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Abstract

Optical communication systems are vital for high rate telecommunication. Fiber-optic
communication system is an excellent choice due to its low loss, high bandwidth, and
robustness to electromagnetic interference. However, fiber-optic links suffer from linear and
nonlinear impairments which limit their performance. Digital signal processing techniques
can be used for linear impairments compensation. On the other hand, nonlinear impairment
is much harder to tackle.

There exist two main nonlinear noise which is caused by Kerr effect. Each channel
in the fiber-optic link has two poles namely Xpole and Ypole. In a single channel case,
transmitted signal over each pole generates intensity-dependent noise on both poles which
is called Self Phase Modulation (SPM) noise. On the other hand, when multiple signal
channels co-propagate in a single fiber, the power fluctuations of one signal channel cause a
phase shift to another channel, which is due to the Cross Phase Modulation (XPM) effect.

Through this thesis, our main contributions are as follows. Firstly, we utilize Low-
density parity-check (LDPC) Coded Modulation with Iterative Damping and Decoding at
receiver to overcome the nonlinear noise without any need for feedback to transmitter. In
other words, after extracting the short-term mean of SPM noise, we modify the decoding
system to accept a priori information which helps us to remove nonlinearity using demap-
ping. In addition, we propose a joint detection method to compensate for SPM noise.
In this method, we exploit two main statistical characteristics of noise samples which are
space domain and time domain correlations to improve naive minimum distance detection.
In the last chapter, we introduce an algorithm for learning an adaptive model of fiber
which can help us not only improve the performance of pre-compensation but also reduce
the complexity of the state-of-the-art method.
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1

Overview and Literature review

1.1 Overview

Optic communication systems are vital for high-rate telecommunication. Fiber-optic com-
munication system is an excellent choice due to its low loss, high bandwidth, and robustness
to the electromagnetic interference. However, fiber-optic links suffer from linear and non-
linear impairments which limit their performance. Digital signal processing techniques can
be used for the linear impairments compensation. On the other hand, nonlinear impair-
ments are much harder to tackle. At low signal power, transmission performance is limited
by amplified spontaneous emission (ASE) noise, so the capacity can be enhanced by in-
creasing signal power. At higher signal to noise ratios, fiber nonlinear effects are dominant
and enhancing transmission performance becomes impossible by simply increasing signal
power.

There exist two main nonlinear noise which is caused by Kerr effect. Kerr effect is the
dependence of the refractive index on the intensity of the optical pulse. Each channel in
the fiber-optic link has two poles namely X-pole and Y-pole. For a single channel case,
transmitted signal over each pole generates intensity-dependent noise on the other pole
which is called Self Phase Modulation (SPM) noise. On the other hand, when multiple
signal channels co-propagate in a single fiber, the power fluctuations of one signal channel
cause a phase shift to other channel, which is due to the Cross Phase Modulation (XPM)
effect [2], and [3]. Added directly to the phase of a signal, nonlinear phase noise becomes
a major limitation for phase-modulated optical communications [4], [5], [6].

On a fundamental level, the origin of nonlinear response is related to the anharmonic
motion of bound electrons under the influence of the applied field. As a result, the total
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polarization P induced by electric dipoles is nonlinear in the electric field E, but satisfies
the more general relation ([7], [8])

P = εo
(
χ1.E + χ2.EE + χ3.EEE + ...)

where εo is the vacuum permittivity and χ(j)j=1,2,... is jth order susceptibility. The lowest-
order nonlinear effects in optical fibers originate from the third-order susceptibility χ3,
which is responsible for phenomena such as third harmonic generation, four-wave mixing,
and nonlinear refraction. Therefore, most of the nonlinear effects in optical fibers origi-
nate from nonlinear refraction, a phenomenon referring to the intensity dependence of the
refractive index. The nonlinear phase shift is given by [8]

φNL = n2k0L(|E1|2 + 2|E2|2)

which consists of two components resulted from SPM and XPM noise, respectively. There-
fore, the fiber-optic links are influence by XPM noise two times more than SPM noise.

Various digital compensation techniques have been proposed in [9] to compensate for
SPM. For XPM compensation, one of the common methods is using intensity-dependent
phase-modulation, in which the intensity of the phase modulator is controlled by the re-
ceived signals from other channels [10]. Moreover, for mitigating XPM some previous
studies has used non-zero dispersion fiber to induce walk off [9]. Back propagation, a pro-
cedure introduced in [11] and [12] is another method to tackle XPM noise. This method
uses inverse Schrodinger equation to estimate what signal has been transmitted [13]. This
method compensates both linear and nonlinear impairments [12].

Iterative decoding procedure is based on ”belief propagation” which consists of two
decoders: inner decoder and outer decoder. Each of these decoders compute a posteriori
probability (APP) of the information symbols or, more generally, a reliability value for
each information symbol. The sequence of reliability values generated by the decoder is
passed to the other one [14] as a suggestion . To improve the correctness of its decisions,
each decoder has to be fed with information which does not originate from itself [15]. The
concept of extrinsic information was introduced by [16] and [15] to identify the component
of the generated reliability value which depends on redundant information introduced by
the considered constituent code. The logarithmic likelihood ratio (LLR) as a natural
reliability value may be exactly computed employing the BCJR algorithm [17].

