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Abstract

An important process in optimization is to determine the quality of a proposed solution.
This usually entails calculation of the distance of a proposed solution to the optimal set
and is referred to as forward error. Since the optimal set is not known, we generally view
forward error as intractable. An alternative to forward error is to measure the violation
in the constraints or optimality conditions. This is referred to as backward error and it is
generally easy to compute. A major issue in optimization occurs when a proposed solution
has small backward error, i.e., looks good to the user, but has large forward error, i.e., is
far from the optimal set.

In [77], Jos Sturm developed a remarkable upper bound on forward error for spectrahe-
dra (optimal sets of semidefinite programs) in terms of backward error. His bound creates
a hierarchy among spectrahedra that is based on singularity degree, an integer between 0
and n− 1, derived from facial reduction. For problems with small singularity degree, for-
ward error is similar to backward error, but this may not be true for problems with large
singularity degree.

In this thesis we provide a method to obtain numerical lower bounds on forward error,
thereby complimenting the bounds of Sturm. While the bounds of Sturm identify good
convergence, our bounds allow us to detect poor convergence. Our approach may also be
used to provide lower bounds on singularity degree, a measure that is difficult to com-
pute in some instances. We show that large singularity degree leads to some undesirable
convergence properties for a specific family of central paths.

We apply our results in a theoretical sense to some Toeplitz matrix completion problems
and in a numerical sense to several test spectrahedra.
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Chapter 1

Introduction and Overview of
Contributions

In this thesis we make contributions to the understanding of error bounds and singularity
degree in semidefinite programming. Our study is motivated by well-known, hard instances
of semidefinite programming on which state-of-the-art algorithms converge very slowly.

In order to state our contributions explicitly, we need an understanding of the type of
slow convergence we are concerned with. To this end, let F ⊂ Sn be the solution set of
a semidefinite program (SDP). Throughout this thesis we refer to F as a spectrahedron.
Here Sn denotes the Euclidean space of n× n symmetric matrices. It is always possible to
express F as the intersection of an affine subspace, L, and the set of positive semidefinite
matrices, Sn+. Given a matrix X ∈ Sn, the forward error of X with respect to F is defined
as,

εf (X,F) := dist(X,F). (1.0.1)

Here, dist(X,F) denotes the distance from X to F . See (2.1.1) for a definition specific
to our setting. We cannot expect to measure forward error accurately without substantial
knowledge of the solution set F . For this reason forward error is generally unknown. What
is readily available to users is the backward error of X with respect to F ,

εb(X,F) := dist(X,L) + dist(X, Sn+). (1.0.2)

In backward error it is recognized that F is the intersection of two sets with easily com-
putable forward errors. For this reason, backward error is used as a proxy for forward
error. Backward error also measures how much L or Sn+ need to be perturbed in order
for X to be feasible for F .

The type of slow convergence we are concerned with is when backward error is suffi-
ciently small but forward error is much larger. The problem with this scenario is not just
the poor quality of the proposed solution. More than this, it is the lack of awareness of a
poor solution.
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To demonstrate how severe the discrepancy between forward error and backward error
can be, we consider an SDP, with n = 5, from the family introduced in [80] and stated
in Example 4.2.6 of this thesis. The output of cvx, a package for specifying and solving
convex optimization problems [28, 29], using the solver SDPT3, [81], is,

X ≈


0.94 0 0.028 0.001 2.3× 10−6

0 0.057 0 0 0
0.028 0 0.028 4.1× 10−5 6.5× 10−8

0.001 0 4.1× 10−5 4.5× 10−6 3.1× 10−9

2.3× 10−6 0 6.5× 10−8 3.1× 10−9 0

 .
Similar results were obtained with the solvers SeDuMi, [76], and MOSEK, [1]. The backward
error forX is quite small at 5.46× 10−12 and cvx output states that the problem is “solved”.
All indicators point to a ‘good’ solution. However, the solution set of the SDP is a singleton
consisting of the matrix with 1 in the upper left entry and zeros everywhere else. Given this
information, X does not look like a very good solution. Indeed, forward error is 9.15× 10−2.

Much of the literature devoted to addressing this disparity focuses on upper bounds of
the form,

εf (X,F) = O
(
εb(X,F)γ

)
, (1.0.3)

for γ ∈ (0, 1] and backward error that is sufficiently small. Here O denotes the usual ‘big-
O’ notation, although our usage in (1.0.3) is inconsistent with the definition in Section 2.7.
What we mean to say by (1.0.3) is that εf (X,F) is in ‘the order of εb(X,F)γ’ or smaller,
when the backward error is sufficiently small. Precise statements about error bounds will
be developed throughout the thesis. For the example above, the exponent is γ ≈ 1/6.

Bounds of the type in (1.0.3) are referred to as Hölderian error bounds. Large values
of γ indicate small discrepancies between forward error and backward error, while small
values of γ indicate large discrepancies.

The utility of this type of bound lies in detecting families of spectrahedra where forward
error and backward error are similar. Specifically, if for a given family of spectrahedra, a
bound such as (1.0.3) exists with γ ≈ 1, then backward error is a valid approximation of
forward error for any member of the family. The limitation of this type of bound is that it
cannot be used to detect the scenario of the above example where forward error is much
larger than backward error. If γ is much smaller than 1, we may only conclude that there
may be a large discrepancy between the two measures, but it is also possible that there is
no distinction between them. To detect scenarios where forward error is much larger than
backward error we need to complement the upper bound of (1.0.3) with a lower bound.
Hence our first contribution.

Contribution 1: A method to provide a numerical lower bound on forward error for

spectrahedra, (Chapter 5).
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In [77], Sturm introduced a bound of the type in (1.0.3), that is perhaps the most
intriguing and informative among such bounds in the literature of SDPs. To state his
bound, Sturm defined singularity degree, a positive integer that is derived from the facial
reduction algorithm of Borwein and Wolkowicz, [6, 7, 8]. The singularity degree of a
spectrahedron, F , is denoted by sd(F) and the corresponding bound is,

εf (X,F) = O
(
εb(X,F)2− sd(F))

)
. (1.0.4)

Singularity degree zero corresponds to no discrepancy between forward error and backward
error, while larger values of singularity degree imply the possibility of larger discrepancies.

The challenge with singularity degree is that, like forward error, it is generally unknown.
In [10], a facial reduction algorithm is presented that is backwards stable when singularity
degree is 0 or 1. However, we are not aware of a stable algorithm for performing facial
reduction for problems with larger singularity degree. Moreover, the empirical evidence
we have obtained indicates a lack of stability of the algorithm when singularity degree is
greater than 1. For this reason, we view finding singularity degree as intractable for general
instances of SDP. The following contributions address this problem.

Contribution 2: Theoretical bounds on sd(F̂), where F̂ is obtained by certain

transformations of a given F , where sd(F) is known, (Chapter 4).

Contribution 3: A method to provide a numerical lower bound for the singularity degree

of a spectrahedron, (Chapter 5).

An immediate consequence of the bound of Sturm, is that large singularity degree is a
necessary property of spectrahedra that exhibit large discrepancy between forward error
and backward error. We show that the converse is, in some sense, also true, thereby
providing evidence that singularity degree may be viewed as a measure-of-hardness for
solving SDPs.

Contribution 4: Large singularity degree is a sufficient condition for high irregularity in

the convergence of a family of external-type central paths, (Chapter 6).

Having established the aforementioned theoretical results, we study the singularity
degree of spectrahedra formed by solution sets to certain Toeplitz matrix completion prob-
lems. In a somewhat peripheral endeavor we make the following contribution. We opt for
a vague description of the result in an attempt to avoid excessive terminology at this point.

Contribution 5: A characterization of partial Toeplitz patterns that admit a certain

type of ‘nice’ positive definite completion, (Chapter 7).

The thesis is structured as follows. In Chapter 2, we introduce notation and highlight
elementary results pertaining to positive semidefinite matrices, SDPs, and convex analysis.
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The notions of facial reduction and singularity degree are discussed in Chapter 3 and
in Chapter 4, respectively. The main results are presented in Chapter 4 through Chapter 7,
as outlined in the overview of contributions, above. We demonstrate the quality and
utility of bounds developed throughout the thesis by numerically analyzing several test
spectrahedra in Chapter 8. Concluding remarks are made in Chapter 9.

Some of the results in Chapter 5 and in Chapter 6 are based on the preprint [74] and
some of the results of Chapter 7 are based on the published article [75].

We forego a review of the literature at this point, choosing instead to insert the material
in the more immediate context of the chapters to which the literature is relevant.
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Chapter 2

Background and Notation

In this chapter we present brief introductions to some of the topics of the thesis and present
elementary and classical results without proof. We assume a basic knowledge of convex
analysis, optimization, and undergraduate-level mathematics. For further reading or proofs
of some of the unreferenced claims we suggest Wolkowicz, Saigal, and Vandenberghe [86]
and Tunçel [80] for SDPs, Rockafellar [71] and Rockafellar and Wets [72] for convex analysis,
and Nocedal and Wright [59] and Boyd and Vandenberghe [9] for optimization.

2.1 Symmetric and Positive Semidefinite Matrices

Our ambient space is the Euclidean space of n × n real symmetric matrices, denoted Sn,
with the standard trace inner product, 〈X, Y 〉 := trace(XY ), and the induced Frobenius
norm, ‖X‖F :=

√
〈X,X〉.

The eigenvalues of any X ∈ Sn are real and ordered so as to satisfy,

λ1(X) ≥ · · · ≥ λn(X),

and λ(X) ∈ Rn is the vector consisting of all the eigenvalues. In terms of this notation
we have ‖X‖F = ‖λ(X)‖2, where ‖·‖2 is the Euclidian norm when the argument is a
vector in Rn. When the argument to ‖·‖2 is a symmetric matrix, then we mean the
operator 2-norm, defined as ‖X‖2 := maxi|λi(X)|. In some of our discussion we use
the notation λmax(X) = λ1(X) and λmin(X) = λn(X) if we are not concerned with the
dimensions of the matrix, or wish to stress the minimality and maximality of the values.
The distance from X ∈ Sn to a set S ⊆ Sn is defined as,

dist(X,S) := inf
Y ∈S
‖X − Y ‖F . (2.1.1)

The set of positive semidefinite matrices, Sn+, is a closed convex cone in Sn, with interior
consisting of the positive definite matrices, Sn++. The cone Sn+ induces the Löwner partial
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order on Sn. That is, for X, Y ∈ Sn we write X � Y when X−Y ∈ Sn+ and similarly X � Y
when X − Y ∈ Sn++.

We collect some elementary results regarding positive semidefinite matrices in the fol-
lowing.

Fact 2.1.1. Let X, Y ∈ Sn+ and u ∈ Rn. Then the following hold.

(i) uTXu = 0 if, and only if, u ∈ null(X).

(ii) 〈X, Y 〉 = 0 if, and only if, XY = 0.

(iii) null(X + Y ) = null(X) ∩ null(Y ).

(iv) range(X + Y ) = range(X) + range(Y ).

(v) rank(X + Y ) ≥ max{rank(X), rank(Y )}.

The ‘+’ in Fact 2.1.1 (iv) denotes the usual Minkowski sum. A nice property of symmet-
ric matrices is the relationship between eigenvalues of the matrix itself and the eigenvalues
of any of its symmetric submatrices.

Fact 2.1.2 (Interlacing Eigenvalues, Corollary 1.21, [80]). Let X ∈ Sn and let X̄ be a
symmetric submatrix of X of order r. Then,

λn−(r−k)(X) ≤ λk(X̄) ≤ λk(X), ∀k ∈ {1, . . . , r}.

A classical result for symmetric matrices is the following bound on the trace inner
product in terms of eigenvalue vectors. It may not be obvious at first, but this bound is
equivalent to the Hoffman-Wielandt inequality, [36].

Fact 2.1.3 (Lemma 1, [25]). For X, Y ∈ Sn it holds that,

n∑
i=1

λi(X)λn+1−i(Y ) ≤ 〈X, Y 〉 ≤ λ(X)Tλ(Y ).

2.2 Linear Maps and Spectrahedra

For every linear map A : Sn → Rm , there exist A1, . . . , Am ∈ Sn such that,(
A(X)

)
i

= 〈X,Ai〉, ∀i ∈ {1, . . . ,m}. (2.2.1)

The adjoint of A is the unique linear map A∗ : Rm → Sn satisfying,

〈A(X), y〉 = 〈X,A∗(y)〉, ∀X ∈ Sn, y ∈ Rm .
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When the inner product on Rm is the usual A(X)Ty, then A∗(y) =
∑m

i=1 yiAi. It follows
that range(A∗) = span{A1, . . . , Am}. For M ∈ Rn×p we denote the composition of the
maps A and M ·MT as,

AM(X) := A(MXMT ). (2.2.2)

It is a simple observation that the map M · MT is an automorphism of Sn+ when M is
square and non-singular.

For a given linear map A : Sn → Rm and a vector b ∈ Rm , we define

L(A, b) := {X ∈ Sn : A(X) = b}.

When b = 0, then L(A, b) = null(A), a linear subspace of Sn. The following Farkas Lemma
type of result about linear subspaces of Sn is used throughout the thesis. For a proof
see, e.g., Corollary 2 of [51].

Fact 2.2.1. Let L ⊂ Sn be a linear subspace. Then it holds that,

L ∩ Sn+ = {0} ⇐⇒ L⊥ ∩ Sn++ 6= ∅.

In Fact 2.2.1, L⊥ denotes the usual orthogonal complement of L. Our main object of
study is the spectrahedron, defined in the following.

Definition 2.2.2. Given a linear map A : Sn → Rm and a vector b ∈ Rm , we define
the spectrahedron F(A, b) as the intersection of Sn+ with the affine manifold defined by A
and b. That is,

F(A, b) := L(A, b) ∩ Sn+ = {X ∈ Sn+ : A(X) = b}.

Bounded spectrahedra play an important role in this thesis. To derive a characterization
of such spectrahedra we recall the notion of recession cone. For a convex set C ⊆ Sn the
recession cone of C, denoted C∞, is defined as,

C∞ := {X ∈ Sn : Y + τX ∈ C, ∀Y ∈ C, ∀τ ≥ 0}.

Lemma 2.2.3. For a non-empty spectrahedron F = F(A, b), the following are equivalent:

(i) F is bounded,

(ii) null(A) ∩ Sn+ = {0},

(iii) range(A∗) ∩ Sn++ 6= ∅.

Proof. First note that (ii) and (iii) are equivalent by Fact 2.2.1. Therefore, it suffices to
show that (i) is equivalent to (ii). By Theorem 8.4 of [71] and the convexity of F it holds
that,

F is bounded ⇐⇒ F∞ = {0}. (2.2.3)

7



Next, the definition of F and Corollary 8.3.3 of [71] yield,

F∞ = L(A, b)∞ ∩
(
Sn+
)∞

. (2.2.4)

Now the recession cone of an affine subspace is the linear subspace that is parallel to it.
Hence L(A, b)∞ = null(A). Moreover, the recession cone of a closed convex cone is the
cone itself. Thus (Sn+)∞ = Sn+. Combining these observations with (2.2.3) and (2.2.4) gives
us,

F is bounded ⇐⇒ null(A) ∩ Sn+ = {0},
as desired.

2.3 Convexity in Sn+
Given a convex set C ⊂ Sn, we denote by cl(C) and relint(C), the closure and relative
interior of C. We define the boundary of a set C as those elements of C that do not belong
to the relative interior:

bd(C) = cl(C) \ relint(C).

This definition of boundary is referred to as relative boundary in some texts. The convex
subsets of Sn+ exhibit some remarkable properties when viewed through the rank function.
Namely that the rank function is constant over, and maximized by, the relative interior.
To state this relationship more clearly, we introduce the following.

Definition 2.3.1. The rank of a non-empty set C ∈ Sn+ is defined as,

rank(C) := max
X∈C

rank(X),

where rank(·) in the objective of the optimization problem denotes the usual rank of a
matrix.

Lemma 2.3.2. Let C ⊆ Sn+ be convex and non-empty and let rank(C) be as in Defini-
tion 2.3.1. Then, rank(C) = rank(X) for any X ∈ relint(C).

Proof. Since the image of C under the matrix rank function consists of finitely many
elements, it follows that rank(C) is attained by some X̄ ∈ C. Now let X ∈ relint(C). By
the convexity of C and Theorem 6.4 of [71], there exists Y ∈ C and θ ∈ (0, 1] such that,

X = θX̄ + (1− θ)Y.

By definition of X̄ we have, rank(X̄) ≥ rank(X) and by Fact 2.1.1 (i) we have,

rank(X) ≥ max{rank(θX̄), rank((1− θ)Y )} = rank(X̄).

The equality is due to the maximality of rank(X̄) and the assumption that θ 6= 0. There-
fore rank(X) = rank(X̄), implying the desired result.
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In fact, the relative interior elements of a convex set C ⊆ Sn+ not only have the same
rank, but even have the same range and null space.

Lemma 2.3.3. Let C ⊆ Sn+ be convex and non-empty. Then,

(i) X ∈ relint(C), Y ∈ C =⇒ range(X) ⊇ range(Y ),

(ii) X ∈ relint(C), Y ∈ relint(C) =⇒ range(X) = range(Y ).

Proof. First, note that (ii) is implied by (i) and Lemma 2.3.2. To prove (i) let X and Y
be as in the hypothesis. By convexity, 1

2
(X + Y ) ∈ C and by Fact 2.1.1 (iv),

range

(
1

2
(X + Y )

)
= range(X + Y ) = range(X) + range(Y ).

Now, by Lemma 2.3.2 it holds that rank
(

1
2
(X + Y )

)
≤ rank(X). Thus we may conclude

that range(Y ) ⊆ range(X), as desired.

This result motivates the definition of range of a convex set in Sn+.

Definition 2.3.4. Let C ⊆ Sn+ be non-empty and convex and let X ∈ relint(C). Then the
range of C is defined as,

range(C) := range(X).

2.4 The Faces of Sn+
In the previous section we saw that convex subsets of Sn+ exhibit some remarkable properties
with respect to rank and range. In this section we focus on special types of convex subsets
of Sn+, referred to as faces. Recall that K ⊆ Sn is a convex cone if K+K = K, where ‘+’
denotes the usual Minkowski sum.

Definition 2.4.1. A convex cone f ⊆ Sn+ is a face, denoted f � Sn+, if the following
implication holds:

X, Y ∈ Sn+, X + Y ∈ f =⇒ X, Y ∈ f.

From this definition it is easy to verify that Sn+ and {0} are two faces of Sn+. We say
that f � Sn+ is a proper face of Sn+, denoted f � Sn+, if f is not the empty set and f 6= Sn+.

In Lemmas 2.3.2 and 2.3.3 we saw that the relative interior elements of a convex
set C ∈ Sn+ have the same rank and range. The faces of Sn+ exhibit the stronger prop-
erty that the relative interior consists of all matrices that share a common range.

Fact 2.4.2. Let f be a non-empty face of Sn+ and let range(f) be as in Definition 2.3.4.
Then,
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(i) f = {X ∈ Sn+ : range(X) ⊆ range(f)},

(ii) relint(f) = {X ∈ Sn+ : range(X) = range(f)}.

One implication of this characterization of the faces of Sn+ is that there exists a bijection
between subspaces of Rn and faces of Sn+. To gain further insight into the faces of Sn+
consider the following characterization, that is readily obtained from Fact 2.4.2.

Fact 2.4.3. Let f be a non-empty face of Sn+, with f 6= {0}, and let r := rank(f).
Let V ∈ Rn×r be such that its columns form a basis for range(f) and let U ∈ Rn×n−r

be chosen so that its columns complete the columns of V to a basis of Rn. Then,

(i) f = V Sr+V T = Sn+ ∩
(
UUT

)⊥
,

(ii) relint(f) = V Sr++V
T .

There are two important implications of this characterization. First, every face is
isomorphic to a smaller dimensional positive semidefinite cone. This is an idea that is
central to facial reduction and will be expanded upon in Chapter 3. Secondly, every face
of Sn+ can be expressed as the intersection of Sn+ and a hyperplane. Such faces are referred
to as exposed. In this context, the matrix UUT in Fact 2.4.3 is called an exposing vector .
It is important to note that not all convex cones exhibit the property that every face is
exposed.

An important notion related to exposing vectors is that of the conjugate face.

Definition 2.4.4. Let f � Sn+ be non-empty. The conjugate face of f is,

f c := f⊥ ∩ Sn+.

We record several important properties of the conjugate face in the following.

Fact 2.4.5. Let f � Sn+ be non-empty, with f 6= {0}, and let r := rank(f). Let V and U
be the matrices of Fact 2.4.3 and let f c denote the conjugate face as in Definition 2.4.4.
Then,

(i) f c � Sn+,

(ii) f c = USn−r+ UT ,

(iii) W ∈ relint(f c) =⇒ f = Sn+ ∩W⊥,

(iv) X ∈ relint(f) =⇒ f c = Sn+ ∩X⊥.

The property of ‘face’ is preserved under set intersection.
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Fact 2.4.6. If f1, . . . , fm are faces of Sn+, then f1 ∩ · · · ∩ fm � Sn+.

We conclude this preliminary discussion of the faces of Sn+ with an expression for Sn+
and bd(Sn+). Here

⋃̇
denotes a disjoint union.

Lemma 2.4.7. It holds that,

(i) Sn+ =
⋃̇
f�Sn+

relint(f),

(ii) bd(Sn+) =
⋃̇
f�Sn+

relint(f).

Proof. For (i), it is clear that Sn+ ⊇
⋃̇
f�Sn+

relint(f). For the reverse inclusion, let X ∈ Sn+.

Then X belongs to the relative interior of the face f satisfying,

range(f) = range(X),

as desired. All that remains is to show that the union of the relative interiors of the faces
of Sn+ is disjoint. But this is a direct implication of Fact 2.4.2 (ii), as the relative interior
of each face is completely characterized by its range.

Now for (ii), the only face that is not included in
⋃̇
f�Sn+

relint(f) is the set Sn+ itself,

with relative interior Sn++. Thus from (i) and the definition of boundary we have,⋃̇
f�Sn+

relint(f) = Sn+ \ Sn++ = bd(Sn+),

as desired.

2.5 Convex Sets and the Minimal Face

The expression of Sn+ as a disjoint union in Lemma 2.4.7 allows us to, loosely speaking,
‘place’ every convex set in exactly one of the partitions.

Lemma 2.5.1. Let C ⊆ Sn+ be convex and non-empty. Let f be the face of Sn+ satisfy-
ing range(f) = range(C). Then f is the unique face such that,

relint(C) ⊆ relint(f).

Proof. The desired result is a direct implication of the definition of the range of a set
in Definition 2.3.4 and Fact 2.4.2 (ii).

In fact, the face of Lemma 2.5.1 is the ‘smallest’ face that contains the convex set C.
To be more specific about our use of the word ‘smallest’, we define the minimal face.
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Definition 2.5.2. The minimal face of a convex set C ⊆ Sn+ is the intersection of all faces
containing C:

face(C) =
⋂
f�Sn+
C⊆f

f.

Lemma 2.5.3. Let C ⊆ Sn+ be convex and non-empty. Let face(C) be the minimal face
containing C, as in Definition 2.5.2, and let f � Sn+ satisfy range(f) = range(C). Then,

face(C) = f.

Proof. By Lemma 2.3.3 (i) we have C ⊆ f . Hence f is one of the faces in the intersection
defining face(C) (see Definition 2.5.2). Moreover, we claim that for any other face f ′, for
which C ⊆ f ′, it holds that f ⊆ f ′. Indeed, if C ⊆ f ′ then Fact 2.4.2 (i) implies that,

range(C) ⊆ range(f ′).

By construction we have range(f) = range(C) and thus range(f) ⊆ range(f ′). Apply-
ing Fact 2.4.2 (i) yields that f ⊆ f ′. The desired result is now immediate.

The result of Fact 2.4.6 is extended to the minimal face as follows.

Lemma 2.5.4. Let C1, . . . , Cm ⊆ Sn+ be convex and non-empty. Then,

face(C1 ∩ · · · ∩ Cm) ⊆ face(C1) ∩ · · · ∩ face(Cm).

Proof. The result certainly holds when C1 ∩ · · · ∩ Cm is empty. For the remaining case,
let X̄ ∈ face(C1 ∩ · · · ∩ Cm). Then by the range characterization of the minimal face it
holds that,

range(X̄) = range(C1 ∩ · · · ∩ Cm) ⊆ range(C1) ∩ · · · ∩ range(Cm),

implying the desired result.

Another useful result concerns linear maps of the form M ·MT .

Lemma 2.5.5. Let C ⊆ Sn+ be convex and let M ∈ Rp×n. Then,

face
(
MCMT

)
= M face(C)MT .

Proof. By Theorem 6.6 of [71] it holds that,

relint
(
MCMT

)
= M relint(C)MT , relint

(
M face(C)MT

)
= M relint(face(C))MT .

Thus if X̄ ∈ relint(C) we have,

range
(
MCMT

)
= range

(
M face(C)MT

)
= range

(
MX̄MT

)
.

Since the two sets have the same range all that remains is to show that M face(C)MT is a
face. Indeed, if face(C) = V Sr+V T for some V ∈ Rn×r then,

M face(C)MT = MV Sr+(MV )T = {Y ∈ Sp+ : range(Y ) ⊆ range(MV )} ,
a face by Fact 2.4.2.
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2.6 Semidefinite Programming

SDPs have become popular over the last several decades due, in part, to their modelling
power in areas as diverse as combinatorial optimization, electric power systems, molecular
conformation, distance geometry, sensor network localization, etc. An SDP is a linear
optimization problem over a spectrahedron:

p? := inf 〈C,X〉,
(SDP ) s.t. A(X) = b,

X � 0.

(2.6.1)

Here C ∈ Sn, A : Sn → Rm is a linear map, and b ∈ Rm . The feasible set of (SDP ) is the
spectrahedron F(A, b) and the Lagrangian dual of (SDP ) is,

d? := sup bTy,

(DSDP ) s.t. A∗(y) + Z = C,

Z � 0.

(2.6.2)

We refer to the difference p?−d? as the duality gap. By virtue of the Lagrangian dual, weak
duality ensures that the duality gap is non-negative for every pair (SDP ) and (DSDP ).

While SDPs may appear to be rather benign (a linear function is optimized over a
relatively simple convex set), there exist instances with remarkably undesirable properties.
For example, we can construct an SDP so that both (SDP ) and (DSDP ) are feasible,
but the duality gap is positive and neither p? nor d? is attained. Such instances are very
challenging to solve algorithmically since it is hard to determine the quality of a proposed
solution. To eliminate such classes of SDPs we place restrictions on the constraint sets of
(SDP ) and (DSDP ).

Definition 2.6.1. We say that the Slater condition holds for (SDP ) if there exists X � 0
with A(X) = b. Equivalently, in the notation of spectrahedra, the Slater condition holds if,

F(A, b) ∩ Sn++ 6= ∅.

Then X is referred to as a Slater point. Similarly, the Slater condition holds for (DSDP )
if there exists y ∈ Rm and Z � 0 such that A∗(y) + Z = C.

We now state several strong duality results for SDPs.

Fact 2.6.2. Let (SDP ) and (DSDP ) be as in (2.6.1) and (2.6.2) and suppose that both
(SDP ) and (DSDP ) are feasible. Then the following hold.

(i) If the Slater condition holds for (SDP ), then p? = d? and d? is attained.

(ii) If the Slater condition holds for (DSDP ), then p? = d? and p? is attained.
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(iii) If the Slater condition holds for both (SDP ) and (DSDP ), then p? = d? and both p?

and d? are attained.

The following optimality conditions form the basis of many SDP algorithms.

Fact 2.6.3. Let (SDP ) and (DSDP ) be as in (2.6.1) and (2.6.2). Suppose that p? and d?

are equal and attained. Then X? is optimal for (SDP ) and (y?, Z?) are optimal for
(DSDP ) if, and only if,A∗(y?) + Z? − C

A(X?)− b
Z?X?

 = 0, X? � 0, Z? � 0.

It is important to note that the classes of SDPs identified in Fact 2.6.2 are not the only
ones for which a zero duality gap exists. There is also the class of unbounded-infeasible
SDPs. Suppose, for instance, that (SDP ) is unbounded from below. Then p? = −∞
and weak duality implies that d? = −∞. This corresponds to an infeasible instance of
(DSDP ). A similar result may be obtained when (DSDP ) is unbounded from above. The
challenge with such instances is that they may be hard to detect due to the phenomenon
of weak infeasibility. In this work we focus predominantly on instances where both (SDP )
and (DSDP ) are feasible.

2.7 Function Bounds and Asymptotic Notation

In developing error bounds we need notation that captures the asymptotic behaviour of
real valued functions over the positive reals as 0 is approached. To this end, let φ and ψ
be real valued functions on (0, t̄] for some t̄ > 0 where ψ(t) > 0 for all t ∈ (0, t̄]. We say
that φ is big-O of ψ, denoted,

φ(t) = O(ψ(t)),

if there exists M > 0 such that φ(t) ≤Mψ(t) for all t ∈ (0, t̄]. Up to a constant multiple, ψ
is an upper bound on φ. A lower bound for φ is expressed in a similar way. We say that φ
is omega of ψ, denoted,

φ(t) = Ω(ψ(t)),

if there exists M > 0 such that φ(t) ≥Mψ(t) for all t ∈ (0, t̄]. When φ is both big-O of ψ
and omega of ψ we say that φ is theta of ψ denoted,

φ(t) = Θ(ψ(t)).

In some instances we may avoid specifying t̄ by considering φ and ψ on R++. In such cases
we say that φ is big-O of ψ as t↘ 0 to mean that there exists t̄ > 0 such that φ restricted
to (0, t̄] is big-O of ψ restricted to (0, t̄]. Analogous notation is used with Ω and Θ.
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Chapter 3

Facial Reduction in Semidefinite
Programming

Generically, SDPs possess very nice properties such as, the Slater condition for the pri-
mal and the dual, unique optimal solutions, and strict complementarity. See for in-
stance [19, 62, 64]. However, it is not difficult to construct instances where these properties
fail, e.g., Section 2.4 of [80]. We have already seen that absence of the Slater condition in
SDPs can have undesirable implications, such as a positive duality gap and lack of optimal
solutions. One way to remedy such SDPs is by facial reduction. The term refers both to
a technique and an algorithm for converting an SDP without the Slater condition into an
equivalent one for which the Slater condition does hold. Both the technique and an algo-
rithm were introduced by Borwein and Wolkowicz in the papers [6, 7, 8] for the abstract
convex optimization problem.

3.1 The Facial Reduction Technique

To introduce the facial reduction technique let us restate the primal SDP problem,

inf 〈C,X〉,
(SDP ) s.t. A(X) = b,

X � 0.

Let us assume that the convex feasible set, F := F(A, b), is non-empty. The Slater
condition fails for (SDP ) when F does not contain a positive definite matrix. In this case F
is contained in the boundary of Sn+. Now Lemma 2.4.7 (ii) shows that the boundary of Sn+ is
the disjoint union of the relative interiors of the proper faces of Sn+. Moreover, Lemma 2.5.1
states that our convex set F can be ‘placed’ into exactly one of these partitions of bd(Sn+).
This face is identified in Lemma 2.5.3 as the minimal face, face(F). With this in mind, let

15



us replace the positive semidefinite constraint in (SDP ) with the constraint X ∈ face(F),

inf 〈C,X〉,
s.t. A(X) = b,

X ∈ face(F).

(3.1.1)

By the arguments above, (3.1.1) is equivalent to (SDP ), since the objective functions
and feasible sets are the same. Moreover, face(F) is isomorphic to a smaller dimensional
positive semidefinite cone. Hence the new optimization problem is in fact an instance of
SDP. To see this, we utilize results established in Chapter 2.

