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ABSTRACT 15 

The vulnerability of concrete reinforcing steels to corrosion when depassivation occurs, typically 16 

in the presence of chloride, makes it important to understand the nature of the steels’ passive 17 

films. In the Part I of the study, electrochemical techniques and Mott-Schottky analysis were used 18 

to investigate these films formed on five different grades of stainless steel and carbon steel 19 

reinforcing bars exposed to simulated concrete pore solution. The influence of the steel 20 

composition and surface finish on Mott-Schottky plots and the electronic properties are 21 

discussed in relation to the steels’ corrosion resistance. A p-type semiconductor behaviour was 22 

observed in the stainless steel alloys in the cathodic potential regions and an n-type in the anodic 23 

potential regions. The n-type behaviour is similar to that observed in the carbon steel.   24 

 25 

INTRODUCTION 26 

The passive films formed on steel have been well studied in the literature using several 27 

techniques [1]–[9] such as in-situ Raman spectroscopy (RS), x-ray photoelectron spectroscopy 28 

(XPS), electron energy loss spectroscopy (EELS), electrochemical tunneling spectroscopy (ECT), 29 

electrochemical quartz crystal microbalance (EQCM), ellipsometry. Studies at the atomic 30 

structure level have described these films as extrinsic semiconductors [10]–[16]. Thus, it is 31 

expected that understanding the films’ electronic behaviour can provide insight into the 32 

corrosion resistance of the steel. The Mott-Schottky (M-S) analysis [17], [18], which uses 33 

electrochemical impedance spectroscopy (EIS) to measure the film capacitance, has been used 34 

extensively to understand the electronic behaviour of the films formed on carbon steel [19]–[26], 35 

the traditional austenitic 316LN and 304L grades of stainless steel [5], [10]–[13], [27]–[30], and 36 

more recently, 2205 duplex stainless steel grade [31]–[33]. The potential difference across the 37 

semiconductor/electrolyte interface is the sum of those across the space charge layer of the 38 

semiconductor and the Helmholtz double layer in the electrolyte [16]. A series capacitor model 39 

is generally used to describe the capacitors present at the metal/electrolyte interface. However, 40 

the Helmholtz double layer capacitance is typically about 2-3 orders of magnitude greater than 41 

the space charge capacitance. Therefore, in the relationship applied to Mott-Schottky analysis, 42 
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Equation 1, the Helmholtz double layer component (1/CH) becomes insignificant is normally 43 

omitted in studies of passive films [34]. 44 

The most commonly reported result from the M-S analysis is a plot of the inverse of the square 45 

of the capacitance of the passive film versus the applied potential, commonly called the Mott-46 

Schottky plot. In addition to providing information on the capacitance of the film, the M-S analysis 47 

can reveal whether the semiconductor is p- or n-type and the defect density, N, of the film. Most 48 

studies have shown the passive film on iron-based alloys to be predominantly n-type, 49 

represented by Equations 2 [35], [36]. This M-S equation shows relationship between the 50 

capacitance of the space charge layer in the semiconducting passive film and applied electrode 51 

potential, E.   52 

1/C2=(1/Csc
2 + 1/CH

2)               Equation 1 53 

 54 

1/Csc
2 = ±(2/0eNAA2)(E - EFB -kT/e)  Equation 2  55 

 56 

In this equation, C is the apparent capacitance, CH is the capacitance of the Helmholtz double 57 

layer, CSC is the capacitance of the space charge layer (i.e. interfacial capacitance) obtained from 58 

the relation C = 1/(-Z”2πf) [37], where Z” is imaginary part of the impedance and f is the 59 

frequency. A is the specimen area and  and 0 are relative permittivities or (dielectric constants) 60 

of the semiconductor and of free space (8.85x10-13 F/mm), respectively. EFB is the flatband 61 

potential, the potential at which the semiconducting passive film is in equilibrium with its 62 

environment [38]. k = Boltzmann constant (1.38x10-23 J/K); T = temperature (K) and e = charge of 63 

the electron (1.602x10-19 C). N is the charge carrier density (ND or NA is the donor or acceptor 64 

density given by the slope (m) of the linear portion of the 1/C2 vs. E plot using the relation N = 65 

2/є.є0.e.m [11]–[13]). 66 

In addition, the film thickness, d, in nm, can be calculated [39]–[45] using the capacitance from 67 

the above analysis. 68 

d = (0A/C)  Equation 3.  69 

 70 

 71 
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Where ε = 10 for carbon steel [20], [22], [46] and 15.6 for stainless steel [13], C is capacitance of 72 

the material calculated at different parts of the M-S plots (e.g. flatband potential (EFB) and 73 

corrosion potential (ECORR)). 74 

In most studies of the properties of the passive film, the physical meaning of the defect density, 75 

N, and flatband potential, EFB, has not been well related to the corrosion behaviour of the 76 

material. Those studies correlating electronic properties of passive film with corrosion behaviour 77 

were either in non-ferrous materials [47], in very different solutions from that of this study [4], 78 

or in carbon steel [26] which is not main focus of this work. More recently, Cheng and co-workers 79 

[31]–[33] also related electronic properties of passive film to corrosion behaviour to observe the 80 

influence of ferrite and austenite phases in duplex stainless steel grades. Consequently, the 81 

overall goal of the present study has been to relate all the information obtained from the M-S 82 

analysis to the corrosion behaviour of the stainless steels determined by conventional 83 

electrochemical techniques. Moreover, most previous M-S tests on ferrous alloys have been 84 

performed on polished cross-sections of carbon steel [19]–[26] and stainless steel alloys (mostly, 85 

316LN and 304L, and few recent studies of UNS S32205) [5], [10]–[13], [27]–[33] in an acidic, 86 

neutral or slightly alkaline environment. This environment is significantly different from that in 87 

concrete, for which the pH is typically > 13 [48]. 88 

The objectives of the present research were to analyse the semiconducting properties of the 89 

passive film formed on three austenitic and two duplex stainless steel grades of reinforcing bars 90 

(rebar) in the environments (pH and ionic concentrations) found in chloride-free and chloride-91 

contaminated concrete and to relate these properties to the bars’ corrosion behaviour in 92 

simulated concrete pore solution. The chloride levels investigated in this study were in the range 93 

found to initiate corrosion on stainless rebar in concrete [49]. The influence of surface condition 94 

on the semiconductor parameters was assessed by testing the polished cross-section as well as 95 

“as-received” bars. Measurements were also made on carbon steel rebar (also known as “black 96 

steel rebar”) for comparison purposes.  97 
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MATERIALS AND METHODS 98 

For application as concrete reinforcement, the surface of stainless reinforcing bars is sand blasted 99 

and acid-pickled after their hot rolling and heat treatment to remove the mill-scale and any 100 

chromium-depleted layer, respectively. The bars are heavily deformed with circumferential and 101 

longitudinal ribs and, consequently, it is anticipated that their surface films and corrosion 102 

behaviour would be highly non-uniform. Investigating the bars in this condition was aimed at 103 

determining the corrosion behaviour as it would occur in service. 104 

The M-S tests and corrosion tests were carried out in “simulated concrete pore solution”: a 105 

