
 

Functionalized Vanadium Oxide as the Cathode 

Material for Rechargeable Aqueous Zinc-ion Batteries 

 

by 

 

Mei Han 

 

 

A thesis 

presented to the University of Waterloo 

in fulfillment of the 

thesis requirement for the degree of 

Master of Applied Science 

in 

Chemical Engineering 

 

 

Waterloo, Ontario, Canada, 2019 

© Mei Han 2019 



 ii 

Author’s Declaration 

I hereby declare that I am the sole author of this thesis. This is a true copy of the 

thesis, including any required final revisions, as accepted by my examiners. 

I understand that my thesis may be made electronically available to the public.  

  



 iii 

Abstract  

Battery offers a viable solution for storing intermittent energy supplies associated 

with renewable energy production. Although lithium-ion batteries take up the most 

battery market, they are still limited by lithium metal resources, high cost and safety 

concerns. With this regard, aqueous batteries with mildly acidic electrolytes hold a 

promise for large-scale energy storage. In particular, zinc, as an attractive alternative to 

lithium metal, has been employed in aqueous rechargeable batteries due to its low-cost, 

high safety and environmental friendliness. Layered vanadium oxide (V2O5) as cathode 

material has gained enhanced interests in the studies of rechargeable aqueous zinc-ion 

batteries (RAZBs) due to its relatively high capacity. However, commercial V2O5 

shows poor stability during cycling since the zinc ion intercalation causes degradation 

of the cathode and battery components. Therefore, in this project, two strategies involve 

surface coating and metal-ion doping are utilized to improve the electrochemical 

performance of vanadium-based electrodes in RAZBs. 

First, we introduce a coating method to fabricate polymer-modified cathode 

materials for aqueous zinc-ion batteries, which display improved electrochemical 

performances under both ambient and elevated temperature conditions. A polypyrrole-

coated cathode is demonstrated, and the assembled battery deliveries a high capacity of 

195.7 mAh·g-1 at the current rate of 5 C (200 mAh·g-1 corresponds 1 C), with only 9.5% 

capacity decay at room temperature after 200 cycles. At an elevated temperature (60°C), 

the polymer-coated battery still shows outstanding capacity retention, of 80% vs. 25% 
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for bare V2O5 cathode after 150 cycles. Therefore, coating conductive polymers on the 

surface of cathode materials stabilizes the structure of the positive electrode at high 

temperatures and offer a viable approach to realize the thermal stability of such batteries. 

Second, two kinds of metal ions (Zn2+ and Na+) are doped simultaneously into the 

V2O5 interlayer by a molar ratio of Zn:Na = 0.3:0.43 to form a metal-ion doped cathode 

material Zn0.3Na0.43V2O5 (ZNVO). To enlarge the specific surface area, the commercial 

V2O5 is optimized into nanobelts by a hydrothermal method. The doped positive 

electrode in 2M ZnSO4 electrolytic solution reaches over 300 mAh·g-1 initial discharge 

capacity at 5 C, which is much higher than that of undoped electrode material (V2O5 

nanobelts). Besides, in order to prevent the extraction of Na ions from the positive 

electrode, additional 2M sodium salt is added to the 2M ZnSO4 aqueous solution to 

prepare a dual-ion electrolyte. This dual-ion system (containing dual ion-doped positive 

electrode and dual ion electrolyte) offers a long-term cycle life, ~ 89% capacity 

retention after 4000 cycles, and a relatively high discharge capacity of 190 mAh·g -1 at 

5 C during fast charge / discharge process. More importantly, this dual-ion electrolyte 

effectively suppresses zinc dendrite formation on the anode surface because of the 

electrostatic shield mechanism, where creating a positively charged shield around the 

sharp zinc protuberances. Thus, this dual-ion system provides the excellent 

electrochemical performance of Zn // ZNVO batteries and holds a promise for realizing 

practical applications of zinc-ion batteries. 
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Chapter 1. Aqueous Zinc-ion Battery Systems: Introduction, 

Limitations, and Research Motivations 

1.1 Introduction 

In a world increasingly uncertainly about climate change, a sliver of hope has been 

offered via the surge in the generation of renewable energy over the past 20 years. The 

electricity can be produced by renewable energy resources with fewer environmental 

impacts. It is conceivable to make renewable energy sources produce electricity without 

generating carbon dioxide (CO2) because CO2 emission is the major cause of global 

climate change [1]. Figure 1 represents the Energy Outlook in 2018, it shows the steady 

growth in overall energy consumption through 2040. This report predicts that oil and 

coal will provide smaller shares of energy in the future; the global demand for green, 

renewable and sustainable energy sources are growing rapidly and taking larger shares 

[1]. However, difficulties, e.g. the randomness and volatility of wind and solar power, 

show a big challenge on the cost of renewable energy storage [1]. Therefore, large-scale 

battery installations are springing up across electricity grids worldwide because they 

possess high energy efficiency, long cycle life and are independent from geographical 

conditions.  
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Figure 1. A) Worldwide primary energy consumption, by fuel, 1970-2040; B) 

share of primary energy consumption, by fuel, 1970-2040 [1]. 

 

The forecast for global demand for lithium-ion batteries is shown in Figure 2. The 

report is expected that the demands for batteries used in electric-vehicles and energy 

storage are growing dramatically [2]. Lithium-ion batteries (LIBs) are the most 

successful rechargeable batteries for portable electronic devices and electric vehicles. 

Nevertheless, with the theoretical limits of lithium-ion batteries approaching and their 

safety concerns, researchers are hard at work pursuing other strategies on battery 

developments [2]. One effective way is to simply replace the lithium anode by another 

metal, such as sodium, magnesium or zinc, with much lower cost of production and 

they may have dramatically higher energy density potential than the present 

technologies [3]-[5]. 
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Figure 2. Global demand for lithium-ion batteries, 2005-2040 [2]. 

 

1.2 Rechargeable Aqueous Zinc Ion Batteries (RAZBs) 

Because of the limited lithium resources, high cost and safety concerns of LIBs, 

new large-scale energy storage systems need to be explored as alternatives [2]. 

Although other types of metal ion batteries, such as sodium-ion batteries (SIBs) and 

potassium-ion batteries (KIBs), possess abundant element resources and similar 

chemical properties to LIBs, the high cost of battery operation, low energy density and 

safety issues of electrolytes are restricting their further developments on large-scale 

energy applications [3]-[5]. To reduce the toxic and flammable risks of electrolytes, 

aqueous electrolytes are under development. The aqueous electrolytes generally 
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provide higher ionic conductivity (can be up to 1 Scm-1) at 2 orders of magnitude than 

that of nonaqueous ones (1−10 mScm−1) [6].  

Aqueous rechargeable batteries (ARBs) based on multivalent carriers, involving 

aluminum-ion batteries (AIBs), magnesium-ion batteries (MIBs) and zinc-ion batteries 

(ZIBs), are plausible alternative to LIBs since more electrons are involved in the redox 

reactions, so that higher energy density and discharge capacity would be offered [7]-

[9]. Nonetheless, both AIBs and MIBs exhibit passivation and corrosion on their anode 

surface in aqueous electrolyte (4 < pH <8) [10]-[12]. The corroded anode inhibits metal 

ion diffusion and transportation, leading to lower battery efficiency and electrode 

potential in ARB systems [7][13][14].  

With this regard, rechargeable aqueous zinc-ion batteries (RAZBs) with mildly 

acidic electrolyte hold a particular promise for large-scale energy storage system (as 

shown in Figure 3). The choice of anode is zinc since it has low-cost (USD 2 / kg), high 

safety and environmental friendliness on manufacturing [15]-[18]. It is widely used in 

combination with a large variety of cathode compounds since it has a very high 

theoretical specific capacity of up to 820 mAhg-1 [21] [23][24], and the smaller ionic 

radius of Zn2+ (0.75 Å) allows it to insert / extract into / from the lattice of cathode 

materials without damaging the original structure (as listed in Table 1). Additionally, 

zinc has a low standard redox potential of -0.763 V vs. standard hydrogen electrode 

(SHE) which offers zinc metal have low electrochemical stability in aqueous 

environment and the metal is susceptible to excessive hydrogen production when it 
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contacts with aqueous based electrolytes [20] [23]. Therefore, this RAZB system would 

exhibit a significant potential to alternate large scale energy storage devices with 

electrolyte safety, environmental and economical friendliness.  

 

  

Figure 3. Aqueous zinc-ion battery system [24]. 

 

Major problems on the zinc electrode include the formation of solid-state inert Zn2+ 

species (e.g. zinc hydroxide, zinc sulfate hydroxide hydrate…) as oxidized products 

when zinc is reducing water to produce hydrogen gas and zinc dendrite, which give rise 

to the low coulombic efficiency and capacity fading. Part of these problems are 

suppressed using the near neutral or just slightly acidic electrolyte (3 < pH < 6). 

However, the higher dimension of hydrated ionic radius of zinc ions in Table 1 may 

buffer the charge density of the Zn2+ and toughen the ion insertion into the cathode 

material structure [19][22]. Therefore, exploring a compound with high reversible 

structure (tunnel-type or layered-type) which is capable of multivalence cation charge-

storage (zinc ions insertion / extraction) is necessary. 
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Table 1. A comparison of metal elements in standard potential, capacities and ionic 

radius [19]. 

 

1.3 Cathode Materials for Zinc-ion Battery System 

To date, many compounds have been reported as the cost-efficient and high-

performance cathode materials for advanced ZIBs, and such a tremendous interest has 

been raised in developing a material that accommodating zinc ions during the cycling. 

Manganese-based materials have been researched over 150 years due to their abundant 

resources on the earth and multiple oxidation states of manganese (Mn) (Mn2+, Mn3+, 

Mn4+). A remarkable variety of multivalence phases and crystal structures are exhibited 

in manganese oxide and hydroxide minerals [19]. However, due to the intrinsically poor 

electrical conductivity and unstable structure of MnO2 during the charge / discharge 

process, it cannot satisfy the requirement of ZIBs [30][31]. Prussian blue analogs 

(PBAs) MFe(CN)6 (M = Fe, Co, Ni, Cu, Mn...) have attracted scientists attentions due 

to their unique crystal structure, prominent structural stabilities and sufficient redox-

active sites [32][33]. The zinc ion reversible and facile transportation in cathode can be 
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realized by the large interstitial sites and special tunnels of PBAs [19]. Nonetheless, the 

research of PBAs is developed in recent 5 years and the studies of this material class 

still on the early stage. The active sites are easily blocked off because of the 

unsatisfactory synthesis method which forming lattice defects and vacancies; moreover, 

their relative low specific capacity and short cycle life give rise to poor electrochemical 

performance on ZIBs [19][34]. Additionally, other organic cathode compounds, such 

quinone compounds and 9,10-di(1,3-dithiol-2-ylidene)-9,10-dihydroanthracene (ex-

TTF), have been reported recently [35]-[37]. However, the dissolution of discharge 

products and anode corrosion lead to poor cycle life of these organic cathodes in ZIBs, 

and the toxicity of quinones also arouses safety concerns [19]. Therefore, vanadium-

based compounds draw growing interests in the last decades due to their eminent redox 

properties and multiple vanadium oxidation states. 

 

1.3.1 Layered Vanadium Oxide (V2O5) as the Cathode Material  

Vanadium-based compounds have been studied as potential cathode materials in 

various battery systems for about 40 years. In comparison with other types of cathode 

materials mentioned in above section, vanadium-based compounds possess relatively 

high operating voltages and specific capacities in RAZBs, as shown in Figure 4 [24]. 

In particular, two key advantages of vanadium-based material over others, including 

stability and diversity, offer this kind of material as a promising cathode in ZIB system 
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[54]. As shown in Figure 5, a large family of V-coordination polyhedral contains 

tetrahedron, trigonal and square pyramids, distorted octahedron and regular octahedron 

with changes of vanadium (V) oxidation states, providing various open framework for 

reversible zinc ions insertion / extraction without breaking their original structures 

[19][55][56].  

 

 

Figure 4. The operating potential and specific capacity for various cathode 

materials in aqueous ZIBs [24]. 
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Figure 5. The corresponding vanadium coordination polyhedral to vanadium 

valence [39]. 

 

 The compound vanadium pentoxide (V2O5) with layered structure has been 

chosen as the host material in RAZB system due to its abundant resources, low cost, 

easy preparation, high energy density and safety properties [39]-[43]. The rich 

chemistry, morphology and crystal structure make it become a promising material for 

applications of artificial muscles, actuator, sensors and electrochromic windows [44]-

[47]. Comparing with other vanadium-based compounds, layered V2O5 with the lowest 

molecular weight and the simplest lattice structure is treated as the reference point to 

measure their electrochemical performance.  

The weak Van der Waals forces hold layers of V2O5 together and its most 

commonly crystallinity is orthorhombic structure [48][49]. The orthorhombic structure 

of V2O5 is shown in Figure 6, each single layer of V2O5 consists of edge- and corner-   
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sharing square pyramids, the vanadium-oxygen interactions which orthogonal to the c-

direction linking V2O5 slabs together [48]. Additionally, there are three types of oxygen 

center refer to O1, O2, O3 in each V2O5 sheet. The terminal / apical and bridging 

(corner-sharing) coordinated vanadyl oxygen atoms O1, O2, have respectively V-O 

bond length of 1.54 Å and 1.77 Å. The triply coordinated O3 in VO5 square pyramids 

connects three neighboring V atoms via edge-sharing with corresponded bond lengths 

of 1.88 Å, 1.88 Å and 2.02 Å [48]. The combination of short vanadyl bond and the 

layered structure mainly determine the electronic and thermal properties of V2O5 [50]. 

 

  

Figure 6. The orthorhombic structure of V2O5 in A) ac plane and B) ab plane [49]. 

