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Abstract 

This paper introduces the development of empirical predictive models and detection 

methods that are incorporated into a water detection framework for an industrial steelmaking 

electric arc furnace (EAF). The predictive models investigated in this work are designed based 

on different techniques such as statistical fingerprinting, artificial neural network (ANN), and 

multiway projection to latent structures (MPLS). Robustness issues related to each method are 

discussed and performance comparisons have been done for the presented techniques. 

Furthermore, model fusion theory has been applied to improve the prediction accuracy of the 

developed models’ defined output- the value of off-gas water vapor-  which is known as one the 

most vital variables to guarantee a safe and reliable operation. Finally based on the proposed 

predictive models, a water leak detection methodology is introduced and implemented on an 

industrial AC EAF and a comprehensive discussion has been done to evaluate the performance 

                                                           
1
  Corresponding Author (aelkamel@uwaterloo.ca). 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2 

 

of the developed algorithm.  To this aim, two fault detection methods have been applied. Fault 

detection method #1 has been designed using statistical fingerprinting technique, while the other 

one has been developed based on machine learning-based models and also fusion of the models’ 

outputs.  

Keywords: EAF water detection framework, Fingerprinting, Artificial Neural Network (ANN), 

Multiway Projection to Latent Structures (MPLS), Model Fusion, Fault Detection 

1 Introduction 

Electric Arc Furnaces (EAFs) are used in the steel industry to produce liquid steel. The 

feed iron material is melted using electrical and chemical energy in the furnace, and the molten 

steel chemistry is adjusted to obtain the desired grade specifications. The electric arc furnace is a 

batch process producing batches of liquid steel known as heats. The electrical energy is added to 

the furnace through electrodes in the form of electric arc, and the chemical energy is added using 

a fuel source such as methane, oxygen, and carbon. Typical heats in electric arc furnaces vary 

greatly because of the different operating conditions. However; most of modern operations aim 

for a heat cycle less than one hour with electric energy consumption in the range of 380-400 

kWh/tonne (Jones et al., 2005). 

The electric arc furnace heat sequence consists of the following steps: grade selection, bucket 

preparation, furnace charging, melting, refining, de-slagging, tapping, and furnace turn-around.   

The heat steps are discussed in more details by (Fruehan, 1998) and (Jones et al, 2005). The 

primary raw material used for EAF steelmaking is scrap.  Scrap varies in chemical composition 

and it can contain contaminants such as copper that are undesirable for steelmaking. Steelmaking 
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facilities that produce higher quality products typically use cleaner iron raw material such as 

Direct Reduction Iron (DRI), which contains low contaminants. 

 The first step in a heat is to select the steel grade to be produced; next the scrap quality in 

the bucket is prepared based on the chosen steel grade to ensure that the grade specifications are 

met at the end of the heat. The second step is to prepare the scrap bucket. The operator layers the 

scrap in the bucket according to the size and density of the scrap so that the molten steel is 

formed faster in the furnace. Moreover, lime and carbon can be added to the bucket with the 

scrap, or they can be injected into the furnace during the heat. The third step is charging the 

buckets into the furnace, where the roof and the electrode are raised and moved to the sides to 

allow the crane to charge the scrap bucket into the furnace. Once the operator finishes charging 

the scrap, the roof and the electrodes swing back and are lowered to start the electrical arc. If the 

steelmaking facility uses DRI as iron raw material, then typically DRI is continuously fed 

through the roof of the furnace during the heat. Modern scrap furnaces aim to operate with two 

or three charge buckets of scrap, because charging is a dead-time where the furnace is not 

melting, and also there are radiation losses every time the roof opens. 

The fourth step is melting which is the core in EAF operations. Modern EAF designs 

maximize the melting efficiency of the furnace. Melting is accomplished by supplying electrical 

energy and chemical energy to the furnace. The electrodes are used in the furnace to supply the 

electrical energy, where in the beginning of the heat, an intermediate voltage tap is used to allow 

the electrodes to bore into the scrap. Once enough liquid is formed, then a high voltage tap (Long 

arc) is selected. A long arc allows more energy to be transferred to the scrap through the 

radiation of the arc than a short arc. Moreover, at the start of melting the arc is unstable.  

However; once a molten bath forms, the arc becomes stable and the energy input to the steel bath 
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increases. The charging process is repeated once enough scrap has been melted to accommodate 

the subsequent bucket. Once the final scrap bucket is charged and melted, the formation of a 

foamy slag is critical to bury the arc and protect the furnace sidewalls. The foamy slag is formed 

by injecting carbon and oxygen which forms carbon monoxide bubbles in the slag. Moreover, 

once all scrap is melted and flat bath conditions are reached, a shorter electrical arc is used to 

minimize exposing the furnace sidewalls to the arc radiations. 

 The refining phase of the heat starts when flat bath conditions are reached. The operator’s 

first objective is to inject oxygen to lower bath carbon, aluminum, silicon, and manganese 

contents to the desired level for tapping, where oxygen reacts with these elements to form 

metallic oxides that float out of the steel bath and into the slag layer. The operator’s second 

objective during refining is to increase bath temperature using electrical energy to the desired 

tapping temperature. The de-slagging phase is then carried out to remove the slag that 

accumulated in the furnace during refining. Once the desired steel grade composition and 

temperature are achieved in the furnace, tapping is carried out which is to discharge the steel into 

a ladle to be transferred to the next operation. The last step of the heat is the furnace turn-around 

which is the period that follows tapping during which the operator inspects the furnace interior 

for any refractory damages or water leaks from the panels. 

