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Abstract

Sales time-series forecasters, data scientists and managers often use time-
series forecasting methods to predict sales. Nonetheless, it is still a question
which time-series method a forecaster is best off using, if they only have
time to generate one forecast. This study investigates and evaluates different
sales time-series forecasting methods: multiplicative Holt-Winters (HW), ad-
ditive HW, Seasonal Auto Regressive Integrated Moving Average (SARIMA)
(A variant of Auto Regressive Integrated Moving Average (ARIMA)), Long
Short-Term Memory Recurrent Neural Networks (LSTM) and the Prophet
method by Facebook on thirty-two univariate sales time-series. The data
used to forecast sales is taken from time-series Data Library (TSDL). With
respect to the Root Mean Square Error (RMSE) evaluation metric, we find
that forecasting sales with the SARIMA method offers the best performance,
on average, relative to the other compared methods. To support the findings,
both mathematical and economic reasoning on the drivers of the observed
performance for each method are provided. However, a decision maker or an
organization need to evaluate the trade-off between forecasting accuracy and
the shortcomings associated with each method.
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Chapter 1

Introduction

Forecasting sales is one of a multitude of actions a business must take to
grow (Rao, 1985). Echoing this result, the Aberdeen Group (June 2011)
shows that accurate sales forecasts help companies grow the total company
revenue by 10% year-over-year, and teams are 7.3% more likely to hit overall
attainment of quota (Ostrow, 2013). In addition, no sales forecasts lead to
companies shrinking or ceasing operations (mindykim, 2019).

Time-series forecasting is of great importance not only in industry, but
also academia. In fact, according to Adhikari and Agrawal (2013) "a lot of
efforts have been done by researchers over many years for the development of
efficient models to improve the forecasting accuracy" of time-series. However,
sometimes sales time-series forecasting methods are used without fully un-
derstanding the limitations and applicability of each method (Winters, 1960).
Using forecasts from a method that does not apply to the given time-series
may lead to inaccurate predictions. Hence, a forecaster has to be careful in
choosing a forecasting method suitable to the situation at hand (Purthan
et al., 2014). In this dissertation we help sales time-series forecasters, data
scientists and managers, determine which forecasting method to use. We help
forecasters by testing the accuracy of the four most-common methods and
one new method, all from the literature, for sales forecasting on thirty-two
different sales time-series.

We use univariate time-series methods to forecast sales. The methods we
consider, defined in greater detail in section 3, are Seasonal Auto-Regressive
Integrated Moving Average method (SARIMA) (Box and Jenkins, 1990),
Holt-Winters Exponential Smoothing (HW) method with additive and mul-
tiplicative seasonality (Holt, 2004, Winters, 1960), Long Short-Term Memory
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networks (LSTM) (Hochreiter and Schmidhuber, 1997); a type of Recursive
Neural Network (RNN) and the Prophet method by Facebook (Taylor and
Letham, 2018). We select these methods based on their ability to model
trend and seasonality present in our data.

Our results suggest a sales time-series forecaster is best off using SARIMA
to forecast future sales. We find a similar outcome on the sales data of an
industry partner that motivated this study.

The contributions of this dissertation are:

1. We compare the four most-common sales time-series forecasting meth-
ods and one new sales time-series forecasting method on thirty-two
univariate sales time-series.

2. We provide mathematical and economic reasoning on the drivers of the
observed performance for each method.

In the remainder of this dissertation, we first discuss related work in sec-
tion 2. Next, we describe the methods in section 3 and data in section 4.
We present our analysis and results for each method in section 5. We com-
bine and discuss the result for all methods in section 6. We conclude the
dissertation in section 7.
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Chapter 2

Related Work

Over the last few decades, time-series forecasting is performed using the
established and commonly used HW and ARIMA methods. Conversely, there
are two new methods that are growing in popularity also used to forecast
time-series data, namely LSTM and Prophet. Hence we use two forms of
HW, SARIMA (a variant of ARIMA), LSTM, and Prophet method in our
study. All of the listed methods can identify complex relationships among
time-series data along with trend and seasonality.

In our dissertation, we compare all five methods to one another. To our
knowledge, no such comparison exists in the literature. However, two streams
of literature compare a subset of the five methods. One stream compares the
HW, SARIMA, and Artificial Neural Network (ANN) methods (a form of
regression) for time-series prediction and another stream compares LSTM,
ANN, SARIMA, and Prophet methods for time-series prediction. Not all pa-
pers in each of the streams use sales time-series and not all papers compare
all of the methods to one another. As the literature on time-series forecast-
ing spans multiple disciplines and decades, the list below is not exhaustive
and there may be papers omitted due to fit with our work. Finally, to our
knowledge there is no other that compares all five methods simultaneously.
We now present and discuss the two stream of literature in turn and at the
end of presenting each stream we compare our work to the entire stream.
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2.1 Comparison of HW, SARIMA, and ANN
time-series methods

Cranage and Andrew (1992) uses 79 months of restaurant sales data to com-
pare an econometric method with time-series methods (SARIMA and HW).
Their results show that the SARIMA method performs better in both the ini-
tial period and in the seven month forecasting period. The authors highlight
that restaurant operators with limited time and skills are best to consider
HW but may improve accuracy using the SARIMA method. However, the
study was only specific to one restaurant.

Purthan et al. (2014) forecast Indian motorcycle sales using HW method
and SARIMA method. Using the Least Mean Square Error (MSE), Mean
Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE) as
evaluation measures, authors conclude that the HW method is more precise
and accurate than SARIMA method.

Makatjane and Moroke (2016) show that HW method has greater predic-
tive power in predicting sales relative to SARIMA method using 19 years of
monthly car sales in South Africa. The authors conclude this on basis of a
power test.

