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Abstract

The behaviour planning subsystem, which is responsible for high-level decision mak-
ing and planning, is an important aspect of an autonomous driving system. There are
advantages to using a learned behaviour planning system instead of traditional rule-based
approaches. However, high quality labelled data for training behaviour planning models is
hard to acquire. Thus, reinforcement learning (RL), which can learn a policy from simu-
lations, is a viable option for this problem. However, modelling inaccuracies between the
simulator and the target environment, called the ‘transfer gap’, hinders its deployment in
a real autonomous vehicle. High-fidelity simulators, which have a smaller transfer gap,
come with large computational costs that are not favourable for RL training. Therefore,
we often have to settle for a fast, but lower fidelity simulator that exacerbates the transfer
learning problem.

In this thesis, we study how a low-fidelity 2D simulator can be used in place of a slower
3D simulator for training RL behaviour planning models, and analyze the resulting policies
in comparison with a rule-based approach. We develop WISEMOVE, an RL framework for
autonomous driving research that supports hierarchical RL, to serve as the low-fidelity
source simulator. A transfer learning scenario is set up from WISEMOVE to an Unreal!-
based simulator for the Autonomoose? system to study and close the transfer gap.

We find that perception errors in the target simulator contribute the most to the transfer
gap. These errors, when naively modelled in WISEMOVE, provide a policy that performs
better in the target simulator than a carefully constructed rule-based policy. Applying
domain randomization on the environment yields an even better policy. The final RL
policy reduces the failures due to perception errors from 10% to 2.75%. We also observe
that the RL policy has less reliance on the velocity compared to the rule-based algorithm,
as its measurement is unreliable in the target simulator. To understand the exact learned
behaviour, we also distill the RL policy using a decision tree to obtain an interpretable
rule-based policy. We show that constructing a rule-based policy manually to efficiently
handle perception errors is not trivial. Future work can explore more driving scenarios
under fewer constraints to further validate this result.

!Unreal Engine 4 by Epic Games
2 Autonomous driving research platform at the University of Waterloo www.autonomoose.net
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Chapter 1

Introduction

Research on Autonomous Driving System(ADS) has gained a lot of momentum in recent
years, with companies such as Waymo, BMW and Tesla racing to capitalize on the commer-
cial autonomous vehicles (AV) market. This accelerated research has urged policymakers
to update legislation [1] to accommodate autonomous vehicles alongside human drivers.
The impact of such a technology becoming ubiquitous is expected to have far-reaching ef-
fects and holds the potential to greatly improve road safety, optimize transport efficiency;,
increase economic productivity and improve environmental conditions [34]. Autonomous
vehicles have existed as far back as the 1980s, with Dickmann’s autonomous van VaMoRs
[15] and Carnegie Mellon University’s NavLab [60] demonstrating sensor-based autonomous
driving. But driving on busy public roads as well as a human driver remains a difficult
engineering challenge. Despite this, significant progress has been made in that direction in
the past few years due to billions of dollars being invested in this field.

Current ADS technology is made possible by complex components working in unison,
each specializing in solving tasks such as localization, routing, mapping, perception, motion
planning and vehicle control. An important aspect of ADS is the motion planning system.
Motion planning encompasses the whole process of finding an optimal and safe route from
A to B, by identifying and maneuvering around static and dynamic obstacles following the
rules of the road. It is typically decomposed hierarchically into route planning, behaviour
planning and local motion planning. Behaviour planning is responsible for making high-
level decisions or maneuvers required to navigate the local environment of the vehicle.
The behaviour planner needs to take into consideration not only the obstacles in the local
environment but also the traffic rules, road features and the AV’s state to make the optimal
and, most importantly, safe decision.



A behaviour planner where the decision making relies on a set of explicitly programmed
rules [62, (7] needs to account for all of these factors, as well as uncertainty and rare edge
cases. This becomes very difficult to systematically develop without gaps and also to scale
and test. Therefore, the prospect of learning this system is very appealing, especially with
the recent advances in deep learning research and its success in solving large, complex
problems. However, training a successful model requires a large amount of data. For
example, Waymo’s ChauffeurNet[5] uses a dataset containing 60 days of real-world driving
data. Although there is no dearth of public datasets for autonomous driving [5, 17, 65], they
do not contain ground truth labels for learning behaviour planning maneuvers. Creating
your own dataset for this means not just collecting relevant data but also performing the
laborious task of ensuring that it is properly labelled, consistent and error-free.

Reinforcement learning(RL) is useful in this case as it does not require labelled data,
but rather, learns by exploring and interacting with the environment, guided only by some
form of rewards. RL has been receiving a lot of attention in recent years and gained
momentum after an RL agent achieved performance rivalling professional human testers in
a set of classic Atari 2600 video games, using only the pixels and game score as input [35].
RL has subsequently made headlines for being the first algorithm to beat a professional
player in a full game of Go without handicaps [77], and also the first to beat a team of
professional players in the competitive e-sports game Dota 2 [10]. Both games have long
been considered to be difficult challenges in the field of Al, due to the complexity and
strategy involved.

The successes of RL have encouraged researchers to look at it as a potential candidate
for solving complex real-world problems such as planning for autonomous driving. This is
usually done in a simulated environment as it is not feasible and often dangerous to let the
agent collect the required experiences in the real world. Indeed, RL has been applied to
end-to-end continuous control of AVs where environment features are directly translated to
vehicle control [55, 33]. However, from a design perspective, it is advantageous to decom-
pose a large problem into functional modules for increasing scalability and specialization.
The hierarchical decomposition of the motion planning problem stated previously is based
on temporal abstraction. Temporal abstraction applied to RL gives rise to Hierarchical RL
(HRL), where a policy can explore the solution space by choosing sub-policies, rather than
primitive actions. Applying HRL to the motion planning problem is, thus, quite intuitive
and there is a large body of existing work that explores this [50, 43, 13].

A vast majority of RL solutions, however, remains in the realm of simulated environ-
ments, and have not been successfully deployed in real AVs. Transferring the learned
experiences in simulation to the actual task is still an unsolved problem. Since a sim-
ulation does not perfectly model the real task, RL agents have trouble generalizing and



overcoming this transfer gap. Solving this problem of transfer learning, or in this case
called sim-to-real, is crucial for successfully applying RL to real world problems. A large
body of research exists for sim-to-real transfer of robotic control policies [11, 45, 11, 18],
including end-to-end motion planning [64]. RL agents for such fine robotic control tasks
are sensitive to even slight deviations from the training environment [41]. However, since
behaviour planning operates at a coarser temporal resolution, the transfer learning problem
may not be as severe. Sim-to-real for motion planning in a hierarchical setting has so far
been limited to drones and smaller robots [32, 53, 38|, along with a few non-RL approaches
for AVs [37].

An intuitive approach to solve this problem is to close the transfer gap as much as
possible through accurate modelling. But this process is quite expensive, requiring careful
calibration and large amounts of real-world data. It also becomes computationally expen-
sive for simulating complex physical models. This is especially detrimental for training an
RL agent as it learns by exploration in the simulation. Therefore, due to time and cost
constraints, only a lower fidelity simulator may be available for RL training even though
it furthers the transfer gap.

In this thesis, we study this problem in the context of behaviour planning. We consider
a stm-to-sim transfer of an HRL policy for behaviour planning from a low-fidelity simulator
to a target simulator, which is assumed to be as close to reality as possible. The high-fidelity
simulator is based on the Unreal Engine [2] and is used in the pre-deployment testing of the
software stack for the autonomous research platform, Autonomooose [1]. The objective is
to study and close the transfer gap between the two simulators to enable efficient training
of behaviour planning policies for Autonomooose, and compare its performance with a
traditional rule-based approach as a reference.

Our main contributions in this thesis are as follows:

e We develop WISEMOVE, a Python framework for autonomous driving research that
supports HRL, to serve as the low-fidelity simulator for training behaviour planning
policies. The general framework [0] briefly described in Section 3.2.1 is a joint ef-
fort by me, Ashish Gaurav, Jaeyoung Lee and Sean Sedwards from the WISE Lab
research group at University of Waterloo. All modifications to this base framework
for conducting the experiments described in this thesis are solely my contribution.

e We align the two simulators such that a transferred policy is affected only by the
differences in simulator modelling. Thus, we find the individual factors that cause
the transfer gap and analyze the contribution of each. We also show that even
roughly modelling some of the differences in WISEMOVE results in an RL policy
that outperforms a rule-based policy.



e We further improve the performance of the RL policy by using a popular transfer
learning technique, domain randomization.

e We analyze the importance of each feature in the final policy to learn how it differs
from the rule-based policy. We also distill the RL policy into a rule-based algorithm
to get an insight into why it performs better.

The remainder of this thesis proceeds as follows. Chapter 2 introduces the autonomous
driving stack and presents the necessary background information upon which this work is
built. Chapter 3 outlines the overall methodology and discusses the WISEMOVE frame-
work, how the simulators are aligned, how the RL policies are trained and how it is improved
and analyzed. We also discuss the assumptions that we make. Chapter 4 describes the
experimental setup, the results obtained from our experiments and a brief discussion of
the results. Chapter 5 concludes the thesis with relevant discussion and identifies future
work on this research.



Chapter 2

Background

In this chapter, we provide the background necessary for understanding the later chap-
ters. We begin by introducing the components of the autonomous software stack of Au-
tonomooose and move on to briefly discussing the reinforcement learning algorithm used
in this thesis. Then, we outline a few techniques used in sim-to-real transfer learning, one
of which we successfully use in our study.

2.1 Autonomous Driving Stack

The autonomous driving stack refers to the software architecture of the ADS. Essentially,
the stack is an implementation of a cycle of information gathering, decision making and
vehicle control. With decades of research on autonomous driving and robotics, a consensus
has emerged on how a typical ADS stack is designed [30, 24, 62]. At a high level, it
should be able to perceive its surroundings to make an informed decision and maneuver
the vehicle safely to its objective. In the following sections, we introduce the components
of a typical autonomous driving stack. The Autonomooose stack, which is based on the
Robot Operating System (ROS) [51], follows a similar design and is used by the high-
fidelity simulator. Therefore, we also discuss the details of its subsystems relevant to this
study.