 

Moreover, another typical V2O5 form is hydrated vanadium pentoxide denoted as 

V2O5·H2O xerogels, which uses heat treatment to convert this compound into 

orthorhombic V2O5 at a specific temperature [51][52]. Figure 7 exhibits the crystal 

structure of V2O5 · H2O xerogels. V2O5·H2O xerogel consists of V2O5 bilayers with 

water molecules inserted into its interlayer, where water molecules play a significant 

role to separate and stabilize V2O5 bilayer with a distance of 11.5 Å.  
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Figure 7. Schematic of the crystal structure of V2O5·H2O xerogels [53]. 

 

Notably, the theoretical capacities of V2
5+ O5 with one Zn2+ intercalation is 

calculated in 294.5 mAhg-1, and for V2O5 varies from V5+ to V3+ with two Zn2+ 

transportation is measured in 589.0 mAhg-1 [54]. The reactions of forming ZnxV2O5 

are shown in Equation 1 and 2: 

 

V2
5+O5 + Zn2+ + 2e− ⟶ ZnV2

4+O5      (1) [54] 

V2
5+O5 + 2Zn2+ + 4e− ⟶ Zn2V2

3+O5    (2) [54] 

 

The extraction / insertion of Zn ions from / into V2O5 bilayer to form ZnxV2O5 during 

cycling process is exhibited in Figure 8. 
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Figure 8. Schematic of the V2O5 cathode with 2 M ZnSO4 aqueous electrolyte in 

RAZB system [57]. 

 

1.3.2 Limitations of V2O5 Cathode in Aqueous Batteries 

Although V2O5 possesses easy preparation, low cost and safety properties as the 

cathode material for next-generation ZIBs, the applications of V2O5 have been limited 

owing to its low electrical conductivity, poor structural stability during the ion de- / 

intercalation, serious dissolution in acidic aqueous electrolytes and thermal stability 

issues [25]-[29] [58]-[60]. These shortcomings influence the kinetic energies of both 

electrons and ions during the transportation between the aqueous electrolyte and 

electrodes, this kinetic problem makes the case of requiring large specific capacity at 

high current densities more difficult [49]. Multiple strategies have been proposed to 

reduce the effects of V2O5 poor structural stability and improve the electrochemical 
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performance of Zn // V2O5 battery in the past few decades. The details and examples 

will be discussed in the following section. 

 

1.3.3 Strategies to Overcome V2O5 Cathode Limitations in Aqueous Batteries  

The poor electrical conductivity and serious dissolution of cathode material V2O5 

into acidic aqueous electrolyte limit the battery cyclability, three superior strategies 

involving material nanostructuring, surface coating and chemical doping are proposed 

to thwart this condition. Consequently, the electrochemical performance of Zn // V2O5 

batteries has been significantly improved with long term cycle stabilities, reversible 

specific capacities and high rate capabilities. 

Nanostructuring 

The diffusion path lengths of both ions and electrons between aqueous environment 

and electrodes have been reduced, which relying on the construction of nanostructured 

materials. Nanostructuring, one of the most effective proposed strategies, is capable of 

producing high performance cathode materials for ZIBs. Commonly, the synthesized 

materials with diverse nanostructures (e.g. wires, rods, tubes, belts, sheets and spheres) 

in nanoscale possess larger specific surface areas [61][62]. Therefore, high contact area 

between the nanostructured material and the electrolyte would offer large active 

interfacial area to enhance rate capability [63]. Furthermore, the synthesized cathode 

materials generally have higher sustainability during the cycling process with the 
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comparison of the commercial or natural materials [64]. The nanostructured material 

also possesses the advanced morphology, which shortens the distance of electrons and 

ions transportation, benefits their kinetic acceleration consequently [62][65].  

Li et al. fabricated a high product yield V2O5 nanobelts by hydrothermal method 

with the usage of H2O2 and V2O5 suspension [66]. The single-crystalline V2O5 nanobelts 

with larger specific surface area, whose width and thickness in nanometer and length 

in micrometer as shown in Figure 9, delivered a high specific discharge capacity of 288 

mAhg-1 which was more than twice as the commercial V2O5 [66]. 

 

 

Figure 9. Typical SEM (A-C) and TEM (D and E) images of single-crystalline 

V2O5 nanobelts. The inserted patterns in A and D are the cross-section of V2O5 

nanobelts and SAED pattern, respectively. The scale bar corresponds to 100 nm [66].  
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Wang et al. reported three types of nanostructured V2O5 material, involving porous 

V2O5 nanotubes, hierarchical V2O5 nanofibers and single-crystalline V2O5 nanorods, via 

electrospinning technique followed with annealing [67]. The synthesis processes are 

illustrated in Figure 10. It is notable that the morphology of the nanostructured materials 

is controlled by the different annealing temperatures, which is the uniqueness of this 

strategy. Consequently, these kinds of cathode materials in their battery systems 

displayed high reversible discharge capacities and superb cycling performance; 

moreover, the ion diffusion and electrolyte penetration were enhanced based on the 

advanced nanostructure [67].  

 

 

Figure 10. Schematic of producing nanostructured V2O5 material by 

electrospinning method and subsequent annealing [67]. 
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Li et al. used a facile sol-gel method combined with freeze-drying technique and 

subsequent annealing to synthesize a two-dimensional leaf-like V2O5 nanosheets [68]. 

The preparation process is schematically exhibited in Figure 11. This material displayed 

a promising discharge capacity and rate capability, it can deliver a capacity of 104 

mAhg-1 even at a high current density of 5 Ag-1 [68]. Additionally, a discharge capacity 

of 206 mAhg-1 was reached at 0.5 Ag-1 after 100 cycles, and a small capacity fading 

rate (merely 0.22% per cycle) demonstrated a superior capacity retention during cycling 

[68]. 

 

 

Figure 11. Schematic of two-dimensional leaf-like V2O5 nanosheet production 

process [68]. 

 

Apart from the synthesis techniques mentioned above, other methods containing 

chemical vapor deposition (CVD) [69][70], dissolution-splitting method [71][72], 

membrane filtration technique [73], hydrolysis method… [74] have been used to 

synthesis advanced nanostructured V2O5 cathode materials. 

Surface coating 
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The surface structure of the electrode material has been verified as a crucial part 

for the electrochemical performance of metal-ion batteries. The facile strategy, surface 

coating, has been intensively investigated by many scientists to enhance the cyclic 

stability and rate performance in their battery systems. Carbon and conductive polymers 

as two typical coating materials are widely used in battery studies since their electron-

conducting properties promote the charge transfer on the particle surface [75]. The 

coating material as a physical protection barrier inhibits particle aggregation and buffer 

the stress of inner nanoparticles, improving the chemical stabilities of the active cathode 

materials [76]. The commercial V2O5 particles are slightly dissolved in water, exposing 

V2O5 nanoparticles in an aqueous electrolyte for a long time would lead its structure 

collapsing and crushing. Therefore, this surface modification strategy assists to protect 

V2O5 structure and provide stable cyclability in the aqueous environment.  

Zhang’s group prepared carbon-coated V2O5 nanocrystals by using a hard template 

of porous carbon via the capillary induction technique [77]. Figure 12 exhibits the 

preparation of this carbon-coated V2O5 composite. This material, whose particle size 

ranging from 10-20 nm, displayed a high reversible capacity, long cycle life and good 

rate performance [77]. The small particle size assisted to dramatically shorten the ion 

diffusion and transport lengths on the surface of V2O5 nanocrystals; moreover, the 

carbon coating enhanced the electrical conductivity of V2O5 electrode, and it stabilized 

the V2O5 crystalline structure via reducing the side reactions between the electrode 

material and electrolyte during the cycling process [77]. 
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Figure 12. Schematic of the preparation of carbon-coated V2O5 composite [77]. 

 

Zhou’s research group synthesized a hybrid composite, multi-wall carbon 

nanotubes (MWCNTs) / V2O5, via hydrothermal treatment combined with a post-

sintering process, and the particle size was controlled under nanometer scale (as shown 

in Figure 13) [78]. The superb electrochemical results were provided by this electrode 

material in LIBs. It delivered a large initial discharge capacity of 402 mAhg-1 at a 

current density of 0.1 Ag-1 vs. Li / Li+, and maintained a capacity of 222 mAhg-1 after 

50 cycles; moreover, it also reached 194 mAhg-1 even at a large current density of 0.8 

Ag-1 [78]. This electrochemical performance is due to the superior mechanical 

properties of carbon nanotubes (CNTs), which possess huge tensile strength and strain 

tolerance [79]-[81]. Additionally, CNTs with high specific surface area, electrical 

conductivity and chemical stability, making them act as a promising coating material 

in battery researches [79]-[81]. 
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Figure 13. Schematic of hybrid MWCNTs / V2O5 composite formation via 

hydrothermal method [78]. 

 

Li et al. reported a simple in-situ polymerization method without adding 

surfactants to form a polymer coated electrode material. As shown in Figure 14, the 

one-dimensional V2O5 nanobelts were uniformly coated with the conductive polymer 

polyaniline (PANI) [82]. The authors investigated influences of pH values and 

additional initiators for the morphology of V2O5 / PANI nanobelts, and the most 

appropriate conditions for polymerizing PANI on single crystalline V2O5 nanobelts in 

its emeraldine state was related [82]. This resulting product exhibited a significantly 

enhanced electrical conductivity and environmental stability, it was considered as a 

promising cathode material in reversible metal-ion batteries [82]. 
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Figure 14. A) SEM and B) TEM images of V2O5/ PANI nanobelts [82]. 

 

Other than carbon and conductive polymers, some inorganic coating materials 

involving SiO2 and TiO2 have been studied to improve the battery performance [83]-

[85]. However, the oxides applied on the active material surface may limit the 

transportation of zinc ions, or other transport properties of the battery cathode [86][87]. 

Metal ion doping 

Metal-doped (M-doped) materials come into notice owing to their advanced 

structures and versatile electronic states, which providing superior structural stabilities 

and suppressing the loss of capacities during cycling [88]. A large variety of cations, 

such as Na+, Mg2+, Zn2+, Cu2+, Al3+, have been investigated and used as the doping 

metal ions into V2O5 lattice, and lead to distinct properties which observed on the doped 

materials, such as higher specific capacities and better rate capabilities [89]-[94]. 

Because of the formation of lower valence states of V ion (V3+ and V4+) with doping 

metal ions into the host V2O5 lattice, the electronic conductivity would be remarkably 

increased [90][95]. The MO6 octahedral unit, which is formed by the inclusion of metal 

ions, is capable of stabilizing the V2O5 layered structure during Zn ion insertion / 
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extraction, and offering beneficial structural stability during the cycling process 

[94][95]. The local structural defects of V2O5 is led by foreign metal cations, this 

cathode material exhibits an enhanced cycle life during reversible Zn intercalation since 

the possible nucleation centers for phase transformation have been produced and the 

defects supply more pathways for ion diffusion [91]. Additionally, lower charge 

transfer resistance (Rct) and higher Faradic reaction kinetics would be realized by 

producing this cathode material [91]. 

Kundu et al. fabricated a vanadium oxide bronze (Zn0.25V2O5·nH2O) intercalated 

by Zn2+ and crystalline water, which was synthesized in nanobelts structure by 

microwave hydrothermal method and assembled with aqueous electrolyte and zinc 

metal anode [94]. A high reversible capacity of 300 mAhg-1 at a current density of 0.05 

Ag-1 was achieved in this battery system, and it also delivered a large energy density 

of 450 WhL-1 [94]. Even at 4.5 Ag-1, this pillared material still provided a capacity of 

233 mAhg-1 and exhibited a high capacity retention over 80% within 1000 cycles [94]. 

These superb electrochemical performances were based on the reversible Zn ion de- / 

intercalation storage process with more than one Zn2+ per formula unit, and water 

molecules assisted to expand and contract V2O5 interlayer distance for fluent diffusion 

of Zn ions [94]. Furthermore, the dendrite formation on zinc anode was reduced 

significantly due to the choice of inserted metal ion Zn2+, which was the content of the 

anode [94]. The discharge process of Zn // Zn0.25V2O5 battery in 1M ZnSO4 electrolyte 

is schematically displayed in Figure 15.  



 22 

 

 

Figure 15. Schematic of Zn // Zn0.25V2O5 battery in 1M ZnSO4 electrolyte [94]. 

 

He’s group reported the design of cathode material via insertion Na ions into V2O5 

interlayer to fabricate a nanowire structural electrode, the cell prepared from this 

material delivered a high capacity of 367.1 mAhg-1 at 0.1 Ag-1 [95]. This advanced 

material exhibited a long-term cyclic stability of 93% capacity retention within 1000 

cycles under a high-current density (1 Ag-1) [95]. Since the inserted Na ions, whose 

ionic radius (102 pm) was larger than that of Zn2+ (74 pm), acted as pillars between the 

V2O5 interlayer to stabilize its layered structure. The reversible phase transformation 

was formed for Zn ion de- / intercalation during charge / discharge process, which is 

displayed in Figure 16 [95]. The V2O5 volume expansion or contraction was buffered, 

and the dissolution of V2O5 into the aqueous environment also had been suppressed 

[95]. Additionally, the metal ions in the V2O5 interlayer significantly improved the 
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electrical conductivity [95]. Therefore, the structural stability of this kind of cathode 

material was enhanced and side reactions were inhibited during cycling.  

 

 

Figure 16. Schematic of Zn ion de- / intercalation in the Na0.33V2O5 electrode [95]. 

 

1.4 Polymeric Species 

Polymers with a wide variety of functional groups are arguably the most common 

form of organic molecules. Conductive polymers gain further enhanced interests in 

battery research field due to their highly reversible redox behavior and unusual 

combination properties with other species [98]. Polyaniline (PANI) and polypyrrole 

(PPy) are considered as suitable candidates to coat cathode materials in rechargeable 

batteries due to their superb electrical conductivity and thermal stability [82] [97]-[100]. 

