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Abstract

Neural ordinary differential equations (NODEs) (Chen et al., 2018) are ordinary differential
equations (ODEs) with their dynamics modeled by neural networks. Continuous normalizing
flows (CNFs) (Chen et al., 2018; Grathwohl et al., 2018), a class of reversible generative
models which builds on NODEs and uses an instantaneous counterpart of the change of
variables formula (CVF), have recently proven to achieve state-of-the-art results on density
estimation and variational inference tasks. In this thesis, we review key concepts that
are important to understand NODEs and CNFs, ranging from numerical ODE solvers to
generative models. We derive an explicit formulation of the adjoint sensitivity method
for both NODEs and CNFs using a constrained optimization framework. Furthermore,
we review several classes of NODEs and prove that a particular class of hypernetwork
NODEs is a universal function approximator in the discretized state. Our numerical results
suggest that the ODEs arising in CNFs do not need to be solved to high precision for
training and we show that training of CNFs can be made more efficient by using a tolerance
scheduler that exponentially reduces the ODE solver tolerances. Moreover, we quantify the
discrepancy of the CVF and the discretized instantaneous CVF for two ODE solvers. Our
hope in writing this thesis is to give a comprehensive and self-contained introduction to
generative modeling (with neural ordinary differential equations) and to stimulate both
theoretical as well as computational future work on NODEs and CNFs.

iii



Acknowledgements

First and foremost, I want to thank my family for their everlasting support from afar.
Without you, all of this would have never been possible.

I want to thank my supervisors Sander Rhebergen and Hans De Sterck for their guid-
ance and for letting me explore my research interests. It has been a long journey from
preconditioning for finite element methods to generative modeling with differential equations.

Thank you to Giang Tran and Jun Liu for reviewing this work.

Thanks to MFCF and Steve Weber for letting me test the teaching GPU servers.

I would like to thank Marko Ilievski, Priyank Jaini, and Yaoliang Yu for useful discussions.

Thanks to David Duvenaud for spotting some inaccuracies in the introduction.

To my office mates Jesse Legaspi, Christian Barna, Rishi Chakraborty, Josh Thomp-
son, and Stan Zonov, thank you for making MC6407 the best office on campus.

Thank you to Ashwin Krishnan and the whole UWaterloo pickup group for kicking the ball
with me.

Maddy, thank you for being the best study buddy and for always having my back.

iv



Dedication

To my parents, Birgitt and Uli.

v



Table of Contents

List of Figures x

List of Tables xi

Abbreviations xiv

List of Operators xvi

List of Functions and Function Classes xvii

List of Probability Distributions 1

1 Introduction 2

1.1 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 6

2.1 Ordinary Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Existence and Uniqueness of Solutions to Initial Value Problems . . 7

2.1.2 Numerical Methods for Ordinary Differential Equations . . . . . . . 7

2.2 Probability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Bayesian Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

vi



2.2.2 Divergence Measures . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.3 Variational Inference . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Feed-Forward Neural Networks . . . . . . . . . . . . . . . . . . . . 15

2.3.2 The Backpropagation Algorithm . . . . . . . . . . . . . . . . . . . . 16

2.3.3 Universal Approximation and Deep Learning . . . . . . . . . . . . . 18

2.4 Generative Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.1 Fully Observable and Latent Variable Models . . . . . . . . . . . . 19

2.4.2 Variational Autoencoders . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.3 Generative Adversarial Networks . . . . . . . . . . . . . . . . . . . 23

2.4.4 Autoregressive Models . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.5 Taxonomy of Generative Models . . . . . . . . . . . . . . . . . . . . 24

2.5 Gradient Based Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.1 Adam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Neural Ordinary Differential Equations 28

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Learning of Neural Ordinary Differential Equations . . . . . . . . . . . . . 29

3.2.1 The Adjoint Sensitivity Method . . . . . . . . . . . . . . . . . . . . 29

3.2.2 Backpropagation Through Ordinary Differential Equation Solvers . 32

3.2.3 Comparison of the Adjoint Sensitivity Method and Backpropagation 35

3.3 Choosing the Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1 Problematic Neural Ordinary Differential Equations . . . . . . . . . 36

3.3.2 Standard Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.3 Hypernetworks and Universal Function Approximation . . . . . . . 41

vii



4 Neural Ordinary Differential Equations for Generative Modeling 43

4.1 Reversible Generative Models . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.1 The Change of Variables Formula . . . . . . . . . . . . . . . . . . . 43

4.1.2 Normalizing Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1.3 Training on Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.4 Improving Variational Inference . . . . . . . . . . . . . . . . . . . . 49

4.2 Generative Modeling with Neural Ordinary Differential Equations . . . . . 50

4.2.1 The Instantaneous Change of Variables Formula . . . . . . . . . . . 51

4.2.2 Stacking Continuous Normalizing Flows . . . . . . . . . . . . . . . 52

4.2.3 Trace Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Problems of the Discretized Instantaneous Change of Variables Formula . . 54

4.3.1 Euler Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.2 One-Dimensional Midpoint Discretization . . . . . . . . . . . . . . 57

5 Experiments 58

5.1 Density Estimation on 2D Toy Data . . . . . . . . . . . . . . . . . . . . . . 59

5.1.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Density Estimation on Tabular Data . . . . . . . . . . . . . . . . . . . . . 64

5.2.1 Density Estimation on miniboone . . . . . . . . . . . . . . . . . . . 66

5.2.2 Density Estimation on power . . . . . . . . . . . . . . . . . . . . . 70

5.2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 Variational Inference on an Image Dataset . . . . . . . . . . . . . . . . . . 75

5.3.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6 Conclusion and Outlook 81

6.1 Theoretical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

viii



References 83

APPENDICES 91

A Backpropagation Through Ordinary Differential Equation Solvers 92

A.1 Euler’s Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.1.1 A Proof of Equation (3.9) . . . . . . . . . . . . . . . . . . . . . . . 92

A.1.2 A Proof of Equation (3.10) . . . . . . . . . . . . . . . . . . . . . . . 93

A.2 Midpoint Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

A.2.1 A Proof of Equation (3.14) . . . . . . . . . . . . . . . . . . . . . . . 95

A.2.2 A Proof of Equation (3.15) . . . . . . . . . . . . . . . . . . . . . . . 95

B Neural Ordinary Differential Equations 96

B.1 Linear Neural Ordinary Differential Equations . . . . . . . . . . . . . . . . 96

B.2 Autonomous Neural Ordinary Differential Equations . . . . . . . . . . . . 97

B.3 Universal Approximation with Hypernetworks . . . . . . . . . . . . . . . . 98

C Adjoint Sensitivity Method for Continuous Normalizing Flows 100

D Experiments 104

D.1 A Description of 8gaussians . . . . . . . . . . . . . . . . . . . . . . . . . 104

ix



List of Figures

2.1 A two-layer neural network with d1 = 5 and d2 = 1; inputs to round nodes
are summed up and the activation g is applied to the output of round circles
with the label g. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Fully observable Boltzmann machine (left) and restricted Boltzmann machine
with five latent variables (right); observed variable nodes are grey and latent
variable nodes are white. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Generative model p(x | z,θ)p(z | θ) in solid lines and approximate posterior
q(z | x,φ) is dashed lines (Kingma and Welling, 2013). . . . . . . . . . . . 21

2.4 Classification of some generative models based on the expression of their
probability distributions (Goodfellow, 2016). . . . . . . . . . . . . . . . . . 25

3.1 Example building blocks for the dynamics of NODEs with din = 2 and
dout = 3. Solid and dashed lines represent a multiplication with weights and
1, respectively. Dotted lines represent the function 1− t. All inputs to round
nodes are added up. Black square nodes indicate a multiplication of the
inputs (from left and below) and the intersection of σ with a path means
applying the sigmoid function (see Table 2.2). . . . . . . . . . . . . . . . . 40

3.2 Hypernetwork NODE building block for din = dout = 2; nodes and lines
behave as described in Figure 3.1 and f represents a hypernetwork. . . . . 41

5.1 An example of a tolerance scheduler. The solid, dotted, and dash-dotted
lines represent the tolerance at epoch n for 0, 1000, and 10000 warmup steps,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

x



List of Tables

2.1 Minimum number of stages s for explicit Runge–Kutta methods to achieve
convergence rate p (Butcher, 2016). . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Common activation functions for neural networks. . . . . . . . . . . . . . . 15

3.1 Function fblock and number of learnable parameters for the building blocks
of NODE dynamics. The matrix A and vector b are elements of Rdout×din

and Rdout , respectively. The sigmoid function is defined in Table 2.2. . . . . 39

5.1 Mean and one standard deviation on 8gaussian (test set) using dopri5 with
0, 1000, and 10000 warmup setps (from top to bottom in this order) and
final absolute/relative training tolerance 10−5. . . . . . . . . . . . . . . . . 61

5.2 Mean and one standard deviation on 8gaussian (test set) using ah2 with 0,
1000, and 10000 warmup steps (from top to bottom in this order) and final
absolute/relative training tolerance 10−3. . . . . . . . . . . . . . . . . . . . 61

5.3 Mean and one standard deviation on 8gaussian (test set) using dopri5 with
0, 1000, and 10000 warmup steps (from top to bottom in this order) and
final absolute/relative training tolerance 10−4. . . . . . . . . . . . . . . . . 63

5.4 Mean and one standard deviation on 8gaussian (test set) using ah2 with 0,
1000, and 10000 warmup steps (from top to bottom in this order) and final
absolute/relative training tolerance 10−2. . . . . . . . . . . . . . . . . . . . 63

5.5 Mean and one standard deviation of NLL for state-of-the-art generative
models on miniboone and power (test sets). The quantities are estimated
over three runs. The results are taken from Grathwohl et al. (2018). . . . . 65

5.6 Dimensionality as well as the number of training, validation, and testing
points for the datasets miniboone and power. . . . . . . . . . . . . . . . . 65

xi



5.7 Number of parameters for density estimation models on tabular datasets. . 65

5.8 Mean and one standard deviation on miniboone (test set) using dopri5 with
0 and 10000 warmup steps (from top to bottom in this order). The final
absolute and relative training tolerances are chosen to be 10−8 and 10−6,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.9 Mean and one standard deviation on miniboone (test set) using dopri5 with
0 and 10000 warmup steps (from top to bottom in this order). The final
absolute and relative training tolerances are chosen to be 10−7 and 10−5,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.10 Mean and one standard deviation on miniboone (test set) using ah2 with
0 and 10000 warmup steps (from top to bottom in this order). The final
absolute and relative training tolerances are chosen to be 10−6 and 10−4,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.11 Mean and one standard deviation on miniboone (test set) using ah2 with
0 and 10000 warmup steps (from top to bottom in this order). The final
absolute and relative training tolerances are chosen to be 10−5 and 10−3,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.12 Grouping of trained models (ODE solver setup 1) on miniboone in three
performance classes (based on NLL) according to several sorting criteria. . 69

5.13 Mean and one standard deviation on miniboone (test set) using dopri5

with 10000 warmup steps. The ODE solver setup can be found in Paragraph
ODE solver setup 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.14 Mean and one standard deviation on miniboone (test set) using ah2 with
10000 warmup steps. The ODE solver setup can be found in Paragraph
ODE solver setup 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.15 Grouping of trained models (ODE solver setup 2) on miniboone in three
performance classes (based on NLL) according to several sorting criteria. . 71

5.16 Results on power (test set) using dopri5 with 0 and 10000 warmup steps
(from top to bottom in this order). The final absolute and relative training
tolerances are chosen to be 10−8 and 10−6, respectively. . . . . . . . . . . . 72

5.17 Results on power (test set) using dopri5 with 0 and 10000 warmup steps
(from top to bottom in this order). The final absolute and relative training
tolerances are chosen to be 10−7 and 10−5, respectively. . . . . . . . . . . . 72

xii



5.18 Results on power (test set) using ah2 with 0 and 10000 warmup steps
(from top to bottom in this order). The final absolute and relative training
tolerances are chosen to be 10−5 and 10−3, respectively. . . . . . . . . . . . 73

5.19 Grouping of trained models (ODE solver setup 1) on power in three
performance classes (based on NLL) according to several sorting criteria. . 73

5.20 Results on power (test set) using dopri5 with 0 and 10000 warmup steps
(from top to bottom in this order). The final absolute and relative training
tolerances are chosen to be 10−5 and 10−3, respectively. . . . . . . . . . . . 74

5.21 Mean and one standard deviation (estimated over three runs) of negative
free energy (4.7) on frey faces. The results were taken form Grathwohl
et al. (2018). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.22 Mean and one standard deviation on frey faces (test set) using dopri5

with 0 and 1000 warmup steps (from top to bottom in this order). The final
absolute and relative training tolerances are chosen to be 10−5. . . . . . . . 78

5.23 Mean and one standard deviation on frey faces (test set) using dopri5

with 0 and 1000 warmup steps (from top to bottom in this order). The final
absolute and relative training tolerances are chosen to be 10−4. . . . . . . . 78

5.24 Mean and one standard deviation on frey faces (test set) using ah2 with
0 and 1000 warmup steps (from top to bottom in this order). The final
absolute and relative training tolerances are chosen to be 10−3. . . . . . . . 79

5.25 Mean and one standard deviation (model with † is estimated only over two
runs as one run led to a step size close to zero) on frey faces (test set)
using ah2 with 0 and 1000 warmup steps (from top to bottom in this order).
The final absolute and relative training tolerances are chosen to be 10−2. . 79

5.26 Grouping of trained models on frey faces in three performance classes
(based on NFEG) according to several sorting criteria. . . . . . . . . . . . . 80

xiii



Abbreviations

CNF Continuouos normalizing flow

CVF Change of variables formula

ELBO Evidence lower bound

FOBM (Fully observable) Boltzmann machine

GAN Generative adversarial network

IVP Initial value problem

KL Kullback–Leibler

MAP Maximum a posteriori

MLE Maximum likelihood estimation

NBE Number of backward function evaluations

NFE Number of forward function evaluations

NFEG Negative free energy

NLL Negative log-likelihood

NN Neural network

NODE Neural ordinary differential equation

xiv



NTE Number of total function evaluations

ODE Ordinary differential equation

RBM Restricted Boltzmann machine

VAE Variatonal autoencoder

VI Variational inference

xv



List of Operators

◦ Function composition

det Determinant

DKL(· ‖ ·) Kullback–Leibler divergence

E[·] Expected value

∇ Gradient operator

� Hadamard product

∂
∂t

Partial derivative (with respect to time t)

d
dt

Total derivative (with respect to time t)

tr Trace

xvi



List of Functions and Function
Classes

C Cost function

Cov Covariance

exp Exponential function

log Natural logarithm

ReLU Rectifier function

σ Sigmoid function

SP Softplus function

tanh Hyperbolic tangent

F2 Class of two-layer neural networks

xvii



List of Probability Distributions

pdata Data generating distribution

pmodel Model distribution

N (·, ·) Normal distribution

U(·) Uniform distribution

1



Chapter 1

Introduction

According to Arthur Samuel, machine learning is the field of study that gives computers
the ability to learn without being explicitly programmed1. Machine learning can be divided
into three main subareas: supervised learning, unsupervised learning, and reinforcement
learning. The goal of supervised learning is to build a model that can predict the label of
a data point given its features. In reinforcement learning, models learn to take suitable
actions in order to maximize a cumulative reward. Given an unlabeled dataset, the goal of
unsupervised learning is to learn a hidden underlying structure of the data.

In this thesis, we consider an important application of unsupervised learning called density
estimation. Based on observations from a dataset, density estimation algorithms aim to
construct an approximation pmodel to the underlying distribution pdata that generated the
data. One of the simplest approaches to approximate pdata is choosing the model distribution
to be a mixture of normal distributions. The weights and parameters of the mixture model
can then, for example, be learned using the expectation-maximization algorithm. Once the
parameters are learned, samples of the model distribution pmodel can be drawn by simply
drawing samples from the individual mixture components. Models that learn a density
function and have the ability to generate samples are generally referred to as generative
models.

One of the drawbacks of mixture models is the assumption that each data point is explained
by exactly one component. This assumption is especially restrictive for higher-dimensional

1This is rather the generally accepted gist of Samuel (1967) than an exact quote.
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data, e.g., a mixture model cannot (easily)2 incorporate the observation that neighboring
pixels in images are likely to take similar values. This drawback has led to the development
of models that learn distributed representations, e.g. the Boltzmann machine (Hinton and
Sejnowski, 1983).

Boltzmann machines introduce unobserved variables in order to explain hidden causes of
the data behavior and approximate pdata using a Boltzmann distribution. Salakhutdinov
and Hinton (2009) showed that deep Boltzmann machines, Boltzmann machines that stack
many layers of unobserved variables on top of each other, are particularly well-suited for
learning an approximation to a high-dimensional data distribution. However, the necessity
of Markov chains to generate samples of the Boltzmann distribution remains a major
drawback of deep Boltzmann machines. Nevertheless, the idea of “depth” in generative
models persisted.

The enormous amount of available data, the development of more advanced algorithms,
and the increased processing power by graphical processing units are some of the many
reasons that have led to the rise of deep learning3 in the second decade of this century. It
is not surprising that modern generative models also incorporate neural networks in their
frameworks. Two of the most well-known classes of generative models that incorporate
deep neural networks are generative adversarial networks (GANs) (Goodfellow et al., 2014)
and variational autoencoders (VAEs) (Kingma and Welling, 2013; Rezende et al., 2014).
Compared to Boltzmann machines, GANs and VAEs achieve “depth” without relying on
Markov chains to generate samples.

Neither GANs nor VAEs provide an expression for the model density pmodel, however,
they have proven to be able to generate realistic samples that are similar to samples
from the data generating distribution. This ability can be exploited in many areas of life,
e.g., by assisting humans in creating artwork (Zhu et al., 2016; Brock et al., 2017) and
building super-resolution images (Ledig et al., 2017) that can, for example, be used in
movie production. Despite the success of GANs and VAEs, there is still a strong interest in
generative models that have an explicit expression of their model density.

The two most prominent classes of modern generative models that have an explicit density
function are autoregressive models (Germain et al., 2015; Van Oord et al., 2016) and

2A color image of size 64× 64 would lead to a covariance matrix with around 7.5× 107 parameters per
mixture component.

3In this work, we refer to deep learning as using neural networks with many hidden layers as function
approximators.
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reversible generative models (Dinh et al., 2014, 2017; Papamakarios et al., 2017; Oliva
et al., 2018; Kingma et al., 2016; Grathwohl et al., 2018; Kingma and Dhariwal, 2018).
The former models the density function as a product of conditional distributions and the
latter learns a transformation from a simple density into a complex one. One disadvantage
of autoregressive models, when compared to reversible generative models, is that their
computational cost to generate samples scales poorly with the dimensionality of the data.

In this thesis, we study continuous normalizing flows (CNFs) (Chen et al., 2018; Grathwohl
et al., 2018), a reversible generative model that incorporates neural ordinary differential
equations (NODEs) (Chen et al., 2018). NODEs are ordinary differential equations (ODEs)
with their dynamics modeled by neural networks. Instead of using backpropagation, which
is the standard algorithm to learn the parameters of a neural network, the parameters of
the NODE dynamics are generally learned using the adjoint sensitivity method (Pontryagin
et al., 1962). Formulating generative models with ODEs, one can take advantage of more
than a century of development in numerical ODE solvers.

In this work, we discuss theoretical aspects about NODEs and CNFs. Furthermore,
we investigate the effect of the NODE dynamics and the numerical ODE solver on the
performance of CNFs. Numerical tests are carried out on (high-dimensional) density
estimation, (low-dimensional) sample generation, and variational inference tasks.

1.1 Main Contributions

The main contribution of this thesis is to give a comprehensive and self-contained introduc-
tion to generative modeling (with neural ordinary differential equations) which is especially
well-suited for applied mathematicians. Novel contributions of this thesis are the following:

1. We present a derivation of the adjoint sensitivity method for NODEs using a con-
strained optimization framework. We further extend this algorithm to CNFs.

2. We explain why linear and autonomous dynamics are not-well suited for NODEs
and we prove that modeling the dynamics with a particular hypernetwork leads to
universal function approximation in the discretized case.

3. Numerical results on density estimation and variational inference tasks suggest that
the ODEs arising in CNFs do not need to be solved to high precision for training.
Furthermore, we show that training of CNFs can be made more efficient by using a
tolerance scheduler that exponentially reduces the ODE solver tolerances.
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1.2 Outline

In Chapter 2, we provide a detailed overview on background that is relevant to this thesis.
We review ordinary differential equations with a focus on numerical methods to solve them.
We further lay out important concepts of probability theory and neural networks. We
explain the difference between fully observable and latent variable generative models and
discuss state-of-the-art generative models. We briefly review gradient based optimization.