2.1.1 Perception and Tracking

To make quick informed decisions, a human driver on public roads is constantly taking
in information about their immediate driving environment, from static features like lane
markings and traffic signs to dynamic objects such as other vehicles and pedestrians. The
ability to gain knowledge about the local environment is, thus, fundamental to the safe
operation of an AV and is made possible by its perception subsystem. Perception is the
first stage in the stack’s pipeline. It processes information from cameras and other sensors
to identify objects in the environment that are relevant to motion planning. AVs typically
use cameras, radars and lidars to collect data about the current state of the environment.
In the perception subsystem of Autonomooose, both camera and lidar input are used by
an Aggregate View Object Detection (AVOD) network [27] to create 3D bounding boxes for
dynamic objects. Static objects are detected using lidar point cloud data and the output
is a probabilistic 2D occupancy grid.

Perception is coupled with a tracking subsystem to provide historical tracks for moving
objects. Motion planning also requires predicted tracks to make proactive decisions. The
tracker in Autonomooose processes the dynamic object bounding boxes from perception
and keeps track of pseudo-continuous temporal changes to each object relative to the
moving frame of the ego! vehicle. It has to account for perception errors and occlusion
to provide robust and accurate tracks. The noisy measurements are processed using a
Kalman filter to get better estimates for position and velocity.

2.1.2 Mapping

Since static elements in the environment such as road markings and traffic signs, by defi-
nition, can be assumed to not change much over time, we can perform the perception step
beforehand to reduce computation. In addition, this data can be maintained and improved
by human engineers to ensure quality. Mapping for AVs refers to the aggregation of these
curated static features into a form that can be used in the stack. Mapping inherently
requires localization as well, which identifies and keep track of where the vehicle is with
respect to its surroundings. This is achieved by comparing sensor data about the local
environment with the map features. The mapping subsystem in Autonomooose platform
uses the lanelet map format described in the following section.



Figure 2.1: Road map constructed using lanelets (in light blue).

Lanelet Map

The lanelet map specification provides an efficient and scalable way to define the static
environment in a parsable format. It was developed initially by Bender et al. [9] and
updated by Poggenhans et al [17]. The format represents the drivable environment in both
geometric and topological aspects. It is easily scalable to accommodate extensions and
improvements. The lanelet format is quite intuitive to use as well leading to its adoption
in the autonomous driving domain [(0].

The lanelet specification was inspired by the Open Street Map (OSM) [12], a free open-
source editable map of the world. Therefore, it is also stored as an XML? file following
the OSM data format. The basic element is a node, which is a point in the world stored
as latitude-longitude coordinates. A node can be used to represent any map feature by
appending other properties to it. An example of a basic node is given below:

<node id=’-23’1at=’43.51125968873’ lon=’-80.53082081321’></node>

lautonomous vehicle that the stack operates
2eXtensible Markup Language designed to store and transport data



A polyline is represented as an ordered list of nodes, called a way. It can form a polygon
as well if they form a closed loop. These are used for representing linear features such as
roads, parking areas and buildings. Like a node, a way can be extended using additional
properties if necessary. A basic way is given below:

<way 1d=’-62661’ action=’modify’ visible=’true’>
<nd ref=’-695’ />
<nd ref=’-697’ />
<nd ref=’-699’ />

</way>

Thus, a minimal lanelet is constructed with two ways labelled ‘left” and ‘right’. It can
represent various road elements such as a simple driving lane with its left and right bound-
aries and can be easily extended to define complex elements as there are few restrictions
on how a lanelet can be used. Additional properties can be applied to lanelets as well, and
this defines its semantic identity. Thus, a new lanelet needs to be defined if the property
changes.

Using these basic building blocks, a road map for any area can be constructed in the
lanelet format. Figure 2.1 shows a lanelet road map constructed for a real world location.

2.1.3 Motion Planning

The autonomous vehicle motion planning problem can be defined as producing a sequence
of control actions, in the continuous domain, to move a vehicle from its current pose to
a destination while adhering to specified requirements of safety, comfort, progress and
energy efficiency. The actions should also be valid; that is, it can be safely executed by
the vehicle hardware taking into account its physical constraints. The decision making
and control in a typical stack often follows the hierarchical decomposition of the motion
planning problem, which is (7) mission planning; (i) behaviour planning; and (%) local
planning. This decomposition of the problem is often reflected in many ADS architectures,
although the boundaries are rather fuzzy, with varying design choices being found in the
literature.



Mission Planning

Mission planning is at the highest level of decision making for an AV and it involves deciding
the sequence of roads to take for the proposed journey, given the desired destination, the
current location, the user’s preference, road conditions and traffic. If the mission planner’s
assumptions change along the way, or the user makes changes to the requirements, it should
be able to re-plan dynamically. Mission planning is considered a solved problem and it is
standard on current GPS navigation devices. In Autonomooose, the route is calculated
from the lanelet map in the mapping subsystem.

Behaviour Planning

The next component in the planning hierarchy, the behaviour planner, generates control ac-
tions at an abstracted or relatively high level to navigate safely through the route provided
by the mission planner [39]. The output is then interpreted further down the pipeline to
finely control the vehicle. These control actions might be basic maneuvers such as change
lane, come to a stop and maintain speed [13], or high-level waypoints made up of future
poses [3]. However, the output is design-specific and is constrained by the subsystems that
consume it (such as local planning).

The behaviour planner must react to both the static and the dynamic nature of the
environment and therefore, mapping and perception are crucial inputs. The behaviour
planner in Autonomooose transforms all its input to the base_link coordinate frame?
before processing it. In the REP 105 specification for ROS, base_link is one of the main
coordinate frames in robotic applications. It is a body-fixed frame that serves as the
primary reference for the body of the robot. In the Autonomooose platform, base_1ink is
located at the centre of the vehicle’s rear axle. The coordinate axes are as follows:

e X-axis is positive forwards, negative backwards

e Y-axis is positive left, negative right

e /-axis is positive up, negative down

The behaviour planner constructs an abstracted representation of the environment

for decision making. The input from mapping and tracker are processed to extract only
the relevant details in the form of abstract predicates. A rule processing system, the rule

3a frame of reference for any spatial measurement or data in robotics



engine, then processes the predicates through a set of rules to generate an appropriate basic
maneuver depending on the rules that the predicates satisfy. The behaviour planner then
adds additional information and constraints to produce a high-level maneuver for the local
planner to execute. Some examples of the maneuvers used here are trackspeed - tracks a
target speed along the route, decelerate-to-stop - gradually stop at an upcoming stop
location and yield - yield to oncoming traffic when the ego vehicle does not have right of
way.

Local Planning

The behaviour planner’s high-level directive is fulfilled by the local planner. The objective
of local planning is to devise a safe and smooth trajectory from the autonomous vehicle’s
current pose to a target pose given or implied by the behaviour planner’s output. It is
the responsibility of the local planner to avoid obstacles, satisfy comfort requirements and
respect kinodynamic constraints.

2.2 Unreal Simulator

For testing the Autonomooose stack before deployment in the real world, a simulator built
on top of the Unreal Engine 4 [2] is used. Unreal is a popular video game engine, pro-
duced by Epic Games and developed in C++, that provides a rich set of well-documented
features for creating complex 3D environments. The UNREAL simulator interfaces with
the Autonomooose stack to apply the generated control actions on a high-fidelity vehicle
dynamics model, modelled from real vehicle data [63, 21]. The resulting response inside
the simulated environment is then fed back to the stack ecosystem. The simulator also
replicates perception by simulating the lidar sensor in Autonomooose by using ray trac-
ing to create a point cloud. Thus, noise and errors from perception are present in this
simulator.

(GeoScenario

A test scenario is specified using the GeoScenario format [50], which is the standard OSM
format extended with custom properties for scenario definition. Therefore, it is also con-
structed using nodes and ways. Each node in a Geoscenario represents the various scenario
objects, such as ego, dynamic objects and static objects. A GeoScenario specification can

10



be parsed only in the context of a lanelet map, and thus, it is always associated with a
lanelet OSM file that defines the road network. A basic scenario contains ego’s start posi-
tion and a series of goal points as nodes. The scenario is successful when ego reaches each
goal point in order.

More complex scenarios can be created using dynamic objects and trigger nodes. Dy-
namic objects can be spawned in the scenario using a node as the start point and associating
it with a way element, which provides it with a fixed trajectory to follow. The target speed
and acceleration can be included in each way node to provide a speed and acceleration
profile for the object, which the simulator will attempt to match within the bounds of the
object dynamics. The dynamic objects are always spawned at the start of the scenario.
To control their behaviour, triggers can be placed in the scenario to associate one or more
actions with an event. For example, 10 seconds after the start of the scenario, a dynamic
object will start moving from its spawn point and follow a preset trajectory.

2.3 Reinforcement Learning

2.3.1 Markov Decision Process

The Markov Decision Process (MDP) provides a mathematical framework for decision
making in an environment under the control of a decision-maker or agent. An MDP can
be defined as the tuple (8, A, T,R,~), where 8 is a finite set of states, A is a finite set
of actions that can be taken, transition probability T(s,a,s’) = P(s' | s,a) € [0,1] is
the probability of transitioning from the state s to s’ by taking action a, reward function
R(s,a,s") gives reward r incurred from transitioning from state s to state s’ by taking
action a, and 7 € [0, 1] is the discount factor.

A policy m : § — A specifies an action that the agent will choose in state s. The
optimum policy 7*(s) will maximize the expected discounted cumulative reward:

[ee]
zwﬁ] |
t=0

E,.

where 7, = R(sy, ar, $¢41) after taking action a; = 7*(s;) in state s; which transitions to
state sy41.

To quantify how well a policy performs, we define a value function V. (s) and an action-
value function Q(s,a). The value function V,(s) is the expected cumulative reward start-

11



ing from state s following policy .