 In modern EAFs, the cooling water system is an essential part of the furnace used to cool 

the roof and the sidewall panels. Water leaks typically occur from those panels. Usually, the 

water flows at a continuous rate of approximately 165-185 liters/minute/m
2 

of cooled area. The 

total cooling water flowrate requirement for a typical EAF ranges between 16,650 and 23,850 

liters/ minute (Quiroga, 2013). Due to the high flowrate of water in the furnace panels, a small 

leak in water cooled panels can quickly result in significant amounts of water in the furnace. 
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Furthermore, if this water leaks into the EAF and comes in contact with molten steel, there is the 

potential for a severe explosion. Consequently, water leaks in the EAF present a serious and 

dangerous situation. Personnel safety, damaged equipment, and production losses are possible 

effects of water leaks in the furnace. 

Generally, water leak explosions result in fatalities.  The frequency of water leak 

accidents may vary from once every few months to once every few years. Reasons for the 

frequency difference include safety standards implemented in the melt-shop and technologies 

such as flow meters installed on the water cooled panels. The benefits for accurately detecting 

water leaks can minimize the risk of such furnace explosions. 

During the last decade, there have been significant advances in the EAF technology that 

have focused on increasing productivity leading to lower cost steel production. However, due to 

the severe consequences of furnace explosions caused by water leaks inside the furnace in the 

recent years, there has been a growing demand for safety issues. 

Currently, EAF operators use the flow of water inside the EAF water cooled panels to 

provide an indication if there is water leak from the panels inside the furnace.  However, the 

measurement noise limits its effectiveness to larger water leaks in the range of 90-180 liters/min 

(Zuliani et al., 2014). In addition, there are off-gas analyzer system suppliers  that have 

developed systems to measure the off-gas water vapor (e.g. Grieshaber, K. and F. Martinez, 

2015), and by monitoring the changes due to unexpected additional water sources, the leaks can 

be detected. However, due to the high variability in the EAF process, it may be insufficient to 

use only the measured variables to detect the water leak occurrence.  
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Based on the above explanations, since water leaks have historically posed serious safety 

concerns for every steel plant, there is industrial and academic needs to explore for effective 

water leak detection methodologies in EAFs. So, to respond to this crucial issue, in this paper a 

framework has been developed to distinguish between normal and abnormal (Faulty) operational 

condition in an industrial EAF. It has been also demonstrated in the following sections that by 

applying model fusion technique, the estimation quality of off-gas water vapor is much better 

compared with just using a single machine learning-based model as a humidity predictor.  

2 Fault Detection Approaches 

In General, fault detection methods can be classified as model-based, and data-driven 

techniques. Model-based methods rely on fundamental understanding of the process where data-

driven approaches rely on historical data. Model-based fault detection methods have been around 

for many years but their contribution to the industrial practice is limited due to the cost and time 

required to develop accurate models for complex industrial processes. On the other hand, the 

data-driven approaches generally require less time and lower cost to be developed. Empirical 

methods commonly used for data-driven fault detection approaches include artificial neural 

network (Chetouani, 2008), multiway principal component analysis (Nomikos and MacGregor 

(1994)), and Bayesian approach (Yu, 2012). Furthermore, Freeman et al. (2013) compared and 

applied both approaches to a small unmanned aerial vehicles (UAV) platform.  

MacGregor and Nomikos (1994) developed a multivariate statistical method for 

monitoring batch processes where the only required information was good historical batches. 

The applied empirical method was a multiway principal component analysis (MPCA). MPCA 

was used to extract the information from the multivariate dimensions and to project them onto 

lower-dimensional space, defined by principal components. The method used by the authors to 
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calculate the principal component was the NIPALS algorithm. Moreover, due to the three-

dimensional array nature of the batch data (batches, measurements, and time), the authors 

unfolded the three-dimensional array to a two-dimensional array, and then they built the MPCA 

model. The authors determined that three principal components were necessary to precisely 

describe the normal operation of a batch. Monitoring plots generated by the MPCA method were 

the score plots and loading plots for the latent variables of the MPCA model. These plots 

included control limits corresponding to 95% and 99% confidence regions, calculated based on 

the reference heats. The MPCA monitoring plots were used online to monitor the progress of a 

new batch in real-time. The MPCA method was based on the concept that future behavior of a 

process was monitored by comparing it against the past in which the process was performing 

well. Two fundamental assumptions were necessary for the MPCA method to work properly. 

The first assumption was: “The reference database is representative of the process operation, and 

hence if something changes in the process, then a new MPCA model must be built on the new 

batches. The second assumption was: “The fault event must be observable from the collected 

measurements in order to be detected by the MPCA model.  

Chetouani (2008) developed an artificial neural network (ANN) approach for real-time 

detection of faults. This approach combined ANN and CUSUM statistical test for fault detection. 

The developed ANN model was a one layer perceptron network, and the process used in that 

work was a reactor-exchanger setup. The training algorithm used to develop the ANN model was 

the back-propagation training function for feed-forward networks using momentum and adaptive 

learning technique. The author utilized the CUSUM statistical test for fault detection, where that 

test was performed as a cumulative sum test.  The jumps in the mean occur at unknown time 
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instants in the designed experiment. The considered reactor-exchanger to test this method was a 

glass-jacketed reactor with a tangential input for heat transfer fluid.  

Sheibat-Othman et al. (2014) proposed a hybrid data/model-based approach for fault 

detection for chemical reactions. Two stirred tank jacketed chemical reactors were used. The 

reactor was equipped with temperature probes and the feed mixture was put on a balance to 

calculate the feed flowrate. Temperature sensor faults and actuator faults (capacity for heating 

and cooling) were used to investigate the proposed hybrid methodology. The process model 

developed for the system was a heat balance of a semi-continuous stirred tank reactor and its 

jacket. The authors used two class support vectors machine (SVM) for the data driven model. 

Furthermore, it was found that it would require a great number of data to train the SVM model, 

because the reactions in the reactor were highly nonlinear. Therefore, a simplified process model 

was considered as a starting point to develop an observer for fault isolation. In addition, 

information from the SVM model was used to correct the simplified process model when no 

faults were detected. It was also found out that the single SVM model was sufficient to detect 

faults, if the process dynamics were totally linear. 

