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Abstract

Intensity-Modulated Radiation Therapy (IMRT) is a high precision radiotherapy with

many beams that have different intensities to accurately irradiate a tumor/cancerous cells

considering minimization of the dose to surrounding normal tissues. Different optimization

methods are developed to achieve optimal beam intensities considering different criteria in

objective function and number of constraints. IMRT optimization models are large-scale

in nature because large number of constraints and/or variables associated with tumor/-

cancerous cells can be defined which is very hard to solve and takes a huge amount of

computational time. A novel constraint generation solution method for IMRT treatment

planning is presented in this research. A Fluence Map Optimization (FMO) framework is

used to formulate the optimization problem for a breast cancer treatment planning case

study. In addition, a data processing method is developed to form clusters of similar vox-

els with the highest dose associated from beamlets. Because in this optimization problem

there are large number of constraints related to each voxel, these data clusters will help in

deciding which voxels to pick as set of new constraints for the sub-problems. This is for the

purpose of reducing the number of constraints. The optimal beam intensities do not cause

a violation of any other constraints in the main model. The results show that the objective

function value from constraint generation model is same as the objective function value

that is resulted from the full-size model implementation considering all the constraints.

Also, the optimal beam intensities from these two models are comparable and they create

similar fluence map pattern. This shows that the new model is able to maintain the same

quality as large-scale model. The advantages of this new method are, reducing the number

of constraints that should be considered for the optimization significantly, and maintaining

solution quality which can help create faster optimization algorithms.
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Chapter 1

Introduction

1.1 Intensity Modulated Radiation Therapy (IMRT)

In 2019, 220,400 Canadians are estimated to be diagnosed with cancer with 82,100 mor-

tality rate, and 63% survival rate is estimated within first 5 years of treatment. Also,

Breast cancer is the second most commonly diagnosed cancer in 2019 with 1 in 8 females.

Radiation therapy is one of the cancer treatment ways that can destroy cancer cells over

a repetitive treatment period without causing too much harm to healthy cells in other or-

gans (CCSAC, 2019). Use of Radiation Therapy (RT) treatment planning is growing with

the utilization of cutting edge three-dimensional radiation treatment planning (3D-RTP)

and computer controlled radiation treatment (CCRT) frameworks (Gupta et al., 2012).

As a consequence, three-dimensional conformal radiation therapy (3D-CRT) is intended to

adjust the spatial distribution of the prescribed dose to the 3D target volume (cancerous

cells) while minimizing the dose to the ordinary surrounding structures (Prado et al., 2007).

Ordinarily, the 3D-CRT uses fixed radiation beams which are formed utilizing the target
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volume projection (Hall and Wuu, 2003). A new 3D-CRT technique, Intensity Modulated

Radiation Therapy (IMRT) (as shown in Figure 1.1), is based on the application of opti-

mized non-uniform radiating beam intensities to the patient (Bortfeld, 2006). Automated

3D-RTP optimization is often used in the IMRT treatment plans to determine the distri-

bution of intensities over the target volume using a computer optimization technique. An

integral component of IMRT is the detection of optimal beam fluence. The main planning

problem for IMRT is in determining the modulated fluence profiles which are physically de-

liverable and lead to a dose distribution that best matches the intended dose (Boyer et al.,

2001). IMRT is a form of radiation therapy that enables the intensity of beam radiation

to be modulated. It becomes necessary to calculate treatment plans that best achieve the

treatment objectives. Also, it is of high importance to use optimization models, methods

and theories in the design of intensity modulated radiation therapy (Ehrgott et al., 2010).

Figure 1.1: Intensity Modulated Radiation Therapy (IMRT) System (UHN, 2015)
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1.2 Mathematical Programming Models for IMRT

There are a number of mathematical problems to manage IMRT optimally. Treatment is

carried out by rotating the accelerator about the patient and by coordinating the motions of

the leaf in a device known as Multi-Leaf Collimator (MLC) so as to achieve an appropriate

dose dispensing at each angle. The identification of the numbers and values of the gantry

angles is a higher-level optimization problem, often known as the optimization problem

of the beam-angles. It is assumed that gantry angles are given in the proposed model.

Fluence maps, are characterized by intensity of beamlet j, wj. The identification process

of these beamlet intensities is known as fluence map optimization (Zhang and Merritt,

2006).

Mathematical models are classified into following parts; (a) feasibility problems (b)

linear programming models, (c) nonlinear programming models, (d) mixed integer pro-

gramming models, and (e) multiple objective programming models. When formulating the

optimization model, objective function and constraints should be specified and the opti-

mization search algorithm needs to be defined. The clinical objectives in the form of an

objective function (also known as the score function or cost function) for the IMRT planning

are defined mathematically. In order to determine beam parameters (beam weight) most

closely to reach the desirable solution, computer optimization techniques are developed.

The objective function value is the supposed index of the treatment plan’s goodness. This

value is often described by the term score or cost. The objective of optimization is therefore

to minimize (or maximize) the score according to the selection of the objective function.

