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Abstract

Detecting anomalies in textured surfaces is an important and interesting problem that has
practical applications in industrial defect detection and infrastructure asset management
with a lot of potential financial benefits. The main challenges in this task are that the
definition of anomaly changes from domain to domain, even noise can differ from the normal
data but should not be classified as an anomaly, lack of labelled datasets and a limited
number of anomalous instances. In this research, we have explored weak supervision and
network-based transfer learning for anomaly detection. We developed a technique called
AnoNet, which is a novel and compact fully convolutional network architecture capable of
learning to detect the actual shape of anomalies not only from weakly labelled data but also
from a limited number of examples. It uses a unique filter bank initialization technique
that allows faster training. For a H x W x 1 input image, it outputs a H x W x 1
segmentation mask and also generalises to similar anomaly detection tasks. AnoNet on
an average across four challenging datasets achieved an impressive F'1 Score and AUROC
value of 0.98 and 0.94 respectively. The second approach involved the use of network-
based transfer learning for anomaly detection using pre-trained CNN architectures. In
this investigation, fixed feature extraction and full network fine tuning approaches were
explored. Results on four challenging datasets showed that the full network fine tuning
based approach gave promising results with an average F1 Score and AUROC values of 0.89
and 0.98 respectively. While we have successfully explored and developed a method each
for anomaly detection with weak supervision and supervision from a limited number of
samples, research potential exists in semi-supervised and unsupervised anomaly detection.

v



Acknowledgements

I thank my supervisor Professor John Zelek for all the guidance and support that he
provided during my Master’s degree.

I would also like to thank my thesis readers Professor David Clausi and Professor Oleg
Michailovich for their invaluable inputs and aid.

I acknowledge and am thankful for the financial support from the Ontario Ministry of
Transportation, Natural Sciences and Engineering Research Council, University of Water-
loo and Systems Design Engineering department.

[ thank my parents Ms. Baljeet Kaur Minhas and Mr. Amarjeet Singh Minhas for their
constant love and support and sacrifices that allowed me to pursue my Master’s degree. I
thank my sister Harneet Kaur Minhas for her love and support.

I thank my relatives, friends, and teachers for their support.



Dedication

I dedicate this thesis to my family, friends, and teachers. First, this is for my mom,
dad, and sister. Their unconditional love and support have made this a reality. Next,
to all my family members and friends who are a part of my life and have supported me
throughout. Finally, this is also to all the teachers I have encountered in my life who not
only imparted knowledge but also life skills and wisdom to me, that allowed this day to
become a reality.

vi



Table of Contents

List of Figures

List of Tables

1 Introduction

1.1
1.2

Contributions . . . . . . . . . s,

Thesis Outline . . . . . . . . .

2 Background

2.1
2.2
2.3
24
2.5
2.6

3 AnoNet: Weakly Supervised Anomaly Detection in Textured Surfaces

3.1

3.2

Traditional Methods vs Deep Learning . . . . . . ... .. .. ... ....
Anomaly Detection Techniques . . . . . . . ... . ... ... ... ....
Anomaly Detection using CNNs . . . . . .. .. ... ... ... ... ...
Weakly Supervised Anomaly Detection . . . . . . .. .. ... ... ....
Anomaly Detection using Transfer Learning . . . . . .. . .. .. ... ..

SUMIMATY .+ . v o o v v e e e e e e e e e e

AnoNet: A fully convolutional network for anomaly detection . . . . . ..
3.1.1 Network Architecture . . . . . . . . .. ... ...
3.1.2 Filter Bank Initialization Technique . . . . . . . . .. .. ... ...
Methodology . . . . . . . . . .

vii

ix

xi

W

© o O ot Ot

10
11



3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.2.7
3.3 Results
3.3.1
3.3.2
3.3.3
3.3.4

Datasets . . . . . . . ..
First Stage: Analysis of CompactCNN . . . . . ... .. ... ...
Second Stage: Visualization Studies . . . . . . . ... .. ... ...
Third Stage: Ablation Studies . . . . . .. ... ... ... ... ..
Fourth Stage: AnoNet Filter Bank Studies . . . . . ... ... ...
Experimental setup . . . . . . . ...
Evaluation Metrics . . . . . . . . . .. ..o
First Stage: Analysis of CompactCNN . . . .. ... .. ... ...
Second Stage: Visualization Studies . . . . . . . ... ... .. ...
Third Stage: Ablation Studies . . . . . . . . ... ... L.
Fourth Stage: AnoNet Filter Bank Studies . . . . .. ... ... ..

4 Supervised Anomaly Detection using Transfer Learning

4.1 Methodology . . . . . . . .
4.2 Experiments . . . . . ...
4.2.1 Datasets . . . . . ..
4.2.2  CNN architectures . . . . ... ... ... ..
4.2.3 Implementation . . . . . . . ... ..

4.3 Results

5 Conclusion

References

viil

41
41
43
43
44
44
45

47

49



List of Figures

2.1

3.1

3.2
3.3

3.4
3.5

3.6
3.7

3.8

3.9
3.10

3.11

3.12
3.13

[lustration of a network based deep transfer learning from a source domain
A and task A to target domain B and task B. . . .. ... ... ... ... 11

AnoNet: a fully convolutional network for anomaly detection using weak

SUPETVISION . . . . . v v o e e e 14
Visualization of the filter banks. . . . . . . . .. ... ... ... ... .. 17
Sample image and weakly labelled mask pairs for all the datasets used in

the AnoNet experiments . . . . . . . .. .. ... 20
Base architecture for the ablation studies. . . . . . ... ... ... .... 21

Total network parameter comparison for all the configurations used in the

ablation and filter bank studies. . . . . . .. ... ... L. 25
CompactCNN over-fitting to weakly labelled DAGMC1 dataset . . . . . . 27
Intermediate feature visualization for modified CompactCNN trained on
CrackForest dataset . . . . . . . . . . . ... . ... 28
Activation maximization results for modified CompactCNN trained on Crack-
Forest dataset. . . . . . . . . . . ... 30
F1 score and AUROC graphs of ablation experiments . . . . . . ... ... 32
Sample segmentation outputs for the ablation experiments after the first
epoch. . . . L 33
Sample segmentation outputs for the ablation experiments after the twenty-
fiftth epoch . . . . . . . . 34
F1 score and AUROC graphs of filter bank experiments . . . . . . . .. .. 35
Sample segmentation outputs for filter experiments after the first epoch . . 36

X



3.14 Sample segmentation outputs for filter experiments after 25 epochs

4.1 Defect Detection using network-based transfer learning

4.2 Results of the network-based transfer learning experiments. . . . . . . . . .



List of Tables

3.1
3.2
3.3

3.4
3.5
3.6

AnoNet: Filter Bank configurations . . . . . .. ... ... ... ... ... 16
Ablation study configurations. . . . . .. .. ... Lo 24

Best AnoNet configurations for every dataset based on different metrics after
the 1st and 25th epoch . . . . . . . . . . .. ... 38

Comparison of AnoNet, CompactCNN and DeepLabv3 after the 1st Epoch. 39
Comparison of AnoNet, CompactCNN and DeepLabv3 after the 25th Epoch. 39

Comparison of AnoNet with the road crack detection systems on the Crack-
Forest dataset. . . . . . . . . .. 40

X1



Chapter 1

Introduction

According to the World Health Organization (WHO) Global Status Report on Road Safety
2018, there are 1.35 million road traffic deaths every year [53]. A study conducted by the
Pacific Institute for Research and Evaluation (PIRE) on traffic accidents and fatalities in
2009, found that more than half of the deaths that occurred on the American roadways
were due to poor road conditions [16]. The expense of those accidents costs the U.S.
economy $217 billion each year. Additionally, $91 billion was invested annually in road
infrastructure [50]. Poor road conditions are primarily caused due to surface defects such
as cracks and potholes. In the railways, broken rails and welds were the most common
cause of train derailments which accounted for more than 15% of defects [51]. Detecting
defects in industrial manufacturing processes is crucial for ensuring the high quality of
finished products. All these examples show the vital importance of detecting defects across
different industries.

A common property of these surface defects is that their visual texture is inherently
different from the defect-free surface. Since human visual inspection relies solely on what
is seen, it only makes sense that automating visual inspection from camera images should
be plausible. The task of automated visual defect detection can therefore be formulated as
the problem of anomaly detection in textured surfaces. Visual texture refers to the human
visual cognition and semantic meaning of textures based on the local spatial distributions
of simple appearance properties such as color, structure, reflectance, and orientation of
the object. The objective of the manual human inspection is to detect the anomalies by
comparing the difference in visual texture appearance of the defects against defect free
appearance. The process is not only time consuming and expensive but also prone to
errors due to the monotony of the task. It is also subjective and susceptible to human
biases. Individual factors such as age, visual acuity, gender, experience, scanning strategy,



training, etc. also affect inspection [62]. To overcome these problems and challenges,
a significant amount of work has been conducted to automate the process of anomaly
detection in textured surfaces. Examples of automatic visual inspection systems in various
domains include defect detection in steel surfaces [67], pavements [1], rail tracks [77] and
fabric [32] to name a few. The key challenges faced by automated detection systems are as
follows. Anomalies such as dents, smudges, cracks, impurities, scratches, stains, etc. vary
in terms of pixel intensities, geometric constraints, and visual appearance [58]. Moreover,
the data often contains noise, which although is different from the normal data, should not
be classified as an anomaly by the detection system. Environmental factors such as lighting,
temperature, extreme weather (such as snow) also impact the detection systems. These

challenges make the task of anomaly detection in textured surfaces extremely complex and
difficult.

