
Detection of Anomalous Behavior of
Wireless Devices using Power Signal
and Changepoint Detection Theory.

by

Ricardo Alejandro Manzano

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2019

c© Ricardo Alejandro Manzano 2019

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Anomaly detection has been applied in different fields of science and engineering over
many years to recognize inconsistent behavior, which can affect the regular operation of de-
vices, machines, and even organisms. The main goal of the research described in this thesis
is to extract the meaningful features of an object’s characteristics that allow researchers
recognize such malicious behavior.

Specifically, this work is focused on identifying malicious behavior in Android smart-
phones caused by code running on it. In general, extraneous activities can affect different
parameters of such devices such as network traffic, CPU usage, hardware and software
resources. Therefore, it is possible to use these parameters to unveil malicious activities.
Using only one parameter can not guarantee an accurate model since a parameter may be
modified by cybercriminals to act as a benign application. In contrast, using many param-
eters can produce excessive usage of smartphone’s resources, or/and it can affect the time
of detection of a proposed methodology. Considering that malicious activities are injected
through the software applications that manage the usage of all hardware components, a
smartphone’s overall power consumption is a better choice for detecting malicious behavior.
This metric is considered critical for anomaly analysis because it summarizes the impact
of all hardware components’ power consumption. Using only one metric is guaranteed to
be efficient and accurate methodology for detecting malware on Android smartphones.

This thesis analyzes the accuracy of two methodologies that are evaluated with emulated
and real malware. It is necessary to highlight that the detection of real malware can be a
challenging task because malicious activities can be triggered only if a user executes the
correct combination of actions on the application. For this reason, in the present work,
this drawback is solved by automating the user inputs with Android Debug Bridge (ADB)
commands and Droidbot. With this automation tool, it is highly likely that malicious
behavior can act, leaving a fingerprint in the power consumption.

It should be noted that power consumption consist of time-series data that can be
considered non-stationary signals due to changes in statistical parameters such as mean
and variance over time. Therefore, the present work approaches the problem by analyzing
each signal as a stochastic, using Changepoint detection theory to extract features from
the time series. Finally, these features become the input of different machine learning clas-
sifiers used to differentiate non-malicious from malicious applications. Furthermore, the
efficiency of each methodology is assessed in terms of the time of detection.

iii

Acknowledgements

I would like to thank Dr. Kshirasagar Naik and Abdurhman Albasir who have been my
mentors during this two years of research. In addition, I would like to thank Dr. Ivcovic
and Dr. Gebotys who have reviewed my thesis and provided me with useful feedback.

iv

Dedication

Firstly, this thesis is dedicated to God Yahweh. Secondly, to my parents Washington
Manzano and Sylvia Sanchez who have been my support all my life. Without my parents
this cannot be possible. My siblings Gabriela, Paul, Felix, and my nephew Julian who have
given support and happiness. To my grandparents Raul and Mariana who are always in
my thoughts. To my uncles Danilo, Ramiro, Fernando S., Fernando A., my aunts Nancy,
Mayra, Susana, Consuelo, and cousins who have always been there to help me. To my
friends Renato, Carlos M., and Carlos C.

v

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Motivation . 3

1.2 Problem statement . 6

1.3 Solution Strategy and Contributions . 7

1.4 Thesis Organization . 9

2 Background and Related Work 10

2.1 Introduction . 10

2.2 Anomaly detection . 10

2.3 Challenges in detecting anomalous behavior 11

2.4 Related work . 12

3 Experiments and Automation Tool 22

3.1 Experimental setup . 22

3.1.1 Testbench . 22

3.1.2 Emulated Malware Android Application 23

3.1.3 Emulated Malware Dataset . 25

vi

3.1.4 Automation emulated malware . 27

3.1.5 Real Malware Dataset . 30

3.1.6 Automation real malware . 30

3.1.7 Dataset . 31

3.1.8 Preliminary analysis . 32

4 Methodology 40

4.1 Methodology . 40

4.1.1 Procedure 1: Feature Extraction. 42

4.1.2 Procedure 1: Training and Testing of the model. 50

4.1.3 Procedure 2: Detection procedure 52

5 Methodology 2 53

5.1 Methodology . 53

5.1.1 Procedure 1: Feature Extraction. 54

5.1.2 Procedure 1: Training and Testing of the model. 61

5.1.3 Procedure 2: Detection procedure 62

6 Results 64

7 Conclusions and Future Work 70

References 71

APPENDICES 82

A Results mean and variance 83

A.1 Results mean and variance for malicious and reference signals 83

vii

List of Tables

2.1 Related work . 13

4.1 Confusion Matrix . 51

viii

List of Figures

1.1 Evolution of non-IoT devices from 2015 to 2025 [47]. 4

1.2 Evolution of IoT and non-IoT devices from 2015 to 2025 5

1.3 General model of generating an anomaly-detection methodology 7

1.4 Components of an IoT device . 8

3.1 Testbench to take power consumption measurements 23

3.2 Interfaces application emulated malware 24

3.3 Duty cycle . 25

3.4 Duty cycle with percentages of activeness 26

3.5 Automated generation of reference signals to create emulated malware dataset 27

3.6 Automated generation of malicious signals to create emulated malware dataset 29

3.7 Automated generation of benign and malicious signals to create real malware
dataset . 32

3.8 Means and Variances of reference and emulated malware with percentages
1,2,3,4,8,12 . 34

3.9 Cross-validation operation applied to all possible combinations of same class 35

3.10 Histogram of cross-validation of Reference and Emulated malware 1% . . . 36

3.11 Histogram of cross-validation of Reference and Emulated malware 2% . . . 36

3.12 Histogram of cross-validation of Reference and Emulated malware 3% . . . 37

3.13 Histogram of cross-validation of Reference and Emulated malware 4% . . . 37

3.14 Histogram of cross-validation of Reference and Emulated malware 8% . . . 38

ix

3.15 Histogram of cross-validation of Reference and Emulated malware 12% . . 38

3.16 Mean and Variance of Real Malware and Non-malware Apps 39

3.17 Histogram of Cross-validation of Real Malware and Non-Malware Apps . . 39

4.1 Procedure 1: Data Preparation and Model Training and Testing 41

4.2 Procedure 2: Detection procedure for classifying an unlabeled signal as ma-
licious or not malicious . 42

4.3 Changepoint detection applied to one part of the signal Yi 45

4.4 Datapoints of the signal Yi group in intervals through the Changepoint the-
ory. 45

4.5 Normality error check . 48

4.6 Analysis of normality error, interval autocorrelation, and whole signal auto-
correlation . 49

5.1 Procedure 1: Data Preparation and Model Training and Testing 54

5.2 Non-Parametric changepoint detection applied to one part of the signal Yi
named the Resultant signal . 56

5.3 Notation and example of non-parametric changepoint detection
. 58

5.4 Procedure 2: Detection procedure used to classify an unlabeled signal as
malicious or not malicious . 63

6.1 F1-measure results for Methodology 1 evaluating dataset 1 65

6.2 F1-measure results Methodology 2 evaluating dataset 1. 66

6.3 Comparison. 67

6.4 Results of F1-measure for Methodology 1 and 2 applied to dataset 2 of real
malware . 68

6.5 Results of F1-measure for Methodologies 1 and 2 applied to dataset 2 of real
malware . 69

x

Chapter 1

Introduction

Wearable and portable computing devices have become the appliances with the most signif-
icant penetration around the world in the last decade, due to power of computing, capacity
of connection, capacity of storage, and size of device. According to GSMA Mobile Economy
[47], in 2019, 5.13 billion users subscribed to mobile services, and there will be 5.8 billion
in 2025. GSMA estimates an annual growth of 1.9%. This statistic takes into considera-
tion smartphones, tablets, and cellular-enabled IoT (Internet of Things) devices. In 2019,
Statista has indicated that 3.3 billion corresponds to smartphone users representing 64% of
the total number of users subscribing to mobile services worldwide. In fact, mobile devices
are clearly an essential tool that people use to work, study, communicate, and entertain.

Due to its different usages and direct interaction with users, mobile devices have also
turned into an excellent source of information, that has unfortunately attracted the atten-
tion of cybercriminals. These law-breaking developers embed malicious code in applications
(Apps) to steal user information, generate undue charges to the users, or provoke denial of
service in networks.

Cybercriminals can affect users by stealing user’s location, smartphone’s IMEI, list
of contacts, or list of installed Apps to sell this information in the black market [41].
To illustrate, Zitmo is an Application (App) that captures SMS from banks to provoke
Phishing [51]. Geimini is an App that performs calls and sends messages to premium
numbers provoking undue charges [18]. Other cybercriminals have designed Apps to affect
companies’ infrastructures through Denial of Service [93] [83].

The attacks described above generally have been addressed to Android users because
this operating system has monopolized the market share in the world, with 71% of the
total mobile devices, according to Statcounter in 2019 [91].

1

To counter these malicious activities, many researchers and companies have developed
many methodologies analyzing static, dynamic, and hybrid characteristics of the Apps.
Static analysis methodologies inspect specific patterns in the source code of each App
[62][99][21]. Dynamic analysis evaluates different parameters such as network traffic, power
consumption, or CPU usage to identify malicious activities [19][103][34][61][67]. Finally,
hybrid analysis combines static and dynamic approaches to detect malware in an efficient
way [22].

This thesis focuses on the dynamic analysis of overall smartphone’s power consumption
to identify malicious behavior. This parameter is a better choice for detecting malicious
behavior because it summarizes the power consumption of all hardware components. Also,
the overall power consumption of a malicious App is more difficult for attackers to modify
to act as a benign App, because it depends on all of a device’s components’ power con-
sumption. Furthermore, measuring and storing only one smartphone’s parameter is less
resource exhausting in terms of memory. In addition, analyzing only one parameter takes
less time to detect malicious behavior than analyzing many parameters.

The proposed methodologies measure and store the average power consumption using
an external device to avoid affecting the variable measured. Furthermore, the methodolo-
gies analyze the measured signals in an external device (off-device detection) because a
smartphone is not adequate for handling large amount of data.

This thesis explains two methodologies to detect malware in smartphones using power
consumption time-series measurement. The first methodology uses parametric Change-
point. On the other hand, the second methodology utilizes non-parametric Changepoint
technique. Changepoint detection theory has been adopted as the signal behaves stochas-
tically. The parametric technique considers different assumptions to fit the model. Con-
versely, non-parametric technique does not use assumptions, and the features are extracted
with density-ratio estimation. Both methods identify collective anomalies in the signal,
represented by plausible changes in it [29].

Parametric technique groups datapoints in intervals, maximizing the difference of prob-
ability distributions among them. Non-parametric technique ranks every change in two
consecutive segments. Each segment is composed of overlapping windows with datasam-
ples. The plausibility of a change is measured without knowing the probability distributions
of consecutive segments. The only thing known is the ratio among them.

The features extracted using these techniques have been used to train and test different
classifiers such as Support Vector Machine Linear, Logistic Regression, and Naive Bayes,
to determine if the smartphone has been running malicious behavior. The classifiers have
been chosen because these are deterministic; thus, every time that a classifier is run with

2

the same input, it will return the same output. In addition, Support Vector Machine
and Logistic Regression have been selected because these classifiers are linear. Therefore,
they provide better generalization and avoiding overfitting. Finally, Leave One Out Cross
Validation has been applied to obtain realistic and precise results of F1-measure, which
evaluates all the data points of the dataset.

Both methodologies have been evaluated with emulated and real malware. Emulated
malware is used to compare the accuracy of the proposed methodologies with other power-
based methodologies in terms of accuracy. Moreover, both methodologies are tested with
real malware to verify its validity in real scenarios. Real malware Apps have been chosen
from Drebin dataset [21]. Drebin dataset is composed of ∼ 5560 applications with real
malware of different families such as: KungFu, Plangton, BaseBrid, Opfake, and others.
The data collection was done by MobileSandbox Project.

The detection of real malware can be a challenging task considering that Malicious
Apps do not trigger malicious behavior without a proper combination of user’s inputs.
In research, it is manually impossible to look for the combination of actions that trigger
malicious behavior [57]. Therefore, the present work tackles this problem using a test in-
put generator to automate the actions in the App with Droidbot [72] and ADB commands.

1.1 Motivation

The increasing number of smartphones and IoT devices, the impact of attacks in the
economy of individuals and companies, the increasing amount of mobile malware, and the
fields in which cyber-attacks have been released such as smartphones and IoT devices in
recent years are the main motivations for the research described in this thesis.

Firstly, the number of mobile subscribers around the world, according to GSMA, shows
an important increase from 5.13 billion in 2019 to 5.8 billion in 2025, representing an
annual growth of 1.9%, as can be observed in Fig. 1.1. The majority of these devices
belong to smartphone users, representing 64% of the total mobile subscribers in 2019
with ∼ 3.3 billion, as reported by Statista. Figure 1.1 shows the trend predicted until
2025. Nonetheless, as seen in Fig. 1.2, mobile subscribers are only a small proportion
compared with the surge in IoT devices. In 2025, IoT devices will reach 21.5 billion
surpassing the 5.8 billion mobile subscribers 3.7 times. In the present work, this statistic
is important because the proposed methodologies will evaluate different inputs to prove
that these methodologies are data-agnostic. Data-agnostic means that the methodologies

3

can use different parameters as inputs demonstrating that they can be applied to recognize
anomalous behavior in other devices.

2.3

1.4

2.5

2.3

2.7

2.3

3

2.1

3.3

1.83

3.5

1.73

3.8

1.53

4.14

1.28

4.4

1.12

4.67

0.97

4.93

0.87

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
Year

N
um

be
r

of
 M

ob
ile

 S
ub

sc
rib

er
s

[B
n]

Class of mobile
 subscribers

Tablets and
 others

Smartphones

Number of Mobile Subscribers

Figure 1.1: Evolution of non-IoT devices from 2015 to 2025 [47].

Secondly, attacks have had an increasingly harmful impact on the economy of individ-
uals and companies. Accenture [4] indicates that Ransomware is the attack that produces
the most economic loss, increasing it from $532914 in 2017 to $645920 in 2018, representing
17.49% on average. Another worrying statistic is related to attacks executed by autho-
rized attackers in the networks, called malicious insiders. According to the same source of
information, this type of attack is second in generating economic losses, and increased its
percentage by 12% from $1415217 to $1621075.

Lastly, McAfee has stated that the number of mobile malware products has increased
exponentially. In the last quarter of 2016, the total number of mobile malware reached 15
million. However, in the same quarter of 2017, it surpassed 22 million. In 2018, it exceeded
30 million.

Many authors have demonstrated how threats have expanded to IoT devices. To il-
lustrate, Tierney and Munro [1] proved that ransomware could infect a smart thermostat.
Anthi et al. [16] demonstrated that smart home devices such as Amazon Echo Dot, Belkin

4

3.71

3.8

4.8

4.7

5

5.9

5.1

7

5.13

8.3

5.23

9.9

5.33

11.6

5.43

13.5

5.53

15.8

5.64

18.5

5.8

21.5

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
Year

N
um

be
r

of
 d

ev
ic

es
 [B

n]

Class of mobile
 subscribers

IoT devices

Mobile devices

Number of IoT and mobile devices

Figure 1.2: Evolution of IoT and non-IoT devices from 2015 to 2025

Netcam, TP-link NC200 camera, Lifx smart lamp, Tp-link smart plug, Samsung smart
things hub, Hive Hub, and Apple tv could be prone to reconnaissance, DoS, Distributed
Denial of service (DDoS), Man in the middle, Replay, and Spoofing attacks. Albrecht and
Mcintyre in [9] described how cybercriminals could control smart IP baby monitors.

Considering threats in wearables devices, Klonoff et al. [64] described how an attack on
a wireless glucose monitor could be dangerous for patients in terms of confidentiality and
integrity. The author showed how an attacker can retrieve information about a patient, or
inject a malicious code to control the device and activate the injection of insulin, which
can be deadly for the patient. In reference [69], the authors highlighted how Bluetooth
low energy (BLE) could suffer from sniffing attacks. The authors demonstrated how three
wearable health bands are hacked, evading authentication protocols and exposing user
information.

Taking into account the facts stated above, the main goal of this thesis research is to
develop two proof-of-concept methodologies for recognizing anomalous behavior in Android

5

smartphones using the power consumption. These methodologies will be proved with inputs
to demonstrate that they are data agnostic. By proving this fact, we can conclude that
these methodologies can be applied to recognize malicious code in other IoT devices.

1.2 Problem statement

In normal conditions, every device must act or behave in the way that the manufacturer
designed it to. However, several factors can change the normal behavior of hardware and
software components, causing anomalous behavior.

Definition 1. Anomalous behavior is considered as any change or deviation regardless
whether it is small-scale or sizable in a normal data pattern [29] seen from data analysis.

The main factors that affect normal behavior are hardware and software aging, hardware
trojan, firmware updates, and malicious code embedded in new Apps, which are explained
as follows.

All electronic devices suffer from hardware aging due to the degradation of perfor-
mance in transistors. Dogan et al. [37] demonstrated that deviation in CMOS devices
could occur mainly due to Negative Bias Temperature Instability (NBTI) and Hot Carrier
Injection (HCI). These factors affect the transistor switching speed degrading the device’s
performance.

Software aging, according to references [53][44], is caused by registers’ overflow, accu-
mulation of errors in memory, and modification of software by other tools. This kind of
anomalous behavior can cause a crash of the system, performance degradation, or data
inconsistency.

A Hardware Trojan is related to a device modification in the manufacturing stage to
produce attacks. The authors in reference [39] describe how a machine or device can be
prone to attacks if one of the parts is replaced by trojan hardware.