Suppose, as above, that F is non-empty, with F 6= {0}, and define r := rank(F).
Since F is convex, we may define V ∈ Rn×r such that its columns form a basis for range(F).
By Lemma 2.5.3 and Fact 2.4.3 we have that face(F) = V Sr+V T . Now observe the following
transformation of the problem obtained in (3.1.1):

inf {〈C,X〉 : A(X) = b, X ∈ face(F)} (3.1.2)

↓
inf {〈C,X〉 : A(X) = b, X ∈ V Sr+V T} (3.1.3)

↓
inf {〈C,X〉 : A(X) = b, X = V RV T , R ∈ Sr+} (3.1.4)

↓
inf {〈C, V RV T 〉 : A(V RV T ) = b, R ∈ Sr+} (3.1.5)

↓
(RSDP ) inf {〈V TCV,R〉 : AV (R) = b, R ∈ Sr+}, (3.1.6)

where AV is defined as in (2.2.2). Every step in the transformation has the same feasible
set (up to isomorphism) and the same objective. Therefore, these optimization problems
are all equivalent to (SDP ). Moreover, the last optimization problem, (RSDP ), satisfies
the Slater condition. While we motivated the derivation of (RSDP ) by assuming that F
does not have a Slater point, this need not be assumed. In fact, when the Slater condition
holds for (SDP ) the transformation to (RSDP ) is trivial since face(F) = Sn+ and V may
be taken to be I.

The other special case is F = {0}. Here r = 0 and, therefore, the matrix V ∈ Rn×r

is not well defined. Consequently, facial reduction, in the form above, is not well defined.
However, this case is somewhat trivial, since knowledge of the minimal face immediately
yields the optimal set.

Lemma 3.1.1. Let (SDP ) and (RSDP ) be as in (2.6.1) and (3.1.6), respectively, and
suppose that the feasible set, F(A, b), of (SDP ) is non-empty. Then the Slater condition
holds for (RSDP ).
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Proof. Let F(A, b) be as in the hypothesis and let r and V be as above so that,

face(F) = V Sr+V T . (3.1.7)

By Lemma 2.5.3 and Lemma 2.5.1 there exists X̄ ∈ F(A, b) such that rank(X̄) = r. Then
by (3.1.7), there exists R̄ ∈ Sr++ such that,

X̄ = V R̄V T .

It follows that R̄ is a Slater point for (RSDP ), as desired.

Observe that (RSDP ) is an instance of SDP in the primal form where C is replaced
by V TCV and A is replaced by AV . Therefore the dual of (RSDP ) may be obtained as
(DSDP ) by replacing C and A to get,

sup bTy,

(DRSDP ) s.t. (AV )∗ (y) + Z = V TCV,

Z � 0.

(3.1.8)

We now obtain the following strong duality results for the pair (RSDP ) and (DRSDP ).

Theorem 3.1.2. Let (SDP ) and (DSDP ) be as in (2.6.1) and (2.6.2), respectively, and
assume that both are feasible. Then the following hold.

(i) The optimal values of (RSDP ) and (DRSDP ) are equal and finite and the optimal
value of (DRSDP ) is attained.

(ii) If (DSDP ) satisfies the Slater condition, then (DRSDP ) satisfies the Slater condi-
tion and the optimal value of (RSDP ) is attained.

Proof. By the hypothesis and Lemma 3.1.1, the Slater condition holds for (RSDP ). Then (i)
follows from Fact 2.6.2 (i). For (ii), the hypothesis implies the existence of ȳ ∈ Rm

and Z̄ � 0 such that,
A∗(ȳ) + Z̄ = C.

Let V ∈ Rn×r be as in (DRSDP ). Then,

V T Z̄V = V TCV − V TA∗(ȳ)V = V TCV − (AV )∗ (ȳ).

Since Z̄ � 0 and V is full rank, it follows that V T Z̄V � 0. Therefore, the pair ȳ and V T Z̄V
is a Slater point for (DRSDP ). The desired result now follows from Fact 2.6.2 (ii).

Aside from the desirable consequences of the Slater condition, there is an additional
benefit to facial reduction. When the Slater condition does not hold for (SDP ), the new
problem (RSDP ) lives in a smaller space than the original SDP. In applications such as
sensor network localization, e.g., [41], facial reduction leads to a substantial decrease in
the dimension of the ambient space. Since current SDP algorithms are limited to problems
of only several thousand variables, this reduction can lead to non-trivial improvements in
computation.
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3.2 Partial Facial Reduction

Suppose that our feasible set F = F(A, b) does not satisfy the Slater condition. Further-
more, suppose that we do not know the matrix V ∈ Rn×r that characterizes face(F), as
in Section 3.1, but we do have access to a matrix U ∈ Rn×p with p > r and,

range(V ) ⊂ range(U).

Then we may perform partial facial reduction. By arguments analogous to those of Sec-
tion 3.1, the original problem (SDP ) is equivalent to,

inf {〈UTCU,P 〉 : AU(P ) = b, P ∈ Sp+}, (3.2.1)

where AU is defined as in (2.2.2). While the Slater condition does not hold for (3.2.1), it
may still exhibit nicer properties than the original SDP. For one, the dimension of (3.2.1)
could be substantially smaller. This property has been successfully exploited in applications
such as Euclidean distance matrix completion. See [73], for instance. Secondly, (3.2.1) may
behave better than the original SDP. We mean to say that not all SDPs for which the Slater
condition fails are equally ill-behaved. This is a notion we will explore further when we
introduce singularity degree in Chapter 4.

The following result gives an expression for the minimal face of the partially reduced
spectrahedron.

Lemma 3.2.1. Let F = F(A, b) be a non-empty spectrahedron. Let r := rank(F) and
let V ∈ Rn×r be such that its columns form a basis for range(F). Let p > r and let U ∈ Rn×p

be a full rank matrix satisfying range(V ) ⊂ range(U). Then,

face (F(AU , b)) = MSr+MT ,

where M ∈ Rp×r is full rank and satisfies UM = V .

Proof. First of all, M is well defined since each column of V is spanned by the columns
of U as implied by the assumption that range(V ) ⊂ range(U). Now we show that,

F(A, b) = UF (AU , b)UT . (3.2.2)

The inclusion ‘⊇’ is trivial. For the converse inclusion, let X ∈ F(A, b). Then by the
definition of V it holds that,

X = V RV T , R � 0, A(V RV T ) = b.

Replacing V with UM yields,

X = UMRMTUT , R � 0, A(UMRMTUT ) = b.
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Now we replace MRMT with P to get,

X = UPUT , P � 0, A(UPUT ) = b.

The ‘⊆’ inclusion is now immediate giving us (3.2.2). The assumption that U is full rank
also gives us,

relint (F(A, b)) = U relint (F (AU , b))UT . (3.2.3)

By (3.2.3) for P ∈ relint
(
F
(
A(U · UT ), b

))
we have,

range(UPUT ) = range(V ) = range(UM) = U range(M).

On the other hand,

range(UPUT ) = range(UP ) = U range(P ).

Combining these two observations with the assumption that U is full rank, gives us,

range(P ) = range(M).

The desired result is now implied by Lemma 2.5.3.

3.3 Facial Reduction as an Algorithm

The key ingredient to facial reduction, from a practical perspective, is an algebraic expres-
sion for face(F). Specifically, the matrix V with columns forming a basis for range(F). In
special cases, V may be obtained analytically by taking advantage of underlying structure
of the SDP. When such information is not available or is difficult to analyze, Borwein and
Wolkowicz introduced a facial reduction algorithm. The output of the algorithm is exactly
the matrix V ∈ Rn×r and consequently the face V Sr+V T . This expression for the minimal
face is the terminus of a finite sequence of successively smaller faces. Specifically, for some
positive integer d, the facial reduction algorithm generates a sequence of faces f 1, · · · , fd
satisfying,

f 1 ) · · · ) fd, fd = face(F).

Equivalently, from the primal characterization of Fact 2.4.3, the algorithm generates a
sequence of positive integers r1, r2, . . . , rd and matrices V i ∈ Rn×ri for each i ∈ {1, . . . , d}
such that,

r1 > · · · > rd,

range(V 1) ) · · · ) range(V d),

f i = V iSri+

(
V i
)T
, ∀i ∈ {1, . . . , d}.

(3.3.1)
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In terms of exposing vectors, also from Fact 2.4.3, the facial reduction algorithm generates
a sequence of exposing vectors, W 1, . . . ,W d ∈ Sn, such that,

W i ∈ Sn+ \ {0}, ∀i ∈ {1, . . . , d},
range(W 1) ( · · · ( range(W d),

f i =
(
W i
)⊥ ∩ Sn+, ∀i ∈ {1, . . . , d}.

(3.3.2)

Clearly such a sequence of faces exists. For instance we may choose d = 1 and f 1 = face(F).
Moreover, if face(F) is proper, the sequence is not unique. The sequences generated by the
facial reduction algorithm of Borwein and Wolkowicz rely on a specific class of exposing
vectors: those contained in range(A∗). We denote this set by E(A, b),

E(A, b) := (face(F)c ∩ range(A∗)) \ {0}. (3.3.3)

Fact 3.3.1. Let F = F(A, b) be a non-empty spectrahedron and let E(A, b) be as in (3.3.3).
Then exactly one of the following holds:

(i) F ∩ Sn++ 6= ∅, i.e., the Slater condition holds for F ,

(ii) E(A, b) 6= ∅, i.e., there exists y ∈ Rm such that 0 6= A∗(y) � 0 and yT b = 0.

A proof of this theorem of the alternative may be found in [18], for instance. If (i) holds,
then F has a Slater point and we have obtained the facially reduced problem (RSDP ), triv-
ially. On the other hand if (ii) holds, then there exists y ∈ Rm such that A∗(y) ∈ E(A, b).
By definition of E(A, b) it follows that A∗(y) is an exposing vector for a face contain-
ing face(F). In other words,

face(F) ⊆ Sn+ ∩ (A∗(y))⊥ .

If this inclusion is an equality, then we have obtained (RSDP ) and we are done. Otherwise
we may perform partial facial reduction and then apply Fact 3.3.1 to the new reduced
problem. The algorithm of Borwein and Wolkowicz continues in this fashion until for some
reduced problem Fact 3.3.1 (i) does hold. At each step, the dimension of the reduced
problem decreases by at least 1 and therefore at most n steps are required. In fact, the
tighter bound of n − 1 is shown to hold in Section 4.2. For a rigorous description of the
facial reduction algorithm refer to Algorithm 1.

3.4 Correctness of the Facial Reduction Algorithm

In this section we prove that Algorithm 1 outputs an expression for face(F(A, b)) when
the spectrahedron F(A, b) is not empty. We include a proof, partly for completeness, and
partly to derive results that will be used throughout the thesis.
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Algorithm 1 Facial Reduction for the Spectrahedron F(A, b)
1: INPUT: Linear map A : Sn → Rm and b ∈ Rm .
2: initialize: k = 0, Ak = A, V k = I, W k = 0, rk = n, qk = 0.
3: while E(Ak, b) 6= ∅ do
4: Choose Zk+1 =

(
Ak
)∗

(yk+1) ∈ E(Ak, b) and orthogonal
[
Qk+1

1 Qk+1
2

]
such that,

Zk+1 =
[
Qk+1

1 Qk+1
2

] [Λk+1 0
0 0

] [
Qk+1

1 Qk+1
2

]
,

where Λk+1 � 0 and Qk+1
1 ∈ Rrk×qk+1 .

5: if Zk+1 � 0 then
6: Qk+1

2 = 0 ∈ Srk , V k+1 = 0 ∈ Sn, and rk+1 = 0
7: else
8: Qk+1

2 ∈ Rrk×rk+1 and V k+1 = V kQk+1
2 ∈ Rn×rk+1

9: end if
10: W k+1 = W k + V kZk+1

(
V k
)T ∈ Sn+

11: Ak+1 = AV k+1

12: k = k + 1
13: end while
14: OUTPUT: d = k, V = V k, W = W k, r = rd.

Lemma 3.4.1. Let F(A, b) be a non-empty spectrahedron. Then each step of the while
loop of Algorithm 1 is well defined (but not uniquely) whenever the while loop is called.

Proof. Suppose the while loop is called for some k ≥ 0. To show that the steps of the
while loop are well defined, it suffices to show that Zk+1, Qk+1

1 , and Qk+1
2 exist. Since the

while loop is called it holds that E(Ak, b) is not empty. Thus Zk+1 exists and has rank at
least 1. Consequently Qk+1

1 exists. The existence of Qk+1
2 follows immediately.

Lemma 3.4.2. Let F(A, b) be a non-empty spectrahedron. If there exists k such that Zk � 0,
then define k̄ to be the smallest such integer. Otherwise k̄ = +∞. Then for every k < k̄,

(i) the columns of V k form a basis for null(W k)

(ii) F(A, b) = V kF(Ak, b)
(
V k
)T
.

Proof. Both claims hold for k = 0 and we proceed by induction. Suppose the claims hold
for some k < k̄ − 1 so that k + 1 < k̄.

For (i), note that since k < k̄ we have V k+1 = IQ1
2 · · ·Qk+1

2 . Thus V k+1 has rank rk+1

and (V k+1)TV k+1 = I. Clearly, these observations hold for smaller values of k as well.
Then,

W k+1V k+1 =
(
W k + V kZk+1

(
V k
)T)

V kQk+1
2 = V kZk+1Qk+1

2 = 0,
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where the first equality is due to the inductive hypothesis and the conclusion follows from
the fact that Qk+1

2 is chosen so that its columns form a basis for null(Zk+1). We have
shown that the columns of V k+1 are elements of null(W k+1). To show that they form a
basis for the null space, we show that

rank(W k+1) = n− rank(V k+1) = n− rk+1.

By induction we conclude that W k is orthogonal to V kZk+1
(
V k
)T

thus,

rank(W k+1) = rank(W k) + rank
(
V kZk+1

(
V k
)T)

= n− rank(V k) + rank(Qk+1
1 )

= n− rk + qk+1

= n− rk+1,

as desired.

For (ii) we have that Zk+1 is an exposing vector for a face containing face(F(Ak, b))
and thus,

F(Ak, b) ⊂
(
Zk+1

)⊥ ∩ Srk+ = Qk+1
2 Srk+1

+

(
Qk+1

2

)T
.

Then invoking the inductive hypothesis we have,

F(A, b) = V kF(Ak, b)
(
V k
)T

= V k
{
R � 0 : Ak(R) = b, R = Qk+1

2 P
(
Qk+1

2

)T}(
V k
)T

= V k
{
Qk+1

2 P
(
Qk+1

2

)T � 0 : AV kQk+1
2

(P ) = b
}(

V k
)T

= V k+1F(Ak+1, b)
(
V k+1

)T
.

In the last line we used the assumption that k < k̄ and therefore V k+1 = V kQk+1
2

Theorem 3.4.3. Let F(A, b) be a non-empty spectrahedron. Then Algorithm 1, with
input A, b, terminates finitely and the outputs d, V , W , and r are well defined (but may
depend on the choice of Zk+1). Moreover, d ≤ n and

face(F(A, b)) = V Sr+V T = W⊥ ∩ Sn+.

Proof. If the while loop is never called, then F(A, b) satisfies the Slater condition and we
have face(F(A, b)) = Sn+. The algorithm terminates with d = 0, V = I, W = 0 and r = n,
yielding the desired result.

Now suppose the while loop is called at least once. By Lemma 3.4.1 each iteration of
the while loop is well defined. Let k̄ be as in Lemma 3.4.2 and suppose k̄ < +∞. By
definition, Z k̄ � 0 is an exposing vector for face(F(Ak̄−1, b)). Therefore F(Ak̄−1, b) = {0}.
Then by Lemma 3.4.2 (ii) we get that face(F(A, b)) = {0} and therefore F(A, b) = {0}.
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Moreover, V k̄ = 0 ∈ Sn and rk̄ = 0. Then F(Ak̄, 0) = Sn+, satisfying the Slater condition,

and implying that E(Ak̄, b) = ∅. Thus the algorithm terminates with d = k̄, V = 0,
and r = 0. Since rk < rk−1 for each k < k̄. we conclude that d ≤ n. Moreover we have,

face(F(A, b)) = V Sr+V T = {0}.

All that remains is to show that W = W k̄ is positive definite. By construction,

W = W k̄−1 + V k̄−1Z k̄
(
V k̄−1

)T
,

and by Lemma 3.4.2 (i) we have W k̄−1V k̄−1 = 0 and,

rank
(
W k̄−1

)
+ rank

(
V k̄−1

)
= n. (3.4.1)

Thus the matrices W k̄−1 and V k̄−1Z k̄
(
V k̄−1

)T
are positive semidefinite and orthogonal.

Moreover, since Z k̄ � 0 it holds that,

rank
(
V k̄−1

)
= rank

(
V k̄−1Z k̄

(
V k̄−1

)T)
. (3.4.2)

Combining (3.4.1) with (3.4.2) gives us,

rank(W ) = rank
(
W k̄−1

)
+ rank

(
V k̄−1Z k̄

(
V k̄−1

)T)
= n.

Hence W � 0 implying the desired result.

Now we may assume that k̄ = +∞. Then for each k generated by the algorithm,
the matrix Zk is a non-zero, rank deficient matrix. It follows that rk < rk−1 and thus
the sequence of integers r0, r1, . . . is strictly decreasing and bounded above by n. More-
over the sequence is bounded below by 1. Otherwise we have Zk � 0 for some k, con-
tradicting the assumption that k̄ = +∞. Thus Algorithm 1 terminates with d ≤ n.
By Lemma 3.4.2 (ii) we have F(A, b) = V F(Ad, b)V T . Since the Slater condition holds
for F(Ad, b) we conclude that range(F(A, b)) = range(V ) and thus by Lemma 2.5.3 it
holds that face(F(A, b)) = V Sr+V T . The second of the desired equalities now follows
from Lemma 3.4.2 (i).

3.5 Some Properties of the Facial Reduction Algo-

rithm

In Theorem 3.4.3, we obtained an upper bound of n on the number of iterations required
by Algorithm 1. In this section we derive results that imply a bound in terms of the number
of matrices, m, defining the map A. First we show that the iterates of the algorithm are
linearly independent. To better facilitate the discussion we introduce a definition.
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Definition 3.5.1. We denote the vectors y1, . . . , yd, generated by Algorithm 1 with in-
put (A, b), as a facial reduction sequence.

Lemma 3.5.2. Let d ≥ 1 and let y1, . . . , yd be a facial reduction sequence for input (A, b).
Then the following hold.

(i) The matrices A∗(y1), . . . ,A∗(yd) are linearly independent.

(ii) If A is surjective then y1, . . . , yd are linearly independent.

Proof. Both statements hold vacuously when d = 1, since A∗(y1) 6= 0. Thus we may
assume that d ≥ 2. For (i) let k̂ ∈ [2, d] be an integer and observe that by construction,(

V k̂−1
)T
A∗(yk̂)V k̂−1 = Z k̂ 6= 0. (3.5.1)

An implication of the proof of Theorem 3.4.3 is that Zk � 0 if, and only if, k = d. Thus Qk
2

is non-zero for all k < d. Now for every integer k ∈ [1, k̂ − 1] we have,(
V k̂−1

)T
A∗(yk)V k̂−1 =

(
Qk̂−1

2

)T
· · ·
(
Qk

2

)T (
V k−1

)T A∗(yk)V k−1Qk
2 · · ·Qk̂−1

2

=
(
Qk̂−1

2

)T
· · ·
(
Qk

2

)T
ZkQk

2 · · ·Qk̂−1
2

= 0,

since the columns of Qk
2 form a basis for null(Zk), by construction. Combining this obser-

vation with (3.5.1) we conclude that,

A∗(yk̂) /∈ span
{
A∗(y1), . . . ,A∗(yk̂−1)

}
.

Since this statement holds for every integer k̂ ∈ [2, d], it follows that A∗(y1), . . . ,A∗(yd)
are linearly independent, as desired. The proof of (ii) follows immediately.

Next, we show that the nullspace of the maps (Ak)∗, generated by Algorithm 1, grows
with k.

Lemma 3.5.3. Suppose the linear maps A1, . . . ,Ad are generated by Algorithm 1 for
input (A, b) with d ≥ 1. Then for k, k̂ ∈ {1, . . . , d} with k < k̂ it holds that,

null
((
Ak
)∗) ( null

((
Ak̂
)∗)

.

Proof. First we show that the inclusion holds. To this end, let y ∈ null
(
(Ak)∗

)
. This

implies that,

0 =
(
Ak
)∗

(y) =
(
V k−1

)T A∗(y)V k−1.
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Then, (
Ak̂
)∗

(y) =
(
V k̂−1

)T
A∗(y)V k̂−1

=
(
Qk̂−1

2

)T
· · ·
(
Qk

2

)T [(
V k−1

)T A∗(y)V k−1
]
Qk

2 · · ·Qk̂−1
2

= 0.

Now to show that the inclusion is strict, let us consider yk. By construction it holds
that (Ak)∗(yk) = Zk and Zk 6= 0. On the other hand, replacing y with yk in the above
derivation gives us,(

Ak̂
)∗

(yk) =
(
Qk̂−1

2

)T
· · ·
(
Qk

2

)T
ZkQk

2 · · ·Qk̂−1
2 = 0,

by definition of Qk
2, completing the proof.

Generally speaking, it is desirable that the map A, defining the spectrahedron F(A, b),
is surjective. However, Lemma 3.5.3 implies that surjectivity is lost after the first iteration
of Algorithm 1. It may be desirable to modify the map Ak, at each iteration, so that
it is surjective. This may be accomplished by expressing Ak as in (2.2.1) and removing
redundant matrices in the expression. Corresponding elements of b are also removed. The
result is a reduction in the number of constraints, m, defining F(Ak, b). Thus the facial
reduction algorithm reduces the number of variables and the number of constraints.

Now each of these two results, Lemma 3.5.2 and Lemma 3.5.3, implies the following
result first observed in [77].

Theorem 3.5.4. Let d be generated by Algorithm 1 for input data A : Sn → Rm and b ∈ Rm .
Then d ≤ m.

3.6 Facial Reduction in the Literature

We introduced facial reduction as a way of guaranteeing strong duality in SDPs. While
there are other techniques designed to achieve the same goal, it is remarkable that they are
essentially equivalent to facial reduction. The two other techniques are conic expansion,
developed by Luo, Sturm, and Zhang in [51, 52], and the extended Lagrange-Slater dual
of Ramana [69].

While in facial reduction the primal constraint X � 0 is replaced with successively
smaller cones, in the conic expansion approach, the dual constraint Z � 0 is replaced with
successively larger cones. After finitely many iterations, the cone in the dual constraint is
sufficiently large so as to guarantee a zero duality gap. Waki and Muramatsu [83] show
that the faces obtained in the facial reduction algorithm are duals of the cones obtained
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in the conic expansion approach. Thus conic expansion may be viewed as an equivalent
dual procedure to facial reduction. Waki and Muramatsu also present a version of the
facial reduction algorithm of Borwein and Wolkowicz that can detect infeasibility. Their
algorithm is modified by Liu and Pataki [45] by introducing elementary reformulations of
the constraints from which certificates of infeasibility and strong duality are easily obtained.

The extended Lagrange-Slater dual is a different dual for (SDP ) than the Lagrangian
dual (DSDP ) presented in this thesis. Strong duality holds for the extended Lagrange-
Slater dual without any assumptions on the feasible set of (SDP ), such as the Slater
assumption required in Fact 2.6.2. In [70], Ramana, Tunçel, and Wolkowicz show that
the extended Lagrange-Slater dual is equivalent to the dual of (3.1.1). The extended
Lagrange-Slater dual is generalized to nice cones by Pataki in [61] and to homogenous
cones by Truong and Tunçel in [79], Chua and Tunçel in [12], and by Pólik and Terlaky
in [67].

From an algorithmic perspective, facial reduction has seen increased attention in recent
years. We highlight a few of the more notable contributions. In [10], Cheung, Schurr, and
Wolkowicz formulate an optimization problem to find Zk and prove that the problem is
an instance of conic optimization where the Slater condition holds. The resulting facial
reduction algorithm is provably “backward stable” when singularity degree is at most 1.
Permenter, Friberg, and Andersen [65], combine facial reduction with the self-dual embed-
ding approach to solve SDPs. The authors derive a method for performing a step of facial
reduction that is based on solutions to the self-dual embedding formulation of (SDP ). The
facial reduction step is taken only if the solution for the self-dual embedding problem is not
satisfactory. When facial reduction is necessary, fewer steps may be taken than required
by other facial reduction algorithms. Lourenço, Muramatsu, and Tsuchiya [49], introduce
a facial reduction algorithm that takes advantage of polyhedral faces. Worst case iteration
bounds for their algorithm are better than the corresponding bounds for classical facial
reduction when applied to several well-known classes of closed convex cones. For SDPs,
however, the algorithm coincides with classical facial reduction.

Facial reduction, as presented in this chapter, ensures that the reduced problem (RSDP )
satisfies the Slater condition, but it need not be the case that the dual reduced problem,
(DRSDP ), also satisfies the Slater condition. In [47], Lourenço, Muramatsu, and Tsuchiya
introduce the notion of double facial reduction, where a second facial reduction procedure
is performed on (DRSDP ). The authors prove that both the primal and dual problems
after the second round of facial reduction, satisfy the Slater condition. This result can also
be obtained by applying a dual version of Theorem 3.1.2 to (DRSDP ).

In facial reduction algorithms, the most involved step is in obtaining the exposing
vector Zk. The corresponding subproblem is generally computationally expensive. This
difficulty has led to the development of heuristic facial reduction algorithms. The algorithm
of Permenter and Parillo [66] utilizes approximations of the cone Sn+ to obtain exposing
vectors more efficiently. This approach is not proven to obtain the minimal face and may
require more iterations than other approaches. Another heuristic approach is proposed
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by Zhu, Pataki, and Tran-Dinh [87]. Their algorithm consists of identifying exposing vec-
tors among the matrices Ai, and requires only Cholesky decompositions at each iteration.

Problems that are not facially reduced may be prone to non-trivial numerical inaccu-
racies when an interior point algorithm is applied. In [84], Waki, Nakata, and Muramatsu
present an instance of SDP where the optimal value is provably 0 but standard interior
point algorithms return the value 1. It is subsequently shown, by Waki and Muramatsu [83],
that the SDP in question has large singularity degree and that the correct optimal value
may be obtained after facial reduction.

Lourenço, Muramatsu, and Tsuchiya [48] use facial reduction to derive a finite certifi-
cate for weak infeasibility, one of the hardest scenarios for SDPs. For additional reading
on facial reduction, we suggest the survey of Drusvyatskiy and Wolkowicz [18].
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Chapter 4

Singularity Degree in Semidefinite
Programming

The singularity degree of a spectrahedron is a measure introduced by Sturm in [77]. It is
defined in terms of the facial reduction algorithm as follows.

Definition 4.0.1. Let F = F(A, b) be a non-empty spectrahedron. The singularity de-
gree of F , denoted sd(F), is the length of a shortest facial reduction sequence generated
by Algorithm 1 with input (A, b).

As we have already mentioned in Chapter 3, the output of the facial reduction algorithm
is not unique. In particular, it depends on the choice of exposing vector Zk (equivalently
the choice of yk) obtained at each iteration. In Section 4.2 we show how to choose each Zk

so as to obtain sd(F).

It should be noted that our definition differs from that of Sturm in the treatment of
the case F = {0}. For this case Sturm defines sd(F) = 0. This definition coincides with
the corresponding error bound. According to our definition, however, it should be clear
that sd(F) ≥ 1 in this case.

The original motivation leading to the definition of singularity degree, was to bound
forward error for SDPs. We introduce the error bounds, due to Sturm, in Section 4.3.
In Section 4.4 we provide theoretical bounds on sd(F̂) where F̂ is derived from F and sd(F)
is known. A relationship between singularity degree and complementary slackness is pre-
sented in Section 4.5.

4.1 Extensions to Empty Spectrahedra

The requirement that F is non-empty in Definition 4.0.1 is necessary due to the same
assumption in Algorithm 1 and in Fact 3.3.1. We see two ways to extend the definition to
also include certain types of empty spectrahedra. First a definition.
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Definition 4.1.1. Let F := F(A, b) be a spectrahedron and define the displacement of
L(A, b) and Sn+ as,

disp(A, b) := inf{‖X − Y ‖ : X ∈ L(A, b), Y ∈ Sn+}.

When disp(A, b) > 0 we say that F is strongly infeasible. When disp(A, b) = 0 and F = ∅
we say that F is weakly infeasible.

One way to extend singularity degree to empty spectrahedra is by modifying Fact 3.3.1,
as in Theorem 3.1.2 of [18]. In this case, strong infeasibility can be detected (with a
certificate) in the first step of facial reduction, terminating Algorithm 1. Naturally then
we could define sd(F) := 1 for all strongly infeasible F .

A second way to define sd(F) for empty spectrahedra relies on the notion of displace-
ment, as in [17]. When F is strongly infeasible and disp(A, b) is attained, there exists a
displacement matrix, say D with ‖D‖ = disp(A, b), such that L(A, b) +D is feasible, but
does not satisfy the Slater condition. The matrix D translates L(A, b) so that it intersects
the boundary of Sn+. The new affine manifold L(A, b) +D can be expressed as L(A, b+ b̂)

for some b̂ ∈ Rm . We could now define the singularity degree of F as,

sd(F) := sd
(
F(A, b+ b̂)

)
. (4.1.1)

Unlike our first definition, this one does not treat all strongly infeasible spectrahedra
equally. Algorithms such as alternating projections are interesting even for infeasible prob-
lems. When applied to a strongly infeasible F , the algorithm returns the displacement
matrix. A topic of future research would be to determine whether the convergence of al-
ternating projections for strongly infeasible spectrahedra is affected by the definition of
singularity degree in (4.1.1).

Neither of these definitions extend to weakly infeasible spectrahedra and it is not yet
clear to us how to go about such an extension.

Our main interest in this thesis is forward error, which is not defined (or +∞ by
convention) for infeasible spectrahedra. Therefore it seems justified to assume that F is
non-empty and stick with Definition 4.0.1.

4.2 Attainment of Singularity Degree

To obtain sd(F) we need to determine the fewest iterations required by the facial reduction
algorithm. It turns out that the greedy approach, of choosing each exposing vector, Zk, to
have maximum possible rank, leads to the fewest iterations. First we address the simple
case of sd(F) = 0.

Lemma 4.2.1. Let F = F(A, b) be a non-empty spectrahedron and let d be the number of
calls to the while loop in Algorithm 1 with input A and b. Then the following are equivalent:
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(i) d = 0,

(ii) d = sd(F),

(iii) F ∩ Sn++ 6= ∅.

Proof. The proof is a trivial implication of the condition for the while loop in Algorithm 1
and of Definition 4.0.1.

For the more complicated case where at least 1 call to the while loop is made, we show
that the number of iterations can not be made larger by choosing each Zk in the relative
interior of E(Ak−1, b).

Lemma 4.2.2. Let F = F(A, b) be a non-empty spectrahedron and suppose that d ≥ 1
calls to the while loop of Algorithm 1 are made when the input is (A, b). Let y1, . . . , yd be
a facial reduction sequence and let Z1, . . . , Zd be defined as in the algorithm. Let k̂ ∈ [1, d]
be the smallest integer such that,

Z k̂ /∈ relint
(
E(Ak̂−1, b)

)
. (4.2.1)

Consider the alternative sequence Z1, . . . , Z k̂−1, Z̃ k̂, . . . , Z̃ d̃ where,

Z̃k ∈ relint
(
E(Ak−1, b)

)
, ∀k ≥ k̂. (4.2.2)

Then d̃ ≤ d.

