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Abstract

The recent development in autonomous driving involves high-level computer vision
and detailed road scene understanding. Today, most autonomous vehicles are using the
mediated perception approach for path planning and control, which highly rely on high-
definition 3D maps and real-time sensors. Recent research efforts aim to substitute the mas-
sive HD maps with coarse road attributes. In this thesis, We follow the direct perception-
based method to train a deep neural network for affordance learning in autonomous driving.
The goal and the main contributions of this thesis are in two folds.

Firstly, to develop the affordance learning model based on freely available Google Street
View panoramas and Open Street Map road vector attributes. Driving scene understanding
can be achieved by learning affordances from the images captured by car-mounted cameras.
Such scene understanding by learning affordances may be useful for corroborating base
maps such as HD maps so that the required data storage space is minimized and available
for processing in real-time. We compare capability in road attribute identification between
human volunteers and the trained model by experimental evaluation. The results indicate
that this method could act as a cheaper way for training data collection in autonomous
driving. The cross-validation results also indicate the effectiveness of the trained model.

Secondly, We propose a scalable and affordable data collection framework named I2MAP
(image-to-map annotation proximity algorithm) for autonomous driving systems. We built
an automated labeling pipeline with both vehicle dynamics and static road attributes. The
data collected and annotated under our framework is suitable for direct perception and end-
to-end imitation learning. Our benchmark consists of 40,000 images with more than 40
affordance labels under various day time and weather even with very challenging heavy
snow. We train and evaluate a ConvNet based traffic flow prediction model for driver
warning and suggestion under low visibility condition.
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Chapter 1

Introduction

Autonomous driving involves several key aspects. For any autonomous driving task, a

system must first be able to perceive and comprehend the driving environment. It must

then reason and make decisions around the most optimal driving action. This thesis focuses

on vision-based perception and comprehension layer in the autonomous driving framework.

In recent years, there has been a great success in deep neural networks and compute power

[18, 45]. Such success has led to advanced perception techniques in computer vision.

Using a large scale and annotated driving dataset, a convolutional neural network (CNN)

architecture can be used to learn patterns for autonomous driving. To realize a ubiquitous

and robust autonomous driving solution, the vehicle must be equipped with several sensors

such as LiDAR, Camera, RADAR and/or ultrasonic. These sensors are usually fused to

give a comprehensive perception of the environment. Each sensor has its benefits but also

some downsides. For instance, LiDAR performs well at capturing range information but

with poor resolution, while cameras have high resolution but requires an extra computation

step to extract range information [81]. Hence, sensor fusion has been employed to have all
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Figure 1.1: Approaches for vision-based perception in autonomous driving.

sensors complementing each other. In this thesis we only use camera-based system given

that LiDAR are expensive. Publicly available LiDAR datasets such as KITTI could thus

not be aligned to my design and approach.

In literature, three well-discussed paradigms have been used for vision-based perception

in autonomous driving [17, 67, 85]. Namely, mediated perception for total scene input to

enable rule-based drive-command inference, behavior reflex for predicting action from pixel

inputs, and direct perception for making vehicle control inferences from estimated driving

affordances. Figure 1.1, shows a break down of the perception problem. Given a set of

driving scene image/video as input, we select which paradigm to follow. i.e. whether to use

behavior reflex, mediated or direct perception. Depending on the selected approach, several

sub-tasks might be completed and their outputs are used to make planning and driving

control decisions. Street scene understanding is a common sub-task that must be tackled;

except for behavior reflex approach in which driving actions are informed by directly learned

patterns between steering angle (from human driver) and input scene. In [17], it is pointed

out that the mediated perception may add unnecessary complexity to the perception layer
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by detecting redundant objects that may not be useful in driving control decisions. On the

other hand, behavior reflex may not be robust enough to adapt to all traffic and driving

scenarios. This is due to varying complex environments. Consequently, we follow the direct

perception approach and focus on learning static and dynamic affordances in the driving

environment. As will be discussed in chapter 5, dynamic affordances borders very closely

to the behavioral reflex approach. However, my approach focuses on end-to-end learning

of decomposed driving tasks (dynamic affordances) which can easily be examined and its

prediction verified before being used in a reasoning and decision-making layer.

In [35], Gibson presents the theory of affordance and defines the affordances of the

environment as what it offers the animal. In the context of driving, this could be interpreted

to mean such cues which a driving environment occupied by a vehicle in the instance of

time offers the driver, to influence or inform the driving behavior. Gibson points out that

the values and meaning of things in the environment can directly be perceived. The driver

perceives such cues via his/her eyes. In the case of autonomous driving, the cues which the

immediate driving environment offers to the vehicle are perceived through sensors such as

camera, LiDAR, and/or RADAR.

To comprehensively learn affordances in a driving environment, one must have a frame-

work of collecting and labeling large scale driving scenes for training, validating and testing

a DeepNet model. Such a framework is presented in Figure 1.2. We use location-based

feature matching to do automatic labeling of driving scenes. With sensors mounted on a

vehicle recording location and driving video and an interface to access vehicle input and

dynamics information such as longitudinal acceleration, steering angle and wheel speed,

we label driving scenes for dynamic affordances. Similarly, using vehicle location and a
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Figure 1.2: Overview of automatic labeling, training and prediction in autonomous driving
context.

geo-referenced web map, we query road static affordances such as stop signs, traffic lights,

and crossings from the map and tag found features to a synchronized image.

With a labeled large dataset, we train a CNN model for scene understanding to action

prediction. Trained and validated models can be used to infer on road infrastructure.

Given an image input, the models can predict the number of lanes in the image, whether it

contains stop signs, crossings or intersection. The models can also predict an ego vehicle’s

relative position and orientation to the road. Finally, using dynamic affordance models, we

can predict driver responses and make driving decisions in a traffic flow such as whether

a vehicle should stop or move. Application of the approach discussed in this thesis can be

used as follows:

• To automatically label driving scenes in areas scantly covered by web maps such

as rural roads. Human checkers can then verify the labels instead of starting the

4



labeling process from scratch.

• To corroborate HD (High Definition) maps. Most autonomous driving vehicles today

use on-board HD 3D maps for road infrastructure representation. Such maps require

large storage space and frequent updates [55].

• The predicted affordances can be used as the inputs to autonomous vehicle reasoning

and decision making layer.

The rest of this thesis is divided into five chapters. Chapter 2 gives a deep dive into

a literature review of the current vision-based perception methods, chapter 3 discusses

data collection and annotation, chapters 4 and 5 discusses static and dynamic affordances

learning, respectively. Chapter 6 outlines the conclusion of this thesis and future work.
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Chapter 2

Literature Review

2.1 Autonomous Driving

2.1.1 History

Since the 1980’s there have been many concerted efforts by governments, universities and

private research centers to advance intelligent transportation systems. Earliest among these

initiatives include Eureka PROMETHEUS 1 and NAVLAB [75]. Pomerleau conducted first

autonomous driving demo in 1989. As stated in [57], he presented a 3-layer backpropagation

network called ALVINN (Autonomous Land Vehicle In a Neural Network). ALVINN takes

in video images and ranging information and then infers on the direction the vehicle should

take [57]. Arguably, the DARPA challenge has had the most effect on igniting interest in

autonomous driving by the research community. The first DARPA Grand Challenge in

1https://www.eurekanetwork.org/project/id/45
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2004 required an autonomous vehicle to traverse a 132-mile course through the Mojave

Desert in less than 10 hours. For this challenge, no vehicle was able to complete more than

5% of the course. However, just a year later, Stanley (from Stanford University team) was

among the 4 vehicles to complete the same challenge within the allocated time [53]. The

DARPA Urban Challenge in 2007 required autonomous vehicles to navigate and manage

urban traffic scenarios [46]. The good performance by the teams in the competition such

as Carnegie Mellon’s Tartan Racing 2 prompted the likes of Google to start research and

development of autonomous vehicles.

2.1.2 Current State

Today, autonomous driving research is clouded with many companies venturing into au-

tonomous driving as a business. Google’s Waymo, Uber and GM’s Cruise Automation lead

the pack and all have fleets driving autonomously in cities such as Phoenix, Las Vegas and

San Francisco in the US [83]. The task of ubiquitous autonomous driving is so challenging

and consequently, the existing fleets of autonomous driving vehicles only operate in ge-

ofenced areas where high detailed maps have been pre-built. No vehicle has achieved full

autonomy yet (Level 5 on SAE self driving level chart. See Figure 2.1). While Waymo is

arguably the best with millions of miles of autonomous driving on public roads and billions

of miles in simulated driving, it has only tested up to level 4 autonomous driving [5]. This

requires an experienced human driver to be in the driving seat and attentive enough to

take over if autonomous driving software fails [51].

2https://www.cmu.edu/news/archive/2007/November/nov4 tartanracingwins.shtml
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Figure 2.1: Automation levels according to Society of Automotive Engineers (SAE) [51].

In Figure 2.1, SAE lists 6 automation levels. Level 0 involves no automation at all and

the driver performs all driving tasks. Level 1 has some form of driver assistance such as

collision warnings. Level 2 is a Partial Automation level with the ability to automate vehicle

acceleration and steering wheel for assisted lane change and other maneuvers. However,

the driver must remain engaged at all times. Tesla Autopilot 3 offers level 2 of automation.

In level 3 (conditional automation), while the driver must be ready to take control of the

vehicle at all times, he/she is not required to monitor the environment, and the vehicle must

be able to sense and understand the static and dynamic features of the environment. High

Automation (level 4) is geo-fenced in that the vehicle must be able to perform all driving

tasks under certain conditions mostly constrained in a specified geo-location. A human

driver is still required to be present in the vehicle. Many autonomous driving vehicles

offering ride-sharing services today fall either in level 3 or level 4 capable of only driving

in certain geographical areas under strict conditions. The ultimate goal is to achieve Full

Automation level (level 5) with the vehicle able to perform all driving functions with no

restrictions and ubiquitously [51].

3https://www.tesla.com/en CA/autopilot
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2.1.3 Benefits of Autonomous Driving

The projected social and economic benefits of autonomous driving vehicles are enormous.

The autonomous driving technology will cause total disruption to the transportation sector,

as we know it today. It will impact vehicle safety, congestion and travel behavior [26].

People will be able to continue working in office-like vehicles while traveling from home to

work or vise-Versa. Hence, being able to live far from cities where life is more affordable. If

the current success by Uber share-rides is anything to go by, there will be fewer and fewer

people owning vehicles while depending on shared autonomous vehicles to pick them up on

time by subscribing to an on-demand service [26]. There will be much fewer parking spaces.