Udom (2014) forecast the sales for five different products of a single dis-
tributor in the plastic industry using the Moving Average method (averaging
observations with normalized weights summing to one put on each observa-
tion), HW method, and SARIMA method. Using MAPE as the evaluation
measure, the authors find that the SARIMA method forecast sales best.

Frank et al. (2003) employ single seasonal exponential smoothing (SSES)
(a form of HW without seasonality or trend), the HW, and ANNs methods
for women’s apparel sales forecasting. They find that ANNs show satisfac-
tory goodness-of-fit statistics (R2), but the HW method performs better in
comparing actual sales vs the forecasted sales.

Chu and Zhang (2003) forecast out-of-sample retail sales using both linear
and nonlinear neural networks. According to their result, nonlinear neural
networks are preferred over linear neural networks. The authors state: “de-
seasonalized data (nn-deseason) perform the best overall, while ARIMA and
neural networks using the original data (nn-direct) perform about the same.”
Note that ARIMA is SARIMA without the seasonality components.

Alon et al. (2001) using ANN, HW, SARIMA method, and multivari-
ate regression compare out-of-sample forecasts of monthly aggregated retail
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sales. The researchers conclude that for data without seasonality, HW and
SARIMA methods perform well. However, for data with trend and seasonal-
ity, ANN outperforms all the other methods. On the other hand, Zhang and
Qi (2005) find that ANNs do not handle seasonal patterns in data very well.

Even though all the above literature uses sales data for forecasting, the re-
sults are not consistent with one another. Using one time-series, one method
outperforms other methods, while using another time-series, the once best
performing method is no longer best, all using the same evaluation metric.
Hence, the work of the first stream of literature is insufficient to address the
topics addressed in our dissertation, i.e., what method should a manager or
a data scientist use to forecast sales time-series. We do not use ANNs in
our study as ANNs have no memory of previous time-steps for sequential
data. We also do not use RNNs in our study due to RNNs time-dimension
susceptibility to the vanishing or exploding gradient problem, i.e., RNNs are
not able to capture the features of time-series within a longer time-frame.
Instead we use a specialized RNN layer called Long Short Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997). Similar to some papers in the
first stream, we use HW and SARIMA methods in our dissertation.

2.2 Comparison of LSTM, ANN, SARIMA and
Prophet time-series methods

The results of comparing ANN and LSTM to SARIMA and the Prophet are
thus far, somewhat mixed.

Yu et al. (2018) use the LSTM method to forecast sales. They analyze 66
products consisting of 45 weeks of data. The data has little to no seasonality.
Their results show that LSTM provides accurate predictions for 17 out of 66
products. This may be due to the author not considering seasonality in their
LSTM network, considering only one LSTM network for all 66 products and
insufficient time-series length.

Hu et al. (2018) propose a data driven method that analyzes relations
between precipitation and runoff time-series for flood forecasting. The ex-
perimental data is from 98 rainfall-runoff events where almost 88% of the
data is used for training and the remainder for testing. The authors con-
clude that LSTM and ANN are better than conceptual and physical based
methods, found in the environmental sciences literature. In addition, the

5



results of R2 and Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970)
show that LSTM method is more stable than ANN method.

Samal et al. (2019) proposes two approaches for pollution forecasting
based on the historical data ranging from 2005 to 2015 for the city of Bhubaneswar,
India. Their result based on RMSE and MSE shows that both the SARIMA
and the Prophet methods provides a good quality of accuracy but the Prophet
method on log transformation of the original data is the most accurate
method.

Weytjens et al. (2019) compare SARIMA and Prophet to ANN and LSTM
methods to predict the cash flow. In their work, they introduce a new perfor-
mance measure i.e. Interest Opportunity Cost (IOC). Using IOC and MSE
as their cost functions, they conclude that LSTM is the best method for
forecasting cash flow.

The work of the second stream of literature is insufficient to address the
questions of interest our dissertation as no paper compares all five methods,
and no paper uses the breadth of time-series we use in our dissertation. Sim-
ilar to some papers in the second stream, we use LSTM and Prophet in our
dissertation as LSTM allows us to learn long-term temporal dependencies
as well as read and write information from previous time-steps unlike ANN,
RNN, or Fuzzy time-series methods, which we do not consider in our disser-
tation. For the most studies, the important evaluation measure, RMSE, is
never considered. We use the RMSE as the evaluation metric and is discussed
in more detail in 5.
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Chapter 3

Method Selection

Time-Series methods employed in this study are the Multiplicative and Ad-
ditive Holt-Winters method, SARIMA method, LSTM (RNN) method, and
the Prophet method by Facebook. Each method may have an instance, we
refer to as a model in this study. This section presents a brief overview of
these methods.

3.1 Holt-Winters Exponential Smoothing method
Holt-Winters Exponential Smoothing (HW) method is one of the simplest
and most widely used method in industry for sales data with seasonal pat-
terns and trends. It comprises of the forecast equation and three smoothing
equations (defined in greater detail below): one for the level, one of a trend
component, and one of a seasonal index, each with a corresponding smooth-
ing parameters: α, β, γ, respectively.

The two main variations of the HW method differ in the nature of the
seasonal equation. One method uses an additive seasonal equation (called
additive HW) and the other a multiplicative seasonal equation (called mul-
tiplicative HW). The additive method is preferred, when the seasonal vari-
ations are of the same magnitude throughout the data set, while the mul-
tiplicative method is preferred when the magnitude of seasonal variations
changes with time. The multiplicative HW method is not applicable if the
time-series has null or negative values. Due to this restriction, the multiplica-
tive HW method cannot be applied to sales data with zero sales, something
we encounter in one time-series of this study. We apply both variants of
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the HW method in this dissertation. We next present the parameterized
mathematical equations of the HW method that are fit on a given time-
series (Hyndman, 2010).

Suppose the time-series, X, where X = x1, x2, ...xt for each time period t,
S is the seasonal period (e.g., S = 12 for monthly data). Let ŷt+m|t represent
the forecast of the time-series value m-steps ahead of the observed value at
time t.