As noted in [18], [19], and [20], modifying the soft demapping to accept a priori infor-
mation can reduce the bit error rate. Nikopour et al. [21] shows that when the nonlinear
characteristic of the transmitter is known, the nonlinear distortion is a deterministic func-
tion of the transmitted data. Therefore, by using the estimated data, after some initial
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turbo decoding iterations, the turbo decoder partially compensates for the nonlinear noise.
Inspired by these studies, we modify the soft demapping to compensate for nonlinear noise
in fiber-optic channel.

Through this thesis, SPM and XPM noise compensation is explored by different DSP
and Channel Coding techniques. This thesis is organized into three main chapters. In
chapter 2, we propose a joint detection method to compensate for XPM noise. Section 2.1
and 2.2 describe main statistical characteristics of SPM and XPM samples which are space
domain and time domain correlations. We exploit these characteristics in order to improve
naive minimum distance detection and we report the experimental results in section 2.4.
Our findings show that the statistical approach does not help significantly in desired signal
to noise ratio. Also, we investigate higher order characteristics of SPM noise distribution
by estimating its probability distribution more accurately which can be exploited in future
research to improve the bit error rate.

Chapter 3 focuses on using LDPC-Coded modulation with Iterative Damping and De-
coding to improve bit probabilities. Section 3.2 describes the system model including
encoding structure, signal model and decoding structure. In section 3.3, we explain how to
embed updating short-mean characteristic of SPM noise in iterative algorithm by adding
a new block to the iterative decoder. Finally, we report the experimental results in section
3.4 which prove the effectiveness of our proposed algorithm. We utilize this form of chan-
nel coding to compensate for nonlinear noise in the fiber-optic links for two main reasons.
Firstly, iterative decoding at the receiver obviates the need of feedback to the transmitter
to pre-compensate for the SPM noise [9]. Secondly, the decoding system can be modified
to accept a priori information which helps us to remove nonlinear noise using demapping.

Chapter 4 is dedicated to introducing a pre-compensation algorithm which instead of
calculating C-matrix analytically, learns C-matrix based on the inputs and outputs of the
channel. This makes the algorithm adaptive to different situations of the fiber. Then,
we apply same complexity reduction methods as [1] to have a fair comparison in terms of
performance and complexity. The other advantage of this method, which is explained in
section 4.2.1, would be its flexibility of learning higher order parameters of the model of
fiber which analytic C-matrix is not capable of.

Our main contributions include

• Extracting statistical characteristics of SPM and XPM noise.

• Modifying the iterative decoding algorithm to accept short-term mean characteristic
of nonlinear noise as a priori
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• Proposing an adaptive model of fiber for pre-compensation of nonlinear noise
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2

Extracting Statistical Characteristics
of Nonlinear Noise

Is it the fault of wine if a fool drinks it and goes stumbling into darkness?

– Ibn Sina (Avicenna)

The most commonly used algorithm to decode transmitted signals over a linear channel
is minimum distance detection. However, in the case of optical channels, minimum distance
detection is not the best choice because of the nonlinear noise impairments. In this chapter,
we show that the detection performance improves by considering the statistical features of
SPM and XPM noise.

The non-linearity in a fibre optic links can be modeled using split-step model described
in [22] and [9]. Assume that two streams of data symbols are launched on Xploe and Y-pole
of two fiber channels: {Ax, Ay} on channel A and {Bx, By} on channel B. The equation for
the non-linearity on the X-pole in the channel A at time zero has 6 components as follows.

δAx(t) = SPMx(t) + SPMy(t) +
∑
w

(XPM1w(t) +XPM2w(t) +XPM3w(t) +XPM4w(t))

(2.1)

where SPMx(t) and SPMy(t) corresponds to the SPM noise at time t added by X-pole
on itself and Y-pole on X-pole, respectively. The next 4 components are the results of
XPM noise summed over all neighbours w.
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(a) Received data points (b) After subtracting the long-term mean

Figure 2.1: SPM noise added to a 16QAM constellation points after passing through a 5
span fiber

2.1 Statistical Characteristics of SPM Noise

SPM components in the non-linearity equation 2.1 can be computed as:

SPMx(t) =
∑
m,n

Cspm
m,nAx(t+m)Ax(t+ n)A∗x(t+m+ n) (2.2)

SPMy(t) =
∑
m,n

Cspm
m,nAx(t+m)Ay(t+ n)A∗y(t+m+ n) (2.3)

where Ax and Ay are the data symbols transmitted on X-pole and Y-pole of the base
channel. In order to predict the noise behavior, one needs to investigate its statistical
characteristics.

2.1.1 First Order Characteristics

Long-term mean: long-term mean is a primal characteristic for SPM as a random vari-
able. It is obvious in the Figure 2.1a that the long-run means depends on constellation
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points. The long-term mean is easily removable. Thus we do not consider it in our exper-
iments. From this point, it is assumed that long-term mean is always deducted from the
SPM.

Following calculations show that E[SPM ] is dependant on the transmitted symbol or
equivalently, the energy of transmitted symbol. Note that E[Ax(n)A∗x(m + n)] is nonzero
only if m = 0 as the transmitted symbols are independent of each other due to the inter-
leaving.

