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Abstract

Trapped ion is one of the leading platforms for quantum simulation experiment due to its
long coherence time and high fidelity state initialization, detection, and manipulation. To
individually address ions at a single-ion level, it requires sophisticated optical engineering.
In the thesis, we present a novel single qubit addressing system that is immune to imper-
fections of optical imaging and can scale to different size of the system. The technique is
based on digital light processing with a commercially available digital micro-mirror device
(DMD).

A DMD is a 2D array that consists of tiny micro-mirrors that can be individually ma-
nipulated. It is commonly used in movie projectors to modulate the intensity of the light
to create the desired image. However, using this technology to ions will require more so-
phisticated controls over optical wavefronts of the laser beams, for example, the necessity
to manipulate the optical phase. It can be achieved by using the DMD as a programmable
hologram, which can then be used to characterize and compensate for any imaging im-
perfections as well. We developed a new iterative Fourier transform algorithm (IFTA) for
calculating the holograms. In the simulation, our algorithm shows more than one order
of magnitude improvement in accuracy comparing to previously proposed algorithms. We
experimentally demonstrated this holographic beam shaping technique with the optical
aberration being compensated. The laser we used in the experiment is in the ultraviolet
(UV) regime that is close to the optical transition used for manipulating 171Yb+ qubits.
The short wavelength makes it more susceptible to environmental disturbance.

Also, we proposed and experimentally demonstrated a new scheme that enables holo-
graphic controls over lights with multiple laser frequencies simultaneously by combing the
DMD with an acousto-optical modulator (AOM). The AOM splits the light and illuminates
different zones of the DMD. Each zone has its own hologram forming one frequency chan-
nel for addressing. This opens the possibility to engineer more complex Hamiltonian for
quantum simulation. For example, we can engineer arbitrary spin-spin interaction graphs
by applying the Mølmer-Sørensen scheme on this new setup.
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Chapter 1

Introduction to trapped ion quantum
simulation

Quantum computation has the potential to fundamentally change our society, from break-
ing standard encryption algorithms [18] to accelerating machine learning techniques [1].
While a large-scale quantum computer is perhaps years away, moderately sized special-
purpose computing machines, called quantum simulators are already useful in solving
problems in quantum many-particle physics and quantum chemistry. Quantum simula-
tors have the potential to shed light on the origin of high-temperature superconductivity,
to discover new phases of matter, and to find new drug molecules.

Long coherence times[22], high fidelity qubit state initialization and detection, and
programmable long-range interactions make trapped ions a leading platform for quantum
simulation. The trapped ions that are commonly used in quantum simulation or com-
putation experiment are usually from alkali earth metal elements or other elements also
having two valence electrons. After ionization, an ion will have only one valence electron
providing a relatively simple hydrogen-like electronic state structure. To use a trapped ion
as a quantum bit (qubit), we usually pick two electronic states as |0〉 and |1〉. Depending
on the states and the ions one picked, there are currently two schemes of storing quan-
tum information in an ion. As shown in figure 1.1, the ion qubit is manipulated through a
narrow-linewidth optical transition. We called this type of qubit “optical qubit”, for exam-
ple, 40Ca+[16]. For 40Ca+, the S1/2 and D5/2 states are usually used for encoding quantum
information. The two states are coupled with a dipole-forbidden quadruple transition at
729 nm.
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Figure 1.1: Energy diagram of the optical qubits and the hyperfine qubits. (1) Optical
qubits (2) Hyperfine qubits

As for the other scheme, it uses two hyperfine ground states as its qubit states. The
qubit can be manipulated with microwave or a two-photon Raman transition. This kind
of qubit is referred to as “microwave qubit” or “hyperfine qubit”. In our laboratory, we
are building a trapped ion quantum simulator using 171Y b+ which belongs to this type.
The two hyperfine ground states |F = 0,mF = 0〉, |F = 1,mF = 0〉 are used as the qubit
states. This species of ions has been demonstrated to have more than 10 minutes single-ion
coherence time [25] and accessible energy states with commercial lasers, making it an ideal
choice for quantum simulation experiment.

A typical quantum simulation experiment consists of several stages, including the qubit
preparation, the Hamiltonian simulation, and the state detection. In this chapter, we will
have brief introductions of each step.

1.1 Trapped ion qubit preparation

The very first step of preparing trapped Ytterbium ion qubits for quantum simulation or
computation experiment is to ionize neutral Ytterbium atoms and trap them with electric
fields.
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The source of neutral Ytterbium atoms is typically from an atomic oven. By heating the
Ytterbium sample in the atomic oven, the collimated vaporized Ytterbium beam emitted
from the oven will pass through the center of the trap. The atomic beam will subsequently
be photo-ionized in the trap.