Then basic equations for multiplicative HW method are as follows:

Level : lt = α(xt/st−S) + (1− α)(lt−1 + bt−1), (3.1)

Trend : bt = β(lt − lt−1) + (1− β)bt−1, (3.2)

Seasonal : st = γ(xt/(lt−1 + bt−1)) + (1− γ)st−S, (3.3)

Forecast : ŷt+m|t = (lt + btm)st+m−S. (3.4)

Above, lt is the level of sales at time t, bt is the trend of sales at time t,
st is the seasonal component at time point t, st+m−S is the seasonal compo-
nent given seasonality S and step m. The parameters estimated in the HW
method, α, β, and γ are restricted to lie between 0 and 1.

Similarly, the basic equations for the additive HW method are as follows:

Level : lt = α(xt − st−S) + (1− α)(lt−1 + bt−1), (3.5)

Trend : bt = β(lt − lt−1) + (1− β)bt−1, (3.6)

Seasonal : st = γ(xt − lt−1 − bt−1) + (1− γ)st−S, (3.7)

Forecast : ŷt+m|t = lt + btm+ st+m−S. (3.8)

The trend equation remains the same as the multiplicative method, but
the other equations replace seasonal products and ratios with additions and
subtractions, respectively. The level equation is the weighted average of the
seasonally adjusted observation, first term on the right-hand side of (3.5), and
non-seasonal forecast; the seasonal equation, (3.7), is the weighted average
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of the current seasonal index and the seasonal index of the same season the
previous season.

We next present how the multiplicative HW method is used to forecast
sales of company X (Chatfield and Prothero, 1973). We also present how the
additive HWmethod is used to forecast monthly sales of carpet (Montgomery
and Johnson, 1976). We use statsmodel (Seabold and Perktold, 2010) in
Python for both HW methods. For a time-series, level is the average value of
the time-series, trend is the tendency of the time-series to increase or decrease
over time (used to determine yt+1 from xt), seasonality is the cyclical patterns
of fixed frequency in the series (used to determine yt+S from xt).

Below figure 3.1a shows the time-series of sales of company X, Jan. 1965
to May 1971 (Chatfield and Prothero, 1973). Its decomposition plot is shown
in figure 3.1b below. We can see from both the plots that data has consistent
upward trend, exhibit a seasonal pattern and the amplitude of the seasonal
cycle increases over time. Hence the time-series may be predicted using the
multiplicative HW method.

(a) time-series of monthly sales of com-
pany X

(b) Decomposition plot of monthly
sales of company X

Figure 3.1: Time-series plot and decomposition plot of company X

Below figure 3.2a shows the time-series of monthly demand of carpet (Mont-
gomery and Johnson, 1976). Its decomposition plot is shown in figure 3.2b
below. We can see from both the plots that data has consistent upward
trend, exhibit a seasonal pattern and the amplitude of the seasonal cycle
remains constant over time. Hence the time-series may be predicted using
the additive HW method.
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(a) Time-series of monthly sales of carpet
(b) Decomposition plot of monthly
sales of carpet

Figure 3.2: Time-series plot and decomposition plot of sales of carpet

3.2 Seasonal Auto Regressive Integrated Mov-
ing Average method

Seasonal Auto Regressive Integrated Moving Average (SARIMA) is a mod-
ification of the Box-Jenkins method that proposed Auto Regressive Inte-
grated Moving Average (ARIMA) (Box and Jenkins, 1990). Before we dis-
cuss SARIMA, we will briefly discuss ARIMA. ARIMA uses three principles:
the Auto Regression (AR), Moving Average (MA), and an integrated term
(I). In notation, ARIMA(p, d, q) comes from three parts where p is the
autoregressive order which allows the method to incorporate past values in
forecasting future values, d is number of nonseasonal differences needed for
stationarity, and q is the moving average order which relies on number of
lagged forecast errors for obtaining the forecast values.

When determining whether to use ARIMA or SARIMA, we must look at
the time-series seasonality, as defined in section 3.1. The ARIMA method
is used when the time-series does not show any seasonal patterns while the
SARIMA method is used otherwise. To apply ARIMA method one must
first determine the differencing order, d so that the method may be applied
to a stationary time-series. With SARIMA method, in addition to the dif-
ferencing order, d to make the resulting time-series stationary, we must also
conduct seasonal differencing, D, to account for time-series seasonality. This
additional seasonal differencing is the main difference between ARIMA and
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SARIMA.
The SARIMA method includes both nonseasonal and seasonal factors in a

multiplicative method and is expressed as ARIMA(p, d, q)(P,D,Q), where p
is nonseasonal AR order, d is nonseasonal differencing, q is nonseasonal MA
order, P is seasonal AR order, D is seasonal differencing, Q is seasonal MA
order, and S is number of periods per season (e.g. S is 12 for monthly data).

Thus a multiplicative SARIMA method is obtained which has the form
(Shumway and Stoffer, 2010):

Φp(B
s)φp(B)∇D

s ∇dxt = ΘQ(Bs)θq(B)εt (3.9)

Where the time-series, X, where X = x1, x2, ...xt for each time period t, εt is
Gaussian white noise process, B is a backward shift operator which means
"shift by one time unit" and is defined by Bkxt = xt−k.
The operator polynomials are

Ordinary autoregressive : φp(B) = (1− φ1B − ...− φpB
p) (3.10)

Ordinary moving average : θp(B) = (1− θ1B − ...− θpBp) (3.11)

Ordinary difference : ∇d = (1−B)d (3.12)

Seasonal autoregressive : Φp(B) = (1− Φ1B − ...− ΦpB
p) (3.13)

Seasonal moving average : Θp(B) = (1−Θ1B − ...−ΘpB
p) (3.14)

Seasonal difference : ∇D
s = (1−Bs)D (3.15)

Box-Jenkins method is an iterative approach that consists of the following 3
steps:

1. Address the time-series stationarity and seasonality, if necessary, then
determine autoregressive and moving average components of the time-
series (Model identification)

2. Fit selected model to data (Estimation and Evaluation)

3. Diagnostic test to check for autocorrelation in the model, i.e., the error
term is independent of the estimates
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Any model that passes through the three steps above may then be used for
forecasting the fitted time-series. In the remainder of the section we discuss
each one of the three steps above in greater detail.