E[SPM(t)] =
∑

m=0,n

Cspm
m=0,nAx(t)E[Ax(t+ n)A∗x(t+ n)]

+
∑

m=0,n

Cspm
m=0,nAx(t)E[Ay(t+ n)A∗y(t+ n)]

+
∑

m,n=0

Cspm
m,n=0Ax(t)E[Ax(t+m)A∗x(t+m)]

= Ax(t)
∑

m=0,n

Cspm
m=0,n

(
E[|Ax(t+ n)|2] + E[|Ay(t+ n)|2]

)
+Ax(t)

∑
m,n=0

Cspm
m,n=0

(
E[|Ax(t+m)|2]

)
Short-term mean: Sliding a window with length three over transmitted symbols,

provides 163 = 4096 different combination of transmitted symbols {Ax(t−1), Ax(t), Ax(t+
1)}. For the sake of visualization, Assume that each of the transmitted symbols at time
t−1 and t+ 1 are divided into four groups based on their region in Fig 2.1b. Therefore for
a fixed Ax(t) (e.g. Ax(t) = {−0.67,−0.67}), there will be 42 = 16 different combinations
of (Ri, Rj). As it can be seen in Fig 2.2, these 16 pairs of regions can be clustered to 4
main groups, separated with colors, which have different averages. As a result, the average
of SPM with fixed Ax(t) is dependant on Ax(t − 1) and Ax(t + 1) which can be used to
compensate for the non-linearity noise.

2.2 Statistical characteristics of XPM noise

XPM components in the non-linearity equation 2.1 can be computed as:

XPM1w =
∑
m,n

Cxpmw
m,n Ax(m)Bx(n)B∗x(m+ n) (2.4)
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Figure 2.2: Short-term mean

XPM2w =
∑
m,n

Cxpmw
m,n Ax(m)By(n)B∗y(m+ n) (2.5)

XPM3w =
∑
m,n

Cxpolmw
m,n Bx(m)Ax(n)B∗x(m+ n) (2.6)

XPM4w =
∑
m,n

Cxpolmw
m,n Bx(m)Ay(n)B∗y(m+ n) (2.7)

where Bx and By are the data symbols transmitted on X-pole and Y-pole of the channel
w which is a neighbour to the base channel.

XPM noise samples have two main statistical characteristics:

• Space domain correlation

• Time domain correlation

• Correlation between X and Y poles

8



(a) Received data points (b) After subtracting the long-term mean

Figure 2.3: XPM noise added to a 16QAM constellation points after passing through an
ELEAF 25 span fiber

2.2.1 Space domain correlation

Received constellation points will be transferred and rotated as can be seen in Figure 2.3a
. This plot shows that the shape of the clouds generated because of XPM noise around
the constellation points are not circular. In other words, detection based on the minimum
distance does not provide the best estimation of transmitted constellation points in this
case. To find a better mode of detection, we need to fit a proper probability density
function to each of the clouds.

For each of the constellation points, we find the principal components from eigenvalue
decomposition. The angels of principal bases produce evidence that the joint probability
density functions of real and imaginary parts of XPM samples have intrinsic information
which can help us in detection.

2.2.2 Time Domain Correlation

Equations 2.4-2.7 Show a correlation in the time domain between the samples of XPM
noise, coming from the intrinsic memory of nonlinear noise.
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2.2.3 Correlation between X and Y poles

The physical properties of the fibers impel correlation between X-pole and Y-pole as it is
evident in the XPM equation.

2.3 Detection using both space and time domain cor-

relation

To exploit time and space domain correlation, instead of looking only at the current symbol,
we will consider a block of three consecutive received data symbols for detection. In this
case, we have to consider 4096 possible outcomes. If we consider these three complex
numbers as 6 real numbers which are jointly Gaussian, we have to find joint probability
density function for these six random variables conditional on all 4096 possible vectors.
After calculating the covariance matrices and the average XPM noise vector for all of these
possible vectors, we can maximize the equation 2.8 to detect the candidate with the highest
conditional probability as the transmitted symbol.

P (Y|S) =
1√

(2π)6det(Σ)
exp
[
− 1

2
(Y− µ)TΣ−1(Y− µ)

]
(2.8)

where Y is the received vector, S is one of the 4096 candidates, µ is the expected XPM
noise vector for the candidate, and Σ is the covariance matrix of each of the candidates.

2.4 Results

To experiment detection using space and time domain features, we generate a stream of 220

bits offline. The bits are modulated as 16 QAM. These symbols will pass a noisy channel
which add just SPM noise to the symbols. Now, we can compute the covariance matrix
for each candidate from 4096 possible combination of transmitted symbols. This process is
done one more time with a difference that Gaussian noise is also added to the transmitted
symbols. Finally, the received signals will be detected using equation 2.8.

As it can be seen in Fig , exploiting space and time domain correlation improves the bit
error rate at high SNR values which Gaussian noise is not dominated. However, in low SNR
values that SPM noise is masked by Gaussian noise, exploiting statistical characteristics
of SPM noise fails to achieve a better result.
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Figure 2.4: The effectiveness of exploiting time and space domain correlation

It should be noted that the variation of eigenvalues of the co-variance matrix if we
consider channels x and y together, is almost 5 times bigger than the variation of eigenvalues
of the co-variance matrix in time.

2.5 Summary

Chapter 2 focuses on extracting statistical characteristics of SPM and XPM noise. Based
on the shape of clouds conditional on transmitted symbols, we can conclude that there is a
significant correlation space domain. Also, our findings show that there is a correlation in
time domain as well. So, SPM and XPM both have memory. Therefore, to exploit these
charectristics we modify the naive minimum distance detection to consider not only the
correlation between real and imaginary components of the noise, but also to consider the
neighbour symbols.
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2.5.1 Conclusions

The proposed method is useful only at high SNRs and does not improve the BER at the
target SNR (around 13 dB) because the XPM noise is drown in Gaussian memory-less
noise. It means the clouds of noise are almost spherical in space. However, using time
domain correlation helped even in lower SNRs.