For these automated systems, textures can be described using two approaches, namely
structural and statistical. The structural approach considers texture as an organised area
phenomenon which can be decomposed into primitives (also known as textons) having
specific spatial distributions [20]. This definition comes directly from the human visual
experience of textures. The number and type of primitives, as well as their spatial organi-
zation or layout, describes an image texture. For example, a brick wall texture is generated
by tiling up bricks (primitives or textons) in a layered manner (specific spatial distribution).
The second approach known as the statistical approach considers textures to be generated
by a stochastic process such as a Markov Random Field. Grass, sand, sandpaper, leather,
etc. are examples of this category. The quantitative measure of the spatial distribution of
gray levels in textured surfaces forms the basis of the statistical approach.

Traditionally, the automated methods have relied on the computation of a set of hand-
crafted textural features in the spatial or spectral domain followed by the search for sig-
nificant deviations in the feature values by using different classifiers. In spatial-domain
approaches, the commonly used features are second-order statistics derived from spatial
gray-level co-occurrence matrices [71]. Spectral approaches normally involve the use of Ga-
bor filters [33], Fourier transform [9] and Wavelet transform [63]. These methods, however,
suffer from the following drawbacks. The hand-crafted features require domain expertise
and are very challenging to formulate. They do not generalize which means that the engi-
neered features that are designed for a specific task cannot be used for other different or
even similar tasks.

Deep learning techniques applied to the task of anomaly detection have overcome these
challenges and are receiving increased attention. Convolutional Neural Networks (CNNs)
were used for supervised steel defect classification [12] and rail surface defect classification
[11]. Although the deep learning techniques have outperformed the traditional hand-crafted
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features based approaches, they suffer from their associated set of challenges. The lack
of available labelled training examples is a major challenge [0] [7], since these models
require large labelled datasets. The instances of anomalous classes are even fewer in these
datasets which hinders the training of the network. Pixel-level annotated datasets that
are required for supervised defect segmentation, are not only rarer but also expensive and
time-consuming.

This research aims to develop a general anomaly detection method that can be applied
to the automation of the tedious defect detection task by human inspection across different
industries. Our aim is also to address the existing research gap by being able to train
from a limited number of samples for the classification task and weakly labelled data
for the pixel-level segmentation task. Weakly supervised learning covers techniques that
try to construct models by learning with weak supervision and directly addresses these
pain points. Weak supervision can be broadly classified into three categories: incomplete,
inexact and inaccurate [32]. In incomplete supervision only a small subset of training set
has labels and the rest of the samples are unlabelled. Inexact supervision involves coarse-
grained labels, for example, image-level labels rather than object-level labels. Inaccurate
supervision involves labels that are not always correctly labelled. One technique that is in
both the inexact and inaccurate category is weakly supervised anomaly detection. It uses
masks that are loosely annotated at the pixel level e.g. in the form of some geometric shape
such as an ellipse covering the entire anomaly. As a result, the mask only provides a coarse
location of the anomaly and there are a lot of inaccurately labelled normal (defect-free)
background pixels which are seen as anomalous pixels. This makes the anomaly detection
task even more challenging.

In this thesis, we explored two approaches. The first involved the use of weak supervi-
sion for the segmentation of anomalies using CNNs (Chapter 3) and the second involved
the use of network-based transfer learning using CNNs (Chapter 4) for the classification
of anomalous images from a limited number of training samples. We present a novel tech-
nique for anomaly detection in textured surfaces using weakly annotated data, that can
learn the underlying shape of the anomaly from not only weakly annotated data but also
from a few examples.

1.1 Contributions

The main contributions of this thesis include the following:
1. We have developed AnoNet (Chapter 3), a fully convolutional architecture with only
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64 thousand parameters, for anomaly detection in textured surfaces using weakly
labelled data that outputs a H x W x 1 segmentation mask for a H x W x 1 input
image. This prevents the loss of localization of the anomaly with respect to the
original image. The network has a valuable and important ability to learn to detect
the actual shape of the anomaly despite the weak annotations.

2. AnoNet has an important practical advantage for real-world applications, that it can
learn from a limited number of weakly annotated images. For the RSDDs-I dataset,
it learnt do detect anomalies after just a single pass through mere 53 training images.

3. A filter bank based initialization technique for AnoNet is presented. To the best of our
knowledge, no such work has been done for weakly supervised anomaly detection in
textured surfaces. AnoNet achieved state of the art performance on four challenging
datasets. In comparison to the CompactCNN [55] and DeepLabv3 [%], AnoNet on
average achieved an impressive average improvement in performance to an F1 score

of 0.98 (106% increment) and to an AUROC value of 0.94 (13% increment).

4. We have explored network-based transfer learning for anomaly detection using CNNs
(Chapter 4). Results obtained on four difficult datasets showed that the full network
fine-tuning based approach gave promising results with an average F1 Score and
AUROC values of 0.89 and 0.98 respectively.

1.2 Thesis Outline

The remainder of the thesis is organized as follows. In Chapter 2, we discuss existing
methods with their gaps and shortcomings. The AnoNet architecture (3.1) along with the
overall methodology (3.2), results and discussion (3.3) are detailed in Chapter 3. Next,
we describe the network-based transfer learning approach in Chapter 4. Transfer learning
is discussed in 2.5, followed by the methodology (4.1), experiments (4.2) and results 4.3.
Finally, in Chapter 5 we present our conclusions and future work recommendations.



Chapter 2

Background

The primary goal of defect detection and assessment is to differentiate possible defective
regions from non-defective regions. For visual appearance inspection, this is just the task
of anomaly detection in textured surfaces. Different and complex textures, varying shapes,
sizes and colors of defects, as well as inconsistent lighting conditions, make the task ex-
tremely challenging. Traditional methods follow the pipeline of feature extraction followed
by a learning based classifier such as SVM, KNN etc. for performing the task of anomaly
detection. The two main drawbacks of using hand-crafted feature based approaches are the
requirement of domain knowledge and poor generalization capability of the features. Deep
learning techniques can overcome these challenges while achieving superior performance
and have been widely investigated.

2.1 Traditional Methods vs Deep Learning

An increasing number of studies, for instance [23] [11] [57], have been carried out that com-
pare the deep learning approaches to the traditional hand-crafted feature based techniques
for different computer vision tasks. Almost all of them have one common observation that
deep learning based approaches tend to work better.

In one study, Antipov et al. [3] compared learned features and hand-crafted features for
the task of Pedestrian Gender Recognition. The key findings of the research were as follows.
The learned features significantly outperformed the hand-crafted features on heterogeneous
data composed from different datasets, with an average mean average precision (mAP)
increase of 28.4% and a maximum increase of as high as 46.5%. Furthermore, the learned



features generalized better than the hand-crafted features on completely unseen datasets.
An average performance improvement of 31.8% in the mAP value was observed. Finally,
they found that smaller CNN models trained from scratch on small datasets were able to
produce compact features that generalized as well as the features produced by much bigger
pre-trained networks fine-tuned on the same datasets.

In their work, Nanni et al. [17] compared handcrafted and non-handcrafted features for
classification on several datasets. They extracted features from different intermediate layers
of CNN models in comparison to traditional descriptors like Local Binary Patterns, Local
Ternary Patterns, and Local Phase Quantization by training SVMs for the classification
task. Results showed that the deep learning feature based approach performed better.

In [5], the authors compared learned and handcrafted feature based approaches for per-
son re-identification. They found that fully trained CNN outperformed the handcrafted
approaches and the combination of pre-trained CNN with different re-identification pro-
cesses. However, they identified that the deep learning methods tended to over-fit on
single-shot databases (which is to be expected since it comprises of only one image pair)
and required large training samples, high computational power as well as longer training
time.

Zare et al. [78] explored and compared three different approaches for the classification
of Medical X-ray images, namely (1) SVM trained on features extracted from bag-of-visual-
words (BoVW) model (2) SVM trained on features extracted from pre-trained AlexNet and
(3) fine-tuning of pre-trained AlexNet using transfer learning. Results on the ImageCLEF
2007 dataset with 116 classes showed that the fine-tuning approach outperformed the other
techniques by achieving per class accuracy of greater than 80% in 60 classes compared to
just 24 and 26 classes for first and second technique respectively. Because of the clear
performance improvement, recently, deep learning based approaches for anomaly detection
have gained a lot of attention.

2.2 Anomaly Detection Techniques

The anomaly detection techniques can be broadly classified into three major categories
based on the availability of labels: (1) unsupervised (2) semi-supervised and (3) supervised
[7] [6]. The class labels can be either normal or anomalous.



1. Unsupervised anomaly detection: These methods do not require any training
labels which makes them the most flexible. They make use of just the intrinsic prop-
erties of the data with the assumption that the data is heavily skewed with a lot
more normal instances than the anomalous. In [50], the authors explored an im-
age segmentation approach for fruit defect detection using k-means clustering and
graph-based algorithm. The method employed a region growing technique for the
segmentation process making it slow. Also, it was heavily dependent on the choice of
the initial cluster centers and got different results based on different selections. With
unsupervised approaches, one cannot hope to target specific types of anomalies since
there is no labelling. Also, although the unsupervised techniques offer the most flex-
ibility in terms of labelling requirements, they often struggle to learn commonalities
within complex and high dimensional spaces [0].