We must first determine if the time-series is stationary or not. To test the
stationarity of the time-series, we use the Augmented Dickey–Fuller (ADF)
test (Dickey and Fuller, 1979). The null hypothesis of the ADF test is that
there is a unit root in the time-series. As indicated in our analysis, most of
the time-series result in an ADF test that fails to reject the null hypothesis.

We now move to step 2 where we fit a SARIMA or ARIMA method,
depending on the existence of seasonality. As a sub-step we must first make
the time-series stationary. The time-series we consider may be non-stationary
due to either trend or seasonality or both. We address both by differencing
observations, but trend may also be addressed by taking the log transform
of the time-series. After transforming the time-series we run the ADF test
on the transformed time-series to confirm it is stationary. We now move to
determining the lags to use in forecasting the time-series, p, q, P and Q.
We use the Auto-Correlation Function (ACF) and Partial Auto-Correlation
Function (PACF) plots to help determine p, q, P and Q. On basis of ACF
and PACF plots and the suggested rules (Nau, 2014), we identify and de-
termine the parameters of the SARIMA or ARIMA method. Next, we use
Akaike’s information criterion (AIC) (Akaike, 1998) to select most parsimo-
nious method for forecasting. AIC is an estimator of the relative quality of
statistical methods for a given time-series and is given by (Akaike, 1998):

AIC = 2k − 2ln(L̂), (3.16)

where k is the number of estimated parameters in the method and L be the
maximum value of the likelihood function for the method. Moreover, we use
automatic method selection method, auto_arima() in python that performs
grid search to give best combination of SARIMA method on the basis of AIC.

Next, we fit the method and conduct a diagnosis test through LjungeBox
Q-statistics (Ljung and Box, 1978). As a part of a diagnostic check, we also
examine the autocorrelation function of the residual to check for overfitting
by the method. Once the SARIMAmethod is statistically appropriate, i.e., p-
value of LjungeBox Q-statistics is larger than the 0.05 and residuals are both
random and approximately normal, we perform out-of-sample forecasting and
measure the RMSE forecasting accuracy.
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3.3 LSTM Neural Network method
LSTM stands for Long Short-Term Memory Recurrent Neural Network and
are used for time-series forecasting. LSTMs are capable of learning long-term
dependencies by creating special type of structures called memory cells and
gate units. LSTMs address the problem of insufficient, decaying error back-
flow in Vanilla Recurrent Neural Networks (RNNs), i.e., RNNs are not able
to capture the features of time-series within a longer time horizon (Hochreiter
and Schmidhuber, 1997). LSTMs are applied to forecast time-series.

Figure 3.3 shows an LSTM memory cell. We can see from figure 3.3 that
the previous output, ht−1 and Ct−1, is processed together along with the
current input, xt through all three steps of a memory cell: forget, input, and
output. The forget gate defines what information is removed from cell state
while input gate and output gate is used specify what information is added
and used respectively from the cell state (Hu et al., 2018).

Figure 3.3: LSTM memory cell reproduced from Yu et al. (2018)

In figure 3.3 we use the notation by Yu et al. (2018) and denote the time
series as X = x1, x2, ...xt and only xt is the input at each period t, ht is the
output with respect to xt, ht−1 is the output of the previous memory cell
(ht−1 may also be referred to as a hidden state), Ct is the cell state while
Ct−1 is the cell state of the previous cell.

Figure 3.4 shows an LSTM network with three memory cells for time
series forecasting. Here three consecutive time-steps are used to produce the
fourth time-step as an output.
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Figure 3.4: LSTM network with three memory cells for time series forecasting
reproduced from Yu et al. (2018)

We next present how LSTM method is used in this study. We implement
LSTM methods using the python library Keras Chollet et al. (2015). We de-
fine a sequential model with 50 to 200 LSTM memory cells (depending on the
size of data and efficiency of model) in the hidden layer and an output layer
for prediction. The model is fit using the Adam version of stochastic gradi-
ent descent, defined by Kingma and Ba (2014), and model parameters are
determined relative to the mean squared error (mse) and root mean squared
error (rmse) loss functions. We then perform out-of-sample forecasting and
measure the RMSE forecasting accuracy.

3.4 Prophet method
nProphet is an open-source forecasting tool published by Facebook’s core
data science team and is available in Python (Van Rossum and Drake Jr,
1995), and R (R Core Team, 2013). Prophet is developed for typical Facebook
issues such as predicting user activities. This makes the Prophet method
convenient for predicting seasonalities, special events, data with holidays,
data showing outliers and data with varying trend.

The Prophet method uses a framework called “Analyst-in-the-Loop" as
shown in figure 3.5 below.
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Figure 3.5: Analyst-in-the-Loop Modeling reproduced from Taylor and
Letham (2018)

The framework is double-sided where on one side model fitting is auto-
mated assuming that the user has no statistical knowledge, while on other
side the framework allows the same user to input information based on their
domain/industry knowledge.