Firmware update attacks occur when a user wants to update or change the firmware of a
device to activate new functionalities, solve a security issue, fix a malfunctioning operating
system, or another cause. Generally, cybercriminals provide firmware with malicious code
to steal user information, produce undue charges, or generate a denial of service of the
device or network [71][24][74][85].

Finally, smartphones have direct interaction with users. Thus, they can suffer infection
due to the installation of infected Apps.

6

This thesis research focuses on recognizing malicious behavior injected due to malicious
Apps installed by the user or other sources in a smartphone using anomaly detection
methodologies. The methodologies proposed must recognize emulated and real malware.

1.3 Solution Strategy and Contributions

The general approach to detecting anomalous behavior is shown in Fig. 1.3. This model
has 3 main stages: acquisition of the signal, analysis of the signal, and making a decision.

Figure 1.3: General model of generating an anomaly-detection methodology

The first stage in Fig. 1.3 is related to the selection of a signal with different nature to
recognize anomalous behavior, and the resource necessary to measure and store this signal.
IoT devices are composed of hardware and/or software components such as sensing, actua-
tor, process, power, and communication systems, as shown in Fig. 1.4. These components
can be used as sources or metrics to detect anomalous behavior. Most of the parameters
described can be measured using an external device (off-device measurement) or using the
resources of their own device (on-device measurement).

The second and third blocks of Fig. 1.3 are stages to analyze or evaluate whether the
signal is normal or anomalous. This detection analysis can be done on-device or off-device.

Researches use the general model to propose methodologies that unveil malware in
smartphones.

Many authors utilize on-device measurement and on-device detection methodologies.
The difference among researchers’ approaches is the nature of data used. To illustrate,
in reference [97], the authors use permissions of an Android App. In reference [81], the
researches use system calls.

Most authors use on-device measurement and off-device detection considering network
behavior [48], CPU usage [38], and permissions [8].

Finally, some papers approach malware detection taking into account off-device mea-
surement and off-device detection using network packets [94][33], or Radio-frequency emis-
sions [86].

7

Wireless

BLE

 Communication

LTE

Ethernet

Internal
Sensors

Gyroscope

GPS

Others

External
Actuators

Reles

Processing Unit

CPU/GPU

Power Unit

Battery

Regulator

External Sensors

ADC

Temperature

Humidity

Others

..

Memory
Unit

Non-volatile

External

IoT Device

Figure 1.4: Components of an IoT device

It should be noted that most of the parameters used to unveil malware in the cited
papers do not summarize the overall behavior of the entire device. For this reason, the
power consumption of the entire device is used to discover anomalous behavior. This feature
encapsulates the energy consumed by all of the hardware components of the device. Power
consumption can be estimated from a smartphone in two ways:

• On-device measurement: The power consumption is measured with hardware and
software performance counters or the status of the battery extracted from the Kernel
of the device [101][105][42][63].

• Off-device measurement: The power consumption is measured with an external
tool [61][56].

8

In this work, an external device measures and collects the overall power consumption
to avoid affecting the variable with the measuring task. Additionally, an external device
(off-device detection) analyses the signal due to the large amount of data to process.

To extract meaningful features from a stochastic time-series signal, Changepoint detec-
tion theory is used. The validity of this theory has been proven in other areas of research,
guaranteeing its accuracy to detect anomalous behavior [49][40][84][35]. The Changepoint
theory identifies collective anomalies in the signal represented by plausible changes in it.
The features extracted using Changepoint detection are the inputs to different machine-
learning classifiers.

As described in Sec. 1.2, the proposed work is focused on the detection of real and
emulated malware. Generally, real malware remains dormant if the user’s inputs do not
follow the correct combination. To solve this problem, we employ an automation tool with
Android Debug Bridge (ADB) commands and Droidbot. This tool mimics the actions exe-
cuted by a user trying different combinations of buttons, links, intents to trigger malicious
behavior.

1.4 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 summarizes previously reported
work and background knowledge in anomalous detection. Chapter 3 explains how emulated
malware App is designed. Furthermore, this chapter describes the implementation of an
automation tool to take power measurements of emulated and real malware. Chapter 4 ex-
plains parametric Changepoint detection. Chapter 5 explains non-parametric Changepoint
detection. Chapter 6 presents the experiments and results. Finally, Chapter 7 describes
the conclusions and future work.

9

Chapter 2

Background and Related Work

2.1 Introduction

The following chapter briefly introduces anomaly detection and energy-based anomaly
detection. Additionally, it explains the challenges of anomaly detection. Finally, the
literature review on malware detection in Android smartphones and IoT devices is reviewed.

2.2 Anomaly detection

Anomaly detection has been used for many years to recognize deviations of one or many
datapoints from normal patterns or expected behavior [29] in different fields such as fraud,
intrusion, hardware or software fault detection. Generally, anomalous behavior is repre-
sented as an outlier or group of outliers from a dataset concentrated in specific areas or
clusters. Three classes of anomalies exist, according to Chandola et al. [29].

• Point anomaly: This abnormality occurs when only an individual anomaly point
is diverted from a normal cluster. Generally, the analyzed dataset contains a large
number of normal datapoints and only a few extraneous ones.

• Contextual anomaly: This kind of irregularity is similar to a point anomaly be-
cause an individual abnormal point is diverted from a normal dataset considering a
specific context such as a time or position.

10

• Collective anomalies: This anomaly typo is different from point and contextual
anomalies, given that the abnormal behavior occurs as a set of datapoints. In this
case, only one anomalous point within the collection of datapoints cannot be consid-
ered abnormal.

This thesis analyzes collective anomalies using a power consumption time-series. Ac-
cording to Caviglione et al. [28], energy-based approaches are characterized depending on
the availability of data as follows:

• System-Based: Normal behavior is characterized using power consumption mea-
surements of the smartphone in a clean state. The power consumption can be taken of
the entire system or specific hardware components such as a CPU, Wireless module,
or other.

• Application-Based: Normal behavior is characterized using a unique process run-
ning on the smartphone without background processes. While the normal App is
running, the power consumption of the entire system or specific hardware compo-
nents is taken. For example, to characterize normal behavior of games, the power
consumption is taken of each single App game running on the smartphone.

• User-Based: This energy-based approach uses the actions of a user to characterize
normal or anomalous behavior.

• Attacked-Based: This type of energy-based solution uses normal and infected Apps
to create a dataset. Thus, researches can fit models using supervised learning to
identify malicious behavior.

This thesis utilized attacked-based approach because we have available malicious and
benign Apps.

2.3 Challenges in detecting anomalous behavior

There are many challenges in detecting anomalous behavior in smartphones, for the fol-
lowing reasons:

11

• The overall power consumption of the smartphone is a combination of all hardware
components’ power consumption in the device taken at the same time. Therefore, the
overall power consumption can be noisy and inaccurate to unveil malicious behav-
ior if pre-processing and feature extraction stages are not applied with appropriate
techniques.

• Boundaries between anomalous and benign classes are hard to define because over-
lapping or close data samples can exist. Thus, the methodology has to choose op-
timal classifiers that avoid overfitting and provide acceptable accuracy in terms of
F1-measure.

• The scarcity of labelled power consumption measurements is another challenge. Gen-
erally, power consumption measurements must be taken manually. Thus, researchers
can spend much time in this task. In addition, the power measurements are not
consistent due to human interaction. In the present work, it is necessary to develop
a tool to take power measurements automatically of real and emulated malware.

• Malware is evolving every second. Thus, defining a general model that recognizes all
kinds of malware is difficult.

To address all the challenges highlighted, the present work selects, and develops strate-
gies, techniques, and tools. Moving average filter and Changepoint extract features of
a noisy time-series signal. SVM linear, logistic regression, and Naive Bayes classifiers
are deterministic linear classifiers selected to avoid overfitting. An automated tool using
Droidbot, and ADB commands generates sufficient datasamples to fit and validate the
methodologies.

2.4 Related work

As described in Chap. 1, various authors have developed their methodologies considering
three main factors: the nature of data, where the measurements are taken, and recognition
is executed. In this section, each of the papers cited before is explained in detail.

First, we analyze papers related to on-device detection and on-device measurement.

Martinelli et al. in [81] recognize malware with a tool that evaluates static and dy-
namic characteristics of each App. The approach analyzes the frequency of opcodes in

12

Detection
On-device Off-device

P
er

m
is

si
on

s

S
y
st

em
ca

ll
s,

A
d
m

in
is

tr
at

or
p
ri

v
il
ig

es

N
et

w
or

k
b

eh
av

io
r

N
et

w
or

k
p
ac

ke
ts

C
P

U
,

B
at

te
ry

,
S
Y

N
p
ac

ke
ts

B
at

te
ry

,
P

os
it

io
n

of
th

e
u
se

r

B
at

te
ry

,
C

P
U

u
sa

ge
,

p
er

m
is

si
on

s

B
at

te
ry

,
B

T
em

p
,

n
et

w
or

k
tr

affi
c

P
ow

er
co

n
su

m
p
ti

on

E
le

ct
ro

m
ag

n
et

ic
em

an
at

io
n
s

T
im

in
g-

b
as

ed
p
ro

ce
ss

or

R
ad

io
fr

ec
u
en

cy
em

m
is

io
n
s

F
il
e

ac
ce

ss
es

,
n
et

w
or

k
ac

ce
ss

es
,

d
at

a
le

ak
s,

se
rv

ic
e

st
ar

t

S
cr

ee
n

of
st

at
es

,
X

M
L

fi
le

s,
re

so
u
rc

es
,

an
d

cl
as

se
s.

d
ex

A
p
i

ca
ll
s,

in
te

n
ts

Measurement
On-device

[97] [81] [48] [38] [36] [8] [67] [104]
[14] [23]

[28]

Off-device
[5] [33] [55], [90] [82] [78] [86] [102] [12] [100]

[31] [3],[60]
[94] [27],[76]

Table 2.1: Related work

13

Apps, which is considered a static feature for determining if an App is malicious. If the
App contains malicious code, the tool uninstalls the App. Otherwise, the tool runs a
dynamic analysis to extract system call invocations, administrator-privilege abuses, and
text messages. Using these parameters, the methodology determines if the App is mali-
cious or benign. The methodology evaluates 9804 benign Apps and 2794 malicious Apps
from Drebin, Genome Project, and Contagio datasets. The accuracy of detection is 99.7%,
which is 1.7% greater than that with the Virus Total approach.

In reference [97], the authors determine if an App has malware with a hot set and a
cold set distributed in a group of smartphones. The hot and cold sets have MD5 and
regexp signatures from Apps. Each smartphone of a group has a hot set and cold set.
All of the smartphones have a hot set that has the most important signatures to detect
malware. In contrast, the less important features are distributed in all the devices as a
cold set. When a new App is analyzed, signatures are extracted and tested against the hot
set. If the tool detects malware, there is a flag to alert other users. Otherwise, if the hot
set does not detect malware, the signatures are tested with the cold set. Since the cold set
is distributed, if one device cannot recognize the malware, another device will recognize it.
This technique is useful in host-based malware which is not resource-intensive.

Other authors have utilized on-device measurement and off-device detection as follows:

Guo et al. [48] analyze the network behavior of benign and malicious Apps to detect
malware. This technique uses off-device detection because an external server analyzes the
network behavior. The authors consider that malware can execute one or more of the
following actions:

• Dissemination: Malware executes this action to propagate itself through the network
using MMS, HTTP, FTP, email, or another way.

• Accessing malicious server: Malware carries this action to download a complete ver-
sion of the malware from a server or execute command control of the device.

• Attacking: Malware performs these actions to steal user information, produce undue
charges, or another action.

The authors in this approach extract network patterns of malicious Apps and group them
according to the actions exposed before. Also, they obtain network patterns of benign
Apps to create a white list. The detection procedure works as follows. In the beginning,
the features of network behavior are compared with the white list. If the App shares net-
work patterns with the white list, the signal is benign. Otherwise, the network features

14

are compared with malicious patterns depending on actions. If the App contains simi-
lar features as the three groups exposed before, the signal belongs to one of the groups.
Finally, if the patterns do not match with any group, the classification model trains the
new features with incremental self-learning method. The smartphone collects and stores
network behavior. However, an external server extracts the features and classifies them.

Ali et al. [38] in 2014 used different mobile device resources such as CPU usage,
memory, number of ICMP packets, and number of connections to detect malware. This
approach collects the data on a device using a ”Data Collector”. The Data collector
retrieves information of the mobile device resources within a pre-defined time interval.
The mobile device sends the information collected to a server in the cloud. This server
extracts patterns using a Gaussian mixture model to differentiate benign from malicious
Apps. This approach tests three malware obtaining excellent results in terms of the ROC
curve.

Dixon and Mishra in 2013 [36] used the power consumption of the battery and the
geographical position of the device to recognize anomalous behavior in two Apps with
emulated malware. The first App imitates real malware, sending SMS to premium numbers.
The second App mimics another kind of malware that sends the geographical position of
the user through SMS. In this approach, an App collects the power consumption each time
that the user moves 1500 meters, or when the battery changes its level. An external server
analyses the power consumption with an optimum cutoff value methodology.

Alam and Vuong in 2013 [8] used the battery, CPU usage, and permissions to recognize
Apps with anomalous behavior. A mobile device measures and collects the parameters
while a Monkey tool is emulating the user’s input randomly and automatically. Formally, a
Monkey tool is a program that performs random actions in a smartphone such as touches,
clicks, calling system-level events, Wifi on-off, Bluetooth on-off, and others. A random
forest classifier trains and tests the parameters extracted. The authors evaluate 1330
malicious Apps and 407 benign Apps, obtaining an accuracy of 99.9%.

Amos et al. in 2013, [14] proposed a technique that analyses Apps in cloud infrastruc-
ture using a 34-node cluster and one mobile device to detect malicious behavior. Essentially,
this platform installs the App in each virtual or physical node. Each node opens the App
and runs a Monkey tool, which mimics users’ inputs to control the App. While the Monkey
tool is executing random actions, features such as the battery, binder, memory, network,
and permissions are collected each 5s. These parameters are collected with 432 benign and
1353 malicious Apps. Random Forest, Naive Bayes, Multilayer Perceptron, and Logistic
Regression train and test these features reaching a maximum accuracy of 94.53%.

Kurniawan et al. [67] in 2015 used network traffic, battery percentage, and battery

15

temperature to unveil malware. They collect this information using a Logger App on
the device. All the features collected by the Logger are transmitted to a server in the
cloud. The server in the cloud trains and tests the following classifiers: Support Vector
Machine (SVM), Random forest, Logistic Model Trees(LMT), and J48 Decision Trees. The
dataset used in this approach is Genome Project. The authors highlight that the maximum
accuracy is 85.6% with Random forest.

Zefferer et al. [104] in 2014 used Power tutor, which collects power consumption mea-
surements on the device, to detect SMS spyware. Power tutor measures the power con-
sumption of different hardware components such as CPU, GPS, Wifi components, and
screen. The authors develop a methodology using Mel Frequency Cepstral Coefficients
(MFCC) and Gaussian mixture models (GMM) to differentiate four kinds of emulated
SMS spyware:

• SMS spyware 1: The spyware forwards an SMS message received to the inbox appli-
cation of the mobile device.

• SMS spyware 2: The spyware intercepts an incoming SMS, and sends the last geo-
graphical location of the device to the same number.

• SMS spyware 3: The spyware intercepts an incoming SMS, and it replies with the
current position.

• SMS spyware 4: The spyware delivers the SMS to the inbox application, but at the
same time, it sends a copy of this SMS to another number.

They conclude that the patterns of power consumption are dissimilar enough to differen-
tiate them. In addition, the authors validate this methodology with different categories of
Apps such as games, internet, idle state, music and multimedia.

In 2018 Azmoodeh et al. [23] also used Power Tutor, which measures the power con-
sumption on the device to recognize Ransomware. In this approach, they utilize a CPU’s
power consumption to differentiate normal Apps (Facebook, Chrome, Youtube, What-
sApp, Skype, Angrybirds, Maps, Music player, Twitter, Instagram, and Guardian) from
six types of Ransomware. They take power traces for 5 minutes for each App. The method-
ology splits the signal using a window size. Each window is analyzed using Dynamic Time
Warping (DTW). Finally, the features extracted are the input of different classifiers such
as K-Nearest Neighbor (KNN), Neural Network, Random Forest and Support Vector Ma-
chine (SVM). The accuracy reached by the model is 95.5% using KNN with a window size
of 7.5s.

16

In 2016, Caviglione et al. [28] detected attacks related to convert channels using the
power consumption of the processes running on the smartphone. This kind of attack occurs
when two or more malicious Apps exchange information exploiting different permissions
assigned to them. To illustrate, if one App has permission to read phone numbers, and
the other App has permission to use the network, both Apps can cooperate to transmit
the user’s phone numbers through the network. Generally, traditional static or dynamic
approaches can fail to recognize these attacks. To prove the validity of the methodology,
the authors collected power measurements of the idle state of the smartphone and different
scenarios of convert channel attacks using Power Tutor with high-level and middle-level
information. Their methodology adopts the power traces to train and test classifiers such
as Neural Network and Decision Trees. To generate malicious power traces, a malicious
App simulates different convert channels attacks such as type of intent, file lock, system
load, volume settings, Unix socket discovery, file size, and memory load attacks. They
achieved an accuracy of above 80% with this methodology.

Finally, methodologies that use off-device measurement and off-device detection are
described.