In some previous attempts, objective functions are used to optimize the RT plans based on

the distribution of dose (Bortfeld et al., 1990) (Bortfeld and Schlegel, 1993).For instance,

the minimum dose of the target volume could be maximised under a maximum dose con-
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straint for certain organ at risk. Dose based and/or dose-volume-based criteria are used in

most IMRT optimization systems. A common method for the creation of dose-based and

dose-volume objective functions is to minimize the dose variance for target or dose limits of

risk organ values in relation to the prescribed dose.The variance is the sum of the squares

of the differences between the dose or dose limit calculated and prescribed. Therefore,

the typical dose-based or dose-based objective function is to sum up the variance terms

that each anatomical structure is represented, multiplied by corresponding penalty factors.

This is known as quadratic objective function. Fundamentally, linear programming models

objectives are in the forms of (a) minimize the maximum deviation from upper bounds on

dose to critical organs and normal tissue, (b) maximize the minimum dose to tumor, and

(c) minimize the maximum deviation from prescribed dose to target (Ehrgott et al., 2010).

The constraints can be formed into (a) beam intensity non-negativity constraints, (b)

dose to the organs at risk and normal tissues upper-bound, (c) dose to the target lower and

upper bounds, (d) ratio between the maximum beamlet intensity and the average beamlet

intensity upper bound, and (e) mean dose to organs at risk upper-bound. Mixture of

objectives and constraints can create many types of models. In general, when the objective

function is based on target, critical organs and normal tissue will form the constraints.

Additionally, when critical organs and normal tissue form the objective function, so the

target would form the constraints. The non-negativity constraints should always exist

to cover as a physical constraint. The next section is focused on IMRT fluence map

optimization.
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1.3 Fluence Map Optimization (FMO) for IMRT

The distribution of the radiation dose that was measured in Gray (Gy) in the patient should

be evaluated correctly for optimization reasons. The volume of each structure is discretized

by voxels according to taking into account of every beamlet contribution. A dose matrix

Dij is usually built from the set of all weights of the beamlet, via indexation of Dij rows

for every voxel and Dij columns for every beamlet. In other words, the row numbers in

Dij matrix will be associated with voxel numbers (V ) and the column numbers will be

related to beamlet numbers (N) where all beam directions are taken into consideration .

Accordingly, with this matrix formulation, the total dose that the voxel i receives can be

determined by
∑N

j=1Dijwj, where in this formulation wj represents the intensity beamlet

j, also i ∈
{

1, ..., V
}

where V is number of voxels and j ∈
{

1, ..., N
}

where N is number

of beamlets. Additionally, the number of all voxels that are taken into consideration is in

the range of tens of thousands, so the dimension of the dose-influence matrix is usually

very high. The large-scale problems are associated from the big size of this dose-influence

matrix D which is considered as the number one reason that solving the Fluence Map

Optimization (FMO) problems is difficult. The majority of the FMO literature models

belong in a class of constrained optimization models in order to optimize an objective

function while satisfying the dose requirements. A range of criteria can be regarded as

part of the objective function, which leads to various objective functions (Rocha et al.,

2015).

In Figure 1.2, every element in Dij can be related to a beamlet radiated from the MLC

and a voxel in region of interest that were discretized.

Let D be the matrix with non-zero elements in rows and/or columns. Accordingly, every

voxel receives a non-zero radiation quantity and each of the beamlets has some effects on

5



Figure 1.2: Influence Matrix Element

one dose of a voxel.

The problem of fluence map optimization is an instance of an IMRT planning that

an acceptable dose distribution can be determined and a beamlet intensity vector can be

identified which best realizes the given distribution. Multiple methods are presented in

the literature in order to formulate the mentioned problem into optimization format that

uses various objective functions consisting biological and physical ones. Different biological

reactions are represented as statistical theories to build biological models; tumor control

probability is an example of it. Recently, “weighted least squares” is being used as the main

modelling technique which most commercial IMRT systems use. The objective function

can represent every anatomical structure, so in this case the problem can be converted to

a multi-objective optimization problem.

The objective function for the FMO model is sometimes formulated as follows. A

convex penalty function to penalize the over- and underdose of each voxel is presented;

6



F (d) =
∑
s∈S

∑
j∈Vs

1

|Vs|

(
ws

(
djs − T s

)p
+

+ ws

(
T s − djs

)p
+

)

In this equation, Vs is the number of voxels in structure s, djs is the dose in structure s

associated from beamlet j, (.)+ indicates max
{

.,0
}

and T s and Ts are above and below

thresholds of penalized dose in structure s and weights on over- and under- dose for struc-

ture s are represented by ws and ws. In order to prevent large structures to dominate small

structures, the penalty for each voxel is divided by the size of the structure. Quadratic

versions of this penalty function (p=2) are common mostly (Aleman and Sharpe, 2011),

(Romeijn et al., 2003). To improve the computational performance, linear versions (p=1)

are taken into consideration (Lim et al., 2008), (Cao and Lim, 2011). Experiments show

there is no need to include hard constraints for voxel doses due to the power of the quadratic

convex penalty function, but tuning the threshold and weight parameters is not an easy

task.

Additionally, in order to consider uncertainties in organ positions, robust formulations

of FMO are presented. The objective is to minimize total dose to organs at risk (OAR)

(Bortfeld et al., 2008), (Chan et al., 2006),

F (d) =
∑
H

∑
i∈V

dih

or other version of it as weighted total dose to OARs (Mahmoudzadeh et al., 2015):

F (d) =
∑
H

∑
i∈V

1

|V|
whdih

OARs are the healthy organs surrounding the tumour that are at risk of being damaged
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due to excessive radiations. As for the constraints, full−volume constraints represent that

the dose in each structure voxel should be within predesignated upper and lower bounds

(Romeijn et al., 2003) and is formulated as follows;

dih ≥ Db ∀i ∈ Vb

dih ≤ D
b ∀i ∈ Vb

In this equation, lower and upper bounds on dose to each voxel in structure b are represented

by Db and D
b
, and Vb is the set of all voxels in structure b. Target dose homogeneity is

guaranteed with these constraints. The constraints for full-volume upper bound can be

identified in order for organs to be still functional after the treatment ends, so the maximum

dose is considered for these OARs.