Proof. For Z k̂ let us define
[
Qk̂

1 Qk̂
2

]
as in Algorithm 1, i.e.,

range(Z k̂) = range(Qk̂
1), null(Z k̂) = range(Qk̂

2). (4.2.3)

By 4.2.1, Z k̂ is not positive definite and thus Qk̂
1 and Qk̂

2 have positive dimension. Now

let Z̃ k̂ ∈ relint
(
E(Ak̂−1, b)

)
. As for Z k̂ in (4.2.3), let

[
Q̃k̂

1 Q̃k̂
2

]
capture the range and

nullspace of Z̃ k̂,

range(Z̃ k̂) = range(Q̃k̂
1), null(Z̃ k̂) = range(Q̃k̂

2). (4.2.4)

By (4.2.1), the convexity of E(Ak̂−1, b), and Lemma 2.3.3 it holds that,

range(Z k̂) ( range(Z̃ k̂). (4.2.5)

First, suppose that Z̃ k̂ � 0. Then from the proof of Theorem 3.4.3 it holds that F = {0}.
Thus the algorithm terminates if Z̃ k̂ is chosen instead of Z k̂, but it does not terminate
with the choice of Z k̂. Hence d̃ ≤ d, as desired.
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We may, therefore, assume that Z̃ k̂ is not positive definite. Consequently, the matri-
ces Q̃k̂

1 and Q̃k̂
2 have positive dimension. Thus, by (4.2.5) we may write,

Qk̂
2 =

[
QR Q̃k̂

2

]
, (4.2.6)

for some QR. It follows that,

range(Z̃ k̂) = range
([
Qk̂

1 QR

])
. (4.2.7)

Now let V k̂ = V k̂−1Qk̂
2 be as in Algorithm 1 and let Ṽ k̂ := V k̂−1Q̃k̂

2 be defined for the

alternate sequence where Z̃ k̂ is chosen instead of Z k̂. By (4.2.6) it holds that,

V k̂ =
[
V k̂−1QR V k̂−1Q̃k̂

2

]
=
[
V k̂−1QR Ṽ k̂

]
(4.2.8)

The exposing vector obtained by the original sequence is,

W k̂ = W k̂−1 + V k̂−1Z k̂
(
V k̂−1

)
, (4.2.9)

and the exposing vector obtained by choosing Z̃ k̂ instead of Z k̂ is,

W̃ k̂ := W k̂−1 + V k̂−1Z̃ k̂
(
V k̂−1

)
. (4.2.10)

The following rank relationship holds,

rank(W̃ k̂) = rank(W k̂−1) + rank(Z̃ k̂)

= rank(W k̂−1) + rank(Qk̂
1) + rank(QR)

> rank(W k̂−1) + rank(Qk̂
1)

= rank(W k̂−1) + rank(Z k̂)

= rank(W k̂).

(4.2.11)

Moreover, range(W k̂) ( range(W̃ k̂). Hence the face exposed by W̃ k̂ is strictly contained

in the face exposed by W k̂. This observation implies that k̂ < d. As otherwise we have,

face(F) = Sn+ ∩
(
W k̂
)⊥

) Sn+ ∩
(
W̃ k̂
)⊥
⊇ face(F), (4.2.12)

a contradiction. We may also assume that Z̃ k̂ does not complete the facial reduction
algorithm. Indeed, in this case it is trivial that d̃ ≤ d. With these assumptions, for either
choice, Z k̂ or Z̃ k̂, the while loop of the algorithm will be called at least once more.

Now we show that the next exposing vector, W̃ k̂+1, for the alternate sequence is not
‘worse’ than the next exposing vector, W k̂+1, for the original sequence. By construction,

Z̃ k̂+1 ∈ relint
(
E(Ãk̂, b)

)
= relint

{(
Ṽ k̂
)T
A∗(y)Ṽ k̂ � 0 : yT b = 0

}
, (4.2.13)
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where Ãk̂ = AṼ k̂ . The corresponding exposing vector is,

W̃ k̂+1 = W̃ k̂ + Ṽ k̂Z̃ k̂+1
(
Ṽ k̂
)T

. (4.2.14)

Similarly, for the original sequence we have,

Z k̂+1 ∈
(
E(Ak̂, b)

)
=

{(
V k̂
)T
A∗(y)V k̂ � 0 : yT b = 0

}
\ {0}, (4.2.15)

with corresponding exposing vector,

W k̂+1 = W k̂ + V k̂Z k̂+1
(
V k̂
)T

. (4.2.16)

Now we show that range(W k̂+1) ⊆ range(W̃ k̂+1). By Lemma 3.4.2 (i), it holds that

range
(
W k̂+1

)
= range

(
W k̂
)

+ range
(
V k̂Z k̂+1(V k̂)T

)
. (4.2.17)

We have already established that range(W k̂) ⊂ range(W̃ k̂+1). For the second term in (4.2.17),
the expression of (4.2.8) implies that,

range
(
V k̂Z k̂+1(V k̂)T

)
⊆ range

([
V k̂−1QR Ṽ k̂

])
. (4.2.18)

Now the subset of range
(
V k̂Z k̂+1(V k̂)T

)
that is contained in range(V k̂−1QR) is also con-

tained in range(W̃ k̂+1) by (4.2.7). All that remains is to show that the subspace of the

range of V k̂Z k̂+1(V k̂)T contained in range(Ṽ k̂) is also contained in the range of W̃ k̂+1. To

see this, note that (4.2.8) implies the existence of yk̂+1 satisfying,

Z k̂+1 =


(
V k̂−1QR

)T
A∗(yk̂+1)V k̂−1QR

(
V k̂−1QR

)T
A∗(yk̂+1)Ṽ k̂((

V k̂−1QR

)T
A∗(yk̂+1)Ṽ k̂

)T (
Ṽ k̂
)T
A∗(yk̂+1)Ṽ k̂

 . (4.2.19)

The bottom right block implies that yk̂+1 is also feasible for the set in (4.2.13). Then the

choice of Z̃ k̂+1 ∈ relint(E(Ãk̂, b)) implies that the subspace of the range of V k̂Z k̂+1(V k̂)T

contained in range(Ṽ k̂) is also contained in the range of Ṽ k̂Z̃ k̂+1(Ṽ k̂)T . Finally, (4.2.14)

implies that range(W k̂+1) ⊆ range(W̃ k̂+1). Continuing in this fashion we see that at every
subsequent iteration, the exposing vector obtained by the alternative sequence is at least
as good as the one obtained through the original sequence. Hence d̃ ≤ d, as desired.

We are now ready to state the main result of this section.
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Theorem 4.2.3. Let F = F(A, b) be a non-empty spectrahedron and suppose that d ≥ 1
calls to the while loop of Algorithm 1 are made when the input consists of A and b.
Let y1, . . . , yd be a facial reduction sequence. Then,(

Ak−1
)∗

(yk) ∈ relint
(
E(Ak−1, b)

)
∀k ∈ [1, d] =⇒ d = sd(F).

Proof. For a simpler discussion let Zk :=
(
Ak−1

)∗
(yk) for each k ∈ {1, . . . , d}, as in Algo-

rithm 1. We claim that d is the same regardless of the choice of Zk, as long as Zk is chosen
in the relative interior of E(Ak−1, b). Indeed, let k ∈ {1, . . . d} and let,

Zk, Z̃k ∈ relint
(
E(Ak−1, b)

)
.

Then Lemma 2.3.3 implies that range(Zk) = range(Z̃k) and null(Zk) = null(Z̃k). Defin-
ing V k as in Alogirthm 1 and defining Ṽ k analogously for the alternate choice of Z̃k gives
us the expression,

range(V k) = range(Ṽ k).

Now it is clear that for each k ∈ [1, d] the choice of matrix in relint
(
E(Ak−1, b)

)
does not

affect the number of iterations.

To prove the desired result we proceed by contradiction. Suppose that d > sd(F). Then

there exists an alternate sequence Z̃1, . . . , Z̃ d̃ with d̃ = sd(F). From the above discussion,
there exists a smallest integer k̂ ∈ [1, d] such that,

Z̃ k̂ /∈ relint
(
E(Ak̂−1, b)

)
.

Then Lemma 4.2.2 implies the existence of another alternate sequence Ẑ1, . . . , Ẑ d̂ with,

d̂ = d̃ = sd(F) < d,

where Ẑk ∈ relint
(
E(Ak̂−1, b)

)
for each k ∈ [1, d̂]. The result we obtained at the beginning

of this proof implies that d̂ = d, a contradiction.

For the special case where F = {0} we have the following result.

Corollary 4.2.4. Let F = F(A, b) be a non-empty spectrahedron. Then,

F = {0} =⇒ sd(F) = 1.

Proof. The hypothesis, F = {0}, implies that b = 0 and thus,

F = null(A) ∩ Sn+. (4.2.20)

Since the Slater condition does not hold for F , the while loop is called with k = 0.
By Theorem 4.2.3, Z1 is taken from the relative interior of the set,

E(A, b) = face(F)c ∩ range(A∗) = Sn+ ∩ range(A∗). (4.2.21)
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By (4.2.20), Fact 2.2.1, and (4.2.21), it holds that E(A, b) has a Slater point. Thus the
maximum rank exposing vector is obtained in the first iteration of the algorithm and the
while loop is not called again, giving us sd(F) = 1, as desired.

We conclude this section with a universal upper bound on singularity degree.

Corollary 4.2.5. Let F = F(A, b) be a non-empty spectrahedron with A : Sn → Rm .
If n ≥ 2 then,

sd(F) ≤ min{n− 1,m}.

Proof. The upper bound of m follows from Theorem 3.5.4. Moreover, from Theorem 3.4.3
it is implied that sd(F) ≤ n. The only scenario for which sd(F) = n is that of F = {0}.
However, in Corollary 4.2.4 we showed that sd(F) = 1 in this case, implying the desired
result.

The worst case bound of n−1 is shown to be attained by an example of Tunçel on p. 43
of [80]. To state the example, let us introduce some notation. For i ∈ {1, . . . , n} let ei ∈ Rn

denote the ith column of the identity matrix and define E(i, j) ∈ Sn as the matrix with 1
in the (i, j) and (j, i) positions and 0 everywhere else. That is,

E(i, j) =

{
eie

T
i if i = j,

eie
T
j + eje

T
i otherwise.

For instance in S4,

E(1, 2) :=


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 and E(3, 3) :=


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 .
Example 4.2.6. The example of Tunçel is a spectrahedron that is expressed in the dual
form A∗(y) � C. In the notation of this thesis, the spectrahedron is F = F(A, b) where,

b = e1 and


A1 := E(1, 1),

Ai := E(i, i) + E(1, i+ 1) for i ∈ {2, . . . , n− 1},
An := E(n, n).

To see that sd(F) = n − 1 let us obtain a more explicit description of F . The con-
straint 〈An, X〉 = 0 implies that Xnn = 0. Since X � 0, the entire nth row and column
consist of zeros. Then the (n− 1)th constraint gives us,

0 = 〈An−1, X〉 = Xn−1,n−1 +X1,n +Xn,1 = Xn−1,n−1.

It follows that the (n − 1)th row and column of X consists of zeros. We continue in
this fashion until we get that the only non-zero entry of X is the (1, 1) entry. Then the
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constraint 〈A1, X〉 = 1 implies that F consists of the matrix with 1 in the upper left entry
and zeros elsewhere.

Now let y ∈ Rm be such that A∗(y) ∈ E(A, b). Then by definition,

A∗(y) ∈ Sn+ \ {0} and yT b = 0.

It follows that y1 = 0 and that,

A∗(y) = ynE(n, n) +
n−1∑
i=2

yi (E(i, i) + E(1, i+ 1)) . (4.2.22)

Note that (A∗(y))11 = 0. Therefore, positive semidefiniteness implies that the first row and
column of A∗(y) consists of zeros. In particular, for i ∈ {2, . . . , n− 1} it holds that

0 = (A∗(y))1,i+1 = yi.

Now (4.2.22) simplifies to A∗(y) = ynE(n, n), a rank one matrix. A step of facial reduction
reduces the dimension by 1 and restricts the matrices Ai to their upper left (n−1)× (n−1)
blocks for each i ∈ {1, . . . , n}. The reduced problem is just an instance of the original
problem in Sn−1. Therefore, n − 1 steps are needed to reduce the problem to the one
dimensional minimal face of F , implying sd(F) = n− 1.

4.3 Error Bounds and Singularity Degree

In (1.0.4), we stated a version of the error bound of Sturm that is ‘morally’ correct. The
exact bound of Sturm, under our definition of singularity degree, is stated here. For a
proof, see Theorem 3.3 of [77].

Fact 4.3.1. Let F = F(A, b) be a non-empty spectrahedron and let {X(α) : α > 0} be a
sequence where ‖X(α)‖ is bounded for small α. Then,

εf (X(α),F) =

{
O
(
εb(X(α),F)

)
if F = {0},

O
(
εb(X(α),F)2− sd(F)

)
otherwise.

The two scenarios in which forward error and backward error are of the same order,
are when sd(F) = 0 (the Slater condition holds) or when F = {0}. For other cases, the
bound on the discrepancy between forward error and backward error grows with singularity
degree. In proving Fact 4.3.1, Sturm actually obtained the following more precise statement
about the way in which X(α) approaches F .

Fact 4.3.2. Let F = F(A, b) be a non-empty spectrahedron with sd(F) ≥ 1 where F 6= {0}
and let {X(α) : α > 0} be a sequence where εb(X(α),F) = O(α). For each k ∈ [1, sd(F)],
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let Zk be a maximum rank exposing vector obtained as in Algorithm 1 and let qk := rank(Zk).
Let ᾱ > 0 be fixed. Then there exists an orthogonal matrix Q such that,

face(QFQT ) =

[
Sr+ 0
0 0

]
,

and,

QX(α)QT =


X0(α) ∗ · · · ∗
∗ X1(α)
...

. . . ∗
∗ ∗ ∗ Xsd(F)(α)

 ,
where X0(α) ∈ Sr and for all k ∈ [1, sd(F)] and α ∈ (0, ᾱ) it holds that,

Xk(α) ∈ Sqk and ‖Xk(α)‖ = O
(
αξ(k)

)
,

where ξ(k) := 2−(sd(F)−k).

Under the correct orthogonal transformation, the diagonal blocks of X(α) that converge
to 0 may do so at different rates. Such unbalanced convergence is a real hindrance to
algorithms, since only components of the fastest coverging blocks can be approximated to
high accuracy.

4.4 Singularity Degree of Transformed Spectrahedra

In this section we consider several transformations of spectrahedra and analyze the effect
they have on singularity degree. Suppose we are given a spectrahedron F with known
singularity degree, sd(F), and we obtain a new spectrahedron F̂ by somehow modifying F .

Our goal here is to say as much as we can about sd(F̂) without explicitly computing it
using Algorithm 1.

4.4.1 Transformations of the form M ·MT

Given a non-empty spectrahedron F = F(A, b) and a matrix M ∈ Rn×p define,

F̂ := F(AM , b), (4.4.1)

where AM is as in (2.2.2). We begin by obtaining expressions for F̂ and face(F̂).

Lemma 4.4.1. Let F = F(A, b) be a non-empty spectrahedron and let F̂ be as in (4.4.1)

for some M ∈ Rn×p. If F̂ is non-empty and M † denotes the Moore-Penrose pseudoinverse
of M then,

F̂ = M † (F ∩MSp+MT
) (
M †)T +

(
Sp+ ∩

(
MTM

)⊥)
.
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Proof. By definition of F̂ we have,

F̂ = {Y ∈ Sp : AM(Y ) = b, Y � 0}
= {Y ∈ Sp : ∃X ∈ F with X = MYMT , Y � 0}
= {Y ∈ Sp : ∃X ∈ F with X = MYMT} ∩ Sp+.

The set {Y ∈ Sp : ∃X ∈ F with X = MYMT} is the preimage of F ∩MSpMT under
the map M ·MT . Since the set is also contained in the range of M ·MT , the preimage is
obtained in terms of the Moore-Penrose pseudoinverse of M ·MT . It is a simple exercise

to verify that this pseudoinverse is M † ·
(
M †)T . Therefore,

F̂ =
(
M † (F ∩MSp+MT

) (
M †)T + null(M ·MT )

)
∩ Sp+. (4.4.2)

Now null(M ·MT )⊥ = range(M † · (M †)T ) by the properties of the Moore-Penrose pseu-
doinverse. Thus,

Y 1 ∈M † (F ∩MSp+MT
) (
M †)T , Y 2 ∈ null(M ·MT ) =⇒ 〈Y 1, Y 2〉 = 0.

Moreover, Y 1 as above is positive semidefinite. So Y 1 + Y 2 ∈ Sp+ if, and only if, Y 2 ∈ Sp+.

We may, therefore, write F̂ as,

F̂ = M † (F ∩MSp+MT
) (
M †)T +

(
null(M ·MT ) ∩ Sp+

)
. (4.4.3)

Finally,

null(M ·MT ) ∩ Sp+ = {Y ∈ Sp+ : MYMT = 0}
= {Y ∈ Sp+ : trace(MYMT ) = 0}
= {Y ∈ Sp+ : 〈MTM,Y 〉 = 0}

= Sp+ ∩
(
MTM

)⊥
.

Substituting into (4.4.3) yields the desired result.

How does the singularity degree of F̂ compare to that of F? Let us first answer this
question for matrices M with p ≤ n and linearly independent columns. Naively, we may
think that sd(F̂) ≤ sd(F), however, this is not true in general as demonstrated by the
following example.

Example 4.4.2. Let A : S2 → R2 be defined by the matrices,

A1 :=

[
0 1
1 0

]
, A2 :=

[
1 0
0 −1

]
,
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and consider the spectrahedron F = F(A, 0). Note that 〈A1, X〉 = 0 implies that X is
diagonal and the second constraint 〈A2, X〉 = 0 implies that the diagonal entries have the
same value. Therefore,

F = {µI : µ ∈ R+}.

It follows that sd(F) = 0. Now let us consider F̂ as in (4.4.1), defined in terms of,

M :=

[
1
0

]
. (4.4.4)

Then,

Y ∈ F̂ ⇐⇒ AM(Y ) = 0, Y � 0

⇐⇒
〈
A1,

[
Y 0
0 0

]〉
= 0,

〈
A2,

[
Y 0
0 0

]〉
= 0, Y ≥ 0

⇐⇒ Y = 0.

However, 0 is not a Slater point of F̂ , implying that sd(F̂) ≥ 1 > sd(F).

Why does singularity degree increase after the transformation M · MT in this ex-
ample? It turns out that, while the transformation M · MT takes the problem to a
smaller dimension, the problem is such that the minimal face of the new problem is also
brought to a lower dimension. In particular face(F ∩MSp+MT ) is a proper subset of the
face face(F) ∩

(
MSp+MT

)
. Eliminating this type of phenomenon actually ensures that

singularity degree decreases with the transformation M ·MT .

Theorem 4.4.3. Let F = F(A, b) be a non-empty spectrahedron and let F̂ be as in (4.4.1)
for some M ∈ Rn×p with linearly independent columns. Then,

face(F ∩MSp+MT ) = face(F) ∩MSp+MT 6= ∅ =⇒ sd(F̂) ≤ sd(F). (4.4.5)

Moreover, if y1, . . . , yd is a facial reduction sequence for Algorithm 1 with input (A, b),
then a subset of the yks is a facial reduction sequence when the input is (AM , b).

Proof. First note that MF̂MT = F ∩MSp+MT . Thus by the hypothesis we have,

face(MF̂MT ) = face(F) ∩MSp+MT .

It follows that,

M range
(
F̂
)

= range
(
MF̂MT

)
= range(F) ∩ range(M). (4.4.6)

Now (4.4.5) certainly holds when sd(F̂) = 0 and it also holds when sd(F) = 0. Indeed

in this case range(F) ∩ range(M) = range(M) and (4.4.6) implies that range(F̂) = Rp.
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Hence sd(F̂) = 0. Thus we may assume that the while loop of Algorithm 1 is called at
least once with input (A, b) and it is called at least once with input (AM , b).

Now let y1, . . . , yd be a facial reduction sequence for input (A, b) with d ≥ 1 and

let V 0, V 1, . . . , V d be as in the algorithm. Let us define V̂ 0, V̂ 1, . . . , V̂ d inductively as
follows. Let V̂ 0 = I in Sp. Then for each k ∈ {1, . . . , d} let Q̂k

2 be defined so that its
columns form an orthonormal basis for null((V k−1)TMTA∗(yk)MV k−1) and define,

V̂ k := V̂ k−1Q̂k
2. (4.4.7)

First we claim that,

range(MV̂ k) ⊆ range(V k), ∀k ∈ {0, . . . , d}. (4.4.8)

For the base case let k = 0 and recall that V 0 = I, as defined in Algorithm 1. Moreover,
by construction V̂ 0 = I, implying (4.4.8). Now suppose (4.4.8) holds for k − 1. Recall
that Qk

2 is defined so that,

range(Qk
2) = null

((
V k−1

)T A∗(yk)V k−1
)
. (4.4.9)

It follows that,

range
(
V k
)

= range
(
V k−1Qk

2

)
= range

(
V k−1

)
∩ null

(
A∗(yk)

)
. (4.4.10)

Now we have assumed that (4.4.8) holds for k − 1. Thus,(
V k−1

)T A∗(yk)V k−1 � 0 =⇒
(
V̂ k−1

)T
MTA∗(yk)MV̂ k−1 � 0. (4.4.11)

Recalling the definition of Q̂k
2 and the reasoning behind (4.4.9) and (4.4.10) we get that,

range
(
MV̂ k

)
= range

(
MV̂ k−1Q̂k

2

)
= range

(
MV̂ k−1

)
∩ null

(
A∗(yk)

)
. (4.4.12)

Now the inductive hypothesis, (4.4.10), and (4.4.12) imply (4.4.8). We have proven the
claim. In particular it holds that,

range
(
MV̂ d

)
⊆ range

(
V d
)
∩ range(M) = range(F) ∩ range(M). (4.4.13)

By construction of the matrices V̂ k and by (4.4.11) it holds that,

range
(
V̂ 0
)
⊇ range

(
V̂ 1
)
⊇ · · · ⊇ range

(
V̂ d
)
⊇ range

(
F̂
)
. (4.4.14)

Note that it is possible that for some k the matrix (V k−1)TMTA∗(yk)MV k is identically 0.

In this case, Q̂k
2 is full rank and the range of V̂ k is no different than that of V̂ k−1. Therefore

let us construct a subsequence of the V̂ ks where V̂ k̄ is omitted if it has the same range
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as V̂ k̄−1. This new sequence contains at most d elements and it can be generated by
Algorithm 1 using the corresponding subset of yks. All that remains is to show that the
final matrix in this sequence captures range(F̂). Let V̂ denote this final matrix in the

shortened sequence. Then range(V̂ ) = range(V̂ d) and by (4.4.6), (4.4.14), and (4.4.13) it
holds that,

range(F) ∩ range(M) = M range(F̂) ⊆ range(MV̂ ) ⊆ range(F) ∩ range(M). (4.4.15)

Therefore, M range(F̂) = M range(V̂ ) and the assumption that M is full column rank

yields that range(V̂ ) = range(F̂). We have shown that for an arbitrary facial reduction
sequence y1, . . . , yd generated by Algorithm 1 with input (A, b), a subset of this sequence
is a facial reduction sequence for the algorithm with input (AM , b). Using a sequence
where d = sd(F) yields (4.4.5).

Let us state a few special cases addressed in Theorem 4.4.3. The first is when M induces
partial facial reduction as in Section 3.2.

Corollary 4.4.4. Let F = F(A, b) be a non-empty spectrahedron and let F̂ be as in (4.4.1)
for some M ∈ Rn×p with linearly independent columns. Then,

range(F) ⊆ range(M) =⇒ sd(F̂) ≤ sd(F).

Proof. Under the hypothesis it holds that F∩MSp+MT = F . Consequently, the hypothesis
of Theorem 4.4.3 holds, as desired.

The next special case addressed in Theorem 4.4.3 is that singularity degree is invariant
under some automorphisms of Sn+.

Corollary 4.4.5. Let F = F(A, b) be a non-empty spectrahedron and let F̂ be as in (4.4.1)
for a square and non-singular M . Then,

sd(F̂) = sd(F).

Moreover, y1, . . . , ysd(F) is a facial reduction sequence for Algorithm 1 with input (A, b) if,
and only if, it is a facial reduction sequence for Algorithm 1 with input (AM , b).

Proof. When M is square and non-singular it satisfies the hypothesis of Corollary 4.4.4.
Moreover M−1 also satisfies the hypothesis. Hence we have,

sd(F) ≥ sd(F̂) ≥ sd (F ((AM)M−1 , b)) = sd(F),

implying sd(F) = sd(F̂), as desired. The statement about facial reduction sequences of
minimal length follows similarly.
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Possibly the most useful scenario captured by Corollary 4.4.5 is that of an orthogonal
matrix M . A suitable orthogonal transformation of a spectrahedron F allows for exposition
and analysis that is less cumbersome. To see this, let d = sd(F) and let y1, . . . , yd be a
facial reduction sequence when the input is (A, b). Let Qk

1, Q
k
2 and V k be as in the algorithm

for each k. Then we claim that the matrix,

Q :=
[
Q1

1 V 1Q2
1 · · · V d−1Qd

1 V d
]
,

is orthogonal. Indeed, by Lemma 3.4.2 (i) it holds that the columns of V d form a basis
for range(F) and the remaining columns of Q form a basis for range(face(F)c). Hence V d

is orthogonal to the other columns of Q. Moreover, for every integer k ∈ {1, . . . , d} we
have,

V k = Q1
2 · · ·Qk

2.

Thus, the columns of V d and the columns of V kQk+1
1 are orthonormal for every k ∈ [1, d−1].

Finally, if we let V 0 := I, as in the algorithm, then for any 0 ≤ k < ` ≤ d−1 it holds that,(
V kQk+1

1

)T
V `Q`+1

1 =
(
Qk+1

1

)T (
V k
)T
V kQk+1

2 · · ·Q`
2Q

`+1
1

=
(
Qk+1

1

)T
Qk+1

2 · · ·Q`
2Q

`+1
1

= 0,

since
[
Qk+1

1 Qk+1
2

]
is orthogonal. We have, therefore, shown that Q is orthogonal.

Now suppose that M is orthogonal and that the facial reduction algorithm is run with
input (AM , b). Suppose furthermore that the same yks as those generated with input (A, b)
are used. Then we may construct an orthogonal matrix akin to that of Q and it is exactly
the matrix,

QM :=
[
MTQ1

1 MTV 1Q2
1 · · · MTV d−1Qd

1 MTV d
]

= MTQ.

This is readily obtained from the proof of Theorem 4.4.3. In particular, choosing M = Q
gives us that QM = I. Thus the range of each exposing vector is captured by a few of the
columns of the identity matrix. Consequently, each Zk may be written as,

Zk =

[
Sk 0
0 0

]
, Sk � 0.

Then V kZk+1(V k)T is a matrix consisting of Sk+1 in a diagonal block, and zeros everywhere
else. The final exposing vector, denoted WM , and the minimal face are then written as,

WM =


S1 0 · · · 0 0
0 S2 · · · 0 0
...

...
. . .

...
...

0 0 · · · Sd 0
0 0 · · · 0 0

 and face(F̂) =

[
0 0
0 Sr+

]
, (4.4.16)
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respectively. When it is beneficial to do so, we will assume that exposing vectors generated
by Algorithm 1 have a block structure similar to that of (4.4.16).

Our discussion thus far has been restricted to the case p ≤ n. We conclude this section
with a statement about the case p > n.

Theorem 4.4.6. Let F = F(A, b) be a non-empty spectrahedron and let F̂ be as in (4.4.1)
for some M ∈ Rn×p with linearly independent rows. Then,

sd(F̂) = sd(F).

Moreover, y1, . . . , ysd(F) is a facial reduction sequence for Algorithm 1 with input (A, b) if,
and only if, it is a facial reduction sequence for Algorithm 1 with input (AM , b).

Proof. The result holds when p = n by Corollary 4.4.5. Thus we may assume that p > n.
Let N ∈ Rp×p−n be such that its columns form a basis for null(M) and define,

M̃ :=
[
M † N

]
.

Since M̃ is square and full rank we have, by Corollary 4.4.5, that,

sd
(
F̂
)

= sd (F (AMM̃ , b)) = sd

(
F
(
A[
I 0

], b
))

.

To make the discourse less cumbersome let,

Ã := A[
I 0

] and F̃ := F
(
Ã, b

)
.

So it suffices to show that sd(F̃) = sd(F). To this end observe that,

F̃ =

{
Y ∈ Sp+ : Y =

[
X ∗
∗ ∗

]
, A(X) = b

}
=

[
F ∗
∗ ∗

]
∩ Sp+.

Thus if X̄ ∈ relint(F) it holds that,

range
(
F̃
)

= range

([
X̄ 0
0 I

])
. (4.4.17)

Now we claim that y1, . . . , yd is a facial reduction sequence for the input (A, b), if and

only if, it is a facial reduction sequence for the input
(
Ã, b

)
. To this end observe that for

any y ∈ Rm we have,

Ã∗(y) =

(
A[
I 0

])∗ (y) =

[
A∗(y) 0

0 0

]
,
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and therefore,

A∗(y) ∈ E(A, b) ⇐⇒ Ã∗(y) ∈ E
(
Ã, b

)
.

The choice of y at the first iteration of the facial reduction algorithm is the same with

input (A, b) as it is with input
(
Ã, b

)
. Now let y1 be chosen so that it is feasible for the

first iteration and let V 1 capture the nullspace of A∗(y1), keeping in line with the notation
of Algorithm 1. Then,

Ṽ 1 :=

[
V 1 0
0 I

]
,

captures the nullspace of Ã∗(y1). Therefore, it holds that,

range(F) ⊆ range
(
V 1
)

and range
(
F̃
)
⊆ range

(
Ṽ 1
)
.

At the next iteration of the algorithm we have,(
ÃṼ 1

)∗
(y) =

(
A[
V 1 0

])∗ (y) =

[
(V 1)

T A∗(y)V 1 0
0 0

]
.

It follows that,

(AV 1)∗ (y) ∈ E (AV 1 , b) ⇐⇒
(
ÃṼ 1

)∗
(y) ∈ E

(
ÃṼ 1 , b

)
.

Having chosen y1 in the first iteration of the algorithm, the set of choices for y2 with

input (A, b) is identical to the set of choices for y2 with input
(
Ã, b

)
. Let us therefore

choose a feasible y2 and let Q2
2 (using the notation of Algorithm 1) be such that it captures

the nullspace of (V 1)A∗(y2)V 1. Then,

range

([
Q2

2 0
0 I

])
= null

([
(V 1)

T A∗(y2)V 1 0
0 0

])
= null

((
ÃṼ 1

)∗
(y)
)
.

It follows that, if we define,

Ṽ 2 := Ṽ 1

[
Q2

2 0
0 I

]
=

[
V 2 0
0 I

]
,

then,

range(F) ⊆ range
(
V 2
)

and range
(
F̃
)
⊆ range

(
Ṽ 2
)
.

Continuing in this fashion we see that for every subsequent iteration k, the set of choices
for yk is the same regardless of the input. Moreover, if V k and Ṽ k are defined as above we
have,

range(F) ⊆ range
(
V k
)

and range
(
F̃
)
⊆ range

(
Ṽ k
)

= range

([
V k 0
0 I

])
.

Now (4.4.17) implies that the algorithm terminates at the same iteration for input (A, b)
as it does for input (Ã, b). We have therefore shown that y1, . . . , yd is a facial reduc-
tion sequence for the input (A, b) if, and only if, it is a facial reduction sequence for the
input (Ã, b), proving our claim. The desired results are now immediate.
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4.4.2 Additional Constraints

We now turn our attention to transformations of a spectrahedron that are obtained by
introducing additional constraints. Let F = F(A, b) and F̃ = F(Ã, b̃) be two spectrahedra
with,

A : Sn → Rm , b ∈ Rm and Ã : Sn → Rp, b̃ ∈ Rp.

Define the map Â : Sn → Rm+p and b̂ ∈ Rm+p as,

Â(X) :=

(
A(X)

Ã(X)

)
, b̂ :=

(
b

b̃

)
. (4.4.18)

Then we define the modified spectrahedron as,

F̂ := F
(
Â, b̂

)
. (4.4.19)

Note that F̂ is just the intersection of F and F̃ . This setting has some similarities to that
of Section 4.4.1 where F̃ is assumed to have the form MSp+MT . Our first result addresses
several special cases.

Lemma 4.4.7. Let F = F(A, b) and F̃ = F(Ã, b̃) be non-empty spectrahedra and let F̂
be as in (4.4.19). Then,

(i) face(F̂) = face(F) =⇒ sd(F̂) ≤ sd(F),

(ii) face(F̂) = face(F) = face(F̃) =⇒ sd(F̂) ≤ min{sd(F), sd(F̃)}.

Proof. Let y1, . . . , yd be a minimum length facial reduction sequence for input (A, b).
Then d = sd(F). Observe that,

Â∗
((

y1

0

))
= A∗(y1) ∈ Sn+ \ {0} and

(
y1

0

)T
b̂ =

(
y1
)T
b = 0.