Neural ordinary differential equations are the main subject of Chapter 3. We discuss
choices for the dynamics of NODEs and for the algorithm to learn the parameters of
NODEs. This chapter also contains a derivation of the adjoint sensitivity method for
NODEs based on a constrained optimization approach.

In Chapter 4, we review reversible generative models. We summarize how to use the
NODE framework for generative modeling resulting in continuous normalizing flows. Fur-
thermore, this chapter contains a derivation of the adjoint sensitivity method for CNFs.
Moreover, we quantify the discrepancy of the CVF and the discretized instantaneous CVF
for two ODE solvers.

In Chapter 5, we investigate the effect of the NODE dynamics and the numerical ODE solver
on the performance of CNFs. Numerical tests are carried out on density estimation for two
tabular datasets, sample generation for a two-dimensional toy problem, and variational
inference for an image dataset.
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Chapter 2

Background

This chapter provides background knowledge for the subsequent chapters. It reviews some
theoretical and numerical aspects of ordinary differential equations. Furthermore, we briefly
discuss some important concepts from probability theory. We then discuss the basics of
neural networks as well as their role in the success of deep learning. Subsequently, we
review several classes of modern generative models and attempt to show their differences as
well as their similarities. Lastly, we address gradient based optimization, the predominant
class of optimization algorithms in modern machine learning.

2.1 Ordinary Differential Equations

Ordinary differential equations (ODEs) of order n are equations of the form

z(n) = f
(
z(n−1), . . . ,z′, z, t

)
, (2.1)

where z(i) = diz
dti

with z(i) ∈ Rd for all i = 0, 1, . . . , n. The dynamics f of Equation (2.1) is
a function

f : Rd × · · · × Rd︸ ︷︷ ︸
n times

×[t0, T ]→ Rd,

with t0 < T . In case that d = 1 and f is linear in z(i), i.e.,

f
(
z(n−1), . . . , z(1)z, t

)
= an−1(t)z(n−1) + · · ·+ a1(t)z(1) + a0(t)z + g(t),
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we can write Equation (2.1) as a system of first order ODEs

d

dt


z
z(1)

...
z(n−2)

z(n−1)

 =


0 1 0 0 . . . 0 0
0 0 1 0 . . . 0 0
...

...
...

...
...

...
...

0 0 0 0 . . . 0 1
a0(t) a1(t) a2(t) a3(t) . . . an−2(t) an−1(t)




z
z(1)

...
z(n−2)

z(n−1)

+


0
0
...
0
g(t)

 .
If we are given an ODE together with an initial condition z0, we refer to the problem of
finding a solution that satisfies the differential equation with the particular initial condition
as an initial value problem (IVP). An IVP for n = 1 is given as

dz(t)

dt
= f(z, t), t ∈ [t0, T ], (2.2)

z(t0) = z0.

We address the existence and uniqueness of IVP solutions briefly in the next section.

2.1.1 Existence and Uniqueness of Solutions to Initial Value Prob-
lems

For this work, we do not need much theory of ODEs, however, we need to understand
the requirements on the dynamics f such that a unique solution to an IVP exists. The
following theorem is sufficient for our needs:

Theorem 2.1.1 (Khalil (2002)) Suppose that f(z, t) is piecewise continuous in t and

‖f(z1, t)− f(z2, t)‖ ≤ L‖z1 − z2‖,

for some finite L, for all z1, z2 ∈ Rd and for all t ∈ [t0, T ]. Then, the IVP (2.2) has a
unique solution for t = [t0, T ].

We refer the reader to Khalil (2002) for a proof of Theorem 2.1.1 and more theory on ODEs.

2.1.2 Numerical Methods for Ordinary Differential Equations

This section is intended to give the reader an idea on how to solve ODEs numerically.
For simplicity, we restrict ourselves to ODEs of first order, however, all ideas are easily
transferable to n-th order ODEs.
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Euler’s method: Given the IVP

dz(t)

dt
= f(z, t), t ∈ [t0, T ],

z(t0) = z0,

Euler’s method approximates the solution of the IVP at time t0 + nh as

zn = zn−1 + hf(zn−1, tn−1) ∀n = 1, . . . , N,

for a pre-defined step size h = (T − t0)/N . The local truncation error, the error made in a
single step of the method, is O(h2). The global truncation error, the accumulation of the
local truncation error for multiple steps, is O(h), which is considered a slow convergence
rate. Besides slow convergence, another potential problem of Euler’s method is that it can
be numerically unstable. Consider solving the IVP

dz(t)

dt
= −3z(t), t ∈ [t0, T ],

z(t0) = 1,

with step size h = 1, then zn = (−2)n whereas the exact solution is z(t) = exp(−3(t− t0)).
For this example, Euler’s method is diverging1. This numerical instability does not occur
for the backward Euler method

zn = zn−1 + hf(zn, tn) ∀n = 1, . . . , N,

which is unconditionally stable and has the same convergence rates as Euler’s method.
This stability comes at the cost of solving a possibly non-linear equation for every time
step. For “simple” problems, however, a few iterations of a fixed point method might
suffice to solve the equation sufficiently well. Even though the backward Euler method fixes
the potential stability issues of Euler’s method, we still need to deal with the problem of
low-order convergence, which is addressed in the next paragraph.

Explicit Runge–Kutta methods: The family of explicit Runge–Kutta methods is of
the form

zn+1 = zn + h
s∑
i=1

biki,

1Time steps h < 2/3 would lead to convergence.
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p 1 2 3 4 5 6 7 8

min s 1 2 3 4 6 7 9 11

Table 2.1: Minimum number of stages s for explicit Runge–Kutta methods to achieve
convergence rate p (Butcher, 2016).

where

k1 = f(zn, tn),

k2 = f(zn + h(a2,1k1), tn + c2h),

...

ks = f(zn + h(as,1k1 + · · ·+ as,s−1ks−1), tn + csh).

The parameters of a Runge–Kutta method are generally chosen to achieve the highest
convergence rate possible. It is still an open problem to find an expression for the minimum
number of stages s needed for a Runge–Kutta method to achieve converge rates of arbitrary
order p; some combinations that are known are listed in Table 2.1.

Runge–Kutta methods are well-suited for adaptive step size control. The idea is to choose
the parameters to achieve a certain convergence rate p and modify the parameters b,
resulting in new parameters b∗, such that we get another method with convergence rate
p − 1. Assuming that the step zn is accepted, an approximation to the local truncation
error of the latter method, otherwise referred to as the absolute error of the (adaptive)
method, can then be computed as

e = ‖y − y∗‖ = h

∥∥∥∥∥
s∑
i=1

(bi − b∗i )ki

∥∥∥∥∥, (2.3)

where y and y∗ are the approximate solutions of the methods of order p and p − 1,
respectively. If e is smaller than a certain tolerance, we accept the step from the p-th
order method and set zn+1 = y, otherwise the calculation is redone with a smaller time step.

Probably the simplest adaptive Runge–Kutta method can be obtained by combining
Heun’s method, a method of order two, with the explicit Euler method. Heun’s method is
a two-stage Runge–Kutta method with parameters bHeun = [1/2, 1/2]T and

kHeun
2 = f (zn + hk1, tn + h) .
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The explicit Euler method, on the other hand, is a one-stage Runge–Kutta method with
bEuler = 1. An adaptive version of Heun’s method is then given by setting b = bHeun and
b∗ = [bEuler, 0]T ; we refer to this method as ah2. The absolute error of this method can
then be computed as

eah2 =
h

2

∥∥kHeun
2 − k1

∥∥.
Note that ah2 uses only two function evaluations per step.

One of the most widely used adaptive Runge–Kutta methods is the Dormand–Prince
method (Dormand and Prince, 1980). The method is of order five (fourth-order method for
error computation) and needs six function evaluations per step making use of the “first
same as last” property (Hairer et al., 1991). The Dormand–Prince method is one of the
most popular adaptive ODE solvers in Matlab’s ODE suite (Shampine and Reichelt, 1997).
In Matlab, the method is known as ode45. A modified version of the original method has
been proposed by Shampine (1986); we refer to this method as dopri5.

Absolute and relative error: One of the problems of the absolute error (2.3) is that
it is not scale-invariant. Consider a one-dimensional example where the absolute error
tolerance is set to 10−5. A step with y = 10−7 and y∗ = 10−6 is accepted, whereas a step
with y = 1.0 and y∗ = 1.0 + 10−5 would not be accepted. However, the ratios (y∗ − y)/y∗

are 0.9 and 1/100001 for the former and the latter cases, respectively. To prohibit this
behavior, we additionally track the relative error

‖y − y∗‖
max (‖y‖, ‖y∗‖)

.

In practice, we use both the relative and the absolute error to determine whether or not we
accept a step. For all our numerical experiments in Chapter 5, we accept a step if

e

abs tol + max (‖yn‖, ‖y∗n‖) rel tol
≤ 1,

where abs tol as well as rel tol are user-specified tolerances and e is computed using
Equation (2.3).

For more information on convergence and stability issues as well as adaptive step size
control of numerical solvers, we refer the reader to the excellent textbook Butcher (2016).
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2.2 Probability Theory

A (univariate) probability density function is an absolutely continuous non-negative function
p : R→ R that integrates to 1. A probability density function is associated with a random
variable as it specifies with what probability the random variable takes values in a particular
range. Let x ∈ R be a continuous random variable and px its associated probability density
function, then

Pr[a ≤ x ≤ b] =

∫ b

a

px(x) dx,

where −∞ ≤ a ≤ b ≤ ∞. The expected value of x can be computed as

Epx [x] =

∫ ∞
−∞

xpx(x) dx.

A probability distribution over two random variables px,y(x, y) is called a joint probability
distribution. The joint distribution can also be expressed as the product of the conditional
distribution px|y(x | y) and the marginal distribution py(y), i.e.,

px,y(x, y) = px|y(x | y)py(y),

or similarly

px,y(x, y) = py|x(y | x)px(x).

For ease of notation, we generally omit the subscript of a probability density function as its
argument uniquely defines the function, e.g.,

px,y(x, y) = p(x, y).

2.2.1 Bayesian Inference

Bayesian inference is a method for systemically updating one’s belief for a hypothesis as
more information becomes available. The famous Bayes’ theorem

Pr[A | B] =
Pr[B | A] Pr[A]

Pr[B]
,
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where A and B are events with Pr[B] 6= 0, is at the heart of Bayesian inference. In this
thesis, we use Bayes’ theorem to infer the parameters θ of a (model) probability density
function p(x | θ). Let us define a prior distribution p(θ | α) of θ parameterized by the
hyperparameter α. Given a dataset X =

{
x(i)
}m
i=1
∼ pdata from the data generating

distribution, one can compute the posterior distribution of θ (given α and X) as

p(θ | X, α) =
p(X, α | θ)p(θ)

p(X, α)
(by Bayes’ theorem)

=
p(X | θ, α)p(α | θ)p(θ)

p(X | α)p(α)

=
p(X | θ, α)p(θ | α)

p(X | α)
(by Bayes’ theorem).

(2.4)

Assuming that X is independent and identically distributed2, the likelihood of X can be
computed as

p(X | θ, α) =
m∏
i=1

p
(
x(i) | θ, α

)
.

To obtain the marginal distribution, one has to compute the integral

p(X | α) =

∫
p(X | θ, α)p(θ | α) dθ,

which is intractable already for a few parameters. We will discuss remedies to this issue
in Section 2.2.3. The distribution of a new datapoint x̃, called the posterior predictive
distribution, can be calculated as

p(x̃ | X, α) =

∫
p(x̃ | θ)p(θ | X, α) dθ. (2.5)

An alternative to this fully Bayesian approach is to compute the point estimate θMAP that
maximizes the posterior distribution, i.e.,

θMAP = arg max
θ

p(θ | X, α) = arg max
θ

p(X | θ, α)p(θ | α).

The point estimate θMAP is called the maximum a posteriori (MAP) estimate. If one
chooses the prior distribution p(θ | α) to be uniform, the MAP estimate simplifies to the
maximum likelihood estimate (MLE)

θMLE = arg max
θ

p(X | θ, α).

2In this work, we assume that all datasets are independent and identically distributed.
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An approximation of Equation (2.5) can then be computed as

p(x̃ | θMAP, α),

or

p(x̃ | θMLE, α).

2.2.2 Divergence Measures

The field of information theory was originally proposed in Shannon (1948) to study the
effect of noise on a general communication system. Throughout this work, we use divergence
measures from information theory to measure the similarity of two probability density
functions. A divergence on a space of probability density functions S is a function

D(· ‖ ·) : S × S → R+
0

satisfying

1. D(p ‖ q) ≥ 0,

2. D(p ‖ q) = 0 ⇐⇒ p = q,

for all p, q ∈ S. An important class of divergences is the f -divergences

Df(p ‖ q) =

∫
p(x)f

(
q(x)

p(x)

)
dx,

where f(u) is convex on u > 0 and f(1) = 0. The choice f(u) = − log(u) leads to the
Kullback–Leibler (KL) divergence

DKL(p ‖ q) =

∫
p(x) log

(
p(x)

q(x)

)
dx.

We make use of the KL divergence in the next section and see it in many more places of
this thesis.
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2.2.3 Variational Inference

A problem of modern statistics is the approximation of complicated probability density
functions (Blei et al., 2017). Variational inference (VI) is a method to approximate these
problematic functions through optimization. We examine this procedure for the posterior
distribution p(θ | X) from Equation (2.4) (note that we omitted the condition on α for
ease of notation). In VI, one specifies a family of candidate densities Q and tries to find
q∗(φ) ∈ Q that is closest to a target density using some appropriate measure. Letting
p(θ | X) be the target density and measuring the densities using the KL divergence, we
have

q∗(φ) = arg min
q(φ)∈Q

DKL(q(φ) ‖ p(θ | X)), (2.6)

where we omitted the dependence of q on X. The objective DKL(q(φ) ‖ p(θ | X)) in
Equation (2.6) is generally intractable as it involves the computation of the marginal p(X).
To see this, let us recall the definition of the KL divergence

DKL(q(φ) ‖ p(θ | X)) = Eq[log q(φ)]− Eq[log p(θ | X)]

= Eq[log q(φ)]− Eq[log p(θ,X)] + Eq[log p(X)]

= Eq[log q(φ)]− Eq[log p(θ,X)] + log p(X).

The last equality reveals the dependence on the marginal.

The evidence lower bound: Since the KL divergence is intractable, one often maximizes
the evidence lower bound (ELBO) instead of minimizing the KL divergence. The ELBO is
the negative KL divergence plus log p(X), i.e.,

ELBO(q) := log p(X)−DKL(q(φ) ‖ p(θ | X)) = Eq[log p(θ,X)]− Eq[log q(φ)]. (2.7)

Rewriting Equation (2.7) helps us in understanding the optimal variational density

ELBO(q) = Eq[log p(θ,X)]− Eq[log q(φ)]

= Eq[log p(X | θ)] + Eq[log p(θ)]− Eq[log q(φ)]

= Eq[log p(X | θ)]−DKL(q(φ) ‖ p(θ)).

From the last equation, we can see that q places its “mass” on parameters φ that explain
the data X well while simultaneously trying to be close to the prior p(θ). Variational
inference will play an important role in Section 4.1.4. We refer the reader to Blei et al.
(2017) for a thorough review on VI.
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Name g(x) (acting elementwise)

Rectifier function ReLU(x) = max(x, 0)
Sigmoid function σ(x) = (1 + exp(−x))−1

Hyperbolic tangent tanh(x)
Softplus function 3 SP(x) = log(1 + expx)

Table 2.2: Common activation functions for neural networks.

2.3 Neural Networks

Neural networks (NNs) are a class of mathematical functions inspired by neural circuits in
the brains of humans and animals. Neural networks are widely incorporated in machine
learning algorithms as they are able to approximate a wide range of functions well; this
result is further discussed in Section 2.3.3.

2.3.1 Feed-Forward Neural Networks

Feed-forward neural networks are an important subclass of neural networks. In the next
two paragraphs, we examine the building blocks of (deep) feed-forward neural networks.

Two-layer neural networks: We first restrict ourselves to two-layer neural networks
(without biases), mainly for ease of presentation. The class of two-layer feed-forward neural
networks with d-dimensional input is defined as

F2(d1, d2, g) :=
{
f : Rd → Rd2 | x 7→W2g(W1x),W1 ∈ Rd1×d,W2 ∈ Rd2×d1

}
,

where the activation function g is applied elementwise; an example is visualized in Figure 2.1.
Popular activation functions are listed in Table 2.2.

We can use a two-layer neural network for binary classification, with labels l = {+,−}, by
computing the label of an instance x as

l(x) =

{
+ if σ (f(x)) ≥ 0

− otherwise
,

3The softplus function is a smooth approximation to the rectifier function.
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Figure 2.1: A two-layer neural network with d1 = 5 and d2 = 1; inputs to round nodes are
summed up and the activation g is applied to the output of round circles with the label g.

with f ∈ F2(d1, d2 = 1, g). A two-layer feed-forward neural network with biases is given as{
f : Rd → Rd2 | x 7→W2g(W1x+ b1) + b2,W1 ∈ Rd1×d,W2 ∈ Rd2×d1 , b1 ∈ Rd1 , b2 ∈ Rd2

}
.

Multilayer (feed-forward) neural networks We can easily extend two-layer feed-
forward neural networks to L layers using the recursion

h1 = g(W1x+ b1),

hl = g(Wlhl−1 + bl), ∀l = 2, 3, . . . , L− 1,

hL = WLhL−1 + bL.

2.3.2 The Backpropagation Algorithm

In this section, we review how to efficiently learn the parameters of a neural network given
a dataset and a cost function C that is to be minimized. Backpropagation is arguably the
predominant method in solving the aforementioned problem. The origins of this algorithm
go back to control theory, and in particular to Kelley (1960) and Bryson (1961) who worked
on flight performance optimization and multistage allocation processes, respectively. Dreyfus
(1962) worked out a derivation of the backpropagation algorithm using the chain rule. To
the best of our knowledge, the algorithm was first applied to learning the parameters of
neural networks by Rumelhart (Rumelhart et al., 1988, 1985).
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Backpropagation applied to neural networks: We want to find the parameters of
a neural network with L layers that minimize the cost function for a dataset. Generally,
the cost function is designed such that it can be written as a mean, i.e., given a dataset
X =

{
x(i)
}m
i=1

the cost can be computed as

C(X) =
1

m

m∑
i=1

Ĉ
(
hL
(
x(i) | θ

))
,

where Ĉ : RdL → R and hL
(
x(i) | θ

)
is the output of the neural network given the input

x(i) and parameters θ. We can then learn the parameters of a neural network by gradient
descent, i.e.,

θk+1 = θk −
ηk
m

m∑
i=1

∇θĈ
(
hL
(
x(i) | θk

))
.

We refer the reader to Section 2.5 for more details on gradient descent and its computation-
ally cheaper approximations. The backpropagation algorithm is concerned with efficiently
computing ∇θC(X). For ease of notation, we only consider the case X = x and abbreviate,
with a slight abuse of notation, Ĉ(hL (x | θk)) as C.

Let us denote the values of layer l before activation given x by al, i.e., al = Wlhl−1 + bl.
Furthermore, we denote the error in layer l, the partial derivative of C with respect to al,
as δl, i.e,

δl =
∂C

∂al
,

where the partial derivatives are computed elementwise. Note that for l = L we have
aL = hL since there is no activation in the last layer. The error in layer l can be related to
the error in layer l + 1 by

δl =
(
W T

l+1δ
l+1
)
� g′(al) ∀l = L− 1, . . . , 1,

where g′ is the derivative of g and the operator � is the Hadamard product4, defined as

(a� b)i = aibi.

4This should not be confused with the Einstein summation convention.
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The error in layer l can be related to the biases and weight matrices of layer l by

∂C

∂bl
= δl,

and

∂C

∂Wl

= δl (hl−1)T ,

where h0 = x. A derivation of these formulas can be found in Nielsen (2015). A concise
summary of the backpropagation algorithm is given in Algorithm 1.