To photoionize the neutral Ytterbium atoms, we use a two-photon process. There
are two beams involved. The first one is a frequency-locked laser beam at 399 nm (first
ionization beam) which drives a 1S0 →1 P1 transition of the neutral Ytterbium atom. The
second beam does not have to be a coherent light source. As long as the wavelength of
the photon is less than 394 nm[2], the photon will have enough energy to bring the valence
electron from 1P1 excited state to the continuum. In practice, we use the existing beams
at 369 nm used for laser cooling which we will describe later. We usually choose the beam
direction of the first ionization beam to be perpendicular to the direction of the atomic
beam. This setup minimizes the effect of Doppler broadening and enables isotope-selective
ionization.

Once the Ytterbium atoms have been ionized, they see the trapping potential created
by the static and time-averaged RF electric fields in our Paul trap[14]. A laser beam at
369.5 nm provides Doppler cooling to ions[5]. The ions lose kinetic energy and are trapped.
Earnshaw’s theorem states that there are no local maximum or minimum points of electric
potential in free space. As a result, we combine the static electric field with a fast varying
RF electric field to form an equivalent trapping potential in radio-frequency or Paul trap.

When the temperature is low enough, the ions will be crystallized into a 1D chain
configuration as figure 1.2 shows. The transition we used for laser cooling is 2S1/2 →
2P 1/2 transition which corresponds to 369 nm wavelength. The laser frequency of the
cooling beam is red-detuned from the transition frequency so that the kinetic energy can
be removed from the system through spontaneous emission. This transition is also used
for qubit state detection and initialization.
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Figure 1.2: A chain of eight 174Yb+. The separation between two ions are around 8 µm.

During the laser cooling process, there is a probability that the ion will fall into the
2D3/2 dark state. Therefore, a repumping beam is required to bring the ions back to the
ground state. For Ytterbium ion, the wavelength of the repumping beam is 935 nm which
excite the ion to 3D[3/2]1/2 state and decay back to 2S1/2. Also, another laser beam at 760
nm is required for a similar purpose. It will pump the ions out from the 2F7/2 state which
results from the collision between the ions and the residual particles in the chamber. The
precise wavelengths of 369 nm, 399 nm, 760 nm, and 935 nm beams differ among different
Ytterbium isotopes.

The schematic of the optics in our system is shown in figure 1.3. The electric-optical
modulators (EOM) are used to generate sidebands for covering the hyperfine splittings. The
acousto-optic modulators (AOM) are used as optical switches. After all the modulation, all
the beams will be combined into a polarization-maintaining single photonic crystal fiber
(PCF) and be delivered to the ion chain. The PCF has a similar mode field diameters
(MFD) from ultraviolet (UV) to near-infrared (NIR) wavelengths. In combination with
reflective optics such as off-axis parabolic reflectors, we can have similar beam sizes of all
wavelengths at the ion position. The setup greatly simplified the optical alignment near
the Vacuum chamber.
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Optical Component Diagram: 
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Figure 1.3: The schematic of the optics for trapped ion laser cooling, pumping, and detec-
tion beam preparation.

1.2 Interaction in trapped ions system

The nature of being charged particles gives ions long-range interactions through Coulomb
interactions. In a crystallized ion chain configuration, the Coulomb interactions act as
“springs” connecting ions and permit phonons of different collaborative vibrational modes.
By introducing spin-dependent forces to the system, we can have phonon mediated spin-
spin interactions. The spin-dependent force for 171Yb+ hyperfine qubits is usually imple-
mented with a Raman transition that couples the internal spin states and vibrational states.
As figure 1.4 (a) shows, there are two off-resonance beams involved in the Raman transi-
tion. The beat-node frequency matches the energy separation between two spin-vibration
states, and the two Raman beams coherently coupled two states. We usually refer to the
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transition that couples to a higher phonon number state as blue sideband transition and
the transition coupling to a lower phonon number state as red sideband transition.

