ
[k−1,1]
m,n,l,y,y1,y2

ψ
[k−1,1]
0,0 µ

[k−1,1]
0,0 +D[k−1,1]

× ψ
[k−1,1]
0,0 µ

[k−1,1]
0,0 +D[k−1,1]

ψ
[k,0]
0,0 µ

[k,0]
0,0 +D[k,0]

= π
[k−1,1]
m,n,l,y,y1,y2

ck, (38)

where

ck =
ψ

[k−1,0]
0,0 µ

[k−1,1]
0,0 +D[k−1,1]

ψ
[k,0]
0,0 µ

[k,0]
0,0 +D[k,0]

=

1
(k−1)αψ

[k,0]
0,0 +D[k,0]

1
kα
ψ

[k,0]
0,0 +D[k,0]

> 1. (39)

Similarly,

π
[k,0]
0,0 =

ψ
[k,0]
0,0 µ

[k,0]
0,0

ψ
[k,0]
0,0 µ

[k,0]
0,0 +D[k,0]

=
ψ

[k−1,1]
0,0 µ

[k−1,1]
0,0

(
k−1
k

)
ψ

[k−1,1]
0,0 µ

[k−1,1]
0,0 +D[k−1,1]

× ψ
[k−1,1]
0,0 µ

[k−1,1]
0,0 +D[k−1,1]

ψ
[k,0]
0,0 µ

[k,0]
0,0 +D[k,0]

= π
[k−1,1]
0,0

(
k − 1

k

)
ck. (40)

Note that we can find an upper bound on ck. As the steady-state probabilities for both cases
must respectively sum to 1, using Equations (38) and (40), it must simultaneously hold that

1 = π
[k,0]
0,0 +

∑
x1+x2 6=0

∑
w,z,z1,z2

π[C,f ]
x1,x2,w,z,z1,z2

= π
[k−1,1]
0,0

(
k − 1

k

)
ck + ck

∑
x1+x2 6=0

∑
w,z,z1,z2

π
[k−1,1]
m,n,l,y,y1,y2
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and
1 = π

[k−1,1]
0,0 +

∑
x1+x2 6=0

∑
w,z,z1,z2

π
[k−1,1]
m,n,l,y,y1,y2

.

Clearly, as every probability is non-negative, by Equation (39),

ck
∑

x1+x2 6=0

∑
w,z,z1,z2

π
[k−1,1]
m,n,l,y,y1,y2

>
∑

x1+x2 6=0

∑
w,z,z1,z2

π
[k−1,1]
m,n,l,y,y1,y2

implying that we must have

π
[k−1,1]
0,0

(
k − 1

k

)
ck < π

[k−1,1]
0,0 ,

or equivalently,

1 < ck <
k

k − 1
.

Finally, using Equations (36) - (40),

E[N
[k,0]
W ]

= kπ
[k,0]
0,0 +

∑
m+n6=0

∑
l,y,y1,y2

min{k, k + 0−m− n}π[k,0]
m,n,l,y,y1,y2

= kπ
[k,0]
0,0 +

∑
m+n 6=0

∑
l,y,y1,y2

(k −m− n)π
[k,0]
m,n,l,y,y1,y2

= kπ
[k−1,1]
0,0

(
k − 1

k

)
ck +

∑
m+n6=0

∑
l,y,y1,y2

(k −m− n)π
[k−1,1]
m,n,l,y,y1,y2

ck

= ck

(
(k − 1)π

[k−1,1]
0,0 +

∑
m+n6=0

∑
l,y,y1,y2

min{k−1, k−1+1−m−n}π[k−1,1]
m,n,l,y,y1,y2

)
= ckE[N

[k−1,1]
W ]

> E[N
[k−1,1]
W ].

�

Proof of Theorem 2

In order to consider the limit of the expected number of working machines, we need to
first find an expression for E[N

[C,f ]
W ]. Similar to Abboud (1996), we consider the number of

working machines as a subsystem and apply the result of Little (1961). Recall that Little’s
Law states that the expected number of “customers” in a system (E[L]) is equal to the
product of their average arrival rate (λ) and the expected amount of time that a customer
spends in the system (E[W ]).
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As we are treating the number of working machines as the subsystem, not the number
of functional machines, it is clear that W is simply the time until a working machine fails.
Thus, we have W ∼ Exp(α), and so

E[W ] =
1

α
, (41)

which is independent of C, f , and the service policy. Next, we require the limiting aggregate
rate that machines fail and are repaired, which we define as λ

[C,f ]
r , which is the effective

average “arrival rate” of repaired machines satisfying

E[N
[C,f ]
W ] = λ[C,f ]r E[W ] =

λ
[C,f ]
r

α
. (42)

We cite a result from the theory of renewal reward processes (e.g., Ross 2014, p. 427),
describing a system which earns a reward Rn after the nth renewal of a renewal process
{N(t), t ≥ 0} with interarrival times Xn, n ∈ Z+, where the Rn’s are iid, but may depend
on Xn. The total amount of rewards that have accumulated by time t ≥ 0 is

