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Abstract 

The generalized lateral stiffness equation of a semi-rigidly connected frame with accounting for 

shear deformation is derived in this paper. The lateral stiffness equation can be used to determine 

the critical loads of frames, as instability occurs when the lateral stiffness diminishes to zero. The 

proposed method is numerically exact, and is obtained via solving the Timoshenko system of 

governing differential equations for a semi-rigidly connected column. It is demonstrated in the 

derivation that the effect of shear deformation can conveniently be accounted for via use of the 

shear flexibility coefficient, η. The proposed equations are validated via finite element analysis 

and demonstrated via numerical examples. The concept of variable loading originally proposed 

by Xu is also generalized to include the effect of shear deformation, whereby the worst and best 

case distributions of axial loads in frames can be determined via solving a minimization problem. 

Although the effect of shear deformation can generally be neglected in practice regardless of 

whether proportional or variable loading are considered, this study demonstrates that the effect of 

shear deformation on the lateral stiffness and critical loads can be significant and detrimental if 

the frames contain supporting columns with low slenderness ratios and/or lean-on columns. 

From the results of the numerical examples, the critical load of a lean-on frame containing a low-

slenderness supporting column (L/r < 40) can be reduced by up to 41% even when the 

supporting column is not loaded. 

Keywords: shear deformation; unbraced steel frame; lateral stability; variable loading; 

Timoshenko; semi-rigid  
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1 Introduction 

The prevention of instability in the design of structural frames is of primary importance, as the 

instability of a structure can have catastrophic consequences to the life and safety of its 

occupants. As such, it is important for designers to have access to accurate models with regards 

to the stability analysis of structures. The concept of storey-based stability was initiated by Yura 

[1] for the assessment of lateral stability in an entire structural frame contained within a storey of 

a building by considering the interactions between the members in the frame. Various methods 

for evaluating the storey-based stability of steel frames have subsequently been proposed [1-5]. 

Although the effect of shear deformation can generally be neglected in practice, as in the case of 

these methods, the effect of the shear deformation on storey-based stability remains to be 

investigated as it is known to be detrimental to the critical loads in certain cases, such as when 

the columns have low slenderness ratios [6]. For instance, studies [7-8] have shown that shear 

deformations can have significant effects on the critical loads in built-up columns, which tend to 

have low slenderness ratios. However, structural members are conventionally analyzed with 

adopting the Euler-Bernoulli model of deformation [9], which includes an assumption that plane 

sections remain plane [10], and in doing so, neglects the effects of shear deformations. This 

assumption is not accurate in members with low slenderness ratios. As such, the Euler-Bernoulli 

model can be replaced with the Timoshenko model [11], which replaces the governing 

differential equation relating to the deformation of a member with a more accurate system of 

governing differential equations which distinguishes the slope of the centerline of a member 

from the slope of the normal to the cross-section. The Timoshenko [11] model has been validated 

experimentally [12-13] and is widely accepted in modern analysis procedures relating to the 

calculation of deformations with consideration for shear deformations [14-17]. The shear 
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flexibility coefficient [6-7], which is an indicator for the relative influence of shear deformations 

on the critical loads of columns, depends largely on the slenderness ratio. Owing to the common 

use of steel members with low slenderness ratios in steel frames, the influence of shear 

deformations should be considered in storey-based stability analysis. 

2 Background 

It is well known that the interactions among different columns in a storey of an unbraced frame 

should be considered in the evaluation of stability in structural systems. The storey-based 

stability approach was initiated by [1] and has been developed over the last few decades to 

evaluate the lateral stability of steel frames. Xu [5] extended this approach by deriving the lateral 

stiffness equation with consideration of the effect of the column axial load for a planar storey 

frame with n bays shown in Fig. (1) and containing semi-rigid connections.  

 

Figure 1 – General Unbraced Storey Frame subjected to Gravity Loading 

The planar frame is subjected to applied gravity loads, Pi. Let the indices i and j correspond to 

the numbering of the columns and beams, respectively. Similarly, the subscripts c and b 

correspond to columns and beams, respectively. The elastic modulus, moment of inertia and 

length of each member are E, I, and L, respectively.  All connections are generalized as rotational 

springs, and the column lower and upper end fixity factors are rl and ru, respectively. The end 
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fixity factors are measures of the rotational rigidity at corresponding ends of the member, 

originally defined by Monforton and Wu [19] and shown in Eqs. (1):  
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where Ru and Rl are the rotational stiffness of the upper and lower end connections of the column, 

respectively. The end fixity factors are defined such at r = 0 represents a pinned connection, and 

r = 1 represents a fixed connection. Intermediate values of r between zero and unity can be used 

to represent semi-rigid connections. The rotational restraint provided by beam j to column i at the 

corresponding end, Ri,j, can be calculated using Eq. (2) as follows [5]. 
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where rN,j and rF,j are the end-fixity factors for the near and far ends of beam j connected to 

column i, and v is the ratio of rotation of the far-end connection of the beam, θF, to the rotation of 

the near-end connection of the beam, θN. Xu and Liu [20] demonstrated that accurate estimations 

of results can be obtained by assuming the case of asymmetric buckling, v = 1, for unbraced 

partially restrained frames. Xu [5] showed that the lateral stiffness of the frame in Fig. (1), with 

ignoring the effect of shear deformation, can be calculated using Eq. (3). 
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Where ΣS is the lateral stiffness of the storey frame, taken as the sum of lateral stiffness of each 

column, Si. The βi factor accounts for second-order effects, shown in Eqs. (4). 
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Where ϕi = iiii IEPL /  is the axial load coefficient. βi is a monotonically decreasing function of 

the axial load, and indicates whether the column is sufficiently stable on its own (β > 0) or relies 

on the lateral stiffness of other columns in the storey to maintain stability (β ≤ 0).  The frame is 

laterally stable if ΣS > 0, and unstable when ΣS diminishes to zero since theoretically the lateral 

deformations would approach infinity. Note that Eq. (3) can conveniently be extended towards 

semi-braced frames by adding the lateral stiffness of the bracing system to ΣS [21]. Xu [5] also 

introduced the concept of variable loading, which determines the worst and best cases of applied 

loads that can result in the instability of an unbraced frame. The worst and best case scenarios are 

obtained by solving the minimization and maximization problems shown in Eqs. (5), respectively, 

for an n-bay frame [5]. 
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By minimizing the total axial load and setting the instability of the frame as a constraint in Eq. 