KOH+NaOH+Ca(OH)2 mix corresponding to that obtained by pore solution expression from a 75% 106 

Portland cement+25% slag paste with a 0.40 water/cementitious materials ratio [50]. Chlorides 107 

were added to the solutions in the concentration range that has been reported to cause corrosion 108 

initiation on stainless rebar [49], [51]–[53]. 109 

The grades and chemical compositions of the steels are presented in Table 1.  110 

Specimen preparation 111 

All bars were ribbed obtained from a commercial supplier.  The 304L bars had a 20 mm nominal 112 

diameter while all the other bars were 15 mm nominal diameter.  For the specimens designated 113 

as ‘as-received’ bars, 125 mm lengths of each grade were prepared as follows. A hole was drilled 114 

at one end and a solid copper wire was soldered for an electrical connection. Lacquer was applied 115 

to both ends to cover the soldered connection and limit the exposed length to 76 mm, giving an 116 

exposed surface area of 3581 mm2 (4780 mm2 for the 304L). The bars were then cleaned with 117 

alcohol to remove oil and grease from handling and rinsed with distilled water. For the cross-118 

section specimens, solid copper wires were soldered to 12.5 mm lengths of the bars which were 119 

then mounted in a silica fume mortar (2 parts sand, 1 part silica fume cement and 0.5 parts 120 

water). The exposed cross-sectional area was 177 mm2 (314 mm2 for the 304L). The specimens 121 

were then ground with increasing grit size up to 1200 and polished down to 1 µm with a diamond 122 

polish to achieve a consistent surface finish.  123 

TABLE 1: Grades and composition of the bars from the mill certificate provided by the 124 

manufacturer. 125 
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Class 
Rebar 

grade 

In text 

as 

Composition (wt.%) 

Cr Ni Mo Mn Si Cu C N 

Austenitic 

UNS 

S31653 
316LN 17.60 9.50 2.01 1.10 0.70 0.40 0.03 0.14 

UNS 

S30403 
304L 17.90 8.20 0.50 1.30 0.60 0.60 0.03 0.13 

UNS 

S24100 
24100 17.10 0.90 0.19 12.12 0.70 0.14 0.04 0.34 

Duplex 

UNS 

S32205 
2205 22.70 4.60 3.03 1.40 0.60 0.20 0.02 0.14 

UNS 

S32304 
2304 22.40 3.92 0.20 1.80 0.60 0.30 0.02 0.14 

Carbon 

steel 
400W Carbon 0.10 0.06 0.01 1.31 0.18 0.26 0.21 0.01 

 126 

Experimental setup 127 

For each type of specimen (as-received and cross-section), three replicate specimens from each 128 

grade were placed in cells with testing solution, shown in Table 2, for two weeks to allow them 129 

to reach equilibrium before any testing. The open circuit potentials, or corrosion potentials, Ecorr, 130 

were monitored over this period. After initial testing, described below, chlorides were added as 131 

NaCl into each of the solutions weekly in 6% increments for the stainless steel grades and 0.6% 132 

increments for carbon steel by mass of pore solution. The maximum chloride contents were 21% 133 

and 2.4%, corresponding to pore solution contents in concrete with approximately 10.5% and 134 

0.75% Cl- by mass of cementitious material according to [50], [54]. 135 



 7 

TABLE 2: Testing solutions. 136 

Composition (Molar) pH 

Ca(OH)2 KOH NaOH  

0.0014 0.48 0.13 ~13.6 

 137 

TABLE 3: Chlorides addition to testing solution. 138 

 Chloride increment, Molar 

For stainless steel 0%  6%  12%  18%  21%  

NaCl (M) 0 1.74 3.49 5.23 6.10 

For carbon steel 0%  0.6%  1.2%  1.8%  2.4%  

NaCl (M) 0 0.17 0.35 0.52 0.70 

 139 

The specimens were tested in a three-electrode electrochemical cell with the steel specimens as 140 

the working electrodes (W.E), a saturated calomel reference electrode (R.E) and a mixed metal 141 

oxide-coated titanium mesh as counter electrode (C.E), as shown in Figure 1. 142 
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FIGURE 1. Test set-up for corrosion testing and  Mott-Schottky analysis on as-received bars 144 

(left) and rebar cross-sections (right) [54]. 145 

Experimental methods 146 

Using a BioLogic potentiostat, Model VSP, a potentiostatic linear polarization resistance (LPR) 147 

[55] and staircase potential electrochemical impedance spectroscopy (SPEIS) [37] were 148 

performed at every chloride level to determine the corrosion potential and current and the M-S 149 

behaviour, respectively. The potentiostatic LPR test consisted of the application of ±10 mV for 30 150 

seconds and measurement of the steady state current at the end of the 30 s. The ratio of the 151 

applied potential to the measured current represent the Polarization resistance, RP which was 152 

converted to corrosion current with the commonly used value for carbon steel rebar of 26 mV as 153 

the Stern-Geary constant. The constant values measured for stainless steel rebar [56] range from 154 

20 to 28 mV. The SPEIS technique consists of a staircase potential sweep in which an impedance 155 

measurement (with desired frequency range) is conducted at each of a series of potential steps. 156 

The SPEIS was performed at 10 mV AC amplitude at frequencies from 100 – 1 kHz. The M-S plots 157 

presented in this paper were at 1 kHz, the maximum frequency at which the capacitance of the 158 

film was observed to be relatively unchanged [26]. 1kHz and a potential range of -1.5 – 0.6 VSCE 159 

were also chosen to allow comparison with other results in the literature [11], [13]. 160 

One week after each chloride addition, an LPR was performed to detect the corrosion behaviour 161 

of the bar and, after a further 24 hours, the SPEIS test was conducted. After another 24 hours, 162 

chloride was increased in the solution and the film was allowed to attain equilibrium for a week 163 

before the next set of tests.       164 

Using different specimens, taken from the same 1.2 m length of rebar, potentiodynamic cyclic 165 

polarization curves were obtained over the same potential range as the M-S tests in chloride-free 166 

and 6% chloride-containing solution. 167 

RESULTS 168 

An initial test was conducted to determine if it is possible to conduct multiple potential sweeps 169 

on the same sample without any adverse effect. This first part of the test was performed on two 170 
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separate “as-received” 2205 samples passivated in individual cells with chloride-free solution for 171 

two weeks. After passivation, NaCl was added to one of the cells at a concentration of 18% Cl- 172 

and, after one week, the M-S tests were performed on both samples (Curve A – 0% Cl-, Curve B 173 