The Prophet procedure is an additive regression method which belongs
to the Generalized Additive Model (GAM) family with the following compo-
nents and functional form:

y(t) = b(t) + s(t) + f(t) + εt. (3.17)

In equation (3.17), b(t) captures trend in the time-series, s(t) captures time-
series seasonality, f(t) captures holidays or special events in the time-series
and εt is an irreducible error term. In any instance of the Prophet method,
only εt is always present, the remaining three terms may not always be
present, as they have to be provided by the user. Now, we will explain
each component in greater detail.

b(t) models non-periodic changes (trend) in the time-series. The Prophet li-
brary implements piece-wise linear trend model where the growth rate
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remains constant and nonlinear trend model where growth rate de-
creases with time t. In the current implementation of Prophet, growth
rate cannot increase with time.

s(t) Seasonality represents periodic changes (daily/weekly/monthly/yearly
seasonality) in the time-series.

f(t) Holidays component contributes information about holidays and events
as is provided by the user.

The Prophet method uses a curve fitting technique for the time-series
fit. The method is fitted automatically using Stan code (Carpenter et al.,
2017) that takes seasonality, trends, and holidays into account. Prophet’s
robustness, ease of configuration and being fast to fit attracts non-experts
and users with limited statistical knowledge to deploy Prophet within their
organization.
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Chapter 4

Data

The study compares the five prediction method, additive HW, multiplicative
HW, SARIMA, LSTM, and Facebook’s Prophet on 32 different sales time-
series. The time-series comes from the time-series Data Library (TSDL)
(Hyndman and Yangzhuoran, 2019). TSDL is continually evolving and new
time-series are added, for this document we use most recent version of the
library as of September 14, 2019. In total, TSDL has about eight hundred
time-series and the library is created and managed by Rob Hyndman, Pro-
fessor of Statistics at Monash University, Australia. These time-series comes
from different areas and are widely used in the applied statistics literature.
There are a total of forty-six sales time-series in TSDL that contain both
univariate and multivariate time-series. The dataset contains daily, weekly,
monthly, quarterly and yearly time-series. We use thirty two univariate time-
series for our analysis, as this project is motivated by a project conducted
by an industry collaborator interested in forecasting a univariate sales time-
series. Due to privacy concerns from our industry collaborator, we do not use
any of their data in our study. We consider data of each granularity for our
study, i.e., daily, weekly, monthly, quarterly and annually. We use 1 daily, 7
weekly, 20 monthly, 3 quarterly and 1 yearly time-series for forecasting. We
normalize each time-series to fall within the range of 1-2, further details are
provided below in the preprocessing steps. The two reasons we choose TSDL
are as follows:

1. It provides freely accessible, high-quality data.

2. Many time-series data exhibits variable behavior including but not lim-
ited to trends and seasonal patterns.
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Readers can refer to the TSDL package (Hyndman and Yangzhuoran, 2019)
for more information about the time-series. A complete list of the trans-
formed time-series, their sources, their descriptions and some necessary in-
formation about each is provided in Table 4.1.

Table 4.1: Summary of thirty-two transformed sales time-series data from
Time Series Data Library (TSDL)

Time-series Mean Granularity No. of Observations Stationary/
Non-stationary Source Description

1 1.444741 Monthly 192 Non-Stationary Abraham and Ledolter (1983) Monthly
gasoline demand Ontario gallon millions 1960-1975

2 1.456246 Monthly 132 Non-Stationary Abraham and Ledolter (1983) Monthly
sales of U.S. houses (thousands) 1965-1975

3 1.439682 Monthly 108 Non-Stationary Abraham and Ledolter (1983) Monthly
car sales in Quebec 1960-1968

6 1.312274 Monthly 36 Non-Stationary Bowerman et al. (1993) Monthly
sales of Tasty Cola

10 1.09596 Monthly 36 Non-Stationary Makridakis et al. (1998) Sales
of product C

11 1.223384 Daily 1067 Stationary John C Nash Daily
net retail sales. 5 May 2000-6 April 2003

12 1.364915 Weekly 104 Non-Stationary Makridakis and Wheelwright (1989) Der
Stern: Weekly sales of wholesalers 71-72

13 1.415841 Weekly 104 Non-Stationary Makridakis and Wheelwright (1989) Der
Stern: Weekly sales of wholesalers A, 71-72

14 1.386321 Weekly 104 Non-Stationary Makridakis and Wheelwright (1989) Der
Stern: Weekly sales of wholesalers A, 71-72

15 1.383766 Weekly 104 Non-Stationary Makridakis and Wheelwright (1989) Der
Stern: Weekly sales of wholesalers B, 71-72

16 1.292798 Weekly 104 Non-Stationary Makridakis and Wheelwright (1989) Der
Stern: Weekly sales of wholesalers B, 71-72

17 1.267788 Monthly 105 Non-Stationary Makridakis and Wheelwright (1989) Perrin
Freres monthly champagne sales millions 71-72

18 1.511335 Monthly 147 Non-Stationary Makridakis and Wheelwright (1989) CFE
specialty writing papers monthly sales

22 1.122828 Monthly 84 Non-Stationary Makridakis et al. (1998)
Monthly

sales for a souvenir shop on the wharf at a beach resort town in Queensland,
Australia. Jan 1987-Dec 1993

23 1.40489 Quarterly 24 Non-Stationary Makridakis et al. (1998) Quarterly
reports of a French company

24 1.435189 Monthly 275 Stationary Makridakis et al. (1998) Monthly
sales of new one-family houses sold in the USA since 1973

25 1.516926 Monthly 107 Non-Stationary Makridakis et al. (1998) Sales
of new one-family houses, USA, from Jan 1987 through Nov 1995

28 1.343522 Monthly 36 Non-Stationary Makridakis et al. (1998) Sales
of shampoo over a three year period

29 1.495071 Monthly 60 Stationary Makridakis et al. (1998) Monthly
sales of product A for a plastics manufacturer

30 1.629764 Monthly 120 Non-Stationary Makridakis et al. (1998)
Industry

sales for printing and writing paper (in Thousands of french francs) January
1963-December 1972

31 1.525568 Monthly 48 Non-Stationary Montgomery and Johnson (1976) Monthly
demand for carpet (p.272: Montgomery: Fore. & T.S.)

