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Abstract

Recent tele-communication hugely relies on fiber-optic systems. Linear fiber-optic im-
pairments can be modeled with chromatic and polarization-mode dispersion. However,
nonlinear impairments such as SPM and XPM noise are much more complicated to model
and compensate. In this thesis, we try to manipulate an original model which is used by
Ciena Corporation -called the C-model- to achieve a simpler form which provides lower
time-complexity and performs efficiently on random data stream during online transmis-
sion.

This simplified model is defined based on C-matrix which is used to calculate fiber-link
Self-Phase Modulation (SPM) noise. Our model, which is fitted on random training data
sets, is evaluated with respect to different performance measures such as Minimum Mean
Square Error (MMSE). Different analytic and iterative algorithms such as gradient Descent
and Moore-Penrose pseudo-inverse method are proposed for model fitting and it is shown
that these algorithms perform quite efficiently according to error calculations. Also, we
propose a method that enables us to track the perturbations in model parameters which
are caused by the changes in channel characteristics that can happen frequently in online
fiber-link transmission.

iii



Acknowledgements

I would like to thank my supervisor, Professor Amir Keyvan Khandani for his knowl-
edge, guidance and unconditional support throughout my program. I would also thank my
friends Nima, Shayan, Ali, Takin and Saber who made this possible. Also, I would like to
thank Dr. Shahab Oveis Gharan and Dr. Masoud Ebrahimzadeh from Ciena Corporation
whose contributions have been essential for conducting this thesis.

iv



Dedication

This is dedicated to my family for their unconditional love.

v



Table of Contents

List of Figures viii

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Models for SPM noise 5

2.1 Original C-model from Ciena Corporation . . . . . . . . . . . . . . . . . . 5

2.2 Simplified C-model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Model Fitting by Moore-Penrose Inverse 12

3.1 Moore-Penrose Inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Model Fitting and Error Analysis Results . . . . . . . . . . . . . . . . . . . 13

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Model Fitting by Gradient Descent Method 16

4.1 Gradient Descent Optimization Method . . . . . . . . . . . . . . . . . . . . 16

4.2 Model Fitting Algorithm and Results . . . . . . . . . . . . . . . . . . . . . 17

4.3 Model Fitting with Presence of AWGN . . . . . . . . . . . . . . . . . . . . 17

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

vi



5 Alternative Iterative Method Using Hermitian Inner Product 21

5.1 Algorithm Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.2 Model Fitting Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Online Tracking of Model Parameters 25

6.1 Online Tracking by Pseudo-Inverse . . . . . . . . . . . . . . . . . . . . . . 25

6.2 Online Tracking by Stochastic Gradient Descent . . . . . . . . . . . . . . . 27

6.3 Online Tracking by Hermitian Inner Product . . . . . . . . . . . . . . . . . 28

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7 Alternative Performance Measures 30

7.1 Sensitivity to Randomness of Input Data Stream . . . . . . . . . . . . . . 30

7.2 Dominance of Most Significant Parameters . . . . . . . . . . . . . . . . . . 31

References 34

APPENDICES 38

A Proof of Moore-Penrose Pseudo-inverse Theorem 39

vii



List of Figures

2.1 mean-compensated C-matrix output . . . . . . . . . . . . . . . . . . . . . 7

2.2 raw C-matrix output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Comparison between 5× 5 model output and C-matrix . . . . . . . . . . . 10

3.1 Pseudo-Inverse method result . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 Gradient Descent method result . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Gradient Descent method result at different SNRs . . . . . . . . . . . . . . 20

5.1 Hermitian Inner product method result at different SNRs . . . . . . . . . . 23

5.2 Hermitian inner product method result . . . . . . . . . . . . . . . . . . . . 24

7.1 Sensitivity to input test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.2 Parameter Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

viii



Chapter 1

Introduction

1.1 Overview

In fiber-optic communications, carrier signal is the light beam which is an electromagnetic
wave that can be modulated for information transmission. The basic phenomenon which
guides the light beam inside of a fiber is Total Internal Reflection and it was known from
nineteenth century. Although uncladded glass fibers were fabricated in 1920s, the main
invention which led to considerable improvement in fiber characteristics and gave birth to
fiber optics field was the use of a cladding layer in the fabrication of fibers in 1950s [2].

In a fiber-optic lightwave system, several types of optical fibers may consist a fiber link
that optical bit stream propagates through. The length of the link varies from a few to
thousands of kilometers. The quality of the signal degrades during the propagation and
it’s desired for any lightwave system to control these degradations as much as possible to
prevent the loss of original information when the signal is recovered at the receiver[1].

Our main objective in this thesis is to propose a model -based on C-model from Ciena
Corporation- that can predict the impairments of the transmitted signal so we can mitigate
them. Next section discusses a brief literature review about this topic.

In chapter 2, first we introduce the C-model from Ciena Corporation. Then, we propose
our simplified model and provide the derivations resulted from it.

Chapters 3, 4 and 5 discuss different model fitting methods with their respective error
analysis, such as pseudo-inverse, gradient descent and Hermitian inner product.

In chapter 6, we provide some methods which are based on previous model fitting
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algorithms to be able to update model parameters when channel characteristics change
over time. Finally, some other performance measures are discussed in chapter 7.

I should also mention that this work and [21] have been part of a joint project for Ciena
Corporation.

1.2 Literature Review

Digital coherent detection in wavelength-division multiplexing (WDM) standard technol-
ogy is considered as an irreplaceable method for high capacity transmissions in 100 Gb/s
and beyond. The linear impairments, such as Chromatic Dispersion (CD) and Polariza-
tion Mode Dispersion (PMD) can be compensated by Digital Signal Processing (DSP)
methods[31][1].