Thus
(
(y1)T 0

)T
is a suitable choice for the first iteration of the facial reduction algorithm

with input (Â, b̂). In fact, it is not difficult to see that we may continue in this fashion.
That is, (

y1

0

)
, . . . ,

(
yd

0

)
is a facial reduction sequence for input (Â, b̂), implying (i). The proof of (ii) is obtained
by applying (i) to F̃ as well.

We may assume a hypothesis similar to that of Theorem 4.4.3, in order to obtain
singularity degree bounds for a larger class of spectrahedra.
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Theorem 4.4.8. Let F = F(A, b) and F̃ = F(Ã, b̃) be non-empty spectrahedra and let F̂
be as in (4.4.19). Then,

face
(
F̂
)

= face (F) ∩ face
(
F̃
)
6= ∅ =⇒ sd

(
F̂
)
≤ max

{
sd(F), sd

(
F̃
)}

.

Proof. Let us address three cases involving the Slater condition. In the first case, sd(F̂) = 0,
the result is trivially true. In the second case, suppose that sd(F) = 0 and sd(F̃) = 0. By
the hypothesis we have,

face
(
F̂
)

= face(F) ∩ face
(
F̃
)

= Sn+ ∩ Sn+ = Sn+,

and therefore sd(F̂) = 0, as desired. For the third, and final, case suppose that exactly
one of F and F̃ satisfies the Slater condition. Without loss of generality we may assume
that sd(F) > 0 and sd(F̃) = 0. Then,

face
(
F̂
)

= face(F) ∩ face
(
F̃
)

= face(F) ∩ Sn+ = face(F). (4.4.20)

Now let y1, . . . , yd be a facial reduction sequence for input (A, b) with d = sd(F). Then it
is not difficult to see that,

ŷk :=

(
yk

0

)
, k ∈ {1, . . . , d}, (4.4.21)

is a facial reduction sequence for input (Â, b̂). To see this let us just look at the first

iteration of Algorithm 1 for input (Â, b̂). We have,

Â∗
(
ŷ1
)

= A∗(y1) + Ã∗(0) = A∗(y1) ∈ Sn+ \ {0}, (4.4.22)

and, (
ŷ1
)T
b̂ =

(
y1
)T
b = 0. (4.4.23)

It follows that each ŷk is a suitable choice at each iteration of Algorithm 1 with input (Â, b̂).
After the final iteration we obtain an exposing vector for face(F) which, by (4.4.20), is also

an exposing vector for face(F̂), as desired.

Now that we have addressed the cases where at least one of F , F̃ , and F̂ satisfies the
Slater condition, we may assume that sd(F) > 0 and sd(F̃) > 0. Let y1, . . . , yd be a facial

reduction sequence for input (A, b) with d = sd(F) and let ỹ1, . . . , ỹd̃ be a facial reduction
sequence for input (Ã, b̃) with d̃ = sd(F̃). We may assume, without loss of generality,
that d ≥ d̃. Now let ŷ1, . . . , ŷd be defined as,

ŷk :=



(
yk

ỹk

)
if k ≤ d̃,(

yk

0

)
otherwise,

∀k ∈ {1, . . . , d}. (4.4.24)
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We claim that a subset of ŷ1, . . . , ŷd is a facial reduction sequence for input (Â, b̂), implying
the desired result. To see this, let V 1, . . . , V d be generated by Algorithm 1 with input (A, b)
and the facial reduction sequence y1, . . . , yd and let Ṽ 1, . . . , Ṽ d̃ be the analogous matrices
for the facial reduction sequence ỹ1, . . . , ỹd̃. Let us consider the first call to the while loop
of Algorithm 1 with input (Â, b̂). We have,

Â∗(ŷ1) = A∗(y1) + Ã∗(ỹ1) ∈ Sn+ \ {0}, (4.4.25)

and (
ŷ1
)T
b̂ =

(
y1
)T
b+

(
ỹ1
)T
b̃ = 0.

So ŷ1 is a suitable choice for the first iteration of the facial reduction algorithm. Now let V̂ 1

capture the nullspace of Â∗(ŷ1). Since A∗(y1) and Ã∗(ỹ1) are both positive semidefinite,
we may invoke Fact 2.1.1 (iii) and the definitions of V 1 and Ṽ 1 to get,

range
(
V̂ 1
)

= null
(
Â∗(ŷ1)

)
= null

(
A∗(y1)

)
∩ null

(
Ã∗(ỹ1)

)
= range

(
V 1
)
∩ range

(
Ṽ 1
)
.

Consequently,

range
(
F̂
)
⊆ range

(
V̂ 1
)

= range
(
V 1
)
∩ range

(
Ṽ 1
)
. (4.4.26)

The fact that (V 1)TA∗(y2)V 1 and (Ṽ 1)T Ã∗(ỹ2)Ṽ 1 are both positive semidefinite, together
with (4.4.26) gives us that,(

V̂ 1
)T
A∗(y2)V̂ 1 � 0 and

(
V̂ 1
)T
A∗(ỹ2)V̂ 1 � 0.

Therefore, (
V̂ 1
)T
Â∗(ŷ2)V̂ 1 � 0 and

(
ŷ2
)T
b̂ = 0. (4.4.27)

Now if we let Q̂2
2 capture the nullspace of (V̂ 1)T Â∗(ŷ2)V̂ 1 and define,

V̂ 2 := V̂ 1Q̂2
2.

As for the first iteration of the algorithm, we apply Fact 2.1.1 (iii) and recall the definitions
of V 2 and Ṽ 2 to see that,

range
(
V̂ 2
)

= null

((
V̂ 1
)T
Â∗(ŷ2)V̂ 1

)
= null

((
V̂ 1
)T
A∗(y2)V̂ 1

)
∩ null

((
V̂ 1
)T
Ã∗(ỹ2)V̂ 1

)
⊆ null

((
V 1
)T A∗(y2)V 1

)
∩ null

((
Ṽ 1
)T
Ã∗(ỹ2)Ṽ 1

)
= range

(
V 2
)
∩ range

(
Ṽ 2
)
.
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Consequently,

range
(
F̂
)
⊆ range

(
V̂ 2
)
⊆ range

(
V 2
)
∩ range

(
Ṽ 2
)
. (4.4.28)

We may continue in this fashion until we obtain V̂ d satisfying,

range
(
F̂
)
⊆ range

(
V̂ d
)
⊆ range

(
V d
)
∩ range

(
Ṽ d̃
)

= range(F) ∩ range
(
F̃
)
. (4.4.29)

Now the hypothesis, face(F̂) = face(F) ∩ face(F̃), implies that,

range
(
F̂
)

= range(F) ∩ range
(
F̃
)
. (4.4.30)

Thus (4.4.29) and (4.4.30) together imply the desired result.

We conclude this section by addressing a special case that proves useful later in this
thesis. Some algorithms used to solve SDPs are designed for instances where the optimal
set is bounded. To this end we show that an unbounded spectrahedron can be made
bounded without altering the singularity degree.

Theorem 4.4.9. Let F = F(A, b) be a non-empty and unbounded spectrahedron and

let X̄ ∈ relint(F). Define F̂ := F(Â, b̂) where,

Â(X) :=

(
A(X)
〈I,X〉

)
, b̂ :=

(
b

trace
(
X̄
)) .

Then F̂ is bounded and sd(F̂) = sd(F).

Proof. Clearly F̂ is bounded, as it is the restriction of F to those matrices X that sat-
isfy trace(X) = trace(X̄). In particular, X̄ ∈ relint(F) ∩ relint(F̂) and therefore,

face
(
F̂
)

= face(F).

By Lemma 4.4.7 it holds that sd(F̂) ≤ sd(F). Taking a similar approach to that of (4.4.16)
we may assume that,

face(F) =

[
Sr+ 0
0 0

]
.

Now let y1, . . . , yd be a facial reduction sequence for input (A, b) such that,(
Ak−1

)∗
(yk) ∈ relint

(
E
(
Ak−1, b

))
, ∀k ∈ {1, . . . , d}.

Then by Theorem 4.2.3 this is a minimum length facial reduction sequence. Hence d = sd(F).
We claim that ŷ1, . . . , ŷd where,

ŷk :=

(
yk

0

)
, ∀k ∈ {1, . . . , d},
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is a minimum length facial reduction sequence for input (Â, b̂). To this end, we show that,(
Âk−1

)∗
(ŷk) ∈ relint

(
E
(
Âk−1, b̂

))
, ∀k ∈ {1, . . . , d}. (4.4.31)

Suppose for the sake of contradiction that there exists a smallest integer k̄ such that (4.4.31)
fails. We may assume, as in (4.4.16), that,

V k̄−1 =

[
I
0

]
.

Then,

Âk̄−1 = ÂV k̄−1 =

(
ÂV k̄−1

〈
(
V k̄−1

)T
V k̄−1, ·〉

)
=

(
Âk̄−1

〈I, ·〉

)
.

Now suppose ŷ ∈ relint(E(Âk̄−1, b̂)) where ŷ =
(
yT γ

)T
. Then it holds that,

(
Ak̄−1

)∗
(y) + γI � 0,

yT b+ γ trace(X̄) = 0,

γ 6= 0.

Note that if γ = 0 then y ∈ relint(E(Ak̄−1, b)) and therefore,

rank
((
Âk̄−1

)∗
(ŷ)
)

= rank
((
Ak̄−1

)∗
(y)
)

≤ rank
((
Ak̄−1

)∗
(yk̄)

)
= rank

((
Âk̄−1

)∗
(ŷk̄)

)
,

(4.4.32)

a contradiction of the assumption that (4.4.31) does not hold for k̄. Now we claim
that γ > 0. Indeed, if γ < 0 then (Ak̄−1)∗(y) � 0 and we arrive at a contradiction as
in (4.4.32). Moreover, we may rescale, if necessary, so that γ = 1. It follows that,

yT b = − trace(X̄). (4.4.33)

Now we may assume that,

range
((
Âk̄−1

)∗
(ŷ)
)

= range

([
0
I

])
.

Then, (
Âk̄−1

)∗
(ŷ) =

(
Ak̄−1

)∗
(y) + I =

[
0 0
0 ∗

]
,
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where the upper left block of zeros is r × r. It follows that,

(
Ak̄−1

)∗
(y) =

[
−Ir 0

0 ∗

]
and A∗(y) =

−Ir 0 ∗
0 ∗ ∗
∗ ∗ ∗

 . (4.4.34)

Here Ir denotes the r×r identity. Since we have assumed that F is unbounded, Lemma 2.2.3
ensures the existence of non-zero X ∈ null(A) ∩ Sn+. By our assumption on the facial
structure of F and by (4.4.34) it holds that,

0 = 〈X,A∗(y)〉 =

〈[
X11 0
0 0

]
,

−Ir 0 ∗
0 ∗ ∗
∗ ∗ ∗

〉 = 〈X11,−I〉 < 0,

a contradiction. Thus (4.4.31) holds for all k ∈ {1, . . . , d}. Consequently ŷ1, . . . , ŷd is a

minimum length facial reduction sequence for input (Â, b̂). Therefore,

sd(F̂) = d = sd(F),

as desired.

4.5 Singularity Degree and Complementary Slackness

We have seen that sd(F) = 0 is quite a special case as it corresponds to the Slater condition.
Another special case, pointed out in [10], is that of sd(F) = 1. It is shown that instances
of SDP where the feasible set has singularity degree 1 are backward stable. That is, an
approximate solution to the problem is in fact an exact solution to a perturbation of the
original problem. Here we show that the case sd(F) = 1 corresponds to another special
case in the SDP literature, that of strict complementarity .

Recall the SDP problem from Section 2.6,

p? := inf 〈C,X〉,
(SDP ) s.t. A(X) = b,

X � 0,

and its dual,

d? := sup bTy,

(DSDP ) s.t. A∗(y) + Z = C,

Z � 0.

Let us denote the optimal sets of (SDP ) and (DSDP ) as P and D, respectively. We write
the sets out explicitly as,

P = {X ∈ Sn+ : A(X) = b, 〈C,X〉 = p?},

49



and,
D = {Z ∈ Sn+ : Z = C −A∗(y), bTy = d?, y ∈ Rm }.

Note that P is a spectrahedron, when p? is finite, and it is defined by (Â, b̂) where,

Â(X) :=

(
A(X)
〈C,X〉

)
and b̂ :=

(
b
p?

)
.

We begin with an elementary result regarding primal-dual optimality.

Lemma 4.5.1. Let P and D be the non-empty optimal sets of (SDP ) and (DSDP ),
respectively. Then

p? = d? ⇐⇒ 〈X?, Z?〉 = 0, ∀X? ∈ P , ∀Z? ∈ D.

Proof. Let X? ∈ P and Z? ∈ D. Then there exists y? ∈ Rm such that A∗(y?) + Z? = C.
It follows that,

p? = d? ⇐⇒ 〈C,X?〉 = (y?)T b

⇐⇒ 〈C,X?〉 = (y?)T A (X?)

⇐⇒ 〈C,X?〉 = 〈A∗ (y?) , X?〉
⇐⇒ 〈C,X?〉 = 〈C − Z?, X?〉
⇐⇒ 〈X?, Z?〉 = 0,

as desired.

The property 〈X?, Z?〉 = 0 is referred to as complementary slackness . We define a
special case of complementary slackness in the following.

Definition 4.5.2. Let P and D be the optimal sets of (SDP ) and (DSDP ), respectively.
We say that strict complementarity holds for (SDP ) and (DSDP ) if p? = d? and there
exists X? ∈ P and Z? ∈ D such that rank(X?) + rank(Z?) = n.

Now we describe the relationship between strict complementarity of (SDP ) and (DSDP )
and the singularity degree of P .

Theorem 4.5.3. Let P and D be the optimal sets of (SDP ) and (DSDP ), respectively.
Suppose that P and D are both non-empty, P does not have a Slater point, and p? = d?.
Then strict complementarity holds for (SDP ) and (DSDP ) if, and only if, sd(P) = 1.

Proof. By hypothesis there exist X? ∈ relint(P) and Z? ∈ relint(D). Let y? ∈ Rm such
that Z? = C − A∗(y?). Suppose strict complementarity holds for (SDP ) and (DSDP ).
By Definition 4.5.2 it follows that rank(X?)+rank(Z?) = n. Since we have assumed that P
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does not have a Slater point, the while loop of the facial reduction algorithm is called at
least once. We show that,

ŷ :=

(
−y?

1

)
is feasible for the first iteration of the facial reduction algorithm with input (Â, b̂) and
that A∗(ŷ) exposes face(P). First of all,

Â∗(ŷ) = −A∗(y?) + C = Z? � 0. (4.5.1)

Moreover, Z? 6= 0 since we have assumed that X? and Z? are strictly complementary
and X? is not positive definite. Secondly, applying Lemma 4.5.1 we have,

(ŷ)T b̂ = −(y?)T b+ p? = −〈A∗(y?), X?〉+ 〈X?, C〉 = 〈X?, Z?〉 = 0.

We have, thus shown that ŷ is a suitable choice for the first iteration of the facial re-
duction algorithm with input (Â, b̂). Moreover, the strict complementarity assumption
and Lemma 4.5.1 imply that Z? is an exposing vector for face(P). It follows, by (4.5.1)

that Â∗(ŷ) exposes face(P) and therefore sd(P) = 1, as desired.

Now for the converse, suppose that sd(P) = 1. By definition, there exists ŷ such that,

Â∗(ŷ) ∈ Sn+ \ {0} and ŷT b̂ = 0, (4.5.2)

and Â∗(ŷ) exposes face(P). This implies that for X? ∈ relint(P) we have,

rank
(
Â∗(ŷ)

)
+ rank(X?) = n and 〈Â∗(ŷ), X?〉 = 0. (4.5.3)

If we write ŷ =
(
yT γ

)T
for y ∈ Rm and γ ∈ R we may summarize (4.5.2) and (4.5.3) as,
A∗(y) + γC ∈ Sn+ \ {0},
yT b+ γp? = 0,

rank (A∗(y) + γC) + rank(X?) = n,

〈A∗(y) + γC,X?〉 = 0.

(4.5.4)

Now we consider three cases. First, suppose γ > 0. Then let us define,

Z :=
1

γ
(A∗(y) + γC) = C −A∗

(
−1

γ
y

)
.

Then the first equation of (4.5.4) implies that Z � 0 and therefore Z is feasible for (DSDP ).
Moreover, by the second equation in (4.5.4) we have,(

−1

γ
y

)T
b = −1

γ
yT b = −1

γ
γp? = p?.
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Therefore Z ∈ D. Now the third and fourth equations together imply that strict comple-
mentarity holds for (SDP ) and (DSDP ), as desired.

For the second case suppose γ = 0. In this case (4.5.4) simplifies to
A∗(y) ∈ Sn+ \ {0},
yT b = 0,

rank (A∗(y)) + rank(X?) = n,

〈A∗(y), X?〉 = 0.

(4.5.5)

Now let Z? = C −A∗(y?) ∈ D and define,

Z := Z? +A∗(y) = C −A∗(y? − y).

Note that Z � 0 as it is the sum of two positive semidefinite matrices. Moreover Z ∈ D
since,

(y? − y)T b = (y?)T b = d?.

It follows by Lemma 4.5.1 that complementary slackness holds for Z and X?. Thus in
particular,

rank(Z) ≤ n− rank(X?). (4.5.6)

On the other hand, invoking Fact 2.1.1 and (4.5.5) we have,

rank(Z) ≥ rank(A∗(y)) = n− rank(X?). (4.5.7)

Now (4.5.6) and (4.5.7) yield the desired result.

For the third, and final case, we assume that γ < 0. As above, let Z? = C−A∗(y?) ∈ D
and define,

Z := 2Z? +
−1

γ
(A∗(y) + γC) = C −A∗

(
2y? +

1

γ
y

)
.

Then by arguments similar to those used in the case γ = 0, it holds that Z ∈ D and that
strict complementarity holds for (SDP ) and (DSDP ), as desired.

One application of this theorem is in constructing instances of SDP with specified
singularity degree. Let us briefly describe the approach. In [85], the authors present an
approach for constructing SDPs with specified complementarity gap, defined as,

g(SDP ) := n− rank(P)− rank(D).

Assuming that the slater condition fails for SDP, the case g = 0 corresponds to strict com-
plementarity and Theorem 4.5.3 tells us that sd(P) = 1. Alternatively setting g(SDP ) > 0
yields sd(P) > 0. The code produced by [85], may therefore be modified to produce spec-
trahedra that satisfy sd(F) = 1, as well as, spectrahedra that satisfy sd(F) ≥ 2.
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4.6 Singularity Degree and Error Bounds in the Lit-

erature

Due to the connection between singularity degree and error bounds, we find it natural
to discuss the literature on these topics at the same time. For a more general treatment
of error bounds than presented thus far, let us consider a set S ∈ Sn and a residual
function R : Sn → R+. It is assumed that R(X) is easily computable and we view this
function as a proxy for the forward error of X relative to S. A Hölder error bound for S
in terms of R holds if there exists γ ∈ (0, 1] such that,

dist(X,S) = O (R(X)γ) , ∀X ∈ Sn.

Our ambient space is Sn, but more general spaces are considered in the literature. The
bound is referred to as Lipschitzian when γ = 1.

A classical result of Hoffman [35] states that when S is a polyhedron, i.e., a spectrahe-
dron where the positive semidefinite constraint is replaced by non-negativity, and when R
is the non-negativity analogue of εb, then a Lipschitzian error bound exists. Various ex-
tensions to general convex S and even non-convex S have subsequently been derived. We
suggest Lewis and Pang [44] and Pang [60], for an overview of such results.

For spectrahedra, Fact 4.3.1 guarantees a Lipschitzian error bound along the parametric
curve {X(α) : α > 0} whenever the Slater condition holds. Deng and Hu [15] and Azé
and Hiriart-Urruty [2] show that Lipschitzian error bounds exist for spectrahedra that
satisfy the Slater condition independent of a curve. In each of these papers an additional
assumption, such as boundedness, is made.

Luo, Sturm, and Zhang [50] show that along the classical central path of SDP a Lip-
schitzian error bound exists when strict complementarity holds. By Theorem 4.5.3 this
corresponds to spectrahedra with singularity degree 1. This special case is better than
the bound of Sturm, Fact 4.3.1, for general spectrahedra with singularity degree 1. Error
bounds along the central path are also studied by Chua [11], where a Lipschitzian error
bound is shown to exist under the assumption of strict complementarity. This result differs
from that of Luo, Sturm, and Zhang in that Chua takes R to be the duality gap between
the primal and dual central paths. More recently, Mohammad-Nezhad and Terlaky [55] use
the bounds of Sturm to derive Hölder bounds for the optimal partition along the central
path. Their approach bares some resemblance to our approach and we address this more
specifically in Chapter 6.

In [63], Pataki introduces two families of SDPs that have positive duality gaps and
proves some interesting results. He shows that the singularity degree of the feasible set of
these SDPs is m − 1, where m denotes the number of constraints defining A, as in our
setting. For the problems he considers, m ∈ {n − 2, n/2}. He also proves, for general
SDPs, that if the singularity degree of the feasible set is m, then the duality gap is zero.
Drusvyastkiy, Li, and Wolkowicz [17] use the bounds of Sturm to derive error bounds
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for iterates of the alternating projections algorithm applied to spectrahedra. They also
prove that problems with singularity degree 1 are generic. In [46], Lourenço introduces
a remarkable generalization of the error bounds of Sturm to a new class of closed convex
cones, that he calls amenable cones.
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Chapter 5

Bounds on Forward Error and
Singularity Degree

The theoretical upper bound on forward error, as stated in Fact 4.3.1, is useful in identifying
classes of spectrahedra for which forward error is not too much larger than backward error.
For instance, when sd(F) = 0 or F = {0} we can be sure that forward error is of the same
magnitude as backward error. However, upper bounds alone can not be used to detect
instances where forward error is much larger than backward error. In this chapter we
present an algorithm to obtain a lower bound for forward error. The results of Section 5.1.1
and Section 5.2 are based largely on the preprint [74], coauthored by the author of this
thesis.

To avoid well-behaved scenarios, we make the following assumption.

Assumption 5.0.1. Let F = F(A, b) be a non-empty spectrahedron with sd(F) ≥ 1
and F 6= {0}.

Our analysis in this section is based on path-following algorithms. The foundation of
such algorithms is the central path, a smooth parametric curve, say {X(α) : α > 0}, that
is known to converge to an element of F . Specifically we mean that,

lim
α↘0

X(α) = X̄ ∈ F . (5.0.1)

A path-following algorithm is used to produce a sequence of positive numbers {αk} and
matrices {Xk} such that αk is successively closer to 0 and Xk is a successively better
approximation of X(αk). In other words, the iterates {Xk} approach F along a trajectory
that approximates the central path. We make the following minimal assumptions on the
central path.

Assumption 5.0.2. Let F = F(A, b) be a spectrahedron satisfying Assumption 5.0.1 and
let {X(α) : α > 0} be a central path with limit point X̄. We assume that,
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(i) X(α) � 0 for all α > 0,

(ii) X̄ ∈ relint(F).

Many of the well-known algorithms for SDP are based on central paths that satisfy this
assumption. A key component to our approach is estimating the rank of the limit point X̄.
We have devoted Section 5.1 to this discussion. In Section 5.2, we use the bound on rank
to obtain lower bounds on forward error and singularity degree.

5.1 A Bound on Maximum Rank

Smoothness of the central path {X(α) : α > 0} implies that smooth functions of the central
path are also smooth. In particular the eigenvalue function λi(X(α)), with i ∈ {1, . . . , n},
is contiuous with limit point λi(X̄). Therefore, in order to determine the rank of X̄ it
suffices to find all indices i for which λi(X(α)) is bounded away from 0. The challenge
with this approach is that when λi(X(α)) is small, it is not clear whether the limit point
is a small positive number or 0. An upper bound on rank may be obtained by the largest
index i for which it is not clear that λi(X(α)) converges to 0. This bound may be quite
poor. For this reason we consider compositions of eigenvalue functions that amplify the
difference between those eigenvalues that converge to 0 and those that do not.

Our first approach is the ratio of subsequent eigenvalues,

Ri(α) :=
λi(X(α))

λi+1(X(α))
, i ∈ {1, . . . , n− 1}. (5.1.1)

Assumption 5.0.2 ensures that Ri(α) is well-defined for every i and α > 0. The ratios that
blow up indicate one of two scenarios. The first scenario is that both eigenvalues converge
to 0, but λi+1(X(α)) does so much more quickly. The second is that λi(X(α)) converges
to a positive value and λi+1(X(α)) vanishes. This only happens when i corresponds to the
rank of the limit point X̄. We state this observation formally in the following.

Lemma 5.1.1. Let {X(α) : α > 0} be a central path satisfying Assumption 5.0.2 for a
spectrahedron F = F(A, b) satisfying Assumption 5.0.1. Let i ∈ {1, . . . , n − 1} be the
smallest integer for which Ri(α)→ +∞. Then rank(X̄) = i.

Analysis of Ri(α) presents similar challenges to analysis of the eigenvalue functions,
in that it may be difficult to determine whether Ri(α) converges to a large number or
blows up. We may also encounter the case that Ri(α) blows up slowly so that it appears
bounded. As for the eigenvalue functions, an upper bound on rank(X̄) may be obtained
by the smallest index i for which it is clear that the ratio blows up.

Having addressed the challenges of differentiating between 0 and small numbers, as
well as infinity and large numbers, it would be desirable to construct a measure, say ri(α),
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for which there is a positive difference (for α sufficiently small) between ri(α) and rj(α)
whenever i ≤ rank(X̄) and j > rank(X̄). In other words, there exist real numbers τ1 and τ2

such that τ1 is ‘discernibly larger’ than τ2 and for α sufficiently small it holds that,

ri(α) =

{
≥ τ1 if i ≤ rank(X̄),

≤ τ2 otherwise.
(5.1.2)

The numerical challenge is lessened under such a measure since we are asked to differentiate
between two finite numbers that are sufficiently different from each other. In Section 5.1.1
and in Section 5.1.2 we present two measures that satisfy (5.1.2) morally. Our approach is
motivated, in part, by the Tapia indicator [22, 78], used to identify zero variables in linear
program.

5.1.1 Eigenvalue Q-Convergence Ratio

Let σ ∈ (0, 1) and let {σk}k∈N be a sequence of powers of σ. Then we define the eigenvalue
Q-convergence ratio as,

Qi,σ(k) :=
λi
(
X
(
σk+1

))
λi (X (σk))

, i ∈ {1, . . . , n}. (5.1.3)

Referring to Qi,σ as the Q-convergence ratio is somewhat abusive of the term. When λi(α)
converges to 0, Qi,σ is the ratio that defines the so-called Q-convergence rate, see for
instance [59]. But when λi(α) converges to a positive number, Qi,σ is not the ratio for Q-
convergence. Since Qi,σ is not a function of α, it does not posses all of the properties
of (5.1.2). However, we will show that it satisfies (for the most part) the sequence analogue
of (5.1.2). To analyze Qi,σ, we begin by translating Fact 4.3.2 into a statement about the
eigenvalues of X(α).

Lemma 5.1.2. Let F = F(A, b) be a spectrahedron that satisfies Assumption 5.0.1 and
let {X(α) : α > 0} be a central path for F that satisfies Assumption 5.0.2 and suppose
that εb(X(α),F) = O(α). Let Z1, . . . , Zsd(F) be generated by Algorithm 1 for input (A, b)
such that each Zi is chosen to have maximum rank. Let qi := rank(Zi) and let r denote
the rank of F . Let I0, I1, . . . , Isd(F) form a partition of {1, . . . , n} such that,

I0 = {1, . . . , r}, I1 = r + {1, . . . , q1}, I2 = r + q1 + {1, . . . , q2}, . . . .

Then, for j ∈ {1, . . . , n} it holds that for sufficiently small α > 0,

j ∈ I i =⇒ λj(X(α)) =

{
Θ(1) if i = 0,

O
(
αξ(i)

)
otherwise,

where ξ(i) := 2−(sd(F)−i).
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Proof. By assumption, X(α) → X̄ ∈ relint(F) and rank(X̄) = r. Therefore, the r
largest eigenvalues of X(α) converge to positive numbers. It follows that for sufficiently
small α > 0,

j ∈ I0 =⇒ λj(X(α)) = Θ(1),

proving one part of the desired result.

Next, by Fact 4.3.2 there exists an orthogonal Q such that,

face(QFQT ) =

[
Sr+ 0
0 0

]
and QX(α)QT =


X0(α) ∗ · · · ∗
∗ X1(α)
...

. . . ∗
∗ ∗ ∗ Xsd(F)(α)

 ∀α > 0,

(5.1.4)
where X0(α) ∈ Sr and for all i ∈ {1, . . . , sd(F)} it holds that,

Xi(α) ∈ Sqi and ‖Xi(α)‖ = O
(
αξ(i)

)
. (5.1.5)

Now let i ∈ {1, . . . , sd(F)} and let j ∈ I i. Consider the principal submatrix of QX(α)QT ,

S(α) :=

Xi(α) · · · ∗
...

. . .
...

∗ · · · Xsd(F)(α)

 . (5.1.6)

By Assumption 5.0.2 it holds that X(α) � 0 and therefore S(α) � 0. Thus by (5.1.5) we
have,

‖S(α)‖ = O
(

max
`∈{i,... ,sd(F)

‖X`(α)‖
)

= O
(
αξ(i)

)
. (5.1.7)

Then by interlacing eigenvalues (Fact 2.1.2) and by (5.1.7) we have,

λj(X(α)) ≤ λ1(S(α)) = O (‖S(α)‖) = O
(
αξ(i)

)
,

as desired.

In this result we have obtained, for each eigenvalue function λj(X(α)), a corresponding
upper bound function αξ(i). This upper bound function is simple in form and it is easy to
compute the rate of Q-convergence of this function along the sequence {σk}. Indeed, the
rate is constant and evaluated as, (

σk+1
)ξ(i)

(σk)ξ(i)
= σξ(i).

While the Q-convergence rate of the eigenvalue function itself, captured by the limit
of Qi,σ(k), may not be easy to compute, the following technical lemma allows us to re-
late the two.
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Lemma 5.1.3. Let {ak}k∈N and {bk}k∈N be sequences of positive reals such that ak → 0
and bk → 0. If ak ≤ bk for all k ∈ N then,

lim inf
k→∞

ak+1

ak
≤ lim sup

k→∞

bk+1

bk
. (5.1.8)

Proof. Let La and Lb denote the limit inferior and limit superior of (5.1.8), respectively.
For simplicity we assume that La and Lb are finite, but the arguments extend to the
general case trivially. Suppose for the sake of contradiction that there exists τ > 0 such
that La − τ ≥ Lb. Then there exists k̄ ∈ N such that for all k ≥ k̄,

ak+1

ak
≥ La −

τ

3
and

bk+1

bk
≤ La −

τ

2
(5.1.9)

Rearranging the first equation in (5.1.9) gives us,

ak+1 ≥ ak

(
La −

τ

3

)
, ∀k ≥ k̄. (5.1.10)

Replacing k with k − 1 we get that,

ak ≥ ak−1

(
La −

τ

3

)
, ∀k ≥ k̄ + 1. (5.1.11)

Combining (5.1.10) with (5.1.11) yields,

ak+1 ≥ ak−1

(
La −

τ

3

)2

, ∀k ≥ k̄ + 1.

Continuing in this fashion we get,

ak ≥ ak̄

(
La −

τ

3

)k−k̄
=

ak̄(
La − τ

3

)k̄ (La − τ

3

)k
, ∀k ≥ k̄. (5.1.12)

Through an analogous approach applied to the second equation of (5.1.9) we get,

bk ≤
bk̄(

La − τ
2

)k̄ (La − τ

2

)k
, ∀k ≥ k̄. (5.1.13)

Combining the hypothesis that bk dominates ak with (5.1.12) and (5.1.13) we get,

bk̄(
La − τ

2

)k̄ (La − τ

2

)k
≥ ak̄(

La − τ
3

)k̄ (La − τ

3

)k
, ∀k ≥ k̄. (5.1.14)

Observe that Lb ≥ 0 since bk ≥ 0 for every k ∈ N. Therefore, La − τ ≥ 0 and we have,

La −
τ

3
> La −

τ

2
> 0.