Freeman et al. (2013) designed and applied a model-based residual generation and data 

driven fault detection approaches to a small unmanned aerial vehicles (UAV) platform. The 

electric powered airplane had a 1.3 meters wingspan and a weight of 1.3 kg. The model based 

fault detection strategy used linear filtering methods to reject faults. Raw flight data was used to 

develop the data driven algorithm without knowledge of system dynamics. An H∞ filter was 

constructed to detect aileron faults. A data driven detector was developed by processing the 

control error signals logged from the flight data and consequently creating an error score related 

to the probability of a fault. Both approaches successfully detected different aileron faults during 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

9 

 

maneuvers and in the presence of environmental disturbances. However, the performance of the 

data driven detector suffered in the linear simulations with high model uncertainty and was not 

always successful to detect all the existing faults. In that case, the system knowledge which was 

built in the model-based framework allowed for better performance. 

 

3 Statistical Fingerprinting 

3.1 Statistical Fingerprinting Method 

There are few EAF operations where the process is well controlled, and hence there is a 

minimal variability in the process. In these operations, scrap quality does not vary significantly, 

the operator uses the same chemical program, and there is limited weather variation. These 

conditions allow for the off-gas water vapor to behave similarly from heat to heat. Consequently, 

in these EAF operations, the off-gas measurement of water vapor can provide adequate 

indication and metrics to distinguish between normal and abnormal levels of water vapor in the 

EAF. Although the off-gas water vapor concentration varies throughout the melting and refining 

phases of the heat, the statistical fingerprinting method has been developed to characterize the 

off-gas water vapor over a number of heats with similar operating conditions such as number of 

charges, scrap recipe, and chemical program (Zuliani et al., 2014). For example, Figure 1 shows 

the typical off-gas water vapor trend for the first melting charge on a kWh basis for several heats 

with similar operating conditions. Figure 1 also shows a baseline average curve for the off-gas 

water vapor. The heat time shown in Figure 1 is kWh which is a typical energy clock used by 

melt-shops to pace the heat. 

The first step in this method is to start with a set of heats with similar operating 

conditions. This set is used as a training set to calculate the fingerprints thresholds, which is used 
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on future heats to detect for potential water leaks. The second step in this method is to manually 

divide the charge time into bins of similar dynamics. This step enables the off-gas water vapor to 

be characterized across multiple heats in a single bin. The third step is to compute a fingerprint 

threshold value in each bin that represents an upper limit. The used statistic indices in the 

fingerprinting method are the median and median absolute deviation (MAD). The median is a 

measure of sample location and is computed by sorting the data and taking the middle value. The 

median is a robust estimator of the sample location and MAD is a robust measure of variation 

(Dunn, 2014). However, the median and the MAD become unbounded if half of the data is 

replaced with outliers. MAD is computed by Equation 1: 

                MAD (xi) = c × median (abs (xi – median (xi)))                                     (1) 

                                                 c = 1.4826  

The constant c makes the MAD consistent with the standard deviation when the observations xi 

are normally distributed. The fingerprint threshold is calculated using Equation 2: 

                      Fingerprint Upper Limit = Median + 2 × MAD                                          (2) 

The fingerprint thresholds provide the basis to detect abnormal water vapor by comparing 

the measured water vapor of the current heat to the fingerprint threshold value in each bin. 

Specifically, if the value of the measured water vapor of the current heat is higher than the 

fingerprint threshold value, then there is a statistical condition which is equivalent to existence of 

abnormal water vapor in the EAF. Figure 1 depicts an example for a heat (in red color) with 

water vapor significantly above the fingerprint and also for an extended time. It can be easily 

observed that all other curves (in different colors) are below the fingerprint threshold value. As a 

result, other heats are assumed to be in normal condition, without any abnormality on water 

vapor in EAF.  
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Figure 1: Baseline and Fingerprint threshold values for normal heats, and a heat with 

abnormal water vapor (Other curves are representatives for normal conditions in EAF). 

3.2 Statistical Fingerprinting Results 

Figure 2 and Figure 3 show the off-gas water vapor for Charge 1 and Charge 2 for the 

industrial EAF, respectively. The maximum range of variability for the off-gas water vapor is 4% 

for both charges. Such variability range is typically not wide, and therefore the fingerprinting 

method can be tested on this furnace. Moreover, the testing heats that are used to validate the 

model are two trial heats in which water is intentionally injected into the furnace. Figure 2 shows 

the off-gas water vapor, the bins, and the threshold limits for Charge 1. About 132 samples of 

off-gas H2O (%) have been collected from the field in different energy clocks (kWh/Charged 

Ton). The two bins shown in Figure 2 are determined manually, where in each bin the water 

vapor dynamic is similar between the heats. The fingerprint threshold value for each bin is 

computed using Equations 1 and 2. In Figure 2, trial 1 heat (in red color) demonstrates a heat 

where water is intentionally injected into the furnace by increasing the flow rate of electrode 

spray by approximately 60 liters per minute from the beginning until the end of melting process. 

The red curve in Figure 2 is above the fingerprint threshold during the entire charge, and hence 

in this case this method is capable of detecting the additional injected water. Trial 2 heat (in 
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purple color) shows the off-gas water vapor for a heat where water is intentionally injected by 

increasing the electrode spray by approximately 30 liters per minute from the beginning of the 

Charge 1 melting until the end. The purple curve in Figure 2 pass the threshold limit slightly, and 

then it drops back below the limit. Hence this method is not capable of detecting trial 2 for the 

entire duration of charge melting. The heat time shown in Figure 2 and Figure 3 is in 

“kWh/Charged ton” which is the energy clock used by the EAF to pace the heat. 