Algorithm 1 The backpropagation algorithm

1: for l = 1, . . . , L do . Feed-forward part of algorithm
2: al = Wlhl−1 + bl . h0 = x
3: hl = g

(
al
)

4: end for
5: Compute δL = ∂C

∂hL , ∂C
∂bL

= δL, and ∂C
∂WL

= δL (hL−1)T .
6: for l = L− 1, . . . , 1 do . Backpropagation of error
7: δl =

(
W T

l+1δ
l+1
)
� g′(al)

8: ∂C
∂bl

= δl

9: ∂C
∂Wl

= δl (hl−1)T

10: end for

2.3.3 Universal Approximation and Deep Learning

Much work has been done on proving that neural networks are universal function approxima-
tors, i.e., that they are dense in some function space. Cybenko (1989) proved that two-layer
feed-forward neural networks F2(d1, d2, g) can approximate any continuous function on
compact subsets of Rd as d1 →∞ when g is the sigmoid function (defined in Table 2.2).
Hornik et al. (1989) showed that the restriction of the sigmoid function can be relaxed to
squashing functions, non-decreasing functions ψ with the properties limx→−∞ ψ(x) = 0 and
limx→∞ ψ(x) = 1. In recent years, the research community has focused on exploring the
effectiveness of depth in neural networks. It has been shown that the function space of deep
networks is larger than the one of shallow networks for the same number of parameters;
we refer the reader to the following pool of references: Lin and Jegelka (2018); Eldan and
Shamir (2016); Cohen et al. (2016); Telgarsky (2016); Liang and Srikant (2016); Rolnick
and Tegmark (2017); Arora et al. (2018).
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Deep residual networks: One neural network architecture that seems to profit substan-
tially from depth is the residual neural network (He et al., 2016b), especially when applied
to image classification problems (He et al., 2016a). Deep residual networks are functions of
many stacked residual units. An example of a residual network is

xl+1 = xl + r(xl,θl),

where a possible choice of r is r ∈ F2(d1, d2, g) with d2 = d. Stacking an infinite number of
layers in a residual network with ‖r‖ → 0 has led to the idea of neural ordinary differential
equations, which we will explore in Chapter 3.

2.4 Generative Modeling

Given an unlabeled dataset X =
{
x(i)
}m
i=1
∼ pdata, the goal of unsupervised learning is to

learn a hidden underlying structure of the data. We could for example be interested in
clustering the data into groups or to reduce the dimensionality of the data. We refer the
reader to the well-known textbook Bishop (2006) for these applications.

In this work, we focus on a class of unsupervised learning algorithms called generative
modeling. In generative modeling, we want to learn the underlying probability distribution
of the data and to be able to sample from the learned model distribution. Before we discuss
some important generative models, we address the difference between fully observable and
latent variable models.

2.4.1 Fully Observable and Latent Variable Models

Fully observable models learn the distribution of data by learning soft constraints, e.g.
how the value of one dimension affects another dimension. Examples of fully observ-
able models are Markov random fields (Kindermann, 1980), fully visible sigmoid belief
networks (Frey et al., 1998), (fully observable) Boltzmann machines (Ackley et al., 1985), etc.

The (fully observable) Boltzmann machine (FOBM) can model multi-dimensional binary
data x ∈ {−1, 1}d. The model follows, as could be guessed from the name, a Boltzmann
distribution, i.e.,

pFOBM(x) =
exp(−EFOBM(x))

Z
,
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Figure 2.2: Fully observable Boltzmann machine (left) and restricted Boltzmann machine
with five latent variables (right); observed variable nodes are grey and latent variable nodes
are white.

where the energy function is defined as

EFOBM(x) = −
∑
j

ajxj −
∑
j 6=k

Wjkxjxk,

and Z is a normalization constant. Given a dataset, the parameters of the FOBM,
θ = {W ,a}, can be learned by maximum likelihood estimation, i.e.,

θ = arg max
θ

m∑
i=1

log pFOBM

(
x(i)
)

= arg max
θ

−
m∑
i=1

EFOBM

(
x(i)
)
−m logZ.

Solving this optimization problem is intractable since finding the normalization constant
involves a sum of 2d parameters, where d is the dimensionality of the data. As a remedy,
one can approximate

∑m
i=1 log pFOBM

(
x(i)
)

using Markov chains and learn the parameters
by approximate maximum likelihood estimation.

Latent variable models, on the other hand, introduce unobserved random variables to
explain hidden causes. Presumably the most well-known latent variable model for genera-
tive modeling is the restricted Boltzmann machine (RBM) (Smolensky, 1986). Introducing
a set of unobserved binary variables h, the RBM follows the distribution

pRBM(x,h) =
exp(−ERBM(x,h))

Z
,
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Figure 2.3: Generative model p(x | z,θ)p(z | θ) in solid lines and approximate posterior
q(z | x,φ) is dashed lines (Kingma and Welling, 2013).

where the energy function is defined as

ERBM(x,h) = −
∑
j

ajxj −
∑
k

bkhk −
∑
j,k

Wjkxjhk,

and Z is a normalization constant. In order to do inference, we need to compute the
marginal distribution over the observable variables, i.e., sum the joint distribution over all
configurations of the hidden variables

pRBM(x) =
1

Z

∑
h

pRBM(x,h).

We can again use approximate maximum likelihood estimation to learn the parameters of
the RBM; thorough explanations of learning algorithms for restricted Boltzmann machines
are given in Hinton et al. (2006) and Hinton (2012). Both the FOBM and the RBM are
visualized in Figure 2.2.

2.4.2 Variational Autoencoders

Variational autoencoders (VAEs) (Kingma and Welling, 2013; Rezende et al., 2014) are
state-of-the-art in generative modeling; they have, for example, been effectively applied to
image, label and caption generation (Pu et al., 2016). Compared to other generative models,
neural networks are easily incorporated in the VAE framework, letting VAEs take advantage
of the recent breakthroughs of deep learning. Amortized variational inference (Rezende
et al., 2014) is at the heart of VAE, and hence we spend some time on explaining this
concept which is based on variational inference (see Section 2.2.3).
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Amortized variational inference: In this paragraph, we consider a directed probabilis-
tic model with latent variables z, observable variables x and model parameters θ. We let
q(z | x,φ) be a parameterized approximation to the posterior distribution of the latent
variables p(z | x,θ). Both the graphical model as well as the approximate posterior are visu-
alized in Figure 2.3. To perform inference on θ, we need to compute the marginal likelihood
p(x | θ), however, the marginalization over the latent variables z is generally intractable.
We use the principles of VI to find a lower bound on the marginal log-likelihood (Rezende
and Mohamed, 2015)

log p(x | θ) = log

∫
p(x | z,θ)p(z | θ) dz

= log

∫
q(z | x,φ)

q(z | x,φ)
p(x | z,θ)p(z | θ) dz

≥
∫
q(z | x,φ) log

(
p(x | z,θ)p(z | θ)

q(z | x,φ)

)
dz (by Jensen’s inequality)

= −DKL(q(z | x,φ) ‖ p(z | θ)) + Eq[log p(x | z,θ)] = −F(x),

where −F(x) is referred to as the negative free energy (NFEG). Note that equality is
achieved if and only if q(z | x,φ) = p(z | x,θ). We then maximize the negative free
energy with respect to both θ and φ, i.e., given a dataset X =

{
x(i)
}m
i=1

, we compute the
parameters as

ϕ∗ = arg max
ϕ

−
m∑
i=1

F
(
x(i)
)
,

where ϕ = {θ,φ}. This optimization problem is generally solved using gradient based opti-
mization. There are, however, two issues connected with this optimization problem (Rezende
and Mohamed, 2015):

1. efficient computation of ∇φEq[log p(x | z;θ)] (naive Monte Carlo gradient estimation
has very high variance (Paisley et al., 2012)) and

2. choosing an approximate posterior distribution q that is rich and yet makes the
approximate maximum likelihood estimation computationally feasible.

When the fist problem is addressed with Monte Carlo gradient estimation (non-naive) and
q is represented with an inference network, the above problem is referred to as amortized
variational inference (Rezende and Mohamed, 2015).
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Inference networks: An inference network learns to map from observations to latent
variables using a global set of parameters. As an example, we could choose

q(z | x,φ) = N
(
z | µ, diag

(
σ2
))
.

where µ and σ are generally outputs of a feed-forward neural network, i.e., µ = µ(x) and
σ = σ(x), and N is the normal distribution. Note that, in order to make inference possible,
we would sample points from z ∼ q as

z = µ+ σ � ε, ε ∼ N (0, I),

instead of sampling from N (z | µ, diag (σ2)) directly; this is referred to as the reparame-
terization trick (Kingma and Welling, 2013). In a variational autoencoder, one generally
also computes the distribution parameters of the decoder p(x | z,θ) using a neural network.
The prior distribution p(z | θ) is chosen to be the standard normal distribution.

Generating samples: Samples can be generated from a VAE by first sampling z∗ ∼ N (0, I)
and then sampling x∗ ∼ p(x | z∗,θ).

We refer the reader to Doersch (2016) for a tutorial on VAEs.

2.4.3 Generative Adversarial Networks

Generative adversarial networks (GANs) (Goodfellow et al., 2014) are based on the idea of
training two models simultaneously: a generative model G that maps input noise, z ∼ p(z),
from the latent space to the data space and a neural network D that distinguishes if a data
point comes from the data generating distribution pdata or from G. The models can be
trained by solving the following objective

min
G

max
D

V (D,G),

where

V (D,G) := Ex∼pdata [logD(x)] + Ez∼p(z)[log (1−D(G(z)))],

which can be thought of as a minimax two-player game between the generator G and the
neural network D. GANs lack an explicit expression for the density, however, they have
proven to produce excellent results for synthesizing realistic images (Karras et al., 2017;
Brock et al., 2018). Generative adversarial networks have gained much attention in the past
few years, and we want to refer the reader to some interesting work on GANs: Arjovsky
et al. (2017); Gulrajani et al. (2017); Salimans et al. (2016); Miyato et al. (2018).

23



2.4.4 Autoregressive Models

Autoregressive models (e.g. Hochreiter and Schmidhuber, 1997; Graves, 2013; Van Oord
et al., 2016; Germain et al., 2015) are based on the observation that any d-dimensional
joint distribution p(x) can be factored into a product of conditional distributions (Uria
et al., 2016), i.e.,

p(x) =
d∏
i=1

p(xoi | xo<i
),

using a permutation o of the integers 1, . . . , d. The vector xo<i
contains the first i − 1

dimensions in the ordering of o. An autoregressive model is then specified by modeling the
d conditional distributions. One simple approach would be to model the conditionals as
normal distributions, i.e.,

p(xoi | xo<i
) = N

(
xoi | µoi , (expαoi)

2
)
,

where µi = fµi(xo<i
) and αi = fαi

(xo<i
); fµi and fαi

could for example be neural networks.
One problem of autoregressive models is that their cost for generating samples depends on
the dimensionality of the data d; this is especially problematic for large and high-quality
images. Compared to VAEs, Boltzmann machines and GANs, autoregressive models have
an explicit expression for the density function.

2.4.5 Taxonomy of Generative Models

We have discussed several generative models in the previous sections. To gain a better
understanding of the variety of models, we classify them according to the expression of their
probability distribution. As discussed in Section 2.4.3, GANs learn a probability distribution
implicitly. Both VAEs and Boltzmann machines learn an approximation to the true
probability distribution making use of variational inference and Markov chains (Brémaud,
2013), respectively. Autoregressive models are the only discussed models that have a
(tractable) explicit expression for the density function. Another class of models that fits in
this section is the class of reversible generative models, which we will discuss in Section 4.1.
The taxonomy of the discussed generative models is visualized in Figure 2.4.
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Figure 2.4: Classification of some generative models based on the expression of their
probability distributions (Goodfellow, 2016).

2.5 Gradient Based Optimization

Gradient descent is an effective method to minimize a parameterized objective function
J(θ). The parameters are updated in an iterative procedure of the form

θi+1 = θi − ηi∇θJ(θi), (2.8)

where i = 0, 1, . . . , K and ηi is called the learning rate. In generative modeling, the objective
function is often of the form

J(θ) =
m∑
i=1

log p
(
x(i) | θ

)
,

where X =
{
x(i)
}m
i=1
∼ pdata. For large m, computing ∇θJ(θ) is expensive. An unbiased

estimator5 of the former is

∇θJstochastic(θ),

5An estimator is called unbiased if its expectation is equal to the quantity that is estimated.
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where

Jstochastic(θ) = log p
(
x(j) | θ

)
,

and j ∼ U({1, . . . ,m}) with U being the uniform distribution. When we use this unbiased
estimator in the iterative procedure (2.8) instead of ∇θJ(θ), we refer to it as stochastic
gradient descent. While being a lot cheaper to compute, the estimator injects a lot of noise
in the updates of θ. Hence, nowadays, it is common to use mini-batch gradient descent
instead. The idea of minibatch gradient descent is to separate the datasets of m points in b
batches of size k = m/b and to use

∇θJminibatch(θ) =
k∑
l=1

∇θ log p

(
x

(
o
(r)
l

)
| θ
)
, (2.9)

as an unbiased estimator of ∇θJ(θ). In Equation (2.9), o is an ordering of the m examples
with r ∈ {1, . . . , b} such that {{

o
(r)
l

}k
l=1

}b
r=1

= {1, . . . ,m}.

Note that the iterative procedure (2.8) does not converge if the learning rate is constant,
and therefore we seek methods that automatically decrease the learning rate. One such
method is the Adam optimizer (Kingma and Ba, 2014).

2.5.1 Adam

The Adam method estimates the first and second moment (mean and variance) of the
gradient gt as

mt = β1mt−1 + (1− β1)gt, (2.10)

and

vt = β2vt−1 + (1− β2)gt � gt, (2.11)

respectively. Here, gt = ∇θJmini−batch(θ)|θ=θt , β1 as well as β2 are pre-defined constants,
and the moments are initialized as m0 = v0 = 0. Note that, due to the initialization, the
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moments are biased towards 0. In order to correct this bias, Kingma and Ba (2014) propose
to use the bias-corrected estimates

m̂t =
mt

1− βt1
,

v̂t =
vt

1− βt2
,

instead. The updates of the parameters in the Adam method are then computed as

θAdam
t+1 = θAdam

t − η√
v̂t + ε

� m̂t, (2.12)

where the square root and the division are componentwise. Commonly used values for the
constants are β1 = 0.9, β2 = 0.999, and ε = 10−8 (Kingma and Ba, 2014).

Weight decay:

Weight decay can be seen as a regularization technique, sharing many similarities with
ridge regression (Loshchilov and Hutter, 2017). For Adam, weight decay means adding a
term cwdθt to gt resulting in

ĝt = gt + cwdθt.

If we use Adam with weight decay, we replace gt with ĝt in Equation (2.10) and Equa-
tion (2.11). We will use Adam (with weight decay) for all numerical experiments in
Chapter 5.
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Chapter 3

Neural Ordinary Differential
Equations

In this chapter, we review neural ordinary differential equations (NODEs) and we show
how they can be used for binary classification. We demonstrate how one can infer model
parameters in the NODE framework from data and compare the adjoint sensitivity method
to the backpropagation algorithm. Lastly, we examine several different classes of NODEs.

3.1 Introduction

As explained in Section 2.3.3, the hidden state in a residual network is iteratively modified
as

zl+1 = zl + r(zl,θl). (3.1)

In the limit ‖r‖ → 0, Equation (3.1) can be expressed as an ordinary differential equation

dz(t)

dt
= r(z(t),θ(t)), t ∈ [0, T ],

z(0) = z0,
(3.2)

for some final time T . In a residual network r is generally just a two-layer neural network.
The idea of NODEs (Chen et al., 2018) is to replace r in the IVP (3.2) with an arbitrary
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neural network of the form f(z(t), t,θ) resulting in the IVP

dz(t)

dt
= f(z(t), t,θ), t ∈ [0, T ],

z(0) = z0.
(3.3)

Note that in Equation (3.3) all parameters θ are independent of t and f depends explicitly
on t. We will discuss commonly used structures of the dynamics f in Section 3.3. The
connection between residual neural networks and ODEs has been widely discussed in recent
years (e.g. Haber and Ruthotto, 2017; Lu et al., 2018; E, 2017).

Binary classification: We can use NODEs for binary classification by letting f be an
arbitrary neural network of the form f(z(t), t,θ) and computing the label of an observation
x as

l(x) =

{
+ if f̂(f(z(T ))) ≥ 0

− otherwise
,

where z(T ) is the solution of the IVP (3.3) with z0 = x and f̂ ∈ F2(d1 = 1, d2 = 1, g = σ);
the class of two-layer neural networks F2 was defined in Section 2.3.1. Note that we can
generally not compute z(T ) analytically and instead need to use an approximation zN
computed by a numerical ODE solver. We encourage the interested reader to compare this
approach to the standard neural network approach for binary classification in Section 2.3.1.

3.2 Learning of Neural Ordinary Differential Equa-

tions

Learning of NODEs means learning the parameters θ of the dynamics f(z(t), t,θ) in the
IVP (3.3). This can be done by either using the adjoint sensitivity method (Pontryagin
et al., 1962) and treating the ODE solvers as a black-box or by backpropagating through
the discretized version of the ODE.

3.2.1 The Adjoint Sensitivity Method

In this section, we show how to compute the derivatives of a loss function with respect to
the parameters θ of the dynamics f using the adjoint sensitivity method (Pontryagin et al.,

29



1962). We derive this algorithm by considering a constrained optimization problem; we
present this as an alternative to the derivation in Chen et al. (2018). We want to point out
that LeCun et al. (1988) used a similar approach to derive the standard backpropagation
algorithm as well as a generalization of the backpropagation algorithm to recurrent neural
networks that are governed by a differential equation.

Consider the constrained optimization problem

min
θ
C(z(T )) = min

θ
C

(
z(0) +

∫ T

0

f(z(t), t,θ) dt

)
,

subject to

h(z(t), ż(t),θ, t) =
dz(t)

dt
− f(z(t), t,θ) = 0,

g(z(0)) = z(0)− x = 0,
(3.4)

with C being a cost function. For ease of notation, we assume that z = z ∈ R, however,
the general Algorithm 2 can be used for d > 1 as well. The constraints (3.4) are enforced
by introducing the Lagrangian multipliers λ = λ(t) and µ and consider the Lagrangian

L = C(z(T )) +

∫ T

0

λ(t)h(t) dt+ µg.

Note that since we compute z(T ) as z(0) +
∫ T

0
f(z(t), t,θ) dt, the constraints (3.4) are

actually already satisfied by construction. The reason to introduce them is to derive a
tractable expression of dθC(z(T )) using dθL.

The derivative of L with respect to θ can be computed as

d

dθ
L = ∂z(T )C

d

dθ

∫ T

0

f dt+
d

dθ

∫ T

0

λh dt

= ∂z(T )C

∫ T

0

[∂zfdθz + ∂θf ] dt+

∫ T

0

λ [∂zhdθz + ∂żhdθż + ∂θh] dt,

where ∂rf and drf are short-hand notations for ∂f/∂r and df/dr, respectively. To eliminate
dθż, we integrate by parts∫ T

0

λ∂żhdθż dt = λ∂żhdθz
∣∣T
0
−
∫ T

0

[
λ̇∂żh+ λdt∂żh

]
dθz dt

= −
∫ T

0

λ̇dθz dt,
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where we used that ∂żh = 1 as well as dθz(0) = dθx = 0 and where we chose λ(T ) = 0.
The derivative of the Lagrangian then simplifies to

d

dθ
L =

∫ T

0

[(
∂z(T )C∂zf − λ̇+ ∂zhλ

)
dθz + ∂z(T )C∂θf + λ∂θh

]
dt.

To avoid having to compute dθz, we choose λ such that

∂z(T )C∂zf − λ̇+ ∂zhλ = 0. (3.5)

for all 0 < t < T . By definition of h, Equation (3.5) is equivalent to

∂z(T )C∂zf − λ̇− ∂zfλ = 0. (3.6)

Letting λ∗ = ∂z(T )C − λ, we can rewrite Equation (3.6) as

−λ̇∗ = λ∗∂zf,

with initial condition λ∗(T ) = ∂z(T )C−λ(T ) = ∂z(T )C. Using Equation (3.6), the derivative
of the Lagrangian with respect to θ further simplifies to

d

dθ
L =

∫ T

0

[
∂z(T )C∂θf + λ∂θh

]
dt

=

∫ T

0

λ∗∂θf dt

= −
∫ 0

T

λ∗∂θf dt.