The sick, disabled and elderly will benefit most from such a service, which will also reduce

travel time, saving fuel and lowering emissions [26]. However, the success of autonomous

driving technology will not come easy. It requires huge investments in sensor and control,

perception, prediction, and planning research, along with setting new policies to guide

the deployment of autonomous driving vehicles from the testing stage to the full-adoption

stage. As this thesis focuses on perception, we give a review of perception approaches and

required sensors in the following subsection.
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2.2 Sensors, Datasets and Perception Paradigms in

Autonomous Driving

2.2.1 Sensors

For the autonomous driving vehicle to safely navigate from point A to point B, it must

be able to perceive, understand and localize its self in the environment. The vehicle can

achieve this using several sensors (see Figure 2.2) that can be categorized into two types:

exteroceptive and proprioceptive Sensors.

Exteroceptive sensors are used for environment perception and distance to object pre-

diction. They include LiDAR (Light Detection and Ranging), RADAR, camera and ultra-

sonic [15]. Most autonomous driving vehicles use LiDAR sensors as primary sensors for

perception since they accurately capture the environment in 3D point cloud representation

[15]. However, LiDAR has low resolution due to sparse point clouds and may not be effi-

cient for small object detection such as traffic signs. They are also quite expensive and may

not work in harsh weather conditions. Consequently, a robust and optimal autonomous

driving perception layer should use multiple fused sensors. In this thesis, we advance the

ideal also expressed in [81] that cameras are a good alternative to LiDAR. Cameras are

quite affordable and offer high resolution with color and texture [15]. Data captured with

a camera can be presented in several forms including 2D image, the depth map and 3D

point clouds [16, 27, 81, 88]. In this thesis, we use monocular images to learn affordances

from the environment.
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Figure 2.2: Sensors that enable an autonomous vehicle to perceive and navigate through
an environment [4].
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Proprioceptive sensors measure or give information about the autonomous vehicle itself

(ego vehicle). They include but not limited to GNSS, IMU and encoders [15]. Such sensors

are usually fused in a Kalman filter to offer a refined localization solution [63]. In this

thesis, we used vehicle proprioceptive sensors to get real-time vehicle updates such as

steering wheel, speed and throttle input.

2.2.2 Perception Paradigms

Mediated perception follows a computational/representational view as expressed in cog-

nitive science [78]. With the mediated perception approach, an entire scene is parsed to

make a driving decision. It involves multiple sub-tasks for recognizing objects relevant to

driving such as road free space segmentation, traffic signs, and object detection [17]. Since

mediated perception involves solving sub-components of the bigger perception problem,

researchers mainly focus on solving various challenging sub-components of mediated per-

ception. In [30], Geiger et al. focused on scene understanding and presented a novel model

for multi-object traffic scene understanding from movable platforms. Their model does not

rely on GPS, LiDAR or map inputs. Rather, they segment a video sequence to interpret

driving scene layout visual cues such as free and occupied space, vanishing points and 3D

scene flow. Geiger et Al. divide the visual cues into topology and geometrical models from

which they can make scene layout inferences such as the number and location of streets

as well as position and orientation of traffic participants. Figure 2.3 shows the topology

model for road intersection classified into 7 parts [30]. We use the intersection definition in

Figure 2.3, in this thesis for intersection affordance learning. 2D and 3D object detection
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Figure 2.3: Intersection topology with north as the driving direction. Redrawn from the
topology model defined by Geiger et Al [30].

and semantic segmentation approaches described in [25, 49, 58, 82, 87] are all part of the

mediated perception.

Traffic scene and driving context understanding are ongoing challenges in autonomous

driving. Over the past few years, the focus has been put towards scene understanding

as a primary challenge in autonomous driving, especially since DARPA Urban Challenge

[13]. One type of strategy for the static driving context understanding is simultaneous

localization and mapping (SLAM) [20]. A virtual representation of the road, traffic, and

surrounding buildings can be constructed based on the pair-matching of real-time sensor

data and pre-stored HD maps. With the detailed driving context representation, the

detailed path planning and driving policy can be further derived. However, the main

bottlenecks for this type of approaches are the high requirements on computing power and

data transmission [69].
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Vision-based methods try to mimic the human driver using camera recorded images as

major sensory input. German Ros et. al presented an Offline-Online perception framework

in [61] where the 3D semantic maps are pre-stored offline and online semantic segmentation

can be achieved by performing SVM based classification on video-sequences. While the

re-localization process in this framework can be achieved real-time, the online retrieval of

semantics does not necessarily adapt to environmental change. Authors in [74] proposed

a unified multi-net structure that performs the joint classification, detection and semantic

segmentation in real-time. Such driving context understanding methods like semantic

segmentation with camera images eventually aim to assist the control design for the ego

vehicle. The research group at Princeton University demonstrated the idea of directly

learning the affordances from an image using the direct perception approach [17]. They

train images (from a car racing game TORCS) using a ConvNet to predict affordances

such as host vehicle distance to the front vehicle or left/right lanes for driving action.

They tested their approach both in virtual and real environments and reported a good

performance in close range to the state-of-the-art deformable parts model car detector

[31]. Based on the determined affordances, they built a simple rule-based controller for

vehicle control in TORCS. This idea proves that meaningful driving affordances can be

incorporated into autonomous driving decision making.

Axel Sauer et. al [64] examined the idea of direct perception by extending the driving

scenario in urban driving using more photo-realistic simulation platform CARLA [24]. The

images with the affordance attribute attached in both works are collected easily through

the provided simulation API. However, affordance annotation is a challenging task in real

driving environments since it requires a certain level of understanding of the current driving
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environment. In 2016, Ari Seff et. al [68] presented the affordance learning methods

by combining the Google Street view panoramas and OSM road attributes. They used

cropped Google street view panoramas to train a CNN model for a list of selected static

road attributes. However, Google street views were mostly collected in summer at day

time with very clear visibility that may not capture extreme cases of driving under heavy

conditions such as snowy roads. Hence, such data may not be enough for robust model

training. The other issue of directly mapping affordance from OSM is that the static road

attributes may be outdated and left with outdated annotations. In this thesis, we train a

CNN model with images downloaded from Google Street View. However, we also collected

data under various time, visibility and weather conditions using an iPhone App developed

for this purpose. The OSM attributes are queried and corroborated with phone sensors

and vehicle proprioceptive sensors. The vehicle dynamics and driver’s control input are

also collected. Consequently, data collected using our framework could also be used as a

benchmark for end-to-end imitation learning and control design.

2.2.3 Dataset Benchmarks for Autonomous Driving

Recent research [14, 84, 85] demonstrated that data-driven perception models often surpass

the hard-coded reasoning in context prediction leveraging the large-scale data since much

more expert driving experience can be exploited. However, the process of data-set collecting

and labeling often requires a huge amount of effort. The aforementioned research works

[17, 24, 64] use simulation data since the ground truth information is programmed and can

be exported through provided APIs. However, there is still a gap between the simulated
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environment and the real-world data [79]. Many open-sourced driving datasets received

increasing attention in recent years. The Caltech lane dataset [8] focused on lane marking

whereas KITTI [32] provides fairly well-annotated images and LiDAR dataset for 2D and

3D object detection. However, the KITTI dataset is not suited for affordance learning since,

only pedestrian, cyclist and car classes are annotated. With high-end expensive sensors the

vehicle dynamic state estimation could be achieved by methods mentioned in recent review

paper [36]. Recently, Xu et. al published the BDD100K dataset [85] where the diverse

driving data are collected in a distributed way in collaboration with Uber drivers across

California and New York and annotated by human labor. These datasets were collected

and labeled with a deliberately designed system but are not automated and still quite

expensive. OpenStreetMap (OSM) [37] is an open-source mapping project started since

2004, where over 21 million miles of road geographical information is available for public

use. In [68], the authors trained a CNN model to predict road attributes using images

from Google Street View (GSV). They presented an automatic labeling method based on

location matching with attributes from OSM. We follow a similar trend with [68] where

we use ’cheap’ data with automatic labeling to teach a model to predict important driving

cues given image inputs.

In 2016, the Cityscape benchmark [22] collected various urban driving scenes across

50 cities for semantic segmentation tasks. Seokju Lee et al. open-sourced their bench-

mark for lane and road marking detection under various weather and day time in [50].

However, accurate annotation is time and labor-consuming. Baidu proposed their annota-

tion pipeline along with the Apolloscape [43] benchmark in 2018. At the same time, UC

Berkeley released BDDV dataset [89], which provided a semantic evaluation benchmark
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containing large-scale driving datasets distributed across four cities. They also provided a

user-friendly labeling interface for both bounding box and region annotation. Although the

aforementioned benchmarks and annotation approaches provide a promising way of scalable

annotation framework for autonomous driving, the annotation process is not automated,

human annotators have to go through every image and draw either bounding boxes and

curved areas for segmentation tasks. In this thesis, we propose an automatic affordance

labeling framework that can widely be distributed via smart-phones for crowd-sourcing

data collection efforts.
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Chapter 3

CogDrive Data Collection App

3.1 App Design

We designed an iPhone app specifically to help collect dynamic data for driving. The

app can record a driving scene video while also logging the phone’s location, orientation,

acceleration, and speed. Using the app we were also able to log driving events such as road

condition and visibility during data collection. The app was designed to be user-friendly

and interactive for ease of distribution. The app has several pages including Information

page, Driving Condition Settings page, Calibration page, and Main Data Logging page.

Figure 3.1 shows the designed CogDrive app.

3.1.1 Information Page

Information page provides simple instructions on operation of the app as presented here:
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Figure 3.1: CogDrive app designed for dynamic affordance data collection. Top left image
shows Information page. Top right image shows the Driving Condition Settings. Bottom
left image shows a Calibration page while bottom right image shows the Main page for
data recording. 19



1. Once the app has been opened, click on Next button to go to next page

2. To START recording video and logging data, click anywhere on the video screen

3. To STOP recording video and logging data, click anywhere on the video screen

It also provides information on accessing and downloading data after logging. The data

can be downloaded via iTunes as follows:

1. After data has been logged, exit the app

2. Using a USB cable, connect the iPhone to a computer with iTunes

3. Open iTunes and click on iPhone icon on top-left of the iTunes

4. Under settings, click on File Sharing

While mounting the phone on dashboard and starting or stopping to record datasets, the

vehicle must be at a complete stop for safety. The data is logged at the following rate:

1. Video is captured at 1 FPS (Frame Per Second) and 720x1280 resolution

2. Position and Orientation info is logged at 1 Hz and time is in GPS week seconds

3.1.2 Driving Condition Settings Page

The weather and road condition information matters a lot to a human driver. Conse-

quently, such information matters a lot to an autonomous driving vehicle for it to be able
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to operate in all conditions without compromising safety and comfort. Having such infor-

mation incorporated in the training dataset is crucial and we made an effort to capture it

as accurately as possible. The Driving Condition Settings page allows associating driving

condition events to the data being recorded.

Figure 3.2: Images showing driving scenes under various weather conditions. SI = Snow
Index, RI = Rain Index, and RCI = Road Condition Index.