– 18% Cl- in Figure 2). An M-S test was also performed on a passivated sample in solution without 174 

chlorides, Curve C, and again after 18% Cl- addition, Curve D in Figure 2, which shows the M-S 175 

plots from these samples.  176 

 177 

FIGURE 2. M-S plot conducted on 2205 samples in pore solution (PS) with and without 178 

chlorides. Curve A and B were obtained from two different bars tested in solution without and 179 

with chlorides respectively. Curve C and D were obtained from the same sample tested in 180 

solution before and after chlorides were added. 181 

The curves with 0% Cl- (Curves A and C) showed some variation which is attributed to the 182 

heterogenous surface of the bars. On the other hand, those plots for samples exposed to 18% Cl- 183 

(Curves B and D) are very similar, suggesting that the influence of chlorides is greater than that 184 

of the surface inhomogeneities. The electronic properties of the passive films from this test, 185 

identified in Figure 2 and given in Table 4, are very similar, suggesting that multiple potential 186 

sweeps can be conducted on a specimen. These data cannot not be compared directly with those 187 

presented later in the paper because of the different exposed area of the 2205 bars employed in 188 

this preliminary test.  189 

For corrosion measurements, the corrosion potential of three replicates of each steel grade was 190 

first monitored over a two-week period. Figure 3 shows the ECORR values of one of the three 191 
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replicates of each grade. The ECORR of all samples remained unchanged from day 8 to day 15, 192 

indicating that they reached steady state during that period. 193 

TABLE 4: Electronic properties of curves identified in Figure 2. Linear regions and peaks where 194 

the defect densities (N1 to N4) and film thicknesses (d1 to d4) were calculated using Equations 2 195 

and 3 196 

M-S 

plots 

Electronic properties 

Acceptor 
density, 
N1 (1021 

cm-3) 
-1.5 to -1 

Donor 
density, 
N2 (1021  

cm-3) 
-0.7 to -0.2 

Acceptor 
density, 
N3 (1021  

cm-3) 
-0.15 to 0.1 

Acceptor 
density, 
N4 (1021  

cm-3) 
0.3 to 0.6  

Flatband 
potential 
EFB (VSCE) 

Film at 
FB  

(-0.9 V) 
d1 (nm) 

Film at 
ECORR 

(-0.2 V) 
d2 (nm) 

Film at  
0.1 V 

d3 (nm) 

Film at 
0.6 V 

d4 (nm) 

Curve A 6.21 5.30 2.85 4.27 -1.22 0.46 0.55 0.41 0.17 

Curve B 8.79 7.30 3.49 6.72 -0.93 0.28 0.39 0.23 0.03 

Curve C 8.06 5.10 2.83 4.27 -1.20 0.36 0.49 0.34 0.06 

Curve D 10.51 8.00 3.70 7.26 -0.93 0.27 0.37 0.20 0.01 

 197 

 198 

FIGURE 3. ECORR values of bars in solution allowed to equilibrate for 2 weeks before any testing. 199 
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 200 

FIGURE 4. Corrosion potentials (blue) and current densities (yellow) obtained for three 201 

replicates of each grade of “as-received” rebar in pore solution with increasing chlorides. 202 

The corrosion potentials (ECORR) and current densities (iCORR) of the as-received bars in the pore 203 

solution with increasing chlorides are presented in Figure 4. The iCORR values of all bars increased 204 

gradually with increasing chlorides, while their corresponding ECORR values became gradually 205 

more negative. This behaviour indicates that the ionic and electronic resistances of the passive 206 

film was reduced by the chloride ions. The iCORR values of the stainless steel and carbon steel in 207 

solution with 21% and 2.4% chlorides, respectively, were between 1 - 10 mA/m2 equivalent to 208 

corrosion rates of between 1 - 10 µm/year. However, these values are the average over the whole 209 

exposed area of the bar and it is highly likely that there are small areas of much higher corrosion 210 

rates causing the more negative potentials. Consequently, it is not possible to determine a critical 211 

chloride concentration for corrosion initiation from these data. 212 

The Mott-Schottky plots in Figure 5 show the influence of increasing chlorides on one of three 213 

replicates of each steel grade tested in their as-received conditions. A general observation for all 214 

the stainless steel bars in chloride-free solutions, is the negative slope of the curves from -1.5 215 

VSCE to their flat band potential, a feature not observed in the curves for carbon steel. 216 

Furthermore, on scanning the bars in solution in the anodic direction, both the stainless steels 217 

and carbon steel displayed a positive slope n-type semiconductor passive film up to their 218 

corrosion potentials (~ -0.15 VSCE). At higher anodic potentials, the carbon steel showed a second 219 

positive slope n-type semiconductor at potentials between -0.15 and 0.3 VSCE, while the stainless 220 
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steel bars displayed a negative slope p-type semiconducting passive film at the same potential 221 

range. Both negative slopes are attributed to the presence alloying elements, particularly 222 

chromium These findings are in agreement with others’ observations [5], [10]–[13], [27]–[33]. 223 

 224 

FIGURE 5. Mott-Schottky plot of the austenitic and duplex steels tested in the pore solutions 225 

with increasing chloride. Note the order of magnitude lower 1/C2 value for carbon steel. 226 

The space charge capacitance, C, increases (shown in Figure 5 as decreasing 1/C2) with increasing 227 

chlorides. Since there is a direct relation between C and defect density, N, and, an inverse 228 

relationship with film thickness, d, these plots indicate an increase in defect density and decrease 229 

in film thickness with increasing chlorides in solution. This trend indicates that the passive film 230 

structure is increasingly unstable with increasing chloride concentrations, which agrees with the 231 

ECORR and iCORR data in Figures 4. The difference in capacitance between specimens in chloride-232 

free solution and in solutions containing 6% Cl- (0.6% Cl-) is much greater than that between 6% 233 

Cl- (0.6% Cl-) and higher chloride levels. The increasing C values with chlorides is similar to those 234 

observed by [26] in similar solution pH and composition.  235 

Figures 6A and 6B present the M-S plots obtained from three replicates of polished cross-sections 236 

of the 2205 bars tested in the solutions without chlorides and with 21% Cl-, respectively. Figures 237 

6C and 6D are those obtained from testing the as-received bars in similar solutions, respectively 238 

and are presented here for easy comparison. Since there is good reproducibility in the M-S 239 
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behaviour of the polished surfaces, the electronic properties obtained from only one sample of 240 

each stainless steel alloy are presented in Table 11. A general observation is that the shape of the 241 