Hence, we can compute the derivative of the Lagrangian with respect to θ by solving z(0)− z(T )
λ∗(0)− λ∗(T )

dθL

 =

∫ 0

T

 f
−λ∗∂zf
−λ∗∂θf

 dt, (3.7)

with initial condition λ∗(T ) = ∂z(T )C and z(T ) = z(0) +
∫ T

0
f dt. Note that since the con-

straints are satisfied by construction, we have that dθL = dθC(z(T )). In practice, we solve
Equation (3.7) using a numerical ODE solver. The full adjoint sensitivity method for NODEs
is summarized in Algorithm 2 where we use the abbreviation odesolve

(
f,x,

[
t(a), t(b)

])
to

describe the approximate solution of an IVP at time t(b) with dynamics f and solution x at
time t(a).
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Algorithm 2 The adjoint sensitivity method for NODEs

1: z(T ) = odesolve(f,x, [0, T ])
2: Compute λ∗(T ) = ∂z(T )C

3:

 z(0)
λ∗(0)

dθC(z(T ))

 = odesolve

 f
−(∂zf)Tλ∗

−(∂θf)Tλ∗

 ,
 z(T )
λ∗(T )

0

 , [T, 0]



3.2.2 Backpropagation Through Ordinary Differential Equation
Solvers

Instead of using the adjoint sensitivity method of Section 3.2.1, one can also learn the
parameters θ of the dynamics f(z(t), t,θ) using standard backpropagation through the
discretized version of the NODE. This approach is based on the observation that a discretized
NODE is itself a neural network. We demonstrate this procedure for the Euler method and
the midpoint method.

Euler’s network: Applying Euler’s method with N steps to the IVP (3.3), i.e.,

zn = zn−1 + hf(zn−1, tn−1,θ), (3.8)

for all n = 1, . . . , N and h = T/N , results in a “residual-like” neural network of the form

FEuler(N, f) :=
{
fEuler : Rd → Rd | x 7→

(
I + hf̂tN−1,θ

)
◦ · · · ◦

(
I + hf̂t0,θ

)
(z0)

}
.

Here we used short-hand notation f̂tn,θ(x) := f(x, tn,θ) and (f ◦ g)(x) := f(g(x)). The
relation between Euler’s network and a residual network becomes clearer when we consider,
for example, a residual network with two layers and Euler’s network with two steps, i.e.,
N = 2:

• Residual network: z2 = z1 + r(z1,θ1) = z0 + r(z0,θ0) + r(z0 + r(z0,θ0),θ1),

• Euler’s network: z2 = z1+hf(z1, t1,θ) = z0+hf(z0, t0,θ)+hf(z0+hf(z0, t0,θ), t1,θ).

Note that all dynamics in Euler’s network share the global set of parameters θ, while
the residual network has a different set of parameters for each layer. We now derive a
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backpropagation algorithm for Euler’s network. Let us denote the error at time step zn,
the partial derivative of a cost function C with respect to zn, as δn, i.e.,

δn =
∂C

∂zn

We first compute the approximate solution zn at every time step tn and store it in memory.
Next, we compute the error at time step N as δN = ∂C/∂zN . The error at time step tn is
related to the error at time step tn+1 by

δn =

(
I + h

(
∂f(zn, tn,θ)

∂zn

)T)
δn+1. (3.9)

The derivative of the cost function C with respect to the parameters of the dynamics f can
then be computed as

∂C

∂θ
=

N−1∑
n=0

h

(
∂f(zn, tn,θ)

∂θ

)T
δn+1. (3.10)

Proofs of Equation (3.9) and Equation (3.10) can be found in Appendix A. The Euler
backpropagation algorithm is summarized in Algorithm 3.

Algorithm 3 The Euler backpropagation algorithm

1: for n = 1, . . . , N do
2: zn = zn−1 + hf(zn−1, tn−1,θ)
3: end for
4: Compute δN = ∂C

∂zN
5: for n = N − 1, . . . , 1 do

6: δn =

(
I + h

(
∂f(zn,tn,θ)

∂zn

)T)
δn+1

7: end for

8: ∂C
∂θ

=
∑N−1

n=0 h
(
∂f(zn,tn,θ)

∂θ

)T
δn+1

Midpoint network: The explicit midpoint method is a two-stage Runge–Kutta method
which approximates the solution to the IVP (3.3) by

zn = zn−1 + hf

(
zn−1 +

h

2
f (zn−1, tn−1,θ) , tn−1 +

h

2
,θ

)
, (3.11)

33



for all n = 1, . . . , N and h = T/N , with N being the total number of steps. For notational
convenience, we can rewrite Equation (3.11) as

zn = zn−1 + hf
(
z̃n−1, t(n−1)∗ ,θ

)
, (3.12)

where

z̃n−1 = zn−1 +
h

2
f (zn−1, tn−1,θ) , (3.13)

and tn∗ = tn + h/2. The error at time time step tn is related to the error at time step tn+1

by

δn =

(
I + h

(
∂f(z̃n, tn∗ ,θ)

∂z̃n

(
I +

h

2

f(zn, tn,θ)

∂zn

))T)
δn+1, (3.14)

and the derivative of the cost function C with respect to θ can be computed as

∂C

∂θ
=

N−1∑
n=0

h

(
∂f(z̃n, t

∗
n,θ)

∂θ

)T
δn+1. (3.15)

Proofs for Equation (3.14) and Equation (3.15) can be found in Appendix A. The back-
propagation algorithm for the midpoint method is given in Algorithm 4. Note that this
approach can be extended to any explicit Runge–Kutta method, however, the notation can
become complicated.

Algorithm 4 The midpoint backpropagation algorithm

1: for n = 1, . . . , N do
2: z̃n−1 = zn−1 + h

2
f(zn−1, tn−1,θ)

3: zn = zn−1 + hf(z̃n−1, t(n−1)∗ ,θ)
4: end for
5: Compute δn = ∂C

∂zn
6: for n = N − 1, . . . , 1 do

7: δn =

(
I + h

(
∂f(z̃n,tn∗ ,θ)

∂z̃n

(
I + h

2
f(zn,tn,θ)

∂zn

))T)
δn+1

8: end for

9: ∂C
∂θ

=
∑N−1

n=0 h
(
∂f(z̃n,tn∗ ,θ)

∂θ

)T
δn+1
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3.2.3 Comparison of the Adjoint Sensitivity Method and Back-
propagation

We now compare the adjoint sensitivity method for NODEs (see Algorithm 2), where we use
Euler’s method to solve all IVPs, to the Euler backpropagation algorithm (see Algorithm 3).
For this example, we choose t = 0 and T = h and let z0 = x.

The adjoint sensitivity method with Euler discretization: After one Euler step,
we have z1 = x + f(x, 0,θ) and λ∗1 = ∂z1C. Using Equation (3.7), the derivative of the
cost function C with respect to the parameters θ can then be computed as

dC

dθ
= h

(
∂f(z1, h,θ)

∂θ

)T
λ∗1

= h

(
∂f(z1, h,θ)

∂θ

)T
∂C

∂z1

.

(A)

Euler backpropagation: The forward propagation of the Euler backpropagation algo-
rithm is equivalent to the above, i.e., z1 = x + f(x, 0,θ) and δ1 = λ∗1 = ∂z1C. Using
Equation (3.10), we have

dC

dθ
= h

(
∂f(x, 0,θ)

∂θ

)T
δ1

= h

(
∂f(x, 0,θ)

∂θ

)T
∂C

∂z1

.

(B)

The absolute difference in dθC found by the two methods (A) and (B) for one particular
parameter θ̃ is then given by

h

∣∣∣∣(∂θ̃f(z1, h,θ)− ∂θ̃f(x, 0,θ))T
∂C

∂z1

∣∣∣∣.
This problem is well-known in optimal control theory (e.g. Betts and Campbell, 2005; Hinze
and Rösch, 2012; Kindermann, 1980). The two approaches are known as first-optimize-
then-discretize and first-discretize-then-optimize, respectively. In this work, we focus on
the adjoint sensitivity method as the implementation works as a black box for any ODE
solver. Nonetheless, we want to bring to the reader’s attention, that it is not clear which
approach works better in practice.
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3.3 Choosing the Dynamics

In the NODE framework, one is free to choose any dynamics f of the form f(z(t), t,θ) for the
IVP (3.3). In this section, we review function classes that are implemented in (Grathwohl
et al., 2018). We further show why one should neither use autonomous NODEs nor linear
NODEs in z, i.e., neither f(z(t), t,θ) = f(z(t),θ) nor f(z(t), t,θ) = W (t)z(t) + b(t),
respectively. Lastly, we prove that picking f from a particular function class leads to
universal function approximation; this proof is heavily based on the results of Lin and
Jegelka (2018).

For the convenience of this section, let us define the Euler approximation to the IVP

dz(t)

dt
= f(z(t), t,θ), t ∈ [0, T ],

z(0) = x,

at time step n with respect to the variable initial value x as zn(x). Hence,

zn(x) = zn−1(x) + hf(zn−1(x), tn−1,θ), (3.16)

with

z0(x) = x. (3.17)

3.3.1 Problematic Neural Ordinary Differential Equations

Linear Neural Ordinary Differential Equations: Theorem 3.3.1 shows why linear
NODEs are problematic.

Theorem 3.3.1 Let zN be the Euler approximation to the IVP

dz(t)

dt
= W (t)z(t) + b(t), t ∈ [0, T ],

z(0) = z0,

at time T . Then we have that

zN = W̃z0 + b̃,

for some W̃ ∈ Rd×d and b̃ ∈ Rd.
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Theorem 3.3.1 implies that zN is a linear transformation of the initial value z0, and therefore
one cannot encode any non-linear relations in the “output” of linear NODEs using Euler’s
method. A proof of Theorem 3.3.1 can be found in Appendix B.

Autonomous Neural Ordinary Differential Equations: An autonomous NODE is
given by

dz(t)

dt
= f(z(t),θ), t ∈ [0, T ], (3.18)

z(0) = z0.

In Theorem 3.3.2 we show that no matter how expressive f is, and as we take infinitesimally
small time steps, the Euler approximation to the solution of the above IVP can never
converge to the tent function

h(x) =


1 + x if x ∈ [−1, 0]

1− x if x ∈ (0, 1]

0 otherwise

.

An example for dynamics of a non-autonomous NODE whose Euler approximation converges
to h pointwise is the following:

f(z(t), t) =


−Nz(t) if t = 0 and z(t) ∈ (−∞,−1] ∪ [1,∞)

N if t = 0 and z(t) ∈ (−1, 0]

N − 2Nz(t) if t = 0 and z(t) ∈ (0, 1)

0 otherwise

,

where N is the number of time steps.

Theorem 3.3.2 Let zn(x) be the Euler approximation to the solution of the autonomous
IVP (3.18) at time tn with respect to the variable initial value x ∈ R. Then, there is no
dynamics f such that

lim
N→∞

|zN(x)− h(x)| = 0 ∀x ∈ R,

where

h(x) =


1 + x if x ∈ [−1, 0]

1− x if x ∈ (0, 1]

0 otherwise

.
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A proof of Theorem 3.3.2 can be found in Appendix B. This result renders autonomous
NODEs impractical, and therefore from this point onward we only consider non-autonomous
NODEs.

3.3.2 Standard Dynamics

The difficulty with choosing the dynamics of the IVP (3.3) is to find an effective way to
incorporate the time variable t. The discussed neural network dynamics in this section have
time in some form as an input to every layer. The simplest approach is to concatenate time
to the input of every layer, resulting in the function class

Fconcat(g,d) =

{
fconcat | x 7→ ÂL+1

[
g

(
ÂL

[
xL

t

]
+ bL

)
, t

]T
+ bL+1

}
,

with fconcat : Rd → Rd and

xl = g

(
Âl−1

[
xl−1

t

]
+ bl−1

)
= g

(
Âl−1

1 xl−1 + Âl−1
2 t+ bl−1

)
,

(3.19)

for all l = 2, 3, . . . , L and x1 = x. Furthermore, d = {d1, . . . ,dL} and g is a non-linear
function. The dimensions of the matrices and vectors are:

• Â1 ∈ Rd1×(d+1) and b1 ∈ Rd1 ,

• Âl ∈ Rdl×(dl−1+1) and bl ∈ Rdl for all l = 2, . . . , L,

• ÂL+1 ∈ Rd×(dL+1) and bL+1 ∈ Rd.

The submatrices Âl
2 in Equation (3.19) are of size Rdl×1 for all l = 1, . . . , L and Rd×1 for

l = L+ 1, and can therefore be regarded as vectors.

From now on, we refer to NODEs with dynamics fconcat ∈ Fconcat(g,d) as concat net-
works. As can be seen in Equation (3.19), the building block of the concat network
is

Â

[
x
t

]
+ b = Â1x + Â2t+ b.
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Architecture fblock(x, t) # of parameters

concat Ax+ b+ tc dout(din + 2)
squash σ(tc+ d)� (Ax+ b) dout(din + 3)
concatsquash σ(tc+ d)� (Ax+ b) + te dout(din + 4)
blend (Ax + b)(1− t) + (Bx+ d) 2dout(din + 1)

Table 3.1: Function fblock and number of learnable parameters for the building blocks
of NODE dynamics. The matrix A and vector b are elements of Rdout×din and Rdout ,
respectively. The sigmoid function is defined in Table 2.2.

The functions of the building blocks for the concat network and three other networks, as
well as the number of parameters for each block, are presented in Table 3.1. For a better
understanding, the four building blocks are visualized in Figure 3.1 for two input and three
output variables each.
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(a) concat
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t

1 σ

σ

σ
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(b) squash
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1 σ

σ
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y1
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(c) concatsquash

x2

x1

t

1

y1

y2

y3

(d) blend

Figure 3.1: Example building blocks for the dynamics of NODEs with din = 2 and dout = 3.
Solid and dashed lines represent a multiplication with weights and 1, respectively. Dotted
lines represent the function 1− t. All inputs to round nodes are added up. Black square
nodes indicate a multiplication of the inputs (from left and below) and the intersection of
σ with a path means applying the sigmoid function (see Table 2.2).
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x1
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1

t

y1

y2

f

Figure 3.2: Hypernetwork NODE building block for din = dout = 2; nodes and lines behave
as described in Figure 3.1 and f represents a hypernetwork.

3.3.3 Hypernetworks and Universal Function Approximation

In this section, we describe a fundamentally different class of NODEs and how its dis-
cretization leads to universal function approximaton. This class, dubbed hypernetwork
NODEs, is implemented in Grathwohl et al. (2018). The building block for the dynamics of
hypernetwork NODEs is

A(t) + b(t),

with the elements of A(t) and b(t) being the output of a hypernetwork with input t. To
the best of our knowledge, the idea of hypernetworks to learn the weights of a neural
network was introduced in Ha et al. (2016). A hypernetwork building block is visualized in
Figure 3.2. Theorem 3.3.3 proves that choosing f from the function class{

funiversal | x 7→ V (t)ReLU(U (t)x + u(t)),V ∈ Rd×1,U ∈ R1×d, u ∈ R
}
, (3.20)

with the elements of V (t), U(t) and u(t) being the output of a hypernetwork leads to
universal function approximaton when the hypernetwork is expressive enough and an
appropriate discretization is chosen.

Theorem 3.3.3 For any d ∈ N, Lebesgue-integrable function g : Rd → R and ε > 0, there
is a linear operator L : Rd → R, a two-layer hypernetwork fhyper and a finite N such that∫

Rd

‖g(x)− L ◦ zN(x)‖ dx ≤ ε,
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where zN (x) is the Euler approximation to the IVP (3.3), with dynamics funiversal and initial
value x, at time t = T . The width of the hypernetwork is exactly 2dN +N .

A proof of Theorem 3.3.3 can be found in Appendix B.
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Chapter 4

Neural Ordinary Differential
Equations for Generative Modeling

In this chapter, we review reversible generative models, a class of generative models that
makes use of the change of variables formula. We show how one can infer model parameters
from data and how reversible generative models can improve variational autoencoders (see
Section 2.4.2). We then give a detailed summary of how NODEs can be used for generative
modeling (Chen et al., 2018; Grathwohl et al., 2018).

4.1 Reversible Generative Models

Reversible generative models are a class of generative models that are based on the change
of variables formula (CVF). The basic idea is to build a complex distribution implicitly by
transforming a simple base distribution.

4.1.1 The Change of Variables Formula

The change of variables formula (4.1) is formalized in Theorem 4.1.1.

Theorem 4.1.1 (Rudin (2006)) Given a random variable z0 ∼ pz0(z0), the density of
x = f(z0) is given by

px(x) =
pz0(z0)∣∣∣det ∂f

∂z0

∣∣∣ , (4.1)
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when f : Rd → Rd is bijective and differentiable.

Note that the CVF (4.1) involves the costly computation of the determinant of the Jacobian
∂f/∂z0, which generally has time cost O(d3) (Grathwohl et al., 2018). Reversible generative
models generally choose f from a class of functions such that the computation of the
determinant becomes tractable.

4.1.2 Normalizing Flows

Normalizing flows are based on the work by Tabak et al. (2010) and Tabak and Turner
(2013). Given K transformations f1, . . . , fK , a sample z0 ∼ pz0(z0) can be transformed as

zK = fK ◦ · · · ◦ f2 ◦ f1(z0).

Applying the CVF (4.1) iteratively, the density of zK is given by

pzK (zK) =
pzK−1

(zK−1)∣∣∣det ∂fK
∂zK−1

∣∣∣
=

pzK−2
(zK−2)∣∣∣det ∂fK

∂zK−1

∣∣∣∣∣∣det ∂fK−1

∂zK−2

∣∣∣
=

pz0(z0)∏K
i=1

∣∣∣det ∂fi
∂zi−1

∣∣∣ ,
and the log-density is

log pzK (zK) = log pz0(z0)−
K∑
i=1

log

∣∣∣∣det
∂fi
∂zi−1

∣∣∣∣. (4.2)

We now review popular choices of transformations that make the computation of the
determinant of the Jacobian tractable.

Planar flows (Rezende and Mohamed, 2015): Planar flows are based on transfor-
mations fplanar from the class

Fplanar(g) := {fplanar : Rd → Rd|x 7→ x+ ug(w · x+ b),u ∈ Rd,w ∈ Rd, b ∈ R},
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where g is generally a smooth non-linear function. The Jacobian of fplanar ∈ Fplanar(g) can
be computed as

∂fplanar

∂x
= I + uwTg′(w · x+ b).

Using the matrix determinant lemma (e.g. Harville, 1998)

det
(
A+ v1v

T
2

)
=
(
1 + vT2A

−1v1

)
detA,

for an invertible matrix A and column vectors v1 and v2, we compute the determinant of
the Jacobian as

det
∂fplanar

∂x
= 1 + u ·wg′(w · x+ b).

Hence, the log-density of zk is

log pzK (zK) = log pz0(z0)−
K∑
i=1

log |1 + ui ·wig
′(wi · zi−1 + bi)|. (4.3)

The flow defined by Equation (4.3) modifies pz0 by applying contractions and expansions in
the direction perpendicular to wi ·zi−1 + bi = 0 for all i = 1, . . . , K (Rezende and Mohamed,
2015). Note that the elements of Fplanar(g) are not necessarily invertible. However, Rezende
and Mohamed (2015) showed that w · u ≥ −1 is a sufficient condition for invertibility if
g(x) = tanh(x). The constraint w · u ≥ −1 can be enforced by replacing u with û after
every update of the weights, where

û(u,w) = u+ [m(w · u)−w · u]
w

‖w‖2
2

,

with m(x) = −1 + log(1 + expx). Even though the constraint w · u ≥ −1 ensures that
an inverse of f exists, not having an analytical formulation of f−1 renders the planar flow
impractical for direct training on data, as we will see in Section 4.1.3.

NICE (Dinh et al., 2014): The NICE framework keeps the determinant of the Jacobian
tractable by partitioning dimensions. The basic idea is to split x = (xI1 ,xI2) ∈ Rd and
apply the transformation

f(x) =

[
xI1

xI2 +m(xI1)

]
,
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where m is a neural network. The index sets are generally chosen to be

I1 = {1, 2, · · · , |I1| − 1, |I1|}

and

I2 = {|I1|+ 1, · · · , d− 1, d}.

This building block has unit Jacobian-determinant for any m and the inverse is given by

f−1(f(x)) =

[
f(x)I1

f(x)I2 −m(f(x)I1)

]
.