In the literature, FMO problems are presented in various formulations which consist of

linear programming (LP)-based multi-criteria optimization (Craft et al., 2007), (Hamacher

and Küfer, 1999) and mixed-integer linear programming (MILP) (Bednarz et al., 2002) ,

(Ferris et al., 2006b), (Shepard et al., 1999). Most of the FMO models are in the form

of optimizing physical dose criteria and other methods focus on biological aspects to be

analyzed (Alber and Nüsslin, 1999), (Das, 2009), (Zinchenko et al., 2008). Also, some

advanced techniques for FMO modelling can be determined that have the advantage of

being computationally tractable considering physical criteria. In this research the general

formulation of FMO model is used but the proposed constraint generation algorithm is

applicable to other model formats.

8



1.4 Solution Methods for IMRT

Optimal treatment design requires solving a very large-scale optimization model. In FMO,

there are huge number of constraints and/or variables to consider for optimization and there

is a need to develop an optimization solution method that can be accurate and at the same

time it is potentially fast. In the following sections, different solution methods including

sampling methods, heuristic and meta-heuristics and exact methods are discussed, and

pros and cons of each are explained.

1.4.1 Sampling Methods

As it is discussed earlier, radiation treatment planning employs a range of optimization

problems and methods. These problems usually include large quantities of information

from patient anatomy simulations and delivery device characteristics. An approach of

three phases has been examined, based on samples of the subordinate data, which in patient

examples determine optimal beam angles, wedge directions and delivery intensities. Phase

I utilizes several coarse information samples and linear programming to adapt the sample

and establish a promising angle collection to use. Phase II resolves the sample problems

adapted as mixed integer programs with promising angles only. Phase III further refines

the sample and sets out the majority of discrete choice factors to decrease calculation times.

General principles applicable to major classes of treatment planning problems have been

given particular emphasis. Specific instances have shown huge speed increases without

affecting the quality of the solution (Ferris et al., 2006a).

9



1.4.2 Heuristic and Meta-heuristics

Projected gradient techniques for linearly constrained FMO models with quadratic objec-

tives are most often used for their speed, lack of reliance on the calculations from Hessian

and easy execution (Lahanas et al., 2003). Projected gradient methods are sufficiently com-

mon to have a review of their IMRT optimization speed (Zhang et al., 2004).But, projected

gradient techniques do not ensure optimal treatments. While mathematical optimality is of

no relevance from the clinical point of view, failure to ensure solution quality implies that

treatment plans may be incompatible and non standard, and may rely on the duration of

the algorithm, not to mention algorithm-specific implementation by a specific dosimetrist.

Different line-search strategies were discovered to produce dramatic variations in IMRT

results within the projected gradient routine (with the quickest, but tailored, non-uniform

retrieval technique producing best objective function values) (Aleman et al., 2013). In ad-

dition to traditional near-zero starting, it can be found that a warm start improves the final

value of the objective function and the total calculation time significantly in comparison

with the magnitude of the most extensive treatment sites.

Customized interior point methods are as quick as projected gradient approaches for

linearly constrained FMO models also it has the advantage of guaranteed optimality gaps.

It has also been shown that reformulating the quadratic FMOs to conical problems, or to

new constraint generation techniques, with commercial software, lead to ε- optimal alterna-

tives. Although these methods are empirically better than projected gradient methods and

may be comparable or better in time for computation, in the real world application, prac-

tical difficulties may arise with commercial software or in obtaining approval by clinicians

of complicated, possibly non-intuitive solutions to optimization (Lan et al., 2012).

If the change in the weight of the beamlet yields a better result, the suggested change is
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approved and if it is not, the change is dismissed which depends on the method of search.

Since each beam is improved from a variety of distinct directions and every beam has an

impact on many points, only relatively small changes in the weight of the beam are allowed

at once. For all beamlets, this method is repeated. A tiny enhancement of the treatment

plan probably results at the end of each full cycle (an iteration). A new dose distribution

and new score for the target function is then calculated by using the new pattern of beamlet

intensities, which is then used as a basis to further enhance the next cycle. This iterative

method continues until no further enhancement occurs (Deasy, 1997).

Gradient methods are considered to be computationally fastest, but a gradient method

assumes that a single extremum (depending upon the type of the objective function, a

minimum or maximum) is present. This is true of a quadratic objective (dose-based)

function when only the weight of the beam is optimized. In other cases, it can be required

to establish if there are multiple extremes, and if such multiple extremes affect the quality of

the solutions found. Several extremes have been discovered in optimized beam paths and in

the use to optimize standardized beam weights by dose-response objective functions. It can

also be assumed that there are various minimum levels in order to optimize IMRT plans

with dose-response objective functions. Multiple minimum levels have also been shown

when using dose-volume-based objectives (Deasy, 1997). If there are several extremes,

gradient search techniques converge to the closest extreme. The treatment plan for this

extreme point may be far from the best possible alternative and completely unsatisfactory.