M-S curves is not affected by the surface finish of the bars, but the scale of the 1/C2 axis is shown 242 

to be different. Another observation from Figure 6 is that the M-S plots of the as-received bars 243 

are not as reproducible as those of the polished surfaces, but, the effect of chlorides on both 244 

surface conditions is similar. 245 

 246 

FIGURE 6. Mott-Schottky plots of three replicates of the 2205 stainless steel polished cross-247 

sections (A and B) and as-received bars (C and D) bar tested in pore solution with 0% (A and C) 248 

and 21% (B and D) chlorides. The electronic properties are shown in Table 8. 249 
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Tables 5 to 10 summarise the electronic and electrochemical properties of three replicates of 260 

each grade of the as-received steels tested in pore solution. Table 11 presents the corresponding 261 

data for the polished cross-sections of the stainless steel bars. These tables provide the corrosion 262 

current density (iCORR) and corrosion potentials (ECORR) from LPR measurements; the flatband 263 

potential (EFB), defect densities (N1, N2, N3, N4) and film thicknesses (d1, d2, d3, d4) at capacitance 264 

values corresponding to those shown in Figure 2. The 24100 bar was not tested at 18% Cl- due to 265 

power problem at the university. 266 

These data are discussed below in terms of the influence of increasing chlorides in the pore 267 

solution, the rebar composition and the surface finish. A comparison of the defect densities, 268 

flatband potential, and film thicknesses, shown in Tables 5, 6, 9 and 10 with those from the 269 

literature shows that they are similar to those reported for 304L, 316LN and 2205 stainless steel 270 

alloys [5], [10]–[13], [27]–[33] and carbon steel [19]–[25], despite their different test solution 271 

concentration and pH. No references were found for the electronic properties of the 24100 and 272 

2304 grades. 273 

In chloride-free pore solution, the iCORR values presented in Table 11 for the polished cross-274 

sections of the bars were an order of magnitude lower than those tested in the as-received 275 

conditions, shown in Tables 5 - 9. However, after the addition of chlorides, the potentials and 276 

current densities in the two sets of specimens were similar. As indicated in Figure 2, the first 277 

negative slope in the M-S plots was used to calculate the N1 values (the p-type, Cr-rich layer), 278 

while the next positive and negative slopes were used to calculate the values of N2 (the n-type, 279 

Fe-rich layer) and N3 (the p-type outer spinel layer) respectively. 280 

Influence of increasing chlorides in the testing solution on electronic properties 281 

Figure 7 shows that the defect densities (N1 and N2) increased with increasing chloride 282 

concentration, while film thicknesses (d1 and d2) decreased. This is in agreement with the 283 

decreasing (more negative) ECORR and increasing iCORR values with chlorides shown in Figures 4. It 284 

is reasonable that a passive film attacked by chlorides has a higher density of defects, indicating 285 

the non-stoichiometry of the space charge layer of the passive film. A high defect density is 286 

closely associated with a high probability of passivity breakdown since defects are potential sites 287 
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TABLE 5: Corrosion and film semiconductor data for as-received 304L bars tested in pore 288 

solution, with the Nx and dx values defined in Figure 2.  289 

Chloride 

addition 

Electronic properties 

iCORR 

(mA

/m2) 

ECORR 

(mVS

CE) 

EFB 

(mVSC

E) 

N1 

(1021 

cm-3) 

N2 

(1021  

cm-3) 

N3 

(1021  

cm-3) 

N4 

(1021  

cm-3) 

d1 

(nm) 

d2 

(nm) 

d3 

(nm) 

d4 

(nm) 

0% 

1 0.02 -83 -1020 1.13 1.10 0.65 0.65 0.55 0.75 0.76 0.18 

2 0.01 -133 -1030 1.08 1.27 0.84 0.90 0.49 0.67 0.66 0.22 

3 0.01 -139 -990 1.52 1.77 1.03 1.42 0.40 0.55 0.48 0.12 

6% 

1 0.08 -94 -910 2.68 1.20 1.08 0.70 0.43 0.68 0.82 0.21 

2 0.24 -134 -950 3.21 2.04 1.02 1.24 0.38 0.55 0.53 0.13 

3 0.10 -141 -970 4.33 2.65 1.30 1.51 0.38 0.42 0.52 0.41 

12% 

1 0.55 -138 -900 4.20 1.41 1.21 1.12 0.39 0.61 0.77 0.13 

2 0.50 -135 -944 4.69 2.04 1.38 1.44 0.33 0.51 0.55 0.09 

3 0.70 -136 -870 5.15 2.67 1.77 1.97 0.27 0.44 0.44 0.05 

18% 

1 1.06 -164 -900 4.25 1.43 1.31 1.44 0.39 0.62 0.94 0.24 

2 0.51 -147 -942 5.67 2.32 1.63 1.49 0.34 0.48 0.47 0.08 

3 1.04 -149 -850 6.06 2.88 1.89 2.23 0.28 0.42 0.34 0.04 

21% 

1 1.38 -183 -845 5.75 1.53 1.95 1.53 0.33 0.57 0.85 0.19 

2 1.17 -175 -910 6.16 2.96 1.66 1.53 0.36 0.42 0.48 0.42 

3 1.34 -191 -810 6.15 2.95 1.94 2.48 0.24 0.41 0.37 0.02 

 290 

TABLE 6: Corrosion and film semiconductor data for as-received 316LN bars tested in pore 291 

solution, with the Nx and dx values defined in Figure 2.  292 

Chloride 

addition 

Electronic properties 

iCORR 

(mA

/m2) 

ECORR 

(mVS

CE) 

EFB 

(mVSC

E) 

N1 

(1021 

cm-3) 

N2 

(1021  

cm-3) 

N3 

(1021  

cm-3) 

N4 

(1021  

cm-3) 

d1 

(nm) 

d2 

(nm) 

d3 

(nm) 

d4 

(nm) 

0% 1 0.01 -148 -920 3.54 2.03 1.37 0.84 0.34 0.50 0.47 0.08 
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2 0.01 -161 -1010 5.69 2.62 1.56 1.78 0.34 0.45 0.42 0.13 

3 0.02 -138 -990 4.17 2.21 1.35 1.64 0.36 0.48 0.43 0.12 

6% 

1 0.04 -160 -900 6.39 3.26 2.18 1.76 0.25 0.40 0.46 0.09 

2 0.05 -174 -980 6.28 3.69 2.10 2.62 0.27 0.38 0.34 0.08 

3 0.07 -144 -980 6.29 3.38 2.03 2.43 0.27 0.39 0.35 0.07 

12% 

1 0.55 -166 -870 7.19 4.29 2.42 2.24 0.21 0.34 0.40 0.04 

2 0.25 -201 -970 7.87 4.5 2.45 2.95 0.25 0.35 0.33 0.10 

3 0.53 -152 -950 6.96 4.25 2.39 2.94 0.25 0.35 0.32 0.08 

18% 

1 0.81 -169 -860 7.82 5.07 3.16 3.15 0.19 0.31 0.32 0.01 

2 0.70 -224 -962 8.13 5.03 2.84 3.95 0.22 0.31 0.28 0.05 

3 0.65 -208 -950 8.05 4.89 2.67 3.82 0.22 0.32 0.28 0.04 

21% 

1 1.43 -216 -850 9.15 5.09 3.57 3.17 0.19 0.31 0.34 0.02 

2 1.74 -224 -955 8.44 5.19 3.59 4.02 0.22 0.32 0.28 0.04 

3 1.90 -278 -940 8.39 5.12 3.46 4.22 0.22 0.41 0.26 0.03 
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TABLE 7: Corrosion and film semiconductor data for as-received 24100 bars tested in pore 294 

solution, with the Nx and dx values defined in Figure 2.  295 

Chloride 

addition 

Electronic properties 

iCORR 

(mA

/m2) 