Optical fiber refractive index depends on the intensity of transmitted signal. This de-
pendence gives rise to Kerr effect which is the source of the nonlinearity of this medium. For
signals with small enough power, the nonlinearities can be neglected throughout the link.
This approximation is valid for many short-haul systems (distance < 100 km). However,
for long-haul systems where optical amplifiers are utilized in a cascaded chain, nonlinear-
ities become much more significant and can not be excluded. This originates from two
main reasons. First The degradation in SNR caused by the noise added at each amplifier
builds up to the extent that the signal can only be recovered at high launching powers
(> 1mw). Second, nonlinearities accumulate at each amplifier and distortion increases as
length of the transmission link increases. Self-phase modulation (SPM), cross-phase mod-
ulation (XPM) and four-wave mixing (FWM) are some of these nonlinearities[1]. For the
system without in-line dispersion compensation, the nonlinear distortions are expected to
be the major complication [31].

Further on, we provide a simple form of deriving the SPM noise from Kerr effect to
gain a perspective of the nature of this noise.

Nonlinear Schrodinger equation gives rise to evolution along distance z of the electric
field E(z) [27]. Neglecting dispersion we will have:

dE(z)

dz
= γ|E(z)|2(−jE(z))

where γ is the nonlinear coefficient and |E(z)|2E(z) is resulted by Kerr effect.
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Since the power is constant, the Kerr effect comes into effect only as a phase rotation:

d|E|ejϕ

dz
=
d|E|
dz

ejϕ + j|E|ejϕdϕ
dz

= −jγ|E(z)|3ejϕ

dϕ

dz
= −γ|E|2

Therefore, the phase ϕ at coordinate z is:

ϕ(z) = ϕ(0)− γ|E(0)|2z (1.1)

Equation 1.1 denotes that SPM noise is originated from the power of the field[27][2].
So, this nonlinearity is self-induced and it causes a frequency shift, known as frequency
chirping, and results in the spectral broadening of the optical pulse. Spectral broadening
and chirping effect is proportional to the input power[16][3]. Some techniques that are
used for mitigation of nonlinear impairments of a fiber-link transmission system are briefly
mentioned in the following.

Digital back-propagation (DBP) is a method that can be implemented either at trans-
mitter or receiver side. This method is based on split-step Fourier method (SSFM) which is
widely used to solve the Manakov equation (nonlinear Schrodinger equation (NLSE))[8][13].
Analytical solution to the Manakov equation is only known for some particular cases, such
as zero-dispersion transmission. Therefore, numerical solutions such as DBP are proposed.
The basic idea is to find a solution for inverse Manakov equation and use it to mitigate the
nonlinear effects. DBP uses the idea of transmitting the signal through an imaginary fiber
with inverse parameters to compensate impairments. The fiber link is divided to several
steps with small length and considering the order of linear and nonlinear sections, different
implementations of DBP are proposed[26]. At small steps, DBP has a high performance.
However, real-time implementation suffers a high computational complexity as the number
steps increases.

Another powerful tool for solving the Manakov equation is Volterra series transfer func-
tion (VSTF)[24]. After modeling the channel, Volterra series based nonlinear equalizer
(VNLE) uses the p-th order theory developed by Schetzen [30] to find the inverse VSTF
kernels. These kernels characterize the equalizer to compensate nonlinearities and chro-
matic dispersion. Similar to DBP, VNLE attempts to find the parameters of the inverse
channel for mitigation. The capability of NLVE to implement the compensation of linear
and nonlinear sections in parallel results in lower computational load compared to DBP.
NLVE can be processed in time and frequency domain[28][23].
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In Nyquist WDM super-channel, neighboring subcarriers affect transmission quality
due to interference. Former techniques such as DBP and NLVE don’t perform efficiently
because of this effect. Therefore, inter-subcarrier nonlinear interference canceler (INIC)
method based on Volterra series is proposed[4]. Using the knowledge of neighboring sub-
carrier detection to cancel the interference of the desired subcarrier is the basic idea behind
this method. It detects the neighboring subcarrier, uses Volterra series to regenerate the
model and deduct the effect from the desired subcarrier. The mentioned method uses deci-
sion feedback equalizer (DEF)[9]. INIC mitigates both intra-subcarrier and inter-subcarrier
linear and nonlinear effects in Nyquist WDM systems.

Perturbation-based compensation techniques is also widely used for modeling the fiber
and mitigating impairments. These techniques provide an approximate numerical solu-
tion to the Manakov equations and can be implemented either at transmitter or receiver
side[32][17]. In this method, nonlinear distortion is modeled as a first-order perturbation
added to original solution for linear case. Pulse shape and model parameters determine the
number of perturbation coefficients. Perturbation-based compensation can be implemented
on a single stage which reduces the complexity in comparison to DBP and VLNE. However,
it needs a large number of perturbation terms which makes its practical implementation
challenging[11].

Optical phase conjugation (OPC) and digital phase conjugated twin waves (PCTW)
are some of phase conjugation techniques to mitigate nonlinearities. OPC inverts the
spectrum of data signal in optical domain in the middle of the link. The basic idea is to
cancel out the nonlinearity generated in the first segment with the second one. Positioning
and symmetry of the link are some of the challenges in implementation of this method[23].
Also, OPC-based transmission is sensitive to nonlinear effect which acts similar to positive
feedback for nonlinearity.

PCTW is a digital signal processing method which is implemented at the receiver
side. In dual polarization format, PCTW transmits the signal on polarization x and its
conjugate on polarization y. Therefore, the first-order phase shift can be cancelled out with
superposition of the two signals[19][18]. Although PC techniques are computationally
efficient, one drawback is the loss of half of spectral efficiency due to transmission of
conjugate signal on polarization y. Some recent approaches try to resolve this problem
using a modified method[34].