The most frequently used meta-heuristic method is simulated annealing, or its varia-

tion, fast simulated annealing (Webb, 1991). Other types have also been suggested, such

as genetic algorithms (Ezzell, 1996). The simulated annealing method makes it possible

to escape the optimization process from local extrema traps and thus discover the global

extreme, but this is only true if a large amount of configurations is evaluated. There is prac-
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tically no assurance that the absolute best solution will be discovered among those studied.

In addition, meta-heuristics are fast but there is no guarantee or bound on optimality.

Simulated annealing and genetic algorithms are very slow to achieve the optimum,

typically requiring tens of thousands of iterations. The gradient-based algorithms are

fast compared to SA. Although they do not provide global optimality, they appear to

provide adequate treatment plans. Therefore, when beam intensity optimization problem

is considered, a gradient-based technique seems natural.

Iterative filtered back projection and fast iterative techniques are suggested, such as the

image reconstruction from projections. Iterative algorithms begin with an initial solution

that is approximated and generate a sequence of solutions that correspond to optimal

solution. Being simple and straightforward are the advantages of these algorithms. Unlike

iterative techniques, constrained least square (CLS) algorithms are used by the direct

matrix manipulation to achieve the solution of a linear system.For conformal radiotherapy,

CLS was applied and extended to IMRT. In addition, random search and maximum entropy

and methods of maximum likelihood were also applied to solve the problem of optimizing

the beam intensity.

An approach to FMO that is called aperture modulation, does not address individual

beamlets but apertures explicitly. (Siebers et al., 2002) have proposed incorporating the

option of aperture in a heuristic FMO local search technique. (Bednarz et al., 2002)

developed a mixed-integer linear programming model, incorporating a predetermined pool

of apertures to choose from. Also, an improved algorithm has been suggested in order

to determine a treatment plan using only a few apertures (Shepard et al., 2002). Such

methods have been implemented in instances of head-and-neck and prostate cancer, and

empirical studies indicate that only a restricted number of apertures are able to achieve

high quality treatment plans. All of these approaches, however, are heuristic in nature
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and cannot ensure an optimal solution. Formal integration of FMO and decomposition

problems is determined to be key in achieving the best apertures.

1.4.3 Exact Methods

Development of an IMRT treatment plan that determines an optimal set of apertures

and their associated intensities is further investigated in (Romeijn et al., 2005). In the

first phase, each beam of radiation shall be seen as a collection of beamlets, each with a

specific intensity. In the second phase, the optimal intensity profile is approximated and

decomposed into a set of apertures with corresponding intensities. A large-scale convex

program is formulated for this problem, and because of its large dimensions, a column

generation approach is discovered. In each iteration, one or more apertures can be added

to the problem by the related optimization problem. Several versions of this sub problem

are identified, each corresponding to a specific set of constraints that apertures need to meet

in one or more kinds of commercial IMRT equipment presently accessible. Polynomial-time

algorithms are considered to solve each of these sub problems in order to reach optimality.

This approach proves to be clinically efficient.

Therefore, for specific problems, some algorithms are developed such as Direct Aperture

Optimization (DAO) and column-generation, but there are no exact methods for solving

FMO efficiently and accurately without random sampling.

1.5 Proposed Study

In this research, a geometry based data-driven optimization approach is presented for ar-

ranging clusters of dominant voxel-beamlet pairs to be used in a constraint generation
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algorithm in order to improve the computational efficiency and memory shortages while

running the optimization problem. A case study of breast cancer radiation therapy treat-

ment planning optimization is studied. This constraint generation approach is compared to

the original fluence map optimization problem which is clinically acceptable, and the result

shows similar quality in terms of objective function values and optimal beamlet intensities.

The results of different sensitivity analysis scenario considerations are also presented in a

later chapter.
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Chapter 2

Methodology

In this chapter, a data processing technique to create voxel-beamlet clusters along with

some test scenarios are explained. Moreover, the constraint generation algorithm formula-

tion and implementation are clarified.

2.1 Data Processing

A breast cancer radiation therapy treatment planning case-study is considered. As can be

seen in Figure 2.1, the blue 3D scattered data represents the voxels of the Critical Target

Volume (CTV) which in the IMRT system will receive radiation from two beams, beam 1

and beam 2, which are emitted from opposite sides and have the same 2D shape. Each of

these beams consist of 760 beamlets. In this case-study there are 33,592 voxels in CTV,

and the Heart is considered as an OAR with 42,342 voxels. Note that the size of a voxel is

fixed (e.g., 1×1 × 1mm3), and hence, the number of voxels in a structure depends on the

shape and volume of the structure. In this figure, each voxel requires a constraint in the
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optimization model and that is why it is considered a large-scale optimization problem.

This visual representation helps in identifying voxel locations and studying the individual

effect of beamlets on the voxels and looking for similar patterns and/or shapes that different

beamlets can produce. Also, as it is explained in next parts, these visualizations are helpful

to develop insights for creating different clusters of voxels, which create highest dose profiles

that can be considered in order to develop a constraint generation algorithm based on those

clustered dose profiles, enabling solution of the model efficiently.