It follows that for sufficiently large k, the inequality in (5.1.14) is violated, giving us the
desired contradiction.
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Now we are ready to state the main result of this section.

Theorem 5.1.4. Let F = F(A, b) be a spectrahedron that satisfies Assumption 5.0.1 and
let {X(α) : α > 0} be a central path for F that satisfies Assumption 5.0.2 and suppose
that εb(X(α),F) = O(α). Let I0, I1, . . . , Isd(F) be a partition of {1, . . . , n} as constructed
in Lemma 5.1.2. Let σ ∈ (0, 1) and let Qj,σ(k) be as in (5.1.3). Then the following hold.

(i) If j ∈ I0 then,
lim
k→∞

Qj,σ(k) = 1.

(ii) If j ∈ I i with i ∈ {1, . . . , sd(F)} then,

lim inf
k→∞

Qj,σ(k) ≤ σξ(i) < 1,

where ξ(i) := 2−(sd(F)−i).

Proof. By Assumption 5.0.2 and the definition of I0 we have that λj(X(σk)) converges,
in k, to a positive number whenever j ∈ I0. The proof of (i) follows immediately.

Now let j ∈ I i with i ∈ {1, . . . , sd(F)}. By Lemma 5.1.2 we have,

λj(X(σk)) = O
((
σk
)ξ(i))

, ∀k ∈ N. (5.1.15)

Thus there existsM > 0 such that λj(X(σk)) ≤Mσkξ(i). Now the sequences {λj(X(σk))}k∈N
and {Mσkξ(i)}k∈N satisfy the assumptions of Lemma 5.1.3. Therefore,

lim inf
k→∞

Qj,σ(k) = lim inf
k→∞

λj(X(σk+1))

λj(X(σk))
≤ lim sup

k→∞

Mσ(k+1)ξ(i)

Mσkξ(i)
= σξ(i).

Lastly σξ(i) < 1 holds since, σ ∈ (0, 1) and ξ(i) > 0.

Theorem 5.1.4 does not completely have the desired form of (5.1.2) due to the limit infe-
rior. Nonetheless, the theorem provides a way to distinguish between eigenvalue functions
that converge to 0 and those that do not, as emphasized in the following.

Corollary 5.1.5. Let F = F(A, b) be a spectrahedron that satisfies Assumption 5.0.1
and let {X(α) : α > 0} be a central path for F that satisfies Assumption 5.0.2 and suppose
that εb(X(α),F) = O(α). Let r denote the maximum rank over F and let σ ∈ (0, 1). Then,

lim inf
k→∞

Qi,σ(k) =

{
1 if i ≤ r,

≤ σξ(1) otherwise.
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The number σξ(1) serves as a threshold so that limit inferiors of the eigenvalue ratios
lie below this number if, and only if, those eigenvalues converge to 0. For large singularity
degree, it may be difficult to distinguish σξ(1) from 1, numerically. However, if we can
identify another number, say τ ∈ (0, 1), that is numerically distinguishable from 1 and
there exists a positive integer r such that,

lim inf
k→∞

Qi,σ(k) ≤ τ ⇐⇒ i > r,

then r is an upper bound on the maximum rank, r, over F . We state this result formally
in the following.

Corollary 5.1.6. Let F = F(A, b) be a spectrahedron that satisfies Assumption 5.0.1
and let {X(α) : α > 0} be a central path for F that satisfies Assumption 5.0.2 and sup-
pose that εb(X(α),F) = O(α). Let r denote the maximum rank over F and let σ ∈ (0, 1).
Suppose there exists τ ∈ (0, 1) and r ∈ {1, . . . , n} such that

lim inf
k→∞

Qi,σ(k) ≤ τ ⇐⇒ i > r.

Then r ≥ r.

Remark 5.1.7. In the results of this section we require knowledge of εb(X(α),F). When F
is the solution set of an SDP, as P is in Section 4.5, and C in the objective function is not
the zero matrix, computing backward error requires us to know the optimal value p?. Since
we can not expect to know p?, backward error may be intractable. Therefore, it may be
challenging to determine whether a central path satisfies the hypothesis of Theorem 5.1.4.
However, primal-dual algorithms actually construct a central path that consists of both
primal and dual variables and has the form,

{(X(α), y(α), Z(α)) ∈ Sn++ × Rm × Sn++ : α > 0}.

Using this path, there is a tractable way to ensure that the backward error for X(α) is suffi-
ciently small as required in the hypothesis of the results of this section. Indeed, in Section 4
of [77], Sturm showed that if,

dist (X(α), {X : A(X) = b})
+ dist ((y(α), Z(α)), {(y, Z) : A∗(y) + Z = C})

+ dist
(
(X(α), Z(α)),Sn+ × Sn+

)
+ 〈X(α), Z(α)〉 = O(α),

as α↘ 0, then εb(X(α),F) = O(α) as α↘ 0.

5.1.2 Sum of Eigenvalues Q-Convergence Ratio

Is it possible to strengthen the results of the previous section by making additional as-
sumptions on the eigenvalue functions? What if we assume that each λi(X(α)) is concave
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or convex? To this end we consider a relative of the eigenvalue function: the sum of the
smallest eigenvalues,

µi(X(α)) :=
n∑
j=i

λj(X(α)). (5.1.16)

For each i ∈ {1, . . . , n} the function X 7→ µi(X) is known to be concave by the min-
max principle of Fan, [24]. Concavity of α 7→ µi(X(α)) depends on the parametriza-
tion α 7→ X(α). While it is possible to construct parametrizations such that µi(X(α)) is
not concave, we have observed that these functions tend to be concave when X(α) is the
central path of Chapter 6.

The function µi(X(α)) possesses two properties of λi(X(α)) that lead to the results of
the previous section. First, µi(X(α)) has similar convergence to λi(X(α)) since,

lim
α↘0

µi(X(α)) = 0 ⇐⇒ lim
α↘0

λi(X(α)) = 0. (5.1.17)

Secondly, when j ∈ I i with i ∈ {1, . . . , sd(F)} it holds that,

µj(X(α)) = O
(
αξ(i)

)
. (5.1.18)

With the above reasons in mind, let us define the sum of eigenvalues Q-convergence ratio,
for σ ∈ (0, 1) and k ∈ N as,

Si,σ(k) :=
µi
(
X
(
σk+1

))
µi (X (σk))

, i ∈ {1, . . . , n}. (5.1.19)

The properties of (5.1.17) and (5.1.18) imply that Theorem 5.1.4 may be restated with Qi,σ

replaced by Si,σ. In this section we strengthen that result by assuming that µi(X(α)) is
concave. We begin with a technical lemma.

Lemma 5.1.8. Let ψ : R+ → R+ be concave with ψ(0) = 0 and ψ(R++) ⊆ R++. Suppose

there exists M > 0 such that ψ(x) ≤Mx for all x ∈ R+. Then there exists M̂ ∈ R such
that,

(i) limx↘0
ψ(x)
x

= M̂ ,

(ii) 0 ≤ M̂ ≤M ,

(iii) ψ(x) ≤ M̂x for all x ∈ R+.

Proof. Let y and x be positive numbers satisfying y < x. Since ψ is concave and ψ(0) = 0,
it holds that (y, ψ(y)) lies above (or on) the line connecting the origin and (x, ψ(x)).
Therefore,

ψ(y)

y
≥ ψ(x)

x
. (5.1.20)
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It follows that the function ψ(x)/x is monotonically non-increasing over R++. More-
over, ψ(x)/x is bounded from above since,

ψ(x)

x
≤ Mx

x
= M.

Therefore, there exists a positive number M̂ such that,

lim
x↘0

ψ(x)

x
= M̂, (5.1.21)

proving (i).

Next, observe that M and M̂ are both upper bounds of the image of R++ under the

function ψ(x)/x. By the monotonicity of ψ(x)/x and (5.1.21) it follows that M̂ is the least
upper bound, implying (ii). This observation also yields (iii), since for any x > 0 it holds
that,

ψ(x)

x
≤ M̂ =⇒ ψ(x) ≤ M̂x.

The main result of this section is the following.

Theorem 5.1.9. Let F = F(A, b) be a spectrahedron that satisfies Assumption 5.0.1
and let {X(α) : α > 0} be a central path for F that satisfies Assumption 5.0.2 and sup-
pose that εb(X(α),F) = O(α). Assume, furthermore, that µj(X(α)) is concave in α for
all j. Let I0, I1, . . . , Isd(F) be a partition of {1, . . . , n} as constructed in Lemma 5.1.2.
Let σ ∈ (0, 1) and let Sj,σ(k) be as in (5.1.19). Then the following hold.

(i) If j ∈ I0 then,
lim
k→∞

Sj,σ(k) = 1.

(ii) If j ∈ I i with i ∈ {1, . . . , sd(F)} then,

lim inf
k→∞

Sj,σ(k) ∈ [σ, σξ(i)].

(iii) If j ∈ Isd(F) then,
lim
k→∞

Sj,σ(k) = σ.
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Proof. First note that (i) is a direct implication of Theorem 5.1.4 (i). For (ii), let i
and j be as in the hypothesis. We have already argued that Qi,σ may be replaced by Si,σ
in Theorem 5.1.4. Therefore it holds that,

lim inf
k→∞

Sj,σ(k) ≤ σξ(i). (5.1.22)

Now the concavity of µj(X(·)) over R+ implies that (σk+1, µj(X(σk+1))) lies above the line
connecting the origin to (σk, µj(X(σk))), for every k ∈ N. Therefore for all k ∈ N it holds
that,

µj(X(σk+1))

σk+1
≥ µjX(σk))

σk
=⇒ µj(X(σk+1)) ≥ µj(X(σk))σ =⇒ Sj,σ(k) ≥ σ. (5.1.23)

Then (5.1.22) and (5.1.23) imply (ii).

Lastly, we prove (iii). Let j ∈ Isd(F). From (ii) it holds that,

lim inf
k→∞

Sj,σ(k) = σ.

For the sake of contradiction, suppose that the limit superior of the sequence differs from σ.
Then there exists ε > 0 and a subsequence {k`}`∈N such that,

Sj,σ(k`) ≥ σ + ε, ∀` ∈ N. (5.1.24)

Rearranging (5.1.24) and recalling that µj(X(α)) = O(α) it holds that there exists M > 0
such that,

(σ + ε)µj(X(σk`)) ≤ µj(X(σk`+1)) ≤Mσk`+1, ∀` ∈ N. (5.1.25)

Moreover, by Lemma 5.1.8 we may assume M is such that,

lim
k→∞

µj(X(σk))

σk
= M. (5.1.26)

Rearranging (5.1.25) yields,

µj(X(σk`))

σk`
≤ σ

σ + ε
M < M, ∀` ∈ N,

a contradiction of (5.1.26).

When every sequence Sj,σ(k) has a limit in k, we get a cleaner version of Theorem 5.1.9.

Corollary 5.1.10. Let F = F(A, b) be a spectrahedron that satisfies Assumption 5.0.1
and let {X(α) : α > 0} be a central path for F that satisfies Assumption 5.0.2 and sup-
pose that εb(X(α),F) = O(α). Assume, furthermore, that µj(X(α)) is concave in α for
all j. Let σ ∈ (0, 1), let Sj,σ(k) be as in (5.1.19), and let r := rank(F). Suppose that for
each j ∈ {1, . . . , n} there exists Lj ∈ R such that,

lim
k→∞

Sj,σ(k) = Lj.

Then,
σ = Ln ≤ · · · ≤ Lr+1 ≤ σξ(1) < Lr = · · · = L1 = 1.
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In general we cannot guarantee that every sequence Sj,σ(k) converges in k. For this
reason ‘lim inf’ cannot be replaced by ‘lim’ in Theorem 5.1.9. We address this further
in Section 5.1.3, where we construct a family of functions that possesses properties similar
to that of µi(X(α)), but the ratio of successive function values along the sequence {σk},
does not converge.

A special case to consider is that of sd(F) = 1. Here every Sj,σ(k) belongs to case (i)
or (iii) of Theorem 5.1.9, yielding the following result.

Corollary 5.1.11. Let F = F(A, b) be a spectrahedron that satisfies Assumption 5.0.1
and let {X(α) : α > 0} be a central path for F that satisfies Assumption 5.0.2 and suppose
that εb(X(α),F) = O(α). Assume, furthermore, that µj(X(α)) is concave in α for all j.
Let σ ∈ (0, 1), let Sj,σ(k) be as in (5.1.19), and let r := rank(F). Then,

sd(F) = 1 =⇒ lim
k→∞

Sj,σ(k) =

{
1, if i ≤ r,

σ, if i > r.

5.1.3 An Interesting Family of Functions

In this section we construct a function ψ(α) that behaves like µi(X(α)) in case (ii)
of Theorem 5.1.9, but the ratio ψ(σk+1)/ψ(σk) does not converge. The relevant prop-
erties of µi(X(α)) are that it is concave, it maps positive values to positive values and 0
to 0, it is bounded above by αp for some p ∈ (0, 1), and it is not bounded above by a linear
function, otherwise we could obtain the result of case (iii) of Theorem 5.1.9.

Now to construct our function, let σ, p, θ ∈ (0, 1). We construct a piecewise linear
function,

ψ : [0, σ]→ R+,

with the properties,

(i) ψ(0) = 0 and ψ((0, σ]) ⊂ R++,

(ii) ψ is concave and non-decreasing,

(iii) ψ(x) ≤ xp over [0, σ],

(iv) there does not exist ε ∈ (0, σ] and M ≥ 0 such that ψ(x) ≤Mx over [0, ε],

(v) the sequence ψ(σk+1)/ψ(σk) for odd k has cluster points in (σp, 1],

(vi) the same sequence for even k has cluster points in [0, σp).

Note that (i)-(iv) are exactly the properties we identified for µi(X(α)), with the addition
of the non-decreasing assumption. But this is not really an assumption as it necessarily
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exists in some neighbourhood of 0 by the assumption of concavity. The last two properties
ensure that the limit of ψ(σk+1)/ψ(σk) does not exist.

It suffices to describe ψ at the ‘breaking points’, which we choose to be σ, σ2, σ3, . . ..
We begin with

ψ(σ) = θσp, ψ(σ2) = min{ψ(σ1), (σ2)p}.
There may be many values that ψ(σ3) can take and still satisfy the first two of the desired
properties. For ψ to be concave and non-decreasing over [σ3, σ] we need (σ3, ψ(σ3)) to lie
below the line that passes through (σ, ψ(σ)) and (σ2, ψ(σ2)). We also need ψ(σ3) ≤ (σ3)p

in order for (iii) to hold. These two conditions give the upper bound,

ψ(σ3) ≤ u3 := min

{
ψ(σ2)− σψ(σ)

1− σ
, σ3p

}
. (5.1.27)

We also need a lower bound so that (iv) holds. In particular, (σ3, ψ(σ3)) should lie strictly
above the line connecting (0, 0) and (σ2, ψ(σ2)), i.e., ψ(σ3) > σψ(σ2). We actually impose
the more restrictive lower bound,

ψ(σ3) ≥ u3 := θu3 + (1− θ)σψ(σ2). (5.1.28)

Now any choice of ψ(σ3) ∈ [u3, u3] ensures that properties (ii) and (iii) hold on the inter-
val [σ3, σ]. These bounds easily extend to ψ(σk) for any k ≥ 3:

uk := min

{
ψ(σk−1)− σψ(σk−2)

1− σ
, σkp

}
,

uk := θuk + (1− θ)σψ(σk−1).

(5.1.29)

In order to satisfy (v) and (vi) we alternate between uk and uk for the value of ψ(σk).
Specifically, for k ≥ 3,

ψ(σk) :=

{
uk if k is odd,

uk if k is even.
(5.1.30)

Having defined ψ for all positive elements of the domain, we conclude the construction by
setting ψ(0) := 0. With this construction it is not difficult to verify that conditions (i)
through (iv) hold. Since it may not be obvious that ψ is concave, we have included the
following result.

Proposition 5.1.12. Let [a, b] ⊂ R with a < b and let φ : [a, b] → R be a continuous
piecewise linear function with breaking points,

a = c1 < c2 < · · · < cN = b,

for some positive integer N > 1. Then φ is convex if, and only if,

φ(ck+1) ≤ tφ(ck) + (1− t)φ(ck+2), ∀k ∈ {1, . . . , N − 2}, (5.1.31)

where t ∈ (0, 1) satisfies ck+1 = tck + (1− t)ck+2.
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Proof. The forward direction is trivial. For the converse, we show that φ is the maxi-
mum of finitely many affine functions, and therefore convex. For each k ∈ {1, . . . , N − 1},
let φk : R→ R denote the affine function such that φ(x) = φk(x) on [ck, ck+1]. We now
prove the claim that,

φ(x) = max
i∈{1,... ,N−1}

φi(x), (5.1.32)

on [a, b]. Convexity of φ is then implied by Theorem 5.5 of [71]. First we show that for
any k ∈ {1, . . . , N − 2} the claim of (5.1.32) holds on the interval [ck, ck+2] with i restricted
to {k, k+ 1}. Since φk and φk+1 are affine, there exist real numbers mk,mk+1, bk, bk+1 such
that φk(x) = mkx+ bk and φk+1(x) = mk+1x+ bk+1. Then rearranging (5.1.31) we have,

φ(ck+2) ≥ 1

1− t
(φ(ck+1)− tφ(ck))

=
1

1− t
(mkck+1 + bk − t(mkck + bk))

=
1

1− t
(mk(tck + (1− t)ck+2) + bk − t(mkck + bk))

= mkck+2 + bk

= φk(ck+2).

Since φ(ck+2) = φk+1(ck+2) and φk+1 coincides with φk at ck+1, and ck+1 < ck+2, we conclude
that mk+1 ≥ mk. Therefore, φk ≥ φk+1 over [ck, ck+1] and φk+1 ≥ φk over [ck+1, ck+2]. It
follows that,

φ(x) = max
i∈{k,k+1}

φi(x), (5.1.33)

for x ∈ [ck, ck+2]. By induction we have that m1 ≤ m2 ≤ · · · ≤ mN−1. Then (5.1.33) easily
extends to (5.1.32), as desired.

Since convexity and concavity are interchangeable for our purposes, this result ensures
that ψ is concave as long as it is concave on every interval of the form [σk+2, σk]. We know
this property holds for ψ, by construction.

While Proposition 5.1.12 only addresses the case of finitely many break points, it easily
extends to the case of ψ, where there are infinitely many break points. To see this, note that
the proposition ensures that ψ is concave on [σk, σ] for every k ∈ N. Now let α1, α2 ∈ [0, σ]
and let t ∈ (0, 1). For ψ to be concave we need,

ψ(tα1 + (1− t)α2) ≥ tψ(α1) + (1− t)ψ(α2). (5.1.34)

Without loss of generality, we may assume that α1 < α2. Moreover, we may assume α1 = 0,
otherwise the line segment tα1 + (1 − t)α2 belongs to [σk̄, σ] for some k̄ ∈ N, imply-
ing (5.1.34). Then (5.1.34) reduces to,

ψ((1− t)α2) ≥ (1− t)ψ(α2). (5.1.35)
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For every k ∈ N it holds that,

ψ(tσk + (1− t)α2) ≥ tψ(σk) + (1− t)ψ(α2). (5.1.36)

Taking the limit of both sides as k →∞ yields (5.1.34), as desired.

We have now shown that ψ possesses all the relevant properties of µi(X(α)) in case (ii)
of Theorem 5.1.9. All that remains is to prove that (v) and (vi) hold. We break the
argument into two claims.

Proposition 5.1.13. Let σ, p, θ ∈ (0, 1) be fixed. If uk = σkp for every k ≥ 3 then,

ψ(σk+1)

ψ(σk)
=

{
σp

θ+(1−θ)σ1−p if k is odd,

θσp + (1− θ)σ if k is even.

In particular, for even k, the sequence ψ(σk+1)/ψ(σk) is constant and strictly smaller
than σp. While for odd k, the sequence is constant and strictly greater than σp.

Proof. When k is odd,

ψ(σk+1)

ψ(σk)
=
uk+1

uk

=
σ(k+1)p

θuk + (1− θ)σψ(σk−1)

=
σ(k+1)p

θσkp + (1− θ)σσ(k−1)p

=
σp

θ + (1− θ)σ1−p ,

as desired. The denominator is strictly smaller than 1, therefore the ratio is strictly greater
than σp. For even k,

ψ(σk+1)

ψ(σk)
=
uk+1

uk

=
θuk+1 + (1− θ)σψ(σk)

σkp

=
θσ(k+1)p + (1− θ)σσkp

σkp

= θσp + (1− θ)σ.

Since θ ∈ (0, 1) the ratio lies strictly between σ and σp. Moreover, p ∈ (0, 1) so σ < σp and
thus the ratio is constant and strictly less than σp.

To conclude the example, it suffices to show the existence of σ, θ, p ∈ (0, 1) such that σkp

is the choice for uk, for every k ≥ 3.
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Proposition 5.1.14. Let σ, θ, p ∈ (0, 1). Then,

θ = σp
(

1− σ
1− σ1−p

)
, σ1−p + σp − σ1+p < 1 =⇒ uk = σkp, ∀k ≥ 3.

Proof. By (5.1.29) it suffices to show that,

σkp ≤ ψ(σk−1)− σψ(σk−2)

1− σ
,

whenever k ≥ 3. We proceed by induction on k. Let θ and σ be as in the hypothesis. By
construction and the choice of θ we have,

ψ(σ) = σ2p

(
1− σ

1− σ1−p

)
and ψ(σ2) = σ2p.

For the base case, k = 3, we have,

ψ(σ2)− σψ(σ)

1− σ
=
σ2p − σσ2p

(
1−σ

1−σ1−p

)
1− σ

= σ2p

(
1− σ

(
1−σ

1−σ1−p

)
1− σ

)
.

Then,

ψ(σ2)− σψ(σ)

1− σ
≥ σ3p ⇐⇒ σ2p

(
1− σ

(
1−σ

1−σ1−p

)
1− σ

)
≥ σ3p

⇐⇒
1− σ

(
1−σ

1−σ1−p

)
1− σ

≥ σp

⇐⇒ 1− σ
(

1− σ
1− σ1−p

)
≥ σp(1− σ)

⇐⇒ 1 ≥ (1− σ)

(
σp +

σ

1− σ1−p

)
⇐⇒ 1 ≥ σp

(
1− σ

1− σ1−p

)
⇐⇒ 1 ≥ θ.

Since θ ∈ (0, 1) it holds that uk = σkp when k = 3. Now we address the even and odd cases
separately. Let k ≥ 4 be even and assume that the claim holds for all smaller integers.
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Then,

ψ(σk−1)− σψ(σk−2)

1− σ
=
uk−1 − σuk−2

1− σ

=
θuk−1 + (1− θ)σψ(σk−2)− σσ(k−2)p

1− σ

= θ

(
σ(k−1)p − σσ(k−2)p

1− σ

)
= σkpθσ−p

(
1− σ1−p

1− σ

)
= σkpθθ−1

= σkp.

When k ≥ 5 is odd then,

ψ(σk−1)− σψ(σk−2)

1− σ
=
uk−1 − σuk−2

1− σ

=
σ(k−1)p − σ

(
θuk−2 + (1− θ)σψ(σk−3)

)
1− σ

=
σ(k−1)p − σ

(
θσ(k−2)p + (1− θ)σσ(k−3)p

)
1− σ

= σkpσ−p
(

1− θσ1−p − (1− θ)σ2(1−p)

1− σ

)
= σkpσ−p

(
1− σ2(1−p) + θσ1−p(σ1−p − 1)

1− σ

)
= σkpσ−p

(
1− σ2(1−p) + σ(σ − 1)

1− σ

)
= σkpσ−p

(
1− σ1−p (σ1−p + σp − σ1+p)

1− σ

)
.

Recalling that σ1−p + σp − σ1+p < 1 and θ ∈ (0, 1) by hypothesis, we get,

ψ(σk−1)− σψ(σk−2)

1− σ
> σkpσ−p

(
1− σ1−p

1− σ

)
= σkpθ−1

≥ σkp,

as desired.

The set of admissible values for σ and p is far from empty. For instance, when p = 1/2,
any choice of σ ∈ (0, 1/4] satisfies the hypothesis of Proposition 5.1.14.
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5.2 Bounds on Forward Error and Singularity Degree

Any bound on maximum rank, such as the bounds of Section 5.1, may be used to provide
a lower bound on forward error and singularity degree.

Theorem 5.2.1. Let F = F(A, b) be a spectrahedron that satisfies Assumption 5.0.1 and
let {X(α) : α > 0} be a central path for F that satisfies Assumption 5.0.2. Then,

r̄ ≥ rank(F) =⇒ εf (X(α),F) ≥ ‖
(
λr+1(X(α)) · · · λn(X(α))

)T‖2, ∀α > 0.

Proof. Let r be as in the hypothesis and let α > 0. Since F is a closed convex set, there
exists X ∈ F such that,

εf (X(α),F) = ‖X(α)−X‖F .
Then observing that ‖S‖F = ‖λ(S)‖2 for any S ∈ Sn we have,

εf (X(α),F)2 = ‖X(α)−X‖2
F

= ‖X(α)‖2
F + ‖X‖2

F − 2〈X(α), X〉
= ‖λ(X(α))‖2

2 + ‖λ(X)‖2
2 − 2〈X(α), X〉.

Applying Fact 2.1.3 we get,

εf (X(α),F)2 ≥ ‖λ(X(α))‖2
2 + ‖λ(X)‖2

2 − 2λ(X(α))Tλ(X)

= ‖λ(X(α))− λ(X)‖2
2

≥ ‖
(
λr+1(X(α)) · · · λn(X(α))

)T‖2
2.

Taking the square root of both sides yields the desired result.

Theorem 5.2.2. Let F = F(A, b) be a spectrahedron that satisfies Assumption 5.0.1 and
let {X(α) : α > 0} be a central path for F that satisfies Assumption 5.0.2 and suppose
that εb(X(α),F) = O(α). Let r̄ ≥ rank(F) and let σ ∈ (0, 1). Suppose d is the smallest
positive integer such that,

lim inf
k→∞

Qi,σ(k) ≤ σ2−(d−1) ⇐⇒ i > r. (5.2.1)

Then d ≤ sd(F).

Proof. Let r denote the maximum rank over F . Suppose r > r. Then by Corollary 5.1.5
and by (5.2.1) we have,

σ2−(d−1)

< lim inf
k→∞

Q(r+1),σ(k) ≤ σ2−(sd(F)−1)

.

It follows that d ≤ sd(F). Now suppose that r = r. Then by Corollary 5.1.5 we have,

lim inf
k→∞

Qi,σ(k) ≤ σ2−(sd(F)−1) ⇐⇒ i > r = r. (5.2.2)

Out of all positive integers that could replace sd(F) in (5.2.2), we chose d to be the smallest.
Hence d ≤ sd(F), as desired.
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Chapter 6

Singularity Degree as a Measure of
Hardness

It is certainly possible to construct a parametric curve {X(α) : α > 0} with the properties
of Assumption 5.0.2, for which singularity degree is large, but forward error is small. For
instance, the path defined as X(α) := X̄ + αI, where X̄ ∈ relint(F), exhibits fast conver-
gence and low forward error irrespective of the singularity degree. This demonstrates that
large singularity degree is not a sufficient condition for slow convergence for all parametric
curves. However, for many of the central paths constructed by state of the art algorithms,
empirical evidence indicates otherwise. In this section we present several results that give
credence to the notion that singularity degree is a measure of hardness for a family of
central paths. In Section 6.1 we introduce the family of central paths and in Section 6.2
we present the main results of the chapter. The results of Section 6.2 are based on the
preprint [74], coauthored by the author of this thesis.

6.1 Analaysis of a Family of Central Paths

The classical interior point method for SDP is based on a central path that is constructed
by assuming that both the primal and the dual satisfy the Slater condition. As this
assumption is quite restrictive, infeasible central paths or those constructed by the self-
dual embedding assuming weaker conditions have been subsequently proposed. Among
these are [13, 14, 52, 58, 68].

In [68], Potra and Sheng propose a family of infeasible central paths that are based on
perturbing the feasible region so as to satisfy the Slater condition, and then decreasing the
perturbation. From the family of paths proposed by Potra and Sheng, we choose the path
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defined by, 
X(α) := arg max{α log det(X) : X ∈ F(α)},
F(α) := {X ∈ Sn+ : A(X) = b(α)},
b(α) := b+ αA(B),

(6.1.1)

where B � 0 is fixed. The matrix X(α) exists for each α > 0 if, and only if, F(α) ∩ Sn++

is non-empty and bounded. The existence of X(α) is also guaranteed by the following
assumptions on F .

Assumption 6.1.1. We assume that the spectrahedron F = F(A, b) satisfies,

(i) F is non-empty, bounded, sd(F) ≥ 1, and F 6= {0},

(ii) A is surjective.

Assumption 6.1.1 differs from Assumption 5.0.1 in the additional requirements that F
is bounded and that A is surjective. When F is bounded, Lemma 2.2.3 implies that F(α)
is also bounded for every α > 0. Moreover, this assumption is not very restrictive due
to Theorem 4.4.9. In other words, we may bound an unbounded spectrahedron by intro-
ducing a suitable trace constraint. Under such a transformation, important properties such
as range and singularity degree remain the same. The restriction on A ensures a unique
y ∈ Rm for every Z ∈ range(A∗), another property that is not restrictive and will prove
convenient in the subsequent discussion.

It is not hard to see that if F 6= ∅ then F(α) has a Slater point for every α > 0.
For instance, the set F + αB has positive definite elements and is contained in F(α).
Since X(α) is chosen to be the determinant maximizer over F(α) it follows that X(α) � 0
and X(α) ∈ relint(F) for each α > 0. We have thus shown that this central path satisfies
Assumption 5.0.2 (i). In the remainder of this section we show that it also possesses
the other properties of Assumption 5.0.2. Namely, that {X(α) : α > 0} is smooth and
converges to a matrix in relint(F) as α↘ 0.

6.1.1 Optimality Conditions and the Central Path

Let us derive the optimality conditions for the optimization problem definingX(α) in (6.1.1).
Similar problems have been thoroughly studied throughout the literature in matrix com-
pletions and SDP, e.g., [3, 30, 82, 86]. Nonetheless, we include a proof for completeness
and to emphasize its simplicity.

Theorem 6.1.2. For every α > 0 there exists unique X(α) ∈ F(α) ∩ Sn++ such that,

X(α) = arg max{α log det(X) : X ∈ F(α)}. (6.1.2)
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Moreover, X(α) satisfies (6.1.2) if, and only if, there exists unique y(α) ∈ Rm and
unique Z(α) � 0 such that, A∗(y(α))− Z(α)

A(X(α))− b(α)
Z(α)X(α)− αI

 = 0. (6.1.3)

Proof. By Assumption 6.1.1, F 6= ∅ and bounded. Therefore, Lemma 2.2.3 implies that,

null(A) ∩ Sn+ = {0}. (6.1.4)

Let α > 0. Since F(α) = F(A, b(α)), Lemma 2.2.3 and (6.1.4) also imply that F(α) is
bounded. Next, log det(·) is a strictly concave function over F(α)∩Sn++ (a so-called barrier
function) and,

lim
det(X)↘0

α log det(X) = −∞.

Thus, we conclude that the optimum X(α) ∈ F(α) ∩ Sn++ exists and is unique. The
Lagrangian of problem (6.1.2) is,

L(X, y) = α log det(X)− 〈y,A(X)− b(α)〉
= α log det(X)− 〈A∗(y), X〉+ 〈y, b(α)〉. (6.1.5)

Since the constraints are linear, stationarity of the Lagrangian holds at X(α). Hence there
exists y(α) ∈ Rm such that α(X(α))−1 = A∗(y(α)) =: Z(α). Clearly Z(α) is unique, and
since A is surjective, we conclude in addition that y(α) is unique as well.

The optimality conditions for (6.1.1) yield the primal-dual central path,(X(α), y(α), Z(α)) ∈ Sn++ × Rm × Sn++ :

A∗(y(α))− Z(α)
A(X(α))− b(α)
Z(α)X(α)− αI

 = 0, α > 0

 . (6.1.6)

6.1.2 Convergence to the Relative Interior

In this section we show that the central path of (6.1.6) has cluster points and that any
cluster point, say (X̄, ȳ, Z̄), satisfies,(

X̄, ȳ, Z̄
)
∈ relint(F)× Rm × relint (E(A, b)) .