Ciena Corporation utilizes split-step Fourier method (SSFM) to model the nonlinear-
ities. We won’t go through the details of the nonlinear Schrodinger equations, instead
the result which is the C-matrix is used to model SPM noise. A careful derivation of the
C-model is provided in [29].
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Chapter 2

Models for SPM noise

2.1 Original C-model from Ciena Corporation

Nonlinear propagation in optical fiber is well described by the Nonlinear Schrodinger Equa-
tion (NLSE). A careful derivation follows from Maxwell’s equations for the propagating
fiber mode. Most fiber nonlinearities originate through nonlinear refraction (a dependence
of the refractive index on the field intensity). Due to Kerr effect, refractive index of the
glass is modulated by the intensity of the optical field [27]. The procedure to derive the
solutions from these equations are not the main focus of this thesis. Therefore we concen-
trate on the results derived by Ciena Corporation to continue our main objective which
is manipulating the model to achieve a simpler form and implement model fitting meth-
ods. The solution to these equations results in a model named C-model which puts the
nonlinearities into effect as mentioned in the following.

The nonlinear noise in X-pole in the time zero is approximated as:

∆Ax = SPM1 + SPM2 +
∑

w

(XPM1w + XPM2w + XPM3w + XPM4w) (2.1)

where ∆Ax indicates nonlinear noise in X-pole of a transmitted symbol Ax and W indicates
the neighboring channels and the summation is over all of them.

The effective nonlinear noise can be written as:

∆Aex = ∆Ax − E [∆Ax|Ax(0)] (2.2)

Equation 2.2 suggest to deduct the conditional mean of the noise from calculations.
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Each of the terms in Equation 2.1 are calculated as follows:

SPM1 =
∑
m,n

Cspm
m,nAx(m)Ax(n)Ac

x(m+ n)

SPM2 =
∑
m,n

Cspm
m,nAx(m)Ay(n)Ac

y(m+ n)

XPM1w =
∑
m,n

Cxpmw
m,n Ax(m)Bx(n)Bc

x(m+ n)

XPM2w =
∑
m,n

Cxpmw
m,n Ax(m)By(n)Bc

y(m+ n)

XPM3w =
∑
m,n

Cxpolmw
m,n Bx(m)Ax(n)Bc

x(m+ n)

XPM4w =
∑
m,n

Cxpolmw
m,n Bx(m)Ay(n)Bc

y(m+ n)

(2.3)

From equations 2.3 we can conclude:

• As the nature of the noises suggests, Self-Phase Modulation (SPM) noise is not
dependent on symbols from other channels, however Cross-Phase Modulation (XPM)
is.

• SPM and XPM noises added to a single symbol in X-pole are dependent on itself
and neighboring symbols from both X-pole and Y-pole.

• Cspm , Cxpmw and Cxpolmw are the matrices used to calculate these noises[7].

Cspm is called the C-matrix and it’s used to calculate the SPM noise added to transmitted
signal. C-matrix size and the values of its elements depend on the type of the fiber and
number of the spans. However, for almost all fiber-link types and lengths, C-matrix is a
considerably large matrix which can cause computational complexity[29]. This fact gives
us an incentive to try to define a simpler model which can provide sufficiently accurate
results and have lower complexity.

The output of C-matrix are depicted in figures 2.1 and 2.2. In figure 2.2, we can see the
raw output of SPM C-matrix. The asymmetric form of the output in figure 2.1 is resulted
from 90-degree phase shift which is an inherent property of C-matrix.
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Fig. 2.1. SPM-induced Received points for a 10 Span fiber with random input data
stream of size 10k and 16QAM constellation design after compensation of conditional

mean , input data point is incremented with effective SPM and mean constellation
energy= 0.5

2.2 Simplified C-model

Closest substitute for real data we have at hand for fiber SPM noise is the C matrix. If we
slide the boundaries of the summation and redefine the C-matrix such that C0,0 would be
the element at the center of the matrix, the first equation in 2.3 can be rewritten as:
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Fig. 2.2. raw output of SPM C-matrix for a 10 Span fiber with input data stream of size
10k and 16QAM constellation design

spmi =
M∑

m=−M

M∑
n=−M

Cm,nxi+mxi+nx
∗
i+m+n (2.4)

where spmi is the noise added to a data sample at position i and the stream of data is
x1, x2, x3, ... (xi’s are constellation points). Cm,n is a C-matrix element, x∗i is the complex
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conjugate of xi and M depends on the size of the C-matrix and the accessible memory.

C-matrix can be very large in size (97*97 for 10 Span fiber). Therefore, it can add
computational complexities to the problem. However, most of the dominant elements of
the C matrix can be found near the center of it. This fact gives us an intuition to model
the fiber with a matrix of smaller size. To have a sense of the dominance of the central
elements of C-matrix, there is a comparison between 5 × 5 matrix at the center with the
original C-matrix in figure 2.3.

These observations provide a good perspective of the simplified model that we can
define. Since using a small matrix consisted of the central and most dominant elements
of the C-matrix provides a considerably acceptable result without any model fitting, we
propose that our model should have a similar structure. Due to symmetry and observations
from the structure of the C-matrix, matrices of size n × n where n is odd can be used as
the model. It is obvious that using a larger matrix will provide more precise results due to
the increase in number of parameters.

Using C =

 C−1,1 C0,1 C1,1

C−1,0 C0,0 C1,0

C−1,−1 C0,−1 C1,−1

 as a substitute for C-matrix and equation 2.4 we

have:

spmi =
1∑

m=−1

1∑
n=−1

Cm,nxi+mxi+nx
∗
i+m+n

= C0,0xi ‖xi‖
2 + C0,1xi ‖xi+1‖2 + C1,0xi ‖xi+1‖2 + C0,−1xi ‖xi−1‖2

+ C−1,0xi ‖xi−1‖2 + C−1,1xi−1xi+1x
∗
i + C−1,−1x

2
i−1x

∗
i−2 + C1,1x

2
i+1x

∗
i+2 + C1,−1xi−1xi+1x

∗
i

(2.5)

From equation 2.5 we can observe:

• SPM noise added to a single data sample at position i of input data stream depends
on matrix elements and neighboring data samples.