Vﬂ'(s) = EW

ZV%&] | St=0 = s (2.1)
=0

The action-value function, which gives the quality of a state-action pair (and thus
called @Q-function) is the expected cumulative reward starting from state s with action a
and following policy 7 then onwards.

o0

thm] | $1=0 = 8, a41=0 = @ (2.2)

t=0

Qﬂ'(s7 CL) - ]E7r

Among all the possible value functions and Q-functions, there exists an optimal one
of each, denoted by V*(s) and Q*(s,a) respectively, corresponding to the optimal policy
T*(s).

2.3.2 Q-Learning

There exist dynamic programming algorithms [58, Chap. 4], such as value iteration and
policy iteration, that finds the optimal policy assuming complete knowledge of the environ-
ment in the form of the transition probabilities 7. The model can also be learned before
applying these algorithms to satisfy this assumption. This class of algorithms are called
model-based and have been shown to be quite successful in some domains [15]. However, it
may be non-trivial to learn an accurate environment model and also, the agent may only
be as good as the environment model allows.

Model-free algorithms do not make this assumption and learn the optimal policy directly
by interacting with the environment. Q-learning [58, Chap. 6] is a model-free algorithm
that has earned considerable success. Q-learning is extended from the value iteration
algorithm, which converges to V*(s) by iteratively improving an estimate of the value
function. The estimate is updated according to the Bellman Equation[58, Chap. 3], where
V(s) is the current estimate:

Vi(s) = maaxz P(s|s,a)[R(s,a,8) +vV(s')], Vs €

s'es

In Q-learning, the Q-values are initialized to an arbitrary estimate (usually zero) and
the agent interacts with the environment to generate samples. The Q-function estimate,

12



denoted by Q(s,a), is updated by using the sampled Bellman error, also known as the
temporal difference error (TD error), denoted by d(s, a):

d(s,a) = R(s,a,s") + 7 max Q(s',a) — Q(s,a) (2.3)

Q-learning iteratively computes the Q-values using the following update rule such that
the TD error is minimized:

~

Q(s,a) == Q(s,a) + ad(s,a) (2.4)

where « is the learning rate.

2.3.3 Deep Q-Learning

The iterative algorithm using Equation 2.4 can be applied successfully only in the tab-
ular? case and is not tractable for problems with large state spaces. By using function
approximation, with the Q-function being parameterized by 6, we can apply the algorithm
to problems with larger and even continuous state space. However, the update rule in
Equation 2.4 cannot be applied directly. The objective is still to reduce the TD error each
update and therefore, we can apply gradient descent in a direction that minimizes (s, a).
Therefore, we define the loss function as follows:

L() =V, [%52]
=0V [fR(s, a,s’) + 7 max Qo(s',a) — Qols, a)] (2.5)
= _5V6UQ9(8, CL)

Thus, the update equation for # becomes:

0:= 0+ aVeQu(s, a) (2.6)

A Q-learning algorithm where the function approximator is a deep neural network is
called Deep Q-Learning, with the neural network that representing the Q-Network called
the Deep Q-Network (DQN) [36]. However, basic Q-learning using any function approxi-
mator is observed to be unstable during training, and therefore, Mnih et al. [30] introduced
two techniques to successfully apply this algorithm in practice.

4problems where the state space is small enough to be represented as tables
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The first problem arises from the moving Q-target which is the first component R(s, a, s')
+ v max, Q(s’ ,a) in Equation 2.3. When the weights are updated, the same weights apply
to both the target and the predicted value Q(s, a). That means as we move closer to the
target, the target also moves leading to oscillations in the training process. To alleviate
this problem, a second target network Q(s, a), which is essentially a copy of the original
Q-network, is introduced. The target network is synchronized with the original Q-network
less frequently so that it serves as a pseudo-fixed target for calculating the TD error.

The second problem is that the samples used for the TD learning are temporally cor-
related since the next state s’ depends on the current state and action. This can cause the
Q-values to oscillate or diverge over the course of training. To break this correlation, an
experience replay buffer stores the sampled state transition tuple (s,a,s’,r) and samples
batches of experiences randomly from the buffer for training. This also improves the sam-
ple efficiency as it allows for efficient use of past experiences, by learning with it multiple
times.

2.3.4 Double Dueling DQN

There have been many improvements to the vanilla DQN over the years. In this study, we
make use of two modifications that help the algorithm converge faster. These improvements
are complementary and can, thus, be combined into a single Deep RL architecture.

The first improvement, known as Double DQN, was introduced by Hado et al [19]. The
motivation comes from the fact that DQN tends to overestimate the Q-values since the Q-
target is based on the action that has the highest value at state s’. Therefore, double DQN
decouples the action selection from the Q-target generation by selecting the best action
using the target network and then generating the Q-value using the primary Q-network.
Equation 2.3 becomes:

5(s,a) = R(s,a,5') +7Q(s', arg max Q(s', a)) — Q(s. ) (2.7)

a

Dueling DQN (DDQN) is the second modification which decomposes the Q-function
into the value function V(s), which is the value of being in a state, and an advantage
function A(s,a), which represents how much better or worse it is to take action a over the
other actions. This is an architectural change that requires separate estimators for both
elements and a final aggregation layer to obtain the Q-value. The decoupling allows the
agent to know the value of a state without learning the effect of all actions and also to
better differentiate the value of actions in states where the Q-values are similar.
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2.3.5 Hierarchical Reinforcement Learning

The basic RL algorithm treats the state space as a large search space, which can result in
paths from the start to goal states becoming very long. Such long horizons can weaken
the signal from future rewards leading to inefficient learning. Hierarchical RL (HRL)
attempts to solve this issue by decomposing the problem into smaller pieces and learning
to operate over multiple temporal abstractions. A policy in HRL can choose to execute
sub-policies, which are temporally abstracted actions with their own sub-goals. Thus, the
long path to the goal can be thought of as achieving a sequence of sub-goals. This also
allows modularization of RL solutions, which in turn increases scalability, and also allows
the reuse of sub-policies for related tasks.

Accommodating HRL into the MDP framework is achieved by defining a semi-MDP
(SMDP) [59], in which the state transition function becomes T(s,a,s’) = P(s',7 | s,a),
to consider the small amount of time 7 passed between decision instants. The Options
framework is the most well-known formulation for HRL [59, 7]. It extends the action space
to include abstract macro-actions called options m € M, which are temporally extended
sequences of primitive actions a € A. An option m = (I, Ty, Bm) where I, C 8 is the
initiation set, m,,(s) : 8 — A is the policy for the option and f,,(s) : 8 — [0,1] is the
termination condition. Options are considered as actions at a higher level of temporal
abstraction.

Consider an Options framework with two levels of temporal abstraction. The top-level
or high-level policy II(s) : § — M is a policy over options that uses the environment
observation to output an option m to execute. An option is available in state s only if
s € I,,. When an option is selected, primitive actions are taken according to low-level
policy m,,(s) until it terminates with probability 3,,(s). An algorithm operating in the
Options framework is proven to converge to an optimal policy [19].

2.4 Transfer Learning

Since RL uses random exploration for collecting training data, its training is impractical
for many applications in physical systems without employing a simulator. However, dis-
crepancies between the simulated model and the real system, referred to as the transfer gap
or reality gap, form a challenging barrier to deploying an RL policy learned using simulated
data. This problem in RL is generally known as transfer learning and arises when a policy
is learned in a source environment, but its intended application is in a target environment
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with a slightly different data distribution. We can categorize the approaches to tackle the
transfer learning problem into three broad types.

2.4.1 System Identification

System Identification [25] uses statistical methods to build models of a physical system
using measurements of its response to external influences (input). A common approach is
to assume the system as a black box and not be concerned about the details of what is
happening inside the system. This process is the most intuitive step used to reduce the
transfer gap as it aims to make the simulator as close to the target as possible by careful
calibration and tuning.

Unfortunately, this is an expensive procedure for physical systems and is time-consuming.
Even if this process is performed very well, most simulators are unable to capture the nu-
ances of real world physics and replicate the richness and noise present in high-fidelity
sensors. Many physical parameters of the same system can also vary after calibration
due to changes in factors such as temperature, pressure, and even normal wear-and-tear.
Another challenge is that high-fidelity models are often computationally expensive.

2.4.2 Domain Adaptation

Domain adaptation (DA) techniques, on the other hand, attempt to align the knowledge
gained from the source simulator such that the agent can perform well in the target en-
vironment. The main assumption here is that there exists some common characteristics
such that behaviour or knowledge representations learned in the source will be useful in the
target. Thus, they fall into one of two categories: those which make use of structural sim-
ilarities between the source and target domains, and those exploiting semantic similarities
with prior knowledge of both domains [26].

One common approach is to align the feature space to a common representation or learn

invariant features [13], in a supervised or unsupervised fashion. Recent DA techniques,
especially for image-based feature spaces, use adversarial loss with respect to a domain
discriminator to either align the representation or the behaviour [11]. Progressive networks

[4] have also been used to significantly reduce the amount of data required from the target
environment by learning on top of the behaviour learned in simulation. However, all these
methods have a reliance on data from the target environment which may be costly to
collect.
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2.4.3 Domain Randomization

Unlike the previous approaches, domain randomization (DR) does not need data, labelled
or otherwise, from the target environment. In DR, the RL agent is exposed to variances
in the environment during training by randomizing the simulator properties (parameters).
The “discrepancies between the source and target domains are modelled as variability in
the source domain” [15]. Thus, the policy is trained to maximize the expected cumulative
reward over a distribution of environment instances. DR has been used successfully to
model feature space differences such as lighting conditions and camera placement in image-
based tasks [01], as well as to develop policies that are robust to uncertainty in the target
environment dynamics [11].