Figure 2.1: Visualization of voxels in CTV

In Figure 2.2, the effect of unit intensity of a sample beamlet (beamlet 744) on all voxels

in the CTV is shown. In Figure 2.2, bright colors represent the high intensity and dark

colors represent low intensity. This shows that according to the Dose Influence matrix for
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this case-study, each beamlet has effects on certain number of voxels in different locations

of the CTV. Two scenarios are studied in order to see whether any common voxel dose

patterns can be found associated from neighboring beamlets in the x-y coordinate. The

first scenario considered two beamlets along x-axis and the second scenario considered two

beamlets along y-axis. Because the higher dose (i.e. bright area) is more important to be

taken into consideration, another set of 3D plots are created in the next parts which only

shows the voxels with the certain range of highest dose. This makes it easier to discover

any potential common patterns and compare different scenarios.

Figure 2.2: Visualization of affected voxels associated from beamlet 744 in CTV

2.1.1 Comparing Neighbouring Beamlets (First Scenario)

In Figure 2.3 the beamlet coordinates is plotted. This is for the purpose of visual compar-

ison of dose for neighbouring beamlets which in this case is for beamlet 742 and beamlet

743.
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Figure 2.3: beamlet coordinate (scenario 1)

As can be seen in Figure 2.4 visual comparison of dose for neighbouring beamlets is

plotted . This is for all ranges of Dij values.

Figure 2.4: beamlets 742 and 743 comparison from beam 1

Figure 2.5 shows the visual comparison of the same neighbouring beamlets for a specific

range of Dij values greater than 2× 10−4.

18



Figure 2.5: beamlets 742 and 743 comparison from beam 1 with Dij > 2× 10−4

As can be seen, neighbouring beamlets seem to affect different set of voxels.

2.1.2 Comparing Neighbouring Beamlets (Second Scenario)

As it is shown in Figure 2.6, another example is now considered for the visual comparison

of neighbouring beamlets along y-axis. This differs from the previous example, which

considered neighbouring beamlets in a row.

Beamlet 729 and beamlet 710 affected voxels visualizations as presented in Figure 2.7.

These are presented for all the Dij values.

Figure 2.7: beamlets 729 and 710 comparison from beam 1 with all Dij
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Figure 2.6: beamlet coordinate (scenario 2)

The Figure 2.8 compares the same beamlets, when Dij has the same range as considered

in the previous example.

Figure 2.8: beamlets 729 and 710 comparison from beam 1 with Dij > 2× 10−4

As for the outcome of these observations, some repeated patterns can be seen but the

shape varies in different cases. This is not helpful in terms of clustering the voxels, since

the shapes are too different and voxels belong to several clusters.
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2.1.3 Comparing Neighbouring Voxels

To improve upon the results so far, another set of examples has been tested which shows

which beamlets does each voxel see. The visual comparisons are shown in Figure 2.9.

Figure 2.9: which beamlets does each voxel see

There are some differences but there are 1) repeated patterns, and 2) the main beamlet

with the highest intensity was similar for a set of neighbouring voxels.

2.1.4 Voxels that Have Same Dominant Beamlet

To further investigate, voxels that have the same dominant beamlets are plotted in Figures

2.10, 2.11, 2.12, 2.13.
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(a) (b)

Figure 2.10: (a) what beamlet 60 sees and (b) voxels that have beamlet 60 as the main

dominant beamlet

(a) (b)

Figure 2.11: (a) what beamlet 175 sees and (b) voxels that have beamlet 175 as the main

dominant beamlet
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(a) (b)

Figure 2.12: (a) what beamlet 406 sees and (b) voxels that have beamlet 406 as the main

dominant beamlet

(a) (b)

Figure 2.13: (a) what beamlet 649 sees and (b) voxels that have beamlet 649 as the main

dominant beamlet

For example, in Figure 2.13a, if beamlet 649 is on, then all voxels in this cluster will
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get a high dose. Voxels in Figure 2.13b receive the highest possible dose from beamlet

649. That means these voxels are within the direct range of this beamlet, and hence, have

beamlet 649 as their ”dominant” beamlet. The advantages are, each voxel is in one cluster

only and there are similar patterns across beamlets. All the 32,592 voxels are clustered

based on their dominant associated beamlet and they are sorted based on their beamlet

index. There are 302 clusters of voxels in total with different number of voxels, ranges

from 1 to 300. These 302 voxel clusters associated with 302 beamlets and because they

are representing the dominant beamlets, the rest of the beamlets are not considered in the

model.

So, the dominant beamlet-voxel pairs are clustered differently and the data is processed

in order to move on to the next stage. That is the FMO problem, considering the use of a

novel constraint-generation algorithm to solve the linear program.

2.2 Optimization Algorithm

The original linear FMO model is as follows;

Minimize
∑
i∈H

∑
j

DH
i,jwj

Subject to
∑
j

DT
i,jwj ≥ θi,∀i ∈ T

(2.1)

where DH
i,j in objective function represents the data in dose-influence matrix for set of

Heart (H) voxels, wj represents the beam intensity which is the decision variable, and DT
i,j

in constraint formulation is the data in dose-influence matrix for set of T voxels in CTV.

Also, θi is a constant number, in this case 42.4 Gy, which represents a lower bound for
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amount of dose in CTV. This problem concerns minimizing the total dose to the Heart,

while meeting the minimum required dose for every voxel on the CTV.