• The number of neighboring points for calculating SPM depends on the size of the
matrix used to model C-matrix. In this case, a 3× 3 matrix uses a window of size 5
centered at position i, which means two data samples before and two data samples
after xi are going to be needed to calculate spmi.

9



-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

In-Phase

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Q
u

a
d

ra
tu

re

C-matrix output

5*5 matrix model output

Fig. 2.3. Comparison between raw output of C-matrix and 5× 5 model with no model
fitting for 10 span fiber

• The summation consists of quadruple multiplications (triple multiplications of data
points multiplied by a matrix element).

• If enough neighboring data points are known, spmi only depends on matrix elements.
In fact, it is a linear combination of Ci,j ’s with known coefficients.

The linearity of the model with respect to model parameters is the basis that this
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research builds up on in the following chapters. We will go through some model fitting
methods which exploits this property to obtain the best set of parameters to predict SPM
noise.

Similar derivations to 2.5 can be obtained for a matrix of bigger size. Equations have
more terms and use a bigger window of input data, but the linearity of the model is still
preserved.

2.3 Summary

Solving Nonlinear Schrodinger Equation (NLSE) in fiber medium by Ciena Corporation has
led to a model called the C-model. SPM and XPM noises are calculated with C-matrix
which is considerably large and computationally expensive to work with. However, our
observations help to define a simpler model with less number of parameters which is linear
with respect to model parameters when a big enough window of data points are known.

This fact provides a new perspective to the problem which helps us to use different
tools to train the model and obtain a considerably precise approximation of SPM noise.
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Chapter 3

Model Fitting by Moore-Penrose
Inverse

3.1 Moore-Penrose Inverse

A set of equations in which the number of equations is larger than the number of unknowns
is called an over-determined set. From linear algebra, there are multiple methods one can
approach an over-determined set[5]. Considering the linearity of the model discussed in
previous chapter, a common method is Linear Least Squares (LLS) in which the objective
function that should be minimized is the summation of all Euclidean norms of the distance
between observations and model predictions [12].

Suppose there are L observations and M unknown parameters. If equations are linear
with respect to unknown parameters, this optimization problem can be written in matrix
form as follows.

min
x
‖Ax− y‖ (3.1)

where A is a matrix of size L×M , x is the vector of parameters of size M and y is the
vector of observations of size L. Based on previous results from optimization and linear
algebra, a solution to problem 3.1 which itself has minimum weight would be :

x = (A?A)−1A?y (3.2)
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where A∗ is the conjugate transpose of A and A+ = (A?A)−1A? is Moore-Penrose Inverse
of matrix A [25] [20][14]. This is a left inverse since A+A = I. A proof of this theorem is
provided in Appendix A.

3.2 Model Fitting and Error Analysis Results

As discussed in chapter 2, SPM noise added to a data point when neighboring points are
known is a linear combination of model parameters. Therefore, we can use the Moore-
Penrose Inverse to estimate the parameters of the model. For each observation, there is a
prediction for SPM noise from equation 2.5. Our objective is to estimate the parameters
Ci,j such that square-norm of error would be minimized. From equation 3.1, A is the matrix
of coefficients in a way that each row of it is the coefficients of the linear combination in 2.5
(xi ‖xi‖2, xi ‖xi+1‖2, ... ) and the number of rows is equal to the number of observed data
points. x is the parameter vector which for 3× 3 model would be [C−1,1 C0,1 C1,1... C1,−1]T

and y is the vector of SPM noise observations.

The summation of all square-norms of the distances is the objective function which we
want to minimize. This summation also represents the final error of the model. However,
to have a better perspective of the result, we have to compare this summation with SPM
values. So we calculate the ratio of this error and the variance of the raw SPM noise which
is calculated from C-matrix and use it as our point of reference for error analysis.

ratio =
‖error‖2

‖SPMCmatrix‖2
=
‖distances‖2

‖SPMCmatrix‖2
(3.3)

In figure 3.1, we provide results of model fitting with Moore-Penrose Inverse method for
5×5 model. As it can be observed from the figures, after model fitting with Moore-Penrose
method, the shape of the model prediction cloud is closer to C-matrix output and error
ratio is decreased considerably.

An important note to mention about this method is that calculation of Pseudo-Inverse
Matrix for a large number of observed points is computationally expensive. Hence, applying
alternative methods which optimize the cost function in an iterative manner is the subject
of next chapters of this thesis.

13



3.3 Summary

In this chapter, we used the linearity of our proposed model to obtain a well-defined
optimization problem in matrix form. Results from linear algebra provides Moore-Penrose
Inverse as a solution to the Linear Least Squares problem for this over-determined set of
equations. Observing the results from our simulations suggests that this method performs
efficiently good with mean-square error ratio as a performance measure.
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Fig. 3.1. Output of 5× 5 model for input size=10k,
before optimization error ratio = 0.0189 and after optimization error ratio = 0.0023
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Chapter 4

Model Fitting by Gradient Descent
Method

4.1 Gradient Descent Optimization Method

Gradient descent is an optimization algorithm used to minimize an objective function by
iteratively moving in the direction of local minimum as defined by the negative of the
gradient. In optimization problems, we use gradient descent to update the parameters
of our model. At each step, the update in parameters is dependent to learning rate and
partial derivative of objective function.

If the multi-variable function F (x) is defined and differentiable in a neighborhood of
point x, the objective function F decreases fastest if we move towards the the negative of
the gradient. Starting from x0 as a guess for local minimum:

xn+1 = xn − λn∇F (xn) , n > 0 (4.1)

with some assumptions on F , one can choose a suitable learning rate at each step that
guarantees converging to a local minimum. If F is convex and the assumptions check out,
xn will converge to global minimum of the objective function. Due to the Barzilai-Borwein
method[6] , a suitable learning rate could be:

λn =

∣∣∣(xn − xn−1)T [∇F (xn)−∇F (xn−1)]
∣∣∣

‖∇F (xn)−∇F (xn−1)‖2 . (4.2)

16



4.2 Model Fitting Algorithm and Results

There are some observations from the structure of original C-matrix that help us define
a variation of Gradient Descent method for our problem. For example, C0,1 and C−1,0

are exactly equal and have zero real value. In an ideal scenario, we should allow all
the imaginary and real parts of the parameters to take any value resulted from Gradient
Descent algorithm, but due to our simulation results and the symmetry of the system
derived by Ciena, we let these properties to be preserved in our model exactly like the
original C-matrix.