32 1.261598 Monthly 96 Non-Stationary Montgomery and Johnson (1976) Monthly
champagne sales (in 1000’s) (p.273: Montgomery: Fore. & T.S.)

34 1.394231 Monthly 65 Stationary Montgomery and Johnson (1976) Weekly
sales for a novelty item (p.37-38: Montgomery)

35 1.522088 Weekly 100 Non-Stationary Montgomery and Johnson (1976) Weekly
demand for a plastic container (Montgomery & Johnson)

37 1.588659 Weekly 100 Non-Stationary Montgomery and Johnson (1976) Weekly
sales of a cutting tool (p.270, Montgomery: Fore. & T.S. )

39 1.472862 Monthly 48 Non-Stationary Montgomery and Johnson (1976) Monthly
sales of soft drink (hundreds of cases) (p.272: Montgomery)

40 1.307122 Monthly 77 Non-Stationary Chatfield and Prothero (1973) Monthly
sales of company X Jan 65 - May 71

41 1.438964 Monthly 178 Non-Stationary O’Donovan (1983) Monthly
empolyees wholes/retail Wisconsin 61-75 R.B.Miller

43 1.245656 Monthly 64 Non-Stationary Roberts (1992) Monthly
unit sales, Winnebago Industries, Nov. 1966 - Feb. 1972

44 1.450525 Quarterly 28 Non-Stationary Roberts (1992) Quarterly
sales of SPSS manual, second edition, Jan. 1976 through April 1982

45 1.33656 Annualy 108 Non-Stationary Roberts (1992) Annual
domestic sales and advertising of Lydia E, Pinkham Medicine, 1907 to 1960

46 1.377261 Quarterly 39 Non-Stationary NA Quarterly
retail turnover: $m current. Jun 1982 - Dec 1991

Most of the time-series in Table 4.1 are non-stationary. In addition, of
the non-stationary time-series some show only seasonality, some exhibit only
a trend, while some possess both seasonality and trend. Time-series that we
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find, therefore, require pre-processing. The following steps are implemented
as a part of preprocessing:

1. Impute missing sales observations in the time-series using linear inter-
polation method whenever needed.

2. We then use the Min-Max scaling to normalize sales data. This nor-
malization can be formally defined as follows:

Xsc =
X −Xmin

Xmax −Xmin

+ 1 (4.1)

Here, Xsc represent the normalized sales data. As a consequence of
normalization, data ranges from 1-2. Please note that the addition of 1
in (4.1) is our variant of the algorithm and we add 1 in order to apply
multiplicative version of the HW method to the time-series.

We split the time-series data into two sets for cross-validation purposes:
training and testing. The training data was the first 80 − 85% of the time-
series data for each time-series. The testing data was the remaining 15−20%
of the time-series data. For example, if a time-series consists of 100 days,
numbered 1 through 100, then the training data of the first 80% is days 1
through 80, inclusive, and the testing data is days 81 through 100, inclusive.
We consider only one one-step ahead forecasting for our study, i.e., we fit
our model only once. We use pandas (Mckinney, 2010), numpy (Oliphant,
2006), matplotlib (Hunter, 2007), statsmodels (Seabold and Perktold, 2010),
scikit-learn (Pedregosa et al., 2011), keras (Chollet et al., 2015), seaborn (Vir-
tanen et al., 2019), and fbprophet (Taylor and Letham, 2019) to implement
the models in the Python environment (Van Rossum and Drake Jr, 1995).
Analysis is done in Jupyter Notebook (Kluyver et al., 2016).
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Chapter 5

Results

The following section presents how sales are predicted by each model.

5.1 Performance Criteria
We use Root Mean Square Error (RMSE) as the evaluation measure. RMSE
can be defined as follows:

RMSE =

√
Σn

i=1(ŷt − xt)2
m

(5.1)

where xt is the actual value at time t, ŷt is the prediction value at time t and
m is the number of time steps. Lower RMSE value implies better accuracy.
We use RMSE as the evaluation metric in our study for the following reasons:

1. RMSE punishes large errors more than MAE and MAPE, two com-
monly used evaluation metrics in the literature. For this reason our
industry partner requested we use RMSE, as large errors are especially
unacceptable in their setting.

2. RMSE avoids using absolute value unlike MAE. It is highly undesirable,
from a computation perspective, to use absolute value in measuring
model error sensitivities or for data assimilation applications (Chai and
Draxler, 2014).

3. RMSE is derived from the sample average, while MAE is derived from
the sample median. If data is skewed, then the median falls below the
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average which is not be acceptable, at least to our industry partner.
In addition, MAE results in poor forecasts for intermittent data (data
with many periods of no demand) (Vandeput, 2018).

4. MAE is less sensitive to long tailed distributions, due to approximating
the median. This is an undesirable property for our study, as our
industry partner is concerned with extreme values of the distribution.

5.2 Time-Series Fit Results
In order to compare the five-time-series forecasting methods, we fit each of
method to each of the thirty-two sales time-series. After preprocessing the
time-series (as described in section 4), we fit each of the time-series fore-
casting methods using the training data and measure the fitted model on
the testing data to determine each methods forecasting accuracy, measured
using RMSE. The RMSE values for each time-series and time-series fore-
casting method are presented in table 5.1. For example, the performance of
SARIMA on time-series 10 is 0.115019086. For each row, time-series, the
RMSE value of the best forecasting method for is the one with a white back-
ground in table 5.1. We use a grey color gradient to capture the RMSE
values in ascending order, with the highest RMSE value having the darkest
grey background.
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Table 5.1: The obtained out-of-sample forecasting results