Snow Index

A user can enter a numeric integer value between 0 and 6 to represent the snow level at the

time of data collection. The snow levels (TABLE. 3.1) are classified based on snow types

defined by NSIDC 1. Figure 3.2 (bottom) illustrates the driving scene with snow flurry.

1https://nsidc.org/

21



Table 3.1: Indices ranging from 0 - 6 to indicate snow level at the time of data collection
Snow Index Snow Level Definition
0 Not snowing or after snow
1 Snow Flurry
2 Freezing rain
3 Drifting/blowing snow
4 Snow burst/snow storm
5 Blizzard
6 Thunder snow

Rain Index

The rain Index value can be an integer between 0 to 3. Setting the rain Index similar to

snow and road condition indices is based on a user opinion about the rain severity on the

day and time of data collection (see Figure 3.2). It also depends on how they match that

opinion to a rain level definition expressed in TABLE. 3.2.

Table 3.2: Indices ranging from 0 - 3 to indicate rain level at the time of data collection
Rain Index Rain Level Definition
0 Not raining or after rain
1 Light rain - visibility not affected/freezing rain
2 Moderate rain - visibility affected but not normal driving behaviour
3 Heavy rain - visibility affected and driving behaviour affected

Road Condition

The road condition is an important indicator that greatly influences the driving behavior.

For instance, with snow deposits on the road (see Figure 3.2 bottom right), the driver must

drive slower than normal and leave a larger following gap. They must also learn to antic-

ipate and quickly and safely react to the events near traffic lights and four or three-way
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intersections. Such driving behaviours must be incorporated within autonomous driving

perception and comprehension layer. Consequently, we collect data attaching road condi-

tion, rain level and snow deposits level indices to help train and test the perception layer in

a realistic way encountered in the environment. We also record wind speed and visibility

from The Weather Channel 2 as additional information that can be used in planning and

prediction layer. Visibility may not affect the autonomous vehicle due to effective sensor

fusion but will surely influence the behaviour of other road participants and hence could

be useful in road scene behaviour analysis. In our case, since we use a visible light camera

only, these attributes are absolutely important even for the perception layer. TABLE. 3.3

shows classified road condition levels.

Table 3.3: Indices ranging from 0 - 3 to indicate road condition level at the time of data
collection

Road Condition Index Road Condition Level Definition
0 Clear/Dry road
1 Wet but no snow on the road
2 Light snow deposits on the road but road lanes visible
3 Snow deposits - road lanes not visible

3.1.3 Calibration, Main Logging, and OSM Limit Alert

The Calibration page as shown in Figure 3.1 displays the heading and heading accuracy

measurements along with the calibration instruction for the user to follow. The calibration

steps are only revealed in sequence. i.e. after the last step is completed, a new step will be

displayed until calibration is completed. The Main Logging page (see Figure 3.1) displays

2https://weather.com/en-CA/weather/today/l/CAON4756:1:CA
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the driving scene on top, the map with time in the middle and the driving info on the

bottom of the page. Some of the displayed Driving info are speed, location, acceleration,

and rotation of the phone while driving. Also, some sensor accuracy such as heading and

location accuracy are displayed on the screen. As will be shown in chapter 4 and 6, the

location-based query of the road attributes from OSM, dictates that the OSM map must

be downloaded beforehand. Since the OSM map is large and requires a lot of memory and

time to download, only a segment of the map covering Kitchener-Waterloo was downloaded.

To alert the user when they start driving in an area not covered by the downloaded OSM

map, the app will display a yellow transparent layer over the map. When this happens,

the user must reroute back into the zone covered by the downloaded map in which case

the yellow layer would disappear. This is a simple geo-fencing technique but saves a user

a lot of time collecting data in an area where road attributes would return nil on a query.

3.2 Calibration Procedure and System setup

3.2.1 Calibration Procedure

The iPhone 3 consists of inexpensive low-grade sensors such as accelerometer, gyroscope and

GNSS receiver. Consequently, any measurements by non-calibrated iPhone sensors would

result in noisy and biased measurements. For our data collection using CogDrive Data

Collector app, we first calibrate gyroscope and accelerometer sensors. However, we must

note that this only reduces noise to some degree by first taking an average of measurements

3https://developer.apple.com/documentation/coremotion/cmmotionmanager?language=objc
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while holding the device steady for 60 seconds. No effort was put into correcting the GNSS

positioning. However, as will further be explained in chapter 5, we record both horizontal

and vertical positioning accuracy. The positioning accuracy is used to sort coordinates

that are used in image-to-map proximity query of road features. Below is the procedure

we followed during iPhone accelerometer and gyroscope sensor calibration:

1. While the vehicle is at a complete stop, mount the iPhone on a dashboard in portrait

mode

2. Open the CogDrive Data Collector app, read the instructions and click NEXT but-

ton on the Information page

3. Complete the Driving Condition Settings and then click on NEXT button to move

to the calibration page

4. Now, click on Heading Warm-up button and drive around until heading accuracy

drops below 20 deg (see top left, and top middle images in Figure 3.3).

Driving around with some varying acceleration and away from metal structures helps

to improve the magnetometer sensor reading and improves heading accuracy. in

iPhone, the heading is measured by the magnetometer sensor. Gyroscope measure-

ments are referenced to the north when the iPhone is lying on a flat surface with z

axis facing up [1].

5. Find nearby parking and safely park the car facing 270 deg. Make sure the vehicle is

at a full stop and then click on Start Calibration button (see top left and bottom

left images in Figure 3.3). The message Calibration in Progress will be displayed with
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Figure 3.3: Images showing sensor calibration steps.
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a count down from 60. After 60 seconds, the average measurements will be computed

for all sensors along X−Y −Z axes. Since the vehicle was at a stop and the phone was

rigidly mounted to the vehicle’s dashboard, any averaged measurements are taken as

noise n. The new measurement is computed as shown in Eq. 3.1.

x̂ = x+ n (3.1)

Parking the car at 270 deg ensures that the iPhone is oriented to the north when in

portrait mode and +y-axis facing up as shown in Figure 3.4.

6. Calibration is now complete. Click on the video screen to start recording data.

3.2.2 System setup

We collect driving scenes dataset using a setup that includes a smartphone and a camera

mounted on the vehicle dashboard as shown in Figure 3.4. The setup also includes a CAN

bus OBDII interface. Such setup is affordable, lightweight and can easily be distributed for

cloud sourcing. Consequently, a temporal and large dataset can be collected from various

geographical locations in a short period. Such a solution offers redundancy and increases

the reliability of data by ensuring multiple human driver behaviors are represented during

autonomous vehicle direct perception training. The navigation sensors (GPS/IMU) within

the phone are less accurate compared to more expensive survey-grade navigation systems.

However, for ubiquitous dataset collection, a much cheaper solution is needed and we

present our system setup as an efficient and affordable alternative.
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Figure 3.4: The phone is mounted with it’s Z-axis parallel to the vehicle’s X-axis, ego
vehicle forwarding direction is the same as the −Z direction in iPhone coordinate system.
(a) iPhone coordinate reference system (the reference Figure courtesy of nomtek [3]). (b)
The phone and dash camera set up in the ego vehicle.
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Chapter 4

Static Affordance Learning

In recent years, autonomous driving technology has become closer to fully being realized.

There are many driving forces to this realization, key among them is the advance in percep-

tion techniques such as CNN(Convolutional Neural Networks). The perception techniques

allow an autonomous driving vehicle to understand the driving environment, which is one of

the most important steps for vehicle path planning and control. In many applications [45],

the autonomous vehicle must be equipped with a ubiquitous and robust state-of-the-art

vision-based system for it to be able to sense and understand different driving scenes.

Static affordance learning involves learning to identify and locate most invariant fea-

tures in the immediate driving environment. Some of these features include driving space,

intersections, number of lanes and whether a road is a one way or both way street. Identi-

fying such features do not necessarily require classifying the features in the environment.

This is informed by the realization that most driving behaviors are influenced by simple
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rules concerning features in the environment. For instance, it shouldn’t matter whether

there is a tall wall, trees or parked vehicles on the side of the road. Since they all infer that

there is an obstacle and hence a driver must avoid the obstacles by realizing and follow-

ing the driving space. In case of the number of lanes, such information only informs the

driver about the type of environment. Knowing the number of lanes for a particular road

can inform a driver about the skill level required and the expected traffic flow. However,

to make the successful maneuver through the traffic, one must be able to determine the

relation about the ego vehicles to other participants in the road. Consequently, although

it would be simplistic to think that learning static affordances would be enough to success-

fully drive, In this chapter, we show that static affordance learning is an important layer

required for complete scene understanding.

There are several challenges in the direct perception approach. Since the low-level con-

trol is decided based on a given set of road attributes, the affordances to be learned must

be pre-defined by humans. Selecting the suitable affordances usually requires feature engi-

neering and driving scene-based analysis [71]. After deciding on the coarse road inference

layout, we need to collect and label road data to develop a relatively good and robust

model. Ari Seff et al. proposed a method that leverage the google street view images

and OpenStreetMap (OSM) [37] for automatic-labeling and model training [68]. In this

chapter, we follow the same line with [68] for automatic labeling procedure to collect train-

ing and testing data. Furthermore, we trained a Convolutional Neural Network (CNN) to

detect static traffic scene affordances from a single street view image. We have tested the

effectiveness of the method and accuracy of our model in experiments. The key contribu-

tions discussed in this chapter are: (1) Efficient CNN Training Model : Instead of using
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pre-trained AlexNet [48] CNN model on Places database [91] to get good weight as [68],

we created a customized CNN architecture based on VGG11 and AlexNet. Using the non-

initialized model and training on third the number of training images used, we were able

to obtain results comparable to [68]. (2) Validation on Automatic labeling : We collect data

near the Waterloo area in Canada while Ari Seff’s data are collected in San Francisco, Bay

area. We verified their automatic labeling methodology in a different geographical location.

Further, in addition to testing our model on the San Francisco GSV images, we examined

our network on KITTI [32] tracking dataset which is collected in Europe to demonstrate

the generalization ability for our model. (3) Refining the affordances by driving scene: We

refine the definition of selected road attributes from [68]. The affordances set may change

according to different driving scenarios.

The rest of the chapter is arranged as follows: Section 4.1 outlines the data collection,

affordance selection and auto-labeling methodology. Section 4.2, demonstrates the network

design and training methodology compared with recent research works. Experimental

results and discussion are shown in Section 4.3, along with the conclusion in Section 4.4.

4.1 Dataset and Labeling

As we have discussed in the previous section, a deep network was used to train data and

determine affordances such as host vehicle to road relative orientation, number of lanes

and driveable space. However, this requires a huge number of labeled images to be able to

train a reliable model. There are several real-world street scenes labeled data sources such

as KITTI [32] and synthetic data (from games and movies) such as Virtual KITTI [28]
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and FlyingThings3D [52]. For tasks such as determining bike lanes, wrong-way vs. right-

way, the available data in [28, 32, 52] and most other open-source autonomous driving

benchmark datasets [85] may not be sufficient or labeled for static affordance learning

tasks. Consequently, as proposed in [68], we take advantage of huge free and open-source

imagery and corresponding attributes repository available on GSV and OSM, to train a

ConvNet model to predict the road attributes. Figure 4.1 left, shows a standard OSM map

covering an area over the University of Waterloo’s ring road. While to the right, the Figure

shows the same area highlighting the high density of map layers and attributes available

in the OSM map database.