2.5.2 List of contributions

Our main contributions include

• Extracting some of statistical characteristics of SPM and XPM noise

• Proving the effectiveness of using these characteristics to improve detection

2.5.3 Future Research

Let’s take one step further to estimate the probability distribution of SPM more accurately.
From the Fig 2.5 and 2.6 it can be seen that the SPM clouds around constellation points
especially those which are farther from the origin do not look like a Gaussian distribu-
tion. Therefore, maybe fitting a better distribution to them would help to design a better
detection method.
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(a) PDF of the SPM noise (b) PDF of the SPM noise around Ax(t) =
−0.67,−0.67

(c) In-phase component distribution around Ax(t) =
−0.67,−0.67

(d) Quadrature component distribution around
Ax(t) = −0.67,−0.67 mean

Figure 2.5: SPM noise distribution
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(a) PDF of the XPM noise (b) PDF of the XPM noise around Ax(t) = 0.23, 0.23

(c) In-phase component distribution around Ax(t) =
0.23, 0.23

(d) Quadrature component distribution around
Ax(t) = 0.23, 0.23 mean

Figure 2.6: XPM noise distribution
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3

Iterative Decoding

I sent my Soul through the Invisible,
Some letter of that After-life to spell:
And by and by my Soul return’d to me,
And answer’d: ’I Myself am Heav’n and Hell

– Omar Khayyam, Rubaiyat

3.1 Introduction

In information theory, turbo codes, proposed in 1993 [16], are the first practical codes
with near Shannon limit performance and low complexity in terms of decoding. While
transmitting, the codes are constructed with different interleaved versions of two or more
component codes. The component codes are decoded iteratively using two interconnected
decoders at the receiver. In addition, a product code [23] is a data array of codewords. Each
row and column represents a codeword from an (n1, k1) and (n2, k2) code, respectively.
Product codes are also known as turbo product codes (TPCs) [24] because iterative (turbo)
decoding is widely used to decode product codes. Simple parity check (SPC) based product
codes with an iterative message-passing decoding algorithm show good performance in
terms of bit-error rate (BER) [25]. This class of codes is called Product Accumulate (PA)
codes.

We utilize this type of channel coding to compensate for nonlinear noise in the fiber-
optic links for two main reasons. Firstly, iterative decoding at the receiver obviates the
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need for feedback to the transmitter to pre-compensate for the SPM noise. Secondly, the
decoding system can be modified to accept a priori information which helps us to remove
nonlinear noise using demapping.

This chapter is organized as follows. In section 1, the coding structure is introduced.
Section 2 shows how to decode the TPC codes iteratively. In section 3, the numerical results
gained from 2 PAM and 16 QAM modulations, proving the effectiveness of demapping in
nonlinear noise compensation, are presented.

3.2 System Model

The schematic structure of the system is shown in the Fig 3.1. First of all, raw data
bits u are concatenated with P blocks of Simple Parity Check (SPC) code by a random
inter-leaver π2. Then the code passes an accumulator with rate 1 to generate the Product
Accumulate (PA) code, v. After encoding, modulated coded bits (sk) pass through the
channel which adds nonlinear noise (δAx) and Amplified Spontaneous Emission (ASE)
noise to the modulated coded bits. The received signal is decoded iteratively using two
interconnected decoders at the receiver. The more detailed explanation of each component
is as follows:

3.2.1 Encoding structure

The encoding structure is shown in Fig 1. Firstly, two branches of (t + 1, t) SPC codes
generating P blocks of codewrods are concatenated with the raw input bits. After that,
the TPC code is interleaved by a random interleaver π2. The analysis shows that using a
random interleaver provide us the opportunity to improve the performance of TPC/SPC
codes [25]. Therefore, these codes have parameters of (N,K,R) = (P (t+ 2), P t, t/(t+ 2)).
Then the code passes an accumulator with rate-1 of the form 1/(1+D) to generate the
Product Accumulate (PA) code. The idea of concatenating an outer code and an interleaver
with a rate-1 recursive inner code, particularly of the form of 1/1+D, to achieve coding
gains (interleaving gain) without reducing the overall code rate is widely recognized [25],
[26].
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Figure 3.1: System model
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3.2.2 Modulation

In this section, the 16QAM modulation of coded bits is explained which is easily extend-
able to 64QAM. We consider sk = sIk + jsQk as a transmitted symbol with sIk, sQk ∈
{±0.6708,±0.23}. These values comes from the fact that the average power of the input
signal to the fiber link has to be equal to 0.5 because the C matrix is designed in this
way. According to the mapping rule sk = M(b1k, b2k, b3k, b4k), the information bits are
mapped to transmitted symbols where the first two bits corresponds to the In-phase value
sIk =M(b1k, b2k) and the last two bits to the quadrature value sQk =M(b3k, b4k).

After passing through the channel, the nonlinear noise plus an additive white Gaussian
noise (AWGN) are added to the transmitted symbol which can be formulated as follows

rk = rIk + jrQk = sk + δAx + nk

where Ax is the nonlinear noise added to the X polarization of the channel according to
the equation 2.1 and nk = nIk + jnQk = N (0, N0) is an AWGN where nIk and nQk have
N (0, N0/2) distribution.