Kim et al. [60] are pioneers in identifying emulated malware utilizing power consump-
tion measured through an external device. The authors design and build a device using
different low-cost components such as a current sensor, a capacitor, and a micro-controller.
Although the device is small and not expensive, it can measure power traces with a high
sample rate between 1ms to 50ms, which is sufficient to unveil malicious behavior. The
methodology proposed extracts features with a moving average filter and data compression.
Furthermore, the dataset trains and tests 11 emulated malicious Apps and eight benign
Apps. The malicious Apps are Wifi faker, a dummy App to execute a hard computational
task, a combination of the Wifi faker and the dummy program, four emulated mobile
worms (Cabir, Mabir, CommW, Lasco), and an App to send a big packet through Wifi.
The benign Apps are Windows Media Player, a data sender using Bluetooth and Wifi, and
two users who explore a file in the memory of the mobile device. They conclude that the
power signatures of Wifi faker, dummy App, Wifi Faker + dummy App are very different
compared with the eight benign power signatures, reaching 100% of detection accuracy.
Nonetheless, the lowest accuracy reported is 80%, in detecting CommW malware.

Nazari et al., in 2017, [82] developed a methodology for recognizing anomalous behavior
in IoT devices, by measuring electromagnetic emanations of the smartphone’s processor.
They detect two attacks related to program injection into the device’s code. The first
attack is an injection of an empty shell-code outside of a loop, which can be considered the
most common injection attack. The second attack is the injection of 8 instructions inside a
loop. The methodology recognizes these scenarios transforming the time series data to the

17

frequency domain through Short-Term Fourier transform (STFT). This method generates
windows that are characterized by a statistical distribution using a non-parametric method
called Kolmogorov-Smirnov. The authors use a single-board Linux computer to execute
the experiments, detecting both scenarios with an accuracy of ∼ 95%.

Lu et al., in 2017, [78] developed a non-intrusive technique to unveil malware in IoT
devices using a timing strategy. Most microcontrollers of IoT devices have a trace port
that provides useful information about the duration of execution events. In this work,
the researches use this port to track the execution time to characterize signals. Lumped
timing multi-ranges(LTMR), and sub-component timing intrinsic (ST) extract features
from the signals, and hierarchical clustering classifies the signal as benign or malicious.
The authors test their methodology in a Smart connected pacemaker, which is composed
of a pacer, a sensor to monitor the heart, timers, and an interrupt controller. The controller
is an essential component of the system because it senses the heart rate of a patient, and
controls the pacer. Generally, these devices are configured by a physician to pace the heart.
If there is an anomaly in the heart of the patient, the system sends an alert to the physician
to configure it again. If malware is running in the controller, it can modify the cardiac
activity log, or it can perform a fuzzing attack that changes the system function and calls.
To detect these malicious activities, the authors propose to track the duration of an event
with an additional microcontroller that is running LTMR, ST and hierarchical clustering
techniques. The authors using this methodology recognize malware in the 12th event with
100 percent accuracy.

Liu et al. [76] in 2016 developed a power consumption side-channel strategy for detect-
ing anomalous behavior in control flow execution applied to IoT microcontrollers. This
strategy is called side-channel since the power consumption is measured in the VCC pin
of the microcontroller through a resistor. The proposed methodology characterizes the
sequence of instructions of a program using the Hidden Markov model (HMM) in the fre-
quency domain. To test the accuracy of the model, the authors test insertion, deletion,
and replacement on AES PROGRAM to prove a firmware modification attack. The results
show an outstanding accuracy to detect modification of the sequence of a program, almost
99.93%.

In 2017, Li et al. [102] used Droidbot and Droidbox to efficiently discover malicious
activities in Apps. Droidbot, a program written in Python, emulates human inputs such
as touches, clicks, calls to intents, and other actions over a Test App. Droidbot is different
from a Monkey tool because it uses a depth exploration of the Test App, taking into
account static characteristics to create efficient test inputs triggering malicious activities
faster. Droidbot runs in a computer connected to a mobile device through a wireless
or wired connection using ADB (Android Debug Bridge). The authors use Droidbot to

18

emulate a user’s inputs controlling a Test App, whereas Droibox measures file accesses,
network accesses, service start, and data leak. The authors conclude that Droidbot can
help to trigger sensitive behaviors of the Test App in a few seconds, which is useful in
discovering malware efficiently.

Yerima et al., in [100], demonstrate the effectiveness of Droidbot in triggering malicious
activities to detect malware in Apps. In this work, the authors compare the accuracy of
detection using three tools to trigger malicious behavior: a Monkey Tool (Random-based),
Droidbot (State-based), and Hybrid approach (Random + Droidbot). In their testbench,
while Monkey, Droidbot, or Monkey+Droidbot is controlling a Test App, a server collects
information about API calls and intents. Sequential Minimal Optimization (SMO), Naive
Bayes (NB), Simple logistic (SL), Multilayer Perceptron (MLP), Partial Decision Trees
(PART), Random Forest, and J48 Decision tree train and test both parameters. The
datasets used to verify the accuracy of the methodology are 2444 malicious Apps from the
Genome project and 2444 benign Apps from McAfee Labs. They conclude that the best
accuracy to detect malware is obtained when Droidbot and Random forest algorithms are
used, reaching 94.3%.

In reference [12], the authors used static and dynamic analysis to detect Ransomware.
In the beginning, the test App is compared with a database of inspected Apps. If the
App is on the database, it is classified as malicious. Otherwise, the App is analyzed
using static analysis. In this stage, it extracts images of each screen of the App, XML
layout files, resources, and classes.dex. A text extractor is used to retrieve string states
from the files denoted before. In addition, it is used as an Image Extractor to obtain
patterns from images. While static analysis is executed, dynamic analysis is done using
Droidbot. As described in [100] and [102], Droidbot is a user’s input generator. Whilst
Droibot is controlling the test App; screens of the possible states of the App are extracted
in a dynamic state. The images generated by Droidbot are also processed by the Image
extractor. Image and string similarity measurements are obtained from all of the analyzed
Apps. The authors used 850 ransomware Apps and 500 benign Apps to train the model,
and they tested it with 100 samples. They gained an accuracy of 91% using this approach.

Aiolli et al. [5] in 2019 used the network traffic collected by Wireshark to differentiate
anomalous actions in cryptocurrency Apps from the ten most used benign Apps from Play
Store. The network traces describe the number of bytes transmitted and received during a
specific time when Apps are used. The proposed methodology extracts features from these
signals using two stages: Traffic bursification and Flows separation. After applying both
stages, time-series signals are obtained, denoted as flows. Finally, the length, minimum,
maximum, mean, median, mode, variance, skewness, kurtosis, and percentiles for each
flow are trained and tested with SVM and RF classifiers. The authors conclude that it is

19

possible to recognize actions from bitcoin wallet Apps such as an open App, receive and
send a bitcoin from benign Apps with an accuracy of 97.7%.

In 2017, Robin et al. [55] was able to identify emulated malware using power consump-
tion measurements taken by an external device and Independent Component Analysis
(ICA). They extract two independent components from reference signals (non-malicious
App running in the foreground) and suspicious signals (reference signal + emulated mal-
ware running in the background). These two independent components are compared with
the input signals using correlation. Finally, a threshold of the correlation value between
malicious and benign signals is calculated. As a complementary study, the authors ex-
tracted the mean and variance of each signal as features to train and test classifiers using
SVM. The results presented show a maximum accuracy of 91% when the mean and variance
are the features used to train SVM.

In 2018, Robin et al. [90] modified the proposed methodology in [55]; they estimate
two independent components from reference signals (a non-malicious App running in the
foreground) and suspicious signal (a reference signal + emulated malware running in the
background) with two approaches: symmetry and deflation. In addition, the authors
add to the methodology four probability distributions tanh, pow3, gauss, and skew, in
the Fast ICA. Using all of the combinations between ICA approaches and distributions,
the methodology finds a correlation between the independent components and the input
signals. The results of the correlation feed three classifiers: Naive Bayes, Support Vector
Machine, and Random Forest. The results show acceptable results in recognizing low duty
cycles, reaching an average accuracy of 85%.

Cui et al., in 2015, [33] designed a cloud solution for identifying malware analyzing
the packets sent by a smartphone. The architecture includes a smartphone connected to a
gateway. The gateway is connected to a service-oriented mobile malware detection system
(SMMDS) in the cloud. The technique compares the packet information of a new App with
previous information extracted from malicious and benign Apps. The SMMDS system uses
contraction clustering to train and test features.

In reference [31], the authors analyze the packets of the network traffic transmitted by
a device to recognize malicious Apps. The architecture used is a smartphone connected
to an access point. The access point is connected to a hub, and one port of the hub is
connected to a computer that has Wireshark running on it. The packets of interest are
HTTP GET/POST packets with device information such as IMEI, IMSI, device model,
software information. Furthermore, the methodology analyzes the legitimacy of the remote
server where the packets are sent. The proposed methodology analyses the information
described above of each App through a flowchart, which determines if the App is malicious

20

or non-malicious. To test the model, they use 11 malicious and nine benign Apps, obtaining
100% accurate recognition.

Wei et al. [94] use DNS packets information to analyze the geographical position of
malicious servers. Based on the position of the servers, their approach can identify malware.
They create a Geographical matrix which contains m rows with Android Apps and n
columns with geographical and network features using benign and malicious Apps. They
apply Independent Component Analysis(ICA) to this matrix to obtain a latent matrix.
This matrix identifies malicious and not malicious Apps.

In reference [77], Loukas et al., in 2018, proposed an innovative methodology for un-
veiling malicious behavior in autonomous mobile robots to avoid denial of service, spoofing
and malware attacks. They use a combination of metrics such as the network incoming,
network outgoing, CPU, disk data, encoder, accelerometer, power consumption, current to
characterize these kinds of attacks using Recurrent neural networks.

It is necessary to highlight that this thesis can be considered unique for the following
reasons:

• The methodologies proposed in this thesis are tested in real and emulated malware,
whereas other works cited before [28][104][55][60][77] use only synthetic or emulated
malware. Only in reference [23], the authors used real ransomware in the tests.
However, they do not explain in detail about the real ransomware used.

• The tool to automate the collection of power consumption measurements uses ADB
commands and Droiboit. In contrast, most of the user’s input generators use only
Monkey or Droidbot [8][14][102][100][12].

• The methodologies proposed in this thesis only use one parameter (power consump-
tion) to identify malware. On the other hand, cited papers [8] [14] [102][100][12] use
many parameters to unveil malicious behavior. Thus, these consume more resources
in terms of memory, processing, and energy to collect and store the parameters.

21

Chapter 3

Experiments and Automation Tool

This chapter explains in detail how power consumption measurements have been taken and
stored automatically to create two datasets. Specifically, it presents a testbench used to
measure the average power consumption of the smartphone with its components. Moreover,
the process of designing an emulated malware App is described and the automation tools
necessary to generate power traces automatically without human interaction for emulated
malware and real malware. Data collection is one of the most important phases in the
present work because an extensive evaluation of both methodologies is needed.

3.1 Experimental setup

3.1.1 Testbench

Figure 3.1 shows a general diagram of the testbench used in the present work to take power
consumption measurements. The main components of the diagram are the following:

• Monsoon Power Monitor: This reliable device measures different electrical parame-
ters, namely, voltage and current, in the real-time of a device while providing constant
direct current voltage to the smartphone. The sample rate to take the measurements
is 5000 samples/s. The power monitor terminals are connected to the pins of the
smartphone’s battery. The smartphone’s battery is bypassed to avoid a short circuit.
At the same time, the power monitor has a connection with a CPU or server through
a USB cable.

22

Android
Smartphone

Monsoon
Power
Monitor

CPU
Or

Server

Wireless
Router

+ -

Usb Cable

Ethernet Cable

Internet

WAN

Figure 3.1: Testbench to take power consumption measurements

• Computer or server: This device is responsible for triggering power monitor, initiating
a benign or malicious App on mobile device through wifi. In addition, this cpu stores
the power consumption measurements. The code that integrates all the applications
is developed in Python.

• Wireless router: This device provides a wireless connection between the computer
or server and the smartphone. In a parallel connection, it provides internet to the
smartphone.

3.1.2 Emulated Malware Android Application

A customized App that emulates real malware has been developed. This App mimics real
malware downloading or uploading files from or to a malicious server, depending on its
configuration.

Explicitly, this App starts a service that runs in the background of the smartphone,
and it executes the actions of downloading and uploading. During a downloading action,
the App downloads a video from the Internet. On the other hand, the uploading action
consists of the generation of a 20 Mb random image that is uploaded to a specific server
on the Internet. The App has two screens, as shown in Fig. 3.2(a) and Fig. 3.2(b). The
first screen has one button called CUSTOM DUT. After touching this button, the App

23

(a)Interface application screen 1 (b) Interface application screen 2

Figure 3.2: Interfaces application emulated malware

redirects the user to the second screen. In the second screen, there are three configurable
parameters:

• Duty cycle: This parameter denotes the ”time of activeness” of the downloading
or/and uploading actions in 1 minute of the total duration, as described in Fig. 3.3.
To illustrate, if the duty cycle is 1%, the emulated malware will act for 0.6s each
minute. If it is 12%, it will act for 7.2s each minute.

• Percentage of downloading: This represents amount of time within the duty cycle
when the App executes the downloading task. Figure 3.4 shows a configuration ex-
ample of the App’s parameters. When the duty cycle is 12% and 100% downloading,
the emulated malware will act during 7.2s each minute, and the App will download
the video all the time. For example in another case, if a duty cycle is 12%, a per-
centage of uploading is 75%, and downloading 25%, the malware will act 7.2s each

24

5min

2%

12%

.

.

.

1min

1%=0.6s

1min

1%=0.6s

1min

1%=0.6s

1min

1%=0.6s

1min

1%=0.6s

Figure 3.3: Duty cycle

minute. The emulated malware will upload the image during 5.4s of 7.2s, and it will
download a file during 1.8s of 7.2s. It is necessary to highlight that App does not
download the video entirely in the ”time of activeness”. The App only downloads a
little percentage of the file. Thus, every time that the emulated malware acts, the
App reinitializes the action of downloading or uploading from the beginning.

• Percentage of uploading: This represents the uploading stage time within the duty
cycle.

• Additional fields: There are two optional parameters to configure. The first describes
the URL to download the image. Therefore, the user can download an image, video,
or file from another site on the Internet. The second is the public IP of the server
used to upload the image.

• Start button: After configuring the parameters described above, the user can press
the button to initialize the emulated malware actuation.

3.1.3 Emulated Malware Dataset

The emulated malware dataset is composed of two kinds of signals: reference and malicious.

25

100%
download

12%=7.2s

25%
 download

75%
 upload

50%
 download

50%
 upload

75%
 download

25%
 upload

1min

Figure 3.4: Duty cycle with percentages of activeness

Reference signals are power consumption measurements taken for five consecutive min-
utes while a Youtube App is running a specific video in the foreground, and there is no
another App running in the background.

Each power trace is taken while the following procedure is running on the smartphone

• The Youtube App is opened.

• The video is chosen from Youtube.

• The video plays.

The total time of each power measurement is 5 minutes. This experiment is repeated
15 times to acquire sufficient data power measurements for the dataset.

It is important to point out that, for consistency, each experiment has been executed
under the same smartphone’s configuration, such as screen brightness, no sound, and the
version of the operating system.

26

Malicious signals are power consumption measurements taken for five consecutive min-
utes while Youtube App is running in the foreground, and an emulated malware is running
in the background.

The emulated malware runs cyclically for 5 minutes with a pre-set duty cycle, and
percentages of download and upload as explained in Subsection 3.1.2.

Before power consumption measurements begins, the App initializes the emulated mal-
ware to run in the background of the smartphone. Then, the power consumption is taken
while the Youtube App runs a video in the foreground as it was described in Reference
signals.

3.1.4 Automation emulated malware

POWER
MONITOR

HARDWARE

Power tool
monitor

initialization

MOBILE
DEVICE

Mobile
initialization

ADB
(Android

Debug
Bridge)

Launch
youtube app

Mobile
restoration

Power tool
monitor

termination

Power
consumption

Power
Monitor
Interface

CPU/SERVER

Launch a
specific video

during a
specific time

rWireless
connection

Figure 3.5: Automated generation of reference signals to create emulated malware dataset

Android Debug Bridge (ADB) commands and different APIs integrated in Python are

27

used to take power consumption measurements without human interaction.

ADB is a console terminal tool used to communicate a computer or server with an
Android smartphone. A user or a tool can execute different commands through the con-
sole to send simple or complex tasks to the smartphone, such as touches, clicks, unlock,
lock/unlock, turn on/off the background light, open Apps, and others.

The flow chart designed to take power consumption measurements automatically for
reference signals is shown in Fig. 3.5. The stages of the flow are described below:

1 Mobile initialization: ADB commands turn on the smartphone’s back-light screen
and unlock the smartphone.

2 Power tool monitor initialization: Python initializes an API connection with
Monsoon Power Monitor. In addition, Monson Power Monitor starts the power
consumption sampling.

3 Launch Youtube: ADB commands open the Youtube App.

4 Launch a specific video during a specific time: ADB commands launch a
specific video and keep running the video for 5 minutes.

5 Power tool monitor termination: Python stops the power consumption sampling,
and it stores a .csv with the results of the power consumption trace.

6 Mobile restoration: ADB commands close the Youtube App, lock the mobile
device, and turn off the back-light of the screen.

Python repeats the stages described above in a loop for r times, depending on how
many measurements the user wants to generate. In the present work, 15 measurements of
reference signals have been taken.

Figure 3.6 shows the flow chart used to record malicious signals.

The stages are similar to the flow chart for reference signals in Fig. 3.5. However,
one stage is added to the flow chart, called configuration of emulated malware. In this
stage, ADB commands fill out the text boxes of the emulated malware App described in
Sec. 3.1.1. These fields are the duty cycle, percentage of downloading, and percentage
of uploading. Finally, the emulated malware is begun by pushing the button START in
the App. The emulated malware runs in the smartphone’s background while the power
consumption measurement is taken, following the same stages used to take reference signals.