(5b), the least amount of loading causing instability can be determined. Similarly, by maximizing 

the total axial load the most amount of loading that can be applied before instability occurs can 

be determined. The constraint in Eq. (5c) is required as columns cannot exceed their rotational 

buckling loads, Pu,i, and are assumed to be under compression. Ki is the effective length of the 

column. The minimization problem can readily be solved using mathematical programming.  
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The lateral stiffness equation in Eq. (3) was derived using the Euler-Bernoulli assumption, which 

ignores the reduction in lateral stiffness resulting from shear deformation by assuming that plane 

sections remain plane. This assumption is valid for sufficiently slender members where the shear 

flexibility factor, η, is sufficiently small in Eq. (6) [6]. 
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Where r is the radius of gyration, κA is the effective shear area and G is the shear modulus given 

in Eq. (7).  
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where ν = 0.3 is the Poisson’s ratio of steel at ambient temperature. However, there are many 

cases where the members are not sufficiently slender. As such, the reduction in the lateral 

stiffness due to shear deformation would significantly reduce the obtained critical loads of the 

frame. Moreover, the consideration of shear-deformation effects can only reduce the lateral 

stiffness of members. As such, the Xu [5] method could yield non-conservative results of the 

critical loads in some cases. To address this shortcoming, the lateral stiffness equation with 

considering shear deformation is derived in this paper via use of the Timoshenko beam 

assumption [11]. Unlike Euler-Bernoulli members, plane sections are not assumed to remain 

plane in Timoshenko beams, as shown in Fig. (2), in which φ is the rotation of the normal of the 

section to the horizontal axis. Unlike Euler-Bernoulli members where plane sections remain 

plane, φ is not equal to the derivative of y with respect to x. Throughout this paper, positive 

internal moments, M(x), are assumed to induce compression in the bottom-side fibers of the 

column, and positive internal shears, V(x), are assumed to cause counter-clockwise rotation of 

the member, as illustrated in the directions shown in Fig. (2). 



7 

 

 

Figure 2 – Visual comparison of Timoshenko versus Euler-Bernoulli members 

Note that in Fig. (2), M(x) is drawn positive-clockwise as consistent with the sign convention 

used in this paper, but the beam is shown to deform as if M(x) is negative. Also, V(x) has been 

considered by Engesser [22] to act perpendicular to the normal to the section and by Haringx [23] 

to act perpendicular to the normal to the slope of the member. As there is considerable 

disagreement in the literature over which is more accurate [6,24], solutions with accommodating 

both of these assumptions are presented and compared in this study. The deformation of a 

Timoshenko beam is governed by Eq. (8) [11]. 
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where A is the cross-sectional area. y(x) is the transverse deflection of the member at location x 

along the length of the member. q(x) is the transverse loading function. κ is the Timoshenko 

shear coefficient of the section based on its geometry. Theoretically κ is the value satisfying Eq. 

(9) and can be approximated using equations from Cowper [25] for various shapes. 
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For Euler-Bernoulli beams, the last term in Eq. (8) is omitted and is valid when η is very small. 

Based on Eq. (9), the moment and shear functions, M(x) and V(x), respectively, are given in Eqs. 

(10).  
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3 Storey-Based Stability with Considering the Effects of Shear Deformation  

The lateral stiffness of an unbraced frame containing semi-rigid connections and with 

considering the effect of shear deformation via Timoshenko columns [11] is derived in this 

section. The proposed method is a generalization of the method presented in [5] for computing 

the lateral stiffness of a semi-rigidly connected frame developed from the theory of Euler-

Bernoulli columns, which neglects shear deformation. The effect of shear deformation on the 

lateral stiffness of columns is conveniently accommodated via the introduction of a shear 

influence factor. To be consistent with the method presented in [5], the proposed method also 

accounts for the reduction in lateral stiffness due to axial loads via P-∆ effects. It is further noted 

that the proposed equations are explicit closed-form solutions to the governing differential 

equations, which can conveniently be computed in spreadsheets and are computationally 

efficient compared to other methods such as eigenvalue buckling analysis as it does not require 

the construction of a stiffness matrix nor the solution to an eigenvalue problem.  

3.1 Lateral Stiffness of a Semi-Rigid Column 

First, the semi-rigidly connected column in Fig. (3) is considered. 
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Figure 3 – Semi-rigidly connected Timoshenko column  

The deformation of the column is assumed to be based on the Timoshenko beam equations in 

Eqs. (10). The end moments Mu and Ml relate to the additional end rotations, φl and φu, in Eq. 