To properly define an objective function, we need to separate the real and imaginary
parts of the parameters and match the corresponding properties from C-matrix. For ex-
ample, C0,1 is purely imaginary in C-matrix, so we use C0,1 = Cimagi as an element of our
matrix model and Cimag as the parameter that we try to optimize.

To gain a better perspective, equation 2.5 is written considering the above mentioned
assumption for C0,1 in the following. For simplicity, all other terms of 2.5 including SPM
noise observation are replaced with a complex value a+ bi and complex coefficient of C0,1

is shown with c+ di.

‖distance‖2 = ‖(Cimagi)(c+ di) + (a+ bi)‖2

‖distance‖2 = ‖(−dCimage) + (cCimag + b)i‖2

‖distance‖2 = d2C2
image + (cCimag + b)2

(4.3)

Similar derivations can be observed for non-purely imaginary parameters as well. Equa-
tion 4.3 shows that for each observation square norm of distance is a quadratic function of
real and imaginary parts of model parameters. Also, the final objective function F is the
summation of all square distances, hence it’s quadratic.

F =
∑

observations

‖SPMmodel prediction − SPMobserved‖2 (4.4)

This fact allows us to use the Gradient descent method and define the following iterative
algorithm.

The results of applying algorithm 1 is provided in figure 4.1 .

4.3 Model Fitting with Presence of AWGN

Previous simulations have been conducted in absence of noise. However, there are multiple
resources of noise in a real communication channel. Our simulations show that Algorithm
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Algorithm 1 Modified Gradient Descent Algorithm

1: Start original C-matrix values as a guess x0 = [C−1,1 C0,1 C1,1... C1,−1]T

2: Set number of iteration n
3: for i=1: n do
4: Find ∇F w.r.t. separate real and imaginary parts
5: Find appropriate learning rate λ using 4.2
6: xi ← xi−1 − λ∇F (xi−1)
7: If F (xi) > F (xi−1) then λ← λ/2, go to line 5

8: return xn

1 is able to cancel out the effect of Gaussian noise to a considerable amount when input
data point is noisy at different SNR values. A note of significance to mention is that all
the model fittings are performed when input data stream is a training data set, which
means the stream of data is considered to be known at the receiver. Hence, no decoding is
needed at the receiver. Results of model error ratio values after some number of iterations
at different SNRs are provided in figure 4.2. It can be observed that performance of the
algorithm is improved at higher SNRs as expected.

4.4 Summary

A very common iterative method that can be used for minimization of convex quadratic
functions is Gradient Descent. The basic idea behind this method is to start with a guess
for the optimum value of the parameter and move gradually towards the local minimum by
calculating the partial derivatives and a proper learning rate. Based on our observations
from original C-matrix, we separate the real and imaginary parts of the parameters and
match the corresponding similarities. After each iteration, the parameters are closer to the
desired optimum.

A note of significance is checking that whether F (xn) decreases with each iteration or
not. If the new xn does not move towards the optimum, we have to decrease the learning
rate and calculate a new xn.
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before optimization error ratio = 0.0189 and after optimization error ratio = 0.0037
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Chapter 5

Alternative Iterative Method Using
Hermitian Inner Product

5.1 Algorithm Definition

Another approach to the problem is to represent the coefficients which are multiplied to a
single parameter with a vector. Bearing in mind that all the combinations are linear, we
rewrite the matrix form of the problem as follows:

Ax =
n∑

i=1

Aixi , observation vector y (5.1)

where n is the number of parameters (for the case of 3× 3 model n = 9), Ai is the vector
of coefficients for parameter xi.

Supposing the number of observations is L, y and each of Ai’s are vectors in L-
dimensional space (If we consider the complex nature of elements, each vector will have 2L
dimensions). In this framework, each of the parameter xi’s are coefficients of L-dimensional
vectors Ai and our goal is to find the coefficients xi in a way which the summation is as
close as possible to observation vector y.

In set of real vector space, one of the methods which is used to find the projection
of a vector on another vector is inner product. In complex vector space, Hermitian inner
product helps us achieve the same property. Hermitian inner product of two complex
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vectors v and w is:
< v,w >=

∑
i

viw
∗
i (5.2)

where w∗i is the complex conjugate of wi [33]. Applying Hermitian inner product, the
projection of observation vector y on the coefficients vector Ai can be found. If we deduct
the inner product result from original vector, the remnant would be orthogonal to projected
vector[10]. Using the projection, we can derive an estimation for each of xi’s and update
them in an iterative manner. Assuming we initiate with all xi’s equal to zero:

x∗1 =
< y,A1 >

‖A1‖2
(5.3)

is the new estimation for x1. To estimate the next parameter, we have to subtract the
term that first parameter contributes to the summation and find the projection on A2:

x∗2 =
< y − x∗1A1,A2 >

‖A2‖2
(5.4)

One iteration is finished when all parameters are updated once. Algorithm 2 depicts this
method when initial point for parameter vector is the original C-matrix parameters.

Algorithm 2 Iterative Hermitian Inner Product Algorithm

1: Start original C-matrix values as initial parameter x = [C−1,1 C0,1 C1,1... C1,−1]T

2: Set number of iteration n and number of parameters m
3: for j=1: n do
4: for i=1: m do

5: xi ←
< y −

∑m
k=1,k 6=i xkAk,Ai >

‖Ai‖2

6: return x

5.2 Model Fitting Results

The results of model fitting using this method is provided in figures 5.1 and 5.2.