4.1.1 Data Collection

OpenStreetMap [37] is a community-driven and local knowledge-based open data platform.

The contributed data is tied together using location information in a World Geodetic Coor-

dinate System (WGS84). Similarly, Google has a huge deposit of street view imagery with

each panorama encoded with vehicle true heading at the time of image capture and location

information in the WGS84 coordinate system. Using location neighborhood constraint, it

becomes possible to associate each panorama from GSV with nearby road attributes such

as the number of lanes or if an intersection is likely in view [37]. The accuracy of feature

association is directly affected by the location accuracy in both GSV and OSM and whether

information in both sources was updated in the same time frame. As will be highlighted

later, we found some mislabeled affordances due to time latency and unresolved location

differences especially at bridges or close road networks where a small location deviation
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Figure 4.1: A standard OSM map covering area near the University of Waterloo in Ontario
Canada is shown in (a). The same area highlighting the high density of attributes available
in OSM such as road polylines, parcels near the road and building polygons are shown in
(b). Each node in the map contains coordinate information that can be used to associate
it with other location-based features from sources such as Google Street View panoramas.

would associate features of one road to an image showing a different road.

Google Street View Panoramas

We have downloaded over one hundred thousand panorama images starting with a seed

panorama image ID at the University of Waterloo (shown in Figure 4.2). These panoramas

were then cropped and warped into 227× 227× 3 sized images with a field of view (FOV)

of 100 degrees. The image size and FOV were kept similar to what [68] used after finding

them sufficient for driving scene view. Each image is encoded with coordinates in the
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Figure 4.2: A seed panorama used as a starting point for downloading GSV panoramas.
The pedestrian bridge in view connects Engineering buildings 3 and 5 (E3 to E5) at Uni-
versity of Waterloo.

WGS84 reference system. This is later used to query and overlay with data from OSM.

OpenStreetMaps Vectorized Data

OSM [37] is a vectorized map with attributes contributed by volunteers. Attributes include

poly-lines such as those defining extents of road networks, bike lanes, and traffic markings.

It also includes point features such as stop signs, traffic lights, and speed signs 4.1. Its data

availability may be lacking in rural areas or small towns since volunteers tend to contribute

to maps around where they reside.
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4.1.2 Affordance Labeling

Here we discuss the affordance set selection. It is still an open question nowadays for

the optimized road attributes selection for the driving context understanding. Chen et

al. proposed 13 affordance indicators in [17] for multi-lane tracks in TORCS. It is rather

simplified since there is neither intersection, pedestrian nor traffic light in TORCS. Authors

of [64] advanced the affordance learning in the single lane urban scenario simulated in

CARLA where 6 affordances were selected. Both works utilized the global information

embedded in the simulation engine such as the global information for all the agents in the

map and the distance for the vehicle between the road centerline. It is rather difficult for

us to obtain this global information in real data, hence we choose the target road attributes

based on the available OSM and GSV data. The OSM dataset and GSV panoramas are

encoded with location coordinates in the WGS84 reference frame. Consequently, it was

possible to query and overlap an image cropped from GSV panoramas with corresponding

attributes in the OSM data. We conclude the list of automatically labeled affordances in

the TABLE. 4.1.

Table 4.1: Road Attributes labeled for Kitchener-Waterloo region GSV images
Labeled Affordances Data Type Range
Heading-Angle Continuous [−π, π]
Driveable-Heading Boolean {True, False}
Intersection-Ahead Boolean {True, False}
Distance-to-Intersection Continuous [0, 30] m
Number-of-lanes Discrete {1, 2, 3}
Wrong-Way Boolean {True, False}
Bike-Lane Boolean {True, False}

35



Lane Following

We label the affordances Heading-Angle to represent the current ego vehicle heading angle

corresponding to the driving lane. This is an important attribute for predicting steering

wheel input during lane following. We further extend the angle prediction to a classification

problem to compare human capability to identify the heading angle from a single image.

The detailed comparison will be discussed in Section 4.3. Some examples of our model

prediction and labels are demonstrated in Figure 4.3. The labeled vehicle heading angles

are calculated based on OSM lane attributes and GSV panorama applied rotations.

Figure 4.3: Vehicle heading angle (◦) prediction result and drivable classification.

Intersection Handling

Intersections are some of the most common scenarios in the urban driving setting where a

human driver needs to decide the high-level command to follow the planned driving path.
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We denote the the following two road attributes for the intersection handling: Intersection-

Ahead and Distance-to-Intersection. The GPS coordinates representing the camera refer-

ence point are extracted from each GSV panorama and then used to query intersections

from OSM appearing within 30 meters and in the direction of travel. If an intersection is

found, the image will be labeled with 1 indicating an intersection ahead. otherwise a label

of 0 is assigned (Figure 4.4). For Distance-to-Intersection, we query intersections within

100 meters of the camera reference point and then use coordinate inverse to compute the

distances. This is similar to the parameters specified in [68]. It is an easier task to identify

or measure the distance between intersection when approaching one, as we can see from

the top three images in Figure 4.4.

However, the estimation error of our model grows when predicting a view at the in-

tersection (see the bottom three images in Figure 4.4). The visual inputs at intersections

usually are not as structured as general road segments. The open view of an unstructured

terrain confuses CNN based model since only one shot of the image is given. We believe

the prediction results can be improved by using memory-based models such as LSTM [34]

that are capable of capturing temporal information.

Multi-lane Handling

It is rather important for autonomous driving to first identify multi-lane driving context

especially in urban or highway driving environments before performing path planning and

driving maneuver control. The attribute Number-of-Lanes identifies the number of lanes

in the current driving road scene. It is addressed in [68] where they only include one-way
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Figure 4.4: Comparison between prediction and true labels on distance to intersection.
The ‘true’ distance label is calculated by measuring the distance between the GSV referring
point and the center of the intersection in OSM.
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roads in training data due to the inconsistency for two-way roads when considering the

driving direction. In our work, we further included the images of two-way roads in our

training set. We find that our model prediction was consistent with the labels for the most

part, except when there was occlusion, lanes were not visible or the label was incorrect. In

Figure 4.5, the top three images demonstrated the effectiveness of our model prediction.

Despite the curved road shown in the top right image, the model was able to generalize

well and made a correct prediction. Yet the task for predicting the number of lanes from

a single shot of image input is still challenging due to the lack of clear lane markings in

some cases or other vehicles on the road obstructing the camera view. However, this can

be remedied by aggregating predictions over a certain time interval such as 10 seconds.

Unfortunately, the dynamic change of the road segments and obstruction of the view

may result in false predictions. We list three typical false predictions at the bottom of

Figure 4.5. The road constructions or other dynamic changes may result in an inconsistency

between the expected truth of the driving context and the static road attributes labels.

The static OSM data cannot adapt to recognize the traffic cones as demonstrated in the

bottom left of Figure 4.5. Furthermore, the GPS location accuracy may lead to mislabels

especially near intersections or highway ramps (bottom right in Figure 4.5).

The road attribute Bike-Lane is true if there exists a bike lane based on the given

panorama. Our trained model to predict bike lanes performed 3% worse than Seff et. Al’s

in [68]. However, It should be pointed out that the validation accuracy was affected by the

mislabeled images. As explained in the previous results, in some cases, the models made

correct predictions despite incorrect labels. For bike lanes, this is still the case. As can be

seen in Figure 4.6 on the left image, the model predicted the road to have no bike lanes
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Figure 4.5: Multi-lane prediction using our model trained on labels provided by OSM.
In some cases when there is a dynamic change (construction, road change etc), incorrect
labels can occur (Bottom left & right). The narrow view and occlusions by dynamic objects
(Bottom middle) may also result in false prediction.
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and this is correct from visual inspection. However, the image label indicated that there

is a bike lane. It is likely that the previous views of the road had bike lanes but ended

before the intersection. Bike lane may be confused with the highway emergency lanes due

to the CNN model only taking a single shot image as input. One false prediction example

is given in Figure 4.6 on the right where the model may treat rural road with a bike lane

as the highway ramp or emergency lane.

Figure 4.6: Bike lane prediction using our trained CNN model.

In driving, humans can easily tell whether they are driving on the right side of a two-

way street. This is a very important rule of driving and driving in a wrong way can result

in a catastrophic head-on collision. Hence, it is of the essence for an autonomous vehicle to

be able to recognize the right side of driving. Consequently, Wrong-Way classification is

based on such driving rules that you must drive on the right side of the road. By carefully

examining the left and middle images in Figure 4.7, one can verify that indeed the model

makes correct predictions. For the image on the left, it is correctly predicted to be the
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Figure 4.7: Right or wrong way classification using our trained CNN model. The right
way corresponds to label 1 and wrong way is labeled as 0.

right-way. This is informed by the driver’s view largely being on the right side of the

road. The middle image is classified as a wrong way of driving, which is correct since the

driver view mostly falls on the left side of the road. Image to the right of Figure 4.7 is less

ambiguous to classify and correctly predicted as the wrong way.

4.2 Model Design and Training

Convolutional Neural Networks have been widely used in computer vision since AlexNet

[48]. We employ existing methods to configure our CNN network for training and testing

of our affordance learning approach. In this subsection, we describe the CNN network and

hyper-parameters used to guarantee best results. As shown in Figure 4.8, our network

comprised of five Convolution layers and three fully connected (FC) layers each with 4096
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channels. We used a 3×3 receptive field for each convolution layer as was found effective in

[72]. It produced better validation accuracy for all trained affordances. For all convolution

and fully connected dense layers, we used rectified linear (ReLu) as the activation function.

We also applied padding and max-pooling to preserve input size and spatial resolution,

respectively, through convolution layers. We employed batch normalization [11], after the

first two convolution layers and each fully connected layer. This increased the robustness

of the weights and reduced overfitting while also preserving the learned features.

The output layer structure depends on whether the model is for regression or binary

classification. For regression, we used an output layer with one kernel and no activation

function, i.e. the outputs were not scaled into probability output. The model was compiled

using RMSprop [77] optimizer with a learning rate of 0.0001 and mean squared error (MSE)

as the loss function. The accuracy of our regression model was reported in mean absolute

error (MAE). The output layer for a binary classification model had one kernel and used

sigmoid as the activation function to scale the predictions into values between 0 and 1.

Similar to regression, the compiling was done using an RMSprop [77] optimizer with a

learning rate of 0.0001.