(11). 

 uuu RM   (11a) 

 lll RM   (11b) 

The end moments are shown in the positive counter-clockwise convention but act in the opposite 

direction. As such, in assuming small deformations the moment and shear functions of the 

column can be expressed in Eq. (12).  
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Note that in Eq. (12b), the shear function V(x) may alternatively be taken as Q + Py’, where y’ is 

the derivative of y(x) with respect to x. Eq. (12b) corresponds to the assumption of Engesser [22] 

whereas V(x) = Q + Py’ corresponds to the assumption of Haringx [23]. In terms of the 

applications in this study it will be demonstrated that both assumptions yield virtually identical 

results. It is noted that Timoshenko himself [26] adopted the assumption of Haringx [23]. 

Regardless of which assumption is used, taking moments about the base of the column thus gives 

the following relationship between the end rotations in Eq. (13).  

  PQLRR uull   (13) 

Solving the system of differential equations in Eqs. (12) results in the deformed shape and 

rotation of the column expressed in Eqs. (14). 
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where ϕ is the axial load coefficient, ω is the axial shear modifier coefficient given in Eqs. (15), 

and C1 and C2 are integration constants that depend on the boundary conditions. By the 

assumption of Engesser [22] ω will take the form of Eq. (15a), while ω will take the form of Eq. 

(15b) by the assumption of Haringx [23]. 
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Eqs. (15) reinforce the fact that the influence of shear deformation is related to η [6]. Eq. (15b) is 

valid for P < κAG, and asymptotically approaches infinity as P approaches κAG. As such, values 

above this limit are invalid. Similarly, for structural applications, η is on the order of 10
-3

 to 10
-4

 



11 

 

and has negligible influence on the value of ω. There are four boundary conditions to this 

problem, listed in Eqs. (16). 

 0)0( y  (16a) 
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Solving the system of five equations comprising of Eq. (13) and Eqs. (16) and isolating for the 

term Q/∆ results in the lateral stiffness, S, for the column, given in Eq. (17). 
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Where β’ is a modified form of Eq. (4) given in Eq. (18a) and ζ’ is given in Eq. (18b).  
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Note that in Eqs. (18), ω is given as either Eq. (15a) or Eq. (15b) depending on whether the 

assumptions of Engesser [22] or Haringx [23] are used, respectively. As consistent with the 

Euler-Bernoulli assumption, when η is small, ζ’ is small and can be neglected, and Eq. (16) 

converges to Eq. (3). Of course, this also occurs for a shear-rigid member (G = ∞, η = 0). It can 

be shown that the consideration of shear deformation always reduces the lateral stiffness of a 

column in compression compared to when shear deformations are neglected. Thus, the effect of 

shear deformation on the lateral stiffness is accounted for solely via the shear flexibility 

coefficient η in Eq. (18), and increases with the axial load, as predicted by Wang et al. [6]. Eqs. 

(18) is a generalized form of the lateral stiffness equation of a semi-rigid column, to which the 
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derivation in [5] is a special case where η = 0. Note that in the absence of applied gravity loads, ζ’ 

converges to the limit in Eq. (19a), and β’ converges to Eq. (19b).  
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Note also that if both ends of the member are pin connections (rl = ru = 0) then ζ’ = 0 and β’ in 

Eq. (16a) converges to Eq. (4), which means that lateral stiffness of a lean-on column is 

unaffected by shear deformation. Finally, the values of the end fixity factors can be calculated in 

terms of Eqs. (1) but with Ri,j in Eq. (2) replaced by Eq. (20). The corresponding derivation is 

shown in Appendix A. 

3.2 Limiting Axial Load 

Eq. (17) is applicable for columns in axial compression that do not exceed the limits for either 

yielding or the rotational buckling failure mode, shown in Eq. (20).  
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where Pu,i is the rotational buckling load of column i with accounting for shear deformation, and 

K is the effective length of the column obtained by solving for ϕu, which is the minimum positive 

value of the axial load factor ϕ that satisfies Eq. (21).  
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Although the exact solution cannot be obtained in closed form, Eq. (21) can conveniently be 

solved using root-finding methods such as the Newton-Raphson method [27]. In employing the 

root-finding methods, an initial guess of ϕu = π/Kapp is recommended, where Kapp is an 

approximation of the effective length factor of the column given in Eq. (22) [28]. This will bring 

the initial guess of ϕ to within 4% of the exact value before considering the effect of shear 
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deformation [28], ensuring that the solution will more easily converge to the ϕu value 

corresponding to the fundamental buckling mode. 
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An approximate value of Pu with accounting for shear deformation can also be obtained by 

applying the reduction factor in Eq. (23) to the buckling load obtained for Euler-Bernoulli 

columns, Pu,EB 
 
[26]. 
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Other methods of calculating Pu are proposed by [6,24,29]. Note that if inelastic buckling is 

considered then the tangent modulus theory [18] can be applied in lieu of more accurate analysis 

methods. In such a case, the value of E can be conservatively reduced by the empirical τ factor 

proposed by Yura & Helwig [18] in Eq. (24) when solving for the critical inelastic buckling load. 
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Where E0 = 200 GPa. Note that Eq. (24) is the basis of the approach used in the AISC manual 

[30] for inelastic buckling analysis. The inelastic buckling load is therefore estimated by 

substituting P = Pu in Eqs. (24) and solving with Eqs. (20) to obtain Eqs. (25). 
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Eqs. (25) is similar to that of the AISC manual [30], which includes further adjustments in 

consideration of residual stresses and column imperfections. In Eq. (25b), ϕu is a function of E 

due to its dependency on ru and rl. As such, Pu can be obtained via iteration of Eqs. (24) and (25), 

and replaces the right-hand term in Eq. (20) if inelastic buckling is considered. Also, the general 

equation for G with considering plastic deformations is given in Eq. (26) [31]. 
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where e may be taken as zero according to the incremental theory of plasticity, or Es/E0 – 1 

according to the deformation theory of plasticity [31], and Es is the secant modulus. Before 

buckling occurs, e = 0 regardless of which theory is used, due to the assumptions of small 

transverse deformations and concentric columns in this study. During buckling, however, it is 

shown in Becque [32] that e may be taken as Eq. (27). 
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Eq. (27) is based on plastic flow theory and is an improvement upon the incremental theory in 

that it considers the relationship between shear strain and stress increments at the onset of 

buckling in the absence of column initial imperfections [32]. As Eq. (27) is only applicable 

during the onset of buckling, it may only be used to obtain critical loads. 