As it was expected, performance of the algorithm is enhanced at higher SNRs.
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5.3 Summary

Hermitian inner product is a powerful tool for finding the projection of a complex vector
on another. In this chapter, using this method, we defined an algorithm to iteratively
update the parameters of the model with finding the projection of observation vector on
the vector of coefficients for each parameter. According to the results, this algorithm is
able to reduce the error ratio drastically after a few iterations. However, at higher number
of iteration, error ratio decreases with slower rate.
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Chapter 6

Online Tracking of Model Parameters

Numerous factors contribute to channel characteristics of a fiber-optic communication sys-
tem. As channel characteristics change, nonlinear noises such as SPM and XPM change
and this fact denotes the significance of time-domain variations of model parameters. The
procedure in practical implementation is that when the characteristics of channel change,
the system detects an increase in error vector norm which implies that the parameters are
not predicting the SPM noise accurately enough. So the parameters need to be updated
with the information that new observation points provide about channel characteristic
perturbations. In this work, our closest approximation for real SPM is calculated by C-
matrix. So in order to generate updated SPM noise, we change the elements of C-matrix
and investigate that how efficiently our online tracking method works.

6.1 Online Tracking by Pseudo-Inverse

In chapter 3 , model fitting using Moore-Penrose pseudo-inverse method was discussed.
Suppose model parameters are estimated after observing a batch of received data with
length M . So optimum set of parameters are

xopt = (A?A)−1A?y

where objective function that needs to be minimized is

Fx = ‖Ax− y‖.
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Suppose a new batch of data with size N is received and we detect an error vector
which has a norm greater than a threshold eth due to different channel characteristics. In
other words,

ypredicted = Bxopt

∆y = yobs − ypredicted

‖∆y‖ > eth

where BN×|x| is the coefficient matrix for new batch of data and yobs is vector of new N
number of observations. This format helps us to define a new objective function

G∆x = ‖B∆x−∆y‖. (6.1)

Using Pseudo-Inverse the solution that minimizes 6.3 is

∆xopt = (B?B)−1B?∆y.

So our method considers a perturbation vector ∆x and optimizes it to minimize the
error-norm of the new batch of data. New parameter vector will be the summation of
previous optimum vector and new optimum perturbation vector:

xnew
opt = xopt + ∆xopt

Results for a simulation are provided in the following.

3× 3 trained model on input of size= 10k by pseudo-inverse:

Copt =

 0.0191 + 0.0122i 0.0000− 0.0569i −0.0193 + 0.0121i
0.0000− 0.0569i −0.0001− 0.1679i 0.0001− 0.0571i
−0.0193 + 0.0121i 0.0001− 0.0571i 0.0191 + 0.0117i

 ‖error‖2

‖SPM‖2
= 0.0140

To model channel variations, a Gaussian noise with power of 20 percent is added to
C-matrix elements and a new batch of data with size= 1k is transmitted. Perturbation
vector ∆Copt is trained on the new batch of data.

∆Copt =

−0.0038− 0.0011i 0.0005− 0.0053i −0.0007− 0.0029i
0.0005− 0.0053i −0.0024 + 0.0035i 0.0011 + 0.0022i
−0.0007− 0.0029i 0.0011 + 0.0022i −0.0005− 0.0018i


Finally, new model matrix is calculated as the summation of previous optimum and

optimum perturbation vector.

Cnew
opt = Copt + ∆Copt,

‖error Cnew
opt ‖2

‖SPM‖2
= 0.0141

As we can see the new optimum model parameter set provides an accurate estimation
of SPM.

26



6.2 Online Tracking by Stochastic Gradient Descent

In chapter 4, we used Gradient Descent to estimate model parameters. In this section,
we introduce a slightly different method named Stochastic Gradient Descent and showcase
how it can be useful for online tracking. In Gradient Descent, vector x moves towards the
negative of partial derivative of objective function F which is the summation of all error
functions for each observation. Stochastic Gradient Descent suggests that we can use the
gradient of only one of these error functions to update the estimation.

In our case, our goal is to update parameters with respect to new batch of observed
data. Therefore, objective function F is the summation of error functions of new N number
of observations.

F =
N∑
i=1

Fi

Fi = ‖
K∑
j=1

Bi,jxj − yi‖

where B is the coefficient matrix of new batch. Initial value of the parameters is the
previous optimum that was trained before the new batch is received. So after each iteration:

xnew
opt = xopt − λ∇Fi (xopt) . (6.2)

Learning rate λ can be determined with 4.2.

To implement this method, we initiate with the same optimum in previous section and
optimize the perturbation vector by using stochastic gradient descent.

After 5 iterations of stochastic gradient descent:

∆Copt =

−0.0037− 0.0009i 0.0011 + 0.0523i 0.0166− 0.0090i
−0.0006− 0.0398i −0.0020 + 0.0101i 0.0015 + 0.0173i
−0.0178 + 0.0035i 0.0005− 0.0371i −0.0007− 0.0019i


The summation of previous optimum and new perturbation vector is:

Cnew
opt = Copt + ∆Copt,

‖error Cnew
opt ‖2

‖SPM‖2
= 0.0171

Due to the iterative manner of this method and considering that pseudo-inverse provides
the most accurate solution for this problem, it is expected that error ratio of stochastic
gradient descent method would be greater than pseudo-inverse method.
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6.3 Online Tracking by Hermitian Inner Product

As an alternative method, we use Hermitian inner product to find the projection of error
vector on the coefficient vector of each parameter. As equation 6.3 states, the matrix
format of the minimization problem is:

G∆x = ‖B∆x−∆y‖. (6.3)

We initiate with ∆x = 0. With finding the projection of ∆y on the first coefficient vector,
we calculate a new value for the perturbation of the first parameter:

∆x∗1 =
< ∆y, B1 >

‖B1‖2
(6.4)

To update the second parameter perturbation, we deduct the effect of multiplications of
first parameter and it’s coefficients. Meaning:

∆x∗2 =
< ∆y −∆x∗1B1, B2 >

‖B2‖2
(6.5)

After one iteration all the parameters are updated. We repeat the same procedure until the
decrease in error vector is less than a predetermined threshold value which means iteration
is not significantly helpful in order to approach the minimum. Using an algorithm similar
to Algorithm 2 we obtain the optimum ∆x and

xnew
opt = xopt + ∆xopt

is the new optimum.