ECORR 

(mVS

CE) 

EFB 

(mVSC

E) 

N1 

(1021 

cm-3) 

N2 

(1021  

cm-3) 

N3 

(1021  

cm-3) 

N4 

(1021  

cm-3) 

d1 

(nm) 

d2 

(nm) 

d3 

(nm) 

d4 

(nm) 

0% 

1 0.03 -155 -1031   1.21 1.28   0.45 0.59 0.65   

2 0.02 -149 -1111 1.98 2.42 1.83 1.34 0.35 0.47 0.55 0.17 

3 0.03 -134 -1100 2.18 2.75 2.00 1.47 0.32 0.44 0.52 0.16 

6% 

1 0.11 -203 -988   1.47 1.31   0.37 0.53 0.68   

2 0.21 -180 -1067 1.99 3.27 2.02 1.41 0.33 0.42 0.53 0.15 

3 0.20 -170 -1096 2.00 3.57 2.19 1.70 0.30 0.39 0.48 0.13 

12% 
1 0.36 -219 -980   1.61 1.62   0.32 0.45 0.59   

2 0.48 -228 -1060 2.12 4.02 2.67 1.79 0.29 0.37 0.46 0.11 



 17 

3 0.42 -239 -1050 2.05 4.31 2.74 2.19 0.27 0.34 0.42 0.09 

18% 

1 1.05 -223 -971   2.52 1.76   0.27 0.41 0.52   

2 1.19 -244 -1063 2.17 4.13 2.80 1.91 0.27 0.36 0.45 0.11 

3 1.41 -248 -1040 2.16 4.53 2.90 2.19 0.27 0.35 0.42 0.10 

21% 

1 2.33 -233 -970   2.96 1.88   0.26 0.43 0.48   

2 2.91 -256 -1040 2.56 4.66 3.08 2.15 0.26 0.34 0.42 0.10 

3 3.50 -253 -1030 2.48 4.82 3.07 2.43 0.26 0.31 0.40 0.09 
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TABLE 8: Corrosion and film semiconductor data for as-received 2304 bars tested in pore 297 

solution, with the Nx and dx values defined in Figure 2.  298 

Chloride 

addition 

Electronic properties 

iCORR 

(mA

/m2) 

ECORR 

(mVS

CE) 

EFB 

(mVSC

E) 

N1 

(1021 

cm-3) 

N2 

(1021  

cm-3) 

N3 

(1021  

cm-3) 

N4 

(1021  

cm-3) 

d1 

(nm) 

d2 

(nm) 

d3 

(nm) 

d4 

(nm) 

0% 

1 0.03 -104 -880   5.97 2.65   0.26 0.41 0.46   

2 0.02 -83 -1070 10.40 6.44 3.99 7.51 0.22 0.29 0.20 0.04 

3 0.05 -79 -990 8.83 7.44 3.89 8.74 0.20 0.27 0.18 0.04 

6% 

1 0.12 -169 -860   6.49 3.87   0.24 0.39 0.38   

2 0.08 -152 -997 10.11 8.73 5.05 7.66 0.18 0.23 0.19 0.03 

3 0.13 -145 -970 11.64 9.66 4.67 9.40 0.16 0.22 0.17 0.03 

12% 

1 0.70 -182 -850   8.63 4.98   0.22 0.37 0.37   

2 0.55 -171 -990 10.08 11.65 5.51 8.37 0.16 0.21 0.18 0.02 

3 0.80 -166 -960 10.59 12.00 5.37 9.65 0.15 0.20 0.17 0.02 

18% 

1 0.91 -198 -861   9.80 5.29   0.21 0.36 0.35   

2 1.20 -193 -992 10.98 13.08 6.17 8.66 0.15 0.19 0.15 0.01 

3 1.07 -188 -960 11.41 13.21 6.29 11.21 0.14 0.18 0.13 0.01 

21% 

1 2.14 -242 -840   10.95 6.47 1.22 0.16 0.33 0.29 0.06 

2 2.63 -266 -970 10.91 14.75 6.76 9.60 0.13 0.18 0.15 0.01 

3 2.90 -221 -920 13.41 15.24 7.18 13.63 0.12 0.17 0.13 0.00 
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 299 

TABLE 9: Corrosion and film semiconductor data for as-received 2205 bars tested in pore 300 

solution, with the Nx and dx values defined in Figure 2.  301 

Chloride 

addition 

Electronic properties 

iCORR 

(mA

/m2) 

ECORR 

(mVS

CE) 

EFB 

(mVSC

E) 

N1 

(1021 

cm-3) 

N2 

(1021  

cm-3) 

N3 

(1021  

cm-3) 

N4 

(1021  

cm-3) 

d1 

(nm) 

d2 

(nm) 

d3 

(nm) 

d4 

(nm) 

0% 

1 0.04 -139 -1121 7.32 3.94 2.43 3.32 0.20 0.38 0.37 0.49 

2 0.02 -147 -1120 9.25 5.35 2.96 4.00 0.25 0.32 0.28 0.83 

3 0.03 -147 -1140 7.91 4.52 2.52 3.22 0.30 0.37 0.36 0.65 

6% 

1 0.11 -191 -1067 13.37 9.38 4.80 7.06 0.16 0.23 0.22 0.17 

2 0.06 -167 -1070 9.89 5.67 3.24 4.31 0.24 0.31 0.27 0.18 

3 0.06 -180 -1059 9.42 7.71 3.66 5.23 0.21 0.28 0.29 0.15 

12% 

1 0.38 -202 -1022 13.48 9.72 6.08 7.12 0.17 0.22 0.23 0.14 

2 0.31 -183 -1010 10.77 9.06 3.76 5.11 0.26 0.31 0.37 0.13 

3 0.32 -207 -1050 11.47 9.72 4.58 6.21 0.18 0.23 0.21 0.12 

18% 

1 0.41 -216 -1005 15.72 9.98 6.26 7.26 0.17 0.23 0.23 0.14 

2 1.15 -227 -970 12.73 10.63 4.44 6.08 0.17 0.24 0.24 0.15 

3 0.51 -209 -1040 14.48 10.65 4.73 6.51 0.17 0.23 0.23 0.15 

21% 

1 2.56 -273 -1001 19.44 10.24 6.59 7.62 0.17 0.23 0.24 0.14 

2 3.98 -240 -880 15.35 11.12 4.93 7.07 0.17 0.22 0.20 0.16 

3 2.50 -273 -1030 15.53 11.30 5.41 7.60 0.18 0.23 0.23 0.16 
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TABLE 10: Corrosion and film semiconductor data for as-received carbon steel bars tested in 303 

pore solution, with the Nx and dx values defined in Figure 2.  304 

Chloride 

addition 

Electronic properties 

iCORR 

(mA/

m2) 