 

Figure 2: Fingerprinting method during Charge 1 for the industrial EAF (Other curves are 

representatives for normal conditions in EAF). 

Similarly, Figure 3 shows 7 bins that are determined manually, where in each bin the 

dynamic of the water vapor measurement is similar between the heats, and the threshold value 

for each bin represents the upper limit to differentiate normal and abnormal operation. In 

addition, about 235 samples of off-gas H2O (%) have been collected from the field in different 

energy clocks (kWh/Charged Ton) to plot Figure 3.  Equations 1 and 2 are used to calculate the 

threshold limits. Trial 1 heat (in red color) in Figure 3 shows the off-gas water vapor for a heat 

where water is intentionally injected into the furnace by increasing the flow rate of electrode 

spray water by approximately 60 liters per minute during the melting process. The red curve 

passes through the fingerprint threshold from the beginning of the melting and drops twice below 
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the threshold limit. Hence the fingerprinting method can detect the additional injection in this 

case. 

 

Figure 3: Fingerprinting method during Charge 2 for the EAF (Other curves are 

representatives for normal conditions in EAF). 

Above results present that off-gas concentration measurement provides adequate 

information to distinguish between normal heats and heats in which significant additional water 

is injected into the furnace to simulate water leakage in real applications. The fingerprinting 

method is capable of detecting trial 1 heat where 60 liters per minute is injected, but the method 

is incapable of detecting the 30 liters per minute trial. In the next section, capability of machine 

learning methods to overcome the shortcomings of fingerprinting method is investigated. 

Machine learning methods explored in this work are artificial neural network and multiway 

projection to latent structures which use process variables to calculate expected off-gas water 

vapor leaving the electric arc furnace. We have also demonstrated that by applying model fusion 

methodology the estimation quality of off-gas water vapor can be increased. 

4 Artificial Neural Network (ANN) Method 

Artificial neural network (ANN) is a machine learning method that is used widely for 

classification and regression. ANN is utilized for classification purposes if the applied learning 
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technique is unsupervised and it is used for regression if the learning technique is supervised. In 

this paper, supervised learning is used to build the ANN model to predict EAF off-gas water 

vapor based on different process variables. The required steps to build the ANN model to predict 

the EAF off-gas water vapor are: collect and preprocess the data, create the network, configure 

the network, train the network, and validate the network.  The learning algorithm used in this 

work to train the neural network is the feed forward back propagation algorithm. The selected set 

of heats is divided into training and testing subsets. The training heats are used to train the ANN 

model, and the testing heats are used to validate the generated ANN model. So, they include 

heats data where water is intentionally injected into the furnace to test if the ANN model can 

recognize the artificial additional water. The ANN method is outlined in detail in Nielsen (2015).   

It should be noted that there is uncertainty in the neural network predictions due to 

inaccuracies in the training data and inherent limitations of the neural network model. For 

example, there is noise in the training data set which is constructed based on industrial real data. 

Therefore, a reliable measure of confidence interval is crucial in this work. The method used to 

construct the confidence intervals for the neural network predictions is the bootstrap method 

(Nielsen, 2015). This method involves creating many bootstrap samples by resampling 

randomly. The bootstrap estimate of the standard error is giving by (Efron and Tibshirani 1993). 

For this work, 10 resamples are created to estimate the standard error and then to calculate the 

95% confidence interval. 

4.3 Artificial Neural Network (ANN) Results 

To introduce an ANN model for off-gas water vapor prediction, Matlab software has 

been applied. The input and output variables for the EAF are preprocessed prior to building the 

ANN model. The preprocessing function used in this work normalizes the input and output 
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variables to fall in the range of [-1, 1]; then the ANN model is constructed. The obtained ANN 

model is a three layer feed forward network consisting of an input layer, a hidden layer, and an 

output layer. The output layer has a single node because the model is used to predict one output 

variable (off-gas water vapor) from multiple inputs. All nodes in the input layer are connected to 

all nodes in the hidden layer. Similarly, all nodes in the hidden layer are connected to the node in 

the output layer. The input variables that are highly correlated with the off-gas water vapor are 

EAF total fuel flow, EAF total main oxygen Flow, EAF total injected carbon flow, off-gas CO, 

off-gas CO2, off-gas O2, EAF fume system damper position, and EAF pressure. Electrode water 

flow is excluded from the ANN model because the electrode flow is constant from the beginning 

of the heat until the end of process. By applying appropriate sensors, the values of required 

process variables (recognized as the model inputs and output) have been collected from the EAF. 

Moreover, eight nodes are used in each of the input layer and hidden layer. More nodes were 

tried in the hidden layer but no improvement was observed in the results. A log-sigmoid transfer 

function is used in the hidden layer to capture the nonlinearity of the water vapor behavior, and a 

linear transfer function is utilized in the output layer. The number of training heats is 15, and the 

number of testing heats is 9. The testing heats include 7 normal heats and 2 trial heats, where 

additional water is injected into the furnace from the beginning of the heat until the end.  The R
2
 

of the ANN model built with the training heats is 90%.  

Figure 4 includes two sub-figures. The left sub-figure demonstrates the ANN prediction 

drawn in solid line and the confidence interval in dashed line with 95% confidence level for a 

normal heat with three charges and a refining period. The left sub-figure shows that the ANN 

model provides a narrow prediction range because of the multiple layers and nodes network. The 

right sub-figure depicts a comparison between the measured EAF off-gas water vapor in solid 
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line and the off-gas water vapor predicted by the ANN model in dashed line for a normal testing 

heat (plotted based on about 4750 samples). There are several dips in off-gas water vapor; 

because whenever the operator charges the furnace with a new scrap bucket, the off-gas analyzer 

stops sampling and starts purging the probe and the sample line. The right sub-figure clearly 

shows that the predicted water vapor closely follows the measured water vapor throughout the 

heat. 