R(t) =

N(t)∑
n=1

Rn,

and it is known that the long run rate at which rewards are earned is

lim
t→∞

R(t)

t
=

E[R]

E[X]
. (43)

We now define a renewal process based on our adjusted model from the proof of Theorem
1 with [C, f ] machines, such that a renewal occurs whenever the adjusted CTMC enters the
empty queue state (0, 0) (i.e., at time instants immediately after a repair which leaves all
machines functional). At the end of each renewal, we receive a reward of 1 unit per observed
service completion during that cycle. Applying Equation (43) to this renewal process will
result in the aggregate rate at which machines are repaired. That is, if we let E[BP [C,f ]]
denote the mean duration of a busy period (i.e., the time between a failure to an empty
system and when the system is empty again), then

λ[C,f ]r =
E[Number of repairs in BP [C,f ]]

E[Time until first failure at full capacity] + E[BP [C,f ]]
. (44)

Let BP [C,f ]
ser and BP

[C,f ]
swi denote the time spent serving or switching during a busy period,

respectively, such that BP [C,f ] = BP [C,f ]
ser +BP

[C,f ]
swi . Note that regardless of order caused by a

particular service policy, every machine that fails during (or initiating) the busy period must
eventually be served. Since we assume that any preempted services are resumed when the
server returns, no work is lost due to switch-ins. Therefore, if for example a class-2 repair
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time has the potential to be interrupted until some number of class-1 repairs are completed,
the total expected time to repair that class-2 machine is still −β

2
B−12 e′b2 . Thus, if we let

NBP be the number of repairs in BP [C,f ], then BP [C,f ]
ser can be represented as the sum of all

total service times observed during the busy period

BP [C,f ]
ser =

NBP∑
n=1

Zm
n ,

where Zm
n , n = 1, 2, . . ., are iid random service times which are mixtures of PH(β

i
, Bi)

distributions, i = 1, 2, with weights α1/α and α2/α, having mean

E[Zm] = −
(α1

α

)
β
1
B−11 e′b1 −

(α2

α

)
β
2
B−12 e′b2 .

Therefore, it follows that

E[BP [C,f ]
ser ] = E[Number of repairs in BP [C,f ]]E[Zm],

and Equation (44) becomes

λ[C,f ]r =
E[BP [C,f ]

ser ]/E[Zm]
1
Cα

+ E[BP [C,f ]
ser ] + E[BP

[C,f ]
swi ]

. (45)

It should be noted that the distributions of NBP , BP [C,f ]
ser , and BP

[C,f ]
swi (and hence BP [C,f ])

depend not only on C and f , but also on the switch-in decision probabilities. For example,
a class-1 preemptive resume priority discipline will always choose to clear out the small jobs
as they arrive, which will result in those machines being able to fail again sooner than if the
class-2 queue had to be emptied first, hence making it more likely that the server will need
to repair more total machines during that busy period in comparison to other policies. We
note however that the sole act of serving more machines during a busy period, and hence
between renewals, does not necessarily mean that its resulting λ

[C,f ]
f will be smaller or larger,

as it very much also depends on whether these extra switches (relative to other disciplines)
cause idle periods due to non-zero switch-in times.

We now consider the first of three cases, where γ
[0]
ji = 1 ∀ i, j ∈ {0, 1, 2}, i 6= j. Clearly,

this implies that E[BP
[C,f ]
swi ] = 0, and Equation (45) simplifies to

λ[C,f ]r =
E[BP [C,f ]

ser ]/E[Zm]
1
Cα

+ E[BP [C,f ]
ser ]

. (46)

Since E[BP [C,f ]
ser ] ≥ E[Zm] > 0 ∀ C = 1, 2, . . . and E[BP [C,f ]

ser ] is an increasing function in C
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(as we will discuss shortly), by taking the limit of Equation (46), we observe that

λ[∞]
r = lim

C→∞
λ[C,f ]r

= lim
C→∞

E[BP [C,f ]
ser ]/E[Zm]

1
Cα

+ E[BP [C,f ]
ser ]

= lim
C→∞

 1
1

CαE[BP
[C,f ]
ser ]

+ 1

 1

E[Zm]

=
−α

α1β1
B−11 e′b1 + α2β2

B−12 e′b2
. (47)

Therefore, Equation (17) follows immediately from Little’s Law and Equations (41) and (47).
Next, suppose that only switches out of or into class 0 can have positive durations. It

then follows that E[BP
[C,f ]
swi ] is a constant with respect to C, and so it still holds that

λ[∞]
r = lim

C→∞

 1

(Cα)−1+E[BP
[C,f ]
swi ]

E[BP
[C,f ]
ser ]

+ 1

 1

E[Zm]
=

−α
α1β1

B−11 e′b1 + α2β2
B−12 e′b2

,

resulting in the statement of Equation (17).
Finally, we consider the cases where positive switch-in times are observable in at least

one direction between the class-1 and class-2 queues (i.e., γ
[0]
12 and/or γ

[0]
21 are less than 1).