Our model was built in Keras [19] running on top of TensorFlow 1 framework. As shown

in Figure 4.8, the first convolution layer input accepts an RGB image of size 227× 227× 3

and passes it through 96 filters of size 3× 3 with ReLu as activation function, strides of 1

pixel and padding set to ’same’ i.e., it outputs same dimensions as input. This is followed

by a scaled and centered batch normalization [11] layer. A 3 × 3 max pooling layer with

strides of two pixels and padding set to ’valid’ (no padding), comes next.

1https://www.tensorflow.org/
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Figure 4.8: The architecture of the proposed CNN. The input is a warped and cropped GSV
panorama and the output layer consists of selected features and affordance indicators. Note
that we perform batch normalization after convolution layers 1, 2 and each fully connected
(FC) layers to reduce over-fitting.

The second convolution layer has 256 filters of size 3 × 3. The activation function,

stride, padding, and regularizer are set similar to the first convolution layer. The batch

normalization and max-pooling layers follow (with similar set up as previous layers). The

3rd and 4th convolution layers have 384 filters of size 3 × 3 and are separated by a max-

pooling layer. Another max-pooling layer is inserted before the 5th convolution layer with

256 filters of size 3x3 (all convolution layers maintain a similar structure to the first layer.

they only differ in the number of filters). A flattening layer is implemented before the

first fully connected layer. All the fully connected layers have 4096 neurons with ReLu as

the activation function and L-2 norm (0.0001) regularizer. Each of them is separated by

a batch normalization layer. Before training, the images were normalized by changing the
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pixel values to float and diving with 255. random images were augmented by applying a

rotation of 22◦, width and height shift of 0.2, shear of 0.2 and zoomed by a factor of 0.2.

The images were trained in batches with a batch size of 32 and 50 epochs. The steps per

epoch for both training and validation depended on the total number of images as in Eq.

(4.1). Images and corresponding labels were also randomly shuffled during the training

phase.

StepsPerEpoch =
Number of Images

Batch Size
(4.1)

In [68], their model was pre-trained on Places Database and still it took about 50K

iterations to obtain their results. In comparison, our model was trained on a random ini-

tialization without pre-trained weights. We report superior results after just 10k iterations.

The detailed model performance comparison and cross-validation are given in section 4.3.

4.3 Results and Discussion

In this section, we present the quantitative evaluation result of the proposed model. We also

discuss the improvement of our model and current data collection pipeline for autonomous

driving.
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4.3.1 Accuracy Evaluation

We validate our CNN models performance across three different geographical regions,

namely data collected from Waterloo (abbreviated as W), data used in [68] collected in

San Francisco, Bay Area (abbreviated as SF) and KITTI tracking data collected from

Europe. We also provide a comparison between human baseline and model prediction on

classification tasks.

Our CNN models vs. Human

We asked five human volunteers to label 1000 images for each affordance. We evaluate our

models on the same images and compare results which are presented in Figure 4.9. We

focused on classification tasks as we found it difficult for humans to meaningfully measure

angles or distances from low-quality images.

Consequently, we did not consider distance to an intersection and heading angles were

deduced to binary classification by asking humans to predict whether the image showed a

negative rotation (left rotation with respect to the road) or positive rotation (right rotation

with respect to the road). Each human volunteer was first shown ten example images and

corresponding labels for each affordance under consideration. This was done to train the

human volunteers by highlighting the image to affordance association in the context of

driving. We then let each volunteer label provided images per affordance without access to

OSM derived true labels. Consequently, for each affordance, we generated a single set of

human labels by combining five individual labels using a consensus model [39]. As evident

in Figure 4.9, our CNN model predictions, and human labels were within ±5.8% of each
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Figure 4.9: Comparison between human baseline and our trained CNN model on the clas-
sification prediction accuracy (higher is better). The tasks investigated here are driveable
(D), heading angle (HA), number of lanes (NL), bicycle lanes (BL) and right way or wrong
way prediction(W vs R). Predictions are made on a single image with poor resolution and
not a sequence of images. Consequently, we see that our CNN model performed better or
comparable to humans mainly due to poor image resolution.
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other. Our model performed better than humans for driveable space (D), bike lane (BL)

and wrong-way vs. right-way (W vs R) affordances. Also, it had comparable results for

the number of the lane (NL) and driving heading angle (HA) affordances.

Model Generalization Test

To find out how well our model would generalize on data collected in different geographical

locations, we took advantage of GSV panoramas from San Francisco Bay Area available

for download on [68] data page. We did cross-validation by comparing the prediction on

San Francisco Bay area GSV images by a model trained on Waterloo dataset, prediction

on Waterloo GSV images by model trained on both Waterloo and San Francisco datasets

and prediction on San Francisco Bay area GSV images by Model trained on Waterloo and

San Francisco datasets.

We then used the CNN models for heading angle (HA), intersection distance (ID) and

number of lanes (NL) affordances that were trained on Waterloo dataset (from henceforth

referred to as model set 1) to predict on San Francisco Bay Area images. The driving scenes

vary greatly from one geographical location to another. We recognized that data augmen-

tation applied to a training dataset might not be robust enough for cross-geographical

driving scene inference since it is relatively hard to augment buildings and other features

(such as trees, grass, and curbs) proximity to the road.

Hence, we trained new models for HA, ID, and NL using a dataset with half of the

images from San Francisco and another half from Waterloo (referred to as model set 2).

This model was tested on a Waterloo dataset and San Francisco dataset, independently.
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Figure 4.10: Comparison of mean absolute error between our CNN model trained and tested
on datasets across different geographical regions (lower is better). The tasks investigated
here are heading angle (HA), intersection distance (ID) and number of lanes (NL).
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We were careful to make sure that the test images were never used during the training and

validation of the models. We used same testing dataset from SF in both model set 1 and

2. This provided consistency for cross validation.

The MAE between the predictions and true labels were computed and plotted in Figure

4.10. The MAE plot shows that model set 2 is more accurate and generalizes better than

model 1. The model set 2 performed best in all affordances. We should also point out

that the difference in MAE for both models should be examined independently for each

affordance. For instance, the number of lanes in Waterloo range from 1 to 4 lanes. Therefore

an MAE of 1.04 in the number of lanes would be considered too big since it means that a

model would likely be predicting the wrong number of lanes most of the time. However, an

MAE of 4.8 meters for intersection distance may be tolerable given that the intersection

distance in consideration, ranges from 0 to 30 meters.

In TABLE. 4.2, we compare the performance of the proposed architecture and trained

models by predicting on the San Francisco testing dataset. Three sets of the model are

compared. We use the model proposed in [68] trained on SF data as a baseline. The other

two models are the aforementioned model 1 and 2. We compare the accuracy relative to

the training data size used in HA, ID and NL affordance training.

Our models trained on both Waterloo and San Francisco datasets performed better

than models in [68] for HA and NL affordances, despite only using one third of their data

size. We used 4K images while [68] used over 12K images for training. Although our second

model trained on just Waterloo (W) datasets while it reports the worst accuracy, it is still

comparable to Seff et Al. results for all three affordances.
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Moreover, the model trained using only 4K images on the combined data outperforms

the other models in most of the regression tasks. Given the results in TABLE. 4.2 it is best

to use data collected in various geographical locations and different conditions to train a

perception model that could generalize well.

Model in [68] Ours on W Ours on W & SF
Train Samples >12K ∼6K ∼4K
ID (MAE) 4.3 6.01 4.77
HA (MAE) 9.2 13.4 5.89
NL (MAE) 0.9 1.04 0.76

Table 4.2: The comparison across models proposed in [68] trained based on SF data, our
architecture trained on W data as well as the same architecture trained on combined SF
and W data. All the models compared here are tested on same SF data. Our model trained
on W and SF data reports best results.

Driving Heading Angle prediction on KITTI dataset

To demonstrate that our model had potential application in lane following and reliable

heading prediction from a single image, the model was used to predict on KITTI tracking

dataset. The results are plotted in Figure 4.11 with the angular rate around Z axis for

each image as included in the image metadata from the KITTI website.

The plot clearly shows a similar trend between our CNN model predicted heading

angle with the reported angular rate at the time of image capture. Note that the size

of the KITTI [33] tracking images is 1242 × 375 in width and height, while, our trained

model takes 227× 227× 3 input. Hence, we had to resize the KITTI tracking images. It is

impossible to crop the KITTI images to fit the input size of our model without cutting out

any road features. Similarly, we could not train the model with input size of 1242 × 375
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Figure 4.11: Comparison on regression task of vehicle heading angle prediction. We feed
the resized KITTI images (collected in Europe) into our CNN model trained on data
collected in the Waterloo area in Canada. The blue line corresponds to the ground truth
measurement from KITTI, and the red line corresponds to the raw prediction result from
our CNN model without considering the distortion of the input image. The CNN prediction
with applying the resizing factor is plotted in yellow.

as the GSV panoramas [68] had a resolution of 832 × 416. Unfortunately, we lose spatial

resolution and introduces distortion by shrinking the image horizontally. We can observe

the magnitude difference between the red line (raw CNN model prediction) and the blue

line (KITTI ground truth). To demonstrate this issue, we applied the resizing factor (RF)

and plotted the new heading angle magnitudes. As evident in Figure 4.11, the heading

angles with resizing factors applied are very close to the KITTI tracking changing in angles

at the image capture. It would be good to verify observations presented in Figure 4.11

using other datasets. Unfortunately, at the time of conducting this research, there was no
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other public datasets (except KITTI tracking) that attached precise heading measurements

on sequence of images.

4.3.2 Automatic Labeling for driving datasets

The automatic labeling for driving data by leveraging existing OSM and GSV data is

a complementing way or cheap substitution of generalizing training data workflow for

autonomous driving. The growing use of OSM data for training may contribute to more

accurate static labeling in return. Furthermore, these road attributes can be used to

corroborate and reduce over-reliance on expensive high-definition maps needed in complete

driving scene understanding.

It is rather important to increase the accuracy of automatic labeling as we have demon-

strated in previous sections. The correctness of automatic labeling was defined by several

factors. First, positioning in both GSV and OSM data carries a degree of error. GSV

panoramas are collected using Google Street cars equipped with the navigation system

(GPS/INS) whose accuracy depends on the environment [41]. The positioning accuracy

in these areas can range in meters. When GPS and IMU are combined to create a fused

solution, a centimeter-level accuracy (after post-processing or using real-time kinematics)

can be achieved. However, this is true in open sky areas as GPS signal is easily obstructed

in areas with a lot of buildings or trees causing deterioration of accuracy to decimetre-level

accuracy even with a high-end IMU [92]. These positioning challenges are inherited by the

collected panoramas and contribute to mismatching with OSM data. Another factor is that

OSM data is contributed by volunteers and hence integrity of its data varies and may not
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be up-to-date. This is highlighted in Figure 4.6 where the left image is labeled as having

a bike lane but in reality, it is the road segment before the current location. Moreover,

the OSM road attributes data and GSV images are static which means that they cannot

be represented well when there is a dynamic change of the road segments such as road

construction, change of weather, etc. The road construction may affect the correctness of

the labeling more as shown in the bottom left image of Figure 4.5.