Additionally, the ease of fabrication and processing, the low cost of production and 

light weights make these conductive polymers as promising materials for surface 

coating [100]. 
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The conducive polymer backbone contains both -bond and -bond, and the bonds 

between carbons alternate single and double in -conjugated system [101] [102]. As a 

result, the delocalized electrons in the conjugated double bond move along the 

backbone which allows current flow [101] [102]. Because of the conjugated double 

bond presents along the carbon chain, the insulated structure can be transformed into 

metallic one [99] [101]. Moreover, to achieve much higher electrical conductivity of 

conductive polymer, doping strategy has been used to carry more electron to its 

backbone [102]. PPy is one of the most popular heterocyclic polymers which exhibits 

good electrical conductivity in its quinoid form (doped state) (in Figure 17 A), this is 

because the quinoid form has lower energy band than its aromatic form [104]. In Figure 

17 B), the polymer PANI contains planar aromatic amine chains possesses desired 

conductivity in its emeraldine (half-oxidized state) base [104].  

 

 

Figure 17. The structures of A) PPy and B) PANI [104]. 

 

In-situ polymerization method is used to form a compact film on the cathode 

material surface by conductive polymers [82] [100]. Compared with the conventional 

V2O5, the electrical contact is enhanced and exhibits significant improvements in 
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cycling performance as well as the ion and electron kinetics of this hybrid material 

[100][103]. In addition, the modified polymer layer serves as a barrier between the 

V2O5 particles and the aqueous electrolyte, which buffers the V2O5 volume dramatic 

contraction and prevents the connection and dissolution of V2O5 from aqueous 

environment [98]-[103]. Therefore, conducting polymer plays a crucial role on surface 

modification of cathode material in RAZBs. 

 

1.5 Electrolyte Optimizations to Suppress Dendrite Formation for 

RAZBs 

The usage of aqueous electrolyte benefits to transport guest ions and closely 

connect the cathode and anode [24]. Moreover, the low cost, ease of fabrication, high 

safety and good environmental friendliness make the aqueous electrolytes used widely 

in ZIBs [24]. However, the zinc dendrite formation is still against the cyclic stability of 

RAZBs. The sharp zinc protuberances can pierce the separator and finally leads to the 

direct connect of the cathode and anode, causing short circuits in the battery interior 

eventually. Therefore, electrolyte additives win an enhanced insight in battery research 

field. 

In this research, the solution 2M ZnSO4 is used as the electrolyte in all Zn // 

vanadate battery system. To improve the Zn stripping / plating coulombic efficiency 

and cyclic performance, the salt Na2SO4 is added into the electrolyte solution. Since the 

Na+ (-2.71 V) has much lower reduction potential than Zn2+ (-0.76 V), Na ions are 
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preferentially attracted by the negatively charged Zn protuberance which has a strong 

electric field, forming a positively shield around the sharp tip [106], as illustrated in 

Figure 18. Because of the repulsive force between same charged ions, the coming Zn2+ 

can be repelled to distribute on adjacent substrate [106]. According to the electrostatic 

shield mechanism, the zinc dendrite deposition has been inhibited effectively [105]-

[107]. Moreover, adding Na ions in electrolyte changes the dissolution equilibrium of 

Na ions from the positive electrode, thus the continuous damage of cathode material 

would be impeded [106]. Chen’ group reported a dual-carrier electrolyte system in Zn 

// sodium vanadate (NVO) aqueous battery [105]. The addition of Na+ ions in 1M 

ZnSO4 electrolyte was able to suppress the NVO nanowires dissolution and zinc 

dendrite deposition on anode [105]. This resulted the Zn // NVO aqueous battery 

delivered a high discharge capacity (250 mAh·g-1) at 1 A·g-1 and stable cyclic 

performance over 82% after 1000 cycles [105]. 
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Figure 18. Illustration of zinc deposition process based on electrostatic shield 

mechanism. 

 

1.6 Project Scope and Objectives 

Overall, the work in this thesis is based on two main objectives: 

1) Fabricating a thermally stable cathode material in RZAB. In this project, we aim to 

reduce the dissolution of V2O5 in aqueous electrolyte and improve its thermal 

stability at high temperature. Thus, surface coating strategy is employed to modify 

V2O5 surface by using conductive polymers.  

2) Synthesizing a new type of vanadium-based cathode material by dual metal-ion 

intercalation (Zn2+ and Na+). As doping metal-ion into the V2O5 structure offers 

more transfer electrons during cycling, a higher discharge capacity of Zn // vanadate 

aqueous battery is expected to achieve. Additionally, because of the electrostatic 
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shield mechanism, zinc dendrite formation can be inhibited. Therefore, this dual-

ion electrode assisted with a dual-ion electrolyte (2M ZnSO4+2M Na2SO4) will 

provide an enhanced cyclic stability. 
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Chapter 2: Material and Electrochemical Characterization 

Techniques 

 This section will explain expand on the characterization techniques that will 

be used to explore various electrochemical and structural properties over the course of 

experimentation. 

2.1 Material Characterization Techniques  

2.1.1 X-Ray Diffraction (XRD) 

 X-ray diffraction (XRD) is a rapid analytical technique primarily used for 

identifying the phase of a crystalline material or a mix of different crystalline materials. 

Through analysis, we get the structural information (e.g. atomic spacing, unit cell 

dimensions, atom position of each element) in the unit cell. The analyzed material is 

finely homogenized and ground, and average bulk composition can be determined 

consequently. This non-destructive tool can be used to analyze all kinds of matter-

ranging from fluids, to powders and crystals as long as they possess some sorts of 

repeating long range orders [108]. From research to engineering and production, XRD 

is an indispensable method for characterizing materials and detecting qualities [108]. 

The instrument to implement XRD is named the X-ray diffractometer. In principle, 

all X-ray diffractometers consist of three basic elements: an X-ray tube (source), a 

sample holder, and an X-ray detector (shown in Figure 19) [109]. The X-ray tube 

generates X-rays by heating a filament to produce electrons, the electrons are 
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accelerated toward a target material under a high voltage and the bombarded the 

material surface to emit characteristic X-ray beams [110]. The specific wavelengths 

correspond the characteristics of target material (e.g. Cu, Fe, Cr), for instance, copper 

as the most common target material for single-crystal diffraction, has a Cu-Kα X-ray 

wavelength of 1.542Å [113]. This X-ray will be bombarded on the materials while the 

angle between the beam and the reflected / diffracted signals is changing (Figure 19). 

The X-ray signals are recorded and processed via a detector, and the detector converts 

the signal to a count rate, then output to a device [111]. The obtained maximum 

intensity allows to do the calculation of the crystal structure details, or if we know the 

crystal structure, the wavelength of the incident X-rays upon the material can be 

determined by Bragg's law, which is expressed below: 

 

nλ = 2dhklsinθ

 

where n is an integer, λ is the wavelength of X-rays characteristic which impinging on 

the analyzed sample, d is the interplanar spacing between atomic rows, and θ is the 

angle of the X-ray beam with respect to the planes [110]. As illustrated in Figure 20, 

when the geometry of incident X-rays satisfies the Bragg Equation, the constructive 

interference and a peak in intensity could occur [112].  
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Figure 19. Schematic of XRD instrument. 

 

 

Figure 20. Schematic showing the interaction between X-rays and a typical 

crystalline sample [114]. 

 

 Moreover, the synthesis and processing conditions of the measured sample 

may affect the size of crystal plane. Applying Scherrer equation (shown in equation 4) 

to calculate the size of the crystal from the XRD spectrum is an effective method. 

 

d =
Kλ

(FWHM)cosθ
      (4) 
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where d is the crystal size, K is the Scherrer shape constant (in literatures, the common 

K values for spherical crystals are 0.94, for nanorods are 1.00, and for platelets are 0.89 

[115]), λ is the X-ray wavelength, FWHM represents the full width at half maximum 

of the corresponding peak in the XRD spectrum, and θ is the incidence angle.  

In this work, XRD was used to determine the crystallinity of the vanadates material. 

The Brüker D8 Discover X-ray diffractometer with a copper target and a wavelength 

of 0.154 nm (Cu-K) was used to carry all XRD experimentation in this project. For 

typical powder patterns, data was collected from ~5° to 70° at a scan rate of 0.4 degrees 

per second. 

 

2.1.2 Fourier Transform Infra-red Spectroscopy (FTIR) 

 Fourier transform infra-red spectroscopy (FTIR) is one of the most 

straightforward way to obtain the infrared spectrum of materials allowing in different 

phases by infra-red (IR) light absorption or emission. FTIR spectroscopy is used to 

measure how much of the beam containing multiple different light frequencies are 

absorbed by the sample. The absorbed radiation with specific wavelength changes the 

dipole moment of the sample molecules, and the vibrational energy levels of sample 

molecules are excited from the ground state [116]. Consequently, the gap of the 

vibrational energy level determines the absorbed peak frequency. When a sample is 

exposed to IR radiation, some molecules of the sample selectively absorb the radiation 
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and some radiation is transmitted [117]. A spectrum is represented by the resulting 

signal at the detector, which acts as a molecular ‘fingerprint’ of the sample. Because 

different chemical structures can produce their corresponded spectral “fingerprints”, 

the infrared spectroscopy technique is becoming increasingly vital for material 

characterization. 

 The Michelson interferometer is a core setup of the FTIR spectrometer. As an 

example shown in Figure 21, this interferometer contains a beam splitter, a fixed mirror 

and a scanning mirror. The beam splitter made of a special material transmits half of 

the radiation and reflects the others [118]. Radiation from the infrared source attacks 

the beam splitter and separates into two pathways. One way is reflected off the beam 

splitter to attack the scanning mirror, which is shown in blue line (path 1); the other 

way (displayed in red line and named in path 2) is transmitted through the beam splitter 

to attack the fixed mirror [118]. Next, both the fixed and scanning mirrors reflect the 

radiation back to the beam splitter. Additionally, half of this reflected radiation occurs 

transmission and half is reflected by the beam splitter once again, leading the beam of 

path 1 passing to the detector and the beam of path 2 returning to the source [118]. 

In this work, FTIR spectroscopy was performed on a Brüker Optics Vertex 70 

Spectrometer in a wavenumber range of 400 cm-1 to 4000 cm-1 with a repetition of 20 

scans.  
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Figure 21. Working principle of an FTIR interferometer [118]. 

 

2.1.3 Scanning Electron Microscopy (SEM) 

Scanning electron microscopy (SEM) is a powerful and versatile tool for 

characterizing material in high resolution. It is used to detect the surface structure, 

morphology, phase information and chemical composition of the solid object [120]. 

The main components of SEM containing electron source, electron lenses, electron 

detector, sample chamber and the data output device. The schematic of SEM is shown 

in Figure 22, the electrons carry significant amounts of kinetic energy are generated at 

the top of the column, then the produced electrons are accelerated to pass through a 

combination of lenses and apertures, and eventually, forming a focused electron beam 

to hit the surface of the sample [121]. Relying on the sample density and accelerating 

voltage, the electron beam passes through the sample with a few microns depth when 

it hits the sample surface [121]. The sample is placed on a stage in the chamber area, a 

combination of pumps evacuates both the column and chamber [122]. The scan coils, 
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which are situated above the objective lens, control the position of electron beam and 

allow the beam to be scanned over the sample surface [122]. As the electrons interact 

with the sample, a number of signals (e.g. secondary electrons, characteristic X-rays 

and backscattered electrons) are produced and detected by appropriate detectors [124]. 

SEM images are formed depending on these signals, which are collected by one or more 

detectors, then displayed on the computer screen [123]. The electron spot size and 

interaction volume of sample with the electron beam are the key factors to obtain the 

maximum resolution by SEM technique [123]. 

 

 

Figure 22. Components and principle of operation of an SEM [123]. 

 

Two kinds of electrons are regularly used for samples imaging. The first one is 

secondary electrons which are most beneficial for presenting topography and 

morphology of samples [125]. The other one is backscattered electrons, they are used 

to demonstrate the composition contrasts on samples which possess multiphase, for 
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instance, rapid phase discrimination [125]. The difference in SEM images produced by 

these two kinds of electrons is due to the different interaction volume (shown in Figure 

23). When the electrons are excited to their high energy state, adequate energy can be 

obtained for electrons to escape the sample surface, then, secondary electrons are 

released from the surface atoms of the objected material [126]. A greater resolution 

combined with more surface sensitive can be obtained by the secondary electron 

imaging [126]. Because the escape depth of backscattered electrons is much greater 

than that of secondary electrons, the resolution of surface topographical characteristics 

can be damaged [126]. Nevertheless, the advantage of the backscattered electrons is 

that they are delicate to scatter the atomic mass of the nuclei, resulting in the elements 

with heavier mass backscattering more efficiently and appearing brighter than the 

lighter elements in a backscattered electron image [126]. 

 

 

Figure 23. Schematic of electron beam interaction [127]. 
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Additionally, energy-dispersive X-ray (EDX or EDS) spectroscopy is commonly 

used in conjunction with SEM to identify and quantify the elemental composition of 

the sample material. The incident electrons inelastically collide electrons in discrete 

orbitals (shells) of sample atoms to generate X-ray [128]. For a given element, the 

electrons in different orbitals have different energy levels. In other words, X-rays can 

be yielded in a specific wavelength when the excited electrons back to its lower energy 

states [128]. The production of characteristic X-rays of each element in a material is 

based on the excitation of electron beam, and then the X-rays are sent to a device for 

display and further data evaluation [129]. 

In this work, SEM was used to analyze the nanostructure and surface of cathode 

materials. All samples in this project was performed on a Zeiss LEO 1530 FESEM with 

an accelerating voltage of 10 kV under vacuum.  

 

2.1.4 High-Resolution Transmission Electron Microscopy (HRTEM)  

Transmission electron microscopy is a technique in which an electron beam is 

transmitting and interacting with an ultra-thin specimen. The interactions between the 

atoms of the specimen and the electrons are used to do features observation, such the 

dislocations and grain boundaries of the crystal structures [130].  

As illustrated in Figure 24, the main components of TEM includes electron source, 

condenser lenses, objective lens, intermediate and projector lenses as well as a detector. 