3.3 Lateral stiffness of a semi-rigidly connected storey frame 

Within the applicable range Pi < Pu,i, the overall lateral stiffness of the storey, ΣS, when 

considering the combined effects of the specified imperfections and gravity loading is expressed 

in Eq. (28). 
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The use of Eq. (28) assumes that the lateral deflection of every column in the frame is equal, as 

is appropriate if the beams of the frame are connected to slabs and consistent with the 

methodology of [5]. The frame is stable when ΣS > 0, and becomes unstable when ΣS = 0. 

Columns that have negative lateral stiffness, Si < 0, rely on other columns in the storey to 

maintain stability. Note that similar to [21], the lateral stiffness of diagonal bracing can also be 

added to the storey-based lateral stiffness ΣS. 

4 Finite Element Validation 

A finite element analysis (FEA) was conducted via ABAQUS [17] to verify the critical axial 

load of single semi-rigidly connected column. The W310x60 column is bending about its weak 

axis (I = 125.1×10
6
 mm

4
, A = 7,394.6 mm

2
). The lower end is pinned (rl = 0), while the upper 

end has a rotational rigidity of Ru = 3.98×10
7
 Nm. Its length is varied in a parametric study. The 

critical load of a single column will be the minimum of either the sway load, Psw, obtained by 

setting the lateral stiffness in Eq. (17) to zero, or the value of Pu from either Eq. (20) or Eq. (25), 

depending on whether a purely elastic or inelastic buckling analysis is considered, respectively. 

Quadratic Timoshenko beam elements (B22) were used to account for shear deformation, while 

cubic Euler-Bernoulli beam elements (B23), which neglect shear deformation, were used as a 

comparison. Note that the value of ω corresponding to the results of the critical loads in 

ABAQUS for the B22 elements were found to be based on the assumption of Haringx [23] via 

Eq. (15b). The sway buckling and rotational buckling loads of the single column obtained from 

FEA were exact to the results obtained using the proposed equations in Eqs. (17), (20) and (25). 

To investigate the effect of the differing assumptions on the shear function, the theoretical results 

of applying Engesser’s [22] assumption via Eq. (15a) were also obtained. With empirically 

considering the effects of inelastic buckling in Eqs. (24) and (25), it can be shown that Psw < Pu 
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≤ 0.85Py for the single column regardless of length. For very stocky columns, the values of Pu 

and Psw obtained by the empirical approach in Eqs. (24) and (25) asymptotically approach 85% 

of the yielding load, 0.85Py
 
= 2,200 kN, as the slenderness ratio approaches zero. The critical 

sway loads, obtained from FEA and from Eq. (17), are plotted against the slenderness ratio of the 

column in Fig. (4). 

 

Figure 4 – Critical sway loads versus slenderness ratio  

In Fig. (4), the obtained values of Psw with both the proposed method and FEA are identical 

when using Eq. (15b), as well as when shear deformation is neglected (η = 0). The theoretical 

value of Psw obtained from Engesser’s assumption via Eq. (15a) is also plotted in Fig. (4). The 

difference between using the assumptions of Engesser [22] and Haringx [23] is within 0.003% 

for L/r > 40 and decreases with increasing slenderness ratio, but increases up to 0.2% as the 

slenderness ratio approaches zero. As such, accurate results can be obtained with using either 

assumption for the shear function for columns regardless of the slenderness ratio. For the single 

column, the difference in critical load with and without considering shear deformation is also 

relatively small (up to only 0.2%) and can be neglected. For this single column, the effects of 
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shear deformations on the critical load are negligible because the empirical tangent modulus, τ,  

in Eq. (24) decreases very quickly with applied loading near the critical load, causing much 

larger decreases to the lateral stiffness over small increments of loading than that caused due to 

shear deformations alone. However, it will be demonstrated in the following sections that the 

shear deformations can have a significant influence on the results in other cases. 

5 Parametric Study 

A parametric study was conducted to demonstrate the effect of shear deformation on the 

reduction of critical loads in a lean-on frame system. Consider the lean-on frame system shown 

in Fig. (5), which consists of a supporting W460×97 column bending about its strong axis (Ix = 

445×10
6
 mm

4
, A = 12,300 mm

2
), connected to a series of n-1 lean-on columns.  The base of the 

supporting column is rigidly connected to the ground (rl = 1), while its upper end is pinned to the 

lean-on system (ru = 0). The resulting effective length factor for the supporting column in the 

sway buckling mode is K = 0.7. In order to assess the influence of the slenderness ratio, L/r, on 

the effect of shear deformations on the critical loads, the slenderness ratio of the supporting 

column is varied in this study from 5 to 100 by changing its length, L1.  
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Figure 5 – Portal frame geometry 

By definition, the ends of the lean-on columns have pinned connections (ru = rl = 0 and K = 1). 