The GSV panoramas are collected by google streetcars mostly on sunny days with

a clear view with almost no variation on the weather. The driving data from different

weather such as raining and snowing are necessary to train a robust perception model that

could generalize well. The prediction error may also be inherited from the downside of the

CNN architecture where only a single shot of front view image is used as input.

4.4 Conclusion

In this chapter we proposed an efficient CNN model for driving affordances learning by

leveraging online static databases. We annotate training data using Google Street View

imagery near the University of Waterloo and queried near static road features from the

Open Street Map.

We examined our trained model based on different dataset across geographical regions.

The quantitative results indicated the effectiveness of our CNN model for affordance pre-

diction across driving data collected in Waterloo area in Canada, California area in the US

and Europe respectively. This chapter aimed to extend the automated pipeline approach
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for training static affordance learning using a robust and efficient CNN model. The trained

model can infer on a driving scene image and predict static affordances such as driveable

space, number of lanes, heading angle of the ego vehicle relative to the road and distance

to the intersection. We also highlight realized issues in the discussed annotation pipeline.

We found that some images might be mislabeled due to occlusion, error in positioning and

differences in time of collection and updates for the data sourced from GSV and OSM

databases.
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Chapter 5

Dynamic Affordance Learning

In this chapter, we discuss efforts to design a distributed way of collecting visual driving

data and under various weather conditions for dynamic affordance learning. Dynamic affor-

dances include dynamic features and dynamic rules governing and influencing autonomous

driving.

Dynamic features in the driving environment can be categorized into ego vehicle (the

autonomous driving vehicle whose perception and location are being considered in the

driving context) and moving obstructions to the ego vehicle. The moving obstructions may

include other vehicles, cyclists, pedestrians and can include geese, antelopes, horses, and

elephants depending on an environment. The random occurrence of some of the dynamic

obstructions leads to a long tail problem in autonomous driving. Dynamic rules include

such rules and signals that define which dynamic feature(s) has the right-of-way in a given

situation during driving. The dynamic affordances learning described in this chapter can
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be summarized as methods of observing, establishing and incorporating the relation of the

ego vehicle to other dynamic features and their response to the dynamic rules of driving.

Autonomous driving became a popular research field in recent years. The information

technology and autonomous driving systems can in all be used to promote better commut-

ing choices, provide the best route planning, improve bus scheduling and routing and finally

reduce travel time and traffic congestion. A safe and robust autonomous driving system

could also greatly reduce traffic accidents caused by human drivers [79]. To design a safe

and robust autonomous driving system, the ability to understand the driving environment

as well as the current vehicle state is essential [86]. The techniques used in environment

perception varied from simple object marker detection by hand-crafted rules [44] to recent

deep learning approach [62]. The final goal is essentially to have an affordable and robust

system applicable under diverse environments.

One of the most frequently used autonomous driving framework among car companies

is the modular pipeline approach where expensive LiDAR, high accurate GPS and 3-D

high definition maps are used to reconstruct the consistent world representation of the

surrounding environments [32]. The ego vehicle then takes all the information into account

and make further control decisions. However, such way of perception is very expensive and

raises problems in storage space and poses limits to the deployment area.

Furthermore, as mentioned in [17], the human driver only needs relatively compact

driving information to make driving and control decisions. Instead of reconstructing the

three-dimensional high definition map with bounding boxes of other traffic participants,

a compact driving affordance set may be an efficient enabler for control decisions. Con-

57



sequently, end-to-end learning [12, 59] and direct perception [17] attempt to directly map

camera images to either control inputs or driving scene affordances. The end-to-end learn-

ing for autonomous driving enjoys non-expensive annotation of the training dataset, how-

ever, it is hard to interpret the control decisions. The direct perception approach proposed

in [17] leverage interpret-ability by using compact annotations of driving scene affordances.

Autonomous driving systems trained in both ways are highly dependent on the dis-

tribution and label accuracy of training datasets. The data collection and annotation for

neural network-based training methods resulted in several problems associated with how

to collect driving data in a scalable way in a diverse environment, and how to ease the

human annotation efforts. This work provides the following contributions.

1. We present an affordable, scalable driving data collection scheme with an automated

labeling pipeline for the autonomous driving system as shown in Figure 5.1 to tackle

the aforementioned problems. The proposed image-to-map annotation proximity

algorithm (I2MAP) query Open Street Map (OSM) [37] automatically on static road

labels. The customized confidence mask can be applied in the post-processing stage

where the ill-labeled training data samples can be avoided. It is worth mentioning

that the whole data labeling process is automated.

2. We introduce the CogData winter driving dataset where driving data under various

driving scenarios and weather conditions are included. The dataset consists of about

40,000 images with more than 40 labels including driver’s input, ego vehicle dynamics,

and OSM road attributes. The dataset could be used in various tasks such as high-

level driving scene understanding, dynamic affordance learning indirect perception
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and vehicle control strategy in end-to-end learning.

3. A traffic flow prediction network is trained and evaluated. It could act as smart

driver assistance and we tested it using driving scenes captured in various weather

conditions including snowing and night time.

The rest of this chapter is organized as follows. In Section 5.1, we present the scalable

and affordable data collection framework. The traffic flow prediction network and affor-

dance learning based on our benchmark are introduced in Section 5.2. Finally, a conclusion

is given in section 5.3.

5.1 Data Collection & Annotation Framework

In this section, we introduce a proposed cheap sensor setup and affordance annotation

framework. As demonstrated in Figure 5.1, our set up include a front camera, iPhone

and Panda (Gray version) OBDII Interface from comma.ai 1. We use Honda Civic LX

2017 as our ego vehicle and static road attributes are queried from OSM and associated

with images based on our proposed image-to-map proximity (I2MAP) annotation method.

Figure 3.4 (right) presents a phone and camera set up in the vehicle.

The data from iPhone and vehicle sensors are time-tagged at every second (in UTC)

which makes synchronization across all sensors possible. The static road attributes are

queried from OSM and associated with images based on our proposed image-to-map prox-

imity (I2MAP) method. It is possible to use raw GPS logs from Panda, to further improve

1https://comma.ai/shop/products/panda-obd-ii-dongle
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Figure 5.1: A framework demonstration of proposed driving data collection and automatic
annotation pipeline.
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GNSS positioning accuracy as suggested in the Laika algorithm proposed by [65]. However,

we do not log raw GNSS data as the GPS data streaming format is not available at this

time. To this end, we not that our setup suffers from poor positioning as the iphone GPS

sensor measured within average accuracy of about 5 meters. In our automatic labeling,

we filtered out any measurement that recorded positioning accuracy greater than the 5

meters.

OSM offers rich geospatial data and covers many cities and towns around the world. It

is contributed to by a community of GIS (Geographic Information Systems) professionals

and engineers. The database includes not only the standard 2D map but also location-

based and descriptive attributes about road networks such as the location of intersection

and type of intersection. We downloaded the OSM data covering Kitchener-Waterloo and

its vicinity as was introduced in chapter 4. The following subsection will give more in-depth

details of the sensor setup and automatic labeling and synchronization.

5.1.1 Sensor Setup

Phone Data Collector App: The camera and iPhone are mounted on Honda Civic LX

2017 dashboard (see Figure . 3.4 (right)) while the Panda OBDII interface was hooked

into the vehicle CAN bus connector to read various vehicle sensors transmitted. We built

an iPhone App capable of logging phone POSE (position and orientation estimates), ac-

celerometer and gyroscope sensor readings while recording driving scenes at the same time

(Details about the CogDrive Data Collector app are given in chapter 3). We set both video

recording and sensor logging at 1Hz. However, the iPhone sensors such as GNSS receiver,
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gyroscope, accelerometer, and magnetometer have relatively low accuracy. In this regard,

we implement an onboard automatic accelerometer and gyro calibration, also described in

chapter 3. The calibration takes place after the phone is mounted on the vehicle dash-

board and we only need to calibrate the phone in an upward portrait plane where the

phone Z-axis is parallel to vehicle’s X-axis (see Figure 3.4).

After the iPhone is mounted and the app launched, a user is asked to start heading

warm-up (see chapter 3 for detailed calibration procedure). The phone heading is deter-

mined using magnetometer sensors which can be affected by metals. Therefore, a user first

has to drive around until the heading accuracy is below 20◦ and then park in an area away

from physical structures. The iPhone used an initial attitude reference frame [1] which

assumes a device to be lying on a flat surface with a vertical Z-axis facing up while X-axis

points to true north (see Figure 3.4). Therefore, the user is asked to drive slowly until

the iPhone heading is matched with the reference frame. At this point, the iPhone X-axis

will be pointing to true north matching the device attitude orientation. To reach better

accuracy, we find the device average sensors noise by averaging the sensor reading within

a one-minute time frame. The computed average noise is subtracted from corresponding

measurements in real-time as the user collects data.

Garmin Dash Camera We found that the horizontal view angle for the captured

iPhone videos was only about 60◦ Field of View (FOV) and hence not suitable for front

view image collection. Instead, we use Garmin Dash Cam 45 with a 122◦ FOV. This

camera records videos at 30FPS with a frame resolution of 1920× 1080. The camera gives

3 channels (RGB) and has a night color mode setting which helps capture relatively good

images at night. Each frame is tagged with time (in UTC), GPS position and movement
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speed. Unfortunately, this information is not logged to any file and hence can’t be used as

labels or for data synchronization. However, they can be used to visually check and verify

synchronized labels from other sensors or sources.

Vehicle Proprioceptive Sensors Vehicles have many proprioceptive sensors such as

ones capturing steering angle and throttle input accessible via vehicle CAN Bus. We can

access such information using Panda OBDII Interface (Grey version). The Panda grey

version has a GPS receiver and comes with a Tallysman GPS antenna. The CAN messages

are decoded based on a dbc file matching our vehicle model. The vehicle CAN messages

are logged and decoded in real-time. Messages of interest such as longitudinal acceleration

and steering angle are captured and saved to a separate file at 1 Hz.

5.1.2 Data Synchronization

A data collection work-flow must be followed to guarantee a harmonized synchronization.

The sensory data from all sources are synchronized with Coordinated Universal Time

(UTC) [10]. Note that the GNSS position on iPhone is only updated once every second.

This constrains us to synchronize the recorded data from various sensors at 1Hz maximum.

However, we find that while it is critical to consider higher frequencies in real-time

driving scene predictions, for data collection purpose it is not necessary as there are barely

any major changes in street scenes within one second. Even when driving at 100 km/h, the

surrounding environment is of highway with only gradual terrain changes. Other vehicles

on a highway, are also unlikely to make drastic positional changes with respect to ego

vehicle in less than a second. Hence, we found that the 1Hz keyframe is sufficient to
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capture any driving scene happenings while minimizing the use of redundant frames in a

model training.