28

POWER
MONITOR

HARDWARE

Power tool
monitor

initialization

MOBILE
DEVICE

Mobile
initialization

ADB
(Android

Debug
Bridge)

Launch
youtube app

Mobile
restoration

Power tool
monitor

termination

Power
consumption

Power
Monitor
Interface

CPU/SERVER

Configuration
of emulated

malware

Launch a
specific video

during a
specific time

d

Wireless
connection

Figure 3.6: Automated generation of malicious signals to create emulated malware dataset

Python repeats the experiment d times, keeping the same conditions on the smartphone.
In this thesis, 15 measurements have been taken for each of the following percentages of
duty cycles: Dut = 1%, Dut = 2%, Dut = 3%, Dut = 4%, Dut = 8%, and Dut =
12%, with 5 additional scenarios considering different percentages of downloading and/or
uploading as follows:

• Scenario 1: The emulated malware downloads a file during 100% of the duty cycle
time. For example, if Dut=1% is set, the emulated malware downloads a file from
the Internet for 0.6s of each minute.

• Scenario 2: The emulated malware downloads a file during 25% of the duty cycle
time, and for the remaining 75%, it uploads a file. To illustrate, if Dut=1% is set,

29

the emulated malware downloads a file for 0.15s, and for the remaining 0.45s, it
uploads an image to a server on the Internet. This process is repeated each minute.

• Scenario 3: The emulated malware downloads a file during 50% of the duty cycle
time, and for the remaining 50%, it uploads a file. To illustrate, if Dut=1% is set,
the emulated malware downloads a file for 0.3s, and for the remaining 0.3s, it uploads
an image. This process is repeated each minute.

• Scenario 4: The emulated malware downloads a file during 75% of the duty cycle
time, and for the remaining 25%, it uploads a file. To illustrate, if Dut=1% is set,
the emulated malware downloads a file for 0.45s, and for the remaining 0.15s, it
uploads an image. This process is repeated each minute.

• Scenario 5: The emulated malware uploads a file during 100% of the duty cycle
time. For example, if Dut=1% is set, the emulated malware uploads an image to the
Internet for 0.6s of each minute.

3.1.5 Real Malware Dataset

The real malware dataset has been created using Apps with malware from Drebin repos-
itory and Apps without malware from Play Store repository. A pair of Apps with equiv-
alent characteristics and user interface has been selected from both Apps repositories.

3.1.6 Automation real malware

ADB commands, API tools, and Droidbot integrated in Python are used to obtain power
consumption measurements automatically.

Droidbot is undoubtedly the most important component in the automation tool devel-
oped because it triggers sensitive behaviors of each App emulating user’s inputs. Droidbot
acts as a user reproducing touches on the screen, intent calls, uploading and downloading
actions, or usage of sensors of the smartphone to trigger sensitive behaviors.

Li et al., in [73], highlights some advantages of Droidbot over other user’s input gener-
ators such as:

• Droidbot does not need instrumentation of each App because it is based on a GUI
model. Thus, Droidbot can control all Android Apps.

30

• Droidbot creates a path on the fly to execute the next action monitoring if the input
performed causes a change in the current state. Thus, Droidbot can trigger sensitive
behavior efficiently.

The flow chart in Fig. 3.7 shows the main stages to take power consumption measure-
ments automatically of real malware. This flow chart shows the main stages for malicious
and benign real Apps automation.

1 Power tool monitor initialization: Python initializes an API connection with
Monsoon Power Monitor. In addition, Monson Power Monitor starts power con-
sumption sampling.

2 Mobile initialization: ADB commands turn on the smartphone’s back-light screen,
unlock the smartphone, and install the App.

3 Droidbot: Droidbot generates user inputs on the fly. It explores the events in the
App in a greedy depth strategy.

4 Mobile restoration: ADB commands uninstall the App, close Apps and windows
opened by Droidbot during the test. Finally, the mobile device is locked, and the
back-light of the screen is turned off.

5 Power tool monitor termination: Python stops the power consumption sampling,
and it stores a .csv with the results of the power consumption trace.

Python repeats the flow chart described r times in a loop for benign Apps and d times for
malicious Apps. In this thesis, we repeat the experiment 15 times for each App.

3.1.7 Dataset

The automation tools have been used to generate two large datasets with the following
characteristics

• Dataset Emulated Malware

– Benign signals: 15 measurements

– Malicious signals: 15 measurements x 6 duty cycles x 5 scenarios=450 power
consumption measurements

31

Power
consumption

r+d
Wireless
connection

Figure 3.7: Automated generation of benign and malicious signals to create real malware
dataset

• Dataset Real Malware

– Benign signals: 15 measurements x 5 applications= 75 power consumption mea-
surements.

– Malicious signals: 15 measurements x 5 applications=75 power consumption
measurements.

3.1.8 Preliminary analysis

A preliminary analysis has been done using emulated and real malware power consump-
tion datasets. These datasets have been collected manually without the automation tool
described in Subs. 3.1.4 and 3.1.6.

32

Emulated Malware dataset

In the dataset of emulated malware, reference signals are power consumption measurements
taken for five consecutive minutes while a Youtube App is running a specific video in the
foreground, and there is no App running in the background. Each power measurement is
taken as soon as the Youtube App is opened, the name of the video is typed, and the video
is played. This procedure was repeated 15 times, keeping the same configurations in the
smartphone in terms of the brightness of the screen and version of the operating system.

Malicious signals are power consumption measurements taken for five consecutive min-
utes while a Youtube App is running in the foreground and emulated malware is running in
the background. The emulated malware has been configured to run cyclically in the total
time with a pre-set duty cycle. The action that the emulated malware executes during
the duty cycle is to start a connection with a remote server, and only download specific
files imitating the behavior of real malware. The emulated malware running in the back-
ground with distinct percentages of activeness have been collected and named Dut = 1%,
Dut = 2%, Dut = 3%, Dut = 4%, Dut = 8%, and Dut = 12%. The cycle length consid-
ered is 60 seconds. Fifteen power measurements for each percentage of emulated malware
have been collected. Therefore, 90 measurements that represent malicious signals and 15
measurements that represent non-malicious signals are available to construct the model.

This dataset has been evaluated with two techniques:

• Statistical analysis: The mean and the variance of each of the signals are obtained.
Then, the results are plotted in Fig. 3.8. An extension of the results can be found
in Appx. A. As we can see, malicious power measurements are concentrated in one
cluster, while reference in another cluster. However, the features are not sufficient
to discriminate both classes clearly with clusters separated by large distances. In
[55], the authors used these features to create a classification problem, obtaining an
average F1-measure of 91%.

• Signal processing: Cross-validation is applied between signals of the same class, as
can be seen in Fig. 3.9. Cross-validation measures the similarity of two signals
convolving one signal with another one. This operation returns a unique value,
between 0 and 1. Where 1 means that both signals are very similar, while 0 signifies
that both signals are very different. A Cross-validation value has been found among
all the possible combinations of power consumption measurements of the same class.
Finally, histograms are plotted for each malicious class against a benign class. The
results obtained have been plotted in Figs. 3.10, 3.11, 3.12, 3.13, 3.14, 3.15. As

33

Figure 3.8: Means and Variances of reference and emulated malware with percentages
1,2,3,4,8,12

we can see, the mean in all the scenarios using cross-validation approach is ∼0.9.
Therefore, this characteristic is not useful in differentiating references from emulated
malware.

Real Malware dataset

This dataset has 15 power consumption measurements for one game App with malware
from Drebin Dataset, and 15 measurements for a similar benign App from Play store.
The power consumption measurements are collected without the automation of the App.
Therefore, the power trace is taken while the following procedure is running:

• The App is opened.

• The App runs for 5 min without any user interaction.

34

Ref 1

Ref 2

Ref 3

Ref 15

..

Ref 1

Ref 2

Ref 3

Ref 15

..

Ref 1

Ref 2

Ref 3

Ref 15

..

Ref 1

Ref 2

Ref 3

Ref 15

..

Ref 1

Ref 2

Ref 3

Ref 15

..

Ref 1

Ref 2

Ref 3

Ref 15

..

CV
CV

CV

M1

M2

M3

M15

..

M1

M2

M3

M15

..

M1

M2

M3

M15

..

M1

M2

M3

M15

..

M1

M2

M3

M15

..

M1

M2

M3

M15

..

CV
CV

CV

Figure 3.9: Cross-validation operation applied to all possible combinations of same class

The dataset has been evaluated considering the same techniques as in the emulated
dataset.

• Statistical analysis: The mean and variance have been calculated for each signal.
The results are plotted in Fig. 3.16. Nonetheless, the mean and variance are not
satisfactory characteristics for separating malware and non-malware Apps.

• Signal processing: A Cross-validation value has been found among all the possible
combinations of power consumption measurements of the same class. The results are
plotted as a histogram in Fig. 3.17. As shown, the values of the autocorrelations are
similar for non-malicious and malicious signals. Thus, the autocorrelation is not a
desirable feature for classifying signals.

35

Figure 3.10: Histogram of cross-validation of Reference and Emulated malware 1%

Figure 3.11: Histogram of cross-validation of Reference and Emulated malware 2%

36

Figure 3.12: Histogram of cross-validation of Reference and Emulated malware 3%

Figure 3.13: Histogram of cross-validation of Reference and Emulated malware 4%

37

Figure 3.14: Histogram of cross-validation of Reference and Emulated malware 8%

Figure 3.15: Histogram of cross-validation of Reference and Emulated malware 12%

38

Figure 3.16: Mean and Variance of Real Malware and Non-malware Apps

Figure 3.17: Histogram of Cross-validation of Real Malware and Non-Malware Apps

39

Chapter 4

Methodology

This chapter explains the methodology proposed to unveil malicious behavior using para-
metric Changepoint detection in Feature Extraction Stage. Chapter 5 describes a similar
methodology, in which non-parametric Changepoint detection is used in the same stage.
Parametric Changepoint detection uses two assumptions to extract meaningful features
from a time-series signal.

4.1 Methodology

This methodology has been divided into Procedure 1 and Procedure 2, as shown in Fig.
4.1 and Fig. 4.2, respectively. Procedure 1 trains and tests the model with a dataset, and
Procedure 2 describes the process that a new measurement without a label has to follow
to be classified as anomalous or not. To represent each of the input and output variables
in the stages of both procedures, the following notation is used. Matrices are represented
by a bold capital letter (e.g., X). Vectors are denoted by a capital letter in italics (e.g.,
X), and each element of a vector is represented by a lower case letter in italics (e.g., x).

Procedure 1 uses two kinds of signals to train and test the model: benign and malicious.
A benign signal is defined as a power consumption measurement taken over a specific time
from a smartphone while a verified non-malicious App is running on it. This signal is rep-
resented by a vector B with the dimension n. The value of n depends on the time duration
of the measurement multiplied by the sample rate. Thus, Bi = (bi1 , bi2 , bi3 ,, bin). A
benign signal is taken r times keeping the same time duration and conditions in terms of
the configuration of the smartphone. The matrix B concatenates r benign signals. Thus,

40

this matrix has dimensions (r x n). Each row of matrix B is represented by Bi.

In contrast, a malicious signal is defined as a power measurement signal taken over a
specific time while an App with malicious code is running on a smartphone. As described
in Chapter 3, two kinds of malware will be analyzed: emulated and real. When we are ana-
lyzing emulated malware, a malicious signal can be interpreted as a benign App running in
the foreground and an emulated malware running in the background. When we are analyz-
ing real malware, a malicious signal is just real malware App running in the foreground of
the smartphone. A malicious signal is denoted by the vector Mi = (mi1 ,mi2 ,mi3 ,,min).
This signal is taken d times. Thus, a matrix denoted as M concatenates d malicious signals
and has dimensions (dxn). Each row of matrix M is denoted by a vector Mi.

The matrices B and M have been concatenated in a matrix X with dimensions ((r+d)xn).
Each row of matrix X is denoted by Xi, which can represent a benign or a malicious signal
depending on the value of i.

Legend:
r: number of reference signals; d: number of malicious signals; n: number of observed values.
Methodology 1: X:(r+d) x n; Y:(r+d)x(n/ω); C:(r+d) x f; L:(r+d)x(f+1); N:(r+d)x(f+1); ω: window size; f: features; p: penalty value
LOOCV: Leave one out cross validation; LR: Logistic regression; SVM Linear: Support Vector Machine Linear; NB: Naive Bayes

Moving
Average
Filtering

ω

Changepoint
detection:

Methodology 1:
Parametric

p

Stage 1

X Y

Stage 2

Feature extraction Training and testing of the model

LOOCV

Optimal
Classifier

LR, SVM, or
NB

Classifier

NB

SVM

LRLabeled
Data Normalization

C NL

Figure 4.1: Procedure 1: Data Preparation and Model Training and Testing

Procedure 1 uses supervised and offline learning methods because labelled power mea-
surement signals obtained beforehand are used to train and test the models. The first stage
of Procedure 1, as is seen in Fig. 4.1, is Feature Extraction. This stage is composed of two
sub-stages: Filtering and Changepoint detection. Filtering is used because the sample rate
in the data acquisition (5000 samples/s) is relatively high; hence, different kinds of noise
generated by some sources can be affecting the real behavior of the signal. To prevent
this disturbance, a moving average filter is used. Parametric Changepoint detection is the
second sub-stage, and it has the goal to recognize meaningful features in each of the signals.

The second stage of Procedure 1 comprises training and testing of the model. This
stage contains three sub-stages: Labeling, Normalization, Training and Testing of the

41

Legend:
n: number of observed values
Methodology 1: X: Suspicious Signal (1 x n); Y:(1 x (n/ω)); C:(1 x f); N:(1 x f); ω: window size; f: features; p: penalty value
LOOCV: Leave one out cross validation; LR: Logistic regression; SVM Linear: Support Vector Machine Linear; NB: Naive
Bayes

Feature extraction

Optimal Classifier
LR, SVM, or NB

Moving
Average
Filtering

Normalization

ω

X Changepoint
detection:

Methodology 1:
Parametric

p

Stage 1 Stage 2

Anomalous or
benign

CY N

Evaluation

Figure 4.2: Procedure 2: Detection procedure for classifying an unlabeled signal as mali-
cious or not malicious

classifier. A labelling sub-stage labels the data features extracted by the Changepoint
detection algorithm. The label is 0 when the features are extracted from a vector Bi,
and 1 when the features are extracted from vector Mi. The second sub-stage is data
normalization, in which each feature is scaled between 0 to 1, considering all of the rows of
matrix X using the min-max method. This sub-stage is applied to increase the performance
of the classifier’s optimization problem [7]. Finally, the last sub-stage has the purpose of
choosing an optimal classifier, which should be the method that provides the best accuracy
and F1-measure using the optimal hyperparameters. Support Vector Machine (SVM)
linear, Logistic Regression, and Naive Bayes are evaluated as possible classifiers. After this
procedure is executed, a classification model is obtained.

Procedure 2 shown in Fig. 4.2 is called detection, and it comprises two stages: Feature
Extraction and Evaluation. The Feature Extraction stage includes the same sub-stages
as in Procedure 1, and the evaluation stage uses only normalization and evaluation of the
features.

In Subsections 5.1.1 and 5.1.2, Procedure 1 is described in detail, while in Subsection
5.1.3 Procedure 2 is defined.

4.1.1 Procedure 1: Feature Extraction.

As described before, the Feature Extraction stage is composed of two sub-stages: Filtering
and Changepoint detection.

42

Filtering.

The moving average filters the signal to eliminate noise of each of the signals of matrix X.
This kind of filter belongs to the class of finite impulse response filters, which are used for
smoothing and waveform shaping of signals. In addition, this filter can be considered as
one of the simplest filters that provides the lowest noise if compare with other linear filters
[89]. Moving average is applied to each of the rows Xi of the matrix X using Eq. (5.1)

Yij =
1

w

w−1∑
g=0

Xiw∗j+g , (4.1)

where:

• w window size: This parameter determines how many values of the signal Xi are
averaged. To choose the optimal value of the window size, a range of values of
the window size have been tested together with other parameters of Procedure 1.
The optimal combination of these parameters that provides the best accuracy and a
normality error less than a constraint for all of the scenarios is chosen as the final
value for the window size w.

• Xi input power consumption: This signal represents the raw signal power consump-
tion with dimensions (1xn).

• Yi output filtered signal: This signal is the resultant of Eq.5.1 with dimensions
(1x(n/w)).

• g: This index is the current position of signal Xi.

• j: This index is used for the new signal filter signal Yi. j takes values between 0 and
trunc(n/w).

A matrix Y with dimensions (r+d)x(n/w) is obtained after this sub-stage. Throughout
this paper, the term window with the symbol w denotes the number of observed values of
the signal Xi, grouped and averaged to obtain a smooth signal Yi. The term ”interval” de-
scribes the set of values of the smooth signal Yi, grouped through the theory of parametric
changepoint detection. The term ”interval” is used in the next sub-stage.

43

Parametric Changepoint

The Changepoint detection sub-stage extracts meaningful features of each of the filtered
signals Yi. This chapter uses the theory of parametric Changepoint detection, which can
identify sudden abrupt changes in each of the filtered signals Yi. This theory groups
datapoints with similar statistical properties in intervals. Figure 4.3 shows a set of data
points of the signal with similar statistical parameters grouped in many intervals [59]. All
the intervals must follow the same mass probability function. Parametric changepoint
theory considers two assumptions:

1 The random variables in each interval follow a Gaussian distribution.

2 Each of the random variables contained in each interval must be independent of one
another.

Considering these assumptions, Changepoint theory can extract relevant features of
time-series signals. The features selected as important in this methodology are:

• Feature 1: Number of changepoints

• Feature 2: Mean of the changepoint intervals’ mean

• Feature 3: Mean of the changepoint intervals’ variance

The number of changepoints is an important feature because we assume that the ac-
tions of emulated or real malware in the smartphone will affect the signal as a changepoint
due to the change in the signal’s statistical properties.
Features 2 and 3 are significant for the model because they characterize every interval
according to statistical properties. Feature 2 and 3 are calculated after Feature 1 has been
found.