Starting with the same optimum as previous sections, the result of training to obtain
the optimum perturbation vector by using Hermitian inner product is provided in the
following.

After 5 iterations of Hermitian inner product:

∆Copt =

−0.0037− 0.0008i 0.0014 + 0.0811i 0.0253− 0.0121i
−0.0011− 0.0571i −0.0017 + 0.0135i 0.0017 + 0.0249i
−0.0264 + 0.0067i 0.0002− 0.0568i −0.0008− 0.0019i


Cnew

opt = Copt + ∆Copt,
‖error Cnew

opt ‖2

‖SPM‖2
= 0.0164

The performance is not as accurate as the pseudo-inverse method which is expected
since pseudo-inverse method provides the global optimum and any iterative method ideally
can converge to that optimum when the number of iterations increases.
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6.4 Summary

Since channel characteristics can change over time, tracking the model parameters in time
domain is of great significance in a communication system. In this chapter, we tried to pro-
pose methods based on our previous model fitting algorithms to track these perturbations.
Channel characteristic variation was modeled in original C-matrix and it was shown that
our model can update the parameters after a new batch of data which is passed through
the new channel arrives at the receiver side.
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Chapter 7

Alternative Performance Measures

7.1 Sensitivity to Randomness of Input Data Stream

Since the data stream that we use as training test is generated randomly, there are no
specific statistical characteristic associated with different data points and their correlation.
To put this notion to test, our model-trained on a set of random test data- should have
acceptable error when it predicts SPM for any other random set of data since there are no
assumptions about the structure of the training data-set. Results from simulations that
support this claim are provided in the following.

Random Training Data-set 1: size=10k

3× 3 model trained using Pseudo-inverse:

C1 =

 0.0191 + 0.0122i 0.0000− 0.0569i −0.0193 + 0.0121i
0.0000− 0.0569i −0.0001− 0.1679i 0.0001− 0.0571i
−0.0193 + 0.0121i 0.0001− 0.0571i 0.0191 + 0.0117i

 ‖error‖2

‖SPM‖2
= 0.0140

Random Training Data-set 2: size=10k

3× 3 model trained using Pseudo-inverse:

C2 =

 0.0197 + 0.0118i −0.0001− 0.0572i −0.0197 + 0.0119i
−0.0001− 0.0572i 0.0000− 0.1678i 0.0001− 0.0575i
−0.0197 + 0.0119i 0.0001− 0.0575i 0.0197 + 0.0124i

 ‖error‖2

‖SPM‖2
= 0.0141

In order to test our claim, we use C1 to predict the SPM of data-set 2 and C2 to predict
the SPM of data-set 1.
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Predicted SPM of Data-set 2 using C1

‖error‖2

‖SPM‖2
= 0.0147

Predicted SPM of Data-set 1 using C2

‖error‖2

‖SPM‖2
= 0.0143
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Fig. 7.1. Comparison between SPM cloud of Data-set 1 predicted by C1 and C2

7.2 Dominance of Most Significant Parameters

In previous chapters we discussed that most dominant elements of C-matrix are located
around the center of the large C-matrix. Whether this is correct or not, after the optimiza-
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tion is done, is going to be discussed in this section. The procedure is that first we train a
5× 5 model on a data-set which results in M = 25 optimum parameters. Then we choose
a subset of size K = 9 of these parameters located at the center of 5 × 5 matrix. On the
other hand, we can have a 3× 3 model where these parameters can be trained separately.
A comparison between the performance of these two cases can provide a good sense of how
significant the parameters located near the center of the matrix are.

5× 5 model M = 25 and K = 9 on Data-set 1:

CM =
0.0009− 0.0016i −0.0011 + 0.0080i −0.0002− 0.0206i 0.0010 + 0.0081i −0.0010− 0.0017i
−0.0011 + 0.0080i 0.0195 + 0.0120i 0.0002− 0.0488i −0.0195 + 0.0122i 0.0010 + 0.0081i
−0.0002− 0.0206i 0.0002− 0.0488i −0.0002− 0.1342i 0.0001− 0.0488i 0.0000− 0.0207i
0.0010 + 0.0081i −0.0195 + 0.0122i 0.0001− 0.0488i 0.0195 + 0.0120i −0.0011 + 0.0082i
−0.0010− 0.0017i 0.0010 + 0.0081i 0.0000− 0.0207i −0.0011 + 0.0082i 0.0010− 0.0016i


‖error‖2

‖SPM‖2
= 0.0023 (7.1)

CK ⊂ CM , CK =

 0.0195 + 0.0120i 0.0002− 0.0488i −0.0195 + 0.0122i
0.0002− 0.0488i −0.0002− 0.1342i 0.0001− 0.0488i
−0.0195 + 0.0122i 0.0001− 0.0488i 0.0195 + 0.0120i


using CK as the new model we will obtain:

‖error‖2

‖SPM‖2
= 0.0426 (7.2)

From previous section, we observed that a 3×3 model which is trained on data-set 1 by

Pseudo-inverse method has error ratio
‖error‖2

‖SPM‖2
= 0.0140 while using the most dominant

parameters of 5×5 model yields error ratio
‖error‖2

‖SPM‖2
= 0426. Considering this simulation,

even though parameters which are close to the center of the matrix are the most dominant
ones, optimizing the model with a larger set of parameters does not provide the dominant
parameters with sufficient accuracy to predict the SPM noise.
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tai, and Andrew D Ellis. Compensation of intra-channel nonlinear fibre impairments
using simplified digital back-propagation algorithm. Optics express, 19(10):9453–9460,
2011.