In Uniform DR, which we use in this study, each randomization parameter is sampled
from a fixed range, which is selected either using domain knowledge or through trial-and-
error. The parameters can vary any aspect of the simulator, ranging from its physical
dynamics and behaviour to the level of observation noise. As an example, DR for a
fine robotic control task can include parameters such as mass, material and dimensions
of the robot and other objects, surface friction and damping of joints, gains for the PID
controller and action delay [11]. In contrast, adaptive DR [52] aims to set the randomization
parameters such that they best fit observed data from the target environment.
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Chapter 3

Methods

In this chapter, we discuss the infrastructure developed for setting up the sim-to-sim trans-
fer scenario and our methodology. We define a constrained driving scenario for the transfer
learning experiments. We discuss the customizable HRL framework we developed to serve
as the low-fidelity simulator and how we set up a transfer learning scenario from it to the
target simulator targeting only the modelling differences. We also explain the algorithm
used for the baseline rule-based approach and the architecture of the HRL agent. We
discuss the transfer learning approach used and also briefly discuss how we analyze the
behaviour of an RL policy.

3.1 Driving Scenario

In this study, we choose a simple, yet challenging driving problem for evaluating behaviour
planning models. AVs on public roads have been observed to be especially slow at un-
protected left turns and merges [23]. This is not surprising, as these are hard tasks for
novice human drivers as well. It requires them to not only judge the trajectory of other
fast-moving vehicles but also to be confident in their own driving ability, to find and make
use of an opportunity to cross or merge. In busy traffic, the safe window for this is very
small and deciding to move at the wrong time could result in disastrous consequences. Due
to this, rule-based approaches opt to err on the side of caution, which most often means
waiting or going slower until the traffic is more manageable to the system. However, adopt-
ing an overly defensive driving strategy is not only inefficient in terms of traffic flow but
can also frustrate other drivers [3].
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Figure 3.1: The cross-intersection scenario.

We consider a scenario where the AV needs to cross a busy stream of traffic, as shown
in Figure 3.1. The scenario is as follows: the ego vehicle is waiting at a stop sign where
a minor road (horizontal) intersects a major road (vertical), and wishes to cross to the
opposite side, by finding a safe gap in between the stream of oncoming vehicles. This can
be considered a simplified form of the unprotected left turn scenario. We refer to this as
the cross-intersection scenario from here onward.

We assume that the ego vehicle follows the same trajectory after each cross decision so
that whether it crashes or not depends entirely on the decision timing. This assumption
also requires that the ego stays its course once it commits to crossing. There are situations
where it is favourable to not fully commit, such as to slow down in the middle of the road
or to react to new objects entering the scene. However, to put all the consequence on
that one decision, we model it as a ‘to-go-or-not-to-go’ problem [22], where the behaviour
planner need only decide when to cross the intersection. The local planner is assumed to
then generate the same trajectory each time. It forces a strong association between the
decision and the current environment state, as there is no room for correcting a mistake.
This makes it easier to analyze the decision boundaries as well as to effectively compare
learned and programmed solutions without unduly compromising the study. Indeed, this
assumption is acceptable for a deterministic local planner. In Section 3.4, we see that the
local planner in Autonomooose does indeed generate similar trajectories given the same
driving environment.
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Figure 3.2: Overview of WISEMOVE plan-
ning architecture.

3.2 WiseMove - Low-Fidelity Simulator

To train learned behaviour planning models, we require an architecture similar to the
motion planning hierarchy in the Autonomooose software stack. Therefore, as a part of
this study, we developed WISEMOVE [(], a software framework to investigate safe deep
RL in the context of motion planning for autonomous driving research. We use it as the
low fidelity source simulator for training RL policies for behaviour planning and also to
conduct transfer learning experiments.

3.2.1 Overview

WISEMOVE is an options-based modular deep RL framework for autonomous driving,
written in Python, with a hierarchical structure designed to mirror the motion planning
architecture of Autonomoose. Options [58, Chap. 17| model high-level temporally ab-
stracted behaviour planning maneuvers, to which are associated low-level local planning
policies that implement them. The low-level policies can either be learned or programmed,
in advance, each encoding the continuous action space of the ego vehicle. A learned high-
level policy over options decides which option to take in any given situation, while Monte
Carlo tree search (MCTS [58, Chap. 8]) can be used to improve overall performance dur-
ing execution. To define correct behaviour and option termination conditions, WISEMOVE
incorporates runtime verification [28] to validate simulation traces and assign additional
rewards during both learning and planning.

When an option is chosen by the decision-maker (the high-level policy or MCTS), a
sequence of control actions is generated according to the option’s low-level policy. An option
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terminates if there is a violation of a logical requirement, a collision, a timeout, or successful
completion. When an option terminates, the decision-maker then chooses the next option
to execute, and so on until the whole episode ends. Figure 3.2 gives a diagrammatic
overview of WISEMOVE’s planning architecture. The current state is provided by the
environment. The planning algorithm (MCTS) explores and verifies hypothesized future
trajectories using the learned high-level policy as a baseline. MCTS chooses the best next
option it discovers, which is then used to update the environment.

WISEMOVE comprises four high-level Python modules: env, options, backends, and
verifier. The env module provides support for environments that adhere to the Ope-
nAl Gym [12] interface, which includes methods to initialize, update and visualize the
environment, among others. WISEMOVE comes with a default intersection environment
that enables the learning of hierarchical motion planning models that can navigate the
intersection. The options module defines the hierarchical decision-making structure of
HRL training. The backends module provides the code that implements the learned or
programmed components of the hierarchy. WISEMOVE currently supports Keras [11],
Keras-RL [16] and Stable Baselines [20] for deep RL training.

The verifier module provides methods for checking LTL-like properties constructed
according to the following syntax:

p=Fp|Gp|Xp|p=>p|pory|pandy|notp|pUy| (p) |A (3.1)

Literal symbols U, F, G and X are the standard until, eventually (finally), always (globally)
and next-state temporal operators, respectively. The other literal symbols have their ob-
vious meanings. Atomic propositions A are functions of the global state represented by
human-readable strings. We use the term LTL to mean properties written according to
Equation 3.1. The verifier decides during learning and planning when various LTL prop-
erties are satisfied or violated, to assign the appropriate reward. Learning proceeds one
step at a time, so the verifier works incrementally, without revisiting the prefix of a trace.
WiseMoVE uses LTL to express the preconditions and terminal conditions of each option,
as well as to encode traffic rules.

3.2.2 Scenario Generation
The cross-intersection scenario can be easily created by modifying the default inter-
section environment in the env module of WISEMOVE. An episode starts with ego vehicle,

indexed by ¢ = 0 or ego for readability, stopped on the horizontal road at the stop line,
waiting to cross. Figure 3.3 shows the output from WISEMOVE where the ego vehicle is
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Figure 3.3: The cross-intersection scenario rendered in WISEMOVE

waiting at the stop line. Both the horizontal and vertical roads are bi-directional, with
one lane in each direction. No other vehicles are spawned in the horizontal direction. A
stream of vehicles travel in both directions in the vertical road, with a maximum of N
other vehicles in the scene, indexed by ¢ € {1,...,N}. The only dynamic objects in this
environment are these vehicles. With this configuration, the driving goal of the ego vehicle
is to safely arrive at the right end of the horizontal route without any collision and, ideally,
as fast as possible.

Dynamics

We describe the continuous dynamics of the cross-intersection scenario in WISEMOVE.
Let ¢iven := (X;, Y}, 0;, vi, ¢0;) and w; := (a;, p;) be the continuous state and control input,
respectively, of vehicle 4, with its centre position (Xj,Y;), velocity v;, acceleration a;, head-
ing angle 6;, steering angle 1;, rate of change of steering angle p;, and wheel base L. Each
vehicle 7 has a maximum velocity v;"**, and a maximum and minimum acceleration, a;***
and a™. All vehicles have the same maximum steering angle ™ and maximum rate of

change of steering angle p™**.
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A vehicle’s continuous dynamics are thus
{ Xz = V; sin 91 Y; = V; COS ‘91 61 = V; tan(w,/L)

bo=a (al<a™) di=p (o] < o™ ] <),

The state is updated every At by numerical integration according to state transition func-
tion ¢j o, = Gueh(@iven, u;). We use the previous input w;prev = (i prevs Piprev), tO ap-
proximate the jerk by a; ~ (a; — @; prev)/At. Defining ¢; := (@i veh, Uiprev), the complete
continuous dynamics of vehicle i is ¢ = g(¢;,u;), where continuous transition function
9(¢i,1i) = (Guen(Piven, ui), u;). The global state is given by s := (@) € 8, with ¢ := {¢;}7,
where {-}T denotes the column vector formed by all the indexed elements.

(3.2)

The full update dynamics is given by
s'=(8")7 = (f(s,0))" := f(s,0a), (3-3)

where action a € A = [a™", a®] x [—p™** p™3] i the ego vehicle’s control input ug

and f(s,a) = {g(énuw)}T.

Driving Behaviour

Typically, we adopt a different policy u for the non-ego vehicles. We use a modified version
of the aggressive driving policy of [13] and, hence, u; = pu(s) for all i # 0. According to
policy u, vehicle i accelerates smoothly until it reaches its velocity preference v***. It
also maintains individual vehicle-to-vehicle (V2V) distances v2v; with the vehicle ahead.
a;"*, v and v2v; are sampled randomly for the spawned vehicles each episode, to create
variations in individual behaviour. The speed limit for the road is v™**. The vehicles do
not react to the ego vehicle’s actions to further increase the significance of the decision

timing, which is in line with the thinking in Section 3.1.

Feature Space

In cross-intersection, the ego vehicle’s state does not influence the behaviour planner’s
decision, as we assume it always follows the same trajectory. Therefore, we can safely
exclude the ego state ¢y from the observation. Also, all relative distances are calculated
with respect to the ego’s base_link position (Xego, Yego) to mirror the Autonomooose stack.
Thus, the agent’s feature space or observation o € O, which is a function of state s, is

0:= {01,009, -+ ,0on}T, (3.4)
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where o; is the feature vector for vehicle i consisting of features f € F. o; := (x;, ys, 0;, vi, a;),
where z; = Xego — X and y; = Yego — V5.