 38 

An electron beam is produced by a heated tungsten filament in the electron gun, then 

the condenser focuses the electron beam on the specimen. The magnetic lenses are used 

to focus the beam since electrons cannot pass through a glass lens [131]. In order to 

obtain a clear image, a high vacuum condition for the column, which containing the 

specimen and lenses, must be achieved since electrons can be deflected by colliding 

with air molecules [131]. The passing electron is scattered by the specimen, then 

focused by magnetic lenses, consequently, an enlarged, visible image of the specimen 

can be formed on a fluorescent screen [131]. Interestingly, the lighter areas of the image 

denote the areas of the sample that more electrons were passed through, while the darker 

areas indicate fewer electrons are transmitted through the specimen [131].  

HRTEM of polymer coated samples was performed on a Zeiss Libra 200MC TEM 

using a 200 kV acceleration voltage. Cathode material were directly drop-casted onto 

the copper grid in ethanol solvent. The elemental mapping was performed using the 

electron energy loss spectroscopy (EELS) method on the scanning mode of the TEM 

instrument (STEM).  
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Figure 24. Components and principle of operation of an TEM [132]. 

 

2.1.5 X-Ray Photoelectron Spectroscopy (XPS) 

X-ray photoelectron spectroscopy (XPS) is a quantitative technique for analyzing 

the elemental composition of the material surface, the binding states of the elements 

also can be determined by this technique. The main components of XPS instrument are 

displayed in Figure 25 including X-ray source, ultrahigh vacuum chamber, electron 

collection lens, electron energy analyzer and electron detector. 
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Figure 25. Schematic of XPS instrument [134]. 

 

The kinetic energy spectrum is determined by the excited photoelectrons in specific 

bound states from the specimen surface as the X-ray with sufficient energy (hν) 

irradiating the object surface in ultrahigh vacuum (normally lower than 10−7 Pa) [133]. 

The principle of the photoelectron emission is illustrated in Figure 26. The equation of 

hν by a kinetic energy of photoelectron, EK, is expressed as below: 

 

hν = EK + EB +      (5) 

 

where h is Plank constant, EB is a binding energy of electron to nucleus relative to the 

Fermi level and  is the work function of the specimen. The value of chemical shift and 

EB are utilized for identifying an element and analyzing the chemical bonding state of 

the specimen.  

 



 41 

 

Figure 26. Principle of the photoelectron emission [135]. 

 

 In a typical XPS spectrum, some of the photo-ejected electrons inelastically 

scatter through the sample en route to the surface, while other electrons emit 

immediately and few energies would be lost in escaping the surface and into the 

surrounded vacuum environment [134]. These photo-ejected electrons are collected 

once they are in the vacuum, and their kinetic energies can be measured by an electron 

analyzer [134]. Then, an energy spectrum of intensity vs. binding energy can be 

obtained by this electron energy analyzer, and each specific element has a corresponded 

prominent energy peak in the spectrum [134]. 

 Apart from identifying elements of the analyzed material, the intensity of the 

peaks also indicates the amount of each element in the sample [136]. In other words, 

the number of atoms for each element is proportional to the integrated peak area, and 
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the chemical composition of the specimen can be obtained via calculating the 

contribution of each peak area respectively [136]. 

 In this work, XPS spectra was performed by a Thermo-VG Scientific 

ESCALab 250 microprobe. The spectra was obtained via using a 200.0 μm beam size 

at 1486.6 eV and 49.3 W. Reported binding energies were normalized against the C1s 

peak at 284.8 eV. During the measurement, the chamber pressure was maintained at 2.0 

nPa, and wide survey (0-1200 eV) was conducted for each sample to determine the 

surface elemental composition of the samples. 

 

2.1.6 Thermogravimetric Analysis (TGA) 

The technique thermogravimetric analysis (TGA) is used to monitor the mass of a 

substance as a function of time or temperature, the sample is subjected under a defined 

temperature program with a controlled atmosphere. As displayed in Figure 27, a TGA 

consists of a sample pan that is supported by a precision balance, an auto sampler which 

serves to load the samples onto a micro-balance, and a thermocouple sits left below the 

sample [129]. The pan which loads a sample is placed in a furnace, then it is cooled or 

heated during the experiment, and the changes of the sample weight are monitored 

simultaneously [129]. The sample environment is controlled by a sample purge gas, 

moreover, this gas may be reactive or inert that flows over the sample and exits through 

an exhaust [129]. 
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 In this work, TGA was carried out in air with a temperature range of 30C to 

650C at a ramp rate of 10C·min-1. 

 

 

Figure 27. Schematic of TGA instrument [137]. 

 

2.1.7 Inductively Coupled Plasma Mass Spectrometry (ICP-MS) 

Inductively coupled plasma mass spectrometry (ICP-MS) is an elemental analysis 

technology capable of detecting the metal elements at milligram to nanogram levels per 

liter. Atomic elements are led through a plasma source where they become ionized. 

Then, these ions are sorted on account of their mass.  

As displayed in Figure 28, an ion source (ICP), a sampling interface, ion lens, a 

mass spectrophotometer and a detector are involved in ICP-MS. ICP, as the ion source, 

is an ideal ionization source which can ionize over 90% of the elements for mass 



 44 

spectrometry [138]. Samples as the form of aerosol droplets are introduced into an 

argon plasma. The aerosol is dried by the plasma, and the molecules are dissociated, 

then the electrons from the components are removed, and consequently forms singly-

charged ions [138]. Ions produced in the ICP leading the interface of a sample to a mass 

analysis unit. Two metallic cones are involved in the sampling interface unit, one is the 

sampling cone and the other one is skimmer cone, and a rotary gear pump ventilates 

between the two cones into several hundreds of Pa condition [138]. The sampling cone 

and the skimmer cone pull through the ions path, and use the ion lens to converge it 

into the mass spectrophotometer [138]. The ion lens and the mass spectrophotometer 

unit based on the turbo molecular pump are respectively ventilated to 10-3 and 10-4 Pa 

[138]. Additionally, the ions are classified by mass with the mass spectrophotometer 

and subsequently detected by the ion detector.  

 

 

Figure 28. Schematic of ICP-MS instrument [138]. 

 

In this work, the amounts of elemental composition (V, Na and Zn) of the cathode 

material were detected by ICP-MS instrument. The powder sample was dissolved in 
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dilute nitric acid and the concentration of each element should over their detection limit 

of ICP-MS. The detection limits for each element are shown in Table 2. 

 

 

Table 2. Element detection limit of ICP-MS. 

 

2.2 Electrochemical Characterization Techniques 

2.2.1 Electrochemical Impedance Spectroscopy (EIS) 

Electrochemical impedance spectroscopy (EIS) is an electrolytic method to 

measure the impedance and study the electrode kinetics of a system depends on the low 

amplitude alternating current (AC) potentials over a range of frequencies. A three 

electrode setup (T-cell Swagelok, as shown in Appendix 1) involves a working, a 

counter and a reference electrodes is conducted under a known voltage. The voltage is 
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passed from the working electrode through an electrolytic solution and into the counter 

electrode [139]. The EIS produces quantitative measurements which provide the 

evaluation of chemical mechanisms in small scale at the electrode interface in a 

electrolytic solution [139]. Hence, studying the research fields of batteries, coating 

evaluation, electrodeposition and corrosion, EIS is considered as a powerful technique 

to determine the electrical and dielectric properties of components in a wide range. 

EIS studies can be utilized in both three electrode mode and coin cell. A metallic 

sample container (e.g. Swagelok) filled with a prepared electrolytic solution would 

provide additional pathways for electrons transportation during the experimentation 

[139]. As a result, the electrons prefer moving to the metal rather than the reference 

electrodes because the reduction of EIS response current. With this regard, insulating 

materials (e.g. glass or plastic) are employed to be the composition of a sample 

container, which will effectively decrease the impacts of electrons movement during 

testing [139]. In a three electrode mode, all (working, reference and counter) electrodes 

are submerged into the electrolytic solution, and using leads to connect these three 

electrodes to the frequency response analyzer, as shown in Figure 29. Then, the EIS 

system is ready for testing when all leads and parts are connected. 
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Figure 29. Experimental EIS system set up using three electrode mode [139]. 

 

After testing, electrochemical impedance data was expressed via a Nyquist plot (as 

an example displayed in Figure 30), which presents a plotting of the real impedance 

(along x-axis) vs. the negative imaginary part (along y-axis). Two principal equations 

describe the real and imaginary impedance components of EIS are shown in Equations 

6 and 7, respectively: 

 

𝑍′ = 𝑅𝑠 +
𝑅𝑐𝑡

1 +  2𝑅𝑐𝑡
2 𝐶𝑑𝑙

2       (6) 

 

𝑍′′ =
𝑅𝑐𝑡

2 𝐶𝑑𝑙

1 +  2𝑅𝑐𝑡
2 𝐶𝑑𝑙

2               (7) 

 

where Z’ and Z’’ are the real and imaginary parts of impedance, Rs represents the 

equivalent serial resistance, Rct is the charge-transfer resistance, Cdl is the double-

layered capacitance and  is the applied frequency. 
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The characterization of the frequency dependence of impedance responses are 

presented by the electrical components in a Nyquist plot [139]. The electrical 

components are established by equivalent circuits (inserted in Figure 30). Near the 

region of plot origin, where corresponds to the high frequency intercept, the real 

impedance value gives the combination of electrode and electrolyte resistance in this 

battery, as referred to equivalent serial resistance (Rs) [140]. The intercept at 

intermediate frequency of the real axis offers a summation of the Rct and Rs, herein, we 

can treat the diameter of this semicircle as the value of charge-transfer resistance (Rct). 

Rct stands by the moving resistance of electrons between the cathode material and 

electrolyte [141]. In addition, the tail in the low frequency region of Nyquist plot 

presents Warburg straight line, the ion diffusion rate in battery system can be 

determined by its slope value [140]. 

 

 

Figure 30. Relationship between Nyquist plot components [141]. 
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In this project, EIS measurements were conducted on a Bio-Logic VMP3 

electrochemical workstation. A coin cell contains the synthesized material as the 

working electrode, zinc disk as the counter electrode and an absorbed glass mat (AGM) 

as separator soaked with the electrolytic solution was constructed for the testing. Firstly, 

a 10 mV DC square wave was applied, then followed by scanning of AC frequencies 

from 1 MHz to 10 mHz. 

 

2.2.2 Cyclic Voltammetry 

 Cyclic voltammetry (CV) is a potentiodynamic electrochemical technique to 

measure the reduction and oxidation potentials of the chemical species. A cyclic 

voltammogram trace is obtained by recording the current, which flows between the 

working electrode and counter electrode, as a function of the applied voltage [142]. The 

working electrode potential is ramped linearly with time to draw a waveform in a 

triangle shape [142]. The potential scan with time and the resulted CV plots are shown 

in Figure 31. Under cathodic scanning, the peak current increases with the potential 

approaching to the reduction potentials of the analyzed chemical, then it falls off 

because the concentration of the analyte is consumed close to the electrode surface 

[142]. Subsequently, as the applied potential is reversed, the product which formed in 

the first reduction reaction will be re-oxidized as long as it will reach a potential, and a 



 50 

current of reverse polarity from the forward scan is produced [142]. This oxidation peak 

will usually have a similar shape to the reduction peak.  

 The nonsymmetric and large differences of reduction and oxidation peaks 

indicate the nonreversible reaction. Moreover, the peak potential, peak current and the 

characteristic shape of cyclic voltammograms are the key parameters to characterize 

and study the mechanism of redox reactions at electrodes. 

 In this work, CV was utilized to measure the oxidation and reduction potentials 

of metal ions in both coin cell and three electrode battery systems. A Bio-Logic VMP3 

electrochemical workstation was used to obtain the CV measurements with different 

scan rates under a voltage range of 0.2-1.6 V. Ag / AgCl and polished zinc foil were 

respectively employed as a reference and a counter electrode in three electrode system, 

aqueous electrolytes containing 2M ZnSO4 with and without 2M Na2SO4 were adjusted 

to pH=3.7 0.2.  

 

 

Figure 31. A) Potential scan with time and B) the resulted CV plot [143]. 
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2.2.3 Battery Testing 

 In this work, galvanostatic charge-discharge cycling of batteries were tested 

using the constant current (CC) protocol by using a Neware battery tester at two current 

densities of 1 C and 5 C, where 200 mA·g-1 corresponds to 1 C rate, for small coin cells 

(~ 1.13 cm2 in cell) and large batteries (~ 9 cm2 in cell, as shown in Appendix 2) under 

a voltage range of 0.2–1.6 V vs. Zn2+ / Zn. The cycling retention after x cycles was 

calculated based on the following equation: 

 

𝑐𝑦𝑐𝑙𝑖𝑛𝑔 𝑟𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛 =
𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑥 𝑐𝑦𝑐𝑙𝑒

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 1𝑠𝑡 𝑐𝑦𝑐𝑙𝑒
×  100%   (8) 

 

To observe the performance of discharge capacity at variety of current densities, 

rate capability test was conducted at gradual current rates (C-rate) of 1, 2.5, 5, 10 C, 

and then returned from high C-rate to 1 C under the voltage range of 0.2-1.6 V.  
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Chapter 3: Conductive Polymer Modified-Vanadium Oxide 

as the Cathode Materials in Rechargeable Aqueous Zinc-ion 

Batteries  

3.1 Fabrication of Conductive Polymer Coated Ball-milled Vanadium 

Oxide  

Ball-milling method was utilized to reduce the particle size of commercial V2O5 

via grinding. Firstly, a given amount of commercial V2O5 powder (Sigma-Aldrich, ≥ 

98% purity) was added into the ball-milled container, rotational speed 800 rmp is set 

with 8 hours grinding. During this grinding process, high pressure can be generated by 

collision of tiny solid balls in a sealed container, which makes original V2O5 into a 

smaller particle size. Additionally, the activation process of the V2O5 battery could be 

minimized significantly. 