[27] Michael Reimer. Propagation nonlinearities: Nonlinear manakov equations. Technical
report, 2016.

[28] Jacklyn D Reis and António L Teixeira. Unveiling nonlinear effects in dense coherent
optical wdm systems with volterra series. Optics express, 18(8):8660–8670, 2010.

[29] Ali Saheb Pasand. Methods for nonlinear impairments compensation in fiber-optic
communication systems. Master’s thesis, University of Waterloo, 2018.

[30] Martin Schetzen. Theory of pth-order inverses of nonlinear systems. IEEE Transac-
tions on Circuits and Systems, 23(5):285–291, 1976.

[31] Zhenning Tao, Liang Dou, Weizhen Yan, Yangyang Fan, Lei Li, Shoichiro Oda, Yuichi
Akiyama, Hisao Nakashima, Takeshi Hoshida, and Jens C Rasmussen. Complexity-
reduced digital nonlinear compensation for coherent optical system. In Next-
Generation Optical Communication: Components, Sub-Systems, and Systems II, vol-
ume 8647, page 86470K. International Society for Optics and Photonics, 2013.

[32] Zhenning Tao, Liang Dou, Weizhen Yan, Lei Li, Takeshi Hoshida, and Jens C Ras-
mussen. Multiplier-free intrachannel nonlinearity compensating algorithm operating
at symbol rate. Journal of Lightwave Technology, 29(17):2570–2576, 2011.

[33] Nicholas Young. An introduction to Hilbert space. Cambridge university press, 1988.

36



[34] Yukui Yu, Wei Wang, Paul D Townsend, and Jian Zhao. Modified phase-conjugate
twin wave schemes for spectral efficiency enhancement. In 2015 European Conference
on Optical Communication (ECOC), pages 1–3. IEEE, 2015.

[35] Qunbi Zhuge, Michael Reimer, Andrzej Borowiec, Maurice O’Sullivan, and David V
Plant. Aggressive quantization on perturbation coefficients for nonlinear pre-
distortion. IEEE, 2014.

37



APPENDICES

38



Appendix A

Proof of Moore-Penrose
Pseudo-inverse Theorem

Theorem: Every linear system Ax = b, where A is an m× n-matrix, has a unique least-
squares solution x+ of smallest norm.

Proof: Geometry offers a nice proof of the existence and uniqueness of x+. Indeed, we
can interpret b as a point in the Euclidean (affine) space Rm, and the image subspace of A
(also called the column space of A ) as a subspace U of Rm (passing through the origin).
Then, we claim that x minimizes ‖Ax− b‖2 iff Ax is the orthogonal projection p of b onto
the subspace U , which is equivalent to pb = b− Ax being orthogonal to U .

First of all, if U⊥ is the vector space orthogonal to U , the affine space b+U⊥ intersects
U in a unique point p.

Next, for any point y ∈ U , the vectors py and bp are orthogonal, which implies that

‖by‖2 = ‖bp‖2 + ‖py‖2. (A.1)

Thus, p is indeed the unique point in U that minimizes the distance from b to any point
in U . To show that there is a unique x+ of minimum norm minimizing ‖Ax− b‖2, we use
the fact that

Rn = KerA⊕ (KerA)⊥. (A.2)

Indeed, every x ∈ Rn can be written uniquely as x = u + v, where u ∈ KerA and
v ∈ (KerA)⊥, and since u and v are orthogonal,
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‖x‖2 = ‖u‖2 + ‖v‖2 (A.3)

Furthermore, since u ∈ KerA, we have Au = 0, and thus Ax = p iff Av = p, which
shows that the solutions of Ax = p for which x has minimum norm must belong to KerA⊥.

However, the restriction of A to KerA⊥ is injective. This shows that there is a unique
x of minimum norm minimizing ‖Ax− b‖2, and that it must belong to KerA⊥. �

The proof also shows that x minimizes ‖Ax− b‖2 iff pb = b−Ax is orthogonal to U ,
which can be expressed by saying that b−Ax is orthogonal to every column of A. However,
this is equivalent to

A>(b− Ax) = 0, i.e. A>Ax = A>b. (A.4)

Finally, it turns out that the minimum norm least squares solution x+ can be found in
terms of the pseudo-inverse A+ of A, which is itself obtained from the SVD of A.

If A = V DU>, with
D = diag (λ1, . . . , λr, 0, . . . , 0) , (A.5)

where D is an m× n matrix and λi > 0, letting

D+ = diag (1/λ1, . . . , 1/λr, 0, . . . , 0) , (A.6)

an n×m matrix, the pseudo-inverse of A is defined as

A+ = UD+V >. (A.7)

assume that A is a (rectangular) diagonal matrix D, as above. Then, since x minimizes
‖Dx− b‖2 iff Dx is the projection of b onto the image subspace F of D, it is fairly obvious
that x+ = D + b.Otherwise, we can write

A = V DU>, (A.8)

where U and V are orthogonal. However, since V is an isometry,

‖Ax− b‖ =
∥∥V DU>x− b∥∥ =

∥∥DU>x− V >b∥∥ . (A.9)
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Letting y = U⊥x, we have ‖x‖ = ‖y‖ since U is an isometry, and since U is surjective,
‖Ax− b‖ is minimized iff

∥∥Dy − V >b∥∥ is minimized, and we showed that the least solution
is

y+ = D+V >b (A.10)

Since y = U⊥x, with ‖x‖ = ‖y‖, we get

x+ = UD+V >b = A+b. (A.11)

Thus, the pseudo-inverse provides the optimal solution to the least-squares problem.�
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