ECORR 

(mVSC

E) 

EFB 

(mVSC

E) 

N1 

N2 

(1021  

cm-3) 

N3 

(1021  

cm-3) 

N4 

(1021  

cm-3) 

d1  
d2 

(nm) 

d3 

(nm) 

d4 

(nm) 
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0% 

1 0.19 -161 -694   56 15 7   0.06 0.18 0.022 

2 0.28 -143 -637   67 20 9   0.06 0.11 0.083 

3 0.22 -159 -613   25 13 5   0.11 0.20 0.139 

0.6% 

1 1.01 -170 -710   183 98 34   0.04 0.07 0.025 

2 1.10 -181 -651   328 153 53   0.01 0.04 0.011 

3 1.03 -192 -624   295 132 41   0.02 0.05 0.017 

1.2% 

1 1.39 -252 -713   665 295 99   0.01 0.03 0.004 

2 2.50 -280 -707   551 299 89   0.02 0.04 0.009 

3 2.20 -311 -658   535 246 99   0.01 0.03 0.010 

1.8% 

1 2.4 -352 -701   675 268 103   0.01 0.03 0.006 

2 3.1 -341 -710   771 215 111   0.03 0.04 0.035 

3 3.3 -324 -676   711 321 112   0.01 0.03 0.006 

2.4% 

1 5.2 -391 -704   918 456 145   0.01 0.03 0.004 

2 4.2 -381 -680   1379 551 194   0.00 0.02 0.002 

3 4.5 -367 -684   736 327 124   0.01 0.03 0.009 
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TABLE 11: Corrosion data and film semiconductor data for polished cross-sections of all 306 

stainless steel bars tested in pore solution, with the Nx and dx values defined in Figure 2. 307 

Chloride 

addition 

Electronic properties 

iCORR 

(mA/

m2) 

ECORR 

(mVSC

E) 

EFB 

(mVSCE) 

N1 

(1021 

cm-3) 

N2 

(1021  

cm-3) 

N3 

(1021  

cm-3) 

N4 

(1021  

cm-3) 

d1 

(nm) 

d2 

(nm) 

d3 

(nm) 

d4 

(nm) 

304L 
0% 0.02 -164 -950 2.15 2.03 0.98 0.71 0.58 0.77 0.69 0.48 

21% 1.01 -202 -910 3.21 2.22 1.19 1.16 0.53 0.70 0.61 0.44 

316LN 
0% 0.02 -169 -1220 2.76 2.71 1.89 0.99 0.60 0.78 0.76 0.41 

21% 0.98 -200 -1180 4.75 2.93 2.13 1.95 0.54 0.72 0.70 0.38 

24100 
0% 0.02 -177 -1140 3.38 2.40 1.36 0.78 0.58 0.63 0.64 0.39 

21% 1.20 -210 -1100 4.11 3.52 2.73 2.51 0.53 0.60 0.58 0.38 

2304 0% 0.05 -185 -1070 4.49 3.92 2.87 1.69 0.58 0.58 0.60 0.41 



 20 

21% 1.64 -231 -1010 7.65 4.31 3.65 2.99 0.53 0.53 0.52 0.39 

2205 
0% 0.04 -187 -1060 4.63 4.10 3.01 2.23 0.44 0.57 0.54 0.33 

21% 1.72 -242 -1010 7.70 4.53 3.43 3.09 0.43 0.53 0.51 0.32 

 308 

for corrosion initiation. The austenitic grades had consistently lower defect densities and higher 309 

film thicknesses at all chloride levels than the duplex grades. This is consistent with the austenitic 310 

grades exhibiting the slightly lower average corrosion current densities than those of the duplex 311 

grades. Furthermore, the defect densities of the austenitic grades increase only slightly with 312 

increase in chlorides, whereas those of the duplex grades significantly increased in the presence 313 

of chlorides. 314 

 315 

FIGURE 7. Change in acceptor and donor densities and film thicknesses at flatband and 316 

corrosion potentials for the stainless steel rebar with increasing chloride content in pore 317 

solutions. 318 

Influence of alloying elements on electronic properties 319 

Influence of chromium (Cr) in stainless steel bars on the electronic properties of the films. 320 
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As shown in Figure 5 and Tables 5 to 11, the influence of chromium was found both in the 321 

cathodic and anodic regions of the M-S plots and the defect densities associated with both 322 

regions. At very low cathodic potentials, the negative slope (indicative of a p-type semiconductor) 323 

not found in the carbon steel, reveals the inner Cr-rich oxide layer of the passive film. At more 324 

positive potentials, the plots of the carbon steel bars reveal a shallow (N2) and deep (N3) donor 325 

level, both characteristics of an n-type semiconductor, corresponding to Fe oxides in the space 326 

charge layer of the passive film. In the stainless bars, a positive sloped linear region, indicative of 327 

the outer Fe oxide in the passive film, was observed and, unlike the Cr-free carbon steel, a second 328 

acceptor level of the outer Fe-rich oxide layer exhibited a p-type semiconductor attributed to a 329 

Fe-Cr spinel. These findings agree with those of other authors who have tested Fe-Cr system [29], 330 

[30]. Tables 5 to 11 show that the defect densities, N1 to N4, and film thicknesses, d1 to d4, of the 331 

tested stainless steel bars are 1-2 orders of magnitude lower and higher, respectively, than those 332 

of the carbon steel bars with and without chlorides. This indicates that, although carbon steel 333 

does readily passivate at this high pH, the presence of Cr in the stainless steels promotes a more 334 

coherent, dense and thicker passive film. 335 

Influence of nickel (Ni) in 304L and its replacement with manganese (Mn) in 24100 on the 336 

electronic properties of the films. 337 

Due to the high cost of nickel (Ni) in the traditional 304L alloy, manganese (Mn) is used as an 338 

alternative austenite-promoting element in the production of the less costly 24100 grade. The 339 

effect can be assessed by comparing the electronic properties of both grades. Figure 7 show that 340 

the N1 and N2 values of the 24100 bars in pore solution with chlorides were lower and higher, 341 

respectively, than those of the 304L bars. The lower N2 (also N3 and N4 shown in Tables 5 and 7) 342 

values of the 304L bars in the presence of chlorides suggest that the Ni-Fe oxides formed in the 343 

outer layer of the passive film of the 304L bars are denser and more coherent, and thus, offers 344 

more protection, than the possible Fe-Mn spinel formed in the passive films of the 24100 bars. 345 