Polypyrrole (PPy) and polyaniline (PANI) were synthesized on the surface of V2O5 

via in situ polymerization. This method also refers to chemical oxidative 

polymerization, that a given amount of monomer reacts with oxidizing agent under a 

specific condition [82][97][103]. 
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3.1.1 Synthesizing Polypyrrole (PPy) on the Surface of Ball-milled Vanadium 

Oxide  

In brief, 0.5 g ball-milled V2O5 are dispersed into 200 mL deionized (DI) water 

with stirring for 15 min. Then, placing the suspension to 20 min sonication. After that, 

1.82 g iron chloride (FeCl3, Sigma-Aldrich, ≥ 97% purity) as oxide and 0.8 g p-

toluenesulphonic acid sodium (C7H7O3SNa, Sigma-Aldrich, ≥  95% purity) as 

surfactant are added into the solution and keep stirring for 30 min under ice bath (0-

5℃). 0.05 g pyrrole monomer are added into the mixture, followed by an oxidative 

polymerization at low temperature for 5 hours [103]. 

Finally, the solid products are separated from aqueous solution by centrifugation, 

washed by DI water and ethanol for several times, then dried in vacuum oven at 60°C 

overnight. The final product ball-milled V2O5-PPy is showed in dark green color (as in 

Figure 32). 
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Figure 32. Experimental procedure of synthesizing ball-milled V2O5-PPy. 

 

3.1.2 Synthesizing Polyaniline (PANI) on the Surface of Ball-milled Vanadium 

Oxide  

With regard to PANI polymerization, 0.05 g aniline monomer in 30 mL 0.1M HCl 

solution are dispersed into ball-milled V2O5 and DI water suspension, then 0.63 g 

ammonium persulphate (APS, Sigma-Aldrich, ≥  98% purity) is added into the 

reaction system under vigorous magnetic stirring at temperature 0-5℃ for 24 hours [82]. 

After washed with DI water and ethanol, the green powder product is obtained after 

drying overnight. 

The conductive polymer which is coated on particle surface acts as a barrier 

between ball-milled V2O5 and aqueous electrolyte, avoiding the host material (ball-
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milled V2O5) to contacting aqueous electrolyte directly and dissolving in electrolyte 

during charge and discharge process. 

 

3.2 Cathode Fabrication and Battery Assembling 

The working electrode (or the cathode of the battery) consists 70 wt% active 

material (ball-milled V2O5 coated by conductive polymer), 20 wt% graphene 

nanoparticle (GNP), and 10 wt% polyvinylidene fluoride (PVDF) in N-methy l-2-

pyrrolidone (NMP) solution. The slurry is uniformly pasted onto the polyethylene (PE) 

film (All-Spec 854-36150) and dried at 60°C for 8 hours.  

Both CR2032 coin-type and large batteries were employed for electrochemical 

tests. For coin cell, the cathode is punched into small disks with a diameter of 12 mm, 

and the mass loading of active material is around 4.5 mg cm-2. As shown in Appendix 

2 C), RAZB is assembled by the cathode containing vanadium-based material, double-

layered absorbed glass mat (AGM, NSG Corporation, diameter: 12 mm, thickness: 0.5 

mm) as the separator, and polished metal zinc (Rotometals, diameter: 12 mm, thickness: 

0.2 mm) as the anode. As refer to the large battery shown in Appendix 2 D), the cathode 

(~ 9 cm2 in cell), AGM separator and anode are cut in square shapes. The electrolyte is 

prepared by 2M zinc sulfate (ZnSO4, Sigma-Aldrich, ≥ 98% purity) in DI water with 

pH value of 3.7  0.2. 
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3.3 Material Characterizations 

3.3.1 Fourier Transformed Infra-Red Spectroscopy (FTIR) 

Firstly, the technique FTIR was utilized to detect the chemical compounds of PPy 

and PANI on ball-milled V2O5. In Figure 33 A), the characteristic peak locates at 1012 

cm-1 is assigned to V=O stretching of raw material ball-milled V2O5, and 840 and 531 

cm-1 bands represent the symmetric and asymmetric V-O-V vibrational modes, 

respectively [144]. A set of “signature” peaks are illustrated in the spectrum of ball-

milled V2O5-PPy, which are located at three absorption bands of 1557,1329 and 1200 

cm-1. The characteristic peak at 1557 cm-1 presents the pyrrole ring, the absorption 

bands at 1329 cm-1 and 1200 cm-1 attribute to the in-plane N-H deformation of the 

pyrrole ring and C-H stretching vibration [98][100][103]. In the spectrum of ball-milled 

V2O5-PANI (Figure. 1 B), the bands locate at 1508 and 1316 cm-1 are assigned to 

benzenoid (B) ring and C-H stretching, and the B-NH-B or aromatic C-H in plane 

bending appears at 1168 cm-1 [82][145]. It is worth noting that the two “signature” 

peaks of ball-milled V2O5 are shifted closer to each other (from 840 to 828 cm-1and 531 

to 562 cm-1, respectively) after polymer modification. This situation suggests a 

sensitive physical interaction is occurred between the V2O5 surface and coated polymer. 

Thus, the in-situ polymerization on V2O5 surface can be roughly considered 

successfully by FTIR measurements. 
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Figure 33. The FTIR patterns of A) ball-milled V2O5-PPy powder and B) ball-

milled V2O5-PANI powder. 

 

3.3.2 X-Ray Diffraction (XRD) 

The XRD patterns of ball-milled V2O5, polymer-modified samples with a 2θ angle 

ranging from 10 to 70 are represented in Figure 35. A superb matching between the 

commercial V2O5 powder (PDF# 41-1426) and ball-milled V2O5 is demonstrated in 

Figure 34, its layered structure with corresponding diffraction (001) is indicated by the 

most intense peak located at 2θ = 20.347 [146], and the typical orthorhombic structure 

of ball-milled V2O5 is well-indexed with the commercial V2O5 [48][49]. These 

demonstrate that the ball-milling method would not impact the structure of raw material 

(commercial V2O5). Both ball-milled V2O5-PPy and ball-milled V2O5-PANI display 

similar XRD patterns to ball-milled V2O5 in Figure 35. Because of the ultrathin and 
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amorphous polymer coating layers on ball-milled V2O5, the incident X-ray only 

interacts with the V2O5 crystals. Furthermore, there are no chemical reactions occurred 

on the surface of V2O5 since no obvious differences are displayed in peak intensities 

and locations [148]. With this regard, polymer modification will not affect the 

crystalline structure of raw material. Additionally, far more advanced crystallinities of 

the polymer-modified V2O5 samples are exhibited in this pattern, indicating that the 

surface coating method employed by conductive polymers develops a stable structure, 

thus, the reversible Zn2+ intercalation and de-intercalation would be promoted during 

the cycling. 

 

 

Figure 34. The XRD patterns of ball-milled V2O5 and commercial V2O5 (PDF# 41-

1426). 
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Figure 35. The XRD patterns of ball-milled V2O5-PPy and ball-milled V2O5-PANI 

and ball-milled V2O5. 

 

3.3.3 Electron Microscopy 

The morphology of polymer-modified V2O5 particles were detected by the 

scanning electron microscopy (SEM). In Figure 36 A) to C), the observation of coating 

layers on the bare V2O5 particle surface is evident, which contributing smoother coating 

walls on V2O5 particles surface. Moreover, the modification on V2O5 can be supported 

by signals of elements from energy-dispersive X-ray (EDX or EDS) pattern. As an 

example for ball-milled V2O5-PPy, elements N and Cl can be observed in Figure 37, 

where N only exists in heterocyclic aromatic ring and Cl comes from FeCl3 (oxidizing 
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agent). In addition, the compositions of each coating layer have been verified by FTIR 

results as mentioned in the above section. Herein, the conductive polymers are believed 

to coat on the surface of ball-milled V2O5 by in-situ polymerization method.  

High-resolution transmission electron microscopy (HRTEM) was conducted on 

investigating the material structure and thickness of conductive polymer coating. The 

lattice fringes of V2O5 particle is presented in Figure 36 D), this image demonstrates a 

good agreement in its layered structure. In Figure 36 E) and F), the darker regions 

correspond to the V2O5, and the edge areas in bright color reveal the polymer-modified 

layers. The thickness of the PPy and PANI coating layers is measured around 6.7 nm 

and 13.2 nm, respectively. Because of developing a compact coating layer on the V2O5 

surface, the direct contact between active material and electrolyte can be minimized, 

and the dissolution of cathode material in aqueous electrolytes would be decreased 

eventually.  

 

 



 61 

 

Figure 36. SEM images of A) ball-milled V2O5, B) ball-milled V2O5-PPy and C) 

ball-milled V2O5-PANI with scale bar of 1 μm. TEM images of D) ball-milled V2O5, 

the coating thickness of E) ball-milled V2O5-PPy and F) ball-milled V2O5-PANI with 

scale bar of 10 nm. 

 

 

Figure 37. EDX image of ball-milled V2O5-PPy sample. 

 

3.3.5 X-ray Photoelectron Spectroscopy (XPS) 

X-ray photoelectron spectroscopy (XPS) is a quantitative technique for analyzing 

the elemental composition of the material surface, the binding states of the elements 

also can be determined by this technique. The existence of the coating layer of PPy can 

be confirmed by the characteristic peaks of C 1s and N 1s in Figure 38 A) and B). Three 
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different C species in the heterocyclic aromatic ring of pyrrole correspond the 

characteristic peaks at the binding energy (BE) of 284.7 eV, 286.3 eV and 288.6 eV in 

C 1s spectra. The neutral amine nitrogen (-NH-) is indicated in N 1s spectra of PPy as 

the major characteristic peak locates at 399.7 eV, the peak with higher BE of 400.6 eV 

demonstrates the nitrogen with positive charges (–N+), and the imine nitrogen (-N=) is 

revealed at the lower BE of 397.7 eV [148]. Because of the anion doping (Cl-) on the 

conductive polymer PPy, the –N+ is presented in spectra which corresponds well to the 

observation of element Cl in EDX results (in Figure 37). Similarly, the coating layer 

composition of PANI sample also can be verified by the signature peaks in C 1s and N 

1s spectra (in Figure 38 C) and D)). Therefore, the finding results of polymer 

compositions by using the XPS technique are consistent with the results from the FTIR 

method. 
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Figure 38. XPS spectra of ball-milled V2O5-PPy A) C 1s, B) N 1s, and ball-milled 

V2O5-PANI C) C 1s, D) N 1s. 

 

3.3.4 Thermogravimetric Analysis (TGA) 

Thermogravimetric analysis (TGA) was utilized to quantify the polymer amount in 

the modified samples. This technique was carried out in air with a temperature range of 

30C to 650C at a ramp rate of 10C·min-1. The plots of weight loss of polymer-coated 

V2O5 powders vs. temperature are displayed in Figure 39. The ball-milled V2O5 sample 

in black line maintains the weight percentage stably over the temperature range. With 

the comparison of ball-milled V2O5 sample, the polymer-coated samples exhibit slight 

weight losses below 250C, this situation corresponds to the removal of free and 

crystalline water as well as gases in a sample. Then, a followed dramatic weight drop 

occurs within 250C-400C that indicates the combustion of polymer component. By 

using this method, it was estimated that the amounts of PPy layer and PANI layer on 

the ball-milled V2O5 particles was around 7.8% and 15.3% by weight, respectively. 
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Figure 39. TGA measurements of ball-milled V2O5, ball-milled V2O5-PPy and ball-

milled V2O5-PANI in a temperature range of 30C to 650C at a ramp rate of 10C·min-

1. 

 

3.4 Electrochemical Performance 

To fabricate a thermally stable cathode material for RZAB, especially under 

elevated temperatures (40, 60 and 80 °C), cyclic tests, rate capability, cyclic 

voltammetry and impedance measurements were used to value the electrochemical 

performance of polymer-coated cathodes. Consequently, we aim to develop a superior 

cyclic stability of RAZBs by utilizing this surface coating method to improve the 

structural stability of V2O5 in aqueous environment during the cycling process.  
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3.4.1 Cyclic Voltammetry (CV) 

Cyclic voltammetry (CV) test was firstly used to investigate the electrochemical 

performance of polymer-modified samples under ambient and elevated temperatures. 

In small coin cell batteries, the observation of three pairs of redox peaks among these 

samples in Figure 40 A) is obtained by CV technology in a voltage range of 0.2 -1.6 V 

vs. Zn2+ / Zn at a scanning rate of 0.1 mV·s-1. Three steps of zinc ion de- / intercalation 

during the charge / discharge process are represented by these pairs of peaks under this 

voltage range [146][147].1It is worth noting that the response currents of one-pair redox 

peak of ball-milled V2O5-PPy locates at 0.75 / 0.58 V are enhanced and exceeds other 

pair of redox peaks1(locate at 1.22 / 0.95 V).1This is due to1the additional redox 

reactions of polymer composition (PPy) occurs within 0.6-1.2 V1(oxidation) and 0.4-

0.8 V (reduction)1voltage range as shown in Figure 40 D). Herein, the reactions of 

conductive polymer PPy may devote to slightly increase the discharge capacity for 

RAZBs. On the contrary, owing to no redox reactions for PANI compound within the 

same voltage range, the ball-milled1V2O5-PANI sample shows very similar CV1results 

to the control one.  