The perception component in Autonomooose cannot reliably identify dynamic objects
beyond a perception range dnmax. Let n be the number of vehicles inside in the perception
range. Thus, all features in 0; V j > n, denoting vehicles outside the perception range, are
set to 0.

3.2.3 Hierarchical Learning

An option in cross-intersection is a high-level maneuver. We use the notation m € M
to denote elements of the set of options, and define m := (I, T, Bn). Im C O is the
initiation set in which m is available, m,, : O — A is a low-level policy - a map from the
observation space O to the action space A, and (3, is the termination condition.

Learning Objective

The objective of a behaviour planning RL agent in cross-intersection is to learn a high-
level policy, IT* : O — M, given a set of programmed low-level policies, {7}, : O = A}nen,
that maximizes

T—1 K
V (so.1, ao.r, Mok ) 1= Zyt inst(oy, ag, my) + Zyk' inst,(my,) + AT term(or), (3.5)
t—0 k=0

where inst(-) is the instantaneous low-level step reward, inst,(-) is the high-level step reward
and term(-) is the terminal reward: T, K € NU {oo} are the terminal time and decision
instants of an episode respectively, v € (0,1) is the discount rate, s; is the state at time
t, o¢ is the ego’s observation given as a function of s;, my = II(oy,) is the option chosen
at decision time t; of decision instant k by the high-level policy and applied until its
termination i.e., until the next decision time 1, and a; = 7, (0) is the action given by
the low-level policy m,,, for t = ti, t + At, ) + 2A¢t, -+ [t — AL

The inst, inst, and term rewards in (3.5) are described as follows:

e term(or) is the reward given at the terminal time 7', which is +r; when achieving
the driving goal and —rp when the run terminates due to collision or violation of the
traffic rules.
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e inst(o0, a, m) represents the quality of driving when seeing the observation o and taking
action a under the option m, where a is determined by the policy 7, for that given
option.

e inst,(my) is the reward given at the termination of each option, which is a constant
negative reward r,. This is a standard reward specification which encourages the
agent to achieve the goal as fast as possible. We set each episode to time out at
K™ high-level steps if the ego has not reached its goal and, therefore, inst]® =
Zf:]%ax vk inst,(my) is the upper bound for this term in (3.5). We choose 7, such that
inst'® = rp, to penalize the agent equally for collisions and timeouts.

WISEMOVE also has the capability to use model checking during learning and MCTS
during execution to ensure adherence to safety constraints. Although these features may
provide a better policy, we do not include them in our experiments, to reduce the number
of variables in the transfer learning study.

Low-level Policies

Option m terminates when the termination condition [,, becomes true. In this case, the
agent chooses the next option and executes it until it terminates. This process continues
until the whole episode ends. The options module defines f3,, of each option as the
disjunction of (i) a violation of an LTL requirement, (ii) successful completion, (iii) collision,
and (iv) timeout.

In cross-intersection, we only require two options, yield and trackspeed, in order
for the ego vehicle to reach its goal. Its behaviour and programmed low-level policies are
as follows:

1. yield: The ego vehicle stays in a stopped position to yield to oncoming traffic. The
ego’s control input vy = (0,0).

2. trackspeed: The ego vehicle accelerates along its travel route to the desired speed
and then maintains it. The ego’s control input is

(af®,0), if 0 < vy < v
ung =
’ (0,0), otherwise

An ideal high-level policy chooses yield at time k € (0, K —1) until it detects an oppor-
tunity to cross from the environment state, where it chooses trackspeed at K. Choosing
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trackspeed ends the episode and returns whether the decision resulted in a failure or a
success by rolling out the trajectory in the background using the programmed trackspeed
maneuver following the ‘to-go-or-not-to-go’ [22] problem definition.

Metrics

We use two metrics to assess the performance of a policy over a test set of random-
ized episodes. The first metric, success, captures the ability of the agent to solve the
cross-intersection successfully. It is the number of episodes in which the agent reached
the goal point, expressed as a percentage of the total number of test episodes.

The other metric is wait-time calculated as the average time spent waiting at the inter-
section. wait-time for one episode is the number of high-level steps where the maneuver
output is yield. This quantifies the aggressiveness of the agent and is incentivized by the
negative reward per time step r, and the collision penalty —ry. Being overly defensive or
aggressive detrimentally affects the success metric as either the episode will time out or
the agent may crash by being too hasty.

Parameters

After some trial and error, we set the maximum number of vehicles N to be 5. To have a
minimum level of complexity, an episode will always have at least 2 vehicles. For rewarding
the agent fairly, we set r = 12 and r, = —0.04. inst(o,a,m) is set to always evaluate to
0 since the driving trajectories for each option are determined by fixed low-level policies,
and therefore the driving performance need not be optimized by the learning algorithm.
Also, an option can only terminate through a timeout to mirror the Autonomooose stack.
We set a simple fixed timeout of AK = 0.1 seconds which is the decision frequency of
the behaviour planner in Autonomooose. Thus, by setting K™** = 300, an episode is at
most 30 seconds.

In the Autonomooose platform, the range at which the perception component can
reliably identify dynamic objects is around 50 metres. However, vehicles beyond this range
can still collide with ego considering the range of velocities possible. Thus, this perception
range does not allow ego to consistently succeed in the cross-intersection scenario.
Therefore, we set dma.y to 80 metres so that a policy can theoretically achieve 100% success.
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Figure 3.4: Intersection lanelet map with ego’s start location, goal point and vehicle paths
(light blue) in UNREAL.

3.3 Unreal - High-Fidelity Simulator

The UNREAL simulator is the target environment for the RL policies trained using WISE-
MovVE. We define the cross-intersection scenario in UNREAL using the Geoscenario
format. In order to provide a fair comparison for transfer learning, we also replicate each
test episode generated in WISEMOVE in the UNREAL simulator by dynamically creating
the Geoscenario OSM file during evaluation. We also provide a way for the behaviour
planner to seamlessly switch between rule-based and learned behaviour planning models.

3.3.1 GeoScenario Definition

Since Geoscenarios are defined on top of an existing lanelet map, we have to choose the
map before constructing the OSM. We choose the lanelet map created for the Bathurst,
Waterloo area and pick an intersection for testing, which is shown in Figure 3.4. The ego
start location and goal point, shown in the figure, are added to the OSM as nodes with
latitude-longitude coordinates. This basic Geoscenario file, containing no dynamic objects,
is used as the base for all cross-intersection tests in the UNREAL simulator. Dynamic
object trajectories can be added using nodes and ways to this file, to generate one episode
of the cross-intersection scenario.
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3.3.2 Importing Tests from WiseMove

Since we evaluate a policy over multiple random episodes, the base Geoscenario OSM is
updated with the dynamic object trajectories for each episode. The trajectories are repli-
cated from WISEMOVE so that the policy evaluation is not affected by test set differences.
To achieve this, we generate a set of episodes for testing in WISEMOVE and save the tra-
jectories of all dynamic objects in a JSON! file. The saved trajectory contains the position
and speed at each high-level timestep in the base_1link frame of reference.

The saved trajectories can be imported into UNREAL to replicate an episode by con-
verting them to the Geoscenario specification. We generate Geoscenario nodes and ways
for each trajectory by transforming the positions from base_link to the required latitude-
longitude coordinates and add them to the base OSM file. We can safely use base 1ink
origin in the UNREAL simulation as the reference for this transformation since the scenario
always starts with ego stopped at the stop line. Trigger nodes are used to make a dynamic
object start moving along its path at the timestep specified in the JSON. The vehicle paths
in the OSM after importing a WISEMOVE episode is shown in blue in Figure 3.4.

We also ensure that the test set on which a policy is evaluated is the same across trials
in both simulators. A random seed can be set for each episode generated in WISEMOVE
which makes it repeatable across trials. We generate a test set using the same sequence of
seeds each time. This allows individual episode comparison, which makes policy comparison
more effective and also makes debugging easier.

3.3.3 Policy Server

As seen in Section 2.1.3, the behaviour planner queries a rule engine to generate a
decision. However, we require the use of both rule-based policies and learned RL policies
from WISEMOVE for this study. Therefore, we modify the behaviour planning architecture
as shown in Figure 3.5 and create a new ROS node, policy server, that takes the place
of the rule engine. The behaviour planner processes its input normally but does not
create the abstracted representation required by the rule engine. Instead, it sends the
processed inputs directly to the policy server.

The policy server can be configured to use a specific behaviour planning policy, which
in this case is either a rule-based policy or a learned model that solves the scenario. The
policy server is responsible for further processing the inputs as required by the selected

! JavaScript Object Notation to store and transport data.
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Figure 3.5: Information flow in the modified behaviour planner architecture. Unused
components are greyed out. Blue boxes represent ROS nodes.

policy. For this study, it uses the same processing steps used in WISEMOVE to create the
observation o specified in Equation 3.4. Therefore, o is the same in both UNREAL and
WISEMOVE, given the same environment state s. A learned behaviour planning model is
loaded in policy server using the same RL library used in the WISEMOVE backends
module for ease of transfer.