It can be shown that for lean-on columns, the lateral stiffness equation in Eq. (18) is simplified to 

Eq. (29). 

 iii LPS /  (29)  

where Pi is the compressive axial load the lean-on column and Li is the length of the lean-on 

column. Note that Si is independent of shear deformation. In the absence of axial loading (Pi = 0), 

a lean-on column has no contribution to the storey-based lateral stiffness. When a lean-on 

column is axially loaded, it relies on the supporting columns of a frame to maintain stability (Si < 

0). As such, no matter the lateral stiffness of the supporting column, its lateral stiffness can be 

diminished to zero via supporting a series of lean-on columns, as long as the axial loads in each 

lean-on column do not exceed their respective rotational buckling loads (Pi < Pui). The storey-

based instability condition of the frame in Fig. (5) can be expressed by setting the storey-based 

lateral stiffness in Eq. (28) to zero, resulting in Eq. (30). 
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where S1 is the lateral stiffness of the supporting column. Assuming that the lengths of all of the 

lean-on columns are the same (Li = L) and that none of them rotationally buckle, the critical total 

load applied on the lean-on column system, Pcr, is defined via Eq.(31). 
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 (31)  

Therefore, the critical total load of the frame is proportional to the lateral stiffness of the 

supporting column. It follows that a percentage reduction to the lateral stiffness of the supporting 

column will result in the same percentage reduction to the critical total load. Define Psw as the 
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sway buckling load of the supporting column, which is the value of the axial load P1 that 

diminishes the lateral stiffness of the supporting column to zero (S1 = 0) calculated with 

considering shear deformation. Thus, if P1 = Psw then Pcr = 0 since the lean-on columns provide 

no contribution to the lateral stiffness even in the absence of loading. In this study, the value of 

P1 is varied between zero (unloaded) and Psw (fully loaded) to assess the effect of increasing 

axial loads in the supporting column on Pcr. 

The lateral stiffness S1 was calculated with and without considering the effects of shear 

deformations via Eqs. (28) and (5), respectively. At first, where the effects of shear deformations 

were considered, both the Haringx [23] and Engesser [22] assumptions were compared via Eqs. 

(15b) and (15a), respectively. However, it was found that the difference in Psw obtained between 

using both assumptions was below 0.02% for L/r = 10, and decreases for higher slenderness 

ratios (see Fig. 6). 

 

Figure 6 – Difference in Psw using the Haringx (1948) and Engesser (1891) assumptions 

Similar to the conclusion of the finite element validation, it was concluded that the use of either 

assumption produces virtually identical results. As such, only the results via using the Haringx 

[23] assumption via Eq. (15b) are reported where shear deformations are considered. A value of 

κ = 0.44 for wide flange sections [25] is assumed. Assume that the yield stress of steel is 350 



20 

 

MPa and the elastic modulus of steel is 200 GPa.  The tangent modulus model in Eqs. (24) was 

used to account for the effects of partial yielding in the presence of high axial loads. The 

reduction in lateral stiffness of the supporting column due to considering shear deformations is 

plotted for varying slenderness ratios and load levels in Fig. (7). 

 

Figure 7 – Effect of shear deformations on S1 with varying L/r and loading levels 

From Fig. (7), it can be seen that magnitude of the reduction in lateral stiffness due to accounting 

for shear deformation increases exponentially for low slenderness ratios. If the supporting 

column is unloaded (P1 = 0), then the difference can be as high as 1,000 kN/m for a slenderness 

ratio of 15, but decreases to only 1.0 kN/m for a slenderness ratio of 60. Above a slenderness 

ratio of 60, the lateral stiffness is reduced by a negligible amount (below 1.0 kN/m). The effect 

of increasing the axial load P1 on the supporting column significantly decreases the reduction of 

lateral stiffness due to shear deformations at low slenderness ratios (-93% for L/r = 15). However, 

note that as the magnitude of P1 increases, the critical total load Pcr will also be reduced. The 

percentage reduction to the critical total load of the frame, Pcr, as a result of considering shear 
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deformations, is plotted in Fig. (8) for varying slenderness ratios and supporting column load 

levels. To be clear, a percentage reduction of 0% corresponds to no change in the calculated 

critical load between considering and neglecting the shear deformations via the Haringx [23] 

assumption, whereas a 100% reduction corresponds to a zero lateral stiffness when shear 

deformations are considered and an arbitrarily positive lateral stiffness when shear deformations 

are neglected. 

 

Figure 8 – Effect of shear deformations on Pcr with varying L/r and loading levels 

In the absence of loading (P1 = 0), the reduction of Pcr due to shear deformation can be 

significant for low slenderness ratios (-41% for L/r = 5). For slenderness ratios below 20, the 

reduction is at least 4.2%. The reduction is within 1.0% for L/r = 40. Therefore, if a 1% 

reduction to the critical load is considered to be significant, it is recommended that shear 

deformations be considered for this frame if the supporting column has a slenderness ratio below 

L/r = 40. By comparison, the threshold of significance with regards material reliability 

coefficients in standards is generally on the order of 0.05, or 5% [33]. However, the 
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consideration for shear deformations always results in equal or lesser values of the lateral 

stiffness and critical loads in structural members compared to when they are neglected. As such, 

the threshold of significance for an error which is always non-conservative should typically be 

more stringent. A threshold of 1% has been adopted simply as a benchmark for the current study. 

Note that as P1 increases, the percentage reduction of Pcr due to shear deformation decreases 

slightly but increases to 100% at P1 = Psw for every curve. This is because at P1 = Psw, the lateral 

stiffness of the supporting column is zero when considering shear deformation, so Pcr = 0. 