Holt-Winters MethodTime-Series Additive Multiplicative SARIMA LSTM Prophet

1 0.052718476 0.047197678 0.04379352 0.0565074 0.063169587
2 0.362147886 0.339159135 0.216381818 0.114771638 0.233960167
3 0.081430551 0.084518051 0.088315154 0.114717893 0.09347953
6 0.105357268 0.079594544 0.011710945 0.071115282 0.15177958
10 0.362472624 0.380228945 0.090905397 0.052263324 0.532592047
11 0.169044221 0.15123353 0.063372383 0.216759328 0.064594451
12 0.457803373 0.716419407 0.118663012 0.426921697 0.33688178
13 0.273247357 0.423289868 0.124115385 0.37293235 0.417652742
14 0.423605793 0.551439853 0.153340255 0.164004374 0.344218624
15 0.322388095 0.451495754 0.068349105 0.236286005 0.308324887
16 0.477080293 0.509248565 0.062846976 0.237123006 0.347998358
17 0.036343298 0.046946161 0.027581641 0.048944797 0.054571149
18 0.303222317 0.310348304 0.327293065 0.475275638 0.315665002
22 0.453506917 0.498518553 0.173066273 0.36836919 0.13699539
23 0.086800418 0.071112304 0.077070271 0.056690928 0.077232278
24 0.043057577 0.060095778 0.076900427 0.076009868 0.079034887
25 0.104473268 0.12102555 0.109445989 0.168706033 0.1767096
28 0.227664811 0.267840435 0.337413552 0.203460253 0.386050892
29 0.635004862 0.371527685 0.168286419 0.294129172 0.581238058
30 0.070358196 0.062185129 0.070714207 0.095460833 0.089778998
31 0.060220246 0.120796422 0.023162358 0.045112556 0.026566921
32 0.082502227 0.069788167 0.058709611 0.051181117 0.056373376
34 0.140073523 0.142644695 0.14244647 0.132333604 0.216321316
35 0.952119524 1.15274414 0.44595928 0.123842699 0.598523979
37 0.60429911 0.799753769 0.115187179 0.652799928 0.330400601
39 0.172658603 0.190830059 0.120100865 0.095619582 0.067967304
40 0.100362698 0.097844025 0.130138999 0.105133063 0.14320691
41 0.029135486 0.009732091 0.005462345 0.036034472 0.028491471
43 0.290354341 0.278373674 0.300301405 0.280337001 0.298611941
44 0.194622891 0.211984287 0.166228902 0.168538519 0.14476153
45 0.098849004 0.122250752 0.065715554 0.149223962 0.238204715
46 0.029990256 0.028664263 0.037490268 0.096501547 0.05206334

The following can be observed from the results obtained in table 5.1:

1. The SARIMA method performs significantly better in terms of RMSE
(15 out of 32) than the other methods.

2. The next best performing model is the LSTM method, which may also
be considered for forecasting sales.
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3. HW Multiplicative, HW Additive and the Prophet methods all perform
nearly equal in forecasting sales.

4. Overall the SARIMA and LSTM methods are favoured for sales fore-
casting over either the Prophet or both HW methods.

We summarize table 5.1 by showing the percentage of time-series each
method is the best performing method in table 5.2.

Table 5.2: The overall performance in percentage of the compared methods
on the 32 sales time-series

Method % Time Best
SARIMA 47%
LSTM 22%

Multiplicative HW 13%
Additive HW 9%

Prophet 9%

One can observe in table 5.2 that the SARIMA method performs the best
(47%) followed by LSTM (22%),Multiplicative HW (13%), and Additive HW
(9%) and lastly Facebook’s Prophet method (9%).

5.3 Insight into the comparison results
The following section will provide the comparison and insights of the thirty-
two univariate sales time-series as mentioned in the in section 1. To seek
more insight into the comparison results, we take the minimum RMSE value
of each time-series, across all forecasting methods, and deduct the minimum
RMSE value from the RMSE values of all the time-series forecasting methods.
This means that for each time-series, there will be at least one “modified”
RMSE with a value of zero, which is the minimum RMSE value. We do not
show the modified version of table 5.1, for space considerations. However, we
superimpose the modified RMSE values in figure 5.1 to provide insight into
the relative distributions of the RMSEs across all five time-series forecasting
methods.

Few things of interest to keep in mind when reading figure 5.1:
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(a) Additive HW (b) Multiplicative HW

(c) SARIMA (d) LSTM

(e) Prophet

Figure 5.1: Insights into comparing results
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1. Bins begin at the same interval of 0.01 from 0 to 0.1 and then rise to
0.1 from 0.1 to 0.9.

2. The closer a method appears on the left of the figure, the better that
method at predicting the true value.

3. The figure indicates the relative difference in performance between the
methods and not the individual performance.

One can see in figure 5.1c distribution of relative errors for SARIMA is left
skewed (echoing the results in table 5.2) indicating the SARIMA method is
likely the best for forecasting sales time-series. One can also see from the fig-
ure 5.1d that the LSTM method tends to be very close to zero suggesting that
the LSTM method for sales forecasting may also be appropriate. However,
the LSTM relative error may also be quite large as it appears multiple times
in bins capturing values greater than 0.1. This indicates the LSTM method
may not be best method to use. The remaining three methods, Prophet,
multiplicative and additive HW are not skewed to the left. This means that
all methods, other than the SARIMA method, may have large predictive er-
rors, relative to the best performing method, in expectation. This attribute,
of not being left skewed, suggests that Prophet, multiplicative and additive
HW are not a good method to use for an unknown time-series.
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Chapter 6

Discussion

In Section 5 we compared the five sales time-series forecasting methods. In
this section we provide mathematical and economic reasoning on the drivers
of the observed performance.

6.1 Mathematical reasoning
The mathematical reasoning on the drivers of the observed performance for
each method are as follows:

1. The effects of forecasting using the HW method often depend on the
pattern of the last trend period, i.e., the most recently observed sample.
As seen in table table 5.1 and table 5.2, neither type of HW method
work well in predicting future sales. Therefore, we are left to postulate
that the time-series used in our study depend on more than just the
last trend period (Kalekar, 2004). According to Gelper et al. (2007),
any sort of transformation may improve prediction accuracy, something
not considered in this dissertation.