To explain the theory of Changepoint detection, we have considered an appropriate
notation, which will be used in Eqs. (4.2), (4.3), and (4.4). These equations describe the
cost function used to find the optimal position of the changepoints in a signal Yi.
The notation used is as follows:

• k : This variable represents the number of intervals in which the signal Yi will be divided,
as can be seen in Fig. 4.4. k can take values between 0 to K.

44

Yi vs time

10
00

20
00

30
00

40
00

0 100 200 300 400

P
ow

er
 c

on
su

m
pt

io
n

[m
W

]

Time [s]

Figure 4.3: Changepoint detection applied to one part of the signal Yi

Figure 4.4: Datapoints of the signal Yi group in intervals through the Changepoint theory.

• K − 1 : This variable denotes the number of changepoints in the signal Yi. Each change-
point characterizes the transition between intervals with distinct statistical proper-
ties.

• τk : This variable defines the position of each changepoint. The vector τ = (τ0, τ1, ..., τK)
contains all the positions of the changepoints in the signal Yi. We have used the
notation τ ′k to denote τk−1.

• yij : This variable corresponds to each element of the vector Yi after the sub-stage of
filtering.

• Interval : After applying the theory of Changepoint detection, each interval will con-

45

tain a set of data points between (yiτ ′
k

, yiτk]. To illustrate, if we analyze the second in-

terval k=2 in Fig. 4.4, the interval will include all the data points between (yiτ1 , yiτ2].
Hence, the data points with positions P4, P5, P6, P7 and P8 will be considered in
the interval.

To understand the theory of changepoint detection, we assume that the number of
changepoints K − 1 of the signal Yi is known. Thus, we can assign a cost to group a
set of yij ’s in each interval, using a Gaussian mass probability function. Then, we can
sum up all the intervals’ costs to obtain a total cost for each signal Yi. This total cost
function is described in Eq. (4.2). To find the best interval grouping, the total cost
function is minimized by grouping datapoints yik ’s among sequential intervals. After this
minimization problem, we know the optimal position of each changepoint that separates
intervals that contain data points of the signal Yi with similar statistical properties.

J(τ, Yi) =
1

n/w

K∑
k=1

G((yiτ ′
k

, yiτk]) (4.2)

Considering that each interval of the signal Yi follows a Gaussian distribution with changes
in the mean and variance, the function G can be modelled by the twice negative Gaussian
log-likelihood with changes in the mean and variance [70][50]. Hence,

G((yiτ ′
k

, yiτk]) = (τk − τ ′k) log(σ̂2
(τ ′k,τk]

) , (4.3)

where

σ̂2
(τ ′k,τk]

=
1

(τk − τ ′k)
τk∑

i=(τ ′k+1)

(yi − y(τ ′k,τk])
2 , (4.4)

and y(τk′ ,τk]is the empirical mean.

The assumption to understand this theory is not true in real Apps. Hence, we add to
the cost function an additional penalty value pen to obtain the number and position of
changepoints automatically [70][50], as shown in Eq. (4.5):

H(τ, Yi) = J(τ, Yi) + pen. (4.5)

The value of the penalty must be chosen to obtain the highest F1-measure and lowest
normality error. Different approaches such as Schwarz’s information criterion [88], Akaike’s
information criteria [6], or an adaptive choice of the penalization parameter [70] have been

46

used to accomplish this requirement, but in most cases, these theories cannot reach the
optimal solution. For this reason, in the present work, we test a range of penalty values.
If the accuracy of the entire model is maximized under all the scenarios and the normality
error is minimum within an imposed constraint, the value of the penalty is selected as a
unique value for the whole model.

After finding the number of changepoints K − 1 with the optimal penalty value, the
position τ of each changepoint in every signal Yi and the data points of each interval
are known. Using this information, we find the second feature, which is the mean of
the changepoint intervals’ mean. To find this feature as a unique value, we calculate the
mean of each interval. Subsequently, we obtain the mean of all the intervals’ mean. The
mathematical expression is described in Eq. (4.6):

µYi =
1

K

K∑
k=1

y(τ ′k,τk]. (4.6)

Finally, the third feature is calculated, called the mean of the changepoint intervals’
variance. We obtain the variance of each of the intervals of the signal Yi. Afterwards, the
mean of the intervals’ variance is calculated using Eq. (4.7).

σ̂2
Yi

=
1

K

K∑
k=1

σ̂2
y(τ ′

k
,τk]

. (4.7)

For each measurement or row Yi of the matrix Y, three features represented by three
single values are extracted. The matrix obtained after this sub-stage is represented by the
letter C with dimensions ((r + d) x f), where f represents the number of features extracted
for each vector Yi. Each vector of the matrix C is denoted as Ci.
Equations (4.5), (4.6), and (4.7) extract features in the sub-stage of Changepoint detection.
It is important to highlight that PELT (Pruned Exact Linear Time) algorithm has been
used in this paper to find the number of changepoints and their optimal position for each
signal. This algorithm guarantees exactness and relatively fast computational time because
it is based on an iterative calculation. This algorithm uses dynamic programming with
pruning to find the exact global optimum [54].

In this thesis, the assumptions to extract meaningful features using parametric change-
point have been verified. The first assumption is that each interval of a signal Yi should
follow a Gaussian distribution. To verify this assumption, Kolmogorov testing is applied

47

● ●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

0
20

40
60

80
10

0

0 10 20 30 40

N
or

m
al

ity
 E

rr
or

[%
]

Penalty values

●

Window Size

200
400
600
800
1000
1200
1400
1600
1800

Figure 4.5: Normality error check

to all of the intervals, and we calculate an error that indicates how many intervals of the
signal Yi do not pass the test. This characteristic is used to select the penalty value and
the window size. The validation is important because while the window size and penalty
value increase, the error increases exponentially, as in Fig. 4.5. If the error is high, the
assumption of extracting features with Changepoint detection is not valid.

To verify the second assumption, autocorrelation testing is applied to each interval
found with Changepoint detection theory for each signal Yi. In this case, we find a corre-
lation between an original interval and a duplicated lagged signal of itself. A lagged signal
means that the signal is offset (1, 2, 3.., n/w). To illustrate, if lag 1 is taken, the signal will
be offset 1 sample. With the lagged signal, we want to analyze whether the present sample
depends on past samples. The mathematical expression of autocorrelation applied to an
interval is given by Eq. 4.8, while the expression of autocorrelation applied to the entire
signal is given by Eq. 4.9

ACF =

τk∑
i=l+1+τ ′

k

(yi−y(τ ′
k
,τk]

)(yi−l−y(τ ′
k
,τk]

)

τk∑
p=1+τ ′

k

(yp−y(τ ′
k
,τk]

)2
(4.8)

48

0 1 2 3 4 5 6 7

−
0.

5
0.

0
0.

5
1.

0

Lag

A
C

F

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag
A

C
F

(a) Interval Autocorrelation test (b) Signal Autocorrelation test

Figure 4.6: Analysis of normality error, interval autocorrelation, and whole signal auto-
correlation

ACF =

n∑
i=l+1

(yi−y[1,n])(yi−l−y[1,n])

n∑
p=1

(yp−y[1,n])2
(4.9)

where l is the lag analyzed.

Figure 4.6(a) shows the results after applying autocorrelation to one of the intervals
found with Changepoint theory, chosen randomly, of a Benign signal. The random variables
included in this interval are independent of one another. In contrast, if autocorrelation
is applied to the raw signal Xi directly without applying the Filtering and Changepoint
detection sub-stages, a correlation is found to exist among all the variables that constitute
the signal, as shown in Fig. 4.6(b).

49

4.1.2 Procedure 1: Training and Testing of the model.

This stage is composed of three sub-stages: Labeling, Normalization, and Training and
Testing of the model.

Labeling

This sub-stage labels the features represented in the matrix C. The first r rows of C
represent power measurements of benign signals, labelled 0. The rest of the rows of C
depict malicious signals which, labelled 1. The resultant matrix after labeling is denoted
by L, and it has dimension (r + d)x(f+1). L has an additional column for the labels. Each
labeled vector of L is denoted by Li.

Normalization

The first three columns of the matrix L, which represent the features, are normalized
primarily to increase the algorithm’s performance in the next sub-stage. The min-max
normalization is executed per feature of L, and is expressed by Eq. (5.18)

Nj =
Li −min(Lj)

max(Lj)−min(Lj)
, (4.10)

where i represents each of the rows of matrix L while j denotes each column of L. The
index j can take values between 1 to f, and i can take values between 1 to (r+d).

After this sub-stage, we find a matrix N with dimensions (r+d)x(f +1). Each row of
the matrix N is represented as Ni

Training and testing

Until this sub-stage, the measurements of benign and malicious signals have been processed
through stages and sub-stages, obtaining meaningfully normalized and labelled features.

In this sub-stage, supervised learning transforms this data into a classification model.
In supervised learning, the data is separated into two datasets called the training and
testing datasets. The training dataset trains a model, while the testing dataset verifies the
performance of the created model.

50

In the present work, it is difficult to define optimal percentages by which to divide the
data into training and testing datasets, since the number of samples is reduced. For this
reason, Leave One Out Cross Validation (LOOCV) is used [95]. This technique uses all
of the samples available to train and test the model. At the beginning, LOOCV excludes
1 sample of the whole data available, and we train the model with the rest of the data.
The excluded sample is evaluated in the model, and the error is calculated with the label
available. This process is repeated with all of the samples, to calculate the total error,
which gives us the accuracy of the model [20]. This method is sensitive to outliers, but it
is guaranteed that the model will learn features for each of the samples of the data.

Different classification algorithms, namely Support Vector Machine linear, Logistic Re-
gression, and Naive Bayes, have been evaluated using LOOCV to obtain the accuracy and
F1-measure of each model. In the present work, accuracy and F1-measure have the same
values because the dataset is balanced.

A confusion matrix helps to calculate both accuracy metrics. This matrix has the
outcomes of each classifier trained and tested. The dimension of this matrix depends on
the number of classes of the problem according to (numberofclasses)2 components. In this
case, we have two classes available: malicious and benign samples. Hence, the confusion
matrix has four components, as shown in Table 4.1.

Predicted benign (0) Predicted malicious(1)
Actual benign(0) True positives(TP) False Positives(FP)
Actual malicious(1) False negatives(FN) True negatives(TN)

Table 4.1: Confusion Matrix

Accuracy is defined by Eq. (4.11). This equation does not take into consideration False
Positives and False Negatives for the score. Thus, accuracy is not sufficient to characterize
a model because if the classifier predicts all the labels erroneously, the accuracy will be
100%.

Accuracy =
TP + TN

TP + TN + FP + FN
(4.11)

F1-Measure is defined by Eq. (4.12). This metric is an indicator of the exactness and
sensitivity of the classifier. Precision evaluates the proportion of True Positives and the
sum of True positives and True Negatives, showing the exactness of the classifier. The recall
relates the number of true positives over the number of true positives and false negatives.
Thus, it shows the completeness of the classifier.

51

Accuracy =
2 ∗ Precision ∗Recall
Precision+Recall

(4.12)

F1-measure is a better metric than accuracy because almost all the components of the
confusion matrix are used to calculate it.

4.1.3 Procedure 2: Detection procedure

This procedure shown in Fig. 4.2 tests unlabeled new measurements. In this case, we do
not known if the measurement has malware running on it.

The feature extraction stage comprises two sub-stages. The sub-stage of Filtering uses
the same value for w obtained in Procedure 1 to apply the moving average filter to the
new signal. After this sub-stage, a vector Y is obtained with dimensions n/w.

Subsequently, the sub-stage of Changepoint detection extracts f features of the input
signal using the same penalty value as in Procedure 1. It obtains a vector C with dimension
f, where f =3.

The next stage is called Evaluation, and it only considers two sub-stages: Normalization
and Evaluation. The min-max method is used to normalize the features of the new signal.
After the features are normalized, the optimal classifier chosen in Procedure 1 is used to
predict whether the normalized features of the new signal indicate anomalous behavior.

52

Chapter 5

Methodology 2

This chapter describes the non-parametric changepoint detection methodology used to de-
tect malicious behavior. This methodology has the same stages and sub-stages as Method-
ology 1, as is seen in Figs. 5.4 and 5.1 . However, the way the features are extracted in
the sub-stage of feature extraction is different to that in Methodology 1.

5.1 Methodology

This methodology has two Procedures as Methodology 1. Procedure 1 trains and tests
the model, while Procedure 2 shows the flow that a new measurement has to follow to
be classified as a malicious or non-malicious signal. Furthermore, the same notation has
been used to name the signals as in Methodology 1. Each benign signal is denoted as
follows, Bi = (bi1 , bi2 , bi3 ,, bin), and this experiment is repeated r times. On the other
hand, a malicious signal is denoted as Mi = (mi1 ,mi2 ,mi3 ,,min), and the experiment is
repeated d times. All of the signals have been concatenated in a matrix X with dimensions
(r + d)xn.

The stages and sub-stages of Methodology 2 are similar to those presented in Chapter
4. Hence, they are presented in a compact manner.

The first stage of Procedure 1 is called feature extraction, and it is composed of Filter-
ing and non-parametric Changepoint Detection. The second stage is denoted as training
and testing of the model. This stage fits three machine learning algorithms Support Vec-
tor Machine Linear, Logistic regression, and Naive Bayes with filtered and meaningful

53

Legend:
r: number of reference signals; d: number of malicious signals; n: number of observed values.
Methodology 2: X:(r+d) x n; Y’:(r+d)x(n/ω’); C’:(r+d) x f1; L’:(r+d)x(f1+1); N’:(r+d)x(f1+1); ω’: window size; f1: features; SL:slide;
SG:segment; α:alpha; LOOCV: Leave one out cross validation; LR: Logistic regression; SVM Linear: Support Vector Machine Linear; NB: Naive
Bayes

LOOCV

Optimal
Classifier

LR, SVM, or
NB

Classifier

NB

SVM

LRLabeled
Data

Stage 1

Normalization

Stage 2

Feature extraction Training and testing of the model

Changepoint
detection:

Methodology 2:
Non-parametric

SL SG α
C’ N’L’

Moving
Average
Filtering

ω’

X Y’

Figure 5.1: Procedure 1: Data Preparation and Model Training and Testing

features. This stage is composed of Labeling, Normalization, and Training and Testing of
the classifier.

Procedure 2, named Detection, has the goal of classifying a new unseen signal as ma-
licious or benign. In this procedure, the sub-stage of labelling is omitted, and the current
sample is tested in the optimal classifier chosen in Procedure 1.

The following sub-sections explain all the stages and sub-stages in detail.

5.1.1 Procedure 1: Feature Extraction.

Feature extraction is the most important stage in the methodology since this stage has
a decisive impact on the final accuracy and F1-measure of the models. At the beginning
of this stage, moving average filter eliminates noise from the original signal. Next, non-
parametric changepoint detection obtains relevant training features.

Filtering.

This sub-stage is useful in eliminating interference introduced in the signal due to external
sources such as electromagnetic or thermal noise. Additionally, the sampling rate of the
power consumption is relatively high (near to 5000 samples/s). Thus, these noises can
amplify its effect in the measurement. Each of the power consumption measurements
represented by Xi passes through this sub-stage using Eq. (5.1)

54

Yij =
1

w′

w′−1∑
g=0

Xiw′∗j+g
, (5.1)

where:

• w′ window size: This parameter determines how many values of the signal Xi are
averaged. This parameter has been chosen considering the maximum F1-measure
and the minimum time of detection reached with all of the stages of Procedure 1. It
is noteworthy that in Methodology 1, the time of detection has not been considered
in selecting the window size, because as is shown in [80], it is relatively low near to
1.1 seconds.

• Xi input power consumption: This signal represents the raw signal power consump-
tion with dimensions (1xn).

• Yi output filtered signal: This signal is the resultant of Eq.5.1 with dimensions
(1x(n/w)).

• g: This index is the current position of signal Xi.

• j: This index is used for the new signal filter signal Yi. j takes values between 0 and
trunc(n/w).

The filtered signals are concatenated in a matrix Y’ with dimensions (r + d)x(n/w′).
In the present chapter, the term ”window” describes the set of values grouped to filter
the signal. The term ”slice (SL)” describes the datapoints grouped in non-parametric
changepoint detection. Finally, the term ”segment (SG)” corresponds to consecutive groups
of slices.

Non-parametric Changepoint detection

The theory of non-parametric changepoint detection assigns scores to the value of sudden
changes in a stochastic time-series signal, using divergence-based dissimilarity and relative
Pearson direct density-ratio theories. If there is a significant change in the signal, the value
obtained is high. Conversely, if the change is not important, it is ranked with a low value.
Figure 5.2 shows how each point of the signal is ranked in a new scale depending on its
strength. The limits are bounded in a range.

55

50 100 150 200 250 300 350 400

Time [s]

1000

2000

3000

4000

P
o
w

e
r

c
o
n
s
u
m

p
ti
o
n
 [
m

W
] Yi vs time

50 100 150 200 250 300 350 400

Time [s]

0

1

2

3

S
c
o
re

 o
f
c
h
a
n
g
e
p
o
in

t

Changepoint non-parametric

Figure 5.2: Non-Parametric changepoint detection applied to one part of the signal Yi
named the Resultant signal

This theory is called non-parametric changepoint because this theory does not assume
any distribution or independence of random variables of retrospective segments. In the
present work, the following features have been found for each signal using non-parametric
changepoint detection:

• Feature1′: Cumulative sum of changepoints’ scores.