However, if shear deformations are neglected then Pcr will still be a positive value. It is not 

recommended in lean-on systems to load supporting columns near their sway capacities as that 

could result in the complete collapse of the frame. Based on the results of this analysis, shear 

deformations can have a significant influence on the critical sway loads in frames containing 

columns with low slenderness ratios. For this example, the effect of shear deformation on the 

critical load is significant (above 1.0%) when the slenderness ratio of the supporting column is 

below 40, provided that rotational buckling does not occur elsewhere in the lean-on system. It is 

also shown that the lateral stiffness of a supporting column with slenderness ratio of 15 can be 

reduced by as much as 1,000 kN/m. Although not recommended, if the supporting column is 

loaded near its sway load, the effects of shear deformation can reduce its lateral stiffness to zero 

and should definitely be considered, regardless of the slenderness ratio. 

 

6 Variable Loading 

To generalize the variable loading approach of Xu [5] to account for shear deformation, a 

modified minimization problem for determining the worst and best case distributions of axial 

loads resulting in the instability of an unbraced frame is formulated in Eqs. (32). 
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Eqs. (32) converges to Eqs. (7) when η = 0, and can be solved using nonlinear constrained 

mathematical programming methods such as the GRG Nonlinear method [34] used in 

combination with Multi-Start [35]. From a design perspective, the results of the minimization 

problem can be used to identify the weakest columns of a frame, which can be fortified to 

increase the worst case loading capacity. Similarly, the results of the maximization problem 

indicate the relative proportions of loads that can be applied when assigning occupancies to the 

corresponding locations of the building in order to maximize the efficiency of the design. The 

results of Eqs. (32) are compared with the results of Eqs. (7) for the four-bay frame example 

from [5] illustrated in Fig. (9). 

 

Figure 9 – Four-bay frame subjected to variable loading [5] 

All of the connections are semi-rigid, with rl = 0.2 for all columns and rN = rF = 0.8 for all 

beams, applicable when E = E0 = 200 GPa in all members. Note that the end fixity factors will 

change if the tangent modulus theory is used. The columns and beams are numbered from left-to-

right. For the columns, Ic,1 = 177×10
6
 mm

4
, Ic,2 = Ic,4 = Ic,5 = 145×10

6
 and Ic,3 = 198×10

6
 mm

4
. 
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For all beams, Ib = 411×10
6
 mm

4
. The areas of the columns are required when considering shear 

deformation, given as Ac,1 = 10,100 mm
2
, Ac,2 = Ac,4 = Ac,5 = 8,450 mm

2
 and Ac,3 = 11,000 mm

2
. 

The slenderness ratios of the columns range from 34 to 35, indicating that the columns are within 

the inelastic range of slenderness. For wide-flange sections, κ = 0.44 [25]. The yield stress is 

assumed to be 350 MPa and Poisson’s ratio is taken as 0.3 for all members. The rotational 

buckling loads for each column in the frame were calculated using Eqs. (25) and are shown in 

Table 1. 

Table 1 – Rotational buckling loads of columns for numerical example 

 Pu,1 Pu,2 Pu,3 Pu,4 Pu,5 

Without shear deformation 2,942 kN 2,461 kN 3,206 kN 2,461 kN 2,460 kN 

With shear deformation 2,948 kN 2,466 kN 3,213 kN 2,466 kN 2,466 kN 

  

Based on Table 1, the rotational buckling loads of the columns differ by less than 0.25% between 

neglecting and considering shear deformations. The reason for such a small difference is that Pu 

is not affected by ζ’ when solving Eq. (21). The effect of shear deformation is accounted for via 

η, which appears in only the equations for ω and ζ’. As such, a solution that is independent of ζ’ 

such as the value of Pu will not be as significantly influenced by shear deformation. Moreover, 

when P = Pu, the tangent modulus reduction factor in Eq. (24) is low (τ ≈ 0.05 for each column), 

reducing the value of η significantly and thus further reducing the influence of shear 

deformations on the rotational buckling load. Note that the results throughout this example 

obtained with considering shear deformations were once again virtually identical using either of 

the Engesser [22] or Haringx [23] assumptions. 

5.1 Worst Case Variable Loading 

The worst case gravity loading scenario is obtained by minimizing Eq. (32a), and the results for 

the numerical example are shown in Table 2.  
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Table 2 – Worst case scenario of axial loading for numerical example 

 P1 P2 P3 P4 P5 Total 

Without shear deformation 0.0 kN 0.0 kN 0.0 kN 0.0 kN 2,466 kN 2,466 kN 

With shear deformation 0.0 kN 0.0 kN 0.0 kN 0.0 kN 2,460 kN 2,460 kN 

 

Rotational buckling of Column 5 governs the worst case scenario for this example. Note that 

Column 5 has a marginally lower rotational buckling load than those of Columns 4 and 2 due to 

the varying lengths of the connection beams. In fact, contrary to what is suggested in [5], it can 

be shown that the minimum solution to Eqs. (5) and (32) always consists of loading in only one 

column. The reason for this is that in [5], the effective length factor is approximated via Eq. (22), 

and the resulting values of Pu are not exact. However, the accurate determination of Pu is 

necessary because as Pi approaches Pu,i, the lateral stiffness of the column decreases 

asymptotically towards negative infinity [5]. Thus, given the assumption that the entire frame 

deflects laterally as a unit, instability of the frame will occur as Eq. (28) diminishes to zero for 

some value of Pi ≤ Pu,i. If Pu is underestimated, the domain of the minimization problem will be 

truncated and in a way that eliminates the consideration of potentially infinite reduction to the 

frame lateral stiffness as Pi approaches Pu,i. Note that it is shown in [36] that for column with 

high end fixity factors the slope of the curve of lateral stiffness versus Pi gradually becomes 

steeper for Pi approaching Pu,i, as shown via the dashed line in Fig. (10). 
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Figure 10 – Curves of lateral stiffness versus axial load for varying end fixities 

However, as the end fixity factors of a column decrease, the curve of lateral stiffness versus Pi 

decreases more sharply towards negative infinity for Pi approaching Pu,i. In fact, for the special 

case of a lean-on column (rl = ru = 0), the curve becomes so steep that the lateral stiffness 

abruptly becomes discontinuous at Pi = Pu,i, corresponding to rotational buckling and shown via 

the solid line in Fig. (7). Based on the above rationale, the solution to the minimization problems 

in Eqs. (5) and (32) must satisfy Eq. (33). 
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In many cases, the minimum case will consist of a single column being loaded until Pi ≈ Pu,i. 