Recalling the definition of E(A, b), we see that Z̄ is a suitable choice for the first step of
the facial reduction algorithm. Moreover, it has maximum rank over all suitable choices in
the first step. The proof of this result was alluded to by Goldfarb and Scheinberg in [27].
Here we present the proof in its entirety by developing useful bounds on the eigenvalue
functions for X(α) and Z(α). Some of the convergence bounds on eigenvalues are also
derived by Mohammad-Nezhad and Terlaky in [55] for a different central path.

We begin by showing that the X component of the parametric path has cluster points
and that they lie in F .
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Lemma 6.1.3. Let F = F(A, b) be a spectrahedron satisfying Assumption 6.1.1 and
let (X(α), y(α), Z(α)) be the central path of (6.1.6). Let {αk}k∈N be a sequence with αk ↘ 0.
Then there exists a subsequence {αk`}`∈N such that {X(αk`)} is convergent. Moreover, for
every such subsequence, there exists X̄ ∈ F such that X(αk`)→ X̄.

Proof. Since αk ↘ 0, there exists ᾱ > 0 such that {αk} ⊂ (0, ᾱ]. First we show that the
sequence X(αk) is bounded. For any k ∈ N we have

‖X(αk)‖2 ≤ ‖X(αk) + (ᾱ− αk)B‖2 ≤ max
X∈F(ᾱ)

‖X‖2 < +∞.

The second inequality is due to X(αk) + (ᾱ − αk)B ∈ F(ᾱ) and the third inequality
holds since F(ᾱ) is bounded. Thus there exists a subsequence {αk`}`∈N and X̄ ∈ Sn such
that X(αk`)→ X̄. That X̄ ∈ F is clear.

For the dual variables we need only prove that Z(α) converges (for a subseqence) since
this implies that y(α) also converges, by the assumption that A is surjective. As for X(α),
we show that the tail of the parametric path corresponding to Z(α) is bounded. To this
end, we first prove the following technical lemma.

Lemma 6.1.4. Let F = F(A, b) be a spectrahedron satisfying Assumption 6.1.1 and
let (X(α), y(α), Z(α)) be the central path of (6.1.6). Recall that B � 0, let X0 ∈ relint(F),
and let Z0 ∈ relint(E(A, b)). Then,

(i) 〈X(α)−1, X0 + αB〉 = O(1) as α↘ 0,

(ii) 〈X(α), Z0 + αB〉 = O(α) as α↘ 0.

Proof. Let ᾱ > 0 be fixed and consider α ∈ (0, ᾱ]. For (i) we have,

〈X(ᾱ)−1 −X(α)−1, X0 + ᾱB −X(α)〉 = 〈 1
ᾱ
A∗(y(ᾱ))− 1

α
A∗(y(α)), X0 + ᾱI −X(α)〉,

= 〈 1
ᾱ
y(ᾱ)− 1

α
y(α),A(X0 + ᾱB)−A(X(α))〉,

= 〈 1
ᾱ
y(ᾱ)− 1

α
y(α), (ᾱ− α)A(B)〉,

= 〈X(ᾱ)−1 −X(α)−1, (ᾱ− α)B〉.

Rearranging we get,

〈X(ᾱ)−1 −X(α)−1, X0 + αB −X(α)〉 = 0.

Then,

〈X(α)−1, X0 + αB〉 = 〈X(α)−1, X(α)〉+ 〈X(ᾱ)−1, X0 + αB −X(α)〉
= n+ 〈X(ᾱ)−1, X0〉+ α〈X(ᾱ)−1, B〉 − 〈X(ᾱ)−1, X(α)〉
≤ n+ 〈X(ᾱ)−1, X0〉+ ᾱ〈X(ᾱ)−1, B〉.
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We obtain (i) by observing that the right hand side is a positive constant.

For (ii) let y0 be such that Z0 = A∗(y0). Recall that 〈b, y0〉 = 0. Then,

〈X(α), Z0 + αB〉 = 〈X(α),A∗(y0)〉+ α〈X(α), B〉
= 〈b(α), y0〉+ α〈X(α), B〉
= α〈A(B), y0〉+ α〈X(α), B〉
= α〈Z0 +X(α), B〉
≤ α sup

α∈(0,ᾱ]

〈Z0 +X(α), B〉.

Since 〈Z0 +X(ᾱ), B〉 is positive and X(α) is bounded over (0, ᾱ], it follows that,

sup
α∈(0,ᾱ]

〈Z0 +X(α), B〉 ∈ R++,

implying (ii), as desired.

Next we provide bounds on the eigenvalues of X(α).

Theorem 6.1.5. Let F = F(A, b) be a spectrahedron satisfying Assumption 6.1.1 and
let (X(α), y(α), Z(α)) be the central path of (6.1.6). Let r and q denote the rank of F
and E(A, b), respectivley. Then as α↘ 0,

λi(X(α)) =


Θ(1) i ≤ r,

Ω(α) i ∈ {r + 1, n− q},
Θ(α) i ≥ n− q + 1.

(6.1.7)

Proof. Let X0 and Z0 be as in Lemma 6.1.4. Combining Lemma 6.1.4 (i) with Fact 2.1.3
we get that

n∑
i=1

λn+1−i(X(α)−1)λi(X0 + αB) = O(1) as α↘ 0.

The left hand side is a sum of positive terms, hence the bound applies to each term.
Therefore, there exists M > 0 such that,

λn+1−i(X(α)−1)λi(X0 + αB) < M, ∀i ∈ {1, . . . , n}. (6.1.8)

Now λn+1−i(X(α)−1) = λi(X(α))−1 and thus (6.1.8) becomes,

λi(X(α)) >
1

M
λi(X0 + αB) ≥ 1

M
(λi(X0) + αλn(B)) , ∀i ∈ {1, . . . , n}. (6.1.9)

The second inequality in (6.1.9) is due to Corollary 1.21 of [80]. Now the r largest eigen-
values of X0 are positive. Thus (6.1.9) yields,

λi(X(α)) >
1

M
λi(X0), ∀i ∈ {1, . . . , r}.
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Equivalently λi(X(α)) = Ω(1) when i ≤ r. Moreover, in Lemma 6.1.3 we proved that X(α)
is bounded on any interval of the form (0, ᾱ] with ᾱ > 0. It follows that λi(X(α)) = O(1)
for all i ∈ {1, . . . , n}, proving the first case of (6.1.7). Now the n− r smallest eigenvalues
of X0 are exactly 0, hence from (6.1.9) we get,

λi(X(α)) >
λn(B)

M
α, ∀i ∈ {r + 1, . . . , n}.

It follows that λi(X(α)) = Ω(α) when i ∈ {r+1, . . . , n}, proving the second case of (6.1.7).
All that remains is to show that λi(X(α)) = O(α) when i ≥ n − q + 1. To see this we
combine Lemma 6.1.4 (ii) with Fact 2.1.3 to obtain,

n∑
i=1

λi(X(α))λn+1−i(Z0 + αB) = O(α) as α↘ 0.

Then there exists M ′ > 0 such that for all i ∈ {1, . . . , n},

λi(X(α)) <
M ′

λn+1−i(Z0 + αB)
α ≤ M ′

λn+1−i(Z0) + αλn(B)
α. (6.1.10)

The second inequality holds by the same reasoning used in (6.1.9). Now when i ≥ n−q+1
then n + 1 − i ≤ q and λn+1−i(Z0) > 0. It follows from (6.1.10) that λi(X(α)) = O(α)
whenever i ≥ n− q+ 1. Together with the lower bound λi(X(α)) = Ω(α) for i ≥ n− q+ 1,
we get λi(X(α)) = Θ(α) when i ≥ n− q + 1, as desired.

We now have the necessary tools to prove a result about limit points of the parametric
path.

Theorem 6.1.6. Let F = F(A, b) be a spectrahedron satisfying Assumption 6.1.1 and
let (X(α), y(α), Z(α)) be the central path of (6.1.6). Let {αk}k∈N be a sequence such
that αk ↘ 0. Then there exists a subsequence {αk`}`∈N such that (X(αk`), y(αk`), Z(αk`))
converges. Moreover, for every such subsequence the limit point, say (X̄, ȳ, Z̄), satisfies,

X̄ ∈ relint(F), Z̄ ∈ relint(E(A, b)), Z̄ = A∗(ȳ).

Proof. We may, without loss of generality, assume thatX(αk)→ X̄ ∈ F due to Lemma 6.1.3.
By Theorem 6.1.5 the r largest eigenvalues of X(α) are bounded below, hence rank(X̄) = r
and we conclude that X̄ ∈ relint(F).

Next we look at the sequence {Z(αk)}k∈N. By Theorem 6.1.5 we have for i ∈ {1, . . . , q}
that,

λi(Z(α)) = αλi(X(α)−1) =
α

λn+1−q(X(α))
=

α

Θ(α)
= Θ(1). (6.1.11)

In particular, the largest eigenvalue of Z(αk) is bounded in magnitude, hence ‖Z(αk)‖2 is
bounded. Then there exists a subsequence {αk`}`∈N such that Z(αk`)→ Z̄, for some Z̄ ∈ Sn.

77



Clearly Z̄ ∈ Sn+ ∩ range(A∗) by closure and the fact that Z(α) ∈ Sn+ ∩ range(A∗) for ev-
ery α > 0. Moreover, 〈X(α), Z(α)〉 → 〈X̄, Z̄〉 and,

〈X(α), Z(α)〉 = 〈X(α), αX(α)−1〉 = αn→ 0.

Hence 〈X̄, Z̄〉 = 0 and it follows that Z̄ ∈ E(A, b). Now, by (6.1.11) the q largest eigenvalues
of Z(αk`) are bounded below. Therefore, rank(Z̄) = q and consequently Z̄ ∈ relint(E(A, b)).
Convergence of {y(αk`)}`∈N follows from the assumption that A is surjective.

An immediate consequence of Theorem 6.1.6 is an extension of Theorem 6.1.5.

Corollary 6.1.7. Let F = F(A, b) be a spectrahedron satisfying Assumption 6.1.1 and
let (X(α), y(α), Z(α)) be the central path of (6.1.6). Let (X̄, ȳ, Z̄) be a limit point of the
central path and let r and q denote the rank of F and E(A, b), respectively. Then as α↘ 0
it holds that,

λi(X(α)) =


Θ(1) i ≤ r,

Ω(α) and 6= O(α) i ∈ {r + 1, . . . , n− q},
Θ(α) i ≥ n− q + 1,

(6.1.12)

and

λi(Z(α)) =


Θ(1) i ≤ q,

O(1) and 6= Ω(1) i ∈ {q + 1, . . . , n− r},
Θ(α) i ≥ n− r + 1.

(6.1.13)

Proof. By construction of the central path it holds that for every i ∈ {1, . . . , n},

λi(Z(α)) = λi
(
αX(α)−1) =

α

λn+1−i(X(α))
. (6.1.14)

Applying the bounds of Theorem 6.1.5 to (6.1.14) gives us,

λi(Z(α)) =


Θ(1) i ≤ q,

O(1) i ∈ {q + 1, . . . , n− r},
Θ(α) i ≥ n− r + 1.

(6.1.15)

Moreover, when i ∈ {q + 1, . . . , n − r} it holds that λi(Z(α)) 6= Ω(1) otherwise every
limit point of Z(α) would have λi(Z̄) > 0 implying that rank(Z̄) > rank(E(A, b)), a
contradiction. It follows by (6.1.14) that λi(X(α)) 6= O(α) when i ∈ {r+ 1, . . . , n− q}, as
desired.
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6.1.3 Smoothness

We conclude this section by proving that the parametric path is smooth and has a limit
point as α↘ 0. Our proof relies on a result of Milnor and is motivated by a similar proof
for the classical central path of SDP in [31, 32]. Recall that an algebraic set is the solution
set of a system of finitely many polynomial equations. We denote set closure by cl(·).

Fact 6.1.8 (Milnor’s Lemma [54]). Let V ⊆ Rk be an algebraic set and let U ⊆ Rk be
an open set defined by finitely many polynomial inequalities. If 0 ∈ cl(U ∩ V), then there
exists ε > 0 and a real analytic curve p : [0, ε)→ Rk such that p(0) = 0 and p(t) ∈ U ∩ V
whenever t > 0.

Theorem 6.1.9. Let F = F(A, b) be a spectrahedron satisfying Assumption 6.1.1 and
let (X(α), y(α), Z(α)) be the central path of (6.1.6). Then there exists (X̄, ȳ, Z̄) such that,

lim
α↘0

(X(α), y(α), Z(α)) = (X̄, ȳ, Z̄) ∈ relint(F)× Rm × relint (E(A, b)) ,

where Z̄ = A∗(ȳ).

Proof. Let (X̄, ȳ, Z̄) be a cluster point of the parametric path as in Theorem 6.1.6. We
define the set U as

U := {(X, y, Z, α) ∈ Sn × Rm × Sn × R : X̄ +X � 0, Z̄ + Z � 0, Z = A∗(y), α > 0}.

Note that each of the positive definite constraints is equivalent to n strict determinant
(polynomial) inequalities. Therefore, U satisfies the assumptions of Fact 6.1.8. Next, let
us define the set V as,

V :=

(X, y, Z, α) ∈ Sn × Rm × Sn × R :

 A∗(y)− Z
A(X)− αA(B)

(Z̄ + Z)(X̄ +X)− αI

 = 0

 ,

and note that V is indeed a real algebraic set. Next we show that there is a one-to-one
correspondance between U ∩ V and the parametric path without any of its cluster points.
Consider (X̃, ỹ, Z̃, α̃) ∈ U ∩ V and let (X(α̃), y(α̃), Z(α̃)) be a point on the parametric
path. We show that

(X̄ + X̃, ȳ + ỹ, Z̄ + Z̃) = (X(α̃), y(α̃), Z(α̃)). (6.1.16)

First of all X̄ + X̃ � 0 and Z̄ + Z̃ � 0 by inclusion in U . Secondly, (X̄ + X̃, ȳ + ỹ, Z̄ + Z̃)
solves the system of (6.1.6) when α = α̃. Indeed, A∗(ȳ + ỹ)− (Z̄ + Z̃)

A(X̄ + X̃)− b(α̃)

(Z̄ + Z̃)(X̄ + X̃)− α̃I

 =

A∗(ȳ)− Z̄ + (A∗(ỹ)− Z̃)
b+ α̃A(B)− b(α̃)

0

 =

0
0
0

 .
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Since the system defining the parametric path has a unique solution, (6.1.16) holds. Thus,

(X̃, ỹ, Z̃) = (X(α)− X̄, y(α)− ȳ, Z(α)− Z̄),

and it follows that U∩V is a translation of the parametric path (without its cluster points):

U ∩ V = {(X, y, Z, α) : (X, y, Z) = (X(α)− X̄, y(α)− ȳ, Z(α)− Z̄), α > 0}. (6.1.17)

Next, we show that 0 ∈ cl(U ∩ V). To see this, note that

(X(α), y(α), Z(α))→ (X̄, ȳ, Z̄),

as α↘ 0 along a subsequence. Therefore, along the same subsequence, we have

(X(α)− X̄, y(α)− ȳ, Z(α)− Z̄, α)→ 0.

Each of the elements of this subsequence belongs to U ∩ V by (6.1.17) and it follows
that 0 ∈ cl(U ∩ V).

We have shown that U and V satisfy the assumptions of Fact 6.1.8. Therefore, there
exists ε > 0 and an analytic curve p : [0, ε) → Sn × Rm × Sn × R such that p(0) = 0
and p(t) ∈ U ∩ V whenever t > 0. Let

p(t) = (X(t), y(t), Z(t), α(t)),

and observe that by (6.1.17), we have

(X(t), y(t), Z(t), α(t)) = (X(α(t))− X̄, y(α(t))− ȳ, Z(α(t))− Z̄). (6.1.18)

Since p is a real analytic curve, the map g : [0, ε) → R defined as g(t) = α(t), is a
differentiable function on the open interval (0, ε) with

lim
t↘0

g(t) = 0.

In particular, this implies that there is an interval [0, ε̄) ⊆ [0, ε) where g is monotonic. It
follows that on [0, ε̄), g−1 is a well defined continuous function that converges to 0 from
the right. Note that for any t > 0, (X(t), y(t), Z(t)) is on the parametric path. Therefore,

lim
t↘0

X(t) = lim
t↘0

X(g(g−1(t))) = lim
t↘0

X(α(g−1(t))).

Substituting with (6.1.18), we have

lim
t↘0

X(t) = lim
t↘0

X(g−1(t)) + X̄ = X̄.

Similarly, y(t) and Z(t) converge to ȳ and Z̄, respectively. Thus every cluster point of the
parametric path is identical to (X̄, ȳ, Z̄).

We have shown that the tail of the parametric path is smooth and it has a limit point.
Smoothness of the entire path follows from Example 5.22 of [72] or the classical Maximum
Theorem of [5].
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6.2 Singularity Degree and Irregular Convergence

As the main result of this chapter, we show that large singularity degree leads to unde-
sirable convergence properties for the central path of (6.1.6). An immediate implication
of Corollary 6.1.7 is that ‘fast’ convergence of vanishing eigenvalues does not occur when
singularity degree is greater than 1.

Theorem 6.2.1. Let F = F(A, b) be a spectrahedron satisfying Assumption 6.1.1 and
let (X(α), y(α), Z(α)) be the central path of (6.1.6). Let r denote the rank of F . Then,

λi(X(α)) = O(α), ∀i ∈ {r + 1, . . . , n} ⇐⇒ sd(F) = 1.

In the main result of this section we show that larger singularity degree leads to greater
irregularity in the way that components of Z(α) converge. To simplify the proof we in-
troduce three lemmas. First, we show that backward error is ‘small’ for the central path
of (6.1.6), allowing us to use results from Chapter 5.

Lemma 6.2.2. Let F = F(A, b) be a spectrahedron satisfying Assumption 6.1.1 and
let (X(α), y(α), Z(α)) be the central path of (6.1.6). Then on R++ it holds that,

εb(X(α),F) = O(α).

Proof. By definition of backward error,

εb(X(α),F) = dist(X(α),Sn+) + dist(X(α),L(A, b)) = dist(X(α),L(A, b)),

since X(α) ∈ Sn+ for all α > 0 by construction. Furthermore, by definition of dist(·) we
have,

εb(X(α),F) = inf
Y ∈L(A,b)

‖X(α)− Y ‖ = ‖X(α)− Ȳ ‖,

where Ȳ is the orthogonal projection of X(α) onto L(A, b). In other words, backward
error is the norm of a matrix P̄ ∈ Sn such that P̄ has minimum norm over all matrices P
satisfying,

X(α)− P ∈ L(A, b). (6.2.1)

We claim that αA†A(B) is a possible choice for P in (6.2.1). Indeed,

A
(
X(α)− αA†A(B)

)
= b(α)− αA(B) = b.

Now B is positive definite. So by the assumption that F is bounded and Lemma 2.2.3 it
holds that B /∈ null(A) and therefore,

‖A†A(B)‖ > 0. (6.2.2)

By the characterization of backward error and by (6.2.2) we have,

εb(X(α),F) = ‖P̄‖ ≤ ‖αA†A(B)‖ = O(α),

as desired.
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Next we bound the magnitude of the projection of y(α) onto span(b).

Lemma 6.2.3. Let F = F(A, b) be a spectrahedron satisfying Assumption 6.1.1 and
let (X(α), y(α), Z(α)) be the central path of (6.1.6). Suppose that b 6= 0 and let,

v1, . . . , vm−1 ∈ Rm ,

form a basis for b⊥. Let ᾱ > 0 and for all α ∈ (0, ᾱ) let β(α) and ν1(α), . . . , νm−1(α) be
real coefficients such that,

y(α) = β(α)b+
m−1∑
i=1

νi(α)vi.

Then for all α ∈ (0, ᾱ), it holds that |β(α)| = O(α).

Proof. By definition of b(α) in (6.1.1) and by (6.1.6) we have,

y(α)T b = y(α)T (b(α)− αA(B))

= y(α)T (A(X(α))− αA(B))

= 〈A∗(y(α)), X(α)〉 − α〈A∗(y(α)), B〉
= α〈X(α)−1, X(α)〉 − α〈Z(α), B〉
= α(n− 〈Z(α), B〉).

Now n−〈Z(α), B〉 is bounded in magnitude on α ∈ (0, ᾱ), implying that |y(α)T b| = O(α).
On the other hand, {v1, v2, . . . , vm−1} ∈ b⊥ by construction. Therefore y(α)T b = β(α)‖b‖2,
yielding,

|β(α)| = |y(α)T b|
‖b‖2

= O(α),

as desired.

In the final lemma preceding the main result we bound the norm of principal subma-
trices of Z(α) that consist of at least r + 1 rows.

Lemma 6.2.4. Let F = F(A, b) be a spectrahedron satisfying Assumption 6.1.1 and

let (X(α), y(α), Z(α)) be the central path of (6.1.6). Let r := rank(F). Let Ẑ(α) ∈ Sn̂
be a principal submatrix of Z(α) for a positive integer n̂ ≤ n. Then it holds that,

(i) ‖Ẑ(α)‖ = Ω(α) as α↘ 0,

(ii) if n̂ ≥ r + 1 then ‖Ẑ(α)‖ = Ω(α1−ξ(1)) as α↘ 0.

Proof. By interlacing eigenvalues, Fact 2.1.2, and by Corollary 6.1.7 we have,

‖Ẑ(α)‖ = Θ
(
λ1

(
Ẑ(α)

))
≥ Θ

(
λmin

(
Ẑ(α)

))
≥ Θ (λn (Z(α))) = Θ(α),
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implying (i). For (ii) we apply interlacing eigenvalues with the additional assumption to
get,

‖Ẑ(α)‖2 = λ1

(
Ẑ(α)

)
≥ λn−r(Z(α)).

Now Lemma 6.2.2 allows us to apply a bound of Lemma 5.1.2 to get,

‖Ẑ(α)‖2 ≥ λn−r
(
αX(α)−1)

= αλr+1(X(α))−1

= αΩ
(
α−ξ(1)

)
= Ω

(
α1−ξ(1)

)
.

The bound readily extends to any other norm as well.

After a suitable orthogonal transformation, Z(α) admits a block partition where at
least sd(F) of these blocks converge to 0, each at a different rate.

Theorem 6.2.5. Let F = F(A, b) be a spectrahedron satisfying Assumption 6.1.1 and
let (X(α), y(α), Z(α)) be the central path of (6.1.6). Let ᾱ > 0 be fixed. Then there exists
an integer d ∈ [sd(F), m̄] where,

m̄ =

{
m if b = 0,

m− 1 otherwise,

and a suitable orthogonal transformation of F , such that,

Z(α) =


Zd+1(α) ∗ · · · ∗
∗ Zd(α) · · · ∗
...

...
. . .

...
∗ ∗ · · · Z1(α)

 ,
where for all α ∈ (0, ᾱ) it holds that,

(i) Z1(α)→ S1 � 0 and Zi(α)→ 0 for all i ∈ {2, . . . , d+ 1},

(ii) λmin(Zi(α))
λmax(Zi+1(α))

→∞ for all i ∈ {1, . . . , d},

(iii) λmin(Zi(α)) = Θ (λmax(Zi(α))) for all i ∈ {1, . . . , d+ 1},

(iv) ‖Zd+1(α)‖ = Θ(α).

Proof. We assume, without loss of generality, that,

face(F) =

[
Sr+ 0
0 0

]
. (6.2.3)
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As above, let (X̄, ȳ, Z̄) be the limit point of the primal-dual central path. We know
from Theorem 6.1.6 that Z̄ is an exposing vector for a face containing face(F). There-
fore ȳT b = 0. Without loss of generality we may assume that,

Z̄ =:

[
0 0
0 S1

]
, S1 � 0. (6.2.4)

Now we define y1 := ȳ and choose v1, . . . , vmv ∈ span{b, y1}⊥ for some mv ≤ m so that
the collection of vectors {y1, v1, . . . , vmv} is a basis for b⊥. Note that when b 6= 0,
then {b, y1, v1, . . . , vmv} is also a basis for Rm .

Now for each α > 0 there exist coefficients β(α) and ν1(α), . . . , νmv(α) and γ1(α) such
that,

y(α) = γ1(α)y1 + β(α)b+
mv∑
i=1

νi(α)vi. (6.2.5)

Since y(α)→ y1 we have γ1(α)→ 1 and γ1(α) dominates the other coefficients. That is,

lim
α↘0

∑mv

i=1|νi(α)|+ |β(α)|
γ1(α)

= 0. (6.2.6)

Now let us consider a block partition of Z(α) according to the block partition of Z̄ in (6.2.4).
We have,

Z(α) =

[
0 0
0 γ1(α)S1

]
+A∗

(
β(α)b+

mv∑
i=1

νi(α)vi

)
. (6.2.7)

Note that the two diagonal blocks of Z(α) in (6.2.7) possess properties (i) and (ii).

Let Z11(α) denote the upper left block of Z(α). We consider two possibilities. First,
suppose that ‖Z11(α)‖ = O(α). Then the lower bound of Lemma 6.2.4 (i) implies
that ‖Z11(α)‖ = Θ(α). Now the two diagonal blocks also satisfy properties (iii) and (iv).
Setting d = 1 it is easy to see that d ≤ m̄. Since ‖Z11(α)‖ = O(α) and ξ(1) ∈ (0, 1),
it holds that ‖Z11(α)‖ 6= Ω

(
α1−ξ(1)

)
. Then Lemma 6.2.4 (ii) implies that Z11(α) has at

most r rows. Moreover, by our assumption on the facial structure of face(F) in (6.2.3) we
conclude that Z11(α) has exactly r rows, otherwise Z̄ exposes a face that is strictly smaller
than face(F). Thus we have sd(F) = 1 ≤ d, as desired.

The second possibility is that ‖Z11(α)‖ 6= O(α). In this case, at least one of the co-
efficients other than γ1(α) converges to 0 at a rate not equal to O(α). This coefficient
is not β(α), since Lemma 6.2.3 implies that |β(α)| = O(α) when b 6= 0. When b = 0
we may set β(α) = 0 as it is irrelevant. Thus we conclude that |νi(α)| 6= O(α) for
some i ∈ {1, . . . ,mv}.

Now let, y2 be a limit point of β(α)b+
∑mv

i=1 νi(α)vi, after normalizing. By the arguments
above, y2 ∈ span{v1, . . . , vmv} and thus (y2)T b = 0. Secondly, (A∗(β(α)b+

∑mv

i=1 νi(α)vi))11

is positive definite for every α > 0 by (6.2.7). This implies that (A∗(y2))11 � 0. Therefore,
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if (A∗(y2))11 is not the zero matrix it is an exposing vector in the second step of facial
reduction.

Let us first address the case (A∗(y2))11 = 0. Here we let w1 := y2 and choose

v1, . . . , vmv ∈ span{b, y1, w1}⊥

for some mv, different than the previously used mv, so that {y1, w1, v1, . . . , vmv} is a basis
for b⊥. Now we repeat the above process until we obtain a new y2 such that (A∗(y2))11 6= 0.
This brings us to the second case.

Now we may assume that we have obtained y2 as above and (A∗(y2))11 6= 0. We also
assume, without loss of generality that,

(A∗(y2))11 =

[
0 0
0 S2

]
, S2 � 0. (6.2.8)

Then the matrix, 0 0 0
0 S2 0
0 0 S1

 , (6.2.9)

exposes a face containing face(F) and this face is smaller than the one exposed by Z̄. In
other, words, we have obtained a better exposing vector. Let us assume that we have
accumulated mw vectors of the type w1 obtained in the case (A∗(y2))11 = 0. Then we
choose,

v1, . . . , vmv ∈ span{b, y1, y2, w1, . . . , wmw}⊥, (6.2.10)

so that {y1, y2, w1, . . . , wmw , v1, . . . , vmv} is a basis for b⊥. As above, there exist coeffi-
cients,

β(α), γ1(α), γ2(α), ω1(α), . . . , ωmw(α), ν1(α), . . . , νmv(α), (6.2.11)

such that,

y(α) = β(α)b+
2∑
i=1

γi(α)yi +
mw∑
i=1

ωi(α)wi +
mv∑
i=1

νi(α)vi.

Then,

Z(α) =

0 0 0
0 γ2(α)S2 0
0 0 γ1(α)S1

+A∗
(
β(α)b+

mv∑
i=1

νi(α)vi +
mw∑
i=1

ωi(α)wi

)
, (6.2.12)

where the upper left block is A∗ (β(α)b+
∑mv

i=1 νi(α)vi)11. By construction we have

γ1(α)

γ2(α)
→∞ and

γ2(α)

b(α) +
∑mv

i=1|νi(α)|
→ ∞. (6.2.13)

Thus we conclude that the diagonal blocks of Z(α) satisfy properties (i) and (ii). In
addition, the blocks containing γ1(S1) and γ2(S2) satisfy property (iii).
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By Lemma 6.2.4 (ii) we may continue in this fashion until,

Z(α) =


0 0 · · · 0
0 γd(α)Sd · · · 0
...

...
. . .

...
0 0 · · · γ1(α)S1

+A∗
(
β(α)b+

mv∑
i=1

νi(α)vi +
mw∑
i=1

ωi(α)wi

)
, (6.2.14)

for some positive integer d and the upper left block has norm that is O(α). By reason-
ing analogous to that of the discussion following (6.2.7), we conclude that the blocks
of Z(α), according to the block partition of (6.2.14), satisfy properties (i) - (iv) and
that d ∈ [sd(F), m̄], as desired.

The issue with different rates of convergence among the blocks of Z(α) that vanish, is
one of a practical nature. Suppose a path-following algorithm is applied and accurately
follows the primal-dual central path. Then, once the block of Z(α) that converges to 0
at the fastest rate, Zd+1(α), reaches machine precision, the remaining blocks cannot be
made smaller. Hence the forward error is a function of the difference between the rate of
convergence of the slowest block, Z2(α), and the fastest block, Zd+1(α).

The integer d of Theorem 6.2.5 actually provides an upper bound on sd(F) that com-
plements the lower bound of Theorem 5.2.2. However, this upper bound is generally
intractable due to its reliance on an unknown orthogonal transformation. If the statement
of the theorem can be translated to a statement about convergence rates of blocks of eigen-
values, then we would have a tractable upper bound on sd(F). However this may not be
true as illustrated by the parametric sequence,

S(α) :=

 3 α1/2 0
α1/2 α

3−α2 0

0 0 α3

 , α > 0. (6.2.15)

Here S(α) is positive definite for every α > 0 and has different rates of convergence among
the diagonal. However, the two eigenvalues that vanish, do so at the same rate, Θ(α3).
One way to guarantee that the diagonal blocks correspond to blocks of eigenvalues is the
following.

Corollary 6.2.6. Let F = F(A, b) be a spectrahedron satisfying Assumption 6.1.1 and
let (X(α), y(α), Z(α)) be the central path of (6.1.6). Let ᾱ > 0 be fixed and let d be as
in Theorem 6.2.5. For every α ∈ (0, ᾱ) we assume that Z(α) has the block structure
of Theorem 6.2.5. If the principal submatrices of Z(α) of the form,

Si(α) =

Zi(α) · · · ∗
...

. . .
...

∗ · · · Z1(α)

 , i ∈ {2, . . . , d},
satisfy λmin(Si(α)) = Θ (λmin(Zi(α))), then there are exactly d different rates of convergence
among the eigenvalues of X(α) that vanish.
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Proof. Applying interlacing eigenvalues, Fact 2.1.2, to the submatrices,Zd+1(α) · · · ∗
...

. . .
...

∗ · · · Zi(α)

 and

Zi(α) · · · ∗
...

. . .
...

∗ · · · Z1(α)

 ,
gives us the upper bound of λmax(Zi(α)) and the lower bound Θ(λmin(Zi(α))) on a block
of λ(Z(α)) having the same size as the number of rows Zi(α). Since,

λmin(Zi(α)) = Θ (λmax(Zi(α))) ,

by assumption (iii) of Theorem 6.2.5, the upper and lower bounds on the block of λ(Z(α))
are of the same order. Thus we conclude that for each i ∈ {2, . . . , d+ 1} there is a block of
eigenvalues that converges to 0 at the same rate as Zi(α) does. The desired result follows
from the relation X(α) = αZ(α)−1.