We now make the seemingly obvious claim that both E[BP [C,f ]
ser ] and E[BP

[C,f ]
swi ] are increasing

functions in C. This is intuitive, as increasing C increases the probability flow, and hence
the transition probabilities, for a given state to states within the CTMC corresponding to
longer queue lengths. Also, increasing C increases the maximum total queue lengths that if
visited, represent more potential total work that must be completed before the end of the
busy period than a corresponding “full queue” state (i.e., X1+X2 = C+f) in a maintenance
system with a smaller C. Thus, the expected number of machine failures within a renewal
period must increase with C, implying that E[BP [C,f ]

ser ] is an increasing function in C.
If machine failures are more frequent, then it also follows that the probability of observing

no arrivals to the opposite queue while emptying their current queue goes to zero as C →∞.
To see this, consider the system at the start of a class-i service while Xi = 1 and Xj = 0,
j 6= i. If we assume that f ≥ 1 and let WC ∼ Exp(Cα) and Zi ∼ PH(β

i
, Bi) be independent

random variables, then the probability of having no failures during this class-i service is
P (WC > Zi), where

P (WC > Zi) =

∫ ∞
0

e−Cαzβ
i
exp{Biz}e′bidz = E[e−CαZi ] = Z̃i(Cα)

is the Laplace transform of Zi at Cα. If instead we had f = 0, then C would be replaced
by C − 1 in the above equation. Applying the dominated convergence theorem, it is easy to
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confirm that
lim
C→∞

P (WC > Zi) = lim
C→∞

Z̃i(Cα) = 0,

Thus, as we increase C, it becomes more likely that there is a combination of class-1 and/or
class-2 arrivals by the end of the service. If at least one failure was from class j, j 6= i,
then the server will have to undergo a class-j switch-in after eventually emptying the class-i
queue. If every failure was class i, then the server will have at least one more independent and
probabilistically identical opportunity to observe class-j failures before either switching to
class j or to class 0 (and ending the busy period). Thus, the expected number of transitions
between queues after emptying a queue increases with C, which are present for every service
policy. Similarly, the number of switches from positive queue lengths will be non-decreasing
in C due to the CTMC spending more time at higher queue lengths, as discussed previously.
Therefore, we can conclude that E[BP

[C,f ]
swi ] is also an increasing function in C.

Now, we rewrite Equation (45) as

λ[C,f ]r =

(
1 +

1

CαE[BP [C,f ]
ser ]

+
E[BP

[C,f ]
swi ]

E[BP [C,f ]
ser ]

)−1
1

E[Zm]
. (48)

Clearly,

lim
C→∞

1

CαE[BP [C,f ]
ser ]

= 0,

and so the limit of λ
[C,f ]
r depends on the rates at which E[BP

[C,f ]
swi ] and E[BP [C,f ]

ser ] increase
with C. If they increase at a comparable rate, i.e.,

lim
C→∞

E[BP
[C,f ]
swi ]

E[BP [C,f ]
ser ]

= d > 0,

then

λ[∞]
r =

(
1

1 + d

)
1

E[Zm]
<

1

E[Zm]
,

implying a strict inequality in Equation (16) after applying Little’s Law and Equation (41).
It also follows that if

lim
C→∞

E[BP
[C,f ]
swi ]

E[BP [C,f ]
ser ]

= 0,

then Equation (16) is an equality.

�

Algorithm for Section 5.3: Smart Bernoulli Optimization

Letting precision ∈ Z+ denote the number of decimal places we are interested in approximat-
ing to and E[NW ](pSB2 ) represent the expected number of working machines as a function of
pSB2 , we apply:
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start = 0

size = 0.1

steps = 11

For i = 1, 2, . . . , precision:

For j = 1, 2, . . . , steps:

pSB2,j = start + (j − 1)× size

Ej = E[NW ](pSB2,j )

jm = {j ∈ {1, 2, . . . , steps} : Ej = maxk{Ek}}
if(pSB2,jm > 0)

start = pSB2,jm − size

if(pSB2,jm < 1) steps = 21

size = size/10

p̂SB2 = pSB2,jm

What this algorithm does in iteration i ∈ {1, 2, . . . , precision} is divide an interval of
probabilities into increments of width 10−i, solve for E[NW ] at each pSB2 which separate
the increments and determine which of these resulted in the maximum value, then restart
the loop for the next i investigating an interval with length 2 × 10−i centered around that
probability, or if it is a boundary value of 0 or 1, an interval of length 10−i including said
boundary. The above is a condensed version of the algorithm for readability and space
considerations, which may have its efficiency improved slightly by being altered to not re-
calculate E[NW ] at any previously considered pSB2 ’s. We do not propose this algorithm for its
speed, but rather for its accuracy to a given decimal place without the need of derivatives,
and the fact that it is able to return a probability of exactly 0 or 1.
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