In order to allow all dimensions to influence each other and make the model non volume-
preserving1, Dinh et al. (2014) stack multiple building blocks and apply a scaling factor in
the last term, e.g.,

f
(1)
I1

= xI1 ,

f
(1)
I2

= xI2 +m(1)(xI1),

f
(2)
I1

= f
(1)
I1

+m(2)
(
f

(1)
I2

)
,

f
(2)
I2

= f
(1)
I2
,

f
(3)
I1

= f
(2)
I1
,

f
(3)
I2

= f
(2)
I2

+m(3)
(
f

(2)
I1

)
,

f(x) = exp(s)�
(
f (3) ◦ f (2) ◦ f (1)

)
(x),

1A volume-preserving density transformation has unit Jacobian determinant.
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with neural networks m(1), m(2), and m(3) and the exponential function is applied element-
wise, i.e., (exp s)i = exp si. The log-density of the above is

log pz1(z1) = log pz0(z0)− log

∣∣∣∣det
∂f

∂z0

∣∣∣∣
= log pz0(z0)− log

∣∣∣∣∣det
∂ exp(s)�

(
f (3) ◦ f (2) ◦ f (1)

)
(z0)

∂z0

∣∣∣∣∣
= log pz0(z0)− log

∣∣∣∣∣det
∂
(
exp(s)� f (3)

)
∂f (2)

∂f (2)

∂f (1)

∂f (1)

∂z0

∣∣∣∣∣
= log pz0(z0)− log

∣∣∣∣∣det
∂
(
exp(s)� f (3)

)
∂f (2)

∣∣∣∣∣ (
since ∂f (1)f

(2) = I and ∂z0f
(1) = I

)
= log pz0(z0)− log |det diag(exp(s))|

(
since ∂f (2)f

(3) = I
)

= log pz0(z0)−
d∑
i=1

si,

where

(diaga)ij =

{
ai if i = j,

0 otherwise
.

Real NVP (Dinh et al., 2017): Real NVP builds on the work of Dinh et al. (2014)
and modifies the building block as

f(x) =

[
xI1

xI2 � exp(l(xI1)) +m(xI1)

]
,

where both l and m are neural networks. The determinant of the Jacobian is then given as

det
∂f

∂x
= exp

 |I2|∑
i=1

l(xI1)i

 .
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Autoregressive transformations: In this paragraph, we summarize how to use autore-
gressive models as normalizing flows; this idea was, to the best of our knowledge, introduced
in Papamakarios et al. (2017). Consider an autoregressive model where the conditionals are
modeled as

p(xoi | xo<i
) = N

(
xoi | µoi , (expαoi)

2
)
,

and the permutation o is in order, i.e., o = 1, . . . , d. This ordering implies

p(xi | x1:(i−1)) = N
(
xi | µi, (expαi)

2
)
,

where µi = fµi(x1:(i−1)), αi = fαi
(x1:(i−1)) and x = 1 : (i− 1) = [x1, . . . ,xi−1]

T . One can
generate a sample xauto by sequentially sampling each dimension, i.e.,

(xauto)i = u expαi + µi, (4.4)

where u ∼ N (0, 1). Equation (4.4) shows that we can express the model as x = f(u),
where u ∼ N (0, I). A drawback of autoregressive transformations are that they require d
evaluations to compute their inverse:

ui = (xi − µi) exp(−αi).

The determinant of the Jacobian is given as

det ∂uf = exp

(
d∑
i=1

αi

)
.

Autoregressive transformations achieve state-of-the-art results for density estimation on
tabular datasets (Oliva et al., 2018; Papamakarios et al., 2017).

4.1.3 Training on Data

Given a dataset X =
{
x(i)
}m
i=1
∼ pdata, we want to infer the parameters λ = {λ1, . . . ,λK},

such that the resulting density pλzK (z) is close to pdata. It is a well-known fact that the MLE
of the parameters using X is a Monte Carlo approximation to finding the parameters that
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minimize the KL divergence

DKL(pdata ‖ pλzK ) =

∫
z

pdata

[
log pdata − log pλzK

]
dx

= −
∫
z

pdata log pλzK dx + c

= −Epdata [log pλzK ] + c

≈ − 1

m

m∑
i=1

log pλzK
(
x(i)
)

+ c, x(i) ∼ pdata,

where the constant c is the negative entropy of the data distribution, i.e.,

c =

∫
z

pdata log pdata dx.

Hence,

arg min
λ

DKL(pdata ‖ pλzK ) ≈ arg max
λ

m∑
i=1

log pλzK
(
x(i)
)
. (4.5)

As we have an implicit model for qλzK , we need to address how qλzK (x) is actually computed.
Given a reversible generative model, we can compute the latent variables using the recursive
formula

zi−1(x) = f−1
i (zi(x)), (4.6)

for all i = K, . . . , 1 with zK(x) = x. Given, z0, . . . , zK , the quantity qλzK (x) can be computed
using Equation (4.2). One can see from Equation (4.6), why having an analytical inverse is
important, and therefore why planar flows are impractical for inference from data.

4.1.4 Improving Variational Inference

In this section, we address how reversible generative models can be used to improve
variational autoencoders (see Section 2.4.2). The inference network of VAEs is generally of
the form

q(z | x,φ) = N
(
z | µ, diag

(
σ2
))
,
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where µ and σ are generally outputs of a neural network, i.e., µ = µ(x) and σ = σ(x). In
order to make the inference network more expressive, it is possible to use a normalizing
flow to transform samples from q(z | x,φ), i.e.,

zNF
K = fK ◦ · · · ◦ f1(z),

where z ∼ q(z | x,φ). The resulting inference network is then given by

qNF
K (z | x,φ,λ)(zNF

K ) =
q(z | x,φ)(z)∏K
i=1

∣∣∣det ∂fi
∂zNF

i−1

∣∣∣ ,
where z0 = z. A lower bound to the marginal log-likelihood p(x | θ) (see Section 2.4.2) can
be computed as

−FNF(x) = −DKL(qNF
K (z | x,φ,λ) ‖ p(z | θ)) + EqNF

K
[log p(x | z,θ)]. (4.7)

Given a dataset X =
{
x(i)
}m
i=1

, all three sets of parameters can then be simultaneously
learned by

ϕ∗NF = arg max
ϕNF

−
m∑
i=1

F
(
x(i)
)
,

where ϕNF = {θ,φ,λ}.

Samples from the VAE can be generated by first sampling z ∼ N (0, I), then trans-
forming z to zNF

K = fK ◦ · · · ◦ f1(z), and lastly sampling x∗ ∼ p
(
x | zNF

K ,θ
)
. Note that we

could choose the flow parameters λ to be data-dependent, i.e., λ = λ(x). This modification
might help in maximizing the negative free energy (4.7), however, it makes the VAE lose
the ability to draw (data-independent) samples.

4.2 Generative Modeling with Neural Ordinary Dif-

ferential Equations

In this section, we review how NODEs can be used for generative modeling. This idea was
introduced in Chen et al. (2018) and Grathwohl et al. (2018).
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4.2.1 The Instantaneous Change of Variables Formula

Density estimation with NODEs is based on a continuous formulation of the change of
variables formula (4.1). Consider the IVP where the initial condition is drawn from some
probability distribution pz0 , i.e.,

dz(t)

dt
= f(z(t), t,θ), t ∈ [0, T ],

z(0) ∼ pz0(z(0)).

Chen et al. (2018) showed that when z(t) is transformed by the dynamics f(z(t), t,θ), the
log-density also follows a differential equation

d log p(z(t), t)

dt
= − tr

∂f

∂z
, t ∈ [0, T ],

with initial condition log p(z(0), 0) = log pz0(z(0)); the proof of this is based on the definition
of the derivative and on Jacobi’s formula (Chen et al., 2018). The complete IVP is then
given as

d

dt

[
z(t)

log p(z(t), t)

]
=

[
f(z(t), t,θ)
− tr ∂zf

]
, t ∈ [0, T ],

z(0) ∼ pz0(z(0)),

log p(z(0), 0) = log pz0(z(0)).

(4.8)

If we use p(z(T ), T ) as the model distribution for a generative model, we refer to the resulting
model as a continuous normalizing flow (CNF) (Grathwohl et al., 2018). Continuous
normalizing flows have two advantages over the reversible generative models discussed in
Section 4.1.2:

1. instead of the log determinant, one just needs to compute the trace of the Jacobian
which is generally computationally cheaper;

2. the dynamics f of the differential equation do not need to be bijective; the IVP (4.8)
has a unique solution if ∂zf and f are uniformly Lipschitz continuous in z(t) and
continuous in t according to Theorem 2.1.1.

We can learn the parameters θ of f , which inherently determine the model distribution
p(z(T ), T ), by maximum likelihood estimation (similar to Equation (4.5))

arg max
θ

m∑
i=1

log p
(
x(i), T

)
, x(i) ∼ pdata.
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In order to compute p
(
x(i), T

)
we first need to compute the initial value z(i)(0) that

generated x(i) by computing

z(i)(0) = z(i)(T ) +

∫ 0

T

f
(
z(i)(t), t, θ

)
dt,

with z(i)(T ) = x(i). We can then compute log p
(
x(i), T

)
as

log p
(
x(i), T

)
= log pz0

(
z

(i)
0

)
−
∫ T

0

tr ∂zf dt. (4.9)

The adjoint method for CNFs to compute the gradients of a cost function C with respect
to θ, given a dataset X, is summarized in Algorithm 5; a derivation, based on constrained
optimization, can be found in Appendix C.

Algorithm 5 The adjoint sensitivity method for CNFs

1:

[
z(0)

log p(z(T ), T )− log p(z(0), 0)

]
= odesolve

([
f

tr ∂zf

]
,

[
x
0

]
, [T, 0]

)
2: Compute ∂C := ∂log p(z(T ),T )C ((log p(z(T ), T )− log p(z(0), 0)) + log pz0(z(0)))

3:

 z(T )
λ∗(T )
dθC

 = odesolve


 f

−∂C∂z tr ∂zf − (∂zf)T λ∗

− (∂θf)T λ∗

 ,
 z(0)

∂C
∂ log pz0

z(0)

−∂C
∫ 0

T
tr ∂zf dt

 , [0, T ]



4.2.2 Stacking Continuous Normalizing Flows

As shown in Section 4.1.2 for the NICE architecture (Dinh et al., 2014), generative models
based on the normalizing flow idea can, and often do, compose many flows to improve
performance. In this section, we show how to stack multiple CNFs.

In Section 4.2.1, we assumed that the probability distribution pz0 is pre-defined. In
order to stack two CNFs, we now assume that pz0 is the output from another CNF. Hence,
instead of computing log p

(
x(i), T

)
from Equation (4.9) directly, we first need to compute

log pz0
(
z(i)(0)

)
= log p̂

(
z(i)(0), T̂

)
= log p̂ẑ0

(
ẑ(i)(0)

)
−
∫ T̂

0

tr ∂ẑf̂ dt.
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where pẑ0 is a known distribution and ẑ(i)(0) can be computed as

ẑ(i)(0) = ẑ(i)(T̂ ) +

∫ 0

T̂

f̂
(
ẑ(i)(t), t̂, θ̂

)
dt̂,

with ẑ(i)(T ) = z(i)(0). Finally, we can compute log p
(
x(i), T

)
as

log p
(
x(i), T

)
= log pz0

(
z

(i)
0

)
−
∫ T

0

tr ∂zf dt

= log p̂ẑ0
(
ẑ(i)(0)

)
−
∫ T̂

0

tr ∂ẑf̂ dt̂−
∫ T

0

tr ∂zf dt.

Doing this recursively, we can stack an unrestricted amount of CNFs. In Chapter 5, we will
make use of this by stacking up to five CNFs.

4.2.3 Trace Estimation

To compute the trace of the Jacobian, one needs to compute the derivatives ∂fi
∂zi

for all
i = 1, . . . , d, which is approximately as expensive as d evaluations of f (Grathwohl et al.,
2018). On the other hand, using reverse-mode automatic differentiation (Linnainmaa, 1976),
vector-Jacobian products of the form vT ∂f

∂z
can be computed for approximately the cost of

one evaluation of f (Grathwohl et al., 2018).

Hutchinson’s trace estimator (Hutchinson, 1990; Skilling, 1989) gives an unbiased estimate
of the trace as

trA = Eε∼pε
[
εTAε

]
,

for any square matrix A, with the requirements E[ε] = 0 and Cov[ε] = I. Hence, instead
of computing the trace of the Jacobian for approximately the cost of d evaluations of f ,
we can approximate it by εT∂zfε for approximately the cost of one evaluation of f and
one vector-vector product (negligible cost). The distribution pε is typically chosen to be
N (0, I) or the Rademacher distribution (Grathwohl et al., 2018). Approximating the trace
of the Jacobian is especially useful when the dimensionality of the data is large, e.g., for
high-quality images.
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4.3 Problems of the Discretized Instantaneous Change

of Variables Formula

In this section, we investigate some issues of the discretized instantaneous CVF by comparing
it to the standard CVF.

4.3.1 Euler Discretization

We start by comparing the standard CVF to the Euler-discretized instantaneous CVF. Let
s = [z(t), t]T ∼ p(s) with

p(s) = pz(t)(z(t))δ(t = t)

where δ is the Dirac delta distribution. Furthermore, define the map fEuler : Rd+1 → Rd+1

as

fEuler(s) =

[
z(t) + hf(s)

t + h

]
.

The random variable y = fEuler(s) has a density function defined by the CVF (4.1)

p(y) =
p(s)

|det ∂sfEuler|
,

where the Jacobian is

(∂sfEuler)ij =



1 + h∂zjfi if i = j and i < d+ 1

h∂zjfi if i 6= j and i < d+ 1

0 if i < d+ 1 and j = d+ 1

0 if i = d+ 1 and j < d+ 1

1 if i = j = d+ 1

.

The Jacobian is a block matrix with zero lower-left and upper-right blocks, i.e.,

∂sfEuler =

[
J1,1 0
0T 1

]
,
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where J1,1 ∈ Rd×d. By the block determinant formula (e.g. Trefethen and Bau III, 1997),
we can compute the determinant of the Jacobian as

det ∂sfEuler = det(J1,1) det 1 = detJ1,1.

Using that J1,1 = I + hĴ1,1, with (
Ĵ1,1

)
ij

= ∂zjfi,

we can rewrite the determinant of the Jacobian as (Rezende et al., 2019)

det ∂sfEuler = detJ1,1 = det
(
I + hĴ1,1

)
= 1 + h tr Ĵ1,1 +O

(
h2
)
.

Hence, the density of y is given by

p(y) =
p(s)∣∣∣1 + h tr Ĵ1,1 +O (h2)

∣∣∣ . (4.10)

Note that for d = 1 the determinant of the Jacobian is exactly 1 + h∂zf , and therefore

p(y) =
p(s)

|1 + h∂zf |
.

Let us now consider one Euler step of the instantaneous change of variables formula, i.e.,

log p(z(h), h) = log p(z(0), 0)− h tr ∂zf(z(0), 0),

where z(h) = z(0) + hf(z(0), 0). Applying the exponential function yields

p(z(h), h) = p(z(0), 0) exp(−h tr ∂zf(z(0), 0))

=
p(z(0), 0)

exp(h tr ∂zf(z(0), 0))

=
p(z(0), 0)∑∞

k=0
hk(tr ∂zf(z(0),0))k

k!

.

Letting t = 0 for the CVF, we can see that the difference of the CVF and the discretized
instantaneous change of variables formula is∣∣∣∣p(z(h), h)− p(y)

p(s)

∣∣∣∣ =

∣∣∣∣∣ 1

|1 + h tr ∂zf(z(0), 0) +O (h2)|
− 1∑∞

k=0
hk(tr ∂zf(z(0),0))k

k!

∣∣∣∣∣,
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using p(s) = p(z(0), 0). For sufficiently small h2, the above is O(h2). Note that when we
use trace estimation, as described in Section 4.2.3, the error is O(h) even for sufficiently
small h. Furthermore, for too large h, the error is O(1). We make this difference clear by
considering an example.

Transforming a one-dimensional normal distribution: Let f(z, t) = µ(t) + z(t)σ(t)
with σ(t) > 0 for all t ∈ [0, T ] and let p(z(0), 0) = N (z(0) | 0, 1). The CVF with the Euler
map fEuler transforms p(z(0), 0) as

p(y) =
p(z(0), 0)

1 + hσ(0)
,

with

y1 = z(0) + hµ(0) + hz(0)σ(0)

= hµ(0) + (1 + hσ(0))z(0),

and therefore

p(y1, t+ h) =
N (z(0) | 0, 1)

(1 + hσ(0))

=
N
(

y1−hµ(0)
1+hσ(0)

| 0, 1
)

(1 + hσ(0))

= N (y1 | hµ(0), (1 + hσ(0))) .

On the other hand, one Euler step of the instantaneous change of variables formula gives

p(z(h), t+ h) =
p(z(0), 0)∑∞
k=0

hk(σ(0))k

k!

=
p(z(0), 0)

1 + hσ(0) +
∑∞

k=2
hk(σ(0))k

k!

,

which is not even a density function since∫
R
p(z(h), t+ h) dz(h) <

∫
R
p(y1, t+ h) dy1 = 1.

Hence, p(z(h), t+ h) is equal to sN (y1 | hµ(0), (1 + hσ(0))) for some 0 < s < 1.

2In particular h small enough such that 1 + h tr Ĵ1,1 +O
(
h2
)
> 0 and we can drop the absolute value

in Equation (4.10).
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4.3.2 One-Dimensional Midpoint Discretization

We now examine how the discrepancy of the CVF and the discretized instantaneous CVF
behaves for a higher-order ODE solver. It is not trivial to do this for an arbitrary method,
however, we can explore how the discrepancy behaves for the one-dimensional midpoint
discretization.

We define the map fMP : R2 → R2 as

fMP(s) =

[
z(t) + hf

(
z(t) + h

2
f(s), t + h

2

)
t + h

]
,

where s = [z(t), t]T . The determinant of the Jacobian is

det ∂sfMP = 1 + h∂z(t)f

(
z(t) +

h

2
f(s), t +

h

2

)
= 1 + h∂z(t)+h

2
f(s)f

(
z(t) +

h

2
f(s), t +

h

2

)
∂z(t)

(
z(t) +

h

2
f(s)

)
= 1 + h∂zf

(
z(t) +

h

2
f(s), t +

h

2

)(
1 +

h

2
∂zf (z(t), t)

)
= 1 + h∂zf

(
z(t) +

h

2
f(s), t +

h

2

)
+
h2

2
∂zf

(
z(t) +

h

2
f(s), t +

h

2

)
∂zf (z(t), t) .

On the other hand, one midpoint step of the instantaneous change of variables formula
gives

log p(z(h), h) = log p(z(0), 0)− h∂zf

(
z̃, t+

h

2

)
where z̃ = z(0) + h

2
f(z(0), 0). Applying the exponential yields

p(z(h), h) =
p(z(0), 0)

1 + ∂zf
(
z̃, t+ h

2

)
+
∑∞

k=2

hk(∂zf(z̃,t+h
2 ))

k

k!

,

and therefore we have the same error behavior with respect to h as in Section 4.3.1. This
implies that the “local density truncation error” of the midpoint-discretized instantaneous
change of variables formula is generally O (h2). However, the local truncation error of
the midpoint method for a standard ODE is O (h3), and therefore it is questionable if
higher-order ODE solvers remain higher-order accurate when used in Algorithm 5. This
result motivates the use of lower-order accurate adaptive ODE solvers as they use less
function evaluations per step than higher-order accurate adaptive ODE solvers.
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Chapter 5

Experiments

In this chapter, we investigate the influence of the dynamics f from the IVP (4.8) and the
numerical ODE solver on numerical experiments for CNFs. We compare the performance
of models using the dynamics architectures concat, squash, and concatsquash (see Fig-
ure 3.1). We train models using both dopri5 and ah2 (see Section 2.1.2).

In Section 5.1, we train models for density estimation on a two-dimensional toy dataset
and generate samples using the trained models. In Section 5.2, we train models for density
estimation on two higher-dimensional tabular datasets. In Section 5.3, we test the ability
of continuous normalizing flows to improve variational autoencoders on an image dataset.

Software setup:

We use PyTorch (Paszke et al., 2017), an open source machine learning library, for all
experiments. On top of PyTorch, we use the torchdiffeq1 library (Chen et al., 2018)
which provides ODE solvers and an implementation of the adjoint method. Our numerical
experiments are based on code2 from Grathwohl et al. (2018). Within this work, we
contributed to torchdiffeq by implementing the adaptive Heun method ah23. The
code and scripts to reproduce our results can be found at https://github.com/timudk/
Generative-Modeling-with-NODEs.

1The library can be found at https://github.com/rtqichen/torchdiffeq.
2The code can be found at https://github.com/rtqichen/ffjord.
3The merged pull request can be found at https://github.com/rtqichen/torchdiffeq/pull/80.
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Hardware setup:

Numerical experiments on two-dimensional toy datasets are executed on two Intel Xeon
E5-2630 v2 CPUs with six cores each. All other experiments are executed on one GeForce
GTX 1080 Ti GPU.

5.1 Density Estimation on 2D Toy Data

As a first numerical test, we train models on the two-dimensional toy dataset 8gaussians.
A description of this dataset can be found in Appendix D. We set the learning rate to
10−3 and train the model for 104 iterations with batch size 102. As new training data is
generated in every iteration, we basically train the models for one epoch with a training
set of size 106. We use the Adam optimizer with a weight decay constant cwd = 10−5 (see
Section 2.5.1).