To engineer a tunable spin-spin coupling or entanglement through optical spin-dependent
forces, people have proposed several schemes [3, 19], and the Mølmer-Sørensen scheme is
one of the most widely used schemes. The Mølmer-Sørensen scheme consists of two off-
resonance Raman transitions. As figure 1.4 (b) shows, an off-resonance red sideband tran-
sition and an off-resonance blue sideband transition with beat-node frequency νqubit − µ
and νqubit + µ are used. Both of the transitions are detuned from the vibrational state so
that they will not excite the phonon states directly. Instead, the two transitions coher-
ently couples the spin states (|00〉 with |11〉, and |10〉 with |01〉). The Mølmer-Sørensen
scheme induces effective Ising spin-spin interactions between every pair of ions which has
the following form.

Heff = HXX =
∑
i>j

Ji,jS
x
i S

x
j (1.1)

Ji,j = ΩiΩj

(
~∆k2

2m

)∑
k

bki b
k
j

µ2 − ω2
k

(1.2)

Ωi is the Rabi frequency of the laser addressed on the ith ion, and bk is the eigen vector of
a normal mode with frequency ωk. The Rabi frequency is basically proportional to to the
amplitude of the laser which is square root of the intensity.

Figure 1.4: (a) Raman transitions of red-sideband and blue-sideband transitions. (b) The
Mølmer-Sørensen scheme consists of two off-resonance Raman transitions (red and blue
arrows).

The interaction Hamiltonian can be described as a graph. A node in the graph repre-
sents an ion qubit, and an edge represents Ji,j which is the interaction strength between the
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ith and the jth ions. In the equation 1.2, it shows if we have full control on the intensity of
the light addressed on each ion, we can have the degrees of freedom of equal to the number
of ions N . To have full control of the spin-spin interaction graph which requires N(N−1)

2

degrees of freedom (number of Ji,j), we need at least
⌈
N−1

2

⌉
pairs of Raman beams (red

sideband and blue sideband) with different detunings.

An analog way to engineer an arbitrary Ji,j matrix is provided in Korenblit et al
(2012)[10]. Ji,j can also be controlled without requiring full local optical control of ions in a
hybrid analog-digital quantum simulation scheme [15]. However, both of the two methods
require precise optical control of ions at the level of individual ions.

1.3 Thesis Outline

As we have shown in the previous section, individual addressing is a pivotal technique for
engineering a more sophisticated spin-spin interaction graph. However, optical engineering
to achieve individual addressing can be very challenging because the separation between
ions in a trapped quantum simulator is only a few micrometres. Any imperfections in the
addressing system will directly contribute to the error in the interaction Hamiltonian. In
the thesis, we will introduce our novel solution, using holographic beam shaping, a tech-
nique that uses a re-programmable hologram to engineer the beam profile addressed on the
ion chain. Holographic optical manipulation has previously been employed in experiments
with neutral atoms[26]. However, ion experiments require working with ultra-violet (UV)
wavelength, where aberrations and power efficiency play important roles.

1. Chapter 2: We will introduce our newly developed technique for individual address-
ing. The new technique harnesses the power of re-programmable holograms, making
it immune to optical perfection and can be adapted to different system size.

2. Chapter 3: The experimental considerations, including power efficiency and aberra-
tion compensation, will be introduced in this chapter. Along with that, we will also
introduce a use case that can be useful in simulating 2D lattice.

3. Chapter 4: As for the frequency control for exciting different modes in the Mølmer-
Sørensen scheme, we will introduce a novel protocol that incorporates the frequency
control into the holographic beam shaping system in this chapter.

4. Chapter 5: Last, we will discuss our plans in the outlook for integrating the holo-
graphic addressing system to our ion trap.
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Chapter 2

Holographic Beam Shaping for
Quantum Simulation

2.1 Individual Addressing

The ability to individually addressed trapped-ion qubits gives us more tuning knobs for
engineering the spin-spin interaction Hamiltonian. There are several existing methods, such
as using an acoustic-optical deflector (AOD) or multi-channel acoustic-optical modulator
(AOM). However, they all have challenges to overcome. For an AOD, the frequency of each
addressing beam is all different. It depends on the deflection angle of the beam, which
corresponds to the position of the ion. It limits the usage of using AOD for addressing
since frequency control is required for Mølmer-Sørensen scheme.

In contrast, multi-channel AOM[4] does not have this issue. Each channel on the
multi-channel AOM maps to different ion qubits. Feeding corresponding RF can control
the amplitude, the phase and the frequency of each addressing beam to the channels.
Nevertheless, the main challenge of using multi-channel AOM is the scalability. In a
typical harmonic trapping potential, the longer the ion chain is, the more non-uniform the
spacing between ions becomes. However, the spacing between channels is fixed while being
manufactured, making the multi-channel AOM optimized for one system size. Also, the
multi-channel AOM is a product that is still in development, and it can be prohibitively
expensive for most research groups.