2. Semi-supervised anomaly detection: The main assumption for these techniques
is that we have access to labelled training instances for only the normal class. Because
of this reason, these techniques are less flexible than unsupervised techniques. These
try to estimate or model the underlying normal class distribution of the data. This
is followed by some kind of measurement of divergence or deviation of the samples
from the learnt distribution and classification based on a threshold. Schlegl et al.
[09] used Generative Adversarial Networks (GANs) for anomaly detection in optical
coherence tomography images of the retina. They trained a GAN on the normal data
to learn the underlying distribution to encode the anatomical variability. However,
they did not train an encoder for mapping the input image to the latent space. As
a result, the method needed an optimization step for every query image to find a
point in the latent space that corresponded to the most visually similar generated
image. This caused the technique to be computationally expensive. The model out-
putted an anomaly score and a segmentation output as the residual image obtained
by subtracting the query image from the GAN generated image from optimization.
Zenati et al. [30] tried to handle the speed bottleneck by training an encoder that
learnt the mapping from the data space to the latent space. They tested it on only
two image datasets SVHN and CIFAR10 and the results did not look good. They
got AUROC values of 0.5753 and 0.6072 respectively which are marginally above
the random classification model value of 0.5. In [76], the authors used convolutional
auto-encoders for defect segmentation of hot-rolled steel strip surfaces. They trained
an auto-encoder on only the normal images. The anomaly detection process involved
a sharpening step which was a weighted addition of the residual image (obtained
by subtracting the reconstructed image from the input image) to the reconstructed
image. This was followed by Gaussian blurring and thresholding. No quantitative



results were reported. However, the qualitative results showed that the technique was
extremely noisy. It segmented even illumination changes as defective regions which
were undesirable and ultimately affected the performance.

3. Supervised anomaly detection: These techniques require labels of both normal
and anomalous data instances which makes them the least flexible. However, the
supervised techniques tend to have better performance in comparison to the other
two types. Since the training is done on labelled instances, certain specific types of
defects or anomalies can be targeted. This could be especially helpful in industrial
defect detection and infrastructure asset management, where certain types of defects
may be extremely detrimental to the working or safety of the product or equipment
or asset and need to be identified with high precision. As a result of these benefits,
a growing body of literature has examined these techniques. Specifically, the use of
Convolutional Neural Networks (CNNs) for supervised anomaly detection has seen
an exponential increase, which is discussed next.

2.3 Anomaly Detection using CNNs

One of the primary reasons behind the increased adoption of CNNs is their ability to elim-
inate the need for domain-specific engineered features by learning complex filters from the
training data. In [12], CNNs were used with max pooling layers for the task of steel defect
classification into 7 defect types and their performance was compared with SVM classifiers
trained on engineered features. The CNN based approach performed approximately two
times better in comparison to the feature descriptor based SVM approach. The best CNN
model having 7 hidden layers had an error of 6.79%, while the best feature i.e. Pyramid
of Histograms of Orientation Gradients (PHOG) based classifier had an error of 15.48%.
Another important observation was that the network with large filter sizes did not achieve
the best performance. The network with progressively decreasing filter sizes of 11 x 11,6 x6
and 5 x 5 achieved better performance than the network with 19 x 19 and 13 x 13 filter
sizes. Their technique, however, had the following three shortcomings. First, the input
image size to the network was restricted to one value because of the use of fully connected
layers. Next, the network did the classification without localizing the defect in the images
via a pixel-level segmentation mask. Finally, since a large number of kernels per CNN
layer were used, this increased the number of network parameters and potentially exposed
the models to the problem of over-fitting. Over-fitting is a problem in deep learning where
the model is more complicated than is necessary, thereby leading to the memorization of
datasets. Even though an over-fit model can have a good performance on the training



data, it does not generalize well and has poor performance on the testing data and does
not scale to other testing data.

Another major challenge for the CNN based approaches applied to supervised anomaly
detection is that they require a large number of samples of normal and anomalous instances
for training [7] [0]. Specifically, detailed pixel level annotation of the anomalous instances
is required for the segmentation tasks. For all practical applications and purposes, this is
a major drawback. This is because not only are anomalous instances limited in real-world
applications, but also the creation of pixel-level annotated datasets is cumbersome and
expensive. A technique to tackle this challenge was explored on different CNN architectures
for the task of surface anomaly detection [73]. To train the network, the proposed method
required sub-sampling of the original images with the extraction of 32 x 32 patches which
lead to a 47 fold increment in the number of training samples. However, this sub-sampling
approach resulted in extremely long training time of 24 hours and also led to the loss of the
global contextual information required for the anomaly detection task. Also, patch based
approaches are several times slower than the FCN based approaches where the entire input
image is processed in a single forward pass through the network.

2.4 Weakly Supervised Anomaly Detection

One way of tackling the challenge of lack of labelled data is to use weakly supervised
learning methods. As discussed in the previous chapter, these techniques try to construct
models by learning from weak supervision. However, very few techniques in the literature
exist that tackle anomaly detection using weak supervision. In [58], the authors used a
CNN based architecture for the classification and segmentation of anomalies from weakly
annotated data. However, their approach had the following shortcomings. The network
did not learn to detect the actual shape of the anomaly from the weak labelling. The
input size of the image for the model was fixed to 512 x 512, which prevented images of
other shapes to be fed to the network. It outputted masks of size 128 x 128, which were
sixteen times smaller than input image size and resulted in the loss of localization and
shape information. This can introduce errors in the calculation of metrics which are based
on the shape and size of the defect (anomaly). Also, the network was not tested on any
real world dataset which raised concerns regarding its practical application. The paper
lacked quantitative analysis for the segmentation task. The qualitative results presented
and discussed in the paper showed that the segmentation results were poor, with a lot of
false positive pixels i.e., defect free regions classified as defects. The classification part of
the model completely relied on the features extracted by the model for the segmentation



task. Thus, good segmentation capability was essential for the classification stage. Lastly,
the proposed architecture had approximately 1.13 million parameters. The huge number
of parameters made the architecture susceptible to the problem of over-fitting. If the opti-
mization problem is made easier by changing model architectures (by making them deeper
and thereby increasing the total number of model parameters), generalization performance
can be degraded [27].

2.5 Anomaly Detection using Transfer Learning

Transfer learning is another technique that is used to handle situations where you do not
have access to large labelled datasets. The goal of transfer learning is to improve learning
in a target task by leveraging knowledge from a source task [70]. Chuangi Tan et al. [69]
classify deep transfer learning into four categories: (1) instance-based deep transfer learn-
ing, (2) mapping-based deep transfer learning, (3) network-based deep transfer learning,
and (4) adversarial based deep transfer learning. Out of these approaches network-based
deep transfer learning method is most widely used in practical applications. It refers to
the reuse of a partial network pre-trained for a source domain, including its network struc-
ture and connection parameters and transferring it to be a part of deep neural network
which used for a target domain [09]. The source network is thought of as consisting of
two sub-networks: (1) Feature extractor sub-network and (2) Classification sub-network.
The target network is constructed using the source network with some modifications and
trained on the target dataset for the intended task. The network-based transfer learning
approach is shown in Figure 2.1.

A growing body of literature has examined the use of transfer learning for different
classification tasks. Kensert et al. applied transfer learning for classifying cellular morpho-
logical changes and explored different CNN architectures [28]. The ResNet50 architecture
achieving the highest accuracy of 97.1%. They observed that the models were able to
distinguish the different cell phenotypes despite a limited quantity of labelled data. In
another study, Feng et al. [11] used transfer learning for structural damage detection. The
Inception-v3 architecture obtained an average accuracy of 96.8% using transfer learning
and outperformed the SVM method which had an accuracy of 61.2%.
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Network A

Source Source

Feature extractor Classification
Subnetwork Subnetwork

Transfer
Learning

Network B

Target Target
Feature extractor Classification
Subnetwork Subnetwork

Frozen Backpropagation

Figure 2.1: Hlustration of a network based deep transfer learning from a source domain A
and task A to target domain B and task B. The Network A is trained on a large training
dataset and is called the pre-trained network. Network B is constructed by using parts
of Network A followed by a new softmax classification network. Finally, the resulting
network B is initialized with the pre-trained weights and trained using backpropagation
on the target dataset.

Domain
B

2.6 Summary

To summarize, anomaly detection is a very relevant problem with applications across indus-
tries and specifically in defect detection and infrastructure asset management and main-
tenance. However, it has a lot of associated challenged. Different lighting conditions,
complex textures, and varying shapes, sizes and colors of the defects are some of them.
Limited instances of anomalies and lack of labelled data add to the difficulty of learning
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algorithms.

Recently, with the proliferation of data, access to powerful processors, better network
architectures and improved optimization techniques, deep learning techniques have gained
a lot of success. For computer vision tasks, Convolutional Neural Networks have outper-
formed the traditional hand-crafted feature based approaches. But the requirement of
large amounts of training data remains a huge challenge. The situation is aggravated for
anomaly detection because of the lack of labelled data and the unavailability of a large
number of anomalous examples.

One type of technique to handle this challenge is to use weak supervision. For anomaly
detection, this is in the form of imprecise and inexact training data e.g. an ellipse covering
the entire defect such as a crack. A network architecture that learns to detect the actual
shapes of the anomalies from limited samples of weakly labelled data, does not over-fit and
generalizes to similar anomaly detection tasks is missing in the literature. In this research,
we present a novel technique (Chapter 3) capable of learning to detect the actual shape
of the anomalies from not only weakly labeled data but also from a limited number of
samples. To achieve this, we explore pre-seeding the preliminary feature extractor with a
biologically plausible one. Empirical testing of the architecture is used to find a compact
design.

Transfer learning is another technique that also tries to address the challenge of train-
ing from limited data. Although transfer learning for classification has been explored for
specific applications, an extensive exploration of anomaly detection using transfer learning
comparing the performance of the state-of-the-art CNN architectures on different defect
detection tasks is missing in the literature. In this research, we uniquely use the output
value from the neuron responsible for the anomalous samples as the anomaly score value.
And the approach (Chapter 4) was tested on three different CNN architectures and four
challenging datasets. Unlike the current work on defect detection using transfer learning,
we use the AUROC (3.2.7) metric for evaluating the model performance, because it is a
robust and more accurate measure of the separation capability than just the classification
accuracy.
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Chapter 3

AnoNet: Weakly Supervised
Anomaly Detection in Textured
Surfaces

In this chapter, first the AnoNet architecture is explained along with the filter bank ini-
tialization technique. This is followed by the methodology and results.