3.4 Aligning WiseMove with Unreal

To isolate the transfer gap between the simulators, we eliminate or minimize the differences
that do not arise from how the simulator is modelled. For this, we first analyze and
compare the factors that can affect the agent’s observation in the simulation. For the
cross—intersection scenario, the factors are ego dynamics, road map, dynamic object
trajectories, and observation noise. We then identify whether it is a simulator modelling gap
and if not, adjust or align the WISEMOVE environment with UNREAL such that the gap is
minimized. After performing this process, we obtain a cross-intersection environment
in WISEMOVE, denoted the wm environment and a counterpart in the UNREAL simulator,
denoted unreal, which have only modelling differences as the transfer gap.
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Figure 3.6: Distance covered by ego (left) and velocity per timestep (right) for trackspeed
maneuver

3.4.1 Ego Dynamics

For cross-intersection, we only compare the trackspeed of the behaviour planner in
UNREAL and the programmed trackspeed low-level policy in WISEMOVE, since the yield
maneuver’s behaviour is simple. Although this discrepancy is a simulator modelling gap,
caused by the simplistic ego dynamics and trackspeed model in WISEMOVE, we do not
attempt to bridge this gap in this study. We consider this to be a crucial transfer gap that
needs to be studied separately using domain adaptation techniques or by using the actual
ego vehicle model and local planner of UNREAL. Therefore, we leave that to future work
and assume that ego’s trackspeed maneuver is aligned to UNREAL in wm. This can be
done easily as only the distance covered per time step by ego affects the behaviour planning
policy. We adjust ag,5* and vgs" in WISEMOVE to align the behaviour of trackspeed with
UNREAL, although there is a slight discrepancy as seen in Figure 3.6. The data used for
generating the plots is collected starting from the moment ego starts moving, over multiple
trials in the UNREAL simulator. We observe that it generates a similar trajectory each
time, which is expected of the deterministic local planner in Autonomooose.

3.4.2 Road Map

It is clear that differences in the road map are not a result of a simulator modelling gap
and therefore, we align it with UNREAL. The selected intersection from Section 3.3 has
the following properties:
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Figure 3.7: Vehicle paths for intersection scenario in WISEMOVE and UNREAL. Ego is at
(0,0).

e Lane width: 5.5 metres

e Distance from the stop line to the intersection: 7.2 metres

We adjust the intersection in wm to reflect these values. A top-down view of the vehicle
paths after alignment is shown in Figure 3.7 with respect to ego at base_link origin.

3.4.3 Dynamic Objects

Although we convert the WISEMOVE trajectories to the GeoScenario format accurately,
its interpretation by the UNREAL simulator may cause some changes. To confirm this, we
analyze the observed trajectory of a single vehicle generated in WISEMOVE by importing
it into UNREAL as a GeoScenario OSM. Figure 3.8 plots x and y feature at each high-
level timestep. The y feature observed from UNREAL is slightly noisy, which could result
from either the trajectory interpretation or from perception errors. On analyzing the
ground truth positions of the dynamic objects provided by UNREAL, we conclude that the
GeoScenario interpretation is accurate and therefore, this noise is the result of perception
erTors.

The estimated velocity v of the dynamic object differs significantly in Figure 3.9. We
attribute this to the Kalman filter used for velocity estimation in the tracker which
requires a few measurements before it can produce an accurate estimate. Thus, it takes an
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Figure 3.8: x and y feature of a dynamic object over time in WISEMOVE and UNREAL.

average of 11 high-level steps to reach a stable estimation, as seen in Figure 3.9. Moreover,
the final estimation is also underestimated by an average of 10%, which we suspect is due
to the consistent error in position estimation seen in Figure 3.8, where y stays the same
for a few timesteps. The y noise and v error are inherent modelling differences between
the simulators and, thus, are not adjusted in wm.

The tracker does not provide the acceleration and we have to infer this from the veloc-
ity. However, since the velocity estimation is itself unreliable, the acceleration calculated is
not very accurate. Therefore, we choose to remove this from the observation of the agent,
such that o; :== (z;,v;,0;,v;) in Equation 3.4.

3.4.4 Perception Lag and Other Errors

In the Autonomooose stack, producing the inputs to the behaviour planner from raw
sensor data involves significant computation. This results in a time lag between the input
used for decision making and the current state of the environment, which on average is
found to be 0.235 seconds. Also, there is a time delay between the output of the trackspeed
decision and ego starting to move. This delay is measured to be 0.105 seconds on average.
Thus, the total average perception lag, ¢, = 0.34 seconds.

Also, there also exist other occasional perception errors. The first one occurs when
the tracker confuses dynamic objects close to each other, resulting in wrong trajectory
estimations. This can be seen in Figure 3.10, where vehicle 8, moving to the left of the
image, is mislabelled as vehicle 2 (moving right), which causes a sharp change in the
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Figure 3.9: Velocity v of a dynamic object over time in WISEMOVE and UNREAL.

estimated trajectory of vehicle 2. The second error occurs when a vehicle does not get
detected for a few timesteps for some reason, causing it to essentially vanish and then
re-appear as a ‘new’ vehicle in the scene. This ‘vanishing vehicle’ problem can be observed
as a gap in the plotted vehicle path in Figure 3.7. All perception errors are categorized as
simulator differences.

3.5 Naive Perception Error Model

The transfer gap caused by perception errors observed in Section 3.4 can be closed simply
by modelling them in WISEMOVE. Accurately modelling them is a non-trivial task. How-
ever, we can roughly model them using the observed data, which may help the RL policy
perform well in the target environment. Thus, we create a variant of the wm environment
called 1agkf that naively models the perception lag and tracker velocity estimation errors.
lagkf lags the environment observation by t,g time steps using a queue data structure to
simulate the average lag in the UNREAL simulator. lagkf also models the velocity esti-
mation error by underestimating by a fixed 10% and by simulating the initial stabilization
time. The observed velocity using the error model is shown in Figure 3.9. We also create
the environments kf and lag, which models only the velocity estimation error and the
perception lag respectively, to study their individual effects.

The lagkf environment is also used for validation testing. The UNREAL simulator is
not ideal for running multiple rounds of testing as the scenarios run in real-time. There also
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Figure 3.10: Incorrect labelling of vehicle 2 by tracker causes sharp erroneous change in
trajectory.

exists a ROS restart overhead for each run, making a scenario of 30 seconds take on average
around 50 seconds to run. This makes it impractical to use it for validation testing during
training. Thus, using lagkf, we can quantify and evaluate the success of transferring a
behaviour planning policy without actually testing in the UNREAL simulator.

3.6 Behaviour Planning Models

In this section, we describe the policies used for solving cross-intersection. We cre-
ate a rule-based policy that can solve the cross-intersection consistently with perfect
information and modify it using the insights about the target environment in Section 3.4
to make it more successful. We also describe the architecture of the RL policy trained in
WISEMOVE.

3.6.1 Rule-based

To provide a baseline for solving this scenario, we create a rule-based behaviour planning
policy that uses a time-to-collision (TTC) based algorithm to calculate when to cross the
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Intersection.

TTC Algorithm

At each high-level step, we consider all vehicles that are moving towards the ego’s intended
route. For each such vehicle 7, we calculate the time ttc; taken to reach a point p. = (X, Y.)
in the ego’s route that intersects with the centre of the vehicle’s current lane. This is the
point of collision between ego and vehicle . The distance between the observed position of
the vehicle 7, p; = (X;,Y;) and p, is d; = ||p. — p;||, where ||| is the Euclidean distance. It
is assumed that the vehicle’s velocity v; stays the same beyond the current timestep. We
use the standard kinematic equations of motion for calculating the time:
ttc;, = %
%

Since we have modelled ego’s trackspeed maneuver, we can also calculate time ttcego
that ego takes to reach p. in the route. The distance ego has to travel to reach p. is
dego = ||[Pc — Pegol|- Since the trackspeed maneuver in WISEMOVE accelerates uniformly
with maximum acceleration from a stopped position,

2 o
ttCego = o
qmex
Thus, ttCego = | ttc; — ttCego |, Where | - | is the absolute value or modulus, provides

us with the time by which ego would have missed a collision with vehicle 7. The chance of
a collision is greater the closer this value is to zero. If the value is greater than a threshold
tsafe for any vehicle, it is safe for the ego to cross. Thus, a simple rule-based behaviour
planning policy Il for cross-intersection is defined as:

yield, if ttCiego < toafe, fOr any ¢
mp = .
trackspeed, otherwise

tsafe 1S set to 1.5 seconds to have an extra buffer and to account for the vehicle length.
The current observation o of the RL agent in WISEMOVE does not contain the TTC for
each vehicle. Thus, the inputs of the rule-based and the learned policies are different. This
does not allow for a fair comparison even though TTC is a derived feature calculated from
position and velocity, which are both present in 0. Therefore, we augment the observation
o with the derived feature ttc; such that o; := (z;,y;, 6;, v;, ttc;) in Equation 3.4. The ttc;
value for any vehicle that is not on a collision course is set to a very large value, MAX_FLOAT.
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Handling Perception Error

The above algorithm assumes we have near-perfect information about the world and may
fail if there are observation errors or noise. Using our knowledge of the target environment
from Section 3.4, we can make this policy more robust to the perception errors present in
UNREAL by:

e Using the predicted position p; = (X

~

,Y;) of the vehicle to account for the perception
lag. Thus, distance to p. becomes d; = ||

DPe — ﬁz H
e Waiting until the velocity estimation stabilizes. Since the algorithm does not utilize
history, this is achieved by ignoring velocities under a threshold wvy, as they are

unreliable. We set vy, = 26km/hr as we observe it to be the lower bound for velocity
in generated episodes.

e Increasing observed velocity by 10% to compensate for the tracker under-estimation.

d.
Thus, ttc; = ] 11 and the resulting policy is:
Av;
yield, if ttCiego < tsafe OF v; < Vg, for any ¢
miie. =
trackspeed, otherwise

This gives us an arguably better rule-based policy II;-¢¢. which uses knowledge about the
target environment.

3.6.2 Reinforcement Learning

Using the WISEMOVE framework, we can learn a behaviour planning RL agent for solving
this scenario. We denote a learned RL policy by IIz, where E' is the name of the environ-
ment it is trained in, such as wm or lagkf. A double dueling DQN is used for learning RL
behaviour planning policies. The Q-network is a four-layer fully connected neural network
whose architecture is shown in Figure 3.11. Each dense layer D consists of 32 nodes, except
the final output layer D, having 2 outputs, corresponding to the high-level actions yield
and trackspeed respectively. It takes as input the observation o in Equation 3.4. The first
layer Dgnarea transforms the features of each vehicle o; to produce h;, an encoded latent
representation of each vehicle. The weights of Dg.eq are shared between each vehicle such
that the same feature encoding process is learned and applied, thereby making the network
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Figure 3.11: Architecture diagram for Q-Network.

invariant to the order of the vehicles. Every layer, except the last, uses the Rectified Linear
Unit (ReLU) activation function. The final layer uses a linear activation function since it
outputs the Q-value for each action.