• Feature2′: Mean of the changepoints’ scores.

• Feature3′: Variance of the changepoints’ scores.

• Feature4′: Mean of the whole signal.

• Feature5′: Variance of the whole signal.

We select Feature1′ as relevant because we assume that malware acts using different
hardware resources of the smartphone. This usage will be reflected as a high cumulative

56

sum of changepoints’ scores. Features2′ and Feature3′ have been selected because these
summarize the main statistical properties of the Resultant Signal after we have applied
non-parametric changepoint detection. Finally, Feature4′ and Feature5′ are also useful
for the analysis because they show the general statistical properties for the whole signal.

To understand how the Resultant Signal is generated, we review the theory of divergence-
based dissimilarity and relative Pearson direct density-ratio.

Divergence-based calculates the dissimilarity between two retrospective segments using
the ratio of their unknown probability distributions [75].

The ratio of two retrospective segments f(Y) and f ′(Y) is defined by Eq. (5.2). It is
necessary to highlight that knowing the ratio of both segments does not mean that we can
infer the distribution of f(Y) and f ′(Y), because the relation does not guarantee a unique
solution.

ratio =
f(Y)

f ′(Y)
(5.2)

To explain how the non-parametric Changepoint detection technique works, we use the
following notation to describe Fig. 5.3:

• Slice SL: set of datapoints of the signal Xi grouped according to the value of this
variable.

• Segment SG: set of slices associated in a group.

• o: defined as n/w′.

• Z: vector containing all datapoints grouped by the value of SL.

• Z: matrix that has all vectors Z.

To illustrate, Fig. 5.3 shows a time-series signal composed of o = n/w elements. If
the value of the slice SL=4, four datapoints are associated in a group. The datapoints yi0 ,
yi1 , yi2 , and yi3 are grouped in a vector denoted as Zi0 . The slice advances one position
at a time to the right. Therefore, the next element will be named Zi1 , and it contains the
elements yi1 , yi2 , yi3 , and yi4 . This process is repeated until all of the samples are grouped.
All vectors Z are concatenated in a matrix Z.
A Segment is a set of ordered slices grouped. In Fig. 5.3 the value of the segment is 2.

57

...

o

o

o

o

iiiiiii

iiiiiii

iiiiiii

iiiiiii

yyyyyyy

yyyyyyy

yyyyyyy

yyyyyyy

...

...

...

...

876543

1765432

2654321

3543210

0i
y

1i
y

2i
y

4i
y

5i
y

6i
y

7i
y

8i
y

9i
y

10i
y

3i
y

oi
y

3oi
y

2oi
y

1oi
y

...
1i

y
2i

y
4i

y
5i

y
6i

y
7i

y
8i

y
9i

y
10i

y
3i

y
oi

y
3oi

y
2oi

y
1oi

y

...
2i

y
4i

y
5i

y
6i

y
7i

y
8i

y
9i

y
10i

y
3i

y
oi

y
3oi

y
2oi

y
1oi

y

oi
y

3oi
y

2oi
y

1oi
y

]...[
1)()(1)(2)(76543210

SLoSLoSLoSLo iiiiiiiiiiii ZZZZZZZZZZZZ

0i
Z

2iZ1i
Z

3i
Z

4i
Z

5i
Z

1)(SLoiZ

Z

Z

Z

Z

Z

SG=2

SL=4

… … … … … … ...

...
S0

S(o-SL-2*SG+3)*2-1S(o-SL-2*SG+3)*2-2

]...[
1)()(1)(2)(76543210

SLoSLoSLoSLo iiiiiiiiiiii ZZZZZZZZZZZZ

]...[
1)()(1)(2)(76543210

SLoSLoSLoSLo iiiiiiiiiiii ZZZZZZZZZZZZ

]...[
1)()(1)(2)(76543210

SLoSLoSLoSLo iiiiiiiiiiii ZZZZZZZZZZZZ

S1

S2 S3

S4 S5

Figure 5.3: Notation and example of non-parametric changepoint detection

Hence, 2 slices Zi0 and Zi1 are grouped and denoted with seg0. Next, 2 slices Zi2 and Zi3
form another group named seg1. The process to obtain the scores of a changepoint is based
on finding a dissimilarity measure between pairs of probability segments, using symmetric
divergence-based approach given by Eq. (5.3).

D(P (Sq)||P (Sq+1)) +D(P (Sq+1)||P (Sq)) (5.3)

The concept of divergence according to Ali et al. [10] is shown in Eq. (5.4). It is defined

58

as f-divergence.

D(P (Sq)||P (Sq+1)) =∫
P (Sq+1) f

(
P (Sq)

P (Sq+1)

)
dS

(5.4)

In Eq. (5.4), we assume that P (Sq) and P (Sq+1) are strictly positive, and the function f
is a convex function where f(1) = 0 [75]. In the present paper, we use Pearson Divergence
shown in Eq. (5.5), which replaces to the function f in Eq. (5.4).

PE(P (Sq)||P (Sq+1)) =

1

2

∫
P (Sq+1)

(
P (Sq)

P (Sq+1)
− 1

)2

dS
(5.5)

P (Sq) and P (Sq+1) can be estimated with estimation theory using a Naive approach.
Nonetheless, this estimation can be considered a complex task. Therefore, many authors
such as Sugiyama et al. [92] and Kanamori et al. [58] develop a direct estimation of
the ratio without the need to estimate the probabilities separately. Both methods are
unbounded; hence, the ratio of the segments’ probabilities can be infinite in some cases. In
this paper, to tackle this problem, we use a method called RuLSIF proposed by Yamada
et al. [75]. It uses a parameter alpha to bound the ratio, as shown in Eq. (5.6)

PE(P (Sq)||P (Sq+1)) :=

PE(P (Sq)||αP (Sq) + (1− α)P (Sq+1)) =∫
Pα(Sq+1)

(
P (Sq)

Pα(Sq+1)
− 1

)2

dS

(5.6)

where

Pα(Sq+1) = αP (Sq) + (1− α)P (Sq+1) (5.7)

If α takes the value of 0, the divergence PE is the same as in Eq. (5.5). Equation (5.8)
defines the relationship between two retrospective probability segments

rα(S) =
P (Sq)

αP (Sq) + (1− α)P (Sq+1)
(5.8)

59

According to [75], we can model the ratio P (Sq)

P (Sq+1)
using a kernel model given by Eq.

(5.9). The ratio is denoted as the function g(S;θ) in Eq. (5.9),

g(S, θ) :=
cv∑
l=1

θlK(S,Sl) (5.9)

where K is defined as a Gaussian kernel shown in Eq. (5.10)

K(Sq,Sq+1) = exp

(
−||Sq − Sq+1||2

2σ2

)
(5.10)

To approximate g(S;θ) using the samples available, it is necessary to minimize the
square loss shown in Eq. (5.11)

J(S) =
1

2

∫
Pα(Sq+1)(rα(S)− g(S; θ))2dS (5.11)

After minimizing Eq. 5.11, we calculate the estimator denoted by Eq. 5.12

g(Ŝ) :=
cv∑
l=1

θlK(S,Sl) (5.12)

where cv means folds of cross-validation.

Finally, the estimator is replaced in Eq. (5.6), and we find the changepoint score for the
segments Sq and Sq+1. As mentioned, we use symmetric divergence to find the score of each
changepoint denoted by Eq. 5.4. Thus, it is necessary to find the changepoint score from
Sq+1 to Sq. Both scores are sumed up. This process is repeated with all of the segments from
S0 to S(o−SL−2∗SG+3)∗2−1. The result is a vector denoted as SC = (sc0, sc1, sc2, sc3, ..., scn/a)
with the scores of changepoints for each datapoint of the signal Yi. To find feature 1’, 2’,
3’, 4’, and 5, we use Eqs. (5.13), (5.14), (5.15), (5.16), (5.17).

f1′ =

n/a∑
i=0

sci (5.13)

60

f2′ =
1

n/a

n/a∑
i=0

sci (5.14)

f3′ =

n/a∑
i=0

(sci − f2′)2

n/a
(5.15)

f4′ =
1

n

n∑
i=0

yi (5.16)

f5′ =
n∑
i=0

(yi − f4)2

n
(5.17)

The values of the slice SL, α, and segment SG have been chosen with the wrapper
approach, which means considering the optimal value to obtain the best F1-measure and
time of detection for the entire model.

If r benign and d malicious signals pass through the sub-stage filtering and changepoint
methodology 2, we obtain a matrix named C’, with the dimensions (r+ d)x5. Each power
consumption measurement is denoted by C ′i after this sub-stage.

5.1.2 Procedure 1: Training and Testing of the model.

The sub-stages of training and testing the model are the same as in Methodology 1. These
sub-stages are: Labeling, Normalization, and evaluation of the classifier.

Labeling

We label each element of the matrix C ′ in this sub-stage. There are two labels possible
to characterize each signal C ′i. If the signal is benign, it is labelled 0. In contrast, if the
signal is malicious, it is labelled 1. The resultant matrix after labeling is denoted by L’,
with dimension (r + d)x(6).

61

Normalization

To increase the performance of the classifiers of the next sub-stage, we use min-max nor-
malization. The first five columns of matrix L’ are normalized according to max and min
value for each feature or column. Equation (5.18) shows the mathematical formula applied
to each feature.

N ′j =
L′i −min(L′j)

max(L′j)−min(L′j)
, (5.18)

• i : represents each row of the matrix L’.

• j : represents each feature or column of L’

After normalization, a matrix denoted as N’ is calculated.

Training and testing

In the present paper, we use supervised learning to train and test 3 classifiers: Support
Vector Machine Linear, Naive Bayes, and Logistic Regression. These classifiers are deter-
ministic. Therefore, every time that the classifier runs, we obtain the same result in the
output. Deterministic classifiers were chosen to provide solid and trustworthy results for
the methodologies.

To train and test each classifier, we use Leave One Out Cross Validation (LOOCV)
because this cross-validation technique evaluates all data samples providing realistic and
precise results of F1-measure of each model.

In Methodology 2, we select the optimal classifier which performs better in terms of
F1-measure and in the least detection time.

5.1.3 Procedure 2: Detection procedure

This procedure has the goal of classifying a new unlabeled power consumption measurement
as benign or malicious. This Procedure is shown in Fig. 4.2.

Procedure 2 has the same sub-stages as Procedure 1 in feature extraction stage. We
filter the power trace with the window size w′ selected in Procedure 1. The filtered signal

62

SL SG α
Feature extraction

Legend:
n: number of observed values
Methodology 2: X: Suspicious Signal (1 x n); Y’:(1 x (n/ω’)); C’:(1 x f1); N’:(1 x f1); ω’: window size; f1: features; SL:slide;
SG:segment; α:alpha; LOOCV: Leave one out cross validation; LR: Logistic regression; SVM Linear: Support Vector Machine
Linear; NB: Naive Bayes

Stage 1 Stage 2

Evaluation

Optimal Classifier
LR, SVM, or NB

Moving
Average
Filtering

Normalization
X

Changepoint
detection:

Methodology 2:
Non-parametric

Anomalous or
Benign

C’Y’ N’

ω’

Figure 5.4: Procedure 2: Detection procedure used to classify an unlabeled signal as
malicious or not malicious

passes through the non-parametric changepoint detection sub-stage to extract meaningful
features. These features are the inputs to the stage named Evaluation.
The evaluation stage only has two sub-stages, normalization and evaluation, of the optimal
classifier. In this case, the features extracted in stage 1 are normalized using min-max
normalization. The normalized features are evaluated in the optimal classifier chosen in
Procedure 1. After this stage, the signal can be classified either a malicious or benign
signal.

63

Chapter 6

Results

This chapter presents the results for Methodology 1 and 2 in terms of F1-Measure applied
to dataset 1 and 2. Also, this section describes the normality error for Methodology 1
and the time of execution for both methodologies. Finally, we compare the results of both
methodologies with those from previous work.

In Methodology 1, the window size and the penalty value are the tuning parameters to
obtain the lowest normality error and the best F1-measure. Reference [80] describes the
optimal values of both parameters. The values are:

• Moving average filtering sub-stage: Window size w=50

• Parametric changepoint sub-stage: Penalty value p=1

The results of F1-measure applied for dataset one are shown in Fig. 6.1. The lowest F1-
measure value is ∼78, when duty cycle is 12%, and the emulated malware is only uploading
the image to a server. The highest average F1-measure is 99.46% for scenario 1, in which
the emulated malware downloads a file during the entire duty cycle. The worst average
F1-measure is 95.01%, when the emulated malware uploads an image 25% of the duty
cycle time and downloads a file 75% of the same time. The normality error is ∼0 in all the
scenarios, and there is no correlation among random variables into an interval. Therefore,
we can conclude that the assumptions are accomplished.

In Methodology 2, the window size, alpha, SL, SG, and cross-validation are the tuning
parameters to obtain the best F1-measure and the less detection time. The following
parameters’ values have been evaluated in Methodology 2:

64

● ● ● ● ●

●

Malware Degree of Activeness

F
1−

M
ea

su
re

 [%
]

CHANGEPOINT PARAMETRIC GLM F1−MEASURE
 W=50, PENALTY=1

1 2 3 4 5 6 7 8 9 10 11 12

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

●

download100
upload100
upload75download25
upload50download50
upload25download75

Figure 6.1: F1-measure results for Methodology 1 evaluating dataset 1

• Moving average filtering sub-stage: Window size
w′ = [50, 100, 500, 1000]

• Non-parametric changepoint sub-stage:
α = [0.2, 0.4, 0.6, 0.8], SL = [10, 50, 100],
SG = [10, 30, 50], and cv = 5

The optimal parameters selected are w′=1000, α = 0.4, SL = 10, SG = 10, and cv = 5
to obtain the best F1-measure and the least detection time.

Figure 6.2 shows the results after applying Methodology 2 to dataset 1. The highest
F1-measure value is 100% when the actions of downloading and uploading are equally
distributed in time during duty cycle. The lowest F1-measure value is 96.66% when the
emulated malware uploads an image 100% of duty cycle time.

Parametric and non-parametric methodologies perform similarly in terms of average
F1-measure in all the scenarios of dataset 1. The average F1-measure in all the scenarios is
97.29% for the parametric and 97.82% for the non-parametric approaches, demonstrating
that both are appropriate methodologies for detecting emulated malware.

65

● ● ● ● ●

●

Malware Degree of Activeness

F
1−

M
ea

su
re

[%
]

CHANGEPOINT NON−PARAMETRIC GLM F1−MEASURE
 w'=1000, alpha=0.4, SL=10, SG=10

1 2 3 4 5 6 7 8 9 10 11 12

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

●

download100
upload100
upload75download25
upload50download50
upload25download75

Figure 6.2: F1-measure results Methodology 2 evaluating dataset 1.

Neither Methodology 1 nor Methodology 2 performs with high F1-measure in 12% duty
cycle. The average F1-measure for the parametric is 92%, and for the non-parametric is
91.3% in this duty cycle.

The results of both methodologies have been compared with the methodologies in [104],
[55], and [56]. This analysis only compares the results in which the emulated malware is
downloading a file from the Internet with Dut=1%, 2%, 3%, 4%, 8% and 12% because
these papers do not analyze the five additional scenarios described in Figs. 6.1 and 6.2.

A down-sampling stage reduces the dimension of each signal of the dataset of scenario 1
to train and test the methodology proposed in [104]. Afterwards, MFCC extracts 12 coef-
ficients for each signal. Finally, GMM discriminates between non-malicious and malicious
signals training these coefficients. Figure 6.3 shows the results for each methodology.

The average F1-measure accuracy reached for methodology 1 is ∼99.45%, for method-
ology 2 ∼98.55%, for reference [55] ∼91%, for reference [56] ∼85%, and for reference [104]
∼69%. The proposed methodologies clearly surpass all other methodologies in terms of
average F1-measures. It is noteworthy that [56] and [55] achieve better accuracy than
Methodology 1 and 2 when emulated malware has a degree of activeness of 12%. However,

66

●

●

● ● ● ●

Malware Degree of Activeness

D
et

ec
tio

n
A

cc
ur

ac
y

[%
]

1 2 3 4 5 6 7 8 9 10 11 12

46
48
50
52
54
56
58
60
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98

100

●

Parametric Changepoint
Ref. [13]
Ref. [14]
Ref. [15]
Non−parametric Changepoint

Figure 6.3: Comparison.

the difference is less than 4%. We are interested in a model that can generalize well in all
the scenarios. Therefore, we can state that methodologies 1 an d 2 surpass the F1-measure
results of the methodologies in [55], [56], and [104].

Finally, Methodologies 1 and 2 evaluate dataset 2. The results are shown as a bar chart
for each App in Fig. 6.4. It is clear that non-parametric changepoint detection, with an
average F1-measure of 96.09% for all Apps, surpasses the parametric approach by ∼8%.

Methodology 2 F1-measure surpasses Methodology 1 in both datasets. In the emulated
malware dataset, non-parametric methodology outperforms by ∼ 0.53% Methodology 1.
In real malware dataset, non-parametric surpasses parametric methodology by ∼8%. How-
ever, the detection time for the parametric approach is 1s, while that of non-parametric is
15s. The difference in detection time between the two methodologies is small. Therefore,
we suggest using non-parametric changepoint detection to detect malware in smartphones.
Furthermore, non-parametric changepoint detection does not use any assumptions.