 

Figure 4:  Left sub-figure – ANN model prediction (solid line) and the 95% confidence 

interval (dashed lines). Right sub-figure - Comparison between measured EAF off-gas 

H2O (solid line) and ANN prediction (dashed line). Both sub-figures are for the same 

normal testing heat. 

Figure 5 demonstrates three sub-figures. Sub-figure (a) shows the error (%) which is 

calculated by subtracting the calculated EAF off-gas water vapor from the measured water vapor. 

That figure clearly indicates that the error is below 1% for most of the heat, which implies that 

the predicted water vapor follows the measured water vapor with a high accuracy. Sub-figure (b) 

shows the histogram of errors is almost normal and approximately centered at 0. Sub-figure (c) 

includes normalized error histogram and also the normal distribution fitting curve, corresponding 
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with error/residual distribution. The mean value of the obtained normal distribution is 0.006 and 

the variance is 0.1556. 

 

 (a)                                                                   (b) 

 

                                                                    (c) 

Figure 5: Sub-figure (a) - Error (%) between measured and the calculated EAF off-gas 

H2O. Sub-figure (b)- Error (%) histogram. Sub-figure (c)-  Normalized error histogram 

and normal distribution fitting curve. All sub-figures are for the same normal testing heat.  
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Figure 6 shows the ANN prediction in solid line and the 95% in dashed line for a trial 

testing heat with four charges and a refining period. The figure demonstrates that the ANN 

model provides a narrow prediction range because of the multiple layers and nodes network. 

 

Figure 6: ANN predictions (solid line) and the 95% confidence interval (dashed line) for 

trial 1 testing heat. 

Figure 7 includes two sub-figures for trial 1 testing heat. The left sub-figure shows a 

comparison between the EAF off-gas water vapor measured by the off-gas analyzer and the off-

gas water vapor calculated by the ANN model. Trial 1 was conducted by increasing the electrode 

spray water by a total value of 60 liters per minute from the beginning of the heat until the end of 

the process. That sub-figure clearly implies that the measured water vapor is higher than the 

calculated water vapor. The right sub-figure shows the error (%) between the measured and the 

calculated EAF off-gas water vapor. The measured water vapor is constantly higher than the 

calculated water vapor because the ANN model does not include water leaks as an input to the 

model. In this trial, water is intentionally added into the furnace to observe if a difference can be 

observed between the measured and the calculated water vapor. The right sub-figure shows a 

continuous difference of greater than 1% between measured and predicted values from the 
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beginning of the heat until tapping. The error threshold is a tuning parameter, where in this case 

1% is selected because it captures the water leak for both trial heats. 

 

Figure 7: Left sub-figure - Comparison between measured EAF off-gas H2O (solid line) 

and ANN prediction (dashed line). Right sub-figure – Error (%) between measured and 

the calculated EAF off-gas H2O. Both sub-figures are for Trial 1 Testing Heat. 

 

Figure 8 shows the ANN prediction in solid line and the 95% confidence interval 

level for Charge 1 of Trial 2 testing heat, where water is intentionally injected only in the 

first charge. Similar to Trial 1 testing heat, the figure depicts that the ANN model 

provides a narrow prediction range as a consequence of the multiple layers and nodes 

network, constructed for this model. 
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Figure 8: ANN predictions (solid line) and the 95 % confidence interval (dashed line) for 

trial 2 testing heat. 

Figure 9 shows two sub-figures for Trial 2 testing heat. The left sub-figure 

demonstrates a comparison between the measured EAF off-gas water vapor and the off-

gas water vapor calculated by the ANN model in percentage (%). Trial 2 testing heat is 

conducted by increasing the electrode spray water at a total value of 30 liters per minute 

during the entire first charge. The left sub-figure clearly shows that the measured water 

vapor is higher than the calculated water vapor. The right sub-figure shows the error 

between the measured and the calculated EAF off-gas water vapor. The error is above the 

defined 1% threshold for most of the Charge 1 melting process. However, it drops below 

the 1% threshold several times. Similar to Trial 1 heat, the reason that the measured water 

vapor is constantly higher than the calculated value is because the ANN model does not 

include sprayed water as an input. 
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Figure 9: Left sub-figure - Comparison between measured EAF off-gas H2O (solid line) 

and ANN prediction (dashed line). Right sub-figure – Error (%) between measured and 

the calculated EAF Off-gas H2O. Both sub-figures are for Trial 2 testing heat. 

 

Figure 10 shows the residuals from the ANN model for the normal testing heats in 

the industrial EAF. This error histogram excludes the trial testing heats. The residuals 

shown in Figure 10 are estimates of the experimental error determined by subtracting the 

predicted off-gas water vapor from the measured off-gas water vapor. The figure 

demonstrates an error distribution that is roughly normal and is centered at approximately 

0.082 with a standard deviation of about 0.47. The significant of the residuals normal 

distribution being centered at 0 indicates that the model error is random. 
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(a) 

 

(b) 

Figure 10: Sub-figure (a)-Residuals Histogram from the ANN Model for all the Normal 

Testing Heats. Sub-figure (b)- Normalized error histogram and normal distribution fitting 

curve.  

5 Multiway Projection to Latent Structures (MPLS) 

5.1 MPLS Method 

The second machine learning method used to predict the amount of available water vapor 

in the furnace is multiway projection to latent structures (MPLS). As in artificial neural network, 

confidence intervals are necessary due to the existing noise in the industrial data; hence the 

bootstrap method is used to construct the 95% confidence intervals (Dunn, 2014). At this stage, 

10 resamples are created to estimate the standard error and then to calculate the 95% confidence 

interval.  The MPLS method is outlined in detail in Kourti et al. (1995).   