However, the instability will may take the form of a local failure at the location of the column 

which is loaded near its rotational buckling load, rather than failure of the entire storey. If load 

redistribution measures are in place, a progressive collapse analysis can be conducted to 

determine if the rest of the frame can maintain stability if the buckled column is deleted from the 

analysis and its load is redistributed to other columns. Such an analysis would be out of the scope 

of this paper, which focuses mainly on the effect of shear deformation towards the lateral 

stability of unbraced frames. Regardless of whether or not local failure will occur when a column 

approaches its rotational buckling load, instability will still occur to some degree, and can be 

detected via the minimization problem. 

To assess whether or not shear deformations will influence the minimum case loading solution 

when rotational buckling is not imminent, the slenderness ratios of the columns in the frame 

were increased until rotational buckling no longer governed the minimum solution result (i.e. Pi 

≤ 0.95Pu,i for all i in the minimum case). It was found that a length of L = 12.8 m for all the 

columns was required in order for this to occur, corresponding to slenderness ratios between 90 
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and 94. Since the lengths of the columns were changed proportionally, Column 5 remained the 

weakest and only column to be loaded in the minimum case solution (P1 = P2 = P3 = P4 = 0). The 

rotational buckling load of Column 5 was Pu,5 = 2004.6 kN and 2010.7 kN with and without 

considering shear deformation, respectively. In the minimum solution, instability of the frame 

occurred when P5 = 1988.7 kN in the minimum scenario with neglecting shear deformations. 

When considering shear deformations, the minimum case was P5 = 1981.6 kN, corresponding to 

only a 0.4% decrease in the total load. As demonstrated in the previous section, if the slenderness 

ratio is further increased, the effect of shear deformation on the result will only diminish. As 

such, it is shown that for this example the minimum case solution is not significantly affected by 

shear deformation. 

Between neglecting and considering shear deformations, the worst case scenario loading was 

affected by up to 0.4% in this example. The reason for this negligible difference is due to the fact 

that the rotational buckling load is not significantly affected by the effect of shear deformation in 

these columns, but governs the worst case instability failure of the original frame. The 

slenderness ratio of the columns was increased to avoid rotational buckling, but it was found that 

when rotational buckling no longer governed, the slenderness ratio became too high for shear 

deformations to have a significant influence on the results.  

5.2 Best Case Variable Loading 

The best case scenario is obtained by maximizing Eq. (32a) for the original frame in Fig. (9), and 

the results are shown in Table 3. 

 Table 3 – Best case scenario of axial loading for numerical example 

 P1 P2 P3 P4 P5 Total 

Without shear deformation 2,702 kN 2,225 kN 2,877 kN 2,217 kN 2,253 kN 12,274 kN 

With shear deformation 2,692 kN 2,219 kN 2,866 kN 2,211 kN 2,247 kN 12,233 kN 
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Between neglecting and considering shear deformations, the best case total load was affected by 

only 0.3% in this example. The effect of shear deformations has a negligible influence on the 

best case solution due to the fact that in the loading scenarios tabulated in Table 2, the columns 

are all loaded within 89% to 92% of their corresponding rotational buckling loads, Pu. As 

discussed previously, the lateral stiffness of a column begins to decrease very sharply as the axial 

loads approach Pu. In this case, since rotational buckling is imminent, a difference of only 39 kN 

to the total load of the frame is enough to account for the decrease in lateral stiffness that results 

from considering the effect of shear deformation while maintaining the instability condition.  

Upon further investigation, it was found that if the three interior columns were changed to lean-

on columns (rl = ru = 0) and the same maximization problem was solved for the modified frame, 

the effect of shear deformations would more significantly affect the best case loading scenario, 

shown by the best case solutions in Table 4. 

Table 4 – Best case scenario of axial loading for modified numerical example 

 P1 P2 P3 P4 P5 Total 

Without shear deformation 1,037 kN 2,069 kN 2,668 kN 2,141 kN 815 kN 8,730 kN 

With shear deformation 1,144 kN 2,244 kN 2,761 kN 2262 kN 219 kN 8,631 kN 

  

Note that the rotational buckling loads of the modified columns are Pu,2 = 2,350 kN, Pu,3 = 3,069 

kN, and Pu,4 = 2,350 kN without accounting for shear deformation, respectively. With 

considering shear deformation, the rotational buckling loads are reduced slightly to Pu,2 = 2,345 

kN, Pu,3 = 3,062 kN, and Pu,4 = 2,345 kN, respectively. Also, the best case solutions presented in 

Table 4 are not unique as the interior column loads can be re-distributed between the interior 

columns without changing the total lateral stiffness of the frame, based on Eq. (29), as long as 

the loads are below their respective rotational buckling loads. The difference between the best 
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case loads with and without considering shear deformation in the modified example is 1.2%, 

which is within the threshold of significance defined in Section 5. Note that the slenderness 

ratios of the exterior columns in this example are between 34 and 35, which is within the range 

of significance in shear deformation reported in the previous section. As such, shear 

deformations have the potential to significantly influence the best case loading scenario where 

supporting columns have low slenderness ratios and are not loaded close to their rotational 

buckling limits. 