From the lower and relatively constant N1 values of the 24100, it is clear that the Mn stabilizes 346 

the inner Cr-rich oxide layers in the presence of chlorides.  Some authors [13], [57] have also 347 

observed the influence of Ni only in the Fe-rich outer layer of the passive films. 348 
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Influence of molybdenum (Mo) in the austenitic and duplex stainless steel grades on the electronic 349 

properties of the films 350 

The influence of molybdenum (Mo) on the electronic properties can be considered by comparing 351 

the pairs of the austenitic 304L and 316LN grades and the duplex 2205 and 2304 grades. The 352 

differences in two of the four defect densities (N1, N2) and film thicknesses (d1, d2) of both pairs 353 

of steels in solutions with and without chlorides can be graphically seen in Figure 7. The defect 354 

densities and film thicknesses of the Mo-containing bars, for both pairs of alloys are higher and 355 

lower, respectively, than those of their Mo-free counterparts.  356 

In [10]–[13], the difference in semiconducting properties of traditional 304L and 316LN alloys 357 

was observed in the linear region of the M-S plot in potential range corresponding to those 358 

between potentials of -0.15 – +0.1 V, region for which defect densities N3 were calculated, in this 359 

work. The authors found slightly lower defect densities for the 304L grade which is consistent 360 

with the data presented in the present work. No reference was found for which the electronic 361 

properties of both 2205 and 2304 steel grade had been assessed in the same work. The lower 362 

defect densities and higher film thicknesses of the 304L and 2304 bars than the 316LN and 2205 363 

bars shown in Figure 7 and Tables 5, 6, 8 and 9 are consistent with their electrochemical 364 

properties in Figure 4. 365 

Molybdenum is known to have a beneficial influence on the pitting resistance of stainless steels 366 

in acidic and neutral chloride solutions [58]. However, the corrosion potentials and corrosion 367 

current densities shown in Figures 4 do not show any improvement in corrosion resistance of 368 

316LN over that or 304L, nor of 2205 over 2304. These results are in agreement with the findings 369 

of Mesquita et al. [59]–[61] who have shown that the beneficial effect of Mo in austenitic 370 

stainless alloys decreased with increasing pH from 0.6 to 7 to 10, at which level, its effect was 371 

negligible. For the duplex alloys, on the other hand, Mesquita et al. [59]–[61] and Cheng et al. 372 

[31]–[33] showed that the Mo and Cr were partitioned preferentially in the ferrite phase and that 373 

the positive influence of Mo diminished only slightly with increasing pH in 2205. Moreover, these 374 

authors found the ferrite and austenite acted synergistically in the 2205 to provide corrosion 375 

protection by promoting the formation of a denser and more homogeneous passive film. This 376 

provides an explanation for the superior corrosion resistance of 2205 grade compared with both 377 
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2304 and 316LN observed in previous work [62]. However, in the present work, 2205 did not 378 

perform as well as expected. Therefore, some of the untested bars of the 2205 specimens were 379 

sectioned, polished and observed by optical microscopy. It was found that the surface of these 380 

bars was heavily pitted on a micro-scale, as shown in Figure 8. It is believed that this is a result of 381 

the pickling process mentioned earlier and that it has allowed an increased level of corrosion to 382 

occur in the current tests. This surface pitting explains why there is more scatter in the corrosion 383 

current densities, shown in Figure 4, of the 2205 bars than of other rebar grades. 384 

 385 

FIGURE 8. Sample of the 2205 stainless steel rebar showing the transverse and longitudinal ribs 386 

(left) and the image of the cross section showing micropits on the longitudinal rib (right) 387 

In order to correlate the electronic and electrochemical corrosion data, the Mott-Schottky (M-S) 388 

curves and corresponding cyclic polarization (CP) curves for 304L and 316LN and for the 2304 and 389 

2205 bars tested 0% and 6% Cl- solutions are shown in Figures 9 and 10 respectively.  390 

The information provided by Hakiki et al. [10]–[13] and Beverskog & Puigdomenech [63]–[65] are 391 

considered in interpreting these graphs, which have been labelled to reflect the state of the 392 

passive film in the different regions of the M-S and cyclic polarization plots. The flatband potential 393 

of the M-S plots of the stainless steel bars presented in Figures 9 and 10 corresponds 394 

approximately to the H+/H2 equilibrium potential. The highest peak in the M-S plots corresponds 395 

to the corrosion potentials and, the onset of the transpassive region corresponds to the O2/OH- 396 

equilibrium potential on the E/pH diagram at the pH of the pore solution. The slight shift in 397 

potentials between the M-S and the CP plots is attributed to the difference in scan rates of the 398 

two tests. 399 

100m

Mounting 
resin

Transverse ribs

Longitudinal ribs



 24 

The plots shown in Figures 9 and 10 indicate that, on raising the potential in the anodic direction 400 

from -1.50 VSCE, the p-type semiconducting Cr-rich oxide films become more unstable and, at 401 

potentials more positive than the flatband potential, the M-S curve is dominated by an n-type 402 

Fe2O3 and/or the spinel FeCr2O4 films. At potential more positive than the corrosion potential of 403 

the material, there is an oxidation of the spinel FeCr2O4 to (Fe)CrO4
2- until the stable NiFe2O4 404 

spinel is formed. At even more positive potentials, there is transpassive oxidation back to CrO4
2- 405 

and FeO4
2-. The last potential range (~ +0.3 – +0.6 VSCE) on the M-S plots for which the N4 defect 406 

densities were calculated is interpreted to be the transpassive region as per their CP plots.  407 

Williamson and Isgor [26], used the inversion layer theory of Morrison [36] to explain this 408 

characteristic transition in carbon steel rebar to a p-type behaviour. They interpreted the 409 

transition as being due to exhaustion of the two distinct donor layers within the band gap (N2 410 

and N3 values in the present study), thus requiring transfer of charge from the valence band and 411 

further conduction by holes, i.e. p-type conduction. Nevertheless, for both stainless steel and 412 

carbon steel in the present study, this p-type behaviour results in the M-S curve approaching zero 413 

corresponding to the sharp increase in current density of the cyclic polarization curve, i.e. 414 

equivalent to transpassive behaviour. The interpretation made in the present study regarding 415 

oxide species formed at the different potentials agrees well with the E/pH diagrams in [63]–[65] 416 

and observations from M-S analysis by other authors [5], [10]–[13], [27]–[33].   417 

With respect to the influence of Mo, the corrosion current densities of the Mo-free 304L bars are 418 

lower than those of the Mo-containing 316LN grades and, as discussed, the expected superior 419 

behaviour of the Mo-containing 316LN was not observed. At 6% chloride additions, the corrosion 420 

potentials of the 316LN bars became more negative; a behaviour not observed in the 304L bars. 421 

These findings support other authors’ observation [31]–[33], [59]–[61],[66] that the influence of 422 

Mo in austenitic phase diminishes with pH. On the other hand, both the corrosion current 423 

densities of the Mo-containing 2205 grades and the intensity of the peak attributed to the 424 

FeCr2O4 oxidation are lower than those of the Mo-free 2304 grades. However, after the addition 425 

of chlorides, the FeCr2O4 oxidation peak was higher in the 2205 bars due to the heavy pitting 426 

observed around the bars. These findings are also consistent with those from other authors [31]–427 