5.2 MPLS Results 

In this section, ProMV software has been applied to introduce the appropriate MPLS 

model for predicting off-gas water vapor. The input variables used to train the MPLS model for 

the industrial EAF are determined as: EAF total fuel flow, EAF total main oxygen Flow, EAF 
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total injected carbon flow, off-gas CO, off-gas CO2, off-gas O2, EAF fume system damper 

position, and EAF pressure. The number of training heats is 15 heats, and the number of testing 

heats is 9 heats. The testing heats include 7 normal heats and 2 trial heats where additional water 

is injected into the furnace from the beginning of the heat until the end of process. The numbers 

of principal components are 7, using cross validation. The calculated model R
2
 is 78%. The first 

two components explain approximately 61% of the variability in the 15 heats. The remaining 5 

components in the MPLS model explain approximately 17 % of the variability in the dataset. 

Figure 11 includes two sub-figures. The left sub-figure shows the MPLS prediction in 

solid line and the confidence interval in dashed line with 95% confidence level for a normal heat 

with three charges and a refining period. That sub-figure depicts that the MPLS model provides a 

narrow prediction range. The right sub-figure shows a comparison between the EAF off-gas 

water vapor measured by the analyzer drawn in solid line and the MPLS off-gas water vapor 

prediction drawn in dashed line for a normal heat. That sub-figure indicates that the predicted 

water vapor follows the measured water vapor trend throughout the heat. The heat time is 

normalized from seconds to percentage (%). 

 

Figure 11: Left sub-figure - MPLS predictions (solid line) and the 95% confidence 

interval (dashed line). Right sub-figure - Comparison between measured EAF off-gas 
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H2O (solid line) and MPLS prediction (dashed line). Both plots are for similar normal 

testing heat. 

In Figure 12 the Sub-figure (a) shows the error percentage (%) which is calculated by 

subtracting the calculated EAF off-gas water vapor from the measured water vapor. The figure 

clearly depicts that the error is below the 1% threshold for most of the heat, a finding which 

indicates that the predicted water vapor closely follows the measured water vapor. However, in 

contrast to ANN model predictions, in this case there are two periods in the heat where the error 

is more than the 1% threshold. Sub-figure (b) shows the histogram of errors is almost normal and 

approximately centered at 0. Sub-figure (c) includes normalized error histogram and also the 

normal distribution fitting curve, corresponding with error/residual distribution. The mean value 

of the obtained normal distribution is -0.1 and the variance is 0.7626. 

 

 

(a)                                                                (b) 
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(c) 

Figure 12: Sub-figure (a) – Error between measured and the calculated EAF Off-gas H2O 

in percentage (%). Sub-figure (b)– Error (%) histogram. Sub-figure (c)- Normalized error 

histogram and normal distribution fitting curve. All sub-figures are for the same normal 

testing heat.  

 

Figure 13 shows the MPLS prediction drawn in solid line and the 95% confidence 

interval in dashed line for Trial 1 heat with four charges and a refining period. The figure 

presents that the MPLS model provides a narrow prediction range. 
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Figure 13: MPLS predictions (solid line) and the 95% confidence interval (dashed line) 

for Trial 1 testing heat. 

Figure 14 shows two sub-figures for Trial 1 heat. The left sub-figure shows a comparison 

between the measured EAF off-gas water vapor and the off-gas water vapor calculated by MPLS 

in percentage. Trial 1 heat is conducted by increasing the electrode spray water by a total amount 

of 60 liters per minute throughout the heat. The left sub-figure shows that the measured water 

vapor is higher than the calculated water vapor for most of the heat. The right sub-figure 

demonstrates the error between the measured and the calculated EAF off-gas water vapor. The 

error is more than 1 % except in a period in the second charge where it drops below 1%. 

 

 

Figure 14: Left sub-figure - Comparison between measured EAF off-gas H2O (solid line) 

and MPLS prediction (dashed line). Right sub-figure – Error in percentage (%) between 

measured and the calculated EAF off-gas H2O. Both figures are for Trial 1 testing heat. 

Figure 15 shows the MPLS prediction drawn in solid line and the confidence interval in 

dashed line with 95% confidence level for Trial 2 heat. The figure indicates that the MPLS 

model provides a narrow prediction range. 
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Figure 15: MPLS predictions (solid line) and the 95% confidence interval (dashed line) 

for Trial 2 testing heat. 

Figure 16 includes two sub-figures for Trial 2 heat. The left sub-figure shows a 

comparison between the measured EAF off-gas water vapor and the off-gas water vapor 

calculated by MPLS in percentage. Trial 2 heat is conducted by increasing the electrode spray 

water by a total value of 30 liters per minute for the first charge. The left sub-figure clearly 

shows that the measured water vapor is higher than the calculated water vapor. In addition, the 

right sub-figure demonstrates the error in percentage (%) between the measured and the 

calculated EAF off-gas water vapor. As in Trial 1 heat, the reason that the measured water vapor 

is constantly higher than the calculated is because the MPLS model does not include water leaks 

or abnormal sources of water as an input to the model. 
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Figure 16: Left sub-figure - Comparison between measured EAF off-gas H2O (solid line) 

and MPLS prediction (dashed line). Right sub-figure – Error in percentage (%) between 

measured and the calculated EAF off-gas H2O. Both sub-figures are for Trial 2 testing 

heat. 

Figure 17 shows the residuals from the MPLS model for the normal testing heats. This 

error histogram excludes the trial testing heats. The residuals shown in Figure 17 are estimations 

of the experimental errors determined by subtracting the predicted off-gas water vapor from the 

measured off-gas water vapor. Figure 17 shows an error distribution that is roughly normal and is 

centered at approximately -0.07 with a standard deviation of about 0.52. The significance of the 

residuals normal distribution being centered at 0 indicates that the model error is random. 

 

                                                                        (a) 
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(b) 

Figure 17: Sub-figure (a): Residuals Histogram from the MPLS Model for all the Normal 

Testing Heats. Sub-figure (b)- Normalized error histogram and normal distribution fitting 

curve.   