3.2.3 Decoding

A serially concatenated system is iteratively decodable using the turbo principle, in which
the probability of bits is converted to log-likelihood ratio (LLR) values, which are called
soft extrinsic information. As shown in Fig 2, these values are exchanged between the
inner and outer decoder as a priori information iteratively. To decode the outer TPC/SPC
code, a loopy belief propagation algorithm on graphical models is used. This algorithm
calculates the marginal probability of each bit conditional on any other bits. The BCJR
algorithm is typically used to decode the inner rate-1 convolutional code. For each bit
xi in the kth turbo iteration, this algorithm produces extrinsic information, denoted Le.
Le is used as a priori information by the outer decoder, and extrinsic information Lo is
generated.

A. Log Likelihood Ratio Calculator

In this section the bit LLR value of the received signal Lch is calculated for 16QAM which
is easily extendable to other modulation types.

Lch(bik|rk) = log
P (rk|bik = 1)

P (rk|bik = 0)
(3.1)
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(a) Symbol set partitioning of b1k (b) Symbol set partitioning of b4k

Figure 3.2: Symbol set partitioning

Defining S(bik = 1) = {s : s = M(..., bik = 1, ...)} and S(bik = 0) = {s : s =
M(..., bik = 0, ...)}, the above equation can be calculated as

Lch(bik|rk) = log

∑
sk∈S(bik=1)

P (rk|sk)∑
sk∈S(bik=0)

P (rk|sk)

To illustrate the above equation, Fig 3.2 shows the symbol set partitioning for bits b1k
and b4k [27]. We assume that the added noise can be model as an AWGN noise. Due
to the Cartesian structure of the modulation, In-phase and quadrature components of the
received signal can be demodulated independently which results in

Lch(b1k|rk) = log

{
exp
(
− (rIk+a)2

N0

)
+ exp

(
− (rIk−3a)2

N0

)
exp
(
− (rIk−a)2

N0

)
+ exp

(
− (rIk+3a)2

N0

)}

and

Lch(b4k|rk) = log

{
exp
(
− (rQk−a)2

N0

)
+ exp

(
− (rQk−3a)2

N0

)
exp
(
− (rQk+a)2

N0

)
+ exp

(
− (rQk+3a)2

N0

)}
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B. Inner and Outer Decoders

According to [28], the inner convolutional code is decoded using a message passing algo-
rithm is equivalent to BCJR algorithm for the 1/1+D code. This algorithm generates ex-

trinsic information L
(k)
e (xi) for bit xi in the kth iteration accroding to equation 3.2 which is

used as a priori information for the outer decoder to produce extrinsic information L
(k)
o (xi).

In the next iteration, L
(k)
o (xi) and L

(k)
ch (xi) are used by the inner decoder to extract better

estimation of the accumulator input bits.

L(k)
e (xi) = check

(
Lch(yi − 1) + L(k)

ef
(yi − 1), Lch(yi) + L(k)

eb
(yi)
)

(3.2)

where

Lch(yi) = log
P (ri|yi = 0)

P (ri|yi = 1)

is the LLR value of the received signal from the channel, L
(k)
ef (yi) and L

(k)
eb (yi) are the

extrinsic information passed forward and backward to the bit yi, respectively. The check
operation is given as

check(α, β) = 2tanh−1
(
tanh

α

2
tanh

β

2

)
In this work, we approximate it with

check(α, β) = sign(α).sign(β).min(|α|, |β|)

which reduces required computations significantly [29]. During the last decoding iteration,
the outer decoder generates LLRs for the input bk, instead of LLRs for the coded symbols
xk. The LLRs for the input are then passed through a hard-decision device that decides
on the decoded bits.

3.3 Short-Mean Updating

As we showed in 2.2, Ax(t − 1) and Ax(t + 1) influence the average of SPM added to the
signal. Therefore, by estimating the neighbors of a received signal, we can compute the
expected noise added by its neighbors and subtract it from the received signal. This the
where we can take advantage of iterative decoding. After each iteration, we are improving
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Figure 3.3: Updating short-term means

the estimation of transmitted symbols which can be used to compensate for SPM more
efficiently. From the Eq. 3.1, it can be concluded that

Lch(bik|rk) = log
P (bik = 1|rk)

P (bik = 0|rk)
= log

P (bik = 1|rk)

1− P (bik = 1|rk)

Therefore the APP values are computed as

P (bik = 1|rk) =
eLch(bik)

1 + eLch(bik)
, P (bik = 0|rk) =

1

1 + eLch(bik)

Although the block random interleaver is used in single-parity-check (SPC) based prod-
uct codes [30], it is shown in [28] that using random interleaver can improve the performance
of these codes. Due to the random interleaving, we assume that coded bits are independent
which results in

P (sk) = P (b1k, b2k, b3k, b4k|rk) = P (b1k|rk)P (b2k|rk)P (b3k|rk)P (b4k|rk)

Thus we calculate the probability of all possible combinations of three consecutive
symbols as

P (sk−1, sk, sk+1) = P (sk−1)P (sk)P (sk+1)
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Now using calculated short-term mean conditional on sk−1 and sk+1 in 2.2, we estimate
the mean of SPM added to the sk.

E
[
SPM(sk|sk−1, sk+1)

]
=

16∑
i=1

16∑
j=1

16∑
k=1

P (sik−1, s
j
k, s

k
k+1)E

[
SPM(sik−1, s

j
k, s

k
k+1)

]

The modified decoding structure after adding short-term mean updating block is shown
in Fig 3.3.