Dynamics structure:

We choose the matrix and vector dimensions to be d = {64, 64, 64} (see Section 3.3.2) and
let the hyperbolic tangent be the non-linearity of the neural network. We compute the
trace explicitly, i.e., we do not make use of the trace estimation discussed in Section 4.2.3.

ODE solver setup 1:

We set the final time to T = 0.5. To save function evaluations in the early stage of training,
we apply a tolerance scheduler

tol(n) = max (final tol, start tol exp (−n/decay factor)) ,

where the decay factor is computed as

decay factor =
warmup steps

log start tol− log final tol
,

and n is the number of iterations. We experiment by using 0, 1000, and 10000 warmup
steps. An example for a tolerance scheduler is visualized in Figure 5.1. For training
with dopri5, we set the absolute and relative final tolerances to 10−5 and for ah2 we set
both final tolerances to 10−3. These tolerances were chosen such that dopri5 and ah2 have
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Figure 5.1: An example of a tolerance scheduler. The solid, dotted, and dash-dotted lines
represent the tolerance at epoch n for 0, 1000, and 10000 warmup steps, respectively.

roughly the same number of function evaluations. The starting tolerances are chosen to be
two orders of magnitude larger than the final tolerances, i.e., 10−3 and 10−1 for dopri5 and
ah2, respectively. For testing, we solve the arising ODEs to high precision using dopri5

with absolute and final tolerances of 10−5 for all models.

Results 1:

We compare the number of forward function evaluations per iteration (NFE), number
of backward function evaluations per iteration (NBE), and the negative log-likelihood
(NLL) on a test set with 1000 examples; note that a minimal NLL is desirable. For each
combination of dynamics architecture, solver, and number of warmup steps we train five
models with different random seeds and compute the sample mean and the uncorrected
sample standard deviation of the aforementioned quantities. The results for dopri5 and
ah2 are given in Table 5.1 and Table 5.2, respectively.

For the same dynamics architecture, with varying solver and number of warmup steps,
the NLL does not seem to vary much. This observation suggests that for both choices of
ODE solvers and all three choices of warmup steps the models converged to their optimal
solution.
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Architecture NFE NBE NLL

concat 59.1± 0.52 39.4± 0.09 2.8577± 1.14× 10−3

squash 67.0± 1.80 41.2± 0.96 2.8524± 9.70× 10−4

concatsquash 65.8± 3.34 43.2± 1.52 2.8540± 2.86× 10−3

concat 58.1± 0.49 38.6± 0.07 2.8577± 1.16× 10−3

squash 66.2± 1.77 40.4± 0.97 2.8522± 1.18× 10−3

concatsquash 64.8± 3.34 42.2± 1.55 2.8540± 2.84× 10−3

concat 46.4± 0.24 29.9± 0.10 2.8575± 1.17× 10−3

squash 53.8± 1.85 30.6± 0.37 2.8522± 1.41× 10−3

concatsquash 51.7± 2.63 31.6± 0.88 2.8539± 2.85× 10−3

Table 5.1: Mean and one standard deviation on 8gaussian (test set) using dopri5 with 0,
1000, and 10000 warmup setps (from top to bottom in this order) and final absolute/relative
training tolerance 10−5.

Architecture NFE NBE NLL

concat 54.5± 0.26 57.4± 0.22 2.8577± 1.11× 10−3

squash 54.3± 0.57 55.2± 0.47 2.8523± 1.01× 10−3

concatsquash 55.0± 1.08 56.0± 0.87 2.8540± 2.77× 10−3

concat 52.2± 0.10 55.0± 0.13 2.8576± 9.32× 10−4

squash 52.5± 0.53 53.3± 0.40 2.8529± 6.70× 10−4

concatsquash 53.0± 1.05 54.0± 0.82 2.8541± 2.23× 10−3

concat 26.9± 0.05 27.2± 0.07 2.8578± 9.95× 10−4

squash 27.0± 0.42 26.6± 0.26 2.8524± 9.25× 10−4

concatsquash 26.8± 0.63 26.7± 0.45 2.8526± 2.64× 10−3

Table 5.2: Mean and one standard deviation on 8gaussian (test set) using ah2 with 0,
1000, and 10000 warmup steps (from top to bottom in this order) and final absolute/relative
training tolerance 10−3.
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Models with the squash dynamics architecture have the lowest NLL for all combina-
tions of ODE solvers and number of warmup steps. However, the relative difference between
the largest and lowest NLL of all models is only

2.8578− 2.8522

2.8578
≈ 0.00196,

suggesting that the dynamics architecture does not have a significant influence on the model
performance for this test.

We can see, respectively, a slight and a significant decrease in the number of function
evaluations when we use 1000 and 10000 warmup steps. Using ah2, the number of function
evaluations is less than half when using 10000 warmup steps compared to no warmup steps.

ODE solver setup 2:

We are interested if the models still converge and how the number of function evaluations
behaves as we increase the final tolerances of the ODE solvers. Therefore, in this setup, we
change the final tolerances of dopri5 and ah2 to 10−4 and 10−2, respectively. The initial
tolerances remain unchanged.

Results 2:

The results for dopri5 and ah2 can be found in Table 5.3 and Table 5.4, respectively. The
NLL is lower for all but two combinations of dynamics architecture, number of warmup
steps, and ODE solver compared to the first ODE solver setup (see Paragraph ODE solver
setup 1).

As one might expect, the NFE and NBFE are lower for all combinations of dynamics
architectures, numbers of warmup steps, and ODE solvers compared to the first ODE solver
setup. The best NLL, for all models in this section, is achieved with only 16.6 NFE and
15.9 NBE (see gray cell in Table 5.4).
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Architecture NFE NBE NLL

concat 43.9± 0.24 27.6± 0.09 2.8575± 1.14× 10−3

squash 53.3± 2.36 29.8± 0.83 2.8524± 9.48× 10−4

concatsquash 51.3± 3.19 31.2± 1.31 2.8539± 2.79× 10−3

concat 43.4± 0.25 27.2± 0.06 2.8569± 1.16× 10−3

squash 52.9± 2.32 29.5± 0.87 2.8521± 1.36× 10−3

concatsquash 51.0± 2.82 30.9± 1.37 2.8539± 2.80× 10−3

concat 41.9± 0.24 25.0± 0.07 2.8569± 1.09× 10−3

squash 47.0± 2.09 26.1± 0.24 2.8522± 1.45× 10−3

concatsquash 44.7± 1.69 26.8± 0.60 2.8538± 2.86× 10−3

Table 5.3: Mean and one standard deviation on 8gaussian (test set) using dopri5 with 0,
1000, and 10000 warmup steps (from top to bottom in this order) and final absolute/relative
training tolerance 10−4.

Architecture NFE NBE NLL

concat 24.4± 0.08 23.2± 0.12 2.8573± 8.60× 10−4

squash 25.0± 0.32 23.9± 0.29 2.8520± 7.74× 10−4

concatsquash 24.6± 0.55 23.6± 0.51 2.8536± 2.61× 10−3

concat 23.7± 0.05 22.5± 0.12 2.8577± 9.35× 10−4

squash 24.4± 0.34 23.3± 0.27 2.8524± 6.39× 10−4

concatsquash 23.9± 0.52 23.0± 0.49 2.8534± 2.54× 10−3

concat 16.7± 0.10 16.3± 0.06 2.8572± 1.28× 10−3

squash 16.6± 0.29 15.9± 0.18 2.8514± 1.35× 10−3

concatsquash 16.1± 0.45 15.7± 0.33 2.8520± 2.20× 10−3

Table 5.4: Mean and one standard deviation on 8gaussian (test set) using ah2 with 0, 1000,
and 10000 warmup steps (from top to bottom in this order) and final absolute/relative
training tolerance 10−2.

63



5.1.1 Conclusion

In this section, we compared models with different dynamics and ODE solver setups on the
two-dimensional toy problem 8gaussians.

For a given dynamics architecture, the NLL was about the same for all ODE solver
setups (varying tolerances and numbers of warmup steps). We showed that using higher
tolerances and a larger number of warmup steps was sufficient for training CNFs on this
dataset. We believe that this is due to the error introduced by the ODE solver being smaller
than other errors introduced during training, e.g. the noisy gradient estimation.

In the next section, we will investigate if we can see a similar behavior for density es-
timation on higher-dimensional tabular datasets. In future work, we plan to explore how
large the ODE solver tolerances can be set before the NLL starts to suffer.

5.2 Density Estimation on Tabular Data

In this section, we train models for density estimation on two tabular datasets: miniboone
and power; a description of these datasets can be found in Papamakarios et al. (2017).
Instead of using the original versions of these datasets from the UCI machine learning
repository (Lichman et al., 2013), we use the pre-processed versions from Papamakarios
et al. (2017)4. Results for density estimation on these datasets for state-of-the-art generative
models are listed in Table 5.5; the results are taken from Grathwohl et al. (2018). The
dimensionality of the data as well as the number of training, validation and test points for
miniboone and power are summarized in Table 5.6. The number of learnable parameters
for all combinations of dataset and dynamics architectures can be found in Table 5.7. For
all dynamics architectures the number of parameters are roughly around 8.2 × 105 and
4.2× 104 for miniboone and power, respectively.

For training on both datasets, we use the Adam optimizer with learning rate 10−3 and set
the weight decay constant to cwd = 10−6. We stop training once the NLL on the validation
set hat not improved for 30 consecutive validations; validation is performed after every
200-th iteration. Furthermore, we change the learning rate from 10−3 to 10−4 if the NLL
on the validation set has not improved for 10 consecutive validations; the learning rate is

4The pre-processed datasets can be found at https://zenodo.org/record/1161203#.XcsRnlFKg5m
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Model miniboone power

Dinh et al. (2017) 13.55± 0.49 −0.17± 0.01
Kingma and Dhariwal (2018) 11.35± 0.07 −0.17± 0.01
Papamakarios et al. (2017) 11.75± 0.44 −0.24± 0.01
Oliva et al. (2018) 11.01± 0.48 −0.48± 0.01
CNF (Grathwohl et al., 2018) 10.43± 0.04 −0.46± 0.01

Table 5.5: Mean and one standard deviation of NLL for state-of-the-art generative models
on miniboone and power (test sets). The quantities are estimated over three runs. The
results are taken from Grathwohl et al. (2018).

Number of

Dataset Dimensionality training points validation points testing points

power 6 1,659,917 184,435 204,928
miniboone 43 29,556 3,284 3,648

Table 5.6: Dimensionality as well as the number of training, validation, and testing points
for the datasets miniboone and power.

set back to 10−3 once the NLL has improved on the validation set. We use batch sizes of
103 and 104 for miniboone and power, respectively.

# Parameters

Architecture miniboone power

concat 817087 41465
squash 818850 42395
concatsquash 820613 43325

Table 5.7: Number of parameters for density estimation models on tabular datasets.
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5.2.1 Density Estimation on miniboone

Dynamics structure:

We choose the matrix and vector dimensions d = {860, 860}. We use the softplus function as
the non-linearity in the neural network, i.e., g(x) = log(1 + exp(x)). We also approximate
the trace using one sample from the standard normal distribution, i.e.,

tr ∂zf ≈ εT∂zfε,

where ε ∼ N (0, I) (see Section 4.2.3).

ODE solver setup 1:

We set the final time to T = 1.0. For all combinations of absolute and relative tolerances,
the absolute tolerance is chosen to be two orders of magnitude smaller than the relative
tolerance. Hence, for brevity, we only report the relative tolerances.

For training with dopri5, we train models with final relative tolerances of 10−6 (dopri5 1)
and 10−5 (dopri5 2). For ah2, we train models with final relative tolerances of 10−4 (ah2 1)
and 10−3 (ah2 2). The initial relative tolerances are set to 10−4 and 10−2 for dopri5 and
ah2, respectively. For testing and validation, we use dopri5 with relative tolerance 10−6

and absolute tolerance 10−8.

Results 1:

We compare the number of forward function evaluations per iteration (NFE), number of
backward function evaluations per iteration (NBE), the number of iterations until conver-
gence (NI), the number of total function evaluations (NTE) and the negative log-likelihood
(NLL) on the test set. The sample mean and the uncorrected sample standard deviation
of these quantities are computed over three runs. The results for dopri5 can be found
in Table 5.8 (dopri5 1) and Table 5.9 (dopri5 2). The results for ah2 can be found in
Table 5.10 (ah 1) and Table 5.11 (ah 2).

To make the evaluation of the results more clear, we sort the models according to their
NLL in three groups. The performance classes I, II and III contain models with NLL of
< 10.6, 10.6 to 11.0, and > 11.0, respectively. Groupings of the models with respect to
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Architecture NFE NBE NLL NI NTE

concat 104± 1.68 92.4± 0.54 10.977± 2.20× 10−1 1.4× 104 ± 1.1× 103 2.7× 106

squash 115± 2.52 88.3± 0.46 10.583± 6.05× 10−2 1.9× 104 ± 1.6× 103 3.9× 106

concatsquash 119± 4.96 89.5± 0.97 10.566± 9.90× 10−2 2.2× 104 ± 1.8× 103 4.5× 106

concat 84.0± 3.33 72.9± 2.85 11.346± 9.18× 10−2 1.4× 104 ± 1.2× 103 2.2× 106

squash 99.8± 3.43 74.6± 1.72 10.746± 1.16× 10−1 1.8× 104 ± 1.5× 103 3.2× 106

concatsquash 103± 6.01 76.2± 2.20 10.475± 7.08× 10−2 1.9× 104 ± 1.7× 103 3.4× 106

Table 5.8: Mean and one standard deviation on miniboone (test set) using dopri5 with 0
and 10000 warmup steps (from top to bottom in this order). The final absolute and relative
training tolerances are chosen to be 10−8 and 10−6, respectively.

different sorting criteria can be found in Table 5.12.

As can be seen in Table 5.12, models with the concatsquash architecture clearly outper-
form models with squash and concat architectures. Models with the squash architecture
perform still significantly better than models with concat architecture. The difference in
performance based on the number of warmup steps does not follow a clear trend. Training
with either number of warmup steps results in three models of the worst performance class
(III). However, training with 0 warmup steps produces three models in performance class I,
whereas training with 10000 warmup steps only results in one model of the first performance
class. For dopri5, the ODE solver setup with lower final tolerances (dopri5 1) performs
significantly better than the ODE solver setup with higher final tolerances (dopri5 2). For
ah2, there is almost no difference in the two setups.

We now compare the models on their number of total function evaluations. Using a
tolerance scheduler results in a lower NTE for ten out of the twelve combinations of ODE
solvers and dynamics architectures. Increasing the final total tolerances for both dopri5

and ah2 results in a lower NTE for all models, however, the significance is higher for ah2
than dopri5. For all six combinations of dynamics architectures and numbers of warmup
steps for ah2, the NTE decreases by more than half when using the higher final tolerances.
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Architecture NFE NBE NLL NI NTE

concat 70.3± 1.89 61.6± 1.14 11.128± 3.55× 10−1 1.4× 104 ± 8.1× 102 1.8× 106

squash 82.2± 1.51 60.1± 0.21 10.642± 1.32× 10−2 1.9× 104 ± 1.6× 103 3.4× 106

concatsquash 85.7± 1.85 61.0± 0.95 10.751± 1.54× 10−1 2.4× 104 ± 5.0× 103 3.5× 106

concat 65.4± 1.08 55.4± 0.54 11.229± 1.06× 10−1 1.6× 104 ± 9.4× 102 1.9× 106

squash 76.5± 2.35 55.2± 0.82 10.789± 1.26× 10−1 1.8× 104 ± 1.5× 103 2.7× 106

concatsquash 79.3± 2.29 56.6± 0.73 10.710± 3.00× 10−1 2.2× 104 ± 1.8× 103 2.9× 106

Table 5.9: Mean and one standard deviation on miniboone (test set) using dopri5 with 0
and 10000 warmup steps (from top to bottom in this order). The final absolute and relative
training tolerances are chosen to be 10−7 and 10−5, respectively.

Architecture NFE NBE NLL NI NTE

concat 369± 6.52 402± 6.45 11.220± 3.55× 10−1 1.5× 104 ± 1.2× 103 1.2× 107

squash 360± 1.72 407± 1.44 10.735± 1.15× 10−1 1.9× 104 ± 1.6× 103 1.5× 107

concatsquash 403± 5.68 453± 6.78 10.695± 2.28× 10−1 2.1× 104 ± 1.9× 103 1.8× 107

concat 203± 14.8 225.3± 15.6 10.932± 3.46× 10−1 1.4× 104 ± 1.1× 103 5.8× 106

squash 252± 9.55 287± 11.2 10.719± 1.19× 10−1 1.9× 104 ± 1.6× 103 1.0× 107

concatsquash 277± 13.1 313± 15.1 10.521± 3.48× 10−2 1.9× 104 ± 1.4× 103 1.1× 107

Table 5.10: Mean and one standard deviation on miniboone (test set) using ah2 with 0
and 10000 warmup steps (from top to bottom in this order). The final absolute and relative
training tolerances are chosen to be 10−6 and 10−4, respectively.

Architecture NFE NBE NLL NI NTE

concat 117± 1.82 128± 1.92 11.423± 2.85× 10−1 1.3× 104 ± 1.2× 103 3.2× 106

squash 116± 0.81 129± 0.87 10.613± 2.89× 10−2 1.9× 104 ± 1.6× 103 3.8× 106

concatsquash 130± 2.50 143± 3.63 10.543± 9.44× 10−2 1.9× 104 ± 1.4× 103 5.1× 106

concat 84.0± 1.99 93.8± 2.05 11.203± 7.08× 10−2 1.5× 104 ± 6.6× 101 2.6× 106

squash 92.3± 1.91 104± 2.10 10.618± 1.52× 10−2 1.9× 104 ± 1.6× 103 4.7× 106

concatsquash 104± 3.97 116± 4.82 10.569± 8.24× 10−2 1.9× 104 ± 1.7× 103 4.2× 106

Table 5.11: Mean and one standard deviation on miniboone (test set) using ah2 with 0
and 10000 warmup steps (from top to bottom in this order). The final absolute and relative
training tolerances are chosen to be 10−5 and 10−3, respectively.
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Class

Sorting criteria I II III

dopri5 1 3 2 1
dopir5 2 0 4 2
ah2 1 1 4 1
ah2 2 1 3 2

concat 0 2 6
squash 1 7 0
concatsquash 4 4 0

0 warmup steps 3 6 3
104 warmup steps 1 8 3

Table 5.12: Grouping of trained models (ODE solver setup 1) on miniboone in three
performance classes (based on NLL) according to several sorting criteria.

ODE solver setup 2:

As described in Section 5.1.1, we are interested in how far we can push the ODE solver
tolerances while still producing competitive results. In this setup, for dopri5 we train
models with initial and final relative tolerances of 10−3 and 10−4, respectively. For ah2,
we train models with initial and final relative tolerances of 10−2 and 10−1. The absolute
tolerances are again two orders of magnitude lower than the relative tolerances. We only
train models using 10000 warmup steps in this setup. The testing and validation ODE
solver remains unchanged.

Results 2:

The results for dopri5 and ah2 can be found in Table 5.13 and Table 5.14, respectively.

Similar to the first ODE solver setup, we group the models again according to their
NLL. As before, the performance classes I, II, and III correspond to a NLL of < 10.6, 10.6
to 11.0, and > 11.0, respectively. The results can be found in Table 5.15.

The behavior of dopri5 in this setup is similar to the behavior for dopri5 2 in ODE
solver setup 1, both producing two models of class II and one model of class I. Moreover,
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Architecture NFE NBE NMLL NI NTE

concat 25.5± 0.62 29.9± 0.83 11.067± 2.05× 10−1 1.4× 104 ± 7.5× 102 8.0× 105

squash 27.8± 0.82 32.9± 1.35 10.870± 1.67× 10−1 1.8× 104 ± 1.5× 103 1.1× 106

concatsquash 32.5± 1.64 38.9± 1.67 10.629± 1.20× 10−1 1.9× 104 ± 1.7× 103 1.4× 106

Table 5.13: Mean and one standard deviation on miniboone (test set) using dopri5 with
10000 warmup steps. The ODE solver setup can be found in Paragraph ODE solver
setup 2.