3.1 AnoNet: A fully convolutional network for anomaly
detection

3.1.1 Network Architecture

The AnoNet architecture is presented in Figure 3.1, it is a modification of the CompactCNN
[58]. It is a Fully Convolutional Network (FCN) and therefore overcomes the restriction
of a fixed size input faced in the case of CNNs that make use of fully connected layers.
AnoNet consists of four convolutional layers and all the layers have a stride of one. For all
the layers a zero padding of % (where k x k is the kernel size of the layer) is done on all
the sides to ensure that the size of the output feature maps is same as the input feature
maps. Progressively decreasing filter sizes of k x k (k € {11,7}), 7 x 7, and 3 x 3 are
used to allow the network to have a large field of view, which is beneficial for the anomaly
detection task. The first layer of AnoNet is the filter layer which is seeded using the Filter
Bank initialization technique 3.1.2, which is biologically plausible. The rest of the layers
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AnoNet: A fully convolutional network for anomaly detection

~
Update network weights

Output Mask
(HxWx1)

Input Image
(HxWx1)

(Filter Bank Layer)

Conv 7x7, stride 1, depth 32
Conv 3x3, stride 1, depth 32
Conv 1x1, stride 1, depth 1

Conv kxk, stride 1, depth n

Mean Squared
Error

ﬂ (MSE) Loss

Weakly Annotated
Label (HxWx1)

Figure 3.1: AnoNet: A fully convolutional network, for anomaly detection in textured
surfaces using weakly labelled data that outputs a H x W segmentation mask for a H x W
input image. With only 64 thousand parameters, AnoNet is remarkably compact and not
susceptible to the problem of over-fitting. It has the valuable and important ability to learn
to detect the actual shape of the anomaly not only from the weak annotations but also
from a limited number of samples. It uses a filter bank initialization technique for the first
layer, as described in 3.1.2 and the values of network parameters k(filter size) and n (filter
stack length) depend on the filter bank being used and are described in subsection 3.1.2.
For the rest of the network the weights are initialized using a random normal distribution
of mean zero and variance of one.

are initialized with a random normal distribution with zero mean and variance of one. The
values of the parameters k (filter size) and n (filter stack length) depend on the AnoNet
configuration and are summarized in Table 3.1. All the layers except the last layer use
ReLU activation function which is defined by the Equation 3.1. It can be shown that deep
neural networks trained with ReLLU train several times faster than their equivalents with
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tanh units [31].

f(z) = max(0,x) (3.1)

However, for the segmentation layer (i.e. the last layer), the tanh activation is used.
It was selected since it resulted in a better separation of the anomalies from the normal
pixels in comparison to the ReLLU and linear activation. Batch normalization is applied
after every layer since it accelerates the training of deep networks by making normalization
inherent to the model architecture [26]. Normalization of a vector means making it have
the mean of zero and a variance of one. For a vector x, the normalization equation is given
below by Equation 3.2, where E[x] is the expectation of x and Var[x] is its variance.

- F
Var[x]
In comparison to the segmentation part of CompactCNN [55], the AnoNet architecture

achieves a massive reduction of 94.29% in the total number of network parameters from
1.13 million to 64 thousand on average. Despite this huge reduction in parameters, AnoNet
outperformed CompactCNN in the anomaly detection task as shown in Section 3.3. For
a H x W image, the network outputs a H x W mask. This is because down-sampling
operations such as strided convolutions and pooling have not been performed in the network
architecture. This also prevents the artifacts that are introduced during the up-sampling
transposed convolution or deconvolution operation. AnoNet has the valuable ability to
learn to detect the actual shape of the anomalies from weakly annotated datasets with a
limited number of training samples.

The unique features of the AnoNet architecture are as follows.

1. AnoNet is a fully convolutional network and does not use strided convolution (i.e.,
layers with stride > 1) which does not down-sample the image. For a W x H input
image, we get a W x H output mask. Since the model does not use transposed
convolutions for up-sampling, there are no checkerboard artifacts.

2. The network is shallow and compact which prevents over-fitting by design. Addition-
ally, this allows the training of the network accomplished with only a limited number
of training samples.

3. The compactness of the model causes the size of the intermediate features to be
limited which allows the training to be done without having to down-size the image
to a lower resolution before making the batches to feed to the GPU.
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Table 3.1: AnoNet: Filter Bank configurations. There are 12 AnoNet configurations in
total and their names are given in the configuration column. The filter bank column refers
to the filter bank being used. Filter size column gives the AnoNet parameters k& and n.
The trainable column contains Boolean values. True means that filter layer (first layer) of
AnoNet was set to be trainable i.e., its parameters were updated during the training and
False means that the parameters were frozen and did not change during the training.

Configuration Filter Bank Filter Size (k x k£ x n) Trainable

LMExpl1 LM Tx7x48 False
LMExp2 LM Tx7x48 True
LMExp3 LM 11x11x48 False
LMExp4 LM 11x11x48 True
RFSExpl RFS Tx7x38 False
RFSExp2 RFS Tx7x38 True
RFSExp3 RFS 11x11x38 False
RFSExp4 RFS 11x11x38 True
SExpl S 7x7x13 False
SExp2 S 7x7x13 True
SExp3 S 11x11x13 False
SExp4 S 11x11x13 True

4. The model footprint is small which makes it suitable for local execution on edge and
[oT devices.

5. The network can learn to detect the underlying shape of the anomaly despite the
weak labelling.

3.1.2 Filter Bank Initialization Technique

Filter banks usually refer to a collection of specially designed hand-crafted kernels that
are stacked together and applied to images to extract useful features for a particular task.
This is usually followed by the use of a learned classifier such as an SVM to perform the
classification or segmentation. Gabor filters [33], Wavelet filters [63] and Difference of
Gaussians are examples of some commonly used filters for texture related tasks. In our
proposed technique, three specific filter bank sets namely the Leung-Malik (LM), Schmid
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(S) and Root Filter Set (RFS) were selected since they contained both rotationally invariant
as well as directional filters [72] [34] [60] [17]. Thus, they are general and some have claimed
that they are biologically plausible [61]. Images of each of these three filter banks extracted
at an 11x11 kernel size are shown in Figure 3.2.

Leung-Malik (LM) Filter Bank Root Filter Set (RFS) Filter Bank

EII_I,I!E

1N NA"NN1]

N =N~
=\

\ | f -
| /i
'!‘IE'L'E::IE aizeln

Schmid (S) Filter Bank

E0co0

o[ 0o

Figure 3.2: The figure shows the LM, S and RF'S filter banks extracted at an 11x11 kernel
size. The LM filter bank has a mix of edge, bar and spot filters at multiple scales and
orientations. It consists of first and second derivatives of Gaussians at 6 orientations and 3
scales making a total of 36; 8 Laplacian of Gaussian (LOG) filters; and 4 Gaussians. The
RFS filter bank consists of 2 anisotropic filters (an edge and a bar filter, at 6 orientations
and 3 scales), and 2 rotationally symmetric ones (a Gaussian and a Laplacian of Gaussian).
The S filter bank consists of 13 isotropic Gabor like filters [10].

1. Leung-Malik (LM) Filter Bank: The LM filter bank comprises of a set of 48
multi-scale and multi-orientation filters. There are 36 filters of 15 and 2"¢ order
derivatives of Gaussians at 6 orientations and 3 scales, along with 8 Laplacian of
Gaussian (LOG) filters and 4 Gaussians filters [10].
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2. Schmid (S) Filter Bank: The S filter bank comprises of 13 rotationally invariant
filters which have the following form shown in Equation 3.3 [10].

r2
F(r,o,7) = Fy(o,7) + cos(——) e 3 (3.3)
o
The Fy(o, 7) term is added to make the DC component zero. The rotational symme-

try of this filter bank can be seen in Figure 3.2.

3. Root Filter Set(RFS) Filter Bank: As shown in Figure 3.2, the RFS filter bank
is similar to the LM filter bank. It comprises of 38 filters and uses a Gaussian
and a Laplacian of Gaussian both with ¢ = 10 pixels, an edge filter at three scales
(02,04) ={(1,3),(2,6),(4,12)} and a bar filter at the same three scales [10].

3.2 Methodology

Our investigation was conducted in four stages: (1) analysis of CompactCNN, (2) visual-
ization studies, (3) ablation studies, and (4) AnoNet filter bank studies.

3.2.1 Datasets

Four datasets were selected for experimentation. The dataset selection contained one
artificially generated dataset and three real world datasets all with completely different
textures and defects. Each dataset had a limited number of training samples which made
the anomaly detection task difficult. Additionally, varying illumination, different camera
positions, and orientation added to the complexity. The wide variety and challenging
nature of these datasets ensured that the proposed technique was tested thoroughly and
not limited to any particular type of texture and defect.

The datasets we used include the following.

1. DAGM][11] is a synthetic dataset for weakly supervised learning for industrial optical
inspection. It contains ten classes of artificially generated textures with anomalies.
For this study, the Class 1 having the smudge defect was selected, since it had the
maximum intra-class variance of the background texture of all classes in the dataset.
It (hereafter referred to as DAGMC1) contains 150 images with one defect per image
and 1000 defect free images. For every image a weakly labelled annotation in the form
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of an ellipse that covers the entire defect is available. The ellipse covers a significant
amount of normal texture in addition to the defect making the dataset an excellent
test case for loosely labelled data.