In Chapters 1 and 2, we highlight that both methodologies would be tested with a
different input from the power consumption to justify that they are data agnostic. Data
agnostic means that these can use a different input to detect anomalous behavior. For

67

TETRIS TILT YAMS MINESWEEPER WORD
 SEARCH

Real Malware Applications

60
65
70
75
80
85
90
95

100
F
1
-M

e
a
s
u

re
[%

]

F1-measure Real Malware dataset

Parametric changepoint
Non-parametric changepoint

Figure 6.4: Results of F1-measure for Methodology 1 and 2 applied to dataset 2 of real
malware

this purpose, methodologies 1 and 2 evaluate a small network traffic dataset created using
Wireshark. A malicious App called Tilt from Drebin and a benign App named Tilt from
Play Store are used to create the dataset. While Wireshark is collecting the network traffic,
Droidbot and ADB commands are controlling the App emulating user’s inputs. Fifteen
measurements of a benign App and 15 of a malicious App have been taken.

Figure 6.5 shows the results for Tilt App using the power consumption and the network
traffic as inputs. There is no a result for non-parametric changepoint detection of the input
network traffic because the network traffic time signal is sparse(it contains many zeros).
When Methodology 2 evaluates the network traffic signal, there is a mathematical error
because the relation of two consecutive slices can be infinite or zero due to the fact that
the divisor of the relation can be 0. Therefore, we can conclude that Methodology 2 is not
useful in detecting malicious behavior with sparse signals.

68

Power
 Consumption

Network
 Traffic

60
65
70
75
80
85
90
95

100

F
1
-M

e
a
s
u

re
[%

]

F1-measure Tilt App

Parametric changepoint
Non-parametric changepoint

Figure 6.5: Results of F1-measure for Methodologies 1 and 2 applied to dataset 2 of real
malware

69

Chapter 7

Conclusions and Future Work

This thesis has presented two methodologies to detect emulated and real malware in An-
droid smartphones using power consumption. Both methodologies show satisfactory ac-
curacy in terms of F1-measure over ∼95% to detect malware, although non-parametric
methodology shows slightly better results without assumptions but with a greater detec-
tion time than a parametric approach. It is noteworthy that both methodologies have a
weakness in detecting malware with the highest percentage of duty cycle 12%. For this
reason, it is necessary to tackle this problem as future work. When the duty cycle is greater
than 12%, the statistical properties of the whole signal will change drastically. Thus, we
can check at the beginning only the mean and the variance to detect malware. If the signal
is classified as benign, we can run the Methodology 1 and 2 to detect malware with lower
duty cycles. Therefore, we can conclude that malware with duty cycle over 12% are easier
to detect.

We can highlight that the present work is unique in terms of validation datasets if we
compare it with other works such as [61] [55] [104] [28], which use only emulated malware to
validate their methodologies. Furthermore, if we compare the present work with previous
works [80], [55] that use emulated malware, we can conclude that we use 75% more power
measurements to test the methodologies with emulated malware. However, the number of
real Apps is still a small power consumption dataset. Therefore, as future work, we can
use a hundred or more real malware Apps.

Finally, we verify that parametric changepoint detection methodology can handle sparse
and not sparse signals to detect malicious behavior. Hence, Methodology 1 can be consid-
ered a data-agnostic methodology. However, the non-parametric methodology exhibits an
issue handling sparse signals. Thus, we can look for a method to solve this issue.

70

References

[1] Proof-of-concept ransomware for smart thermostats demoed at defcon. [Online].
Available: https://boingboing.net/2016/08/08/proofof-concept-ransomware-fo.html,
2016.

[2] J. Abawajy and A. Kelarev. Iterative classifier fusion system for the detection of
android malware. IEEE Transactions on Big Data, pages 1–1, 2018.

[3] Zeinab Abbasi, Mehdi Kargahi, and Morteza Mohaqeqi. Anomaly detection in em-
bedded systems using simultaneous power and temperature monitoring. In 2014
11th International ISC Conference on Information Security and Cryptology, pages
115–119. IEEE, 2014.

[4] Accenture. People-based attacks have increased the most).

[5] Fabio Aiolli, Mauro Conti, Ankit Gangwal, and Mirko Polato. Mind your wallet’s
privacy: identifying bitcoin wallet apps and user’s actions through network traffic
analysis. In Proceedings of the 34th ACM/SIGAPP Symposium on Applied Comput-
ing, pages 1484–1491. ACM, 2019.

[6] Hirotugu Akaike. A new look at the statistical model identification. IEEE transac-
tions on automatic control, 19(6):716–723, 1974.

[7] Luai Al Shalabi, Zyad Shaaban, and Basel Kasasbeh. Data mining: A preprocessing
engine. Journal of Computer Science, 2(9), 2006.

[8] M. S. Alam and S. T. Vuong. Random forest classification for detecting android
malware. In 2013 IEEE International Conference on Green Computing and Com-
munications and IEEE Internet of Things and IEEE Cyber, Physical and Social
Computing, pages 663–669, Aug 2013.

71

[9] K. Albrecht and L. Mcintyre. Privacy nightmare: When baby monitors go bad
[opinion]. IEEE Technology and Society Magazine, 34(3):14–19, Sep. 2015.

[10] Syed Mumtaz Ali and Samuel D Silvey. A general class of coefficients of divergence
of one distribution from another. Journal of the Royal Statistical Society: Series B
(Methodological), 28(1):131–142, 1966.

[11] Aljawharah Alnasser, Hongjian Sun, and Jing Jiang. Cyber security challenges and
solutions for v2x communications: A survey. Computer Networks, 151:52–67, 2019.

[12] A. Alzahrani, A. Alshehri, H. Alshahrani, R. Alharthi, H. Fu, A. Liu, and Y. Zhu.
Randroid: Structural similarity approach for detecting ransomware applications in
android platform. In 2018 IEEE International Conference on Electro/Information
Technology (EIT), pages 0892–0897, May 2018.

[13] Mohammed K Alzaylaee, Suleiman Y Yerima, and Sakir Sezer. Improving dynamic
analysis of android apps using hybrid test input generation. In 2017 International
Conference on Cyber Security And Protection Of Digital Services (Cyber Security),
pages 1–8. IEEE, 2017.

[14] B. Amos, H. Turner, and J. White. Applying machine learning classifiers to dynamic
android malware detection at scale. In 2013 9th International Wireless Communica-
tions and Mobile Computing Conference (IWCMC), pages 1666–1671, July 2013.

[15] IoT analytics. State of the IoT 2018: Number of IoT devices now at 7B – Market
accelerating).

[16] Eirini Anthi, Lowri Williams, Ma lgorzata S lowińska, George Theodorakopoulos, and
Pete Burnap. A supervised intrusion detection system for smart home iot devices.
IEEE Internet of Things Journal, 2019.

[17] Alessio Antonini, Federico Maggi, and Stefano Zanero. A practical attack against a
knx-based building automation system. In ICS-CSR, 2014.

[18] Abdullahi Arabo and Bernardi Pranggono. Mobile malware and smart device se-
curity: Trends, challenges and solutions. In 2013 19th international conference on
control systems and computer science, pages 526–531. IEEE, 2013.

[19] K. Ariyapala, H. G. Do, H. N. Anh, and et. all. A host and network based intrusion
detection for android smartphones. In 30th Int. Conf. on Advanced Info. Net. and
Apps Workshops (WAINA), March 2016.

72

[20] Sylvain Arlot, Alain Celisse, et al. A survey of cross-validation procedures for model
selection. Statistics surveys, 4:40–79, 2010.

[21] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad Rieck,
and CERT Siemens. Drebin: Effective and explainable detection of android malware
in your pocket. In Ndss, volume 14, pages 23–26, 2014.

[22] S. Arshad, M. A. Shah, A. Wahid, A. Mehmood, H. Song, and H. Yu. Samadroid:
A novel 3-level hybrid malware detection model for android operating system. IEEE
Access, 6:4321–4339, 2018.

[23] Amin Azmoodeh, Ali Dehghantanha, Mauro Conti, and Kim-Kwang Raymond Choo.
Detecting crypto-ransomware in iot networks based on energy consumption footprint.
Journal of Ambient Intelligence and Humanized Computing, 9(4):1141–1152, Aug
2018.

[24] Meriem Bettayeb, Qassim Nasir, and Manar Abu Talib. Firmware update attacks
and security for iot devices: Survey. In Proceedings of the ArabWIC 6th Annual
International Conference Research Track, page 4. ACM, 2019.

[25] Tamara Bonaci, Jeffrey Herron, Tariq Yusuf, Junjie Yan, Tadayoshi Kohno, and
Howard Jay Chizeck. To make a robot secure: An experimental analysis of cyber se-
curity threats against teleoperated surgical robots. arXiv preprint arXiv:1504.04339,
2015.

[26] Andreas Brauchli and Depeng Li. A solution based analysis of attack vectors on
smart home systems. In 2015 International Conference on Cyber Security of Smart
Cities, Industrial Control System and Communications (SSIC), pages 1–6. IEEE,
2015.

[27] R. Bridges, J. Hernández Jiménez, J. Nichols, K. Goseva-Popstojanova, and S. Prow-
ell. Towards malware detection via cpu power consumption: Data collection design
and analytics. In 2018 17th IEEE International Conference On Trust, Security And
Privacy In Computing And Communications/ 12th IEEE International Conference
On Big Data Science And Engineering (TrustCom/BigDataSE), pages 1680–1684,
Aug 2018.

[28] L. Caviglione, M. Gaggero, J. Lalande, W. Mazurczyk, and M. Urbański. Seeing the
unseen: Revealing mobile malware hidden communications via energy consumption
and artificial intelligence. IEEE Transactions on Information Forensics and Security,
11(4):799–810, April 2016.

73

[29] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A
survey. ACM computing surveys (CSUR), 41(3):15, 2009.

[30] Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav
Shacham, Stefan Savage, Karl Koscher, Alexei Czeskis, Franziska Roesner, Tadayoshi
Kohno, et al. Comprehensive experimental analyses of automotive attack surfaces.
In USENIX Security Symposium, volume 4, pages 447–462. San Francisco, 2011.

[31] Patrick Shicheng Chen, Shu-Chiung Lin, and Chien-Hsing Sun. Simple and effective
method for detecting abnormal internet behaviors of mobile devices. Information
Sciences, 321:193–204, 2015.

[32] Luigi Coppolino, Valerio DAlessandro, Salvatore DAntonio, Leonid Levy, and Luigi
Romano. My smart home is under attack. In 2015 IEEE 18th International Confer-
ence on Computational Science and Engineering, pages 145–151. IEEE, 2015.

[33] Baojiang Cui, Haifeng Jin, Giuliana Carullo, and Zheli Liu. Service-oriented mo-
bile malware detection system based on mining strategies. Pervasive and Mobile
Computing, 24:101–116, 2015.

[34] M. Curti, A. Merlo, M. Migliardi, and S. Schiappacasse. Towards energy-aware
intrusion detection systems on mobile devices. In Int. Conf. on High Performance
Computing Simulation (HPCS), July 2013.

[35] R. G. d. S. Ramos, P. R. L., and J. V. d. M. Cardoso. Anomalies detection in
wireless sensor networks using bayesian changepoints. In 2016 IEEE 13th Interna-
tional Conference on Mobile Ad Hoc and Sensor Systems (MASS), pages 384–385,
Oct 2016.

[36] B. Dixon and S. Mishra. Power based malicious code detection techniques for smart-
phones. In 2013 12th IEEE International Conference on Trust, Security and Privacy
in Computing and Communications, pages 142–149, July 2013.

[37] H. Dogan, D. Forte, and M. M. Tehranipoor. Aging analysis for recycled fpga de-
tection. In 2014 IEEE International Symposium on Defect and Fault Tolerance in
VLSI and Nanotechnology Systems (DFT), pages 171–176, Oct 2014.

[38] Ali El Attar, Rida Khatoun, and Marc Lemercier. A gaussian mixture model for
dynamic detection of abnormal behavior in smartphone applications. In 2014 Global
Information Infrastructure and Networking Symposium (GIIS), pages 1–6. IEEE,
2014.

74

[39] R. Elnaggar, K. Chakrabarty, and M. B. Tahoori. Hardware trojan detection using
changepoint-based anomaly detection techniques. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, pages 1–14, 2019.

[40] Rana Elnaggar, Krishnendu Chakrabarty, and Mehdi B Tahoori. Hardware trojan
detection using changepoint-based anomaly detection techniques. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 2019.

[41] Adrienne Porter Felt, Matthew Finifter, Erika Chin, Steve Hanna, and David Wag-
ner. A survey of mobile malware in the wild. In Proceedings of the 1st ACM workshop
on Security and privacy in smartphones and mobile devices, pages 3–14. ACM, 2011.

[42] Jason Flinn and Mahadev Satyanarayanan. Powerscope: A tool for profiling the en-
ergy usage of mobile applications. In Proceedings WMCSA’99. Second IEEE Work-
shop on Mobile Computing Systems and Applications, pages 2–10. IEEE, 1999.

[43] Huber Flores, Jonatan Hamberg, Xin Li, Titti Malmivirta, Agustin Zuniga, Eemil
Lagerspetz, and Petteri Nurmi. Evaluating energy-efficiency using thermal imaging.
In Proceedings of the 20th International Workshop on Mobile Computing Systems
and Applications, pages 147–152. ACM, 2019.

[44] S. Garg, A. van Moorsel, K. Vaidyanathan, and K. S. Trivedi. A methodology
for detection and estimation of software aging. In Proceedings Ninth International
Symposium on Software Reliability Engineering (Cat. No.98TB100257), pages 283–
292, Nov 1998.

[45] Daniel Genkin, Adi Shamir, and Eran Tromer. Rsa key extraction via low-bandwidth
acoustic cryptanalysis. In Annual Cryptology Conference, pages 444–461. Springer,
2014.

[46] Michel Goossens, Frank Mittelbach, and Alexander Samarin. The LATEX Companion.
Addison-Wesley, Reading, Massachusetts, 1994.

[47] GSMA. The mobile economy 2018, 2018.

[48] Dai-Fei Guo, Ai-Fen Sui, Yi-Jie Shi, Jian-Jun Hu, Guan-Zhou Lin, and Tao Guo.
Behavior classification based self-learning mobile malware detection. JCP, 9(4):851–
858, 2014.

[49] Zhongyuan Hau and Emil C Lupu. Exploiting correlations to detect false data in-
jections in low-density wireless sensor networks. In Proceedings of the 5th on Cyber-
Physical System Security Workshop, pages 1–12. ACM, 2019.

75

[50] Kaylea Haynes, Idris A Eckley, and Paul Fearnhead. Efficient penalty search for
multiple changepoint problems. arXiv preprint arXiv:1412.3617, 2014.

[51] Daojing He, Sammy Chan, and Mohsen Guizani. Mobile application security: mal-
ware threats and defenses. IEEE Wireless Communications, 22(1):138–144, 2015.

[52] Tobias Hoppe, Stefan Kiltz, and Jana Dittmann. Security threats to automotive
can networks–practical examples and selected short-term countermeasures. In Inter-
national Conference on Computer Safety, Reliability, and Security, pages 235–248.
Springer, 2008.

[53] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton. Software rejuvenation: anal-
ysis, module and applications. In Twenty-Fifth International Symposium on Fault-
Tolerant Computing. Digest of Papers, pages 381–390, June 1995.

[54] Brad Jackson, Jeffrey Scargle, David Barnes, and et. all. An algorithm for optimal
partitioning of data on an interval. IEEE Signal Processing Letters, 12(2):105–108,
2005.

[55] R Soundar Raja James, Abdurhman Albasir, Kshirasagar Naik, Mohamed-Yahia
Dabbagh, Prajna Dash, M Zamani, and Nishith Goel. Detection of anomalous be-
havior of smartphones using signal processing and machine learning techniques. In
2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile
Radio Communications (PIMRC), pages 1–7. IEEE, 2017.

[56] Robin James, Abdurhman Albasir, Kshirasagar Naik, and et. all. A power signal
based dynamic approach to detecting anomalous behavior in wireless devices. In
Proceedings of the 16th ACM Int. Symposium on Mobility Management and Wireless
Access MobiWac’18, 2018.

[57] Xuxian Jiang and Yajin Zhou. Dissecting android malware: Characterization and
evolution. In 2012 IEEE symposium on security and privacy, pages 95–109. IEEE,
2012.

[58] Takafumi Kanamori, Shohei Hido, and Masashi Sugiyama. A least-squares ap-
proach to direct importance estimation. Journal of Machine Learning Research,
10(Jul):1391–1445, 2009.

[59] Rebecca Killick, Paul Fearnhead, and Idris A Eckley. Optimal detection of change-
points with a linear computational cost. Journal of the American Statistical Associ-
ation, 107(500):1590–1598, 2012.

76

[60] H. Kim, K. G. Shin, and P. Pillai. Modelz: Monitoring, detection, and analysis of
energy-greedy anomalies in mobile handsets. IEEE Transactions on Mobile Comput-
ing, 10(7):968–981, July 2011.

[61] Hahnsang Kim, Joshua Smith, and Kang G Shin. Detecting energy-greedy anomalies
and mobile malware variants. In Proceedings of the 6th international conference on
Mobile systems, applications, and services. ACM, 2008.

[62] TaeGuen Kim, BooJoong Kang, Mina Rho, and et. all. A multimodal deep learning
method for android malware detection using various features. IEEE Trans. on Info.
Forensics and Security, 14(3), 2019.

[63] Mikkel Baun Kjærgaard and Henrik Blunck. Unsupervised power profiling for mobile
devices. In International Conference on Mobile and Ubiquitous Systems: Computing,
Networking, and Services, pages 138–149. Springer, 2011.

[64] David C Klonoff. Cybersecurity for connected diabetes devices. Journal of diabetes
science and technology, 9(5):1143–1147, 2015.

[65] Donald Knuth. The TEXbook. Addison-Wesley, Reading, Massachusetts, 1986.