3.4 Results

We examined the proposed algorithm for both 16QAM and 64QAM. Fig 3.4 shows the
immense improvement in 16 QAM modulation as a result of using iterative decoding instead
of minimum distance detection. Moreover, it can be seen in Fig 3.5 that using iterative
decoding with short-mean updating can improve the BER for both 5span and 10 span
fiber. The results are reported for 6 and 10 numbers of iteration. Form the Fig 3.5b, it
is evident that with the same number of iterations, using mean updating is even more
effective for higher number of spans which is as expected (about 1dB improvement in BER
for 10 spans compare to less than 0.1dB improvement for 5 spans).

3.5 Summary and Conclusions

Chapter 3 focuses on using LDPC-Coded modulation with Iterative Damping and Decoding
to improve bit probabilities. Firstly we described the system model including encoding
structure, signal model and decoding structure. In section 3.3, we explained how to embed
updating short-mean characteristic of SPM noise in iterative algorithm by adding a new
block to the iterative decoding. Finally, we reported the experimental results in section
3.4 which prove the effectiveness of our proposed algorithm.

The iterative decoding system can be modified to accept a priori information (in our
case short-term mean of nonlinear noise) which we proved can be used to remove nonlinear
noise.
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(a) After subtracting the long-term mean (b) The effectiveness of mean-updating in 5span,
10span and 25span fiber link

Figure 3.4: Experiments on 16QAM

(a) The effectiveness of mean-updating in 5spans
fiber link

(b) The effectiveness of mean-updating in 10spans
fiber link

Figure 3.5: Experiments on 64QAM
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3.5.1 List of contributions

• Modifying the iterative decoding algorithm to accept short-term mean characteristic
of nonlinear noise as a priori
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4

Learning an Adaptive Model of Fiber

“Yesterday I was clever so I wanted to change the world. Today I am wise so I
am changing myself.”

– Rumi,

4.1 Introduction

Fiber non-linearity is one of the main bottlenecks toward increasing the capacity of the
channel. However, some digital methods such as perturbation based pre-distortion (PPD)
[31] [32] and digital back-propagation (DBP) [33] can be used to compensate for these
impairments. PPD with 50 % chromatic dispersion pre-compensating not only can achieve
a 2.4 dB in the relatice MSM on 800 kilometer of TWC fiber but also reduce the complex-
ity significantly by quantizing the C-matrix coefficient [1]. However, fiber nonlinearty is
dependant on several time-variant factors such as

• Polarization mode dispersion (PMD):

Single mode fiber supports two degenerate polarization modes. Internal material
stress, applied pressure, etc. break degeneracy by inducing different propagation
constants along two principal polarization axes. This Phenomenon results in a dif-
ferential group delay (DGD) between polarization modes. Commonly referred to as
first order PMD.
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• Polarization dependent loss (PDL): Optical elements (couplers, WSS, EDFAs)
often exhibit some degree of loss that depends on the state of input polarization.

• Non-uniform power of each span: In order to calculate total C-matrix for more
than one span, one needs to compute weighted sum of each span’s C-matrix with the
output power of each span as its weight. This is not possible practically because the
output power of each span is not deterministic. Learning algorithm can handle this
issue by updating the fiber’s model.

In this chapter, we propose a pre-compensation algorithm shown in Fig 4.1. However
the main advantage of our algorithm is that instead of calculating C-matrix analytically, we
learn C-matrix based on the inputs and outputs of the channel which makes our algorithm
adaptive to different situations of the fiber. Then, we apply the same complexity reduction
methods as [1] to have a fair comparison in terms of performance and complexity. Fur-
thermore, this method is easily extendable to learn higher order terms of the fiber’s model
which analytic C-matrix is not capable of. This chapter is organized as follows. In section
4.2, we introduce the learning procedure and extending it to higher order parameters in
section 4.2.1. In section 4.2.2, we discuss some techniques to reduce the complexity of the
learning algorithm. finally, we compare the performance and complexity of the learning
algorithm with the reference pre-compensation method [1] in section 4.3

4.2 Model

A single channel fiber can be modeled as

rx = Ax + δAx + nx

where rx and Ax are received and transmitted symbols on polarizationX. δAx is the nonlin-
ear noise added according to the equation 2.1 and nx is the Gaussian noise. Encapsulating
triplets of symbols as a term, equation 2.3 can be written as

SPM =
∑
m,n

Cspm
m,nAx(m)

[
Ax(n)A∗x(m+ n) + Ay(n)A∗y(m+ n)] =

∑
m,n

Cspm
m,nAm,n

If we flatten a matrix of triplets as a row
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Figure 4.1: (a) Standard (b) Pre-compensation using Analytic C-matrix [1] (c) Our Algo-
rithm


A11 A12 . . . A1d

A1(d+1) A2(d+2) . . . A1(2d)
...

...
. . .

...
A1,(n−1)d A1,(n−1)d+1 . . . A1d2

 =⇒
(
A11 A12 . . . A1d2

)
Rewriting the equation 4.1 for n number of samples, we can derive a linear system of equa-
tions between triplets of transmitted symbols and received SPM noise.

A1,1 A1,2 . . . A1,d2

A2,1 A2,2 . . . A2,d2

...
...

. . .
...

At,1 At,2 . . . At,d2

...
...

. . .
...