For the constraint generation algorithm initialization, the large number of constraints in

model (2.1) is relaxed and the beamlet-voxel clustered data that resulted in the previous

section is used to construct a set of initial constraints. The initial optimization model

solution and set of optimal beamlet intensities are generated. It is then checked whether

there are any violations for the rest of the constraints. After that it is possible to iterate

through with this process until there are no more voxels to be considered from the clusters

and there are no more violation of constraints.

2.2.1 Master Problem

In the constraint generation algorithm, the master problem is formulated as follows;

Minimize
∑
i∈H

∑
j

DH
i,jwj

Subject to
∑
j

DT
i,jwj ≥ θi,∀i ∈ V (k)

(2.2)

where V (k) is a subset of voxels at iteration k. From each of the 302 clusters, one voxels

is randomly chosen to be included as the initial set of constraints, so 302 constraints are

included in iteration 1 and this set is updated at each iteration. The model is solved to

obtain w∗(k), which is the set of optimal beam intensities considering these initial con-

straints. In the master problem, the objective function is to minimize total radiation dose

to Heart and the constraints are meeting the minimum CTV dose requirement for a subset

of voxels.
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2.2.2 Sub Problem

In the sub problem formulation, w∗(k) is used to find viol
(
i
k), which is the voxels that are

violated by the initial optimal solution. To determine the violated voxels, first viol
(
i
k) =

θi −
∑

j D
T
i,jwj is calculated for each voxel, second, if the result of this calculation is less

than or equal to zero, the constraint of that voxel is not violated by the current optimal

beam intensity solution, but if it is greater than zero, there is a violation. The maximum

amount of violation per cluster is determined and the corresponding constraints are added

to the master problem. The iteration process starts by updating set of voxels at each

iteration by adding the voxels with maximum violation per cluster to V (k) which creates

new set of voxels, V (k+1).

Furthermore, the solution of the Master Problem is updated starting from the previous

solution, w∗(k), and it is updated using dual simplex. This procedure is continued until

there are no further violations and there are no more voxels to add.

Figure 2.14 shows the general overview of the proposed constraint generation algo-

rithm. Also, the pseudo-code of the mentioned algorithm can be found in the appendices.

Moreover, the results and the sensitivity analysis are also explained in the next chapter.
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Figure 2.14: Constraint Generation Algorithm
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Chapter 3

Results

The optimization problem is coded in Eclipse Java using CPLEX libraries in order to

formulate the optimization algorithm explained in the previouse chapter, solve it and get

the results. In this section, two patients data sets are considered in order to demonstrate the

results of the proposed methodology. The results confirm that the constraint generation

algorithm works regardless of the shape and/or size of the CTV and OAR. The initial

results are summarized in Table 3.1 where number of voxels in CTV and Heart, number of

beamlets, number of clusters and optimal objective value, for patient #1 and patient #2,

are described. In the second stage, the optimization model with the constraint generation

algorithm is solved with both patient data sets, and it produced the same objective function

values, for both cases. This means the proposed constraint generation algorithm provides

the same quality as large-scale model and potentially a faster process.
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Table 3.1: Summary of initial results for Patient #1 and Patient #2

#voxels CTV #voxels Heart # of beamlets # of clusters optimal obj. val.

Patient 1 35,592 42,342 760 302 46.87

Patient 2 56,923 51,709 968 445 51.57

3.1 Analysing Initial Results

Tables 3.2 and 3.3 show results for patient #1 and patient #2, respectively. The different

columns show iteration number, number of constraints added in each iteration, total num-

ber of added constraints in each iteration and objective function value in each iteration. In

this table, δ (i.e. violation amount in Gy) represents the violation criteria for this model.

As for the initial considerations, the δ is set to 0.1 and the model met the algorithm stop-

ping condition after 13 iterations for both patients. As can be seen, the number of added

constraints at each iteration is decreasing until there are no more constraints that can be

added and there are not more violations.

Also, the objective function value starts from 37.20 and reaches an optimal point of

46.87 which cannot be improved further. So, adding further constraints would not improve

the solution quality. In the last iteration, the model solved with 1353 constraints, which

is 4 percent of the total number of constraints that is used for the large-scale model.

3.2 Sensitivity Analysis

For patient #1, in Tables 3.4 and 3.5, it is shown that with different amounts of δ (i.e.

violation amount in Gy), how the model behaves in terms of number of added constraints,
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Table 3.2: Results when δ = 0.1 for the Patient #1

Iteration # # of Constraints Added Total # of Constraints Objective Function Value

1 302 302 37.20

2 289 591 45.00

3 257 848 46.26

4 215 1063 46.68

5 138 1201 46.81

6 69 1270 46.85

7 37 1307 46.86

8 12 1319 46.86

9 8 1327 46.86

10 21 1348 46.87

11 2 1350 46.87

12 3 1353 46.87

13 0 1353 46.87

number of iterations and the value of objective function. It is shown that with a higher δ,

the total number of constraints is reduced, and with lower δ the total number of constraints

is increased. Similar experiments are considered for the second patient and the results are

shown in Tables 3.6 and 3.7, which confirm a similar trend.