However, the 2nd and 3rd oxidation1peaks of ball-milled V2O5 locate at 1.08 and 

1.22 V are overlapped at 1.18 V,1and their corresponded reduction peaks at 1.02 and 

0.95 V are consolidated into one top determines at 0.88 V after 50 cycles as presented 

in Figure 40 B). This similar event also occurred to sample ball-milled1V2O5-PANI in 

Figure 40 C). The galvanostatic charge and discharge curves of ball-milled V2O5 and 
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ball-milled1V2O5-PANI samples at their 1st and 50th cycles are respectively shown in 

Figure 40 E) and F), this test is carried out under room temperature at a current density 

of 5 C. An obvious capacity fading of ball-milled V2O5 sample is displayed when cycle 

number is increased, this is due to the zinc ions cannot fully extract from the V2O5 

interlayer during charge process. Thereby, a tilting platform is formed as a result of 

charge / discharge plateaus connection, which corresponds to the reduction of one more 

pair of redox peaks in its CV plots. Moreover, an enormous capacity gap between 1st 

and 50th cycling tests is existed in the galvanostatic discharge curve in Figure 40 E), 

and a slight capacity fading of ball-milled1V2O5-PANI sample is indicated in Figure 40 

F). Nevertheless, its reduction peak at 0.53 V in cathodic sweeping and an oxidation 

peak at 0.7 V in anodic scans are both heightened in the CV plot of ball-milled1V2O5-

PANI sample (shown in Figure 40 C). This condition is thanks to the conductive 

polymer layers minimize the exposure and dissolution of host material V2O5 in the 

acidic electrolytic solution. As a result, the side reactions between V2O5 and electrolyte 

can be reduced.  
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Figure 40. The CV plots of A) ball-milled V2O5, ball-milled1V2O5-PPy and ball-

milled1V2O5-PANI at their 1st cycling, B) ball-milled V2O5 cathode and C) ball-

milled1V2O5-PANI at their 1st and 50th cycling, D) ball-milled1V2O5-PPy and the 

conducive polymer PPy cathode at 1st cycling with a scan rate of 0.1 mV·s-1. The 

galvanostatic charge / discharge curves of E) ball-milled V2O5 cathode and F) ball-

milled1V2O5-PANI cathode at 5 C at room temperature. 

 

CV measurements at a scanning rate of 1 mV·s-1 at 60°C were obtained to 

investigate the electrochemical performance at elevated temperatures by employing the 

three electrode system, the results are shown in Figure 41. Enormous differences in the 

plot of control sample in Figure 41 A) are exhibited with increased cycle numbers, this 

is caused by the serious corrosion of V2O5 cathode in an acidic aqueous electrolyte at a 
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high temperature.1To confirm this, the V2O5 electrodes1were respectively immersed in 

2M ZnSO4 electrolyte at room temperature and 60°C for 3 hours, the resulted 

electrolyte solutions are shown in Appendix 3. The electrolyte would be colorless and 

transparent at room temperature, however, after the V2O5 electrode is immersed for 3 

hours at 60°C, the electrolyte color turns yellow which indicates the dissolution of V2O5 

material is occurred under a high temperature condition. Thus, there are no redox peaks 

for capacity contribution of V2O5 sample at 60°C since the bare V2O5 has poor thermal 

stability. Nevertheless, in Figure 41 B and C, both polymer-modified samples exhibit 

at least two pairs of redox peaks even after 100 cycles which thanks to the protection 

of polymer coating layers and their good thermally stable properties at high 

temperatures. 
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Figure 41. CV plots of A) ball-milled V2O5, B) ball-milled1V2O5-PPy and C) ball-

milled1V2O5-PANI at their selected cycling (1st, 50th, 100th) with 1 mV·s-1 scanning 

rate at 60°C. 

 

3.4.2 Rate Capability 

Rate capabilities of different cathode materials in RAZBs at room temperature are 

exhibited in Figure 42 A). The discharge capacity of bare V2O5 drops rapidly as a 

current density jumps from 5 C to 10 C, however, both polymer-modified samples 

display similar capacity performance at increased current densities. This is based on the 

crucial protection of the compact coating layer. Regarding the rate capability of these 

three samples at 60°C (in Figure 42 B), as the dissolution of bare V2O5 is extremely 

serious at small current densities, the measured values of its specific discharge capacity 

are around 0 mAh·g-1 when reaching higher current densities. Even though, the 

polymer-coated samples exhibit superb rate performance at 60°C, and higher discharge 

capacities at different current densities are delivered by the ball-milled1V2O5-PPy 
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cathode in RAZBs. Furthermore, at temperatures ranging from 40 to 80°C, both 

polymer-coated samples reveal favorable performance at high current rates (Figure 42 

C and D) due to the excellent thermal stability of their coating components. 

 

 

Figure 42. Rate performance of ball-milled V2O5, ball-milled1V2O5-PPy and ball-

milled1V2O5-PANI samples at A) room temperature in coin cells (~ 1 cm2 in cell) and 

B) at 60°C in large batteries (~ 9 cm2 in cell) at different current densities. Rate 

capability of large batteries (~ 9 cm2 in cell) containing C) ball-milled1V2O5-PPy and 

D) ball-milled1V2O5-PANI cathodes at 40°C, 60°C and 80°C at different current 

densities (1 C, 2.5 C, 5 C and 10 C). 1 C corresponds to 200 mA·g-1. All of them have 

mass loading around 4.5 mg·cm-2. 
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3.4.3 Cyclic Performance 

Small coin batteries (~ 1 cm2 in cell) were conducted for cycling test at room 

temperature and the results are shown in Figure 43 A). Ball-milled1V2O5-PANI 

manifests an outstanding cyclic performance, the discharge capacity retention is 

approximate 92.7% after 350 cycles. However, this cathode material only has a specific 

discharge capacity of 125 mAh·g-1 at a current density of 5 C. As for PPy-coated and 

bare V2O5 samples, the initial specific discharge capacities of these two cathode 

materials in RAZBs are 195.7 mAh·g-1 and 211.3 mAh·g-1, respectively. A close initial 

capacity value is obtained which is much higher than that of PANI-coated cathode in 

RAZB. Because of a slightly thicker coating layer and a larger amount of PANI on 

V2O5 surface, which are observed in TEM images and TGA results, the decreased rate 

of Zn2+ diffusion between the electrode and electrolyte arises during the reaction. When 

the test running over 30 cycles, the discharge capacities of PPy-coated battery exceeds 

the control one. Subsequently, the observation of capacity fading on PPy-coated battery 

shows a slower rate (17.0% within 350 cycles) than that on the control battery (53.3% 

within 350 cycles), as the percentages of capacity loss are listed in Table 3. In addition, 

the PPy-coated sample shows only 0.6% differences in capacity retention to ball-milled 

V2O5-PANI at room temperature after 200 cycles. PPy-coated battery deliveries a much 

higher capacity of 175.5 mAh·g-1 at 5 C than PANI-coated battery since it possesses an 

ultrathin coating layer on V2O5 surface.  
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Figure 43. Galvanostatic cycling tests of ball-milled V2O5, ball-milled V2O5-PPy 

and ball-milled V2O5-PANI samples A) at room temperature in coin cells (~ 1 cm2 in 

cell), B) at 40°C, C) 60°C and D) 80°C in large batteries (~ 9 cm2 in cell) at a current 

density of 5 C over the voltage range of 0.2-1.6 V. All of them have mass loading 

around 4.5 mg·cm-2. 

 

cycle numbers 

samples 

 

100 

 

200 

 

350 

ball-milled V2O5 70.3 % 54.2 % 46.7 % 

ball-milled V2O5-PPy 96.6 % 90.5 % 83.0 % 

ball-milled V2O5-PANI 94.2 % 91.1 % 92.7 % 

Table 3. Capacity retention at a current density of 5 C at room temperature. 
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As refer to the galvanostatic cycling tests of large battery (~ 9 cm2 in cell) at 

increased temperatures from 40 to 80°C, quite similar performance of the polymer-

coated batteries are obtained in Figure 43 B) to D). Under high temperature conditions, 

dramatic capacity losses of ball-milled V2O5 sample are demonstrated in the above 

cyclic patterns. In Table 4, only 25 % of initial capacity is maintained at 60°C after 150 

cycles since the elevated temperature promotes V2O5 dissolution in the acidic aqueous 

electrolyte, this result is well matched to the CV measurements at 60°C (Figure 41 A). 

Nevertheless, the data shown in Appendix 4 and Appendix 5 suggest over 80 % capacity 

retention of these two polymer-coated samples within 150 cycles at 60°C are obtained. 

In particularly, the PPy-modified sample shows a much larger initial capacity (189.5 

mAh·g-1) than other samples under a same condition. According to the cyclic results in 

Figure 44 A) and B), the PPy-coated and PANI-coated samples maintain a1relatively 

stable state of discharge capacity as the1temperature gradually1increases. These 

compact coating layers assist to prevent bare V2O5 from detaching and dissolving in 

aqueous electrolyte at elevated temperatures. Moreover, within the first 50 cycles, 

apparent divergences of discharge capacities among these samples are observed at 

different temperatures. More notably, similar property enhancement is exhibited for 

both small (~ 1 cm2 in 0.98 mAh cell) and large (~ 9 cm2 in 9 mAh cell) batteries, this 

indicating an excellent1potential for scale-up production and manufacturing.  
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cycle numbers 

temperatures 

 

50 

 

100 

 

150 

40°C 78.8 % 55.1 % 26.7 % 

60°C 56.4 % 38.4 % 25.0 % 

80°C 0.3 % --- --- 

Table 4. Capacity retention of ball-milled V2O5 sample with a current density of 5 

C at different temperatures. 

 

 

Figure 44. Galvanostatic cycling tests of A) ball-milled V2O5-PPy and B) ball-

milled V2O5-PANI samples at 60°C in large batteries (~ 9 cm2 in cell) at a current 

density of 5 C over the voltage range of 0.2-1.6 V. All of them have mass loading 

around 4.5 mg·cm-2. 

 

3.4.4 Electrochemical Impedance Spectroscopy (EIS) 

Further investigations of the discharge capacities were illustrated by 

electrochemical impedance spectroscopy (EIS) measurement.1The impedances spectra 
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of V2O5 and polymer-modified batteries were carried out over the frequency range of 1 

MHz -10 mHz at different cycles. Figure 45 demonstrates the Nyquist plots of ball-

milled V2O5 and polymer-V2O5 electrodes at 50th cycling in fully discharged state. This 

Nyquist plot involves two contents, they are one semicircle locates at a high-frequency 

region and a Warburg straight line within intermediate frequency region. Generally in 

this battery system, the combination of electrode and electrolyte resistance represents 

equivalent serial resistance (Rs), while Rct stands by the resistance of electrons transfer 

from the electrode material to the ions in the liquid electrolyte [139]-[141]. The 

relationship among these elements is illustrated by an equivalent circuit which inserted 

in Figure 45. The intercepts on x-axis demonstrate the value of Rs, and the diameter of 

semicircle corresponds to Rct. Therefore, in Figure 45 A), ball-milled V2O5 and PPy-

coated battery have very close Rs in RAZBs, while the PPy-coated battery shows a 

much smaller semicircle whose possesses a lower Rct, the measured impedance results 

at ambient temperature are listed in Table 5. Herein, PPy-coated battery shows the 

lowest Rct among others, suggesting a shorter length for electron transportation would 

be offered, so that a higher discharge capacity is delivered by PPy-modified battery. 

This result is corresponded well to its galvanostatic cycling plot in Figure 43 A). In the 

cyclic curves, the existence of a big gap between PPy-coated and PANI-coated batteries 

is observed at their 50th discharge capacities.1However, the impedance measurement 

results1of these two1polymer-modified samples show very1similar values in Rct under 

ambient condition. The factor that causes PANI-coated battery have much lower 
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capacity is the larger Rs value (21.27 Ohm, as listed in Table 5) of pure conductive 

polymer-PANI as shown in Appendix 6. This1condition might due to the1over-coating, 

or the synthesized PANI is not entirely oxidized in emeraldine base (half-oxidized state) 

[82]. Besides, much larger slopes are obtained in the Warburg linear region for PPy and 

PANI batteries, which represent higher Zn ion diffusion rates and better capacity 

behaviors are existed in these two polymer-coated samples during the cycling. Figure 

45 B) and Appendix 7 are the impedance fitting results for samples under high 

temperature conditions. The noticeable difference between A) and B) in the Figure 45 

is the intercept of control sample along x-axis shifts to a larger value as temperatures 

increases. This phenomenon can be explained by the increase of its electrolyte 

resistance since partial V2O5 is dissolved into the aqueous electrolyte. As a result, a 

larger value of Rs in bare V2O5 battery is obtained. Surprisingly, less obvious changes 

in Rs of these two polymer-coated batteries are exhibited, which supports the polymer 

coating can conserve V2O5 from breaking down at high temperatures. As shown in 

Table 6, PANI-modified sample exhibited larger Rs and Rct values at 60°C, thus, a lower 

specific discharge capacity is displayed in its cycling test (in Figure 43 C). 

Consequently, a perfect explanation of the cycling performance can be illustrated by 

EIS results. Rct benefits PPy-coated batteries possess much higher specific discharge 

capacities than the control sample after 50 cycles, whereas larger Rs leads PANI 

batteries have much lower capacities than others. Also, the measured impedance of PPy 

at 60°C and 80°C show an enormous difference in Rct values, as found in Table 6 and 
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Appendix 8. The Rct value (12.39 Ohm) at 80°C is 6 times of the Rct (2.93 Ohm) at 

60°C, which corresponds to its capacity difference at 50th cycling in Figure 44 A). 

Overall, polymer-protected samples exhibited better cyclic performance because of the 

polymeric layer protection and their stable thermal properties, especially at high 

temperatures. 

 

 

Figure 45. Nyquist plots of three samples at their 50th cycle under A) room 

temperature, and B) 60°C. 

 

impedance 

samples 

 

Rs (Ohm) 

 

Rct (Ohm) 

ball-milled V2O5 10.19 3.69 

ball-milled V2O5-PPy 10.37 2.10 

ball-milled V2O5-PANI 39.26 2.84 

Conductive polymer-PPy 8.91 --- 

Conductive polymer-PANI 21.27 --- 

Table 5. EIS measurement results at room temperature. 
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impedance 

samples 

 

Rs (Ohm) 

 

Rct (Ohm) 

ball-milled V2O5 47.94 0.90 

ball-milled V2O5-PPy 24.32 2.93 

ball-milled V2O5-PANI 45.21 6.19 

Table 6. EIS measurement results at 60°C. 