6 Conclusion 

This study has demonstrated that in certain cases, shear deformations can significantly reduce the 

buckling loads of unbraced steel frames, and should not always be neglected in storey-based 

stability analyses. Moreover, for the compressively loaded columns in this study, the effect of 

shear deformation always reduces the lateral stiffness, and consequently, the critical loads of a 

frame subjected to gravity loading. The lateral stiffness equation for a semi-rigidly connected 

column with considering shear deformation was derived using the Timoshenko beam assumption. 

The consideration of shear deformation can conveniently be accomplished by employing the 

shear flexibility coefficient [6], η, in the lateral stiffness equation. With assuming that all of the 

columns in an unbraced frame experience equal lateral displacements, the lateral stiffness 

equation of an unbraced storey frame is also presented. Instability of the frame occurs when its 

lateral stiffness diminishes to zero as a result of axial loads. It is noted that the lateral stiffness 

equations proposed by Xu [5] are a special case of the proposed equations where ω = 1. The 

proposed method was validated using finite element analysis, and the differences between the 

critical loads with and without considering shear deformation were found to be significant where 

columns have low slenderness ratios and are not loaded close to their rotational buckling limits. 
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Particularly, based on the numerical examples it is recommended that the critical loads of lean-

on frames with supporting columns with slenderness ratios below 40 will be significantly 

influenced by shear deformation. The effect of using competing assumptions of the shearing 

angle proposed in the literature by Engesser [22] and Haringx [23] are also compared and were 

found to produce virtually identical results for the structural applications covered within the 

scope of this study. The variable loading approach first proposed by Xu [5] to determine the 

worst and best case distributions of axial loads causing instability of a frame was also 

generalized to account for shear deformation, and demonstrated via numerical example. Based 

on the results of the example, the rotational buckling is not as heavily influenced by shear 

deformations. It was also shown that the total axial load in the worst case solution to the 

minimization problem in the variable loading approach cannot exceed the minimum rotational 

buckling load of the columns in a frame. The effect of shear deformation was not found to be 

significant for the minimum loading case since either rotational buckling will govern the solution 

or the columns will become too slender. In contrast, the best case loading scenario was found to 

be significantly influenced by shear deformations (a difference of 1.0% in the example). 

Although the effects of shear deformation may be neglected in stability analysis when all of the 

columns are sufficiently slender or where rotational buckling governs the failure of the frame, 

there are cases when the critical loads in frames containing low-slenderness columns are 

significantly affected by shear deformations via the proposed method which need to be 

considered.  
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Appendix A – Rotational Stiffness Contribution of a Timoshenko Member 

Shear deformations not only affect the lateral stiffness of columns directly, but also the effective 

rotational stiffness of beams connected at the ends of columns (Ri,j), and thus subsequently also 

the end fixity factors of the columns. A more generalized form of Eq. (2) for calculating the 

effective rotational stiffness provided by a connecting beam with accounting for shear 

deformations in the connected beams is derived in this appendix. Consider first the member with 

ends A and B in Fig. (A1). 

 

Figure A1 – Deformation of a typical semi-rigidly connected member 

where ψ is the chord rotation, θ is the connection rotation with respect to the original orientation, 

and Φ is the relative rotation between the end of the member and the rotation of the connection. 

y(x) is the transverse displacement, or deflection, of the member. The transverse reaction YA and 

YB are also present at the ends. The connections on either end of the member have rotational 

stiffness ZA and ZB, and the corresponding end fixity factors, rA and rB, can be expressed via Eq. 

(A1). 
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As such, the end moments MA and MB are expressed via Eq. (A2) as functions of the relative 

rotations between the connections and their respective member ends, Φ, in the positive clockwise 

direction.  

 BBBAAA ZMZM  ;  (A2) 

The equation of external moment equilibrium for Fig. (A1) is expressed in Eq. (A3). 

 0 LYZZ BBBAA  (A3) 

Likewise, the expressions of internal moment and shear associated with the Timoshenko [11] 

beam theory are given in Eqs. (A4). 
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The system of two differential equations in Eqs. (4) is then solved for the deflected shape, y(x), 

and the shear angle normal to the cross-section of the member, φ(x). The solution is given in Eqs. 

(A5). 
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As part of the process required to solve for the integration constants C1 and C2, the four boundary 

conditions listed in Eqs. (A6) are substituted into Eqs. (A5). 

 Ayy )0(  (A6a) 

 ByLy )(  (A6b) 

 AA  )0(  (A6c) 

 BBL  )(  (A6d) 



37 

 

The system of five equations comprising of Eqs. (A6) and (A3) can be linearly solved for the 

unknowns C1, C2, YB, ΦA and ΦB as functions of all other variables. Substituting the results for 

ΦA and ΦB in Eq. (A2) results in Eq. (A7). 
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where C2×4 is a rotational stiffness coefficient matrix. Let A be the near end of the member to the 

joint for which the end fixity factor of column i is being calculated. Then rearranging Eq. (A7) 

and applying Eq. (A1) yields the following result for Ri,j = MA/θA, which is the equivalent 

rotational stiffness provided to the connecting member at end A.  
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where η is the shear flexibility coefficient of beam j from Eq. (6) and w is given in Eq. (A9).  
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w is related to the differential column axial displacement during buckling since yB and yA are the 

end displacements of the beam. w = 0 is assumed to be zero as consistent with the assumption of 

[20] in deriving Eq. (2). Eq. (A8) replaces Eq. (2) when considering shear deformations, but 

converges to Eq. (2) when shear deformations are neglected (i.e. when η = 0). 