2. CrackForest [(1] dataset consists of urban road surface images with cracks as de-
fects. The images contain confounding regions such as shadows, oil spills, and water
stains. The images were taken using an ordinary iPhone5 camera. The dataset con-
tains 118 images and has corresponding pixel level masks for the cracks, all having
a size of 320 x 480. The additional confounders along with the limited number of
samples available for training make CrackForest another good dataset for anomaly
detection evaluation.

3. Magnetic Tile Defects dataset [25] dataset contains images of magnetic tiles
collected under varying lighting conditions. Magnetic tiles are used in engines for
providing constant magnetic potential. There are five different defect types available,
namely Blowhole, Crack, Fray, Break and Uneven. Among these, blowholes and
cracks impact the quality of magnetic tiles the most. We use the Blowhole category
(referred to as MT_Blowhole) of this dataset since CrackForest already covers a crack
type defect. The Blowhole defect category contains 115 images of varying sizes and
pixel level annotations are available for the defects.

4. RSDDs (Rail surface discrete defects) [15] is a challenging dataset containing
varying sized images of two different types of rails. Rail surface defects are one of
the most common and most important forms of failure [15]. Every image contains
at least one defect and has a complex background with noise. The RSDDs Type-I
category contains 67 images from express rails and the Type-II category contains 128
images captured from common/heavy haul rails. Pixel level annotations are available
for the defects for both categories. The heavily skewed aspect ratio of the images
and a limited number of training samples make this dataset challenging for the task
of anomaly detection.

To ensure that the datasets had weakly labelled annotations, all the datasets except
DAGMCI1 (since it was already weakly labelled) were modified by performing the dila-
tion operation using an 11 x 11 filter. A sample image and weakly annotated mask pair
from each dataset are shown in Figure 3.3.
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Figure 3.3: Figure shows one sample image and weakly labelled mask pair per dataset.
The red arrows point toward the anomaly in the images. Figure 3.3 (a) shows the sample
from DAGMCI1 having a smudge as the anomaly. Figure 3.3 (b) shows a sample from
CrackForest dataset and has cracks as the anomaly. Figure 3.3 (c¢) shows the MT Blowhole
sample. The defect or anomaly is a Blowhole, a type of surface defect in magnetic tiles.
Figure 3.3 (d) shows the RSDDS-I and RSDDS-II dataset samples. These have surface
defects on express rails and common /heavy haul rails respectively as the anomaly. Dilation
was performed for all the datasets except DAGMCI1 by using an 11 x 11 filter to make
the masks weakly annotated. The resultant weakly annotated mask examples are shown
in this figure.

Image

Weak Label

(a) (b)

3.2.2 First Stage: Analysis of CompactCNN

CompactCNN [58], a CNN based architecture was presented for the segmentation and
classification of anomalies in textured surfaces from weakly annotated data. As discussed
in Section 2, it failed to learn the actual shape of the anomaly from the weak annotation
and could not learn from a limited number of training samples. The following modifications
were performed to the segmentation part of this network to overcome its limitation of fixed
size input and to investigate a different activation function for the segmentation layer.
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1. To overcome the restriction of a fixed size input to the network, the fully convolutional
segmentation part of the network presented in [58] was selected and its input was
kept as H x W x 1. (In TensorFlow, None x None x 1 was used in the placeholder
to infer the dimension of the tensor from the data.)

2. The tanh activation was chosen for the segmentation layer instead of the linear ac-
tivation used in [58], because a linear activation gave poorer segmentation output
masks in comparison with the tanh activation. The tanh activation restricted the
output to [—1, 1], thereby enabling the network to better separate the anomalies from
the normal texture.

Initial investigative experiments were conducted using the modified CompactCNN ar-
chitecture (Figure 3.4) on the DAGMC1 and CrackForest dataset and the results are dis-
cussed in Section 3.3.

Conv 11x11 ,stride 2, depth 32

Conv 11x11, stride 1, depth 32

Conv 11x11, stride 1, depth 32
Conv 1x1, stride 1, depth 1
Output Mask H/4 x W/4 x 1

|
Conv 7x7 , stride 2, depth 64
Conv 7x7, stride 1, depth 64
Conv 7x7, stride 1, depth 64
l
Conv 3x3, stride 1, depth 128
Conv 3x3, stride 1, depth 128
Conv 3x3, stride 1, depth 128

| Input Image HxW x 1 |

Figure 3.4: The base architecture which is a modified version of the segmentation part
of architecture presented by Racki et al. [58]. It was pruned through extensive ablation
studies to get the AnoNet architecture.

3.2.3 Second Stage: Visualization Studies

Although deep learning models tend to give superior performance, interpreting why they
work is not self explanatory. To build trustworthy systems and enable their meaningful in-
tegration into the industry, model interpretability is important. The deeper the model, the
more difficult it is to interpret the results. To check whether the model learnt meaningful
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filters and analyse why the model failed to learn the underlying shape of the anomalies,
the following visualization and activation maximization studies were conducted.

1. Visualization of intermediate layer outputs: Observing the intermediate layer
outputs gives an understanding of the features being extracted by the kernels for a
given input. This study was conducted using the following steps.

i. Forward pass an input image X through the network.

ii. Extract the intermediate activation a!(X) for i filter of layer j, for all the
filters of every layer of the model.

iii. Stack all the intermediate activation outputs and analyse them in a grid.

2. Activation Maximization Study: Deep learning and human brain analogies are
very popular. Certain stimuli can cause specific cells in the brain to have a high
response and are known as their preferred stimuli. These preferred stimuli are used
in neuro-science to understand the brain. A similar activity for a deep learning model
can give us a better understanding of what a neuron or kernel is doing. This technique
for deep learning models is known as activation maximization [19]. Finding an image
X that maximizes the activation al(X) for k™ filter of layer I, can be formulated as
following optimization problem.

X" = arg)r(nax(aé(X))) (3.4)

The following steps were used for conducting the activation maximization experi-
ments.
i. Randomly initialize an input image X.

ii. Define the optimization loss as the mean value of the activation of a particular
filter of a specific layer.

iii. Calculate the gradients of the input image with respect to the loss.

iv. Perform gradient ascent for n steps using a learning rate o on the input image
to maximise the activation of the filter.

After this stage, the ablation studies were conducted.
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3.2.4 Third Stage: Ablation Studies

Ablation study is a concept also borrowed from neuro-science and it refers to the selec-
tive removal or destruction of tissue to understand its function. In the context of neural
networks, ablation studies in the literature are conducted by removing parts, tweaking
layers and changing the structure or implementation of neural networks to assess the cor-
responding changes in the network performance [30]. Such ablation studies were conducted
starting with the modified CompactCNN architecture. In total nine configurations were
used for the experiments which are summarized in Table 3.2. Every ablation configuration
had three convolutional blocks similar to the network shown in Figure 3.4. In Table 3.2,
stride refers to the stride value in the first layer of the first and second blocks of the model
respectively. Layers per block imply the number of convolutional layers in the block. Filter
sizes are given per block from the first to the third block. Filter depth also follows the
same order. For a H x W input image, for the first two experiments, the output size is
% X %, while for the rest of the experiments, the output size is H x W. To achieve a
selective reduction in the number of network parameters, the number of layers per block
were gradually reduced from Expl to Exp5. We hypothesized that the reduction in the
network parameters would address the problem of over-fitting. The distribution of the total
number of network parameters for all the configurations is shown in Figure 3.5. Starting
with the ablation configuration Exp2, there was an intended exponential decrease in the
number of network parameters. The maximum reduction in parameters was obtained in
the Exp6 configuration, with a decrease of 98.3% in comparison to CompactCNN. Differ-
ent kernel size combinations were tested in the configurations from Exp6 to Exp9. From
the experimental results (Section 3.3), Exp4 was found as the optimum configuration and
it was selected as the AnoNet architecture. After this selection, we proceeded with the
AnoNet Filter Bank studies which are described in the next subsection.

3.2.5 Fourth Stage: AnoNet Filter Bank Studies

The twelve configurations used for the filter bank studies are presented in Table 3.1. The
AnoNet architecture used for these studies is discussed in Section 3.1 and shown in Figure
3.1. The parameter n in this network was set as per the filter bank stack length while
the parameter k£ depended on the filter bank kernel size. The filter banks were extracted
at 11 x 11 and 7 x 7 kernel sizes. The extracted filter bank values were used to initialize
the weights of the first layer of AnoNet. In Table 3.1, the configuration column contains
the names of the AnoNet configurations, the filter bank column contains the filter bank
type, filter size gives the parameters & and n of AnoNet. The trainable column contains
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Table 3.2: Ablation study configurations: There were 9 configurations that had three
convolutional blocks each. The configuration column gives the name of the configuration.
Stride refers to the stride value in the first layer of the first and second blocks of the model
respectively. Layers per block imply the number of convolutional layers in the block. Filter
sizes are given per block from the first block to the third block. Filter depth also follows
the same order. For the first two experiments, the output size is % X % and for the rest of
the experiments, the output size is N x N.

Configuration Stride Layers per Block Filter Sizes Filter Depth Per Block

Expl 2 3 11,73 32,64,128
Exp2 2 2 11,73 32,64,128
Exp3 1 1 11,73 32,64,128
Exp4 1 1 11,73 32,32,32
Exp5 1 1 11,73 8,32,32

Exp6 1 1 3,33 32,32,32
Exp7 1 1 77,7 32,32,32
Exp$ 1 1 11,11,11 32,32,32
Exp9 1 1 3,711 32,32,32

Boolean values where True indicates that the filter layer (first layer) of AnoNet was set
to be trainable, i.e., its parameters were updated during the training and False indicates
that the parameters were frozen and did not change during the training and thus acted
similar to fixed feature extractors. To compare the performance of AnoNet with the state
of the art segmentation networks, DeepLabv3 [8] was selected as a representative network
pre-trained for the semantic segmentation task. The segmentation head of the network
was modified according to the anomaly detection segmentation task (to output a binary
mask per image) and fine tuned for all of the datasets for comparative analysis.