 

3.5 Section Conclusions 

In this project, two different kinds of conductive monomers with the same input 

amounts (10 wt%) were used to form compact and ultrathin coating layers on the 

surface of bare V2O5 via in-situ polymerization method. The compositions of the 

polymer layers were analyzed by FTIR and XPS technologies. Base on XRD patterns, 

polymer modification would not affect the active material structure, while enhancing 

the material crystallinities. The TEM detected the thickness of PANI layer is twice as 

much for the PPy layer, and the mass percentages of polymer compositions in cathode 

materials were measured by TGA technique. Both polymer-coated RAZBs are revealed 

the enhanced rate capabilities and cycling stabilities. Compared the electrochemical 

results of PPy and PANI batteries, PPy battery displayed a higher capacity of 195.7 

mAh·g-1 at a current density of 5 C with a similar capacity loss (9.5%) at room 

temperature after 200 cycles (merely 0.05% per cycle). Even at 60°C, the PPy sample 

remained 80% of its initial discharge capacity (152 mAh·g-1) after 150 cycles. 

Therefore, PPy-coated electrode possesses an ultrathin coating layer on raw material, 
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presenting a better electrochemical performance under the ambient and high 

temperatures (40°C, 60°C and 80°C). Furthermore, the usage of surface coating method 

by conductive polymers provides a favorable approach to realize a thermally stable 

energy storage system, which can be considered as an alternative to lithium-ion 

batteries. 
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Chapter 4. Dual-ion Doped Vanadium Oxide as the Cathode 

Material in Rechargeable Aqueous Zinc-ion Batteries  

4.1 Synthesis of Dual-ion Inserted Vanadate Material 

Hydrothermal method is one of the most popular method for crystal growth. It is 

conducted under high temperature solution and vapor pressure, and utilized to 

synthesize the raw material into diverse structures, such as wires, rods, belts, sheets and 

spheres… A temperature gradient is maintained between the opposite ends of the 

growth chamber. The solute is dissolved at the end of hotter, while at the cooler end it 

would deposit on a seed crystal, growing the desired crystal. Through this method, the 

particle size of the new synthesized material is in nanoscale and a large specific surface 

area would be offered [61][62].  

More specifically, 0.366 g commercial V2O5 and 0.2 g polyethylene glycol 

(MW=4000) (PEG-4000, Scientific Polymer Products Inc.) are stirred vigorously in 60 

mL DI water for 15 min. After that, placing the suspension to sonicate at least 20 min. 

Subsequently, determined amounts of 1 M sodium hydroxide (NaOH, Sigma-Aldrich, 

≥ 97% purity) solution and 1 M zinc chloride (ZnCl2, Sigma-Aldrich, ≥ 97% purity) 

solution were separately added into the mixture by the molar ratio of Zn: Na=0.65:1. 

After mixing for 30 minutes, the solution was transferred to a 100 mL Teflon vessel, 

and sealed with an autoclave. Then, placing it into a high temperature oven followed 

by a reacted condition under 190 °C for 24 hours. 
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After the reaction was finished, using DI water and ethanol solution to wash the 

synthesized material for several times, finally dried this sample at 60°C in vacuum oven 

for at least 20 hours. The color of the obtained product was green, as shown in Figure 

46. Additionally, V2O5 nanobelts (Appendix 9) without doping metal ions as a control 

sample were produced under the same condition (190 °C for 24 hours). 

 

 

Figure 46. Experimental procedure of synthesizing dual-ion inserted vanadate 

material. 
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4.2 Cathode Fabrication and Battery Assembling 

The electrode consists of 70 wt% active material (ZNVO or V2O5 nanobelts), 20 

wt% GNP, and 10 wt% PVDF in NMP solution. The slurry is pasted on the PE film and 

dried at 60°C for 8 hours.  

Both CR2032 coin-type and T-cell (Swagelok) batteries were employed for 

electrochemical tests. The battery assembly is almost same for both types. The cathode 

is punched into small disks of 12 mm in diameter, with a mass loading of active material 

around 2.3 mg cm-2. RAZB is assembled by the cathode containing vanadium-based 

material, double-layered AGM (diameter: 12 mm, thickness: 0.5 mm) as the separator, 

and polished metal zinc (diameter: 12 mm, thickness: 0.2 mm) as the anode. Three 

kinds of electrolytes were employed in this system, they are 2M zinc sulfate (ZnSO4, 

Sigma-Aldrich, ≥98% purity), 2M sodium sulfate (Na2SO4, Sigma-Aldrich, ≥99% 

purity) and 2M ZnSO4 + 2M Na2SO4 aqueous electrolytes with pH value of 3.7  0.2. 

 

4.3 Material Characterizations 

4.3.1 Scanning Electron Microscopy (SEM) 

Scanning electron microscopy (SEM) was utilized to detect the morphology and 

nanostructure of metal-ion doped V2O5 (ZNVO). The ZNVO sample was obtained via 

a simple synthesis process (hydrothermal method), and the raw material (commercial 

V2O5) and its 1D nanobelts are clearly projected in SEM images (Figure 47). It should 
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be pointed out that these nanobelts have a tendency to assemble together and form 

bundles in tens of micrometers in length and 100-300 nm in width. In addition, the 

element composition can be roughly detected by energy-dispersive X-ray (EDX or EDS) 

technique. As shown in Figure 47 C), both Zn and Na elements are observed in the 

EDX pattern, which supports the successes of dual metal-ion insertion.  

 

 

Figure 47. SEM images of A) commercial V2O5 and B) synthesized ZNVO 

nanobelts with scale bar of 1 μm. C) EDX image of ZNVO sample. 
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4.3.2 Inductively Coupled Plasma Mass Spectrometry (ICP-MS) 

The quality of each element in ZNVO sample can be directly reported by the 

inductively coupled plasma mass spectrometry (ICP-MS) technique. Firstly, the origin 

sample ZNVO was dissolved in dilute nitric acid, and after ICP detection, the 

concentrations for all elements are obtained and listed in the below table (Table 7). 

Finally, the mole ratio of Zn : Na : V is calculated in 0.3 : 0.43 : 1, thus the conformed 

material composition is Zn0.3Na0.43V2O5. Moreover, ICP technique also can be 

employed to detect the charge / discharge product compositions of the positive 

electrode, so that the number of transfer electrons could be calculated by the 

corresponded capacities. This calculation will not include in this thesis but as the 

research future work. 

 

element Zn Na V 

mean (mg/L) 8.6592 4.4183 45.7571 

Table 7. Concentrations for each element in ZNVO sample.  

 

4.3.3 X-ray Photoelectron Spectroscopy (XPS) 

XPS is another effective way to verify the element composition. In Figure 48 A), 

C) and D), both Zn and Na elements can be observed in these XPS spectrums, which 

support the existence of Zn and Na elements in the sample. In addition, XPS technique 
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is also widely used to investigate the de- / intercalation of ions during charge / discharge 

process. The shift of peak locations corresponds to their different element valances. 

From the Figure 48 B), the V 2p scan of the pristine ZNVO sample is presented in 

energy levels of 2p3/2 and 2p1/2, all the peaks locate at these two regions are assigned to 

the valance of 5+. However, peaks of V would shift to other positions in its energy level, 

which making V present in different oxidation states (V3+, V4+ or V5+) during the 

reaction. Therefore, the usage of XPS would assist to study the mechanism of 

electrochemical reactions for the future work. 

 

 

Figure 48. XPS spectra of pristine ZNVO sample in A) survey spectrum, B) V 2p 

spectrum, C) Na 1s spectrum and D) Zn 2p spectrum.  
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4.4 Basic Electrochemical Performance 

4.4.1 Cyclic Performance 

The electrochemical performance of ZNVO as the positive electrode of RAZB 

were examined in assembled coin cells. In the contrast of the traditional alkane 

electrolyte presents fast capacity fading and poor coulombic efficiency, mildly acidic 

electrolyte prepared by 2M ZnSO4 in DI water (pH=3.7  0.2) were utilized in this 

battery system. In order to investigate the effects on battery capacities by metal-ion 

insertion, the comparisons between V2O5 and ZNVO nanobelt electrodes in RAZBs are 

conducted via galvanostatic cycling tests at a current density of 5 C. As shown in Figure 

49 A), the ZNVO cathode in 2M ZnSO4 electrolyte (red dot) deliveries a much higher 

initial discharge capacity (over 300 mAh·g-1) than that of V2O5 nanobelt electrode 

(black dot). However, the capacities for both electrodes fade dramatically in the 

following cycles, this might due to the dissolution of nanobelts and the growth of zinc 

dendrites on anode.  

To relieve this situation, additional metal ions (e.g. Na ions) possess lower 

reduction potential was supplied in the electrolytic solution. Surprisingly, as adding 

Na2SO4 into original 2M ZnSO4 electrolyte, the Zn // ZNVO battery exhibits an 

excellent cyclic performance and a discharge capacity of 190.2 mAh·g-1 is achieved at 

5 C (in Figure 49 B). This dual-ion system (contains both dual metal-ion doped positive 

electrode and dual-carriers electrolyte) presents a highly durable and extremely long 

cycle life with capacity retention approximate 89.1% even over 4000 cycles. Moreover, 
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this superb cycling performance is presented by the galvanostatic discharge curves of 

ZNVO cathode in dual-ion electrolyte (as shown in Figure 49 C). This is because Na 

ions work as dual carriers in the electrolyte, providing great support on reducing the 

dissolution of ZNVO nanobelts and suppressing zinc dendrites formation during the 

cycling process. The function of Na ions on inhibiting dendrite growth will be discussed 

in the followed Anode Characterization section. 

 

 

Figure 49. Cycling performance of A) V2O5 and ZNVO nanobelts electrodes in 2M 

ZnSO4 electrolyte and B) ZNVO electrode in 2M ZnSO4 electrolyte with and without 

Na2SO4 addition. C) The galvanostatic discharge curves of ZNVO cathode in dual-ion 

electrolyte. All tests are conducted in coin cells at a current density of 5 C in a voltage 

range of 0.2-1.6 V. All of them have mass loading around 2.3 mg·cm-2. 
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4.4.2 Rate Capability 

High rate capability is crucial to realize practical manufacturing of RAZBs in grid 

energy storage applications. Apart from the high capacity retention and long cycle life, 

the ZNVO electrode in 2M ZnSO4 + 2M Na2SO4 aqueous electrolyte (red line) exhibits 

a superior rate performance as shown in Figure 50. In this dual-ion system, ZNVO 

electrode offers average discharge capacities of 291.6, 260.3, 222.3, 191.3, 172.8 and 

159.6 mAh·g-1 at current densities of 0.5, 1, 2.5, 5, 7.5 and 10 C, respectively. After the 

cycling reaches high current density, an average discharge capacity of 308.6 mAh·g-1 

can be recovered as its current density returns to 0.5 C. As a result, over 100% of the 

capacity retention is achieved which is much higher than that of ZNVO electrode in 2M 

ZnSO4 electrolyte (black line). This result implies the excellent rate capability of ZNVO 

electrode accompanied by 2M ZnSO4 + 2M Na2SO4 aqueous electrolyte. 

 

 

Figure 50. Rate performance of ZNVO electrode in different electrolytes at various 

current densities, where 1C corresponds to 200 mA·g-1.  
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4.4.3 Cyclic Voltammetry (CV) 

Figure 51 A) and B) present the initial three cycles of CV plots for ZNVO electrode 

in different electrolytes at a scan rate of 0.1 mV·s-1 with the potential window of 0.2-

1.6 V vs. Zn2+ / Zn. Both of them obviously present three oxidation peaks and two 

reduction peaks. For the CV profile of ZNVO electrode in 2M ZnSO4 + 2M Na2SO4 

electrolyte, the sweep of the first cycle is slightly different from the followed two cycles 

in terms of the peak locations (Figure 51 B). The presence of peak shifting in first cycle 

is due to the activation process of the fresh electrode, which corresponds to a quick 

capacity drop between 1st and 2nd cycle in its cycling plot (Figure 49 B). Interestingly, 

after comparing A) and B) in Figure 51, two reduction peaks and the first two oxidation 

peaks are hold similar positions in their first three cycles, while the third oxidation peak 

shifts from 1.38 V to 1.45 V with the addition of Na ions in electrolyte. Nevertheless, 

the third peak in anodic sweeping is disappeared with increased cycle number, as shown 

in Figure 51 C) and D). Therefore, this oxidation peak locates at 1.38 V or 1.45 V 

presents a nonreversible process, as Na ions come from ZNVO only extract from the 

raw lattice into the aqueous electrolyte without a back insertion. It is notable that, a pair 

of redox peaks locate at 1.1 / 0.8 V is enhanced in this dual-ion electrolyte as the cycling 

increased. However, the response currents of the same redox peaks in 2M ZnSO4 

electrolyte battery exhibit dramatic reduction from the 50th cycles to 500th cycles, 

indicating a decreased capacity of this battery since the integrated areas of CV curves 

are lowered down. By contrast, the areas of CV plots in Figure 51 D) is maintained 
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stable within 500 cycles. Thus, the outstanding reversibility and stability of this dual-

ion battery system can be demonstrated, which is perfectly matched with the outcome 

of high capacity retention obtained in cycling tests. 

 

 

Figure 51. Cyclic voltammograms of ZNVO electrode in A) 2M ZnSO4 and B) 2M 

ZnSO4 + 2M Na2SO4 electrolyte at a scan rate of 0.1 mV·s-1. Cyclic voltammograms of 

ZNVO electrode in C) 2M ZnSO4 and D) 2M ZnSO4 + 2M Na2SO4 electrolyte at a scan 

rate of 0.5 mV·s-1 at selected cycle numbers. 
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4.5 Anode Characterizations 

As mentioned in above section 1.5, adding Na ions into electrolyte assists to inhibit 

zinc dendrite growth on anode surface during charging process. Since the Na+ (-2.71 V) 

has much lower reduction potential than Zn2+ (-0.76 V), the coming Zn2+ can be repelled 

to distribute on adjacent substrate according to the electrostatic shield mechanism [106]. 