Architecture NFE NBE NMLL NI NTE

concat 42.8± 1.21 38.0± 0.73 11.338± 5.27× 10−2 1.3× 104 ± 1.2× 103 1.1× 106

squash 49.4± 0.64 40.9± 0.46 10.855± 2.32× 10−1 2.2× 104 ± 1.8× 103 2.0× 106

concatsquash 49.5± 1.27 40.2± 0.61 10.560± 4.06× 10−2 1.9× 104 ± 1.7× 103 1.7× 106

Table 5.14: Mean and one standard deviation on miniboone (test set) using ah2 with 10000
warmup steps. The ODE solver setup can be found in Paragraph ODE solver setup 2.

the behavior of ah2 in this setup is similar to the behavior for ah2 2 in the first ODE solver
setup, both producing one model of each performance class. As we can see in Table 5.13
and Table 5.14, training with this ODE solver setup still results in competitive models,
especially when concatsquash is used for the dynamics architecture.

5.2.2 Density Estimation on power

Dynamics structure:

We set d = {60, 60, 60} and use the hyperbolic tangent as the non-linearity of the neural
network. Furthermore, instead of using just a single flow, we stack five flows as described
in Section 4.2.2.

ODE solver setup 1:

The ODE solver setup exactly mirrors the setup from Paragraph ODE solver setup 1 in
Section 5.2.1.
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Class

Sorting criteria I II III

dopri5 0 2 1
ah 1 1 1

concat 0 0 2
squash 0 2 0
concatsquash 1 1 0

Table 5.15: Grouping of trained models (ODE solver setup 2) on miniboone in three
performance classes (based on NLL) according to several sorting criteria.

Results 1:

We compare the same quantities as in Section 5.2.1, however, due to our restricted compu-
tational resources, we are only able to to train one model per setup. This decision can be
partially justified by the small standard deviation of all state-of-the-art generative models
on power (see Table 5.5).

We found that the number of function evaluations for training with ah2 1 becomes pro-
hibitively large; training on one GeForce GTX 1080 Ti GPU was not completed within
seven days for any combination of dynamics architecture and number of warmup steps.
Hence, we do not present any results for this ODE solver setup. The results for ah2 2 can
be found in Table 5.18. Results for dopri5 can be found in Table 5.16 (dopri5 1) and
Table 5.17 (dopri5 2).

Similar to Section 5.2.1, we sort the trained models according to their NLL in three
groups. The performance classes I, II and III contain models with NLL of < −0.4, −0.4 to
−0.25, and > −0.25, respectively. Groupings of the models with respect to different sorting
criteria can be found in Table 5.19.

As can be seen in Table 5.19, models with the concat architecture clearly outperform
models with squash and concatsquash architectures. There is almost no difference in
performance based on the number of warmup steps. For dopri5, there is essentially no
difference in performance for the ODE solver setups with lower (dopri5 1) and higher
(dopri5 2) final tolerances.
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Architecture NFE NBE NLL NI NTE

concat 610 630 −4.0948× 10−1 3.6× 104 4.4× 107

squash 856 761 −3.1826× 10−1 3.6× 104 5.8× 107

concatsquash 501 488 −3.6114× 10−1 3.2× 104 3.1× 107

concat 671 690 −4.4386 × 10−1 4.2× 104 5.8× 107

squash 830 736 −3.3582× 10−1 3.6× 104 5.6× 107

concatsquash 475 466 −3.5764× 10−1 3.2× 104 3.0× 107

Table 5.16: Results on power (test set) using dopri5 with 0 and 10000 warmup steps (from
top to bottom in this order). The final absolute and relative training tolerances are chosen
to be 10−8 and 10−6, respectively.

Architecture NFE NBE NLL NI NTE

concat 403 405 −4.1391 × 10−1 3.6× 104 2.9× 107

squash 644 564 −3.5614× 10−1 4.8× 104 5.8× 107

concatsquash 339 340 −3.4317× 10−1 2.9× 104 2.0× 107

concat 387 390 −4.0798× 10−1 3.6× 104 2.8× 107

squash 589 516 −3.4531× 10−1 4.2× 104 4.7× 107

concatsquash 347 334 −3.5671× 10−1 3.2× 104 2.2× 107

Table 5.17: Results on power (test set) using dopri5 with 0 and 10000 warmup steps (from
top to bottom in this order). The final absolute and relative training tolerances are chosen
to be 10−7 and 10−5, respectively.

We now compare the models on their number of total function evaluations. Using a
tolerance scheduler results in a lower NTE for all of the nine combinations of ODE solvers
and dynamics architectures. As one might expect, increasing the final tolerances for dopri5
results in a lower or equal NTE.

ODE solver setup 2: We are interested to see how the higher-order accurate solver
dopri5 behaves as we set its tolerances to the tolerances of ah2 2 from ODE solver setup
1, i.e., initial relative tolerance of 10−2 and final relative tolerance of 10−3; the absolute
tolerances are two orders of magnitude lower than the relative tolerances.
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Architecture NFE NBE NLL NI NTE

concat 543 535 −4.3692 × 10−1 4.2× 104 4.6× 107

squash 731 740 −3.2749× 10−1 3.6× 104 5.3× 107

concatsquash 556 549 −4.0507× 10−1 4.2× 104 4.7× 107

concat 489 485 −4.0627× 10−1 3.4× 104 3.3× 107

squash 865 878 −3.3443× 10−1 4.2× 104 7.4× 107

concatsquash 518 508 −3.2908× 10−1 2.9× 104 3.0× 107

Table 5.18: Results on power (test set) using ah2 with 0 and 10000 warmup steps (from
top to bottom in this order). The final absolute and relative training tolerances are chosen
to be 10−5 and 10−3, respectively.

Class

Sorting criteria I II III

dopri5 1 2 4 0
dopir5 2 2 4 0
ah2 2 3 3 0

concat 6 0 0
squash 0 6 0
concatsquash 1 5 0

0 warmup steps 4 5 0
104 warmup steps 3 6 0

Table 5.19: Grouping of trained models (ODE solver setup 1) on power in three perfor-
mance classes (based on NLL) according to several sorting criteria.
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Architecture NFE NBE NLL NI NTE

concat 180 166 −2.6194× 10−1 1.6× 104 5.7× 106

squash 224 179 −1.7900× 10−1 2.9× 104 1.2× 107

concatsquash 178 185 −3.4621 × 10−1 2.9× 104 1.1× 107

concat 203 207 −1.2462× 10−1 2.1× 104 8.4× 106

squash 186 169 −3.8044× 10−2 2.7× 104 9.5× 106

concatsquash 226 243 −2.3796× 10−1 2.4× 104 1.1× 107

Table 5.20: Results on power (test set) using dopri5 with 0 and 10000 warmup steps (from
top to bottom in this order). The final absolute and relative training tolerances are chosen
to be 10−5 and 10−3, respectively.

Results 2: Results for dopri5 in this setup can be found in Table 5.20. For all six
combinations of dynamics architectures and numbers of warmup steps, models trained with
dopri5 perform worse compared to when trained with ah2 using the same tolerance setup.
We can see that the NTE is significantly lower for dopri5 compared to ah2 (see Table 5.18).
As described in Section 4.3, the discrepancy of the discretized instantaneous CVF and
the CVF is generally O (h2). We believe that dopri5 with this tolerance setup ends up
taking time steps that are too large, introducing an error that might be connected to the
aforementioned discrepancy.

5.2.3 Conclusion

In this section, we compared models with different dynamics and ODE solver setups on
two tabular datasets, namely miniboone and power.

We found that there was no best dynamics architecture overall: models with concatsquash

performed best for miniboone and models with concat performed best for power. We
showed that, as long as the high initial tolerance did not lead to divergence, training of
CNFs could be made more efficient with a tolerance scheduler. We found that dopri5

generally produced better results with lower tolerances.

On miniboone, using ah2 even with very high tolerances led to CNFs that outperformed
all other four state-of-the-art generative models in Table 5.5. On power, using dopri5

with a low enough tolerance led to models that outperformed three out of the four state-
of-the-art generative models in Table 5.5. Using ah2 on this dataset led to CNFs that
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outperformed the same three state-of-the-art generative models even for very high tolerances.

We found that ah2 performed significantly better for higher tolerances than dopri5, however,
training CNFs with dopri5 using lower tolerances often still required less total number of
function evaluations than training with ah2 using higher tolerances.

5.3 Variational Inference on an Image Dataset

In Section 4.1.4, we reviewed how to use generative models to improve variational autoen-
coders. In this section, we investigate the influence of the dynamics architecture and the
numerical ODE solver for improving VAEs with continuous normalizing flows on the image
dataset frey faces.

The frey faces dataset contains 1965 grayscale images of size 20 by 28. The images
are sequential frames of a short video showing Brendan Frey’s face5. The dataset is split
into 1565 training, 200 validation, and 200 test images. Results for VAEs with state-of-the-
art generative models as well as for a VAE with planar flow (described in Section 4.1.2)
and for a VAE without any flow are shown in Table 5.21.

For all experiments we use the same encoder q(z | x,φ) and decoder p(x | z,θ) ar-
chitectures as Berg et al. (2018). As suggested by Bowman et al. (2015) and Sønderby et al.
(2016), we maximize the modified negative free energy

−FNF
mod(x) = −min

(
1,

epoch

100

)
DKL(qNF

K (z | x,φ,λ) ‖ p(z | θ)) + Eq[log p(x | z,θ)],

where epoch is the number of epochs, instead of the negative free energy (4.7) in training.
The dimension of the latent variable space is dz = 64, i.e., z ∈ Rdz . Training is stopped
after 2000 epochs or if the negative free energy on the validation set has not improved in
100 consecutive epochs.

As discussed in Section 4.1.4, the flow parameters λ can be modeled as a function of
the input x. Grathwohl et al. (2018) reported that letting all flow parameters be dependent
on x can lead to differential equations that are too difficult to numerically integrate and
propose to only let a subset of λ be data-dependent. In practice, this can, for example,

5The dataset can be downloaded at https://github.com/riannevdberg/sylvester-flows/blob/

master/data/Freyfaces/freyfaces.pkl.
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Model frey faces

No flow 1.76× 103 ± 7.8
Planar flow 1.71× 103 ± 23
Kingma et al. (2016) 1.74× 103 ± 19
Berg et al. (2018) 1.73× 103 ± 16
CNF (Grathwohl et al., 2018) 1.70× 103 ± 3.9

Table 5.21: Mean and one standard deviation (estimated over three runs) of negative free
energy (4.7) on frey faces. The results were taken form Grathwohl et al. (2018).

be done by replacing A and b in the building blocks of the dynamics architectures (see
Table 3.1) with

A(x) = Afixed + Û (x)V̂ T (x),

and

b(x) = bfixed + b̂(x),

respectively. The matrices Û and V̂ are of size dout × k and din × k, respectively. The
product Û (x)V̂ T (x) can be interpreted as a data-dependent low-rank update of the global
weight matrix A.

Similar to Grathwohl et al. (2018), we use a modification of Adam, called AdaMax (Kingma
and Ba, 2014), as the optimizer for the experiments in this section. AdaMax modifies the
update rule of Adam (see Equation (2.12)) as

θAdaMax
t+1 = θAdaMax

t − η

ut
� m̂t,

where ut = max
(
β2ut−1, |gt|+ εAdaMax

)
and the maximum is applied elementwise. AdaMax

initializes u0 = 0 and we choose εAdaMax = 10−7. The learning rate is set to 0.0005 and we
do not use any weight decay. The batch size is set to 100.

Dynamics structure:

We follow the recommended dynamics structure from Grathwohl et al. (2018); the matrix
and vector dimensions are chosen as d = {512, 512}. We use the softplus function as the
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non-linearity in the neural network. The rank of the low-rank update is set to k = 20.
For the experiments in this section, we stack two CNFs (see Section 4.2.2). The trace is
approximated using one sample from a standard normal distribution, i.e.,

tr ∂zf ≈ εT∂zfε,

where ε ∼ N (0, I) (see Section 4.2.3).

ODE solver setup:

For both ODE solvers we train models with 0 and 1000 warmup steps. The initial tolerances
are set to 10−3 and 10−1 for dopri5 and ah2, respectively. We train models for two different
sets of final tolerances for each ODE solver: 10−5 (dopri5 1)/10−4 (dopri5 2) for dopri5
and 10−3(ah2 1)/10−2(ah2 2) for ah2. The final time for both solvers is set to T = 0.5.
Testing and validation is done using dopri5 with tolerances of 10−5.

Results:

We compare the number of forward function evaluations per iteration (NFE), number of
backward function evaluations per iteration (NBE), the number of iterations until conver-
gence (NI), the number of total function evaluations (NTE) and the negative free energy
(NFEG) on the test set. The sample mean and the uncorrected sample standard deviation
of the aforementioned quantities are estimated over three runs. The results for dopri5 can
be found in Table 5.22 (dopri5 1) and Table 5.23 (dopri5 2). The results for ah2 can be
found in Table 5.24 (ah 1) and Table 5.256 (ah 2).

We sort the models according to their performance in two groups. The performance
classes I and II contain models with NFEG of < 1.740× 101 and ≥ 1.740× 101, respectively.
Groupings of the models with respect to different sorting criteria can be found in Table 5.26.

As can be seen in Table 5.26, models with squash and concatsquash dynamics archi-
tectures perform better than models with concat dynamics architecture. On the other
hand, the best result overall is achieved with a model having the concat dynamics ar-
chitecture. The difference in performance based on the number of warmup steps is only
apparent for ah2; except for one model, models trained with ah2 perform worse when we

6Mean and standard deviation of the model with † is estimated only over two runs as one run led to a
step size close to zero.
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Architecture NFE NBE NFEG NI NTE

concat 69.4± 1.73 81.7± 2.75 1.741× 103 ± 2.7× 101 1.3× 103 ± 1.4× 102 2.0× 105

squash 77.4± 5.27 94.1± 7.70 1.727× 103 ± 1.4× 101 1.3× 103 ± 1.0× 102 2.3× 105

concatsquash 77.8± 2.67 95.3± 7.80 1.734× 103 ± 4.0× 101 1.3× 103 ± 1.3× 102 2.2× 105

concat 60.0± 3.47 69.9± 3.75 1.742× 103 ± 2.7× 101 1.4× 103 ± 1.8× 102 1.8× 105

squash 65.7± 2.21 76.5± 3.10 1.724 × 103 ± 1.4× 101 1.4× 103 ± 2.1× 102 1.9× 105

concatsquash 64.4± 3.03 79.7± 8.56 1.736× 103 ± 4.3× 101 1.2× 103 ± 1.3× 102 1.7× 105

Table 5.22: Mean and one standard deviation on frey faces (test set) using dopri5 with 0
and 1000 warmup steps (from top to bottom in this order). The final absolute and relative
training tolerances are chosen to be 10−5.

Architecture NFE NBE NFEG NI NTE

concat 52.8± 1.36 57.6± 1.02 1.738× 103 ± 2.8× 101 1.3× 103 ± 1.4× 102 1.4× 105

squash 57.0± 2.69 65.4± 3.05 1.723× 103 ± 1.9× 101 1.3× 103 ± 1.3× 102 1.6× 105

concatsquash 57.5± 1.96 70.2± 4.97 1.731× 103 ± 4.0× 101 1.2× 103 ± 9.9× 101 1.6× 105

concat 49.1± 1.89 55.1± 1.22 1.741× 103 ± 2.5× 101 1.3× 103 ± 1.2× 102 1.3× 105

squash 53.1± 1.30 58.1± 1.60 1.724 × 103 ± 1.3× 101 1.3× 103 ± 2.1× 102 1.4× 105

concatsquash 53.5± 2.04 63.3± 6.19 1.735× 103 ± 3.7× 101 1.2× 103 ± 1.7× 102 1.4× 105

Table 5.23: Mean and one standard deviation on frey faces (test set) using dopri5 with 0
and 1000 warmup steps (from top to bottom in this order). The final absolute and relative
training tolerances are chosen to be 10−4.

use warmup steps. For dopri5, there is almost no difference for the two setups of tolerances.
The ODE solver ah2 1 produces models with a similar performance to the models produced
by dopri5, however, ah 2 only produces models of the second performance class.

We now compare the models on their number of total function evaluations. Using a
tolerance scheduler results in a lower NTE for eleven out of the twelve combinations of ODE
solvers and dynamics architectures. Increasing the final total tolerances for both dopri5

and ah2 results in a lower NTE for all models. Similar to Section 5.2.1, the decrease of
NTE is more significant for ah2 than for dopri5.
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Architecture NFE NBE NFEG NI NTE

concat 57.4± 4.21 71.7± 4.63 1.728× 103 ± 1.8× 101 1.3× 103 ± 1.7× 102 1.7× 105

squash 64.3± 1.67 74.7± 3.71 1.723× 103 ± 1.9× 101 1.2× 103 ± 1.2× 102 1.7× 105

concatsquash 67.6± 2.87 77.3± 3.07 1.736× 103 ± 3.9× 101 1.2× 103 ± 1.2× 102 1.8× 105

concat 33.6± 1.75 42.3± 1.68 1.718 × 103 ± 1.2× 101 1.2× 103 ± 1.9× 101 8.7× 104

squash 52.1± 8.57 59.9± 6.88 1.812× 103 ± 7.2× 101 1.3× 103 ± 1.5× 102 1.5× 105

concatsquash 48.3± 3.80 56.0± 3.39 1.839× 103 ± 1.2× 102 1.2× 103 ± 1.7× 102 1.3× 105

Table 5.24: Mean and one standard deviation on frey faces (test set) using ah2 with 0
and 1000 warmup steps (from top to bottom in this order). The final absolute and relative
training tolerances are chosen to be 10−3.

Architecture NFE NBE NFEG NI NTE

concat 25.4± 1.63 32.5± 2.40 1.742× 103 ± 2.8× 101 1.3× 103 ± 1.5× 102 7.3× 104

squash 25.5± 1.68 32.6± 2.34 1.741 × 103 ± 2.4× 101 1.3× 103 ± 1.3× 102 7.6× 104

concatsquash 33.5± 0.26 59.3± 23.2 1.782× 103 ± 3.4× 101 1.1× 103 ± 1.7× 102 1.0× 105

concat 24.7± 3.73 32.1± 5.94 1.773× 103 ± 1.3× 101 1.1× 103 ± 2.8× 102 6.2× 104

squash† 34.1± 5.45 44.8± 0.10 1.827× 103 ± 1.0× 101 1.3× 103 ± 1.5× 102 1.1× 105

concatsquash 33.7± 1.82 42.0± 4.09 1.798× 103 ± 2.5× 101 1.3× 103 ± 1.1× 102 9.8× 104

Table 5.25: Mean and one standard deviation (model with † is estimated only over two
runs as one run led to a step size close to zero) on frey faces (test set) using ah2 with 0
and 1000 warmup steps (from top to bottom in this order). The final absolute and relative
training tolerances are chosen to be 10−2.
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Class

Sorting criteria I II

dopri5 1 4 2
dopir5 2 5 1
ah2 1 4 2
ah2 2 0 6

concat 3 5
squash 5 3
concatsquash 5 3

0 warmup steps 7 5
104 warmup steps 6 6

Table 5.26: Grouping of trained models on frey faces in three performance classes (based
on NFEG) according to several sorting criteria.

5.3.1 Conclusion

In this section, we compared models with different dynamics and ODE solver setups for
variational inference on the frey faces dataset.

For a given dynamics architecture, models trained with dopri5 generally performed better
than models trained with ah2. There was no clear trend in the difference of performance
based on the dynamics architecture. When using dopri5, training could be made more
efficient using a tolerance scheduler. For ah2, using a tolerance scheduler generally worsened
model performance.

The frey faces dataset with 1565 training examples is rather small, leading to a high
influence of the hyperparameters on the model performance. In future work, we plan
to explore how the dynamics and the ODE solver affect variational inference for larger
datasets.
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Chapter 6

Conclusion and Outlook

This thesis considers neural ordinary differential equations and in particular their application
to generative modeling. One of our main contributions is the derivation of the adjoint
sensitivity method for NODEs and CNFs within a constrained optimization framework.
Furthermore, we provide a comprehensive and self-contained introduction to generative
modeling (with NODEs). In this chapter, we summarize our theoretical and numerical
results. Moreover, we give an outlook on potential future work.

6.1 Theoretical Results

We presented theoretical results for both NODEs and CNFs. We showed that NODEs with
linear dynamics result in a linear transformation of the initial value1, and therefore no non-
linear relations can be encoded in the “output” of linear NODEs. We further showed that
we can construct a tent function such that there is no autonomous NODE that can converge
to it; on the other hand, there is always a non-autonomous NODE that can converge to
this tent function. Moreover, we proved that modeling the dynamics of a NODE using
a particular hypernetwork leads to universal function approximation in the discretized case1.

For CNFs, we quantified the discrepancy between the CVF and the discretized instantaneous
CVF for two ODE solvers. We illustrated this problem for a one-dimensional normal distri-
bution using Euler’s method. We further showed that using trace estimation, initially used
with the purpose of saving computational cost, can increase the aforementioned discrepancy.