3.2.6 Experimental setup

For the experiments, an NVIDIA Titan Xp graphics card was used. The experiments were
conducted using TensorFlow version 1.12. Adadelta optimizer [79] was used with the de-
fault settings. The input size to all the network configurations was kept as (None, None, 1).
A batch size of 16 was used for all the experiments. All the network weights were initialized
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Figure 3.5: Total network parameter comparison for all the configurations used in the
ablation and filter bank studies. The AnoNet architecture achieved a reduction of ap-

proximately 94% in the total number of parameters in comparison to the CompactCNN
[58].

as proposed in [21]. All the experiments were conducted for 25 epochs. For the calculation
of the F1 score, a threshold value of zero was used across all the experiments. The loss
function used for the ablation and AnoNet filter bank experiments was the MSE (Mean
Squared Error) which is defined in Equation 3.5.
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1 < 5
MSE = =) (V; -Y))’ 3.5
2 =) (35)
As discussed in subsection 3.2.1, the dilation operation was performed on all the
datasets except DAGMCI1, using an 11 x 11 filter to make the masks weakly annotated.
This ensured that normal pixels were included in the masks. The ablation and filter bank
experiments were conducted as per the configurations discussed in subsection 3.2.4 and

3.2.5 respectively.

3.2.7 Evaluation Metrics

To evaluate the quantitative performance of the models, two metrics were selected. The
first metric was the area under curve (AUC) measurement of the receiver operating char-
acteristics (ROC) [37]. AUC or AUROC is a reliable measure of the degree or measure
of the separability of any binary classifier (binary segmentation masks in this case). It
provides an aggregate measure of the model’s performance across all possible classification
thresholds. An excellent model has AUROC value near to the one and it means that the
classifier is virtually agnostic to the choice of a particular threshold. The second metric
used for the assessment was the F1 score. It is defined as the harmonic mean of precision
(P) and recall (R) and is given by the Equation 3.6. F1 score reaches its best value at one
and the worst score at zero. It is a robust choice for classification tasks since it takes both
the false positives and false negatives into account.

PxR

F1=2x
P+ R

(3.6)

3.3 Results

This section is organised as the discussion of the results of the first to the fourth stages,
namely Analysis of CompactCNN, Visualization Studies, Ablation Studies, and AnoNet
Filter Bank Studies. It is important to note that for calculating the F1 score, a threshold of
zero was used for all the experiments because that is the mean value of the tanh activation’s
range. The F1 score value can vary depending on the choice of the threshold. However,
the AUROC metric takes into account all the possible thresholds into its calculation. Since
the DAGMCI1 dataset contains defect free examples, AUROC values cannot be calculated
for this dataset.
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3.3.1 First Stage: Analysis of CompactCNN

Experiments were conducted on the DAGMC1 dataset using the modified CompactCNN
architecture. The results showed that the modifications led to a significant improvement
in the F1 score from 0.04 to 0.97 (a threshold of zero was used). It produced better
qualitative segmentation results than the ones presented in [58]. However, even for the
modified architecture, the segmentation shape of the anomalous region was oval and over
dilated just like the weakly labelled masks used for training and is shown in Figure 3.6.
To test and check whether the architecture works on real-world datasets, experiments were
conducted on the CrackForest dataset [61]. The model achieved an impressive F1 score of
0.901. Next, to further analyse why the model failed to learn the underlying shape of the
anomalies and get a deeper understanding of the learnt features, visualization studies were
conducted and the results are discussed next.

Input Imag

Weak Annotation Segmentation Mask

Figure 3.6: The segmentation mask shows the output of the modified CompactCNN archi-
tecture over-fitting to the DAGMCI1 dataset. It fails to learn the underlying shape of the
anomaly from the weak annotation. For the input image, it outputs a segmentation mask
similar to the ellipse shaped annotation used for training the network.

3.3.2 Second Stage: Visualization Studies

The results of the intermediate layer visualization and activation maximization studies are
discussed below.
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1. Visualization of intermediate layer outputs: A few random samples of the in-
termediate layer activation study conducted for the model trained on the CrackForest
dataset are shown in Figure 3.7. From these feature visualizations, we found that
the initial layers were not extracting anything useful since most of them were black.
The second observation was that most of the filters were looking for similar features
in the later layers. This pointed towards the possibility that the model had a lot of
redundancy and was over-fitting.
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Figure 3.7: Few randomly selected samples of intermediate feature visualization for the
modified CompactCNN trained on the CrackForest dataset. The key observation from
these images is that most of the intermediate features extracted by the network looked
similar. This pointed towards potential redundancy in the network since most of the
learnt filters were looking for similar patterns. (Best viewed in colour.)

2. Activation Maximization Study: In this study, the activation maximization was
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done for 500 steps for every filter of the modified CompactCNN model trained on the
CrackForest dataset. It is important to note here that the activation maximization
results are not unique. The process was conducted ten times for every kernel with
step sizes of 50 and 100 and the results lead to the same observation. The preferred
stimuli for the kernels looked like cracks which showed that these were looking for the
right kind of inputs. A few examples of visualizations obtained using the activation
maximization approach are shown in Figure 3.8. An analysis of the preferred stimuli
for all the filters in the model showed that most of the filters were looking for similar
patterns which were rotated by some random angle. This observation caused us to
conclude that the network was possibly over-fitting and there was redundancy in the
network. Because of this observation, we also hypothesized that making the initial
filters rotation invariant could be potentially helpful for the anomaly detection task.
This led to the inclusion of the filter bank to replace the preliminary network layers.

After these visualization studies, to validate that the network was over-fitting, we pro-
ceeded with the ablation studies, the results of which are discussed below.

3.3.3 Third Stage: Ablation Studies

The results of the ablation experiments for all the nine configurations along with the
CompactCNN architecture are shown in Figure 3.9. There are 4 graphs in total which
capture the F1 score and AUROC values for all the datasets for every configuration. The
F1 score graphs are shown in Figure 3.9 (a) and 3.9 (b) and while the AUROC values
are in Figures 3.9 (c¢) and 3.9 (d) respectively. For every dataset, one random sample
from the validation set was chosen to show sample segmentation outputs. Figures 3.10
and 3.11 show the segmentation output of the networks after the first and twenty-fifth
epoch respectively. As can be seen in Figure 3.10, for all the configurations across all
the datasets, the models failed to output meaningful segmentation masks after the first
epoch. This is in concurrence with the lower F1 score and AUROC values of the graphs
in Figure 3.9 (a) and (c) respectively. After the 25" epoch, the models learnt to output
meaningful segmentation masks that localized the anomaly. This can be seen by the higher
metric values in Figure 3.9 (b) and (d) as well as from the sample segmentation outputs
shown in Figure 3.11. Starting with Exp4, all the configurations learnt to identify the
actual shape of the anomaly for the DAGMC1 dataset, which can be seen in the first row
of Figure 3.11. This confirmed our hypothesis that the modified CompactCNN network
was overparameterized which caused the problem of over-fitting. Exp4 configuration was
found to have the best trade-off between performance and the total number of network
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Figure 3.8: Few randomly selected activation maximization results for the modified Com-
pactCNN trained on the CrackForest dataset. The key observations from these images were
that the resultant texture looked like cracks (the anomalies in the CrackForest dataset)
and all of the patterns looked similar. The green pixels indicate high intensity values and
other colors indicate low intensity values. Each image shows one of the possible input
patterns obtained after the gradient ascent optimization which maximised the output for
a specific filter of a particular layer. Since the patterns looked like cracks, this showed
that the network was looking for cracks in the images for performing the segmentation.
Most of the resultant images looked similar with some random rotations. This pointed
towards that the network had redundancy and was possibly over-fitting to the dataset.
The noisy examples without any crack like texture are the ones that did not converge from
the random initialization. (Best viewed in colour.)
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parameters. It achieved a striking 94.3% reduction from 1.13 million network parameters
to only 64 thousand, in comparison to the CompactCNN. Additionally, on an average across
all the five datasets, it achieved a performance improvement of 51.62% to an F1 score of
0.67 and a 5.44% improvement to an AUROC value of 0.89. The Exp4 configuration
was therefore selected as the AnoNet architecture. Subsequently, the AnoNet Filter Bank
studies were conducted and its results are discussed in the next subsection.

3.3.4 Fourth Stage: AnoNet Filter Bank Studies

The results of the twelve AnoNet Filter Bank configurations in comparison to the Com-
pactCNN and the DeepLabv3 architectures are presented in Figure 3.12. Similar to the
ablation results, the F1 score graphs are shown in Figure 3.12 (a) and 3.12 (b) and while
the AUROC values are in Figures 3.12 (c¢) and 3.12 (d) respectively. The segmentation
outputs after the 1°¢ and 25" epoch are shown in Figures 3.13 and 3.14 respectively. In-
terestingly, as it can be seen from Figure 3.13, all the odd numbered configurations across
filters learnt to output the actual shape of the anomaly just after the first epoch for all the
five datasets. The same thing can be observed from the high F1 score and AUROC value
of these configurations in the graphs of Figure 3.12 (a) and (c) respectively. In concurrence
with our expectations, the rotationally invariant S filter bank performed better than the
directional LM and RF'S filter banks. This was even though the S filter bank had only 13
filters in comparison to the 48 and 38 filters of LM and RFS filter banks respectively. It is
possible that the rotational invariance of the S filter bank allowed it to extract good fea-
tures across varying datasets with different texture and defect types leading to its overall
best performance.