The DQN agent stores and samples the experiences randomly from an experience replay
buffer during training. During the course of random exploration and exploitation, the buffer
may accumulate an unequal distribution of success and failure cases, which can destabilize
the training. We design a dual experience replay buffer similar to the architecture in [22]
that stores success and failure trajectories separately. The experiences are sampled equally
from both during training and it is observed that this helps the agent converge faster.

Keras-RL and Keras in the backends module are used to define the double duel-
ing DQN agent with the dual experience replay. Keras-RL supports the standard Ope-
nAl Gym interface, reset and step, for enabling the interaction between the agent and
the WISEMOVE environment. The reset function generates a new random episode of
cross-intersection and returns the initial observation o to the agent. The agent then
uses the step function to execute actions (maneuvers in this case) inside the environment
until termination.
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3.7 Domain Randomization

Although lagkf models some of the simulation differences and is built on top of wm,
which closes the non-essential gaps, it does not completely close the transfer gap. If we
wish to improve the transfer success, which is the success metric obtained on evaluating
a policy in the target environment, we need to close this gap further. However, it is
also not trivial to accurately model all observed differences between wm and UNREAL.
Domain randomization (DR) for fine robotic control policies has been shown to improve
the transfer success considerably [11]. We apply this technique in an HRL setting to define
new environments that have randomized parameters to train on. All the environments
described in the following paragraphs are defined on top of lagkf.

Perception Lag

The perception lag in lagkf environment is modelled using the average value of t.,. In
the UNREAL simulator, however, it varies a little to either side of this value. The RL agent
can benefit from being exposed to variations of this parameter, which we model in a new
environment lag-dr by sampling the lag from a Gaussian distribution N (u = t.g, 0 =
0.5). We also use lag-dr to evaluate the individual effect of a deviation from the average
perception lag on the transfer success

Velocity Estimation Model

Similarly, the velocity estimation error model in lagkf is a simple approximation of the
observed velocity v in UNREAL. It is not easy to reproduce this accurately without fitting a
model, but applying DR here is trivial. Rather than applying a fixed 10% under-estimation
after the initial stabilization time, we under-estimate by a value sampled from the Gaussian
distribution M(u = 0.1v, 0 = 0.05v). This, however, produces a high variance signal
compared to individual velocity plots obtained from UNREAL. Therefore, we smooth it
using a 5-point moving average filter to obtain an error model closer to the observed data
as shown in Figure 3.12. The resulting environment, kf-dr, thus applies DR to the velocity
estimation.

Vanishing Vehicles and Misdetection

In Section 3.4, we observed a perception error where vehicles do not get detected for a
few timesteps, causing the vanishing vehicles issue. Moreover, this also causes the velocity
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Figure 3.12: Domain randomization of velocity estimation.

estimation to reset to 0 when it re-appears, as the tracker module considers it as a
new vehicle in the scene. Therefore, this is a significant difference that the agent needs
to consider during learning. We include this behaviour in the vanish environment as a
random phenomenon that triggers a vanishing vehicle with a probability of 0.005 every
high-level timestep. Once triggered, the vehicle is excluded from the observation o for the
next few timesteps (sampled uniformly between 1 and 10). Note that these values are based
on only a few data points from UNREAL, as it is a rare event. When the vehicle re-appears,
WISEMOVE treats it as a new vehicle, which is, therefore, subject to the average velocity
estimation error model in vanish.

We do not model the misdetection error shown in Figure 3.10 because of its unpre-
dictable interaction with other dynamic objects and the complex trajectory changes it
induces. Since this phenomenon is rare, we assume its impact to be minimal and, there-
fore, leave it to be studied in future work.

Position Noise

We also observed minor differences in the observed dynamic object positions between wm
and UNREAL. The y feature of the dynamic objects had minor estimation errors and the
x feature differed due to a slight angle. The xy-dr environment applies DR to both the x
and y feature, but in different intensities corresponding to the discrepancy in Figure 3.8. y
is varied by a zero-mean Gaussian N (u =0, o = 0.75), while z, by N (u =0, o = 0.025).
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Lag Velocity

Mean | DR | Mean | DR Vanishing Vehicles | Position DR

Environment

wm
lag v’
kf
lagkf v’
lag-dr v’
kf-dr v’
vanish v’
xy-dr v’
percept v’ v’ v’ v’

v’
v’

Table 3.1: Overview of the changes in each variation of cross-intersection environment
in WISEMOVE. All environments are aligned with UNREAL.

Combined Model

We also merge the above environments in percept to study the combined effect of these
DR parameters on the transfer success. For reference, Table 3.1 shows an overview of all
the defined environments and their features.

3.8 Policy Analysis

To obtain some insights on the RL policy, we first find which features it relies on for
optimal decision making. We also extract the behaviour of the policy for further analysis
by running a supervised learning algorithm on a dataset sampled using the agent.

3.8.1 Feature Importance

We use the Permutation Feature Importance method [16] that measures the importance
of a feature as directly proportional to the drop in performance after permuting it in a
dataset. This method is used for supervised learning using Random Forests in the cited
work, but the concept can be applied to RL. For supervised learning, this involves training
a model and evaluating it on a test dataset to get a baseline performance, ppese. The
column for feature f in the dataset is randomly shuffled (to preserve the distribution) and
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the same model is evaluated again to obtain ps. The importance of the feature f is given
by
If = Pbase — Df

, where higher values signify more importance. This process is performed for all features to
obtain a feature importance order. Applying this to an RL policy only requires knowledge
of the distribution of each feature f € F in the test set used for evaluation.

In this study, the test set remains the same for each trial, as we use the same sequence
of seeds for scenario generation. This makes it trivial to obtain the actual distribution Dy
of each feature. During the evaluation for obtaining py, the value of f in each observation
0; € o from the environment is replaced by a sample from the corresponding distribution
Dy, to replicate the permutation process in supervised learning. Thus, Iy is calculated for
each feature and they are then sorted by descending order to obtain an importance order.

3.8.2 Policy Distillation

Using just feature importance, it is not possible to discern the behaviour of the policy. We
attempt to understand how the features are used by extracting or distilling an interpretable
algorithm from the policy.

First, we generate a labelled dataset that maps the observation o; to the decision
m; € M taken by the agent at timestep . To obtain samples for the dataset, the agent
uses policy II to solve a large set of randomly generated episodes in WISEMOVE. However,
we do not require the observation and decision at every step. We are primarily interested
in the last two observations at the end of each episode where it transitions from a yield to
the trackspeed maneuver. Since the difference between these two observations causes the
Q-network to change its decision, it is sufficient to provide us with a decision boundary. To
avoid misleading data points, only the successful episodes are included. The dataset is then
used for training a supervised learning algorithm in order to obtain a decision boundary.
Since we are comparing with a rule-based approach, we use a decision tree classifier that
can provide an if-else-then interpretation of the distilled policy.
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Chapter 4

Experiments and Results

4.1 Training and Evaluation

We perform an initial hyperparameter search for the DQN with the wm environment using
a grid search and set the learning rate o = 0.0004 and discount factor v = 0.99. The total
size of the dual experience replay buffer is set to 100,000 with a sampling batch size of 32.

We train an RL policy for a maximum of 150,000 steps, but training usually does not
reach this far as we employ early stopping. Every 2500 steps, which we consider as 1
epoch, we evaluate the policy on a validation set of 100 episodes generated using a fixed
seed sequence. The training is stopped early if the validation performance has not improved
over the past 10 epochs. At the end of the training, the policy with the best validation
performance is chosen.

The DQN uses a modified epsilon-greedy policy with e = 0.3 for exploration. Instead of
a fixed epsilon, however, we linearly anneal it from 1.0 to 0.3 over the initial 15,000 steps,
to promote more exploration in the beginning. Also, in each epoch following the annealing,
epsilon is tuned using the validation performance such that a better performing policy will
have a lower epsilon (up to a minimum of 0.01 at 100% success). This is to ensure that
better policies explore less and exploit more. We perform this training process multiple
times and select the best 10 policies Ilg in terms of the success metric, to account for
variance in training.

We evaluate each set of policies on WISEMOVE in its corresponding source environment,
which is the training environment for RL policies and wm for rule-based policies. The policy
is executed on a test set testy consisting of 1000 episodes generated from environment F
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| success wait-time
wm unreal unreal
random | 71.70 68.0 2.1
ttc 100.0 90.5 8.29
wm 99.05 | 90.125 13.46

Table 4.1: Results for baseline policies.

using the same sequence of seeds (different from training) for consistency across trials. To
quantify the transfer success of a policy, it is evaluated on the UNREAL simulator. Ideally,
we should use for the same number of episodes as in WISEMOVE but it takes a long time
to run 1000 episodes for a single policy on UNREAL. It is also time-consuming to evaluate
all 10 policies in the set IIg. Therefore, we create a smaller test set testyyrear in UNREAL
by importing the first 200 episodes of test,, using the method outlined in 3.3, and select
the best four policies for evaluation in testynrea:.

4.2 Baselines

We first establish some baseline results in the wm environment. The policy Il policy is
expected to perform very well here since wm has perfect information and no perception lag.
We train and evaluate RL policy I1,, to study how it fares given the same information. A
lower bound to the success metric is established by evaluating a random policy Il an40m
over multiple trials.

The baseline policies, however, may not perform well in the UNREAL simulator due to
the perception errors. The results are shown in Table 4.1 where it is indeed observed that
the policies fail in around 10% of episodes in UNREAL due to the transfer gap. It is also
seen that the RL policy takes more time to achieve the goal.