[66] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel, Tadayoshi Kohno,
Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav
Shacham, et al. Experimental security analysis of a modern automobile. In 2010
IEEE Symposium on Security and Privacy, pages 447–462. IEEE, 2010.

[67] Harry Kurniawan, Yusep Rosmansyah, and Budiman Dabarsyah. Android anomaly
detection system using machine learning classification. In Int. Conf. on Electrical
Engineering and Informatics (ICEEI). IEEE, 2015.

[68] Leslie Lamport. LATEX — A Document Preparation System. Addison-Wesley, Read-
ing, Massachusetts, second edition, 1994.

[69] M. Langone, R. Setola, and J. Lopez. Cybersecurity of wearable devices: An exper-
imental analysis and a vulnerability assessment method. In 2017 IEEE 41st Annual
Computer Software and Applications Conference (COMPSAC), volume 2, pages 304–
309, July 2017.

[70] Marc Lavielle. Using penalized contrasts for the change-point problem. Signal pro-
cessing, 85(8):1501–1510, 2005.

77

[71] Boohyung Lee and Jong-Hyouk Lee. Blockchain-based secure firmware update for
embedded devices in an internet of things environment. The Journal of Supercom-
puting, 73(3):1152–1167, 2017.

[72] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. Droidbot: a lightweight
ui-guided test input generator for android. In 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C), pages 23–26. IEEE, 2017.

[73] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. Droidbot: A lightweight
ui-guided test input generator for android. In Proceedings of the 39th International
Conference on Software Engineering Companion, ICSE-C ’17, pages 23–26, Piscat-
away, NJ, USA, 2017. IEEE Press.

[74] Zhen Ling, Junzhou Luo, Yiling Xu, Chao Gao, Kui Wu, and Xinwen Fu. Security
vulnerabilities of internet of things: A case study of the smart plug system. IEEE
Internet of Things Journal, 4(6):1899–1909, 2017.

[75] Song Liu, Makoto Yamada, Nigel Collier, and Masashi Sugiyama. Change-point
detection in time-series data by relative density-ratio estimation. Neural Networks,
43:72–83, 2013.

[76] Yannan Liu, Lingxiao Wei, Zhe Zhou, Kehuan Zhang, Wenyuan Xu, and Qiang Xu.
On code execution tracking via power side-channel. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, pages 1019–1031.
ACM, 2016.

[77] George Loukas, Tuan Vuong, Ryan Heartfield, Georgia Sakellari, Yongpil Yoon, and
Diane Gan. Cloud-based cyber-physical intrusion detection for vehicles using deep
learning. Ieee Access, 6:3491–3508, 2017.

[78] S. Lu, R. Lysecky, and J. Rozenblit. Subcomponent timing-based detection of mal-
ware in embedded systems. In 2017 IEEE International Conference on Computer
Design (ICCD), pages 17–24, Nov 2017.

[79] Ricardo Manzano, Abdurhman Albasir, Kshirasagar Naik, Nishith Goel, and A Ko-
zlowski. Detection of anomalous behavior in wireless devices using changepoint anal-
ysis. In 2019 IEEE International Congress on Internet of Things (ICIOT). IEEE,
2019.

[80] Ricardo Manzano, Abdurhman Albasir, Kshirasagar Naik, Jim Kozlowski, and
Nishith Goel. Detection of anomalous behavior in wireless devices using changepoint

78

analysis. In 2019 IEEE International Congress on Internet of Things (ICIOT), pages
82–90. IEEE, 2019.

[81] Fabio Martinelli, Francesco Mercaldo, and Andrea Saracino. Bridemaid: An hybrid
tool for accurate detection of android malware. In Proceedings of the 2017 ACM on
Asia Conference on Computer and Communications Security, pages 899–901. ACM,
2017.

[82] A. Nazari, N. Sehatbakhsh, M. Alam, A. Zajic, and M. Prvulovic. Eddie: Em-based
detection of deviations in program execution. In 2017 ACM/IEEE 44th Annual
International Symposium on Computer Architecture (ISCA), pages 333–346, June
2017.

[83] J. Oh, M. Park, and T. Chung. The solution of denial of service attack on ordered
broadcast intent. In 16th International Conference on Advanced Communication
Technology, pages 397–400, Feb 2014.

[84] Habeeb Olufowobi, Uchenna Ezeobi, Eric Muhati, Gaylon Robinson, Clinton Young,
Joseph Zambreno, and Gedare Bloom. Anomaly detection approach using adaptive
cumulative sum algorithm for controller area network. In Proceedings of the ACM
Workshop on Automotive Cybersecurity, pages 25–30. ACM, 2019.

[85] Jakob Rieck. Attacks on fitness trackers revisited: A case-study of unfit firmware
security. arXiv preprint arXiv:1604.03313, 2016.

[86] R. A. Riley, J. T. Graham, R. M. Fuller, R. O. Baldwin, and A. Fisher. A new way
to detect cyberattacks: Extracting changes in register values from radio-frequency
side channels. IEEE Signal Processing Magazine, 36(2):49–58, March 2019.

[87] M. Ring, J. Dürrwang, F. Sommer, and R. Kriesten. Survey on vehicular attacks -
building a vulnerability database. In 2015 IEEE International Conference on Vehic-
ular Electronics and Safety (ICVES), pages 208–212, Nov 2015.

[88] Gideon Schwarz et al. Estimating the dimension of a model. The annals of statistics,
6(2):461–464, 1978.

[89] Steven Smith. The Scientist and Engineer’s Guide to Digital Signal Processing.
California Technical Publishing, 1997.

[90] Robin Joe Prabhahar Soundar Raja James, Abdurhman Ali Albasir, Kshirasagar
Naik, Marzia Zaman, and Nishith Goel. A power signal based dynamic approach to

79

detecting anomalous behavior in wireless devices. In Proceedings of the 16th ACM
International Symposium on Mobility Management and Wireless Access, pages 9–18.
ACM, 2018.

[91] Statcounter. Market share mobile devices worldwide, 2019.

[92] Masashi Sugiyama, Shinichi Nakajima, Hisashi Kashima, Paul V Buenau, and Mo-
toaki Kawanabe. Direct importance estimation with model selection and its appli-
cation to covariate shift adaptation. In Advances in neural information processing
systems, pages 1433–1440, 2008.

[93] L. Vokorokos, P. Drienik, O. Fortotira, and J. Hurtuk. Abusing mobile devices for
denial of service attacks. In 2015 IEEE 13th International Symposium on Applied
Machine Intelligence and Informatics (SAMI), pages 21–24, Jan 2015.

[94] T. Wei, C. Mao, A. B. Jeng, H. Lee, H. Wang, and D. Wu. Android malware detection
via a latent network behavior analysis. In 2012 IEEE 11th International Conference
on Trust, Security and Privacy in Computing and Communications, pages 1251–1258,
June 2012.

[95] Tzu-Tsung Wong. Performance evaluation of classification algorithms by k-fold and
leave-one-out cross validation. Pattern Recognition, 48(9):2839–2846, 2015.

[96] T. Wüchner, A. Cis lak, M. Ochoa, and A. Pretschner. Leveraging compression-
based graph mining for behavior-based malware detection. IEEE Transactions on
Dependable and Secure Computing, 16(1):99–112, Jan 2019.

[97] L. Yang, V. Ganapathy, and L. Iftode. Enhancing mobile malware detection with
social collaboration. In 2011 IEEE Third International Conference on Privacy, Se-
curity, Risk and Trust and 2011 IEEE Third International Conference on Social
Computing, pages 572–576, Oct 2011.

[98] Ibrar Yaqoob, Ejaz Ahmed, Muhammad Habib ur Rehman, Abdelmuttlib
Ibrahim Abdalla Ahmed, Mohammed Ali Al-garadi, Muhammad Imran, and Mohsen
Guizani. The rise of ransomware and emerging security challenges in the internet of
things. Computer Networks, 129:444–458, 2017.

[99] Yao-Saint Yen and Hung-Min Sun. An android mutation malware detection based
on deep learning using visualization of importance from codes. Microelectronics
Reliability, 93:109–114, 2019.

80

[100] Suleiman Y. Yerima, Mohammed K. Alzaylaee, and Sakir Sezer. Machine learning-
based dynamic analysis of android apps with improved code coverage. EURASIP
Journal on Information Security, 2019(1):4, Apr 2019.

[101] Chanmin Yoon, Dongwon Kim, Wonwoo Jung, Chulkoo Kang, and Hojung Cha.
Appscope: Application energy metering framework for android smartphone using
kernel activity monitoring. In Presented as part of the 2012 USENIX Annual Tech-
nical Conference (USENIX ATC 12), pages 387–400, Boston, MA, 2012. USENIX.

[102] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. Droidbot: a lightweight
ui-guided test input generator for android. In 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C), pages 23–26, May 2017.

[103] M. Zaman, T. Siddiqui, M. R. Amin, and M. S. Hossain. Malware detection in
android by network traffic analysis. In 2015 International Conference on Networking
Systems and Security (NSysS), pages 1–5, Jan 2015.

[104] Thomas Zefferer, Peter Teufl, David Derler, Klaus Potzmader, Alexander Oprisnik,
Hubert Gasparitz, and Andrea Höller. Towards secure mobile computing: Employing
power-consumption information to detect malware on mobile devices. International
journal on advances in software, 7(1&2), 2014.

[105] Lide Zhang, Birjodh Tiwana, Zhiyun Qian, Zhaoguang Wang, Robert P Dick, Zhuo-
qing Morley Mao, and Lei Yang. Accurate online power estimation and automatic
battery behavior based power model generation for smartphones. In Proceedings of
the eighth IEEE/ACM/IFIP international conference on Hardware/software codesign
and system synthesis, pages 105–114. ACM, 2010.

[106] Yueyan Zhi, Zhangjie Fu, Xingming Sun, and Jingnan Yu. Security and privacy
issues of uav: A survey. Mobile Networks and Applications, pages 1–7, 2019.

81

APPENDICES

82

Appendix A

Mean and variance obtained with
malicious and reference signals

A.1 Results mean and variance for malicious and ref-

erence signals

83

R
ef

er
en

ce
si

gn
al

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
10

M
11

M
12

M
13

M
14

M
15

T
ot

al
M

ea
n

M
ea

n
14

81
.8

14
77

.9
14

92
.3

14
78

.1
14

64
.2

14
72

.2
14

80
.9

14
89

.4
15

18
.1

14
60

.6
14

66
.7

14
61

.5
14

71
.9

14
75

.6
14

83
.9

14
78

.4
V

ar
ia

n
ce

82
28

2.
61

87
90

3.
32

10
09

31
.1

5
89

82
4.

87
10

28
02

.2
7

10
62

19
.6

6
93

88
8.

23
87

19
9.

00
11

08
34

.1
9

83
64

7.
71

90
00

8.
37

88
43

6.
21

97
10

8.
54

85
73

3.
76

92
31

8.
64

93
27

5.
90

E
m

u
la

te
d

m
al

w
ar

e
1%

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
10

M
11

M
12

M
13

M
14

M
15

T
ot

al
M

ea
n

M
ea

n
14

71
.5

9
15

02
.0

4
14

70
.5

8
14

75
.8

5
14

80
.1

0
15

03
.1

3
14

67
.9

5
14

75
.2

7
14

98
.5

0
14

69
.9

7
14

61
.9

9
14

60
.9

1
14

79
.4

3
14

71
.2

6
14

99
.9

3
14

79
.2

4
V

ar
ia

n
ce

10
31

13
.8

2
10

84
51

.0
4

11
01

75
.9

8
10

03
98

.0
6

96
74

3.
83

11
50

37
.1

7
10

15
87

.4
0

99
74

4.
50

10
72

00
.1

7
11

13
18

.5
4

98
59

3.
98

10
16

90
.8

6
10

50
12

.3
0

10
97

66
.9

0
10

66
42

.5
7

10
50

31
.8

1

E
m

u
la

te
d

m
al

w
ar

e
2%

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
10

M
11

M
12

M
13

M
14

M
15

T
ot

al
M

ea
n

M
ea

n
14

77
.0

9
14

76
.1

2
14

87
.3

1
14

96
.8

1
15

02
.0

1
15

11
.2

2
14

93
.1

0
14

94
.7

5
14

74
.1

3
15

00
.1

9
15

03
.0

9
15

03
.7

0
14

91
.3

6
14

98
.5

8
14

98
.5

4
14

93
.8

7
V

ar
ia

n
ce

11
40

61
.7

8
10

75
52

.0
6

10
81

95
.7

7
10

70
76

.4
6

11
32

69
.5

4
12

55
58

.1
4

98
23

2.
30

10
58

56
.4

4
10

32
22

.5
7

10
85

33
.7

5
11

26
82

.9
0

10
99

87
.4

1
10

65
97

.2
8

10
85

99
.2

8
11

17
52

.4
9

10
94

11
.8

8

E
m

u
la

te
d

m
al

w
ar

e
3%

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
10

M
11

M
12

M
13

M
14

M
15

T
ot

al
M

ea
n

M
ea

n
15

08
.8

4
15

00
.6

6
14

96
.5

7
14

78
.0

8
14

96
.6

9
15

01
.4

6
14

97
.8

4
15

11
.1

1
14

94
.8

8
15

10
.5

4
15

05
.1

9
15

11
.9

3
15

03
.1

4
15

05
.4

2
15

01
.6

7
15

01
.6

0
V

ar
ia

n
ce

11
68

32
.1

9
10

82
18

.7
8

11
20

63
.7

6
11

40
58

.6
1

11
09

09
.8

3
11

78
56

.5
7

10
83

71
.8

0
12

04
27

.9
6

11
15

20
.5

4
12

41
92

.4
3

11
57

49
.8

0
13

04
59

.5
3

11
28

10
.2

4
11

24
60

.9
4

11
04

93
.4

9
11

50
95

.1
0

E
m

u
la

te
d

m
al

w
ar

e
4%

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
10

M
11

M
12

M
13

M
14

M
15

T
ot

al
M

ea
n

M
ea

n
15

01
.9

8
15

01
.1

6
15

02
.5

1
14

95
.3

2
14

84
.6

9
15

03
.7

9
14

96
.7

7
15

12
.1

9
14

96
.8

8
15

00
.3

6
15

07
.4

1
15

09
.9

1
15

17
.4

1
14

99
.0

8
15

03
.9

0
15

02
.2

2
V

ar
ia

n
ce

12
01

73
.2

0
12

34
82

.1
9

11
44

27
.3

3
11

50
82

.3
6

12
23

75
.5

9
11

97
06

.5
9

12
58

87
.0

9
11

83
76

.8
8

12
39

06
.6

1
12

16
70

.5
9

13
89

95
.8

1
12

89
33

.7
0

11
73

63
.4

5
12

18
03

.2
4

12
30

16
.6

9

E
m

u
la

te
d

m
al

w
ar

e
8%

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
10

M
11

M
12

M
13

M
14

M
15

T
ot

al
M

ea
n

M
ea

n
15

22
.0

7
15

28
.4

7
15

15
.7

7
15

23
.9

9
14

96
.9

9
15

08
.5

1
15

17
.1

9
14

87
.2

8
15

10
.2

5
15

18
.8

9
15

16
.1

9
15

28
.1

4
15

23
.4

9
15

27
.1

8
15

16
.4

6
15

16
.0

6
V

ar
ia

n
ce

12
25

96
.9

9
12

91
92

.9
3

13
15

70
.3

4
13

00
76

.4
1

12
24

44
.9

0
12

18
80

.4
4

11
86

84
.9

1
11

25
89

.1
4

11
87

80
.4

4
12

65
50

.7
1

12
69

72
.9

8
12

41
10

.5
2

12
09

81
.3

2
12

28
36

.0
4

11
68

01
.8

8
12

30
71

.3
3

E
m

u
la

te
d

m
al

w
ar

e
12

%
M

1
M

2
M

3
M

4
M

5
M

6
M

7
M

8
M

9
M

10
M

11
M

12
M

13
M

14
M

15
T

ot
al

M
ea

n
M

ea
n

15
18

.0
3

15
30

.5
2

15
43

.7
3

15
13

.4
0

15
35

.6
0

15
40

.7
9

15
38

.3
5

15
33

.0
7

15
33

.9
3

15
48

.8
0

15
38

.8
2

15
19

.6
9

15
26

.6
6

15
37

.2
9

15
35

.2
3

15
32

.9
3

V
ar

ia
n
ce

11
87

00
.7

7
12

01
64

.8
9

11
94

42
.5

8
12

52
37

.3
8

12
45

59
.9

4
13

12
53

.0
1

13
42

93
.9

7
12

44
99

.4
1

12
50

16
.9

8
12

63
12

.2
6

12
67

72
.0

0
11

82
95

.3
5

11
96

69
.9

5
17

20
92

.3
2

12
10

57
.3

7
12

71
57

.8
8

84

	List of Tables
	List of Figures
	Introduction
	Motivation
	Problem statement
	Solution Strategy and Contributions
	Thesis Organization

	Background and Related Work
	Introduction
	Anomaly detection
	Challenges in detecting anomalous behavior
	Related work

	Experiments and Automation Tool
	Experimental setup
	Testbench
	Emulated Malware Android Application
	Emulated Malware Dataset
	Automation emulated malware
	Real Malware Dataset
	Automation real malware
	Dataset
	Preliminary analysis

	Methodology
	Methodology
	Procedure 1: Feature Extraction.
	Procedure 1: Training and Testing of the model.
	Procedure 2: Detection procedure

	Methodology 2
	Methodology
	Procedure 1: Feature Extraction.
	Procedure 1: Training and Testing of the model.
	Procedure 2: Detection procedure

	Results
	Conclusions and Future Work
	References
	APPENDICES
	Results mean and variance
	Results mean and variance for malicious and reference signals