To find out an appropriate concentration of sodium salts (Na2SO4) in an electrolytic 

solution. Gradient increased amounts of Na2SO4 (0.5, 1, 1.5 and 2M) were separately 

added in 2M ZnSO4 solution to prepare electrolytes. After comparing the testing results, 

Na2SO4 at a concentration of 2M in electrolytes exhibited the best electrochemical 

performance of batteries. Herein, we will show the positive works on the anode by this 

dual-ion aqueous electrolyte. 

From Figure 52 A) to C), in 2M ZnSO4 electrolyte, large amounts of harsh and 

vertical zinc dendrites are grown on the anode surface with increased cycle numbers. 

However, in an electrolyte with rich Na ions (dual-ion electrolyte), the surface of 

negative electrode is uniform and smooth (in Figure 52 D to F). Even after 500 cycles 

(Appendix 10), very fewer amounts of zinc dendrites are formed in the lateral level 

which provides a flat morphology on the anode surface. This indicates the important 

effects of Na ions on suppressing dendrite formation of anodes. 
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Figure 52. SEM images of anode surface in different electrolytes at their selected 

cycles at fully charged state. Scale bars, 2 μm. 

 

4.6 Advanced Characterizations 

To investigate the energy storage mechanism of dual-ion inserted electrode in these 

aqueous batteries during cycling, advanced characterizations such as XRD, FTIR and 

CV need to be conducted. 

4.6.1 Cyclic Voltammetry (CV) 

The reversible extraction / insertion of ions during charge / discharge process can 

be established by CV measurements. Because of the activation behavior on the first 

cycle for the positive electrode (as discussed in section 4.4.3 Cyclic Voltammetry (CV)), 

the investigations of ion de- / intercalation and its corresponded redox peaks will be 

analyzed from the second cycle. 
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Two pairs of redox peaks shown in Figure 51 B) are commonly considered as the 

multiple-steps for Zn ion extraction and insertion [105][107]. However, in this study, 

we wonder if the Na ions in the electrolyte are involved in the reaction or not. Therefore, 

CV plots of ZNVO electrode in different electrolytes (2M ZnSO4 + 2M Na2SO4 and 

2M Na2SO4) are conducted, as shown in Figure 53 A). In 2M Na2SO4 electrolyte, only 

one reduction peak locates at 0.8 V is observed, after comparing with ZNVO electrode 

in 2M ZnSO4 + 2M Na2SO4 electrolyte, the disappeared reduction peak at 0.55 V should 

correspond to the insertion of Zn ions. This is because as Zn ions extract from ZNVO 

electrode into electrolyte during the charge process, the amount of Zn ions in electrolyte 

are not enough to assist the extracted Zn ions to complete the insertion process during 

charging process. However, we could not confirm the rest pair of redox peaks at 1.0 / 

0.8 V presents Na ions de- / intercalation. Even though the existence of Zn ions with an 

extremely small amount in electrolyte (these Zn ions only come from electrode 

material), they may involve in the reaction. Take this into consideration, we fabricate 

another electrode material NVO by inserting with single metal ion (Na ion), then 

conducting the CV measurements of this electrode in 2M Na2SO4 electrolyte. It is noted 

that, zinc anode is replaced by a graphite rod which is used as the counter electrode in 

the T-cell system. This action can remove the Zn ions in the battery system, and get rid 

of the effects of Zn ions on the peaks shown in CV curves.  

In Figure 53 B), the NVO electrode shows one reduction peak (around 0.8 V) that 

is close to the position of corresponded peak for ZNVO electrode, and the curves of 
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two oxidation peaks at 1.0 V and 1.5 V are perfectly overlapped with ZNVO electrode. 

More importantly, the oxidation peak at 0.56 V is vanished in the CV profile of NVO 

electrode, illustrating the extraction of Zn ions has not occurred in NVO system. Thus, 

the redox peaks at 0.72 / 0.55 V represent the extraction / insertion of Zn ions. Although 

the redox peaks at 1.0 / 0.8 V stand for the behavior of Na ions during cycling, we still 

could not verify that no reactions for Zn ions occur at the same voltages since the 

response current is reduced at 0.8 V. Therefore, we demonstrate that both Zn and Na 

ions are involved in the chemical reactions of this dual-ion battery system (Zn / 2M 

ZnSO4 + 2M Na2SO4 / ZNVO): the redox peaks at 0.72 / 0.55 V manifest the reversible 

pathway of Zn ions extract / insert from / into V2O5 interlayers; another pair at 1.0 / 0.8 

V is dominated by Na ions de- / intercalation, but may contain the chemical reactions 

of Zn ions. 

 

 

Figure 53. CV plots of A) ZNVO electrode in different electrolytes and B) NVO 

and ZNVO in 2M Na2SO4 electrolyte at their 2nd cycling at a scan rate of 0.1 mV·s-1. 
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4.6.2 X-Ray Diffraction (XRD) 

For further understanding the energy storage mechanism of Zn // ZNVO battery 

with 2M ZnSO4 + 2M Na2SO4 electrolyte, various ex situ tests, including XRD and 

FTIR were utilized to analyze the positive electrode at the selected states of 2nd charge 

/ discharge cycling. In this section, the reversible ions (Zn2+ and Na+) de- / intercalation 

process between V2O5 lattice and electrolyte would be investigated by ex situ XRD 

patterns. Two regions in Figure 54 A) will be discussed here. 

In region ① (Figure 54 B), the reflection (111) of sodium vanadium oxide (NVO) 

at 26.4 shifts to lower 2 positions as discharging from 1.6 to 0.2 V. In this process, 

the space of V2O5 interlayer is expanded since the Na ions are inserted into the V2O5 

structure. Subsequently, the reflection (111) gradually shifts back as charging to 1.6 V, 

indicating the extraction process of Na ions from V2O5 interlayers during the charge 

process. In addition, the zinc vanadium oxide (ZVO) also display a reversible de- / 

intercalation of Zn ions during the charge / discharge process, as marked in blue dot 

line. Interestingly, zinc sulfate hydroxide hydrate (Zn4SO4(OH)6 · 5H2O, PDF# 39-

0688) displayed in region ② is generated during the discharging process and gradually 

disappeared after charging from 0.2 to 1.6 V (as shown in Figure 54 C). This illustrates 

a reversible and successive decomposition / formation of Zn4SO4(OH)6 · 5H2O on the 

positive electrode during charge / discharge process. Therefore, the reversible behavior 

of ions reveals good structural stability of ZNVO electrode in dual-ion electrolyte 

during the charge and discharge processes. 
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Figure 54. Ex situ XRD patterns of ZNVO electrode in 2M ZnSO4 + 2M Na2SO4 

electrolyte at determined voltages at their 2nd cycle. 

 

4.6.3 Fourier Transformed Infra-Red Spectroscopy (FTIR) 

Another ex situ technique was also used to verify the mechanism of Zn4SO4(OH)6 · 

5H2O compound on positive electrode during cycling. As illustrated in Figure 55, the 

absorption band locates at 1125 cm-1 is assigned to SO4
2− in Zn4SO4(OH)6 · 5H2O [105]. 

The intensity of this band is gradually enhanced as discharging from 0.86 to 0.2 V, 

while in the charge process, it becomes much weaker at its fully charged state. 
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Therefore, the reversible formation and decomposition of Zn4SO4(OH)6 · 5H2O on 

ZNVO electrode can be proved by FTIR spectra. 

 

 

Figure 55. FTIR spectra of ZNVO electrode in 2M ZnSO4 + 2M Na2SO4 electrolyte 

at determined voltages at their 2nd cycle. 

 

4.7 Section Conclusions 

In this project, a new kind of vanadate cathode material with dual metal-ion 

insertions was successfully synthesized via hydrothermal method. It was produced as 

long nanobelts in an average width of 200 nm, and the composition of this material 

(Zn0.3Na0.43V2O5) was detected by ICP-MS and XPS techniques. Surprisingly, this Zn 

// ZNVO battery provides excellent cyclic performance (~ 89% capacity retention over 

4000 cycles) and high rate capabilities in an aqueous electrolyte with additional sodium 
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salt, and a specific discharge capacity of 190 mAh·g-1 at a current density of 5 C is 

delivered by this dual-ion system. The dual-ion electrolytic solution not only assists to 

suppress zinc dendrites growth on anode, but also reduces the dissolution of cathode 

material in the aqueous environment. Furthermore, the energy storage mechanism of 

this dual-ion system was investigated by XRD, FTIR and CV tests. The reversible and 

successive de- / intercalation processes of ions (Na+ and Zn2+) during cycling can 

perfectly explain the superb electrochemical performances of ZNVO electrode in 

aqueous batteries. Therefore, this dual-ion system (contains both dual metal-ion doped 

positive electrode and dual-ion electrolyte) holds a silver hope on realizing the practical 

manufacturing of RAZBs, and pave a way for potential electric applications in grid 

energy storage. 
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Chapter 5. Summary of Thesis and Recommendations for 

Future Work 

Rechargeable aqueous zinc battery (RAZB) represents a promising energy storage 

system for its high energy density, high safety and low-cost. Among available cathode 

materials for RAZBs, V2O5 is being considered thanks to its high specific discharge 

capacity, and the ease of Zn intake / extraction due to layered crystalline structure. 

However, this turned out to be a false hope because V2O5 had very poor cycling 

performance and cannot be applied as power sources in electric products. The cause has 

been generally agreed to be the V2O5 dissolution into the aqueous electrolyte, but the 

solution has evaded the community. Therefore, to stabilize its layered structure and 

decrease the solubility of V2O5 in aqueous electrolyte systems, two effective strategies 

involving surface coating and doping metal ions on V2O5 were optimized in this project. 

In the first sub-project, conductive polymers (PPy and PANI) were used to form 

compact and ultrathin coating layers on the surface of ball-milled V2O5 to reduce the 

dissolution of positive electrode in aqueous environment. Both polymer-modified 

electrodes offered significant improvements on the electrochemical performance of 

RAZBs. Specifically, at room temperature, PPy battery delivered a higher discharge 

capacity of 195.7 mAh·g-1 at a current density of 5 C with only 9.5% capacity loss after 

200 cycles. Even under a high temperature condition (60°C), 80% of capacity retention 

after 150 cycles can be obtained by coating protection. Therefore, polymer-coated 

electrodes offered superior electrochemical performance under both the ambient and 
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high temperatures (40°C, 60°C and 80°C), providing a promising approach to realize a 

thermally stable energy storage system. 

Another sub-project introduced a new type of vanadium-based material with dual-

ion intercalation (ZNVO) as the cathode in RAZBs. Assisting with a dual-carrier 

electrolyte (2M ZnSO4 + 2M Na2SO4), this dual-ion battery offered a long-term cycle 

life (~ 89% capacity retention after 4000 cycles) and dendrite-free system. Moreover, 

the reversible ion de- / intercalation was verified by the tests of XRD, FTIR and CV, 

offering strong supports on the superb electrochemical performance of this dual-ion 

system. 

Based on the experiences and findings of this project, there are several 

recommendations for future work in the field of Zn / 2M ZnSO4 + 2M Na2SO4 / ZNVO 

studies: 

Firstly, the number of electron transfer during the reaction could be found. Once 

the cathode compositions after charge / discharge were obtained by ICP tests, the 

electron numbers can be calculated based on their corresponded specific capacities. 

Secondly, the participation of H+ in the reaction need to be investigated by solid-

state H1-NMR. After that, the overall chemical reaction of ZNVO in 2M ZnSO4 + 2M 

Na2SO4 electrolyte would be completed. 

Lastly, the type of electrochemical process needs to be explored by CV tests at high 

scan rates (1-100 mV·s-1). Based on the equation log(i) = b log(v) + log(a) (derived 

from i = avb, where i is the peak current, v represents the scan rate), the slope value of 
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b can be found where b is often in a range of 0.5-1. If b closes to 0.5, this reaction is 

controlled by ion-diffusion; if b reaches to 1, surface-controlled reaction which also 

refers to the pseudocapacitance would dominate the charge / discharge process.  
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Appendices 

 

Appendix 1. A) External view of the T-cell Swagelok, B) schematic of the T-cell 

Swagelok 

 

 

Appendix 2. A) coin cell, B) large battery and the internal composition of C) coin 

cell and D) large battery. 
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Appendix 3. Optical image of V2O5 electrode in 2M ZnSO4 electrolyte at room 

temperature and 60°C for 3 hours. 

 

cycle numbers 

temperatures 

 

50 

 

100 

 

150 

40°C 96.0 % 85.4 % 82.3 % 

60°C 99.8 % 88.4 % 80.1 % 

80°C 88.6 % 83.2 % 70.4 % 

Appendix 4. Capacity retention of ball-milled V2O5-PPy sample with a current 

density of 5 C at different temperatures. 

 

cycle numbers 

temperatures 

 

50 

 

100 

 

150 

40°C 102.2 % 101.5 % 105.4 % 

60°C 99.3 % 105.7 % 84.2 % 

80°C 92.3 % 90.8 % 90.1 % 
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Appendix 5. Capacity retention of ball-milled V2O5-PANI sample with a current 

density of 5 C at different temperatures. 

 

 

Appendix 6. Nyquist plots of conductive polymer-PPy and PANI at their 50th cycle 

at room temperature. 

 

 

Appendix 7. Nyquist plots of ball-milled V2O5-PPy and ball-milled V2O5-PANI 

samples at their 50th cycle at 80°C. 
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impedance 

samples 

 

Rs (Ohm) 

 

Rct (Ohm) 

ball-milled V2O5-PPy 21.93 12.39 

ball-milled V2O5-PANI 32.12 25.16 

Appendix 8. EIS measurement results at 80°C. 

 

 

Appendix 9. SEM image of V2O5 nanobelt with the average width of 100-200 nm. 

The scale bar is 1 μm.  

 

 

Appendix 10. SEM image of anode surface after 500 cycles at a fully charged state 

in 2M ZnSO4 + 2M Na2SO4 electrolyte. 