[33], [59]–[61],[66] who observed Mo to be beneficial in the ferritic phases of the duplex alloys. 428 
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The overall observation in Figure 9 and 10 is consistent with previous data presented on corrosion 429 

potential, corrosion current density, defect densities and film thicknesses. 430 

 431 

FIGURE 9. Mott-Schottky and cyclic polarization curves for 304L and 316LN stainless steel bars 432 

in solution without and with 6% chlorides. Test were carried out with similar potential range. 433 

Note that the plots are shifted slightly to align the corrosion potentials, to account for the 434 

different scan rates and specimens employed for the two tests. 435 

 436 

FIGURE 10. Mott-Schottky and cyclic polarization curves for 2304 and 2205 stainless steel bars 437 

in solution without and with 6% chlorides. Test were carried out with similar potential range. 438 

Note that the plots are shifted slightly to align the corrosion potentials, to account for the 439 

different scan rates and specimens employed for the two tests. 440 
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Breakdown of passive film by chlorides 441 

An interesting observation in the CP and M-S plots of the 304L bars shown in Figure 9 is that there 442 

is little effect of 6% Cl- on the polarization curve, while there is a significant drop in the slope 443 

attributed to the Cr-rich component of the film in the cathodic region of the M-S plot. This can 444 

also be observed in the defect densities presented in Tables 5 – 9 and 11 for both as-received 445 

and polished cross-section where the N1 values are generally higher than the N2 and N3 values. 446 

This is surprising in view of the fact the N1 represents the defects in the inner layer of the film 447 

and there appears to be little effect on the outer Fe-rich layer. A possible explanation to this 448 

observation can be explained considering the film breakdown. 449 

Most models of chloride-induced corrosion of reinforcing steels include an incubation period in 450 

which both the corrosion potential, Ecorr, and passive corrosion current density, icorr, are 451 

approximately constant. When sufficient chloride is present at the steel surface to breakdown 452 

the passive film and initiate active corrosion (the so-called threshold value), the models predict 453 

a sharp increase in icorr accompanied by a shift in Ecorr to more negative values. In practice, this is 454 

not what happens.  As illustrated in Figure 4 for both carbon steel and stainless steel rebar, there 455 

is a gradual increase in icorr and decrease in Ecorr with increasing chloride content of the solution, 456 

requiring a very different model of the process. The model of Marcus et al. [67], shown 457 

schematically in Figure 11, can provide a basis for such a model. 458 

Marcus and colleagues propose that there is a sharp potential difference, E, at the interface 459 

between the metal and the passive film and another at the interface between the film and the 460 

solution, with a gradual potential gradient across the film.  Increasing the defects in the film by, 461 

for example, diffusion of chloride ions, allows for reduced electronic and ionic resistance and 462 

thinning of the film. Such a process would result in a greater leakage current and a more negative 463 

potential difference.  This model can be coupled with that of Hakiki et al. [12] shown in Figure 12 464 

in which Cl- diffuses through the oxygen vacancies of the Fe-rich layer and reacts with the Fe2+ 465 

ions diffusing outwards through the Cr-rich layer.  This would explain the significant effect of 6% 466 

chloride on the inner Cr-rich layer of 304L with little effect on the Fe-rich layer, observed by M-S 467 

analysis and little effect on the measured cyclic polarization curves Figure 9.  468 
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 469 

FIGURE 11. Mechanism of local breakdown of passivity driven by the potential drop at the 470 

oxide/electrolyte interface of an inter-granular boundary of the barrier layer. The effect of 471 

chlorides is shown [67]. 472 

 473 

 474 

FIGURE 12. Schematic representation of the diffusion processes through the individual layers of 475 

passive films [12]. 476 

Influence of surface finish on electronic properties 477 
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From Tables 5 – 9 and 11, the defect densities obtained from the polished cross-section 478 

specimens are similar to those from the as-received austenitic stainless steel grades and, 479 

significantly lower than those from the as-received duplex grades, suggesting that the passive 480 

films formed on the polished cross-sections were more protective in the presence of chlorides. 481 

Apart from the larger surface area available for chlorides to attack in the as-received bars, the 482 

surface roughness of the bars (an example for which is shown in Figure 8) being attacked by 483 

chlorides contributes to the higher defect density values. This is also supported by the slightly 484 

more negative ECORR and higher iCORR values at 21% chlorides shown in Table 11 than those in 485 

Tables 5 - 10. 486 

Similar to the trend found in the as-received bars, the defect densities from the polished cross-487 

sections of the duplex stainless steel alloys are also higher than those of the austenitic grades. 488 

Similar results, in most cases, obtained in both polished cross-sections and the as-received bars 489 

suggest that the relative performance of bars to be compared can be tested in their as-received 490 

conditions, without polishing their cross-sections. However, in other cases, the impact of 491 

chlorides once added to the testing solution of the duplex stainless steel cross-sections, can be 492 

underestimated, emphasising the importance of replicating test conditions found in the field. 493 

SUMMARY AND CONCLUSIONS 494 

▪ The positive impact of the chromium in the stainless steel bars is attributed to the 495 

significantly lower defect densities, by 1 – 2 orders of magnitude, of their passive film 496 

than that of the carbon steel bars.  497 

▪ Molybdenum, which is the major difference in composition between austenitic 304L and 498 

316LN and the duplex 2205 and 2304, did not show the anticipated positive impact on 499 

the electrochemical and electronic properties of the 316LN and 2205 alloys in all testing 500 

solutions with and without chlorides. 501 

▪ On comparing the data for the 304L and 24100 bars to evaluate the influence of replacing 502 

Ni with Mn, manganese was found to reduce the defect density of the inner Cr-rich oxide 503 

layer while nickel decreased that of the outer Fe-rich oxides. In general, the electronic 504 
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properties and electrochemical behaviour of the Ni-containing 304L bars were not 505 

significantly superior than those of the Mn-containing 24100 bars. 506 

▪ The roughness, on both macro- and micro-scale, of the as-received surface of the bars did 507 

not influence the shape of the M-S plots, but their passive films had a higher defect 508 

density than those of the polished surface. Consequently, M-S analysis can be performed 509 

on as-received bars, although great amount of scatter may be obtained. 510 

▪ Increasing additions of chlorides to the solution made the passive films on all tested bars 511 

more defective and reduced their thicknesses, resulting in a gradual increase in the 512 

passive current densities accompanied by a more negative corrosion potential. 513 

▪ For the stainless steels, the M-S analysis indicates that the chlorides affect the Cr-rich 514 

inner layer of the passive film more than the Fe-rich outer layer. 515 

▪ The electronic properties of the passive films on the three austenitic stainless steel grades 516 

tested did not vary significantly with chlorides, whereas those of the duplex grades 517 

changed significantly in the presence of chlorides. This observation is consistent with the 518 

higher corrosion rate and more negative corrosion potential values of the duplex stainless 519 

steel grades. 520 
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