The challenge with this result is that the hypothesis is unverifiable just as the block
structure of Z(α) is unobservable without knowledge of the appropriate orthogonal trans-
formation. However, our numerical observations indicate that the conclusion of the corol-
lary holds for those test cases for which we have prior knowledge of singularity degree.
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Chapter 7

Singularity Degree of Some Toeplitz
Matrix Completions

In this chapter we show how structural properties of spectrahedra may be exploited to
theoretically analyze some of the notions developed in the previous chapters. One class
of such spectrahedra arises from matrix completion problems . In this type of problem we
know the value of some entries of a matrix and are tasked with filling in the remaining
entries so as to satisfy a known desired property. Let us introduce the material of this
chapter by considering the following problem.

Problem 7.0.1. Given n ≥ 4 and θ, φ ∈ [0, π] find X ∈ Sn+ such that,

Xij =


1 if i = j,

cos(θ) if |j − i| = 1,

cos(φ) if |j − i| = n− 1.

A matrix X is a solution to Problem 7.0.1 if it is positive semidefinite and has the form,

X =


1 cos(θ) cos(φ)

cos(θ) 1 cos(θ) ?

cos(θ) 1
. . .

?
. . . . . . cos(θ)

cos(φ) cos(θ) 1

 ,

where ‘?’ denotes ‘portions’ of the matrix that have unspecified values.

To uncover the underlying structure of the solution set of Problem 7.0.1, we begin by
showing that it is a spectrahedron. Recall that E(i, j) ∈ Sn is the matrix with 1 in the (i, j)
and (j, i) positions and zeros everywhere else. Then the solution set to Problem 7.0.1 is
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the set of all matrices X that are positive semidefinite and satisfy,

〈E(i, j), X〉 =


1 if i = j,

2 cos(θ) if j − i = 1,

2 cos(φ) if j − i = n− 1.

(7.0.1)

Note that E(i, j) = E(j, i) and by symmetry, the value of Xij is implied by the value of Xji.
To avoid redundancy, therefore, in (7.0.1) we only consider indices (i, j) where j ≥ i. Taking
into account (2.2.1), equation 7.0.1 implies the existence of a linear map A comprised of the
matrices E(i, j) where j−i ∈ {0, 1, 3} and a vector b with elements consisting of 1, 2 cos(θ),
and 2 sin(θ) such that the solutions to Problem 7.0.1 are exactly the elements of F(A, b).

Now if we assume that the solution set to Problem 7.0.1 satisfies Assumption 6.1.1,
then we may construct the central path of (6.1.6). Taking Z(α) from the central path we
have,

Z(α) ∈ range(A∗) = span {E(i, j) : j − i ∈ {0, 1, 3}} =



∗ ∗ 0 · · · 0 ∗
∗ ∗ ∗ . . . 0

0 ∗ ∗ . . . 0
...

...
. . . . . . . . . ∗ 0

0 0 ∗ ∗ ∗
∗ 0 · · · 0 ∗ ∗


.

It is not hard to see that Z(α) is sparse and that this sparsity is more pronounced for
larger n. In fact, Z(α)ij is 0 for every pair (i, j) for which the value of Xij in Problem 7.0.1
is unspecified. Without much effort we have revealed some structural properties of Z(α)
that allow for simpler analysis. It requires more effort, see Section 7.1, to show that X(α)
also admits a special structure. Specifically, if we let B = I in the construction of the
central path, then X(α) is Toeplitz (see Definition 7.1.5).

The Toeplitz structure of X(α) allows us to use the Gohberg-Semencul formula for the
inverse of a non-singular Toeplitz matrix, to obtain an expression for Z(α) in terms of the
entries of X(α). In Section 7.2, we use this formula, the relation Z(α) = αX(α)−1, and
the sparsity observation to theoretically determine the singularity degree of the feasible set
to Problem 7.0.1.

Note that the Toplitz structure is partly enforced in the statement of Problem 7.0.1.
In Section 7.1 we study positive definite Toeplitz completion problems in general to deter-
mine when a partial Toeplitz structure, such as the one in Problem 7.0.1, extends to X(α).

Many of the results of this chapter and the corresponding proofs are based on the
article [75], coauthored by the author of this thesis.
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7.1 Maximum Determinant Positive Definite Toeplitz

Completions

7.1.1 Partial Matrices

We begin by formalizing some of the concepts from the introduction to this chapter.

Definition 7.1.1. A partial matrix S = S(P,D) of order n, is defined by a pattern P and
data D where,

∅ 6= P ⊆ {1, . . . , n} × {1, . . . , n},
with (i, j) ∈ P if, and only if, (j, i) ∈ P and D = {aij ∈ R : (i, j) ∈ P} where aij = aji. A
matrix S ∈ Sn is said to be a completion of S if Sij = aij for all (i, j) ∈ P .

In general partial matrices need not be symmetric. However, our interest in positive
(semi) definite completions immediately rules out non-symmetric partial matrices, thereby
justifying Definition 7.1.1.

Definition 7.1.2. A partial matrix S is said to be positive (semi) definite completable if
there exists a completion of S that is positive (semi) definite.

It may be difficult to determine whether a partial matrix is positive (semi) definite
completable, especially if we wish to do so analytically. The following condition is easier to
verify and may imply that a partial matrix is positive (semi) definite completable in some
cases.

Definition 7.1.3. A partial matrix S = S(P,D) is said to be partially positive (semi)
definite if every principal submatrix of S consisting entirely of entries in P is positive
(semi) definite.

Let us now state some elementary observations about partial matrices and the set of
positive semidefinite completions of it.

Lemma 7.1.4. Let S = S(P,D) be a partial matrix. The following hold.

(i) The set of positive semidefinite completions of S is a spectrahedron.

(ii) Suppose the set of positive semidefinite completions of S is non-empty and bounded.
If S is positive definite completable, then there exists a unique matrix that maximizes
the determinant over all positive semidefinite completions of S. Moreover S? ∈ Sn is
this determinant maximizer if, and only if, S? is a positive definite completion of S
and (S?)−1

ij = 0 whenever (i, j) /∈ P .

Proof. The proof of (i) follows from arguments similar to those around (7.0.1). Item (ii)
is proved in [30] and is also implied by Theorem 6.1.2.
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7.1.2 Toeplitz and Bezoutian Matrices

Our main result in this section regards the maximum determinant positive definite com-
pletions of a partial Toeplitz matrix. Recall the definition of a Toeplitz matrix.

Definition 7.1.5. A matrix T ∈ Sn is said to be Toeplitz if there exist t0, t1, . . . , tn−1 ∈ R
such that Tij = t|i−j| for all i, j ∈ {1, . . . , n}.

Toeplitz matrices are characterized by invariance over ‘left-to-right’ diagonals. Let us
be more specific by introducing the following notation.

Definition 7.1.6. Let S ∈ Sn and let k ∈ [−(n − 1), n − 1] be an integer. Then the kth
diagonal of S denotes the entries Sij such that j − i = k.

In light of this terminology, a matrix T ∈ Sn is Toeplitz if for each k ∈ {0, . . . , n− 1}
it holds that every entry of the kth diagonal of T has the same value. Toeplitz matrices
admit clean inversion formulas that may be expressed in terms of Bezoutian matrices.

For a =
(
a0 a1 · · · an

)T ∈ Rn+1 we define two lower triangular matrices of order n:

A(a) =


a0

a1 a0

a2 a1
. . .

...
. . . . . . a0

an−1 · · · a2 a1 a0

 and B(a) =


an
an−1 an

an−2 an−1
. . .

...
. . . . . . an

a1 · · · an−2 an−1 an

 . (7.1.1)

Definition 7.1.7. The Bezoutian matrix of a =
(
a0 a1 · · · an

)T ∈ Rn+1 is defined as,

Bez(a) := A(a)A(a)T −B(a)B(a)T .

This definition is in fact a very special case of Toeplitz Bezoutians, which are defined
in more general settings than this thesis. See, for instance, the survey [34] for a thorough
discussion of the subject. Bezoutians are related to Toeplitz marices through inversion.

Fact 7.1.8 ([43],[21]). The inverse of a non-singular Bezoutian matrix is a Toeplitz matrix.

The converse is also true and we state it with more detail.

Fact 7.1.9 (Gohberg-Semencul, [26], [39]). Let T ∈ Sn be Toeplitz and non-singular. Let

us denote the first column of T−1 by t =
(
t0 . . . tn−1

)T
. Then,

T−1 =
1

t0
Bez

((
t
0

))
.
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Bezoutian matrices are classically defined in the language of polynomials. While we
have opted to ignore this context in our definition, we do find utility for the following
connection between Bezoutians and algebraic geometry.

Fact 7.1.10 (Schur-Cohn Criterion, Theorem XVa [40]). Let f(z) = a0 + a1z + · · ·+ anz
n

be a polynomial with real coefficients and let a := (a0, . . . , an)T . Then every root of f(z)
satisfies |z| > 1 if, and only if, Bez(a) � 0.

The Schur-Cohn criterion is usually stated for the case where the roots are contained
within the interior of the unit disk, but a simple reversal of the coefficients, as described in
Chapter X of [53], gives us Fact 7.1.10. Although we are not interested in the geometry of
the roots of polynomials in this thesis, the positive definite requirement on the Bezoutian
of Fact 7.1.10 proves useful in Section 7.1.5.

7.1.3 Partial Toeplitz Matrices

A partial Toeplitz matrix is a partial matrix where the pattern consists of one or more
entire diagonals and the data is constant over each specified diagonal. Note that we need
not specify the entire pattern of the partial matrix. It suffices to indicate which diagonals
are specified. Similarly, we specify the data for each diagonal as opposed to each specified
entry. For this reason we adopt notation that is more compact.

Definition 7.1.11. A partial Toeplitz matrix T = T (P,D) of order n, is defined by its
non-empty pattern P ⊆ {0, . . . , n− 1} and its data D := {tk ∈ R : k ∈ P}. A completion
of T is a matrix T ∈ Sn such that Tij = t|i−j| whenever |i− j| ∈ P .

In Definition 7.1.11 we have abandoned the notation of Section 7.1.1 pertaining to
partial matrices. However, a partial Toeplitz matrix is still a partial matrix. Therefore, the
notions of positive (semi) definite completability and partial positive (semi) definiteness
of Definition 7.1.2 and Definition 7.1.3, respectively, naturally apply to partial Toeplitz
matrices. We can also state a result analogous to that of Lemma 7.1.4, but first, a simple
observation.

Lemma 7.1.12. Let T = T (P,D) be a partial Toeplitz matrix. Then 0 /∈ P implies that
the set of positive definite completions of T is non-empty and unbounded.

Proof. Since 0 /∈ P , there are no restrictions on the diagonal elements of any completion.
Thus, if T ∈ Sn is a completion of T then T +γI is also a completion of T for every γ ∈ R.
We may choose γ arbitrarily large, yielding the desired result.

Lemma 7.1.13. Let T = T (P,D) be a positive definite completable partial Toeplitz matrix
with 0 ∈ P . Then there exists a unique matrix that maximizes the determinant over all
positive semidefinite completions of T . Moreover T ? ∈ Sn is this determinant maximizer if,
and only if, T ? is a positive definite completion of T and (T ?)−1

ij = 0 whenever |i− j| /∈ P .
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Proof. By the hypothesis and Lemma 7.1.12 the set of positive definite completions of T
is non-empty and bounded. The result now follows from Lemma 7.1.4.

Throughout the remainder of Section 7.1, we use T ? to denote the determinant maxi-
mizer of the positive definite completions of a partial Toeplitz matrix.

7.1.4 Toeplitz Determinant Maximizers

The main result of Section 7.1 is a characterization of the patterns of partial Toeplitz
matrices that ensure that T ? is Toeplitz.

Theorem 7.1.14. Let P ⊆ {0, . . . , n − 1} such that 0 ∈ P . Then the following are
equivalent.

(i) For every positive definite completable partial Toeplitz matrix T (P,D), it holds that T ?

is Toeplitz.

(ii) There exist r, k ∈ N such that P has one of the following forms:

• P1 := {0, k, 2k, . . . , rk},
• P2 := {0, k, 2k, . . . , (r − 2)k, rk}, where n = (r + 1)k,

• P3 := {0, k, n− k}.

One of the directions of Theorem 7.1.14 states that for any pattern P , not having one of
the prescribed forms, there exists data D such that T (P,D) is positive definite completable
but the determinant is not Toeplitz. For instance take the pattern {0, 1, 3, 4} for n = 5
with data {6, 1, 1, 1}. It can be verified, up to four decimal places, that,

T ? =


6 1 0.3113 1 1
1 6 1 0.4247 1

0.3113 1 6 1 0.3113
1 0.4247 1 6 1
1 1 0.3113 1 6

 .
The pattern of this partial Toeplitz matrix is not among the patterns of Theorem 7.1.14
and the determinant maximizer is not Toeplitz.

Positive definite Toeplitz matrices play an important role throughout the mathematical
sciences. Correlation matrices of data arising from time series, [56], and solutions to the
trigonometric moment problem, [38], are two such examples. Among the early contribu-
tions to this area is the following sufficient condition and characterization, for a special
case of pattern P1.
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Fact 7.1.15 ([20]). If a partially positive definite partial Toeplitz matrix has pattern P1

with k = 1, then it is positive definite completable and T ? is Toeplitz.

The following result characterizes patterns such that partial positive definiteness implies
positive definite completability, independent of data.

Fact 7.1.16 (Theorem 1.1,[38]). All partial Toeplitz matrices with pattern P , satisfy-
ing 0 ∈ P , that are partially positive definite, admit a positive definite Toeplitz completion
if, and only if, P is of the form P1.

In Theorem 7.1.14 we make the stronger assumption, that our partial Toeplitz matrices
are positive definite completable, giving us patterns of the form P2 and P3. These two
patterns are not entirely new. In [57], sufficient and necessary conditions are provided
for a partially Toeplitz matrix with pattern P2 and k = 1 to have a positive semidefinite
completion. A special case of pattern P3, with k = 1, is considered in [4], where the
authors characterize the data for which the pattern is positive definite completable. In [33]
the result is extended to arbitrary k and sufficient conditions for Toeplitz completions are
provided. Moreover, the authors conjecture that whenever a partially positive definite
Toeplitz matrix with pattern P3 is positive definite completable then it admits a Toeplitz
completion. This conjecture is confirmed in our main result, Theorem 7.1.14, and more
specifically in Proposition 7.1.22.

7.1.5 Proof of Theorem 7.1.14

We have broken the proof up into several smaller results that ought to be be easer to digest.
To avoid wordy statements we make the following assumption throughout Section 7.1.5.

Assumption 7.1.17. We assume that T = T (P,D) is a positive definite completable
partial Toeplitz matrix with 0 ∈ P and that T ? is the maximum determinant positive
definite completion of T .

Let K be the symmetric n× n anti-diagonal matrix defined as,

Kij :=

{
1 if i+ j = n+ 1,

0 otherwise.
(7.1.2)

Note that K is the permutation matrix that reverses the order of the sequence {1, 2, . . . , n}.
For n = 4,

K =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 .
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Lemma 7.1.18. For K defined as in (7.1.2) the following hold.

(i) T ? = KT ?K.

(ii) If P is of the form P2 with k = 1, then T ? is Toeplitz.

Proof. For (i) it is a simple exercise to verify that the permutation reverses the order of
the rows and columns. Thus we have,

[KT ?K]ij = T ?n+1−i,n+1−j, ∀i, j ∈ {1, . . . , n}.

Moreover,
|n+ 1− i− (n+ 1− j)| = |i− j|.

Therefore, if T has data {tk ∈ R : k ∈ P}, it follows that,

[KT ?K]ij = T ?n+1−i,n+1−j = T ?ij = t|i−j|, ∀|i− j| ∈ P.

Hence KT ?K is a completion of T . Moreover, K ·K is an automorphism of the cone of
positive definite matrices. Hence KT ?K is a positive definite completion of T , and since K
is a permutation matrix, we conclude that det(KT ?K) = det(T ?). By Lemma 7.1.13, T ?

is the unique maximizer of the determinant. Therefore T ? = KT ?K, as desired.

For (ii) we let P be as in the hypothesis and note that the only unspecified entries
are (1, n − 1) and (2, n), and their symmetric counterparts. Therefore it suffices to show
that T ?1,n−1 = T ?2,n. By applying (i) we get

T ?1,n−1 = [KT ?K]1,n−1 = T ?n+1−1,n+1−(n−1) = T ?n,2 = T ?2,n,

as desired.

Now we show that a general pattern P2 may always be reduced to the special case
considered in Lemma 7.1.18. Moreover, patterns of the form P2 differ from those of the
form P1 only in the specification of diagonal (r − 1)k. It turns out that this similarity
allows us to analyze the patterns in, more or less, the same way. We now state a useful
lemma for proving that Theorem 7.1.14 (ii) implies Theorem 7.1.14 (i), when P is of the
form P1 or P2.

Lemma 7.1.19. Let S be a partial symmetric matrix such that the set of positive definite
completions of S is non-empty and bounded. Let Q be a permutation matrix such that,

QTSQ =


S1

S2

. . .

S`

 ,
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for some ` ∈ N. Here Si is a partial symmetric matrix for each i ∈ {1, . . . , `}, and the
elements outside of the blocks are all unspecified. Then the maximum determinant com-
pletion of Si, denoted S?i , exists and is unique for each i. Moreover, the unique maximum
determinant completion of S exists and is given by,

S? = Q


S?1 0 · · · 0
0 S?2 · · · 0
...

...
. . .

...
0 0 · · · S?`

QT .

Proof. The assumption that the set of positive definite completions of S is non-empty
and bounded implies, by Lemma 7.1.4, that there exists a unique maximum determinant
positive definite completion of S, say S?. Since QT · Q is an automorphism of the posi-
tive definite matrices, with inverse Q · QT , it follows that QTSQ is a partial symmetric
matrix that is positive definite completable and admits a unique maximum determinant
completion, say Ŝ. Under the map Q · QT , every completion of QTSQ corresponds to a
unique completion of S, with the same determinant, since the determinant is invariant
under the transformation Q ·QT . Therefore, it holds that S? = QŜQT . All that remains is
to show that Ŝ has the desired block diagonal form. It is a trivial observation that each Si
is positive definite completable and admits a maximum determinant positive definite com-
pletion. Thus S?i is well defined for each i ∈ {1, . . . , `}. Then by the determinant Fischer
inequality, e.g., Theorem 7.8.3 of [37], it holds that,

Ŝ =


S?1 0 · · · 0
0 S?2 · · · 0
...

...
. . .

...
0 0 · · · S?`

 ,
as desired.

In [38] it is shown that a partial Toeplitz matrix of the form P1 with rk = n− 1 can be
permuted into a block diagonal matrix as in Lemma 7.1.19. We use this observation and
extend it to all patterns of the form P1, as well as patterns of the form P2, in the following.

Proposition 7.1.20. If P is of the form P1 or P2, then T ? is Toeplitz.

Proof. First, suppose that P is of the form P1 with data {t0, tk, t2k, . . . , trk} for positive
integers r and k. Let p ≥ r be the largest integer so that pk ≤ n − 1. As in [38], there
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exists a permutation matrix Q of order n such that

QTT Q =



T0

. . .

T0

T1

. . .

T1


,

where T0 is a (p + 1) × (p + 1) partial Toeplitz matrix occuring n − pk times and T1 is
a p × p partial Toeplitz matrix. Moreover, T0 and T1 are both partially positive definite.
Let us first consider the case p = r. Then T0 and T1 are actually fully specified, and the
maximum determinant completion of QTT Q, as in Lemma 7.1.19, is obtained by fixing the
elements outside of the blocks to 0. After permuting back to the original form, T ? has zeros
in every unspecified entry. Hence it is Toeplitz. Now suppose p > r. Then T0 is a partial
Toeplitz matrix with pattern {1, 2, . . . , r} and data {t0, tk, t2k, . . . , trk} and T1 is a partial
Toeplitz matrix having the same pattern and data as T0, but one dimension smaller. That
is, T1 is a partial principal submatrix of T0. By Fact 7.1.15 both T0 and T1 are positive
definite completable and their maximum determinant completions, T ?0 and T ?1 , are Toeplitz.
Let {a(r+1)k, a(r+2)k, . . . , apk} be the data of T ?0 corresponding to the unspecified diagonals
of T0 and let {b(r+1)k, b(r+2)k, . . . , b(p−1)k} be the data of T ?1 corresponding to the unspecified
diagonals of T1. By the permanence principle of [23], T ?1 is a principal submatrix of T ?0
and therefore bi = ai, for all i ∈ {(r + 1)k, (r + 2)k, . . . , (p− 1)k}. By Lemma 7.1.19, the
maximum determinant completion of QTT Q is obtained by completing T0 and T1 to T ?0
and T ?1 respectively, and setting the entries outside of the blocks to zero. After permuting
back to the original form we get that T ? is Toeplitz with data a(r+1)k, a(r+2)k, . . . , apk in the
diagonals (r+ 1)k, (r+ 2)k, . . . , pk and zeros in all other unspecified diagonals, as desired.

Now suppose that T is of the form P2. By applying the same permutation as above,
and by using the fact that n = (r + 1)k and each block T0 is of size r + 1, we see that the
submatrix consisting only of blocks T0 is of size

(n− rk)(r + 1) = ((r + 1)k − rk)(r + 1) = k(r + 1) = n.

Hence,

QTT Q =

T0

. . .

T0

 ,
where T0 is a partial matrix with pattern {1, 2, . . . , r − 2, r} and data

{t0, tk, t2k, . . . , t(r−2)k, trk}.

The unspecified elements of diagonal (r − 1)k of T are contained in the unspecified el-
ements of diagonal r − 1 of the partial matrices T0. By Lemma 7.1.18, the maximum
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determinant completion of T0 is Toeplitz with value t(r−1)k in the unspecified diagonal.
As in the above, after completing QTT Q to its maximum determinant positive definite
completion and permuting back to the original form, we obtain the maximum determinant
Toeplitz completion of T with value t(r−1)k in the diagonal (r − 1)k and zeros in every
other unspecified diagonal, as desired.

We have proved one direction of Theorem 7.1.14 for the patterns P1 and P2. To complete
the proof of this direction, we turn our attention to patterns of the form P3. Let J denote
the n×n lower triangular matrix with 1s on diagonal −1 and zeros everywhere else. That
is,

J :=


0
1 0

0 1
. . .

...
. . . . . . 0

0 · · · 0 1 0

 .
We may also define J in terms of the canonical basis of Rn. Recall that ei ∈ Rn denotes
the ith column of I. Then,

J =
n−1∑
j=1

ej+1e
T
j . (7.1.3)

We state several technical results regarding J in the following lemma.

Lemma 7.1.21. Let J be defined as in (7.1.3) and let k, l ∈ {0, 1, . . . , n − 1}. Then the
following hold.

(i) Jk =
∑n−k

j=1 ej+ke
T
j .

(ii) If ` = n and k = 0, then Jk(J `)T = 0, otherwise Jk(JT )` has non-zero elements only
in the diagonal `− k.

(iii) Jk(J `)T − Jn−`(Jn−k)T = 0 if, and only if, ` = n− k.

Proof. For (i) the result clearly holds when k ∈ {0, 1}. Now observe that (eke
T
` )(eie

T
j ) 6= 0

if, and only if, ` = i in which case the product is eke
T
j . Thus we have,

J2 =

(
n−1∑
j=1

ej+1e
T
j

)(
n−1∑
j=1

ej+1e
T
j

)
=

n−1∑
j=2

(ej+1e
T
j )(eje

T
j−1) =

n−2∑
j=1

ej+2e
T
j .

Applying an inductive argument yields the desired expression for arbitrary k.
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For (ii), we use (i) to get,

Jk
(
J `
)T

=

(
n−k∑
j=1

ej+ke
T
j

)(
n−∑̀
j=1

eje
T
j+`

)
,

=

n−max {k,`}∑
j=1

(ej+ke
T
j )(eje

T
j+`),

=

n−max {k,`}∑
j=1

ej+ke
T
j+`.

The non-zero elements of this matrix are contained in the diagonal j + `− (j + k) = `− k.

Finally, for (iii) we have,

Jk
(
J `
)T − Jn−` (Jn−k)T =

n−max{k,`}∑
j=1

ej+ke
T
j+` −

n−max{k,`}∑
j=1

ej+n−`e
T
j+n−k.

This matrix is the zero matrix if, and only if, ` = n− k.

The matrices A(a) and B(a) of (7.1.1) may be expressed in terms of J as,

A(a) =
n−1∑
j=0

ajJ
j and B(a) =

n−1∑
j=0

an−jJ
j. (7.1.4)

Now we recall the results of Section 7.1.2 on Toeplitz and Bezoutian matrices to obtain
the following.

Proposition 7.1.22. If P is of the form P3, then T ? is Toeplitz.

Proof. Let k be a positive integer such that P = {0, k, n − k}. We may assume, without
loss of generality, that k ≤ n − k. Let V ⊂ R++ × R2 consist of all triples (t0, tk, tn−k) so
that the partial Toeplitz matrix with pattern P and data {t0, tk, tn−k} is positive definite
completable. Note that the positive definite completions of V consist of the positive definite
matrices that are constant along the 0th, kth, and (n−k)th diagonals. Since this is a convex
set and V is a projection of this set onto the (1, 1), (1, k + 1), and (1, n − k + 1) entries,
it follows that V is also a convex set. Moreover, V is open and connected. We let U ⊆ V
consist of those triples (t0, tk, tn−k) for which the corresponding maximum determinant
completion is Toeplitz. We are done if we show that U = V . Note that U 6= ∅ since it
contains the triples (tk, 0, 0) for all tk > 0. Therefore, to prove U = V , it suffices to show
that U is both open and closed in V .

First let us show that U is closed in V . Observe that the map F : V → Sn++ tak-
ing (t0, tk, tn−k) to its corresponding positive definite maximum determinant completion, is
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continuous and injective. This follows from the classical Maximum Theorem of Berge, [5].
Therefore, by the continuity of F , it suffices to show that F (U) is closed in F (V). To this
end let {Xk}k∈N be a sequence in F (U) with limit point X̄ ∈ F (V). Since X̄ ∈ F (V), it is
a maximum determinant completion and since Xk is Toeplitz for each k and the Toeplitz
matrices are closed, it follows that X̄ is Toeplitz. Hence X̄ ∈ F (U), as desired.

To show that U is also open in V , we introduce the set,

C := {(p, q, r) ∈ R++ × R2 : p+ qzk + rzn−k has all roots satisfy |z| > 1}.

Since the region defined by the inequality |z| > 1 is an open subset of the complex plane, C
is an open set. Now for each (p, q, r) ∈ C we define,

a(p, q, r) =
(
a0 a1 · · · an

)T ∈ Rn+1, (7.1.5)

such that a0 = p, ak = q, and an−k = r and the other entries are zeros. Then consider the
map G : C → R3 defined as,

G(p, q, r) =
(
[Bez(a(p, q, r))−1]11, [Bez(a(p, q, r))−1]k+1,1, [Bez(a(p, q, r))−1]n−k+1,1

)
.

The map G is well-defined since Fact 7.1.10 and the construction of C guarantee that
the matrix Bez(a(p, q, r)) is non-singular. Now we show that G(C) = U , implying by the
openness of C and by the continuity of G, that U is open, as desired.

By Fact 7.1.8, it holds that Bez(a(p, q, r))−1 is positive definite and Toeplitz when-
ever (p, q, r) ∈ C. Thus Bez(p, q, r)−1 is a positive definite completion of the partial Toeplitz
matrix having pattern P and data G(p, q, r). Therefore G(C) ⊆ V . Recalling Defini-
tion 7.1.7 and (7.1.4) we have,

Bez(p, q, r) = (pJ0 + qJk + rJn−k)(pJ0 + qJk + rJn−k)T

− (rJk + qJn−k)(rJk + qJn−k)T .
(7.1.6)

In expanding Bez(p, q, r), terms with J0(J0)T , Jk(Jk)T , and Jn−k(Jn−k)T have non-zero
entries only on the diagonal, by Lemma 7.1.21 (ii). Similarly, terms with J0(Jk)T and
with J0(Jn−k)T have non-zero entries only on diagonals k and n − k, respectively. The
remaining terms, with Jk(Jn−k)T and Jn−k(Jk)T , vanish by Lemma 7.1.21 (ii). There-
fore, Bez(p, q, r) has non-zero values only on the diagonals 0, k, and n − k. In other
words, Bez(p, q, r) has zeros in the entries not specified by the partial Toeplitz matrix hav-
ing pattern P and data G(p, q, r). Thus by Lemma 7.1.13, Bez(p, q, r)−1 is a maximum
determinant completion of this partial Toeplitz matrix and it follows that G(C) ⊆ U .

All that remains is to show that U ⊆ G(C). To this end, let (t0, tk, tn−k) ∈ U
and let F (t0, tk, tn−k), as above, be the maximum determinant positive definite comple-
tion of the partial matrix with pattern P and data {t0, tk, tn−k}. By definition of U ,
it holds that F (t0, tk, tn−k) is Toeplitz. Let f0, fk, and fn−k be the (1, 1), (k + 1, 1)
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and (n− k+ 1, 1) elements of F (t0, tktn−k)
−1 respectively. Then by the Gohberg-Semencul

formula, Fact 7.1.9, we have,

F (t0, tk, tn−k)
−1 =

1

f0

(
f0J

0 + fkJ
k + fn−kJ

n−k) (f0J
0 + fkJ

k + fn−kJ
n−k)T

− 1

f0

(
fn−kJ

k + fkJ
n−k) (fn−kJk + fkJ

n−k)T ,
= Bez

(
a

(√
f0,

fk√
f0

,
fn−k√
f0

))
,

where a is defined as in (7.1.5). Since F (t0, tk, tn−k)
−1 � 0, it follows, by Fact 7.1.10,

that
(√

f0,
fk√
f0
, fn−k√

f0

)
∈ C and therefore,

(t0, tk, tn−k) = G

(√
f0,

fk√
f0

,
fn−k√
f0

)
∈ G(C),

as desired.

In Proposition 7.1.20 and Proposition 7.1.22 we have proved direction (ii) =⇒ (i)
of Theorem 7.1.14. The converse is proved in the following.

Proposition 7.1.23. Let P be such that for all positive definite completable T (P,D), the
determinant maximizer T ? is Toeplitz. Then P is of the form P1, P2, or P3.

Proof. Let P = {0, k1, . . . , ks} for some s ∈ {1, 2, . . . , n − 1} and let D = {t0, t1, . . . , ts}
be arbitrary data so that T (P,D) is positive definite completable. We assume here that tj
corresponds to diagonal kj. Since we have assumed that T ? is Toeplitz, Lemma 7.1.13
gives us that (T ?)−1 has non-zero entries only in the diagonals specified by P (and their

symmetric counterparts). Let a =
(
a0 · · · an−1

)T
denote the first column of (T ?)−1 and

let us define â :=
(
aT 0

)T
. Then by Fact 7.1.9 we have,

(T ?)−1 =
1

a0

(
A (â)A (â)T −B (â)B (â)T

)
.

where by (7.1.4),

A (â) =
s∑
j=0

ajJ
kj , B (â) =

s∑
j=1

ajJ
n−kj .

In the above we define k0 := 0. Substituting in the expressions for A(â) and B(â) and
expanding, we see that (T ?)−1 is a linear combination of three types of terms, along with
their symmetric counterparts:

Jkj
(
Jkj
)T
,

Jk0
(
Jkj
)T
,

Jkj
(
Jk`
)T − Jn−kj (Jn−k`)T , j 6= `.
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By Lemma 7.1.21, the terms Jkj(Jkj)T have non-zero entries only on the main diagonal,
and the terms Jk0(Jkj)T have non-zero entries only on the diagonals belonging to P . The
third type of term, Jkj(Jk`)T −Jn−kj(Jn−k`)T , where j 6= ` has non-zero entries only on the
diagonals ±|kj − k`|. As we have already observed in the proof of Proposition 7.1.22, the
set of data for which T is positive definite completable is an open set. We may therefore
perturb the data of T so that the entries of a do not all lie on the same proper linear
manifold. Then terms of the form Jkj(Jk`)T −Jn−kj(Jn−k`)T with j 6= ` do not cancel each
other out. Therefore, for each pair j and ` where j 6= `, it holds that either |kj − k`| ∈ P
or Jkj(Jk`)T − Jn−kj(Jn−k`)T = 0. By Lemma 7.1.21 the second alternative is equivalent
to k` = n− kj. Therefore for j 6= ` one of the following alternatives holds:

|kj − k`| ∈ P or k` = n− kj. (7.1.7)

Using this observation we now proceed to show that P has one of the specified forms.