As for a summary of the analysis for δ’s and the outcomes for both patients, Tables 3.8

and 3.8 are created which show different δ’s that are considered, total number of iterations,

total number of constraints that are taken into consideration, percentage of total number

of constraints that are considered in the constraint generation model for each δ, and the
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Table 3.3: Results when δ = 0.1 for the Patient #2

Iteration # # of Constraints Added Total # of Constraints Objective Function Value

1 445 445 42.28

2 413 858 48.45

3 387 1245 50.56

4 320 1565 51.20

5 238 1803 51.45

6 143 1946 51.54

7 64 2010 51.56

8 24 2034 51.56

9 12 2046 51.56

10 8 2054 51.56

11 3 2057 51.56

12 2 2059 51.56

13 0 2059 51.56

objective function value.

As can be seen in Table 3.8, the solution quality (i.e. objective function value) is

partially affected when δ is equal to 1. But, when δ is equal to 1, there are lower number of

iterations for constraint generation and lower number of constraints are needed to satisfy

the stopping condition of the optimization compared to other δ values. On the other hand,

using δ equal to 0.1 (in this case which is for Patient #1) is suggested for this model because

the objective function value would not be affected and maintained the same quality.

In case of Patient #2, the results suggest a different recommended value for δ as it is
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Table 3.4: Results when δ = 1 for the Patient #1

Iteration # # of Constraints Added Total # of Constraints Objective Function Value

1 302 302 37.20

2 280 582 45.00

3 213 795 46.16

4 146 941 46.62

5 44 985 46.71

6 16 1001 46.74

7 11 1012 46.76

8 1 1013 46.76

9 0 1013 46.76

shown in Table 3.9. In this case, when δ is equal to 0.1, the solution quality is decreased

at the same time of having less number of required constraints. But, δ value of 1 is

recommended in this case because it maintains the same solution quality and it also gives

lower number of constraints compared to when δ is close to zero. The number of iterations

varies between these two cases and would not be a proper criteria to suggest a δ value.

3.3 Beamlet Intensities Fluence Map Results

For verification purposes, the beamlet intensity profiles are generated for both full model

implementation and the constraint generation algorithm in Figures 3.1 and 3.2. As can

be seen, they both produced similar beamlet intensity profiles for patient #1. This can

also certify that the constraint generation model produces the same solution in terms of
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Table 3.5: Results when δ = 10−6 for Patient #1

Iteration # # of Constraints Added Total # of Constraints Objective Function Value

1 302 302 37.20

2 289 591 45.00

3 261 852 46.26

4 224 1076 46.68

5 167 1243 46.82

6 106 1349 46.86

7 45 1394 46.87

8 20 1414 46.87

9 9 1423 46.87

10 0 1423 46.87

beamlet profiles as the full model implementation. In these figures, the black pixels have

the lowest beamlet intensity and the white pixles have the highest beamlet intensity.

Additionally, an unexpected issue happened in these illustrations. In these 2D profiles,

in the margins, high beamlet intensities also exist. This is because the amount of the

intensity is not constrained, so outside of the region of interest, beamlets can have high

intensities. As shown in Figure 3.1, there are three areas including Heart on the left side,

CTV (i.e. the breast) in the center the main area and the outside of body area, which is

the air. The high intensities in the margins would not have any effect on CTV area; they

are outside the patient’s body, which affects the area in the air but not the Heart or CTV

areas.
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Table 3.6: Results when δ = 1 for the Patient #2

Iteration # # of Constraints Added Total # of Constraints Objective Function Value

1 445 445 42.28

2 408 853 48.45

3 353 1206 50.55

4 232 1438 51.15

5 124 1562 51.36

6 45 1607 51.42

7 12 1619 51.43

8 8 1627 51.44

9 2 1629 51.44

10 1 1630 51.44

11 4 1634 51.44

12 0 1634 51.44

3.4 CTV Dose Statistics

In Figures 3.3 - 3.6, the dose statistics for CTV in both full model and constraint genera-

tion model when δ has the value of 1, 0.1 and 0.000001, are provided for the Patient #1. In

Figure 3.3 there is no CTV dose violation and 42.4 Gy is the minimum required prescribed

dose. Figures 3.4, 3.5 and 3.6, however, contain an allowance for dose violation in the con-

straint generation model, which are δ values in Gy, hence few voxels violate the minimum

required prescribed CTV dose, and, Table 3.10 summarizes the dose statistics, minimum

and maximum dose, mean dose and the 90th, 75th, 50th, 25th and 5th percentiles. It is

detemined that when δ is close to zero (i.e. 0.000001) the histogram pattern is very similar

34



Table 3.7: Results when δ = 10−6 for Patient #2

Iteration # # of Constraints Added Total # of Constraints Objective Function Value

1 445 445 42.28

2 414 859 48.52

3 385 1244 50.56

4 320 1564 51.25

5 260 1824 51.47

6 176 2000 51.54

7 89 2089 51.56

8 50 2139 51.56

9 20 2159 51.61

10 61 2220 51.57

11 3 2223 51.57

12 2 2225 51.57

13 0 2225 51.57

to full model results. In these histogram, also, few of the voxels in CTV receives very high

dose and this is because of the effect of not having an upper-bound for the original FMO

model and also having very high beam dose in the margins of the fluence map.

Similar analysis is done for Patient #2 and Figures 3.7 - 3.10 show the results. Also,

when these histograms are compared, it is determined that the results of the full model

and the constraint generation model when δ is 0.000001, are identical and produce same

patterns. These results certify that the proposed constraint generation algorithm works

perfectly without concerning patient’s different organ size, shape and number of voxels.

35



Table 3.8: Summary of δ’s for Patient #1

δ # Iter Total Const. % Const Obj. Val.