An,1 An,2 . . . An,d2




c1
c2
...
cd2

 =


x1
x2
...
...
xn


or equivalently

A× CL = S (4.1)

where
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Atj = Ax[t+m]Ax[t+ n]A∗x[t+m+ n] + Ax[t+m]Ay[t+ n]A∗y[t+m+ n] (4.2)

Equation 4.1 is a system of linear equations which is overdetermined. This can be translated
to minimizing square-norm of distance between the SPM values and the output of our model
or

min
c1,...,cd2

||S−ACL||2 (4.3)

where S is the observed output (SPM noise + Gaussian noise), A is the matrix of triplets,
and CL is the vector of learned coefficients. We can find parameters of C-matrix by
multiplying pseudo-inverse of matrix A with observed noise vector.

CL = A+S (4.4)

where A+ = (A∗A)−1A and A∗ is hamiltonian transpose of matrix A. Now we have an
estimate of C-matrix.

4.2.1 2D C-matrix to 3D C-matrix

In reference [34] and [35], a general expression of the nonlinear impairments in an optical
fiber is developed which provides a more comprehensive model compared to the equation
2.3. Therefore, we can update the equation of the SPM noise as

SPM =
∑
l,m,n

Cspm
l,m,nAx(m)

[
Ax(n)A∗x(m+ n+ l) + Ay(n)A∗y(m+ n+ l)

]
(4.5)

One of the advantages of the learning algorithm proposed in this work is that it can
be easily extended to include higher order terms of the equation 4.5 for l = ±1. Thus, the
equation 4.1 can be modified as

A1,1 A1,2 . . . A1,d2 . . . . . .A1,3d2

A2,1 A2,2 . . . A2,d2 . . . . . .A2,3d2

...
...

. . .
...

At,1 At,2 . . . At,d2 . . . . . .At,3d2

...
...

. . .
...

An,1 An,2 . . . An,d2 . . . . . .An,3d2





c1
c2
...
cd2
...
...
c3d2


=


x1
x2
...
...
xn
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Figure 4.2: Learned C-matrix for l = 0,±1

Where {ci}d
2

i=1 are corresponding to the zero order C-matrix and {ci}3d
2

i=d2+1 are com-
posing higher order C-matrices.

Fig 4.2 shows the absolute values of the real and imaginary components of the learned
C matrices.

4.2.2 Complexity Reduction

The complexity of pre-compensation method is roughly proportionate to the total number
of C-matrix coefficients and unique coefficients. To reduce these factors some methods are
used in [1] such as quantization and filtering on only some rows and columns of C-matrix.
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(a) Parameteres determining the model complexity (b) Forcing symmertries

Figure 4.3: Efficient learning of C-matrix

Therefore, as shown in Fig 4.5a, the number unique of coefficients is dependent on three
parameteres: 1- Truncation length, 2- Number of horizontal and vertical filters, 3- Number
of quantization levels.

Since we know that nonlinear noise forces the C-matrix to have symmetries, we can
leverage this fact to reduce the complexity of the learning algorithm. For this purpose,
several columns of matrix A which their corresponding C values have symmetry (Fig 4.3b),
can be summed up. This technique can reduce the running time of the learning algorithm
up to the factor of 8.

Moreover, it can be seen in the analytical C-matrix that its coefficients diminishes as
they get farther from the center. Therefore, limiting the learning coefficients to those
around the center and middle axes do not deteriorate the learning results significantly. To
this end, we defined two hyperbolic functions. Our algorithm Only learns those coefficients
inside these two functions and ignores others. This will add a hyper-parameter to our
learning algorithm which will be optimized later.

After fitting the model, we quantize learned coefficients and remove those ones that are
very small relative to highest coefficient to reduce the number of unique coefficients which
is one of the main factors determining the complexity of our algorithm. Fig 4.4 shows both
analytic and learned C-matrix for number of filters (nF) equal to 3, 19 and infinity(Which
means full complexity mode). Evidently, the number of coefficients needed for learning the
C-matrix is far less than the ones calculated with analytical approach.
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Figure 4.4: Learned vs Analytic C-matrix
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(a) Performance of the proposed algorithm compare to the refer-
ence algorithm

Figure 4.5: Efficient learning of C-matrix

4.3 Results

We did experiments for different types of fibers like NDSF, ELEAF and TWC. In lower
launch power, nonlinear noise is not significant compare to ASE noise and increasing the
launch power helps to have a higher total SNR. However, nonlinear noise becomes dominant
in higher launch power and as a result total SNR fall. Therefore, there is a optimum launch
power which lead to the highest SNR. As can be seen in the the Fig 4.5, learning algirthm
results in higher total SNR for higher launch power while keeping the number of coefficients
smaller. Fig 4.5 shows the effectiveness of the learning C-matrix for different level of
complexity reduction. These results opens up a huge opportunity for further research on
designing more accurate and efficient learning algorithms which would be capable of higher
gain in performance and complexity for pre-compensation methods.
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Figure 4.6: (a) Standard (b) unrolled structure
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4.3.1 Iterative Pre-Compensation

We proved that one step pre-compensation improve the total SNR significantly. Now, we
propose to repeat this algorithm more than one iteration to pre-compensate the residuals
of SPM noise resulting from the first iteration. In other words, by learning a new C-matrix
from the pre-compensated input (Ax) and the residual of the SPM noise after iteration one
(δA2) , we expect to be able to model higher order terms in nonlinear noise. The structure
of the iterative pre-cmpensation is shown in the Fig 4.6 which can be formulated as follows
for N number of iteration

Ai+1 = Ai −ACi, i = 0, ..., N

where A is the matrix of triplets (4.1) and Ci is the learned C-matrix at iteration i which
is a function of the original transmitted symbols A0 and the SPM noise at iteration i:

Ci = pinv(A)× δAi

where
δAi = Ri − A0, i = 0, ..., N

where Ai is the stream of data transmitted at iteration i and δAi is the stream of noise at
iteration i. We expect δAi to approach zero as we repeat this algorithm.