4.3 Naive Error Model

We make use of the lagkf environment to train policy Il;,ee¢. As described in Section 3.5,
lagkf considers the major perception errors by modelling the mean perception lag and
velocity estimation error. Also, their individual contributions to closing the transfer gap
are analyzed by training policies in lag and kf environments respectively and evaluating
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| env diff % success wait-time
(w.r.t wm) | source | unreal | unreal
r-ttc - 100.0 90.75 7.41
wm 0 99.05 | 90.125 13.46
lag 0.15 99.17 91.75 12.59
kf 4.19 99.10 95.75 20.53
lagkf 4.99 99.07 | 95.875 20.56

Table 4.2: Results for policies trained with naive perception error model.

them on UNREAL. These are compared against the robust rule-based policy Il,-¢tc, which
is designed using the same information. wm is the base environment for this experiment,
with the other environments built on top of it.

For each RL policy Ilg, we calculate the loss in performance incurred when transfer-
ring the policy Il learned in the base environment to the training environment E. This
quantity, denoted env diff %, is the difference between E and the base environment with
respect to its effect on the RL agent. The results are shown in Table 4.2, where it can be
seen that the perception lag has little impact on the policy (only 0.15% drop in perfor-
mance for II;), even though the dynamic objects could have moved as much as 4 metres
from their original positions within this timeframe. The velocity estimation error is a large
contributor to the transfer gap and modelling it even naively results in a large improve-
ment to the policy, although it does increase the average wait-time. Both together gives a
very good performance in the target simulator. However, we do not see similar results for
the robust rule-based policy Il;-¢¢c, even though the same information about the transfer
gap was considered when designing it. The performance is only as good as the normal
TTC-based policy in UNREAL, which is surprising. The cause of this is not very clear. It
may be that a universal 10% increase in velocity estimation is doing more harm than good,
as it marks up accurate estimates as well.

4.4 Domain Randomization

The previous experiments resulted in a policy that failed in only around 4% of the total
number of episodes in the target simulator. Although the scope for improvement is less,
we attempt to further improve the performance of Il ¢ using domain randomization.
The remaining differences — namely nuanced perception lag and velocity estimation, the
vanishing vehicle phenomenon and position estimation errors — are modelled as variations
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Il env diff % success wait-time
(w.r.t lagkf) | source | unreal | unreal
lagkf 0.0 99.07 | 95.875 20.56
lag-dr 0.0 99.11 96.75 21.47
kf-dr 0.35 98.87 | 96.75 20.08
vanish 4.02 95.71 94.25 26.51
xy-dr 0.10 98.87 | 96.375 18.62
percept 3.86 95.81 95.50 27.66

| best | 0.41 | 98.89 | 9725 | 2104 |

Table 4.3: Results for policies trained with domain randomization.

in the base environment lagkf using DR. Thus, we train and evaluate policies in lag-dr,
kf-dr, vanish and xy-dr, and also their combination percept. Similar to the previous
experiment, we measure the difference in each training environment with respect to the
base environment policy Il .g¢. The results are shown in Table 4.3.

The vanish environment detrimentally affects the transfer success. Considering that
the drop in performance for Il .z in vanish is 4.02% and the performance of IT,anign in
the source environment itself only reached 95.71%, we can conclude that the RL algorithm
cannot solve the vanishing vehicle problem. This is because the current input does include
the history and, therefore, the agent is not able to recognize this phenomenon.

The changes in kf-dr, lag-dr and xy-dr environments are small, since there is almost
no performance loss for Il ... However, they all lead to an increase in performance in
the UNREAL simulator. The performance of Ilpercepr, on the other hand, suffers due to
the inclusion of the vanishing vehicles model. Thus, the best performing policy Ilyes: is
obtained by combining the changes in kf-dr, lag-dr and xy-dr environments. Its results
are also shown in Table 4.3 and it indeed has the best transfer success out of all the policies.

We experimented with other techniques such as feature discretization and feature noise
injection to further improve the transfer success but these did not improve the performance
further. It may be that the remaining failures are due to the unmodelled (misdetection
of closely spaced vehicles) or unresolvable (vanishing vehicles problem) components of the
transfer gap.
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’ II \ x \ Y \ 0 \ v \ tte ‘

wm 04 |-26.8|-3.1|-16.6 | -11.5
lagkf | -0.5|-24.3 | -0.2 | -88 |-11.2
best | -0.2 | -22.1| 0.5 -74 | -14.6

Table 4.4: Importance of each feature in RL policies represented as the loss in performance.
The lower the value, the more important the feature.

4.5 Policy Analysis

The rule-based policy relies on all the features to make an optimum decision. To find what
features the best performing RL policy uses, we calculate the importance of each feature
in ITpese using the method in 3.8.1. For comparison, Iy, and 1y, are also analyzed using
the same method. The test set for each consists of 1000 validation episodes generated from
the corresponding training environment in WISEMOVE. The results are shown in Table
4.4.

From the table, it is clear that both Il ae and Ilpesy rely the most on the y feature
followed by ttc and v, in that order. In comparison, wm, which is trained using perfect
information, has more reliance on velocity. However, we expect that the policies would
also require the direction of the vehicle, either through x or #, but it does not use these
features at all. This may be because the ttc value for vehicles that are not on a collision
course is MAX_FLOAT and therefore, the agent uses this information instead.

We use the information in Table 4.4 when distilling the behaviour of the policy Ilyest.
The dataset is generated from UNREAL using the method outlined in Section 3.8.2 and
a decision tree classifier is trained on it. The splitting criteria used in the decision tree
algorithm chooses which features to use for splitting. Instead of using all the features, we
allow the decision tree algorithm to split using only the important features from Table 4.4.
Also, before training, we manually split the dataset into two using € (one for each lane) to
obtain a more human-interpretable tree.

The extracted decision tree representation of Ilyes: is shown in Figure 4.1. The tree
provides if-else-if conditions that can be easily translated into code, which allows us to
verify its behaviour. Thus, using the conditions and values in the tree, we create a rule-
based policy Ilg;ist311 and evaluate it in the UNREAL simulator. Ilg;s¢511 achieves a success
of 95% and has a wait-time of 20.575 steps.

Distillation using the simple decision tree classifier is clearly not perfect, but it never-
theless offers some insights. From the tree, we can observe that the agent yields for ttc
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ttc <= 4.581

y <= 52.425 YIELD v <=29.016 y <=73.427
y <=48.452 YIELD ttc <= 3.249 v <=30.879 YIELD TRACK_SPEED

TRACK_SPEED ttc <= 4.423

- <= X
ttc <= 3.165 Y/<=128.845 TRACK_SPEED

N

TRACK_SPEED y <=50.024 TRACK_SPEED v <= 27.802 TRACK_SPEED YIELD
y <=49.02 YIELD YIELD TRACK_SPEED
YIELD TRACK_SPEED

Figure 4.1: Decision tree distilled from best performing RL policy.

values above a certain threshold (outlined in green in the figure). This could be a threshold
for dismissing unreliable velocities, since ttc is derived from velocity and the agent chooses
to wait until the velocity stabilizes. Also, vehicles in the lane closest to ego (0 > 0) with
y feature greater than a threshold (outlined in orange in the figure) are considered safe
by the policy because they are too far away to collide. Within the reliable ttc, the agent
chooses to either use v or y to make more nuanced decisions. There also exists a lower
threshold for ttc (outlined in red in the figure) below which it chooses the trackspeed
maneuver, since a vehicle near enough to ego is not in danger of collision.

We use the two lower ttc thresholds and the safe y distance for the right lane to craft

a very defensive rule-based policy Ily_i, with the rules being:

yield, if (0 > 0 and ttc; > 3.165 and y < 73.427)
my = or (0 <0 and ttc; > 4.423), for any i

trackspeed, otherwise

II4_c obtains a success of 90.5% in UNREAL, but with a large wait-time of 30.5
steps. However, its failures due to collision are only 2.5%. Thus, it does not crash as
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often as Ili¢., but rather waits until the episode times out if it cannot find an opportunity
to cross. Comparing with Ilg;sei11, it is evident the decisions taken within the reliable
ttc value are crucial for not yielding unnecessarily. Hand-designing these nuances with a
rule-based approach to efficiently handle perception errors is, therefore, not trivial.
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Chapter 5

Conclusion

Due to monetary or hardware constraints, only a low-fidelity simulator may be available
for training RL policies. Deploying RL solutions in the real world is already plagued by the
sim-to-real transfer learning problem, while using a low-fidelity simulator, which naturally
has a larger transfer gap, only makes the problem worse. In this thesis, we examine this
problem in the context of autonomous driving for learning an HRL policy for the behaviour
planning problem.

We set up a sim-to-sim transfer learning problem for behaviour planning using an
existing high-fidelity simulator and develop a low-fidelity simulator specifically for training
behaviour planning HRL policies. We analyze the details of the transfer gap between the
two and show that even by roughly modelling the observed perception errors that cause
the transfer gap, it is possible to create a behaviour planning policy that is better than a
traditional rule-based approach. Further, using the error model and domain randomization,
we are able to reduce the failures due to perception errors from 10% to 2.75%. In addition
to obtaining a good RL policy, we also distill its behaviour and compare it with the rule-
based approach to provide insights on their differences.

We hope to study this further and resolve the transfer gap due to ego vehicle modelling
differences as well. That would make it possible to use the WISEMOVE simulator or an
equivalent low-fidelity simulator such as SUMO [31] for training behaviour planning policies
for the Autonomooose system. This work also adds additional constraints in the driving
scenario and the policy to provide a fairer analysis between RL and rule-based policies. A
direction for future work could be to remove these constraints to demonstrate this approach
in a more generalized setting.

The current policies in this study only depend on the current state. The observation
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history and even predicted tracks can be used to generate better decisions. Also, the
‘to-go-or-not-to-go’ problem formulation is limiting in a practical setting. For example,
creeping behaviour is usually exhibited by human drivers, where they slowly move closer
to the intersection to reduce the crossing distance. Another direction could be to validate
this approach in the real-world with more maneuvers and driving scenarios. The transfer
gap between the low-fidelity simulator and a real autonomous vehicle would be larger and
may come with additional challenges.
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