Let 1 ≤ r ≤ s be the largest integer such that {0, k1, . . . , kr} is of the form P1. That
is, k2 = 2k1, k3 = 3k1, and so on. If r = s, then we are done. Therefore we may assume
that s ≥ r+ 1. Now we show that in fact s = r+ 1. By (7.1.7) it holds that kr+1− k1 ∈ P
or kr+1 = n− k1. We show that the first case does not hold. Indeed, if kr+1− k1 ∈ P , then
it follows that kr+1 − k1 ∈ {k1, . . . , kr}. This implies that,

kr+1 ∈ {2k1, . . . , rk1, (r + 1)k1} = {k2, . . . , kr, (r + 1)k1}.

Clearly kr+1 /∈ {k2, . . . , kr}, and if kr+1 = (r+1)k1, then r is not maximal, a contradiction.
Therefore kr+1 = n− k1. To show that s = r + 1, suppose to the contrary that s ≥ r + 2.
Again by (7.1.7), it holds that kr+2 − k1 ∈ P or kr+2 = n − k1. The latter does not hold
since then kr+2 = kr+1. Thus we have kr+2 − k1 ∈ {k1, . . . , kr, kr+1}, which implies that

kr+2 ∈ {2k1, . . . , rk1, (r + 1)k1, kr+1 + k1} = {k2, . . . , kr, kr + k1, n}.

Clearly kr+2 /∈ {k2, . . . , kr, n} giving us that kr+2 = kr + k1. Since kr < kr+1 < kr+2, it
follows that 0 < kr+2 − kr+1 < k1. Therefore kr+2 − kr+1 /∈ P . Then by (7.1.7) it holds
that kr+2 = n− kr+1 = k1, a contradiction.

We have shown that P = {0, k1, 2k1, . . . , rk1, ks} with ks = n− k1. If r = 1, then P is
of the form P3. On the other hand if r ≥ 2 it holds by (7.1.7) that,

{ks − kr, . . . , ks − k2} ⊆ P \ {0, k1}.

Equivalently,
{ks − kr, . . . , ks − k2} ⊆ {k2, . . . , kr}.

Since these two sets of distinct increasing elements have identical cardinality, we conclude
that ks − k2 = kr. Rearranging, we obtain that ks = (r + 2)k1 and P is of the form P2, as
desired.
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7.1.6 Maximum Rank Positive Semidefinite Toeplitz Comple-
tions

Theorem 7.1.14 can be extended to partial Toeplitz matrices that are only positive semidef-
inite completable using the central path of (6.1.1).

Corollary 7.1.24. Let T = T (P,D) be a partial Toeplitz matrix where P is of the
form P1, P2, or P3. If T is positive semidefinite completable, then T admits a Toeplitz pos-
itive semidefinite completion with maximum rank over all positive semidefinite completions
of T .

Proof. Let T (P,D) be as in the hypothesis with P = {0, k1, . . . , ks} andD = {t0, t1, . . . , ts}
for a positive integer s ≤ n − 1. Let F = F(A, b) be the spectrahedron consisting of the
positive semidefinite completions of T . As in (7.0.1) we may construct A so that it consists
of matrices Eij such that j − i ∈ P .

Let us address two simple cases. First, if F contains a positive definite matrix, then T
is positive definite completable. By Theorem 7.1.14 the maximum determinant completion
is Toeplitz, satisfying the claim. Second, if F is the zero matrix then the maximum rank
over F is 0 and is attained by the zero matrix which is Toeplitz, as desired.

Now we may assume that F ⊂ Sn+ \ Sn++ and that F 6= {0}. We have assumed that T
is positive semidefinite completable, hence F 6= ∅. Moreover, since 0 ∈ P it follows that F
is bounded. Thus F satisfies Assumption 6.1.1 and the central path of (6.1.1) is well-
defined for F . Let us construct this path with B = I. Note that b consists of the data D
(up to scaling) and A(I) is a vector that contains 1s in positions corresponding to the
diagonal and 0s elsewhere. Thus, for α > 0, the vector b(α) := b + αA(I) differs from b
by exactly α in elements corresponding to the diagonal and is the same as b in all other
elements. Therefore F(α) consists of positive definite completions of T (P,D(α)) where,

D(α) := {t0 + α, t1, . . . , ts}.

Since F(α)∩Sn++ 6= ∅ it follows that T (P,D(α)) is positive definite completable. Thus The-
orem 7.1.14 implies that X(α) is Toeplitz for every α > 0.

Now let X̄ denote the limit point of X(α) as α↘ 0. Then X̄ is a positive semidefinite
completion of T with maximum rank over all positive semidefinite completions according
to Theorem 6.1.9. Moreover, since the Toeplitz matrices form a linear subspace of Sn and
X(α) is Toeplitz for every α > 0 then X̄, the limit point of X(α), is also Toeplitz, as
desired.

7.2 Singularity Degree of Toeplitz Cycles

Let us turn our attention back to the Toeplitz completion problem, Problem 7.0.1, pre-
sented in the introduction to this chapter. From a graph theoretic perspective, the pattern
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of the partial matrix in Problem 7.0.1 corresponds to one large cycle. For this reason, the
problem has been referred to as “cycle completion”. The data ensuring that Problem 7.0.1
is solvable is characterized in [4].

Fact 7.2.1 (Corollary 6, [4]). Let T = T (P,D) be a partial Toeplitz matrix of order n ≥ 4
with,

P = {0, 1, n− 1} and D = {1, cos(θ), cos(φ)}, θ, φ ∈ [0, π].

Then T is positive semidefinite completable if, and only if,

φ

n− 1
≤ θ ≤ (n− 2)π + φ

n− 1
when n is even,

and,
φ

n− 1
≤ θ ≤ (n− 1)π − φ

n− 1
when n is odd.

By choosing θ and φ so that the inequalities of Fact 7.2.1 are tight, we obtain a solution
set that satisfies Assumption 6.1.1. Then we may construct the central path of (6.1.1) as
in the proof of Corollary 7.1.24. Moreover, since the pattern of Fact 7.2.1 is of the form P3,
the matrix X(α) in the central path is Toeplitz for every α > 0. Then we may use the fact
that Z(α) in the central path is a scalar multiple of X(α)−1 and the Gohberg-Semencul
formula of Fact 7.1.9, to analyze the singularity degree of the set of positive semidefinite
completions of T . To this end we record the following special case of Fact 7.1.9.

Lemma 7.2.2. Let T ∈ Sn be Toeplitz and non-singular. If,

eT1 T
−1 =

(
a c 0 · · · 0 d

)
then,

T−1 =


a c 0 d

c b c
. . .

0 c
. . . . . . 0

. . . . . . b c
d 0 c a

 , (7.2.1)

where b := 1
a
(a2 + c2 − d2).

Proof. By Fact 7.1.9 it holds that,

T−1 =
1

a

(
aJ0 + cJ1 + dJn−1

) (
aJ0 + cJ1 + dJn−1

)T
− 1

a

(
dJ1 + cJn−1

) (
dJ1 + cJn−1

)T
= aI +

c2 − d2

a
J1
(
J1
)T

+
d2 − c2

a
Jn−1

(
Jn−1

)T
(7.2.2)

+ c
(
J0
(
J1
)T

+ J1
(
J0
)T)

(7.2.3)

+ d
(
J0
(
Jn−1

)T
+ Jn−1

(
J0
)T)

. (7.2.4)
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By Lemma 7.1.21 the non-zero elements of (7.2.2) are restricted to the diagonal of T−1.
Therefore, (7.2.3) implies that every entry of diagonals 1 and −1 of T−1 takes on the
value c. Similarly, (7.2.4) implies that T−1

n,1 = T−1
1,n = d. We have shown that T−1 has the

desired form of (7.2.1) everywhere except the diagonal. Now it is not difficult to verify
that for k ∈ {1, . . . , n− 1},

Jk
(
Jk
)T

=

[
0 0
0 In−k

]
,

where In−k is the identity matrix of order n− k. Then from (7.2.2) we have,

T−1
kk =


a if k = 1,
1
a

(a2 + c2 − d2) if k ∈ {2, . . . , n− 1},
1
a

(a2 + c2 − d2 + d2 − c2) = a if k = n,

as desired.

As it turns out the partial Toeplitz matrix of Fact 7.2.1 has a unique positive semidef-
inite completion.

Lemma 7.2.3. Let T = T (P,D) be a partial Toeplitz matrix of order n ≥ 4 with,

P = {0, 1, n− 1} and D = {1, cos(θ), cos((n− 1)θ)}, θ ∈
[
0,

π

n− 1

]
.

Then the unique positive semidefinite completion of T is the Toeplitz matrix T satisfying,

Tij = cos(|i− j|θ), ∀i, j ∈ {1, . . . , n}, (7.2.5)

with,

rank(T ) =

{
1 if θ = 0,

2 otherwise.
(7.2.6)

Proof. Let X be a positive semidefinite completion of T . The first row of X is,

eT1X =
(
cos θ0 cos θ1 cos θ2 · · · cos θn−1

)
,

where θ0 = 0, θ1 = θ, θn−1 = (n − 1)θ and θ2, . . . , θn−2 ∈ [0, π]. The principal submatrix
of X consisting of rows and columns 1, n− 1 and n, is,

X{1,n−1,n} :=

 1 cos(θn−2) cos((n− 1)θ)
cos(θn−2) 1 cos(θ)

cos((n− 1)θ) cos(θ) 1

 .
Since X{1,n−1,n} � 0, Proposition 2 of [4] gives us that (n− 1)θ ≤ θn−2 + θ. Thus

θn−2 ≥ (n− 2)θ. (7.2.7)
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Next, let us denote by X̂ the (n − 1) × (n − 1) upper left block of X. Note that X̂ is a

positive semidefinite completion of the partial Toeplitz matrix T̂ = T (P̂ , D̂) of order n−1
with,

P = {0, 1, n− 2}, D = {1, cos(θ), cos(θn−2)}.

By Corollary 2 of [4] it holds that,

2 max{θn−2, θ} ≤ (n− 2)θ + θn−2. (7.2.8)

Since (7.2.7) implies that θn−2 = max{θn−2, θ}, (7.2.8) simplifies to,

θn−2 ≤ (n− 2)θ. (7.2.9)

Combining (7.2.9) with (7.2.7) gives us that θn−2 = (n− 2)θ.

Using the same arguments, but with the principal submatrix consisting of rows and
columns 1,2, and n and the (n− 1)× (n− 1) lower right block of X, we get that the (2, n)
entry of X also takes the value cos((n − 2)θ). We have thus shown that along diago-
nal (n− 2), the value of X is cos((n − 2)θ). By inductively considering other principal
submatrices of X we obtain (7.2.5). The claim regarding rank follows from the observation
that T = BTB where,

B :=

[
1 cos θ cos(2θ) · · · cos((n− 1)θ)
0 sin θ sin(2θ) · · · sin((n− 1)θ)

]
.

The main result of this section is a statement about the singularity degree of a family
of partial Toeplitz matrices.

Theorem 7.2.4. Let T = T (P,D) be a partial Toeplitz matrix of order n ≥ 4 with,

P = {0, 1, n− 1} and D = {1, cos(θ), cos((n− 1)θ)}, θ ∈
[
0,

π

n− 1

]
.

Let F denote the spectrahedron that consists of the positive semidefinite completions of T .
Then,

sd(F) =

{
1, if θ ∈ [0, π

n−1
),

≥ 2, if θ = π
n−1

.

Proof. By Fact 7.2.1, F is non-empty. Moreover, it is bounded and satisfies Assump-
tion 6.1.1. Adopting the notation of Chapter 6, we let (X(α), y(α), Z(α)) denote the
central path of (6.1.1) for F , constructed with B = I, as in Corollary 7.1.24. In the proof
of Corollary 7.1.24, we also showed that X(α) is Toeplitz. Therefore, Z(α) = αX(α)−1

106



has the form of Lemma 7.2.2. If we let Z̄ denote the limit of Z(α) as α ↘ 0, then there
exist a, b, c, and d such that,

Z̄ =


a c 0 d

c b c
. . .

0 c
. . . . . . 0

. . . . . . b c
d 0 c a

 . (7.2.10)

First we show a > 0. For the sake of contradiction, suppose that a = 0. Since Z̄ � 0 we
have c = d = 0. Moreover, X̄ and Z̄ are orthogonal hence,

0 = 〈X̄, Z̄〉 = (n− 2)b,

implying that b = 0. Then Z̄ = 0, contradicting Theorem 6.1.9. One implication of a > 0
is the relation,

b =
1

a
(a2 + c2 − d2). (7.2.11)

Next, let us make some observations regarding the rank of Z̄. If b > 0 then columns 2
through (n− 2) of Z̄ are linearly independent, implying that rank(Z̄) ≥ n − 2. On the
other hand, when b = 0 it follows, by Z̄ � 0, that c = 0. Moreover, (7.2.11) implies that d
has the same magnitude as a and therefore, rank(Z̄) = 1. Summarizing, we have,

rank(Z̄) =

{
1 if b = 0,

≥ n− 2 if b > 0.
(7.2.12)

Since X̄ and Z̄ are orthogonal, Fact 2.1.1 implies that X̄Z̄ = 0, giving us the equations,

0 = a+ c cos(θ) + d cos((n− 1)θ), (7.2.13)

0 = b+ 2c cos(θ). (7.2.14)

Now we show that,

θ ∈
(

0,
π

n− 1

)
=⇒ rank(Z̄) ≥ n− 2. (7.2.15)

To see this, suppose that b = 0. We have already shown that this assumption implies
that c = 0 and that d = ±a. If d = a, then (7.2.13) implies that θ = π/(n − 1). On the
other hand if d = −a, (7.2.13) gives us that θ = 0. These two observations give us that,

b = 0 =⇒ θ ∈
(

0,
π

n− 1

)
, (7.2.16)

implying (7.2.15). Moreover, (7.2.6) implies that rank(X̄) = 2 for these values of θ. There-
fore complementary slackness (see Section 4.5) and the fact that Z̄ is a maximum rank
exposing vector for the first iteration of the facial reduction algorithm give us that,

θ ∈
(

0,
π

n− 1

)
=⇒ sd(F) = 1. (7.2.17)
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Next we we consider θ = π/(n− 1). In this case, (7.2.13) and (7.2.14) give us that,

c = − b(
2 cos

(
π
n−1

)) and d = a− b

2
.

Substituting into (7.2.11) and rearranging we get,

b2

a

(
1

4
− 1

4 cos2( π
n−1

)

)
= 0.

Consequently b = 0, and rank(Z̄) = 1 implying that sd(F) ≥ 2.

The only remaining case is that of θ = 0. In this case rank(X̄) = 1. Observe that
setting,

a = 1, b = 2, c = −1, d = 0,

implies that Z̄ � 0 by diagonal dominance, e.g., Theorem 1.12 of [80]. Moreover it can be
verified that rank(Z̄) = n−1 and that Z̄ ∈ range(A∗) whereA is the linear map constructed
as in the introduction to this chapter. These observations imply that sd(F) = 1 when θ = 0,
completing the proof.
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Chapter 8

Numerical Case Studies

In this chapter we demonstrate how to numerically obtain the bounds derived in Chapter 5.
Our analysis is focused on spectrahedra with larger singularity degree, although, we do
study one instance with singularity degree 1, in order to demonstrate ‘good’ convergence.
For some of the instances, the exact singularity degree is known, allowing us to test the
quality of our bounds. In other instances, the singularity degree is not known and we use
our bounds to provide an estimate of it. This chapter is based largely on the preprint [74],
coauthored by the author of this thesis.

In order to study the notion that large singularity degree is sufficient, in some sense,
for slow convergence, we consider bounded spectrahedra, satisfying Assumption 6.1.1. We
follow the primal-dual central path of (6.1.6), where B = I, with a path-following algorithm
based on the Gauss-Newton search direction, see [16, 42]. In our implementation of the
algorithm, we initialize with α = 1, and decrease α at each iteration by a factor of 0.6.
For this reason it seems natural to consider sequences of the type {σk}, as in Chapter 5,
where σ = 0.6.

For each value of k, we approximate the ratios Ri(σ
k), Qi,σ(k), and Si,σ(k) of Chapter 5,

by following the primal-dual central path (X(α), y(α), Z(α)) of (6.1.6) until α = σk. We
find that the plots of Qi,σ(k) and Si,σ(k) are very similar and for this reason we have chosen
to only report the results for Si,σ(k), due to the stronger results of Theorem 5.1.9. Once the
ratios have been obtained for k sufficiently large, around 60, we generate plots of the ratios
against k for each i. The plots are then used to obtain bounds on maximum rank, forward
error, and singularity degree. The bounds as well as the true values (when available) are
recorded in Table 8.1.

The various bounds associated with a spectrahedron F and a proposed solution X̃ are
denoted as follows:

• r̄ - upper bound on r = rank(F),

• d - lower bound on sd(F),
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• ε - lower bound on εf (X̃,F),

• Nλ - number of different rates of convergence among eigenvalues of X(α) that vanish.
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Figure 8.0.1: The dashed lines coincide with the values σξ(i) for the worst case scenario
where sd(F) = n− 1

.

We denote the first test spectrahedron as spec1. Taking the approach of [85], we gen-
erate a primal-dual pair of SDPs that satisfy strict complementarity. As in Section 4.5,
we take the optimal set of the primal SDP as our spectrahedron. Therefore, the singu-
larity degree of the spectrahedron is 1. We generate spec1 with n = 20 and plots of the
ratios Si,σ(k) and Ri(σ

k) are shown in Figure 8.0.1. In the left image, there is a clear dis-
tinction between curves that converge to 1 and curves that do not converge to 1. Moreover,
if we disregard the irregularity in the last few values of the curves that do not converge to 1,
we may conclude that those curves converge to the smallest dashed line located at 0.6. This
observation, together with Theorem 6.2.1, correctly indicates that the spectrahedron has
singularity degree 1. Exactly 13 of the curves converge to 0.6, yielding r = 7, the correct
approximation of the maximal rank r. The plot on the right side of the figure shows that
exactly one curve blows up and it is the curve corresponding to i = 7 = r. This indicates,
as expected, two groups of eigenvalues of X: those that converge to positive values and
those that vanish.

The second spectrahedron, denoted spec2, is the classical ‘worst case’ problem of [80],
as presented in Example 4.2.6, with n = 5 and singularity degree n − 1 = 4. Plots of the
two ratios are in Figure 8.0.2. The left image shows 5 distinct rates of convergence among
the eigenvalue sums. All but one of the curves converge to values that are clearly below 1.
This indicates, correctly, that the maximum rank is at most 1. The largest of the curves
appears to converge to the highest of the dashed lines. Thus we may infer that singularity
degree is at least 4. Since 4 = n − 1, the worst case upper bound, we may conclude that
singularity degree is exactly 4. The row corresponding to spec2 in Table 8.1 shows a very
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Figure 8.0.2:

large discrepancy between forward error and backward error. Our lower bound is actually
quite close to the true forward error. Now let us consider the image on the right. It may
be somewhat speculative to assert that the two lower curves blow up. Thus, taking the
more cautious approach we assume that only the two larger curves blow up. Checking
the indices of these curves yields an upper bound of 3 on the maximum rank. We choose
the notably lower estimate of 1 based on the left plot. On the other hand if we are to
apply Corollary 6.2.6 then we would want an overestimate of the number of different rates
of convergence among the eigenvalues of X(α) that vanish. For this number we include
the two lower curves, giving a bound of 4.
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Figure 8.0.3:

For the next spectrahedron, spec3, the authors of [84] observed “strange behaviour”
when attempting to optimize over it with an interior point method. The dimension
is n = 10 and the singularity degree is proven to be 5. The left image of Figure 8.0.3
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shows six distinct groups of curves. It is clear, for all but two of the curves, that the
limit point is different from 1. Thus we have an upper bound of 2 on the maximum rank.
The largest of the curves that does not converge to 1 appears to converge to a value that
is below the fourth dashed line, indicating a lower bound of 4 on the singularity degree.
Unlike the two previous spectrahedra, here the lower bound on singularity degree is a strict
one. The image on the right shows exactly five different rates of convergence among the
eigenvalues of X(α) that converge to 0. Moreover the upper bound on maximum rank
corresponds to the one obtained from the left image.
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Figure 8.0.4:

The fourth spectrahedron, spec4, is generated by the algorithm of [85], just as spec1

is. However, for this instance we require the existence of a complementarity gap. While we
do not know the exact value of the singularity degree, the lack of strict complementarity
implies, by Theorem 4.5.3, that singularity degree is at least 2. Plots of the ratios Si,σ(k)
and Ri(σ

k) are shown in Figure 8.0.4. From the left image we can be quite sure that
those curves that converge to the second dashed line or below do not converge to 1. A
closer inspection reveals that there are 10 such curves, implying an upper bound of 5 on the
maximum rank. The corresponding lower bound on forward error, as recorded in Table 8.1,
is indeed a lower bound and more informative than the reported backward error. We also
obtain a lower bound on the singularity degree that coincides with the theoretical lower
bound of 2. The image on right shows exactly two rates of convergence among eigenvalues
of X(α) that converge to 0 and, once again, provides the same upper bound on maximum
rank as obtained from the image on left.

The final spectrahedron we consider, spec5, is a Toeplitz cycle completion problem
having the form of Theorem 7.2.4. Setting n = 10 and θ = π/(n − 1) gives us a spec-
trahedron with singularity degree at least 2. In Figure 8.0.5, we find images of plots of
the ratios Si,σ(k) and Ri(σ

k). The left image indicates that all but two of the eigenvalues
of X(α) converge to 0, yielding an exact approximation of maximum rank. Moreover, the
corresponding eight curves appear to have limits below the second dashed line. Hence we
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Figure 8.0.5:

have a lower bound of 2 on the singularity degree. This coincides with the theoretical lower
bound.

Table 8.1: A record of relevant measures and their bounds for the spectrahedra considered
in our analysis.

F εb(F) r r εf (F) ε sd(F) d Nλ

spec1 6.62× 10−11 7 7 4.36× 10−11 3.10× 10−12 1 1 1
spec2 4.44× 10−13 1 1 4.93× 10−2 3.19× 10−2 4 4 4
spec3 2.47× 10−13 2 2 - 9.88× 10−3 5 4 5
spec4 1.88× 10−11 5 5 1.35× 10−5 4.16× 10−7 ≥ 2 2 2
spec5 2.61× 10−13 2 2 1.22× 10−6 6.96× 10−8 ≥ 2 2 2

In these case studies we have demonstrated the ability to upper bound maximum rank
quite effectively. The resulting lower bound on forward error is of a much larger magnitude
than backward error in all instances with the exception of spec1, where the singularity
degree is 1. We see this feature as quite useful, as it alerts practitioners that the proposed
solution is of substantially lower accuracy than backward error indicates. For spectrahedra
with known singularity degree, we have demonstrated that the lower bound is quite accu-
rate. In the other cases, the lower bound is in agreement with the theoretical lower bound.
Lastly, for these test cases (as well as for others we have tested), the value Nλ seems to be
an upper bound on singularity degree. Proving this, or demonstrating a counterexample,
is an interesting topic for future research.
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Chapter 9

Conclusion

We have studied the interplay between error bounds and singularity degree in semidefinite
programming. In Chapter 4 we derived several theoretical bounds on singularity degree
with respect to transformations of spectrahedra. In Chapter 5 we developed a numerical
approach to bound forward error from below and thereby identify sequences that converge
poorly to the spectrahedron even when the backward error is small. This approach also
leads to a numerical lower bound on singularity degree, a measure that we view as in-
tractable at the present time. In Chapter 6 we showed that larger singularity degree leads
to greater irregularity in the convergence of a specific family of central paths. Our results
were applied to Toeplitz matrix completions in Chapter 7, where we also proved some
results that are independent of the rest of the thesis. The numerical bounds on error and
singularity degree were tested on several spectrahedra in Chapter 8.

We hope that the results of this thesis may aid future research on spectrahedra, SDPs,
and more generally, linear conic optimization. In conclusion we highlight some points of
interest and future research.

1. In the numerical results of Chapter 8, the ratios Si,σ(k) always appear to converge.
Is it possible, therefore, that additional properties of eigenvalue functions could be
used to replace lim inf with lim in the error bound results of Chapter 5?

2. In showing that singularity degree may be viewed as a measure of hardness for solving
spectrahedra, our analysis was restricted to a specific family of central paths. We
suspect that the analysis can be extended to other central paths. Is it possible,
however, to extend the results to algorithms of a completely different nature? We
already mentioned that Drusvyastkiy, Li, and Wolkowicz [17] used the bounds of
Sturm to provide upper bounds on forward error for the iterates of the alternating
projections algorithm applied to spectrahedra. Can it be shown that convergence of
alternating projections is worse for spectrahedra with large singularity degree?

3. The error bounds we have derived rely heavily on properties of symmetric matrices,
such as eigenvalues and the orthogonal spectral decomposition. In his extension of the
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bounds of Sturm to amenable cones, Lourenço [46] used generalizations of eigenvalues.
Given this additional machinery, can our results be extended to amenable cones?

4. In the numerical tests we observed that the number of different rates of convergence
among eigenvalues of X(α) that vanish is an upper bound on singularity degree for
instances where we have prior knowledge of singularity degree. It remains an open
problem to determine whether this is true or not.

5. Structured spectrahedra, such as those arising from Toeplitz completion problems
in Chapter 7, allow for theoretical analysis and may lead to interesting test problems.
An area of future research is to study singularity degree from a theoretical perspective
for other families of structured spectrahedra.

115



Index

(A(X))i = 〈X,Ai〉, 6
(X(α), y(α), Z(α)), primal-dual central path,

75
(·)⊥, orthogonal complement, 7
C∞, recession cone of C, 7
D, data of partial matrix S(P,D), 91
E(i, j), matrix with 1 in the (i, j) and (j, i)

positions and zeroes elsewhere, 35
J , subdiagonal matrix, 99
K, anti-diagonal permutation, 95
M †, Moore-Penrose pseudoinverse of M , 37
P , pattern of a partial Toeplitz matrix, 93
P , pattern of partial matrix S(P,D), 91
P1 := {0, k, 2k, . . . , rk}, 94
P2 := {0, k, 2k, . . . , (r− 2)k, rk}, where n =

(r + 1)k, 94
P3 := {0, k, n− k}, 94
Qi,σ(k), eigenvalue Q-convergence ratio, 58
Ri(α), ratio of subsequent eigenvalues, 57
T , Toeplitz matrix, 92
T ?, determinant maximizer of partial Toeplitz

matrix, 94
A∗, adjoint of A, 6
AM , the map A(M ·MT ), 7
Bez(a), Bezoutian, 92
D, dual optimal set, 51
E(A, b), 21
F(A, b), spectrahedron defined by A and b,

7
L(A, b), the affine subspace defined by A

and b, 7
O, big-O notation, 15
Ω, omega notation, 15
P , primal optimal set, 51
Sn, Euclidean space of n× n symmetric ma-

trices, 1
Sn+, positive semidefinite matrices, 1
S = S(P,D), partial matrix, 91
T , partial Toeplitz matrix, 93
Θ, theta notation, 15
bd, boundary, 8
cl, closure, 8
cl, set closure, 79
disp(A, b), displacement of L(A, b) and Sn+,

30
dist(X,SS),distance from X to S, 5
εb, backward error, 1
εf , forward error, 1
face(C), minimal face of Sn+ containing C, 12
‖·‖F , Frobenius norm, 5
λ(X), vector of eigenvalues of X, 2
λi(X), the ith largest eigenvalue of X, 5
〈·, ·〉, trace inner product on Sn, 5
µi(·), sum of eigenvalues i through n, 63
rank(·), rank of a matrix or set, 8
relint, relative interior, 8
sd(F), singularity degree, 2, 29
ξ(·), exponent function for bound of Sturm,

37
{tk ∈ R : k ∈ P}, data of a partial Toeplitz

matrix with pattern P , 93
ei, ith column of I, 35
f � Sn+, proper face of Sn+, 9
f � Sn+, face of Sn+, 9
f c, conjugate face, 10
g(SDP ), complementarity gap, 54
ith column of I, ei, 35
kth diagonal of a matrix, 92

adjoint of A, A∗, 6
algebraic set, 79
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anti-diagonal permutation, K, 95

backward error, εb, 1
backward stable, 50
Bezoutian, Bez(a), 92
big-O notation, O, 15
boundary, bd, 8

central path, 56
closure, cl, 8
complementarity gap, g(SDP ), 54
complementary slackness, 51
completion of T , 93
completion of partial matrix, 91
conjugate face, f c, 10
convex cone, 9

data of a partial Toeplitz matrix with pat-
tern P , {tk ∈ R : k ∈ P}, 93

data of partial matrix S(P,D), D, 91
determinant maximizer of partial Toeplitz

matrix, T ?, 94
displacement of L(A, b) and Sn+, disp(A, b),

30
distance from X to S, dist(X,S), 5
dual optimal set, D, 51
duality gap, 14

eigenvalue Q-convergence ratio, Qi,σ(k), 58
Euclidean space of n×n symmetric matrices,

Sn, 1
exponent function for bound of Sturm, ξ(·),

37
exposed face, 10
exposing vector, 10

face of Sn+, f � Sn+, 9
facial reduction sequence, 25
forward error, εf , 1
Frobenius norm, ‖·‖F , 5

Hölderian error bound, 2

Löwner partial order, 6

matrix completion problems, 89

matrix with 1 in the (i, j) and (j, i) positions
and zeroes elsewhere, E(i, j), 35

minimal face of Sn+ containing C, face(C), 12
Minkowski sum, 6
Moore-Penrose pseudoinverse of M , M †, 37

omega notation, Ω, 15
orthogonal complement, (·)⊥, 7

partial facial reduction, 19
partial matrix, S = S(P,D), 91
partial Toeplitz matrix, T , 93
partially positive (semi) definite partial ma-

trix, 91
pattern of a partial Toeplitz matrix, P , 93
pattern of partial matrix S(P,D), P , 91
positive (semi) definite completable partial

matrix, 91
positive semidefinite matrices, Sn+, 1
primal optimal set, P , 51
primal-dual central path, (X(α), y(α), Z(α)),

75
proper face of Sn+, f � Sn+, 9

range of a convex set, 9
rank of a matrix or set, rank(·), 8
ratio of subsequent eigenvalues, Ri(α), 57
recession cone of C, C∞, 7
relative interior, relint, 8

SDP, semidefinite program, 1
semidefinite program, SDP, 1
set closure, cl, 79
singularity degree, sd(F), 2, 29
Slater condition, 14
Slater point, 14
spectrahedron defined by A and b, F(A, b),

7
strict complementarity, 50, 52
strong duality, 14
strongly infeasible, 30
subdiagonal matrix, J , 99
sum of eigenvalues i through n, µi(·), 63
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the affine subspace defined byA and b, L(A, b),
7

the map A(M ·MT ), AM , 7
theta notation, Θ, 15
Toeplitz, 92
Toeplitz matrix, T , 92

vector of eigenvalues of X, λ(X), 2

weakly infeasible, 30
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[64] G. Pataki and L. Tunçel. On the generic properties of convex optimization problems
in conic form. Math. Programming, to appear.

[65] F. Permenter, H. A. Friberg, and E. D. Andersen. Solving conic optimization problems
via self-dual embedding and facial reduction: a unified approach. SIAM Journal on
Optimization, 27(3):1257–1282, 2017.

123



[66] F. Permenter and P. Parrilo. Partial facial reduction: simplified, equivalent SDPs via
approximations of the PSD cone. Technical Report Preprint arXiv:1408.4685, MIT,
Boston, MA, 2014.
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