The results of the iterative pre-compensation for both ELEAF and NDSF applications
with 16 QAM modulation and 50% inline pre-compensation are reported in Fig 4.7 and
4.8, respectively. Truncation length for all C-matrices used for both Analytical Learning
pre-compensation is fixed to 55 and hyper Constant for learning Algorithm is fixed to
80. As it can be seen in both reduced and Full complexity mode, adding higher order
C-matrices (L = ±1) has improved the total SNR but its improvement is not significant
comparing to the number of coefficients which it adds to the algorithm. On the other
hand, repeating pre-compensation for the 2nd iteration helps significantly especially in
full complexity mode. However, the reduced complexity version of the algorithm does not
perform better at the 2nd iteration for NDSF fiber. This might be caused by the fact that
we use the same complexity reduction techniques in both iterations. The structure of the
C-matrix at higher iterations is not necessarily same as iteration one. So, it might need a
different tricks to reduce its complexity which will be pursued in the future research.

complexity mode, adding higher order C-matrices (L = ±1) has improved the total SNR
but its improvement is not significant comparing to the number of coefficients which it adds
to the algorithm. On the other hand, repeating pre-compensation for the 2nd iteration
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Figure 4.7: Deimos dual polarization 16QAM, eleaf 20 spans, pCt = 0.5, Truncation Length
= 55

helps significantly especially in full complexity mode. However, the reduced complexity
version of the algorithm does not perform better at the 2nd iteration for NDSF fiber. This
might be caused by the fact that we use the same complexity reduction techniques in both
iterations. The structure of the C-matrix at higher iterations is not necessarily same as
iteration one. So, it might need a different tricks to reduce its complexity which will be
pursued in the future research.

4.3.2 Hyper-parameter optimization

The proposed algorithm has two sets of hyper-parameters C-matrices dimensions {dimCi}1i=−1
and hyperbolic constant {Hi}1i=−1 which can be optimized. Fig 4.9 shows the success rate
of the learning algorithm to estimate the SPM noise as a function of dimC and H. The
success rate is increasing by the dimC and H. However, bigger C-matrix means higher
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Figure 4.8: Deimos dual polarization 16QAM, ndsf 20 spans, pCt = 0.5, Truncation Length
= 55
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Figure 4.9: SPM estimation

number of coefficients which is not desirable as determining factor of algorithm complexity.
Therefore, we need to fine tune these parameters to maximize the algorithm performance
while keeping the complexity low. Fig 4.10 reports total SNR after first and second itera-
tion of pre-compensation for truncation length of 15, 25, 35, 55, 75 with Hyper constants
of 20, 50, 80. The number of unique coefficients which is a key factor in determining the
complexity of the algorithm is reported in red color for some of these combinations.

4.4 Summary

In this chapter, we introduced a pre-compensation algorithm which instead of analytic cal-
culation, learns C-matrix based on the inputs and outputs of the channel. This makes the
algorithm robust to different situations of the fiber. Then, we applied the same complexity
reduction methods as [1] to have a fair comparison in terms of performance and complexity.
The other advantage of this method, which is explained in section 4.2.1, is the flexibility
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Figure 4.10: Deimos dual polarization 16QAM, eleaf 20 spans, pCt = 0.5, Truncation
Length = 55

of learning higher order terms which analytic approach is not capable of.

4.4.1 Conclusions

Learning C-matrix not only make pre-compensation robust to many variations in factors
affecting the nonlinear noise, but also improves the performance of while reducing the com-
plexity of the pre-compensation method. Moreover, this approach gives us the felexibilty
of adding higher order terms to estimate the nonlinear noise. Finally, to find the best C-
matrix underlying the fiber-optic systems, we need to rely on iterative pre-compensation
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to mitigate the non-linear noise using a linear approach.

4.4.2 List of contributions

• Proposing an adaptive model of fiber for pre-compensation of nonlinear noise

• Adding high-order terms to the noise calculation

• Proving the effectiveness of iterative pre-compensation empirically to model higher
order nonlinearities

• Proposing several complexity reduction techniques

4.4.3 Future research

The proposed learning algorithm can be even further optimized to achive the best perfor-
mance while reducing the complexity by finding a lower space representation of C-matrices
filters. More importantly, we restricted ourselves to triplets of symbols to calcuate SPM
noise. We can relax this assumption or use a deep neural network (DNN) or recurrent
neural network (RNN) to find the optimum model of the fiber. We decided to implement
the iterative pre-compensation by subtracting the estimated values of the nonlinear noise
directly from the input because of its simplicity and low complexity. In future research,
a more correct model would be calculating the Jacobin matrix of the output of the fiber
with respect to the each one of the coefficients of the C-matrix and apply gradient descent.
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APPENDICES

To make sure that our gradient free iterative pre-compensation algorithm converges, we
introduce two constant values:
1- Constant factor (CF): At each iteration (except iteration 1), learned C-matrix is multi-
plied by this factor.

Ai(t) = Ai−1(t)− CF × A× Ci − 1 (6)

2- Discount Factor (DF): At each iteration, learned C-matrix is multiplied by DF to
the power of the iteration number minus one.

Ai(t) = Ai−1(t)−DF iter−1 × A× Ci − 1 (7)
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Figure 11: Convergence of the iterative pre-compensation
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