To measure the overall average performance of the models across all the datasets, we
used AvgFTAUROC which is calculated as follows.

1. Calculate the average of F1 scores across all the datasets for every configuration.
2. Calculate the average of AUROC values across all the datasets for every configuration.

3. Find the average of values calculated in Step 1 and Step 2, to find the AvgF1AUROC
value for every configuration.

The AvgF1AUROC metric gave the average performance of the network for all the
datasets by equally weighing the F1 score and AUROC values. Remarkably, after only a
single epoch the SExpl configuration achieved the highest value AvgF1AUROC of 0.884,
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Figure 3.9: F1 score and AUROC values for all the configurations of the ablation experi-
ments. Figures 3.9 (a) and (b) show the F1 score values for all the configurations after the
first epoch and twenty-fifth epoch respectively. Figures 3.9 (c¢) and (d) show the AUROC
values for all the configurations after the first epoch and twenty-fifth epoch respectively.
As can be seen from the graphs, after the first epoch the metric values were lower in
comparison to the values after the twenty-fifth epoch. (Best viewed in colour.)

followed by LMExp3 with a value of 0.8835. The configurations that had the filter lay-
ers frozen during training performed better than the ones that allowed parameter up-
date for the filter layers. After 25 epochs, RFSExp3 had the best performance with an
AvgF1AUROC value of 0.952, even though it had a poorer performance after the first
epoch. The best configuration for every dataset based on F1 Score, AUROC and aver-
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Figure 3.12: F1 score and AUROC values for all the configurations of the AnoNet filter bank
experiments compared to the CompactCNN and DeepLabv3. Figures 3.9 (a) and (b) show
the F1 score values for all the configurations after the first epoch and twenty-fifth epoch
respectively. Figures 3.9 (c) and (d) show the AUROC values for all the configurations
after the first epoch and twenty-fifth epoch respectively. All the odd numbered filter bank
configurations seemed to perform better than the even number configurations. The SExpl
configuration on an average performed the best across all the datasets. (Best viewed in
colour.)

age of F1 Score and AUROC value after the 1** epoch and the 25" epoch are given in
Table 3.3. We see that some of the configurations which achieved the best performance
for individual datasets had their weights set to trainable. It is interesting to see that
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even though the SExpl configuration performed the best on an average for all datasets,
it was not the best performer individually. In comparison to CompactCNN, the SExpl
configuration achieved a performance improvement of 11.5% to an AvgF1AUROC value
of 0.884 after the 1% epoch and a 46.4% improvement to an AvgF1IAUROC value of 0.942
after the 25" epoch. While the improvement in the AvgF1AUROC score in comparison to
DeepLabv3 after the 15! epoch was of 153.9% and 40.8% after the 25" epoch respectively.
Additionally, AnoNet also had a massive 92.2% reduction in the total number of parame-
ters from 1.13 million to 64 thousand with respect to the CompactCNN. The DeepLabv3
had around 60 million parameters which is approximately 937 times more than AnoNet.
The detailed performance comparison of AnoNet with CompactCNN after the 1% and 25
epoch for all the datasets is given in Tables 3.4 and 3.5 respectively. AnoNet performed
better than CompactCNN and DeepLabv3 across all the datasets. All these performance
improvements were despite that AnoNet outputted 16 times more pixel values per image
in comparison to the CompactCNN. We also compared AnoNet performance with state-
of-the-art techniques for Road Crack Detection. AnoNet outperforms all the methods on
the CrackForest dataset which can be seen from Table 3.6.

Table 3.3: Best AnoNet configurations for every dataset based on F1 Score, AUROC value
and average of F'1 Score and AUROC value after the 1st and the 25th epoch.

After 1st epoch After 25th epoch
Dataset
F1 Score  AUROC  Average F1 Score AUROC  Average
DAGMC1 RFSExp4 N.A. N.A. LMExpl N.A. N.A.

CrackForest ~ RFSExp4 LMExp2 LMExp2 SExpl LMExp3 LMExp3
MT Blowhole  SExp4 LMExp3 LMExp2 LMExp3 LMExp2 LMExp2
RSDDs I RFSExpl LMExpl LMExpl RFSExp3  SExp3 SExp3

RSDDs IT RFSExp3 RFSExp3 RFSExp3 RFSExp2 RFSExp3 RFSExp3

Finally, to analyse how the choice of loss function impacts the network performance,
experiments were conducted. Preliminary results from experiments conducted using the
ablation experiment configurations on the CrackForest dataset using CrossEntropy as de-
fined by Equation 3.7 and mean squared error (MSE) (defined by the Equation 3.5) as the
two loss functions, show that the MSE loss worked better than CrossEntropy. In compari-
son to the models trained using the CrossEntropy loss, the models trained using MSE loss,
on an average, achieved a 44.5% higher F1 score value of 0.71 and 6.88% higher AUROC
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Table 3.4: Comparison of AnoNet, CompactCNN and DeepLabv3 after the 1st Epoch.

Datasot AnoNet (Proposed Method) CompactCNN DeepLabv3

F1 Score AUROC F1 Score AUROC F1 Score AUROC
DAGMC1 0.991 N.A. 0.305 N.A. 0.207 N.A.
CrackForest 0.973 0.945 0.717 0.910 0.020 0.436
MT Blowhole 0.958 0.883 0.904 0.576 0.022 0.491
RSDDs 1 0.964 0.984 0.939 0.969 0.027 0.465
RSDDs 11 0.944 0.976 0.734 0.947 0.478 0.791

Table 3.5: Comparison of AnoNet, CompactCNN and DeepLabv3 after the 25th Epoch.

Datasot AnoNet (Proposed Method) CompactCNN DeepLabv3
F1 Score AUROC F1 Score AUROC F1 Score AUROC
DAGMC1 0.995 N.A. 0.036 N.A. 0.315 N.A.
CrackForest 0.964 0.956 0.944 0.861 0.338 0.780
MT Blowhole  0.977 0.878 0.867 0.756 0.588 0.856
RSDDs 1 0.990 0.958 0.134 0.823 0.641 0.791
RSDDs 11 0.972 0.977 0.216 0.946 0.709 0.848
value of 0.85.
1 < X .
H = s Z[yz log(9:) + (1 — yi)log(1 — §:)] (3.7)

i=1

where H is the Cross Entropy, v; is the label and ; is the prediction for the i** pixel.

39



Table 3.6: Comparison of AnoNet with the road crack detection systems on the CrackForest
dataset.

Method F'1 Score
AnoNet (Proposed Method) 0.9734
Canny 0.3073
CrackTree [33] 0.7089
CrackIT [52] 0.7164
CrackForest (KNN) [61] 0.7944
CrackForest (SVM) [64] 0.8571
CrackForest (One-Class SVM) [64] 0.8377
Structred Prediction using CNNs [13] 0.9244
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Chapter 4

Supervised Anomaly Detection using
Transfer Learning

4.1 Methodology

The methodology followed for anomaly detection using network-based transfer learning is
described in this section.

1. Source Model Selection: A source CNN model trained on a source dataset for the
classification task is selected for the network-based transfer learning. For example,
DenseNet161 trained on the ImageNet dataset.

2. Source Model Modification: The source model is then modified by the replace-
ment of the last fully connected layer with a new layer having two output neurons.
Softmax activation is applied to the layer to convert the neuron outputs into proba-
bilities. Now the network is ready to be trained for the defect detection task.

3. Target Model Transfer Learning: This step involves the training of the modified
neural network on the target dataset. Two different strategies can be used in this
step and are as follows.

i. Fixed Feature Extractor: It has been shown that deep learning models are
good at extracting general features that are better then the traditional hand-
crafted features for classification. In this case, all the pre-trained network pa-
rameter weight values are frozen during training (i.e. these perimeters won’t
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be updated during the optimization process). This causes the CNN model to
function as a fixed feature extractor. Only the final fully connected softmax
layer weights are learnt during the training stage.

ii. Full Network Fine Tuning: In this method parameters of the entire network
or that of the last n layers (parameters frozen for the initial layers) are updated
along with the softmax classifier during the optimization or training procedure.
A lower learning rate is used because the pre-trained weights are good and don’t
need to be changed too fast and too much.

Update network parameters
with low learning rate

Network Pretrained on New Fully
. Connected layer Output
Input ImageNet with the .
|:> with 2 output |:> Vector
Image Fully Connected Layer —
. classes and softmax (2x1)
Disconnected L
activation Cross Entropy
Loss
One Hot
Encoded
Label
(2x1)

Figure 4.1: Defect Detection using network-based transfer learning. A model pre-trained
on some source dataset (e.g. ImageNet) is selected as the base network. The final layers
of the network are modified to have two output classes, after which the softmax activation
is applied to convert the neuron outputs into probabilities. The network is then trained
on the target dataset with a much smaller learning rate (e.g. 107%) to adapt it to the
new dataset. The output from the anomaly class neuron is then used as an anomaly score
for the sample. A high value indicates that the network is confident that the sample is
anomalous.
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4.2 Experiments

In this section, the overall experimental setup including the datasets, CNN architectures,
implementation, training, and evaluation criteria are explained.

4.2.1 Datasets

The datasets used for the experiments are described below.

1. The German Asphalt Pavement Distress (GAPs) v2 [(6]: GAPs dataset is a
high-quality dataset for pavement distress detection with damage classes as cracks,
potholes, inlaid patches, applied patches, open joints and bleeding. The v2 of the
dataset has 50k subset available for deep learning approaches. It contains 30k normal
patches and 20k patches with defects with a patch size of 256 x 256 for the training
set. And for the testing set, there are 6k normal patches and 4k patches with defects.