 

 

6 ANN and MPLS Performance Comparison  

In this paper, two machine learning techniques, multiway projection to latent structures 

and the artificial neural network have been used to predict the off-gas water vapor at EAF. Table 

1 summarizes the obtained results for the EAF water vapor prediction performance of ANN and 

MPLS: 

Table 1: Prediction performance comparison between ANN and MPLS. 

Method 

Training 

Heats 

Testing Heats R
2
 RMSEP 

Trial Heat 1 

Detection  

Trial Heat 2 

Detection  

MPLS 15 

9 (7 Normal and 2 

Trial Heats) 

78 0.52 

Partially 

Successful 

Successful 
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ANN 15 

9 (7 Normal and 2 

Trial Heats) 

90 0.47 Successful Successful 

 

The root mean squared prediction error (RMSEP) measures the square root of the 

expected squared distance between what the model predicts (  
   for the water vapor and what 

the off-gas analyzer measures (    during the heat time (t = 1 to n). RMSEP gives the standard 

deviation of the model prediction error and hence is an indication of the quality of the prediction. 

The unit for RMSEP is the same unit as the off-gas water vapor. Equation 3 shows how RMSEP 

is calculated: 

                                                        √
∑    

 
      

 
   

 

 
                                           (3) 

EAF training set R
2 

for the ANN model is 90% and for the MPLS model is 78%. The 

ANN RMSEP testing set is 0.47%, whereas MPLS RMSEP is 0.52%; hence ANN model 

outperformed MPLS model. Moreover, MPLS did not completely detect the additional injected 

water into the furnace during Trial 1. ANN model performed significantly better where the 

behavior of the off-gas water vapor was non-linear.  

ANN is useful in the case of non-linear systems such as modeling of the EAF off-gas 

water vapor dynamics. ANN has the capability of capturing nonlinear and complex underlying 

characteristics of physical non-linear process. The method works well for large data sets, and it is 

a non-parametric method; thus, this fact eliminates the error in parameter estimation. 

Disadvantages of the ANN method include its black box nature where it is difficult to extract 

physical interpretation of the computed weights.  In addition, the method is incapable of 

extrapolating the results. Another disadvantage of ANN is overfitting which occurs when the 

neural network memorizes the training heats but is incapable of generalizing to new heats. The 
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solution which has been used in this work to avoid overfitting is to collect more data and 

increase the size of the training set. It should be noted that although the ANN model 

outperformed the MPLS model, the MPLS has attractive features that the ANN lacks. MPLS 

model is easier to interpret and extract knowledge of the model loadings and scores. Moreover, 

due to the nature of the MPLS model, it can extrapolate the results. MPLS effectively handles 

collinearity between variables and missing data in the training and testing heats; hence the 

method can predict the output with acceptable precision even when some of the inputs are 

missing. This specification makes MPLS an appealing model for real-time predictions. However, 

ANN outperformed the MPLS in EAF off-gas water vapor predictions because the behavior of 

the off-gas water vapor is completely nonlinear. 

7 Applying Model Fusion Techniques to Enhance the Prediction Accuracy 

Up to this point, two independent, practical and almost accurate machine-learning-based 

models for estimating the value of off-gas water vapor in EAF for different operational 

conditions have been introduced. Nevertheless, the accuracy of the off-gas water vapor 

prediction can further be improved, using model fusion theory. By utilizing model fusion 

techniques, the outputs of available models are synergistically combined such that accuracy of 

predicted outputs as well as the confidence of the final inference are improved in comparison 

with individual models which are considered as the disparate sources of information (Khalegi et 

al., 2013). The general configuration of model fusion approach proposed here for predicting the 

value of off-gas water vapor in EAF can be observed in Figure 18. 
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Figure 18: General Configuration of Model Fusion Technique for EAF. 

One of the most popular model fusion techniques, suitable for practical and industrial 

applications, is Ordered Weighted Averaging (OWA) methodology. In the next subsection, a 

brief review about this algorithm is presented. More details are available in the cited references 

(Hourfar et al, 2017). 

7.1 Ordered weighted averaging (OWA) operator 

The first generation of OWA operator has been developed by (Yager, 1988). Generally, the 

OWA operator of dimension n is a mapping OWA: R
n
 →R, which has an associated n vector 

w=(w1, w2,…wn)
T
 and the wi are weights with the following characteristics:  

wiϵ[0,1]   ، 1≤ i ≤ n,  

                                                   ∑    
 
            .                                                  (4) 

The OWA operator:              ∑       
                                            

where bj is the j
th

 largest element of the set of the aggregated objects a1, a2,….an. The value of 

            , determines the aggregated value of arguments. The re-ordering is the 

fundamental step for applying the OWA operator. OWA operator outputs are always bounded by 

the Max and Min operators (Brown, 2004). Moreover, the “orness” has been defined by (Yager, 

1988) in such a way to specify the type of aggregation. By using orness, the analogy between the 

aggregation and an “or” operation is measured:  
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∑        

 
                                                 (5)  

In this paper, an exponential class of OWA (Filev and Yager, 1998) has been applied. 

The weights in optimistic exponential OWA operator are adjusted subjected to satisfaction of a 

given degree of orness: 

                                                                                                                                                   

  (6) 

where α is related to the orness value correlated to the number of measurements, n (Afshar 

Khamseh et al., 2016, Hourfar et al, 2017).  