2. We note that SARIMA models may have many combinations of pa-
rameters and terms. One may use the auto_arima function in python
to automatically build a SARIMA model. However, we find that by
fine-tuning parameters ourselves, we can improve the model’s accuracy.
The fine tuning helped us find the correct AR and MA terms, as sug-
gested by Nau (2014), using the ACF and PACF plots. This suggests
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that our fine tuning may result in SARIMA performing better than one
may expect find when only using the auto_arima function.

3. For the LSTM model, we use a sequential model for each time-series
with 50 to 200 LSTM memory cells in the hidden layer and an output
layer. The model fits using the stochastic gradient descent version of
Adam and is optimized using the loss functions of MSE and RMSE.
However, it remains unclear if accuracy may be improved if we use
a different LSTM structure, something currently not explored in this
study. Fine tuning the LSTM structure may improve its performance.

4. We built the Prophet model on the original data automatically for our
research. However, no holiday details are used for any of the time-series.
As suggested in the paper (Taylor and Letham, 2018), domain/industry
knowledge can boost the model’s accuracy, something not available
in this research study and may limit the performance of the Prophet
model.

6.2 Economical reasoning
The economical reasoning on the drivers of the observed performance for the
methods are as follows:

1. Including managerial expertise is one of the important and difficult
steps in the sales forecasting process. A decision-maker or forecaster
is often familiar with issues such as a possible strike and expected
regulatory change. Since these events are rare they may not appear in
the time-series. The use of the SARIMA time-series forecasting method
and including these independent variables will aid businesses in decision
making, something we have not considered in this dissertation due to
only considering univarite time-series.

2. Business users need the fastest and simplest possible short-term fore-
casting. The time to find the best fit model varies for each time-series
forecasting method. The Prophet model is an automated system that
takes a few seconds to run, and managers and users may prefer it to
other time-series forecasting methods. In addition, due to their robust-
ness and unique features, HW methods do not take long to fit, and
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there is an advantage of not having to set parameters. Unlike the HW
methods, both SARIMA and LSTM require parameters to be set. In
addition, both methods take longer than than HW to fit on a given
dataset.

3. Though SARIMA methods perform best on sales time-series, the need
to set parameters may make them less appealing to decision makers
not comfortable with statistics. As such, it is important to keep in
mind the tradeoff between no forecasts, qualitative (gut/experiential)
forecasts, quantitative (data-driven) without parameters, and quanti-
tative (data-driven) with parameters. It is up to a decision maker and
an organization to determine where on the spectrum the like to lie.
This research study sheds light on the last two ways to generate fore-
casts: quantitative (data-driven) without parameters and quantitative
(data-driven) with parameters. Our findings suggest that for quantita-
tive (data-driven) with parameters SARIMA is the the best sales time-
series forecasting method, and for quantitative (data-driven) without
parameters multiplicative HW is best. With that said, as previously
discussed this study is a needed first step, and additional explorations
are needed to definitely make the claims regarding which method to
use.
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Chapter 7

Conclusion and Future Work

The main goal of this study is to help sales time-series forecasters, data
scientists and managers by a comparative study using Multiplicative HW,
Additive HW, SARIMA, LSTM and Prophet methods of time-series fore-
casting. These methods are chosen according to their abilities to identify
complex relationships among time-series data with trend and seasonality. In
this dissertation, we presents the empirical comparative evaluation of the
performance of the each mentioned methods for short-term sales forecasting
on thirty-two different sales time-series taken from time-series Data Library
(TSDL) (Hyndman and Yangzhuoran, 2019).

Our findings suggest that for quantitative (data-driven) methods with
external parameters SARIMA is the the best method to use for sales time-
series forecasting. For quantitative (data-driven) methods without external
parameters multiplicative HW is the best method to use for sales time-series
forecasting. This conclusion is based on the comparison of the smallest RMSE
values on each of the thirty-two different sales time-series. We support our
findings by providing mathematical and economic reasoning on the drivers
of the observed performance for each method.

We show that even though SARIMA methods perform well overall, it has
computational and practical shortcomings. Computationally, a SARIMA
method may take much longer to fit to a dataset than a HW method, in the
order of hours for small time-series, but much longer for larger time-series.
Practically, due to the need for external parameters, the SARIMA method
requires training to use and may not be easily accessible to a novice. These
two shortcomings may make SARIMA methods less appealing to decision
makers not comfortable with statistics. A decision maker and an organization
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need to evaluate the trade-off between forecasting accuracy and the above-
mentioned SARIMA shortcomings. We also show that both the LSTM neural
network method and Prophet method are unable to fully capture the behavior
of sales time-series.

In the future, one needs to further examine the impact of other external
factors in order to increase the reliability of the generated time-series fore-
casts. In order to generalise the results, the same five methods need to be
further tested on time-series with different attributes. For example, different
length of time-series, as well as multivariate and not only univariate time-
series need to be considered. In addition to the adding additional time-series
lengths and observation types, one will ideally incorporate domain/industrial
knowledge (LSTM and Prophet), holiday events (Prophet), and/or various
model structures (LSTM and SARIMA) in future studies. Though we have
not been able to incorporate the listed next steps in this dissertation, we
think this dissertation a necessary first step in determining the appropri-
ate method to use when predicting sales time-series. We also hope future
studies conduct analogous studies to this one for other types of time-series.
Inherently sales time-series are a model of demand, but another aspect of
profit is costs, which may be inherently contingent on a firms policies, such
as maintenance, growth, or hiring practices. We suspect that the methods
listed above may not perform the same for cost time-series as they do for
sales time-series.
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