2. DAGM dataset[!1]: It is a synthetic dataset for weakly supervised learning for
industrial optical inspection. The dataset contains ten classes of artificially generated
textures with anomalies. For this study, the Class 1 having the smudge defect was
selected, since it presented with the maximum intra-class variance of the background
texture. It (hereafter referred to as DAGMC1) contains 150 images with one defect
per image and 1000 defect-free images.

3. Magnetic Tile Defects dataset [25]: This dataset contains images of magnetic
tiles collected under varying lighting conditions. Magnetic tiles are used in engines for
providing constant magnetic potential. There are five different defect types available
namely Blowhole, Crack, Fray, Break and Uneven. In the experiments in addition
to testing the individual defect classes, an M'T_Defect category consisting of all the
defect types was also created and considered.

4. Concrete Crack [12]: The dataset contains images of concrete with two classes
namely positive (with the crack defect) and negative (without crack). There are
20,000 277 x 277 color images for each class. Images have variance in terms of
surface finish and illumination conditions which makes the dataset challenging.
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4.2.2 CNN architectures

The following architectures were selected for conducting the experiments. Within each
category, the model configuration which achieved the lowest error on the ImageNet dataset
was selected.

1. DenseNet Densely Connected Convolutional Networks [241] (DenseNets) introduced
the concept of inputs from every preceding layer in the dense blocks. Every layer is
connected to every other layer in a feed forward fashion so that the network with

L layers has LAY girect connections. DenseNet-161 architecture was used as the

2
source network for the experiments.

2. ResNet Deep Residual Networks [22] introduced the concept of identity shortcut
connections that skip one or more layers. These were introduced in 2015 by Kaiming
He. et.al. and bagged 1% place in the ILSVRC 2015 classification competition .
ResNet-152 architecture is used for the experiments.

3. VGGNet VGGnet was invented by the Visual Geometry Group from the University
of Oxford. It introduced the use of successive layers of 3 x 3 filters instead of large-size
filters such as 11 x 11 and 7 x 7. VGG19 was chosen for the experiments.

4.2.3 Implementation

PyTorch [54] version 1.3 was used for conducting all the experiments. Publicly available
implementations of the selected models were used from the torchvision package version
0.2.2. Model weights pre-trained on ImageNet dataset available in the PyTorch model zoo
were used for the experiments. Adam [29] optimizer with default settings was used. The
learning rate was set to 107, All the experiments were conducted for 25 epochs. The
input images were resized to 224 x 224 x 3 before feeding to the network because of the
fully connected layers. The prediction output from the anomaly/defect neuron was used
as the anomaly score and also for performing the classification. The loss function used was
CrossEntropy which is defined by equation 3.7. The evaluation metrics used were F1 Score
and AUROC (subsection 3.2.7).
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4.3 Results

Figure 4.2 summarises the results of all the experiments conducted for the various dataset
and CNN architecture configurations. Figures 4.2 (a), (b) and (c) show the AUROC and
F1 Score values for the Fixed Feature Extractor and Full Network Fine Tuning experiments
for DenseNet161, ResNet152 and Vggl9 respectively. The values shown are for the best
model per architecture and dataset based on the lowest validation loss. It is important to
note that for calculating the F1 scores a threshold value of 0.5 was used since that is the
mean value of the output range of the neuron with softmax activation applied to it. The
F1 score value will vary depending on the choice of threshold. But the AUROC score takes
into account all the possible threshold values in its calculation. One clear observation from
all the experiments is that on an average, across all the dataset and CNN architecture
configurations Full Network Fine Tuning worked better than the Fixed Feature Extractor
approach. This showed that the initial layers which are often attributed to be good at
extracting general features, also need to be trained while performing the network-based
transfer learning. Fine tuning the network weights with a lower learning rate in comparison
to the learning rate used during the training on the source dataset leads to weights that
better optimize the cost function for the target task and dataset.

On average across all the datasets, using the Full Network Fine Tuning approach the
Vggl9 architecture performed the best with F1 Score and AUROC values of 0.8914 and
0.9766 respectively. In the fixed feature extractor approach too Vggl9 performed the best
on an average across all the datasets but the F1 Score and AUROC values were lower by
49% and 28% respectively. DAGMC1 was the only synthetic dataset in the experiments and
as expected all the three architectures are perfectly able to separate the defects or anomalies
from the normal samples. On the extremely challenging GAPSv2 dataset DenseNet161
performed the best with F1 Score and AUROC values of 0.9882 and 0.9979 respectively.
ConcreteCrack dataset is the only dataset on which on average the fixed feature extractor
approach performed better than the full network fine tuning. However, the performance
gap was marginal in comparison to other datasets. It was 2% for the F1 Score and 4% for
the AUROC value. On the magnetic tile dataset (datasets with the prefix MT) as expected
average of the best models trained for single defect category outperformed the best model
trained on the mixture of all the defects. The improvement for F1 Score and AUROC
values was that of 6% and 4% respectively. Another thing to note is that the output of
the anomaly/defect neuron being used as an anomaly score worked well. It resulted in a
very high separating power of the networks between the anomalous and normal samples.
This is evident from the impressive average AUROC value of 0.9766 as mentioned earlier
in this section.
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Figure 4.2: Results of the experiments conducted on all the datasets and CNN architec-
tures. Figures 4.2 (a), (b) and (c) show the AUROC and F1 Score values for the Fixed
Feature Extractor and Full Network Fine Tuning experiments for DenseNet161, ResNet152
and Vggl9 respectively. The values shown are for the best model per architecture and
dataset based on the lowest validation loss. It can be observed across the datasets and the
architectures, that on an average the full network fine tuning seems to work better than
the fixed feature extractor approach. (Best viewed in colour.)
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Chapter 5

Conclusion

Anomaly detection in textured surfaces is an interesting and relevant problem with practical
applications having huge financial implications specifically in industrial defect detection
and infrastructure asset inspection and maintenance. As highlighted in the introduction,
limited dataset size and a low number of anomalous instances are amongst the most impor-
tant challenges in anomaly detection. Also, what an anomaly is, varies from domain to do-
main, which adds to the complexity. While unsupervised and semi-supervised approaches
that try to tackle these challenges do exist, they suffer from poor performance compared
to the supervised techniques. We have explored and proposed two approaches for anomaly
detection that directly address these key pain points. The two approaches are “AnoNet:
Weakly Supervised Anomaly Detection in Textured Surfaces” and “Supervised Anomaly
Detection using Transfer Learning”.

Weak annotation eases the time and human labor-intensive task of generating pixel-level
annotated datasets by replacing them with coarse annotations. However, this makes the
anomaly detection problem even more complicated because a lot of pixels in the training
data will have a wrong label. The Garbage In Garbage Out rule applies for model-based
approaches and especially for deep learning methods. We have developed the fully convo-
lutional AnoNet architecture (Figure 3.1) for anomaly detection in textured surfaces using
weakly labelled data. It uses a unique filter bank based initialization technique which leads
to faster training. For a H x W x 1 input image, it outputs a H x W x 1 segmentation
mask. This prevents the loss of spatial localization of the anomaly. The network has
the valuable ability to learn to output the real shape of the anomaly despite the weak
annotations. AnoNet is compact with only 64 thousand parameters. Not only does this
result in the reduction of the computational complexity of the model leading to faster
inference time, but it also overcomes the challenge of over-fitting, by design. To the best
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of our knowledge, no such work has been done for weakly supervised anomaly detection
in textured surfaces. Comprehensive experiments conducted on four challenging datasets
showed that, compared to CompactCNN and DeepLabv3, AnoNet achieved an impressive
improvement in performance on an average across all datasets by 106% to an F1 score of
0.98 and by 13% to an AUROC value of 0.942. This performance improvement was even
though AnoNet predicted 16 times more pixels per image in comparison to CompactCNN.
The model learnt to detect anomalies after just a single epoch. AnoNet has the advantage
that it can learn from a few images and generalises well to similar anomaly detection tasks.
Currently, there is no bench-marking available for weakly supervised anomaly detection.

We also investigated network-based transfer learning using CNNs for anomaly detection,
which overcame the challenge of training from a limited number of anomalous samples. The
method achieved impressive F1 Score and AUROC values of 0.8914 and 0.9766 respectively,
on an average across four challenging datasets. Within network-based transfer learning,
we explored Fixed Feature Extraction and Full Network Fine Tuning approaches. Results
showed that the full network fine-tuning approach worked better than the fixed feature
extraction approach. The use of the output value from the neuron responsible for the
anomaly (defect) class as an anomaly score led to excellent AUROC values showing the
strong separation capability of the CNNs across all the datasets.

For future work on AnoNet, investigations need to be conducted on how the choice of
filter banks and the trainable parameter for the filter bank layer affects the performance of
AnoNet on different types of textures and anomalies. Since the ground truth itself is not
accurate in weakly labelled anomaly detection, the Intersection over Union (IoU) metric is
another possible way for measuring the quantitative performance. Additionally, it would
be interesting to see whether AnoNet achieves similar performance on datasets with more
than one defect type per image. Next, for network-based transfer learning, how the choice
of the activation function of the final classifier affects performance could be explored. More
CNN architectures could be analysed to see how the choice of the architecture affects the
performance for different defect types.

In this research, we have successfully explored and developed two approaches for su-
pervised anomaly detection using deep learning with promising results on several chal-
lenging real-world datasets. This showed that the developed methods are generalisable to
anomaly detection in textured surfaces and are not limited to any specific type of texture
or anomaly. However, is anomaly detection a solved problem? There is research potential
in semi-supervised and unsupervised anomaly detection. With the recent advancements
in deep learning generative models such as generative adversarial networks and variational
auto-encoders, the performance gap compared to supervised learning could potentially be
bridged.
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