10−6 10 1423 4.23 46.87

0.1 13 1353 4.02 46.87

1 9 1013 3.01 46.76

Table 3.9: Summary of δ’s for Patient #2

δ # Iter Total Const. % Const Obj. Val.

10−6 13 2225 3.9 51.57

0.1 12 1634 2.8 51.44

1 13 2059 3.6 51.56

Moreover, Table 3.11 provides a summary of statistics for the full model and constraint

generation when the Patient #2 data is being used.

Table 3.10: Summary of CTV dose statistics for both models for Patient #1 (δ = 1)

Min Max Mean 90th 75th 50th 25th 5th

full model 42.4 108.59 46.31 49.89 47.42 45.56 44.20 42.85

constraint generation 41.49 109.10 46.20 49.93 47.37 45.42 44.03 42.69
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Figure 3.1: optimal beamlet intensities for full model implementation

Table 3.11: Summary of CTV dose statistics for both models for Patient #2 (δ = 1)

Min Max Mean 90th 75th 50th 25th 5th

full model 42.4 174.33 51.15 60.16 54.63 49.82 46.42 43.13

constraint generation 41.47 154.08 51.02 60.12 54.53 49.68 46.26 42.96
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Figure 3.2: optimal beamlet intensities for constraint generation algorithm

38



Figure 3.3: CTV dose histogram for full model Patient #1
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Figure 3.4: CTV dose histogram for constraint generation model when δ = 1 for Patient

#1
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Figure 3.5: CTV dose histogram for constraint generation model when δ = 0.1 for Patient

#1
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Figure 3.6: CTV dose histogram for constraint generation model when δ = 0.000001 for

Patient #1
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Figure 3.7: CTV dose histogram for full model Patient #2
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Figure 3.8: CTV dose histogram for constraint generation model when δ = 1 for Patient

#2
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Figure 3.9: CTV dose histogram for constraint generation model when δ = 0.1 for Patient

#2
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Figure 3.10: CTV dose histogram for constraint generation model when δ = 0.000001 for

Patient #2
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Chapter 4

Conclusions

A constraint generation solution method for IMRT treatment planning is proposed, and

the steps of the algorithm are elaborated. The formulation of FMO framework is explained

for two breast cancer treatment planning case studies. Furthermore, the data processing

method for creating the clusters of similar voxels with the highest dose associated from

beamlets is investigated.

Due to the large number of constraints, these data clusters helped in deciding which

voxels to pick as set of new constraints to formulate the sub-problems. It is shown that

number of constraints is significantly reduced and optimal beam intensity profile does

not violate any of the other constraints in the main model. At the same time, the same

quality was maintained in terms of the objective function value. Also, the optimal beam

intensities created similar fluence map pattern as clinical model. So, the advantages of this

new method which are reducing the number of constraints and maintaining the similar

results to full model is proved and faster optimization algorithms can be produced with

this method. Additionally, the proposed methodology is tested on two different patient
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cases and same behaviour in terms of significant reduction in number of constrains and

maintaining the same solution quality, is observed. In other words, this methodology works

with different Patient’s data.

For the future research, the time component for each algorithm can be investigated

further in order to have an exact estimate of time in different algorithms. Also, different

sets of criteria for CTV and OAR can be added for this problem, for which reformulation

of the mathematical optimization model in both objective function and constraints can be

studied. Accordingly, a base model can be created for solving a more advanced optimization

model called robust optimization. In this reformulation for IMRT optimization model, the

number of constraints can significantly increase in order to incorporate uncertainty in the

model.
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Input : Dij for Heart, Dij for CTV and Voxel Clusters Data

Output: Optimal Beamlet Intensities

1 Create new IloCplex Model;

2 Initialize new IloNumVar[] w variable for beam;

3 foreach b=0; b < number of beamlets; b++ do

4 identify w[b] in the context of cplex.numVar ranges from 0 to Infinity;

5 end

6 Initialize IloLinearNumExpr[] doseCtv for array of voxel indexes in CTV;

7 foreach v = 0; v < number of voxels in CTV; v++ do

8 foreach b=0; b < number of beamlets; b++ do

9 create doseCtv terms for each voxel which is summation of matrix

multiplication of intensity vector w[b] and CTV matrix;

10 end

11 end

12 foreach b=0; b < number of beamlets; b++ do

13 foreach v = 0; v < number of voxels in CTV; v++ do

14 if voxel index in cluster data == voxel index in CTV data then

15 add a constraint to the model;

16 break and go to next iteration;

17 end

18 end

19 end
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Algorithm 1: Constraint Generation Algorithm

20 Initialize Objective Function for the optimization model;

21 foreach b=0; b < number of beamlets; b++ do

22 foreach v = 0; v < number of voxels in Heart; v++ do

23 add average Heart dose;

24 end

25 foreach v=0; v <number of voxels in CTV; v++ do

26 add average dose CTV;

27 end

28 end

29 Create Minimization function for objective;

30 solve the model;

31 foreach j=0; j<number of voxels in CTV; j++ do

32 foreach k=0; k<760; k++ do

33 calculate sum[j] += w1[k] * D2[k][j];

34 end

35 calculate violation delta[j] = theta - sum[j] ;

36 if the violation is maximum in that cluster then

37 add a new constraint;

38 end

39 end

40 solve the model;
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