I2MAP Algorithm: We propose an image-to-map annotation proximity algorithm

(I2MAP algorithm) to overlay road feature attributes to recorded driving scenes. This is

possible since the OSM also provides coordinates (in WGS84 Reference Frame) for the

reported attributes. The OSM to image matching algorithm was first proposed by Seff et

al [68]. However, they were using Google Street View (GSV) images which are collected

using survey-grade GNSS receiver and high-end IMU. We use low-grade iPhone sensors to

achieve the same task of automatic image labeling using OSM attributes.

Consequently, labels from OSM (see TABLE. 5.1) are constrained to an intersection

and forward direction or straight road sections. For instance, for an image to be clas-

sified as having a bus stop, a distance and azimuth between iPhone logged coordinates

corresponding to that image and the OSM coordinates for a nearby intersection are first

computed. The bus stop must be within 55 meters of an intersection but 25 meters from

the same intersection (towards the ego vehicle). This makes sure that bus stops are always

labeled only in an image taken outside the intersection but not far from intersection. Most

bus stops in the Kitchener-Waterloo area are usually found close to and either before or

after an intersection. We also constrain the computed azimuth to indicate a forward driv-

ing direction. This mitigates any possibility of a bus stop found at the opposite side of

the road from being considered. However, it also means that bus stops appearing after an

intersection were not considered.

Even though the applied constraints resulted in fewer images being labeled (if OSM
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queried label was true but could not pass imposed constraints, the field is left blank), it

helps to significantly reduce the number of false positives. We use the haversine formula

in Eq. (5.1) to compute the distance d between two WGS84 coordinates.

h = sin2(
φ1 − φ2

2
) + cosφ1 cosφ2 sin2(

λ1 − λ2
2

)

d = 2R arcsin(
√
h) (5.1)

where φ and λ correspond to latitude and longitude accordingly. The estimation of earth

radius is denoted by R.

The accuracy of vehicle driving path and lane localization can further be improved by

heading angle correlation, the detail result will be demonstrated in next section. Here we

calculate the azimuth θ between two WGS84 coordinates by

θ = arctan
sinL

cosφ1 tanφ2 − sinφ1 cosL
(5.2)

where L denotes the positive eastward longitude.

5.1.3 Automatic Annotation

The useful labels and driving affordances for direct perception and end-to-end training are

automatically calculated and attached to each front view image. Figure 5.2 provides an

example of the collected front view driving images, assigned annotations with driver inputs,

vehicle dynamics, and environmental affordances. The intersection types are annotated

based on intersection topology in Figure 2.3.
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Figure 5.2: Examples of our automatic annotation for affordance learning in (a) normal day
urban driving; (b) complex intersection night scene; (c) snowy condition. The intersection
type is automatically classified and annotated by the topology classification proposed in
[31]
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Vehicle Dynamics Schafer et Al. in [65] provide driving scene imagery with vehicle

dynamics annotations such as steering angle and longitudinal acceleration focusing on

driving pose estimation. However, their data is collected in summer and mostly on the

highway. Also, they do not provide any road attributes. In our work, we provide vehicle

dynamic information presented in Table 5.1. We find these labels to be most reliable and

can be used to predict the driver’s intent. The driver’s input such as steering angle and

longitudinal acceleration information can be used in imitation learning. The steering angle

also shows a driver’s intent to turn or change lane.

With careful processing of this signal, steering angles corresponding to a change of

lane, merging or following a curvature road can be studied and consequently, a ConvNet

model can be trained to predict lane changing, merging and lane following behavior given

sequence of images as inputs. Knowing whether a vehicle’s brake is pressed can associate

the driving scene view with stopping action as shown in Figure 5.2 (b) and (c). Similarly,

a clear to move view such as in Figure 5.2 (a) can be connected to a gas pressed label.

Similar information can be derived from speeding information at vehicle front and rear

wheels.

OSM Attributes Human drivers rely a lot on cues from the environment to be able

to make critical decisions while driving. Cities and municipalities spend a lot of resources

in putting up road signs and painting crossings especially in residential areas. They do this

to communicate to drivers and other road participants about the driving environment and

in turn, it improves safety. Consequently, autonomous vehicles must be able to understand

every attribute from the environment. Luckily, using open-source maps such as OSM, it is

possible to query and automatically label driving scenes captured by a camera, with static
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affordances from the environment. We present data that includes 12 different attributes

(see Table 5.1) from the environment. Important affordances such as the location of the

give way signs, road crossings, and traffic signals are attached to each image frame. These

road attributes can inform a lot about the size and expected traffic on a particular road.

This is true even when the lanes are not visible due to being covered with snow.

Labels From Vehicle Sensor Labels From iPhone Labels From OSM

Longitudinal Acceleration GPS Coordinates Road Type
Engine Torque & Estimate Speed, Heading Angle & Drift Intersection Detection*

Steer Angle & Steering Wheel Angle Estimated Attitude: Roll, Pitch, Yaw Intersection Type
Engine RPM, Odometer & Pedal Gas Gyro & Accelerometer Measurements Intersection Distance

Gas Pressed* & Brake Pressed* Vertical, Horizontal & Heading Accuracy Bike Lane* & One way*
Front Left & Front Right Wheel Speed Moving Traffic* & Snow Index Number of Lanes
Rear Left & Rear Right Wheel Speed Rain index & Road Condition Bus Stop* & Stop Sign*

Wind Speed & Visibility Traffic Signal*
Road Crossing* & Give Way*

Table 5.1: Each label in this table is attached to every key frame. The labels with a *
mark suggest a binary type label.

5.2 CogData Analysis

5.2.1 Data Statistics

CogData is a large–scale and possibly the most challenging driving dataset publically

available. It offers the most diversely labeled images for vision-based driving scene un-

derstanding. It contains more than 700 one-minute video sequences of real-world winter

weather driving. It contains various challenging road conditions including snow-covered

roads and freezing rain. The data was both collected during day and nighttime.
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Over 42000 key-frames (sampled from original videos at 1fps) are synchronized with

parallel sensor logs from iPhone and the car’s information such as steering angle and

throttle input. Also, static road attributes are queried from OpenStreetMap and associated

with images based on image-to-map location proximity (I2MAP). Consequently, each image

is tagged with static and dynamic affordances labels from over 40 classes shown in TABLE.

5.1. The data was collected in the Kitchener-Waterloo area covering over 1000 KM of the

highway and residential roads. The map in Figure 5.2.1 shows the overall data coverage.

Roads covered on different days are colored differently.

Figure 5.3: Map showing roads in Kitchener-Waterloo covered during data collection.

Roads driven on different days are colored differently.

The recorded data consists of various driving scenarios across various road types, day

time and night time (see Figure 5.4). We show the time distribution of the collected data

in Figure 5.5 (right). We also demonstrate the road type distribution of our benchmark.
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Figure 5.4: Samples of the recorded data. Our data contains images recorded during snow,
clear sky, rainy and both at night and day time.

Figure 5.5: The sampled driving data distribution over (a) road types and (b) sampled
time.

Our dataset contains 53% secondary roads which is the highest of all road types. The

secondary roads mostly indicate a route with two lanes and traffic moving both ways. The

recorded high percentage is a true reflection of most road networks that we collected data

from. The residential roads follow with 18% of the total dataset and then tertiary roads

with 13%. In OSM, tertiary roads are commonly used to refer to roads connecting minor to

major roads. Our data has only 10% representation of the motorways as shown in Figure

5.5 (left). This is because our data collection focused on covering urban driving and only

drove around major highways for about 50 km. The smallest represented road types with

6% are the service roads which are used to provide access to business areas and public
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gathering places such as business parks and campsites.

We use OSM as a source for automatic annotation for an end goal of affordance learning

and network training. However, with road type information which we find relatively accu-

rate when samples are visually compared to imagery, the OSM can be a direct source of

road attributes for real-time autonomous driving especially in rural areas with no coverage

of high definition maps [55].

5.2.2 Drift Angle & Intersection Calibration

In this section, We demonstrate how the vehicle dynamics and phone sensory output can

be used in calibration with OSM attribute matching based on GPS query. The GPS

from the phone sensor may suffer a loss of accuracy for localization leading to an error in

pose estimation and intersection localization [65]. Consequently, we constraint the I2MAP

algorithm to only consider 3-arm and 4-arm intersection types (intersection types 4, 5, 6

and 7 shown in Figure 2.3). We also only indicate that an image contains an intersection

if it appears within 55 meters to the intersection but not more than 10 meters from the

intersection. Also, the direction of travel must be approaching the intersection and not

moving away. A similar approach was used in [68] where they specified an image with an

intersection label to be within 30 meters from the intersection.

However, they only consider 4-arm intersections (intersection type 7) and use Google

Street View images. The constraints we asserted improve labeling accuracy considering

data collected with a low-grade localization system. However, for OSM labels, any user

needs to examine a sample set to quantify the accuracy of the data before use. In any
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Figure 5.6: Top plot shows that at a sharp angle, the true heading significantly differs from
course heading. The bottom plot compares the steering wheel angle logged from the vehicle
CAN bus with drift angle (difference of the course heading from the true heading). The
transparent magenta rectangle boxes indicate abrupt changes in drift angle and heading
angle, which effectively coincides with ego vehicle making a turn at intersections.
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case, validating and correcting automatically generated labels will be much faster than

generating the labels from no label-base at all. For instance, we combine true heading,

course heading and steering wheel angle to demonstrate the effectiveness of calibration

with sensory outputs from different devices. The true heading αt and course heading αc

are collected based on sensors from a phone with reference corresponding to true north.

Vehicle true heading corresponds to the angle between vehicle heading and the true north

whereas the course heading denotes the angle between the direction of travel (along the

lane) and true north. We calculated the drift angle βd by Eq. 5.3 since both of them are

collected from the phone, the drift angle could be a good estimator for calibration with

vehicle dynamics.

βd = αc − αt (5.3)

As we can see from Figure 5.6, the heading angle of ego vehicle will have an abrupt

change when making a turn at intersections, especially those 3-arm and 4-arm intersection

types with a turn larger than 45◦ due to the change of lane direction. The calculated drift

angle βd based on Eq. 5.3 and steering wheel angle from CAN bus are plotted in Figure

5.6 (bottom) where it is shown that the sensor output from the phone share similar trends

with vehicle steering wheel angles, especially at the intersections.

Course and true heading measurements can be analysed further to learn driver be-

haviour in lane change. However, a more precise navigation system (with survey grade

GPS and IMU) would be required to fully capture meaningful variations between driving

forward, cornering, and lane change.
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5.3 Dynamic Affordance: Traffic Flow Prediction

Traffic flow in major cities can range from smooth to most challenging. Many collisions

happen because drivers’ attention is deviated either by fatigue or carelessness. In this

regard, there have been many efforts from car manufacturers into developing early warning

systems such as lane departure and forward-collision warnings. However, it costs an extra

dollar to add these features and hence many buyers opt-out and buy vehicles with basic

features. Also, systems such as lane departure warning only work in clear weather with no

snow covering the road.