1This was shown for Euler’s method but could be extended to other explicit discretization methods.
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6.2 Numerical Results

We performed numerical tests for CNFs on density estimation and variational inference
tasks. The experiments focused on the performance behavior of CNFs with varying ODE
solver setup and dynamics architecture.

We found that using a tolerance scheduler that exponentially reduces the ODE solver
tolerances generally resulted in more efficient training of CNFs; less function evaluations
were needed in the training stage to achieve roughly the same model performance. This
result held for both the higher-order accurate ODE solver dopri5 and the lower-order
accurate ODE solver ah2. Furthermore, we showed that ah2 could produce CNFs with
competitive performance even for very high solver tolerances. The higher-order accurate
ODE solver dopri5 generally could not produce competitive results with high solver toler-
ances, however, training with dopri5 using lower tolerances often still required less function
evaluations than training with ah2 using higher tolerances.

For variational inference, we found that tolerance schedulers still resulted in more ef-
ficient training, however, the results were not as clear as for the density estimation tasks.
We are not able to make any other precise statement of the behavior of CNFs with varying
ODE solver setup and dynamics architecture for variational inference. As a result, we plan
to explore CNFs for this task on larger datasets, where the choice of hyperparameters has
less influence on model performance.

6.3 Future Work

In future work, we plan to numerically investigate the class of NODEs that leads to universal
function approximation. To gain a better understanding, we will first explore this class
of NODEs for supervised learning tasks. Furthermore, we plan to study the affect of the
aforementioned discrepancy between the discretized instantaneous CVF and the CVF on
training of CNFs. In our numerical experiments, we saw that the choice of ODE solver
tolerances significantly influenced the cost for training CNFs. In future work, we plan to
explore methods that adaptively change the ODE solver tolerances. In doing so, we hope
to make training of CNFs more efficient. Since both ODE solvers, dopri5 and ah2, needed
many function evaluations per iteration, we also plan to explore training of CNFs using
implicit ODE solvers. Lastly, we plan to investigate trace free CNFs, a natural way to avoid
the high costs of full trace computation and the noise accompanied with trace estimation.
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Zhu, J.-Y., Krähenbühl, P., Shechtman, E., and Efros, A. A. (2016). Generative Visual
Manipulation on the Natural Image Manifold. arXiv preprint arXiv:1609.03552.

90

http://proceedings.mlr.press/v48/oord16.html
http://proceedings.mlr.press/v48/oord16.html
https://arxiv.org/pdf/1609.03552.pdf%5D
https://arxiv.org/pdf/1609.03552.pdf%5D


APPENDICES

91



Appendix A

Backpropagation Through Ordinary
Differential Equation Solvers

A.1 Euler’s Network

A.1.1 A Proof of Equation (3.9)

For notational convenience, we write zn := zn, and denote the j-th element of zn as znj .
We have

δnj =
∂C

∂znj
(by definition of δn)

=
∑
k

∂C

∂zn+1
k

∂zn+1
k

∂znj
(by chain rule)

=
∑
k

δn+1
k

∂zn+1
k

∂znj
(by definition of δn+1)

=
∑
k

δn+1
k

∂ (znk + hfk(z
n, tn,θ))

∂znj
(by Equation (3.8))

=
∑
k

δn+1
k

(
Ikj + h

∂fk(zn, tn,θ)

∂znj

)
=
∑
k

(
Ijk + h

∂fk(zn, tn,θ)

∂znj

)
δn+1
k .

(A.1)
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A.1.2 A Proof of Equation (3.10)

For notational convenience, we write zn := zn, and denote the j-th element of zn as znj .
By chain rule, we have

dC

dθi
=
∑
k

∂C

∂zNk

dzNk
dθi

.

Since znk = zn−1
k + hfk (zn−1, tn−1,θ) (see Equation (3.8)), we note that

dznk
dθi

=
∂znk
∂θi

+
∑
l

∂znk
∂zn−1

l

dzn−1
l

dθi
.

It then follows that

dC

dθi
=
∑
k

∂C

∂zNk

∂zNk
∂θi

+
∑
k,l

∂C

∂zNk

∂zNk
∂zN−1

l

dzN−1
l

dθi
(by chain rule)

=
∑
k

δNk
∂zNk
∂θi

+
∑
l

∂C

∂zN−1
l

dzN−1
l

dθi
(by definition of δN) (by chain rule)

=
∑
k

δNk
∂zNk
∂θi

+
∑
l

∂C

∂zN−1
l

∂zN−1
l

∂θi
+
∑
l,m

∂C

∂zN−1
l

∂zN−1
l

∂zN−2
m

dzN−2
m

dθi
(by chain rule)

=
∑
k

δNk
∂zNk
∂θi

+
∑
l

δN−1
l

∂zN−1
l

∂θi
+
∑
m

δN−2
m

dzN−2
m

dθi
(by chain rule)

=
N∑
n=1

(∑
k

δnk
∂znk
∂θi

)
+
∑
k

δ0
k

dz0
k

dθi
(by induction)

=
N∑
n=1

h

(∑
k

δnk
∂fk (zn−1, tn−1,θ)

∂θi

)
(by Equation (3.8) and since z0 is independent of θ)

=
N−1∑
n=0

h

(∑
k

δn+1
k

∂fk (zn, tn,θ)

∂θi

)
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For reading purposes, we also give a version of this proof in matrix notation:

dC

dθ
=

(
dzN
dθ

)T
∂C

∂zN
(by chain rule)

=

(
∂zN
∂θ

)T
∂C

∂zN
+

(
∂zN
∂zN−1

dzN−1

dθ

)T
∂C

∂zN
(by chain rule)

=

(
∂zN
∂θ

)T
δN +

(
dzN−1

dθ

)T (
∂zN
∂zN−1

)T
∂C

∂zN
(by definition of δN)

=

(
∂zN
∂θ

)T
δN +

(
∂zN−1

∂θ

)T
δN−1 +

(
dzN−2

dθ

)T (
∂zN−1

∂zN−2

)T
δN−1 (by chain rule)

=

(
∂zN
∂θ

)T
δN +

(
∂zN−1

∂θ

)T
δN−1 +

(
dzN−2

dθ

)T
δN−2 (by chain rule)

=
N∑
n=1

(
∂zn
∂θ

)T
δn +

(
dz0

dθ

)T
δ0 (by induction)

=
N∑
n=1

h

(
∂f(zn−1, tn−1,θ)

∂θ

)T
δn (by Equation (3.8) and since z0 is independent of θ)

=
N−1∑
n=0

h

(
∂f(zn, tn,θ)

∂θ

)T
δn+1.

(A.2)
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A.2 Midpoint Network

A.2.1 A Proof of Equation (3.14)

For notational convenience, we write zn := zn, and denote the j-th element of zn as znj .
We have

δnj =
∑
k

δn+1
k

∂zn+1
k

∂znj
(by the third line of Equation (A.1))

=
∑
k

δn+1
k

∂ (znk + hfk(z̃
n, tn∗ ,θ))

∂znj
(by Equation (3.12))

=
∑
k

δn+1
k

(
Ijk + h

∂fk(z̃
n, tn∗ ,θ)

∂znj

)

=
∑
k

δn+1
k

(
Ikj + h

∑
l

∂fk(z̃
n, tn∗ ,θ)

∂z̃nl

∂z̃nl
∂znj

)
(by chain rule)

=
∑
k

δn+1
k

(
Ikj + h

∑
l

∂fk(z̃
n, tn∗ ,θ)

∂z̃nl

∂ (znl + (h/2)fl(z
n, tn,θ))

∂znj

)
(by Equation (3.13)

=
∑
k

δn+1
k

(
Ikj + h

∑
l

∂fk(z̃
n, tn∗ ,θ)

∂z̃nl

(
Ilj +

h

2

∂fl(z
n, tn,θ)

∂znj

))

=
∑
k

(
Ijk + h

∑
l

(
Ilj +

h

2

∂fl(z
n, tn,θ)

∂znj

)
∂fk(z̃

n, tn∗ ,θ)

∂z̃nl

)
δn+1
k .

A.2.2 A Proof of Equation (3.15)

We have

∂C

∂θ
=

N−1∑
n=0

(
∂zn+1

∂θ

)T
δn+1 (by the sixth line of Equation (A.2) and since z0 is independent of θ)

=
N−1∑
n=0

h

(
∂f(z̃n, tn∗ ,θ)

∂θ

)T
δn+1 (by Equation (3.12)).
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Appendix B

Neural Ordinary Differential
Equations

B.1 Linear Neural Ordinary Differential Equations

We give a proof of Theorem 3.3.1:

Proof: Let zN be the Euler approximation to the IVP

dz(t)

dt
= W (t)z(t) + b(t), t ∈ [0, T ],

z(0) = z0,

at time T . Then, zN can be computed as

zN = zN−1 + hW (tN−1)zN−1 + hb(tN−1)

= zN−2 + hW (tN−2)zN−2 + hb(tN−2) + hW (tN−1) (zN−2 + hW (tN−2)zN−2 + hb(tN−2)) + hb(tN−1)

= (I + hW (tN−1)) (I + hW (tN−2)) zN−2 + h (I + hW (tN−1)) b(tN−2) + hb(tN−1)

=

[
N−1∏
i=0

(I + hW (tN−1−i))

]
z0 + h

N−1∑
j=0

[
N−1∏
i=j+1

(I + hW (ti))

]
b(tj). (by induction)

Hence,

zn = W̃z0 + b̃,
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where

W̃ =

[
N−1∏
i=0

(I + hW (tN−1−i))

]
,

and

b̃ = h
N−1∑
j=0

[
N−1∏
i=j+1

(I + hW (ti))

]
b(tj).

�

B.2 Autonomous Neural Ordinary Differential Equa-

tions

We give a proof of Theorem 3.3.2:

Proof: Assume by contradiction that zN converges to h pointwise, i.e.,

lim
N→∞

|zN(x)− h(x)| = 0 ∀x ∈ R

This implies that for any 0 < δ < 1 there exits an n∗ ∈ N such that

|zn(x)| < δ ∀x ∈ [−∞,−1] ∪ [1,∞], (B.1)

for all n > n∗. Let us now fix an x̂ ∈ [−∞,−1] ∪ [1,∞] and denote zn∗+1+i(x̂) = ri for all
i ∈ N. By Equation (B.1), we have

|ri| < δ ∀i ∈ N. (B.2)

Furthermore, note that by the autonomous IVP (3.18) we have

ri = zn∗+1+i(x̂)

= zn∗+i(x̂) + hf(zn∗+i(x̂),θ)

= ri−1 + hf(ri−1,θ)

= z1(ri−1) (by Equation (3.16))

= zi(r0) (by induction),
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for all i > 1 and trivially r0 = z0(r0). This implies, by Equation (B.2), that the absolute
value of the Euler approximation at time step ti with initial value r0 is bounded by δ, i.e.,

|zi(r0)| = |ri| < δ ∀i ∈ N.

Let us now assume without loss of generality that 0 ≤ r0 < 11, then h(r0) = 1− r0. Hence,
if we choose δ < 1− r0, then

lim
N→∞

|zN(r0)− h(r0)| ≥ 1− r0 − δ > 0,

which completes the proof. �

B.3 Universal Approximation with Hypernetworks

We give a proof of Theorem 3.3.3:

Proof: Lin and Jegelka (2018) showed that a residual network of the form

R(x,θ) = (I + TN−1) ◦ · · · ◦ (I + T0)(x),

is a universal function approximator, i.e., for any Lebesgue-integrable function g and any
ε > 0 there is a finite N such that∫

Rd

‖L ◦R(x)− g(x)‖ dx < ε.

Here, Ti(x) = ViReLU(Uix + ui) with Vi ∈ Rd×1, Ui ∈ R1×d and ui ∈ R for all i =
0, . . . , N − 1. The Euler approximation at time t = T to the IVP with dynamics funiversal,
with funiversal defined in Equation (3.20), and variable initial value x is given by

zN(x) = zN−1(x) + hV (tN−1)ReLU(U(tN−1)zN−1(x) + u(tN−1))

= (I + T (tN−1)) (zN−1(x)) ,

where we define

T (ti)(x) = hV (ti)ReLU(U(ti)x+ u(ti)).

1We know that |r0| < 1 by Equation (B.2)
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By induction, it follows that

zN(x) = (I + T (tN−1)) ◦ · · · ◦ (I + T (t0))(x),

since z0(x) = x by Equation (3.17). Comparing the definitions of Ti(x) and T (ti)(x), we
note that R(x) and zN(x) are equal if

V (ti) = Vi/h,

U(ti) = Ui,

u(ti) = ui,

for all i = 0, . . . , N − 1. The existence of a two-layer neural network with ReLU activation
that can exactly map s input values to s output values was shown, for example, by Arora
et al. (2018). Hence, there exists a two-layer hypernetwork of width 2dN + N that can
realize the above conditions. By equality of R(x) and zN(x) we obtain∫

Rd

‖L ◦ zN(x)− g(x)‖ dx < ε,

which completes the proof. �
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Appendix C

Adjoint Sensitivity Method for
Continuous Normalizing Flows

In this chapter, we give a derivation of Algorithm (5) for d = 1. Consider the constrained
optimization problem

min
θ
C(p̃T ) = min

θ
C

(
p̃0 +

∫ T

0

g(z(t), t,θ) dt

)
,

subject to

h(z(t), ż(t),θ, t) =
dz(t)

dt
− f(z(t), t,θ) = 0,

g(z(T )) = z(T )− x = 0,

l
(

˙̃pt, z(t),θ, t
)

=
dp̃t
dt
− g(z(t), t,θ) = 0,

m(p̃0, z(0)) = p̃0 − log pz0(z(0)) = 0,

where p̃t = log p(z(t), t) and g(z(t), t,θ) = − tr ∂zf(z(t), t,θ). The Lagrangian is given as

L = C(p̃T ) +

∫ T

0

[λh+ ηl] dt+ µg + δm,

where λ = λ(t), η = η(t), µ and δ are Lagrangian multipliers. Similar to the derivation
of the adjoint sensitivity method for NODEs in Section 3.2.1, all constraints are satisfied
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by construction and we choose the Lagrangian multipliers in order to find a tractable
expression of dθC(p̃T ). The derivatives of L with respect to θ can be computed as

d

dθ
L =∂p̃TC

(
dp̃0

dθ
+

∫ T

0

[∂zgdθz + ∂θg] dt

)
+

∫ T

0

λ [∂zhdθz + ∂żhdθż + ∂θh] dt+∫ T

0

η
[
∂zldθz + ∂ ˙̃pldθ ˙̃p+ ∂θl

]
dt+ δ

(
dp̃0

dθ
+
∂ log pz0(z(0))

z(0)

dz(0)

dθ

)
.

(A)

We eliminate dθż and dθ ˙̃p using integration by parts:∫ T

0

λ∂żhdθż dt = λ∂żhdθz
∣∣T
0
−
∫ T

0

[
λ̇∂żh+ λdt∂żh

]
dθz dt

= −
∫ T

0

λ̇dθz dt,

(B)

where we used that ∂żh = 1 and dθz(T ) = dθx = 0; we further chose λ(0) = 0. Using that
∂ ˙̃pl = 1 and choosing η(T ) = 0, we get∫ T

0

η∂ ˙̃pldθ ˙̃p dt = η∂ ˙̃pldθp̃
∣∣T
0
−
∫ T

0

[
η̇∂ ˙̃pl + ηdt∂ ˙̃pl

]
dθp̃ dt

= −η(0)dθp̃0 −
∫ T

0

η̇dθp̃ dt.

(C)

Combining (A), (B), and (C) we find

d

dθ
L =

∫ T

0

[∂p̃TC∂θg + λ∂θh+ η∂θl] dt−
∫ T

0

η̇dθp̃ dt+ (∂p̃TC + δ − η(0))
dp̃0

dθ

+

∫ T

0

[
∂p̃TC∂zg − λ̇+ λ∂zh+ η∂zl

]
dθz dt+ δ

∂ log pz0(z(0))

z(0)

dz(0)

dθ
.

(C.1)

To avoid having to compute dθp̃, we choose η such that

η̇ = 0,

for all 0 < t < T . Using the initial condition η(T ) = 0 from above implies that η(t) = 0.
Furthermore, to avoid having to compute dθp̃0, we choose δ = η(0) − ∂p̃TC = −∂p̃TC.
Equation (C.1) then simplifies to

d

dθ
L =

∫ T

0

[∂p̃TC∂θg + λ∂θh] dt+

∫ T

0

[
∂p̃TC∂zg − λ̇+ λ∂zh

]
dθz dt

− ∂p̃TC
∂ log pz0(z(0))

z(0)

dz(0)

dθ
.

(C.2)
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The term dθz(0) can be rewritten as

d

dθ
z(0) =

d

dθ

(
z(T ) +

∫ 0

T

f(z(t), t,θ) dt

)
=

∫ 0

T

[∂zfdθz + ∂θf ] dt.

(C.3)

Using Equation (C.3), we can rewrite Equation (C.2) as

d

dθ
L =

∫ T

0

[
∂p̃TC∂θg + λ∂θh− ∂p̃TC

∂ log pz0(z(0))

z(0)
∂θf

]
dt+∫ T

0

[
∂p̃TC∂zg − λ̇+ λ∂zh− ∂p̃TC

∂ log pz0(z(0))

z(0)
∂zf

]
dθz dt.

To avoid having to compute dθz, we choose λ such that

∂p̃TC∂zg − λ̇− λ∂zf − ∂p̃TC
∂ log pz0(z(0))

z(0)
∂zf = 0, (C.4)

for all 0 < t < T , where we used that ∂zh = −∂zf . Letting λ∗ = λ+ ∂p̃TC
∂ log p(z(0))

z(0)
, we can

rewrite Equation (C.4) as

λ̇∗ = ∂p̃TC∂zg − λ∗∂zf, (C.5)

with initial condition λ∗(0) = λ(0) + ∂p̃TC
∂ log pz0 (z(0))

z(0)
= ∂p̃TC

∂ log pz0 (z(0))

z(0)
. Using Equa-

tion (C.5), the derivative of the Lagrangian with respect to θ further simplifies to

d

dθ
L =

∫ T

0

[
∂p̃TC∂θg + λ∂θh− ∂p̃TC

∂ log pz0(z(0))

z(0)
∂θf

]
dt

= −
∫ T

0

λ∗∂θf dt+

∫ T

0

∂p̃TC∂θg dt

= −
∫ T

0

λ∗∂θf dt−
∫ T

0

∂p̃TC∂θ tr ∂zf dt.

(C.6)

This derivation suggests the following algorithm to compute ∂θC(p̃t): Given z(T ) = x, we

first compute z(0) = z(T ) +
∫ 0

T
f dt and

∫ 0

T
tr ∂zf dt. Next, we compute ∂z(0) log pz0(z(0))

and

∂p̃TC = ∂p̃TC

(
log pz0(z(0)) +

∫ 0

T

tr ∂zf dt

)
.
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Using these quantities, we can consider Equation (C.6), as the solution of an IVP at time
T with dynamics

−λ∗∂θf,

and initial condition

−
∫ T

0

∂p̃TC∂θ tr ∂zf dt.

By Equation (C.6), Equation (C.5), and initial condition λ∗(0) = ∂p̃TC
∂ log pz0 (z(0))

z(0)
, we can

then obtain dθC(p̃T ) = dθL by computing z(T )
λ∗(T )
dθC(p̃T )

 = odesolve


 f
−∂p̃TC∂z tr ∂zf − λ∗∂zf

−λ∗∂θf

 ,
 z(0)

∂p̃TC
∂ log pz0 (z(0))

z(0)

−∂p̃TC
∫ 0

T
tr ∂zf dt

 , [0, T ]

 .

103



Appendix D

Experiments

D.1 A Description of 8gaussians

In this section, we explain how data points of the 8gaussians dataset (Grathwohl et al.,
2018) are generated. First, we define an array of eight circle centers

C8gaussians =

[
(4, 0) , (−4, 0) , (0, 4) (0,−4) ,

(
4/
√

2, 4/
√

4
)
,(

4/
√

2,−4/
√

2
)
,
(
−4/
√

2, 4/
√

2
)
,
(
−4/
√

2,−4/
√

2
)]

.

Given a desired dataset size m, we first draw m random integers {Ii}mi=1 uniformly from
the index set {1, . . . , 8}. The i-th point x(i) of the 8gaussians dataset is then computed as

x(i) = C8gaussians[i] +
1

2
ε,

where ε ∼ N (0, I). The dataset can be kept deterministic by manually setting the random
seed of the random number generator.
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