7.2 Model Fusion Results: 

The optimistic exponential data fusion algorithm has been implemented based on the 

developed EAF data-driven models, using Matlab software. The optimal fusing weights which 

can minimize the estimation error for two different evaluation indexes have been calculated. The 

selected indexes for assessing the results are Sum of Square Error (SSE) and Sum of Absolute 

Error (SAE). The term “error” is trivially defined as the difference between the measured off-gas 

water vapor value and the estimated value generated by each model. Table 2 represents the 

quantitative results, obtained from ANN model, MPLS model, and the fused model for a batch of 

test data. It can be easily observed that applying model fusion theory can enhance the 

performance of off-gas water vapor estimation. In other words, by utilizing the optimal fusion 

weights, the fused model could reduce the value of SSE and SAE about 41% and 22%, 

respectively, compared to the results obtained from ANN. In addition, the optimal fusing weights 

2 1α; α(1 α);...; α(1 α) ; (1 α) ;    0 α 1
1 2 1

n nw w - w w
n n

        

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for model outputs can be different based on the utilized evaluation index. A qualitative 

comparison between the measured data and the constructed models can be observed in Figure 19.   

Table 2: Estimation evaluation for ANN, MPLS and the fusion-based model. 

Type of Model SSE (%) SAE (%) W1=WANN W2=WMPLS Orness=α (for n=2) 

ANN 11.94 25.61 N/A N/A N/A 

MPLS 12.20 27.55 N/A N/A N/A 

Fused Model #1 7.08 20.15 0.51 0.49 0.51 

Fused Model #2 7.13 20.04 0.56 0.44 0.56 

 

 

 

   Figure 19: Comparison between real measured data and different models outputs. 

8 Introduced Fault Detection Methodologies 

As discussed earlier, there is always a normal level of water vapor in the freeboard off-

gas inside the EAF. However, it is important to note that the absolute level of normal water 
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vapor in the off-gas is varying throughout the heat and from heat-to-heat depending on the 

quality of the scrap, burner firing rates, post combustion at any point during the heat, the level of 

the electrode sprays, and the level of fume system suction. To be effective, a water detection 

system must be able to quickly and correctly distinguish between abnormal water vapor levels 

due to a water leak into the EAF and a normal level of water vapor due to operating practice. In 

this section, two fault detection algorithms are proposed. Fault Detection Method #1 is based on 

the fingerprinting technique and Fault Detection Method #2 is based on using the difference 

between the values of measured and the predicted off-gas water vapor. 

Fault Detection Method #1 is implemented when statistical fingerprinting is used. This 

method compares the measured off-gas water vapor value against the baseline water vapor. The 

baseline values are calculated based on the algorithm described earlier in section 3. Hence, this 

method distinguishes between “normal” and “abnormal” water vapor conditions in the EAF 

freeboard and then provides the operators with alerts that clearly indicate when water vapor 

levels exceed normal conditions. Figure 20 schematically illustrates Fault Detection Method #1 

for triggering “Operator Alerts”. While the method is not a failsafe method, it does provide 

operators with valuable real-time alerts indicating the statistical probability of excessive high 

amounts of off-gas water vapor in the EAF. Specific threshold limits are calculated according to 

the fingerprinting method described in section 3. When the off-gas water vapor is equal or less 

than the normal fingerprint threshold, the status is green. This indicates that the statistical 

probability of excessive amounts of water existence in the EAF is low. When the indicators 

exceed the upper threshold limit for a defined duration (e.g. 5 seconds), a “Red Alert” is issued 

indicating that the off-gas chemistry is significantly out of the statistically normal range and 
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there is a high probability of excess water in the EAF. Red Alerts require immediate protective 

action by EAF operating staff. 

 

 

Figure 20:  Operator Alerts Based on Fault Detection Method #1.  

Fault Detection Method #2 is developed based on applying the introduced machine 

learning models (i.e. MPLS, ANN, or the combined model obtained from model fusion 

technique) to predict off-gas water vapor in EAF. Figure 21 schematically illustrates Fault 

Detection Method #2. This technique proposes to use the difference between the measured and 

the estimated off-gas water vapor in the furnace. Since the water vapor model considers all 

potential sources of water except water leak and the off-gas analyzer measures the EAF off-gas 

in real time; by monitoring the difference between the model and analyzers output, an indicator 

for water leakage can be provided. Further analysis indicates that using a 1% limit can be an 

acceptable alarm threshold in practice. The mentioned analysis is based on minimizing the false 

alarm rate and capturing the artificial leak. It should be noted that the defined threshold is a 

tuning parameter, where in other electric arc furnaces, this value may change. When the 

calculated difference exceeds 1% for 5 seconds, a “Red Alert” is activated to indicate that there 
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is excessive water in the furnace.  The 5 seconds timer, which may vary in different EAF, is also 

a tuning parameter to minimize false alarm rate and capture the artificial leak. 

 

Figure 21: Operator Alerts Based on Fault Detection Method #2 

10 Conclusions 

Different empirical predictive models to predict the amount of off-gas water vapor have 

been developed and tested on an industrial electric arc furnace. The studied models are statistical 

fingerprinting, artificial neural network, multiway projection to latent structures, and also the 

obtained model from the fusion of ANN and MPLS. Robustness issues related to each method 

are discussed in detail and a performance comparison between the methods is presented. This 

paper also investigates feasibility of applying model fusion theory to improve the performance of 

the prediction of the off-gas water vapor. Two fault detection methods are also proposed in this 

paper. Fault detection method #1 has been designed using statistical fingerprinting and Fault 

detection method #2 has been developed based on machine learning modeling techniques. 

Opportunities for future work include increasing the quantity of available measurements that 

would improve the performance of the off-gas water vapor predictive models. For example, 

measuring scrap and DRI composition and off-gas temperature can improve the accuracy of the 

empirical predictive models. Another interesting problem would be to develop a water detection 

method based on off-gas hydrogen monitoring. The water shift reaction produces less off-gas 
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hydrogen as the temperature rises in the furnace, but the reaction can produce hydrogen at low 

temperatures in the furnace. The objective of looking at this problem is to see if off-gas hydrogen 

contains water leak information that can improve the performance of the water detection 

framework to detect smaller leaks in the furnace (i.e. below 30 liters/min leaks).  
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