Consequently, we trained a CNN model to predict when traffic is moving or when a

driver should be stopping given an image input based on the proposed CogData. Such

information is not only useful for driver warnings but it can be used in an autonomous

driving decision-making algorithm. However, for autonomous driving, a complex model

that can incorporate temporal information might be more favorable.

There are several variables that constitute when a vehicle should be stopping. For

instance, a vehicle should be stopping if at or approaching red lights. Also, even if the

vehicle has a right-of-way but there are pedestrians in front, then it should stop. We do

not train the CNN model to recognize red light, pedestrians or other vehicles, instead, our

focus is to train for the stopping or moving decisions based on observation.
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5.3.1 CNN Model Training

We used a well known ResNet50 architecture [38] pre-trained on ImageNet [23]. We use

Keras built on top of the TensorFlow framework [19] for model construction. We resize

each image to 227× 227× 3 before feeding it to the model. We make sure that there was

equal representation of the categories. Images representing moving traffic are 50% while

the rest represented stopping traffic scenes.

For this single task, we only use about 3000 images for training (70%) and validation

(30%). The testing images were kept separate and only used for model visual prediction

analysis presented later in this section. From the ResNet50 convolution base layer, we add

a max-pooling layer of size 2x2 and strides of 2. we then add a flattening layer before a

dense layer of 4096 neurons. We constraint learned weights using L2 regularization [19]

of 0.001 and compile the model using RMSprop [19] with learning rate of 1e-5. The loss

function is set to binary cross-entropy and then training is carried out using batch sizes

of 32 with 50 epochs. Each epoch had 63 training and validation steps. In the end, our

trained model achieved a validation accuracy of 94.68%. we present a simplistic sketch of

the training process in Figure 5.7.

5.3.2 CNN Model Visual Prediction Analysis

We used the trained model to suggest actions of either to stop or drive given the driving

scene. Some of the driving scenes along with the predicted actions are presented in Figure

5.8.
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Figure 5.7: We used a ResNet50 as convolution base and added a single Fully Connected
Layer (FCL) of 4096 neurons. The input is an image of size 227 x 227 x 3. The output
layer uses sigmoid as an activation function.

We present scenes of day time with snowy roads and night time. The leftmost image

on the top row of Figure 5.8 shows a snowy road with road totally invisible. Vehicles

ahead of the ego vehicle appear far away. The image was correctly classified and the model

suggested that it is safe to drive. The middle top image in the same Figure indicates a

snowy road with a vehicle on the left lane but very close to ego vehicle. The model can

recognize that such scene-setting suggests a safe to drive action. Closer examination of the

top right image and the bottom center image in Figure 5.8 indicates that the model doesn’t

just associate the green traffic light with clear to move action but also considers the actions

and positions of other participants. It is also able to read the intention of the ego vehicle

given its orientation on the road. The top right image clearly shows that the traffic lights

are green and even another vehicle (white) shown in the scene continued to move straight.

However, the model predicted that the ego vehicle intended to turn right and given that

there are pedestrians, the prediction is a suggest to stop action given the learned dynamic
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Figure 5.8: Our model prediction on traffic flow under severe weather and visibility condi-
tions.

affordances. Similarly, the bottom center image in Figure 5.8 shows a scene with clear

green lights. However, the model learned the difference in lighting between a moving and

stopping vehicle (in road setting). Consequently, it was able to suggest that the correct

action at that instance was to stop even though the lights were green.

The bottom right image in Figure 5.8 indicates a case where the traffic light is red but

the view is obstructed by a large cargo vehicle moving in the adjacent traffic. This scenario
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represents an obstruction object that the model can correctly act upon without necessarily

classifying it. Finally, the bottom left image in the same Figure points out the difficulty

of driving at night while it is heavily raining. the traffic lights and illuminations of other

participating vehicles might be exaggerated and misleading. However, the model can learn

the most important traffic flow cues given the intent of the ego vehicle. Hence, in this

image, the model was not misled by various red lights present and still correctly predicted

that the traffic is moving. The highlighted scenarios show the robustness of the model

which can make correct traffic flow suggestions based on learned dynamic affordances of

the complex traffic flow scenes. Such prediction can further be improved by adding an

LSTM (long short-term memory) [40] capability to model training.

5.4 Conclusion

In this work, we introduced a driving data collection and automatic annotation framework

designed for direct perception and imitation learning. The collected data from distributed

devices are synchronized and annotated with filtered labels. The proposed benchmark

includes vehicle dynamics and road attributes under various scenarios including day time

and night time under various weather conditions (no rain, rain, snow).

Furthermore, we train and evaluate the traffic flow prediction network for harsh weather

driving aid system and demonstrate its effectiveness. We concluded that the proposed

data collection and annotation framework can easily be deployed at a larger scale and in

different geographic locations, to enhance the dynamic affordance learning trained model

generalization ability.
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Chapter 6

Conclusion and Future Work

In Chapter 3, we presented a Cogdrive dataset collected in various severe weather conditions

including snow and rain conditions. The dataset was collected both at night and during

day time. A CogDrive Dataset Collector App was developed to help collect large datasets

needed for training robust static and dynamic affordance learning CNN models. The design

and calibration procedure of the app was presented in chapter 3. Using the developed app

and I2MAP algorithm, we demonstrate that it is easier and cheaper to collect real-world

driving scene dataset required for affordance learning compared to the mediated perception

pipeline. In chapter 4, we highlighted that geospatial open source databases such as GSV

and OSM can be leveraged as a source of data for training affordance learning models.

In chapters 4 and 5, we also mentioned issues involved in data collection. Some of the

highlighted issues are inaccurate positioning and trying to match datasets from different

sources with a possible offset in database updating.
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In this thesis, we successfully demonstrated that static and dynamic affordance learning

is an important layer of perception. This layer must be incorporated for the autonomous

vehicles to have a complete and ubiquitous scene understanding regardless of the driving

environment. This approach is also better equipped in dealing with the long-tail problem

in autonomous driving vehicles than a mediated perception approach. As was discussed

in chapter 5 of this thesis, the model trained for traffic flow dynamic affordance, was able

to correctly predict the best course of action even in the most dynamically challenging

driving scenes (see Figure 5.8). The argument here is that by learning driving affordances,

the models can make reasonable estimates about the object in question given the ego

vehicle’s position and orientation.

For future work, we plan to incorporate Convolutional Neural Network with memory-

based algorithms such as LSTM, and environment-to-agent feedback loop approaches such

as reinforcement learning into our pipeline. Such algorithm fusion will help us study

dynamic driving behavior at all levels of difficulty in real driving situations. We will also

expand our abilities to automatically annotate driving datasets with static and dynamic

attributes by improving the phone-based localization accuracy. With such realization, we

can add features to the CogDrive app, to collect and label the datasets in realtime, making

cloud sourcing data collection a possibility. In time, we will also use monocular depth

estimation algorithms to mine distance-based affordance information from a single image.

Contribution of this thesis can be summarised as follows:

• We designed an affordable dashboard-based system that included building the Cog-

Drive Data Collection phone app. The system was used to collect location-based
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image datasets consisting of about 40,000 images with more than 40 labels including

driver’s input, ego vehicle dynamics, and OSM road attributes.

• We developed an affordance learning model for the Kitchener-Waterloo area, based on

freely available Google Street View imagery and OpenStreetMap road information.

This model was cross-validated on data collected in San Francisco Bay Area.

• We developed a scalable and affordable data collection and automatic labeling frame-

work for dynamic affordance learning based on image-to-map proximity algorithm.

• We presented a detailed analysis for lane following and taking a turn at an intersection

using the course and heading angle information.

• We trained a traffic flow prediction network. It could act as a smart driver assistance

and was tested using driving scenes captured in various weather conditions including

snowing and night time.
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Appendix A

Classifying Driveable Space Based on

Driving Affordances

In an attempt to use driving affordances for autonomous vehicle decision making, we

classify driveable space considering likely next dynamic driving task and likely current

speed state. For instance, having predicted affordances such as the number of lanes, bike

lanes, one-way and driveable heading, we can make a fuzzy-based determination of whether

the road view in that instance, is of a highway or residential road. Consequently, such a

revelation would inform the vehicle decision to either reduce or increase speed if the system

detects a transition in the environment from the highway to a residential road or vise Versa.

Another example would be to use classification of distance to an intersection to alert the

vehicle to cautiously proceed, reduce speed or stop altogether.

As shown in Figure A.1, the predicted or generated affordances (generated affordances
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Figure A.1: Affordances classified in the union of five categories of likely next dynamic
action and four categories of likely vehicle current speed state. Affordances with a red
star suggest changing direction behavior, while those with a red hat, suggest changing
lane instead. Affordances with both red star and a hat, suggest the possibility of either
changing the lane or direction.

98



are determined indirectly by combining several predicted affordances) are first classified

into five categories of the likely next dynamic driving states. Category 1 includes such

affordances that would invoke the vehicle to Increase Speed (IS). Category 2 leads to

Reduce Speed (RS) action. Category 3 leads to Maintain Similar Speed (MSS) action,

while category 4 would alert the vehicle to Come to a Full Stop or Related Actions (CFS-

RA). Category 5 includes realizations such as the presence of obstacle ahead zone which

requires the vehicle to either Change Lane or Direction (CL/D).

Likely current speed states are inferred based on the affordances in the immediate

environment. The current speed states category 1 is Possible High or Lower speed (PHL),

where the environment context suggests that the likelihood of the vehicle current speed

being high, is higher than the likelihood of current speed being lower. Category two (PLH)

is a direct inverse of category 1. Category 3 and 4 include such driveable spaces that suggest

a strong likelihood of speed state to be Most likely High speed (MH) and Most likely Low

speed (ML) respectively, but there is no gray area.

In formulating the presented classification of driveable space, we recognize that there

are no clear boundaries among classes. Hence, such classification may greatly depend on

individuals carrying out the task of classification. Also, this is mainly a task that would

require extensive validation and consultation to generate consensus classification criteria.
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Appendix B

Traffic Flow Prediction Sample

Images

In Figure B.1 and Figure B.2 , we show predictions for our model trained on data collected

using the proposed dynamic affordance learning framework. We trained the model to

predict traffic flow pertaining to stop = predicted [0] and go = predicted [1] action.
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Figure B.1: Predictions sample 1. At night and during the day predictions. The model
learned to make traffic flow decisions at night. It was able to differentiate through street
lights and vehicle lighting and signals.Predicted: [1] means a go action is suggested while
predicted: [0] indicates that a stop action is required.
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Figure B.2: Predictions sample 2. Predictions on roads covered with snow. The model was
able to make correct predictions even with snow deposits.Predicted: [1] means a go action
is suggested while predicted: [0] indicates that a stop action is required.
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