To overcome the issues we mentioned, we propose using a holographic beam shaping
scheme[26] for ion addressing. In this method, the beam passes through a re-programmable
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hologram. The hologram modulates the beam so the beam profile at the ion positions would
change accordingly. By generating the right beam profile, the amplitude and phase of the
light on each ion can be engineered. The holographic beam shaping method proposed in
the thesis allows spatial control independent of frequency.

In figure 2.1, we make a cartoon schematic comparing three different individual address-
ing schemes. Because the hologram is re-programmable, we can engineer unequal spacing
addressing patterns that can adapt to different size of the ion chain. In combination with
an AOM for frequency modulation, we will have controls over the frequencies, amplitude
and phase of the addressing beams simultaneously. We will discuss it in section 4. Another
advantage of holographic beam shaping is that it is immune to static optical imperfections.
By adding a phase profile which is opposite to the aberration phase profile of the optical
system, we can compensate the aberration.
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AOD

multi-channel AOM

reprogramable
    hologram

(a)

(b)

(c)

imaging telescope

multi-tone RF

Fourier lens

intensity profile

wavefront engineered
 wavefront

Figure 2.1: Cartoon schematic of comparing three different individual addressing schemes.
(a) Use an acoustic-optical deflector (AOD). The deflection angle after the AOD depends
on the input RF frequency. (b) Use multi-channel acoustic-optical modulator. The imaging
setup maps light coming from each channel to different ions. (c) Holographic beam shaping.
(our method) A re-programmable hologram is used to engineer the wavefront of the light
making the beam have desired beam profile at the ion position.
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2.2 Fourier Holography

There are a few different types of holography, such as Fresnel holography, Fourier hologra-
phy. We use Fourier holography because it works well for creating tiny beam profiles. The
basic idea of Fourier holography is that lens performs an optical Fourier transformation
on the beams from one of its focal planes to another. To have a better understanding of
how the transformation works, we first start with a plane wave. We can write down its
time-independent part in the following form.

E(x, y, z) = Aei(kx0x+ky0y+kz0z) (2.1)

At the incoming focal plane of the lens where z = −f , the electric field profile of the
beam becomes:

E(x, y) = Aei(kx0x+ky0y)e−ikz0f (2.2)

= Ãei(kx0x+ky0y) (2.3)

where we absorb the constant phase term e−ikz0f into the complex amplitude A and have
it become Ã. When a plane wave passes through a thin lens (paraxial lens), it will fall
onto one diffraction limited spot. If the aperture is infinity large, the diffraction-limited
spot essentially becomes a delta function:

E ′(x, y) = Beikz0fδ2(x− x0, y − y0) (2.4)

= B̃δ2(x− x0, y − y0) (2.5)

where B is the amplitude of the delta function that making it energy conserved. We denote
the position of the delta function to be (x0, y0). Shown in figure 2.2, for a thin lens, we
can find the following geometric relationship.

kx0

kz0
=
x0

f
(2.6)

ky0

kz0
=
y0

f
(2.7)

11



Figure 2.2: Ray tracing of focusing a collimated beam with a thin lens. The lens converts
a plane wave on one focal plane to a point (delta function) on the other focal plane. This
shows the beam profiles at two focal planes are Fourier conjugate pairs with proper scaling.

To further simplify the expression, here, we make another approximation by assuming
the beam is mostly propagating along the z direction. With the small angle approximation
k0 ≈ kz0, we have:

x0 =
kx0

k0

f =
λ

2π
fkx0 (2.8)

y0 =
ky0

k0

f =
λ

2π
fky0 (2.9)

, and thus

E ′(x, y) = B̃δ2(x− λ

2π
fkx0, y −

λ

2π
fky0) (2.10)

We can notice that the electric field profiles at the two focal plane, E(x, y) and E ′(x, y),
are Fourier conjugate pairs with proper scaling (We will show it can be generalized to
arbitrary profiles later.).
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E ′(x, y) =
B̃

Ã
F [E(x, y)](kx =

2π

λf
x, ky =

2π

λf
y) (2.11)

= Cei2k0fF [E(x, y)](kx =
2π

λf
x, ky =

2π

λf
y) (2.12)

. In the equation, C will be a real normalization constant which make sure the transfor-
mation is energy conserved. With Parseval’s theorem, we can derive the normalization
constant.

C =
2π

λf
(2.13)

If we ignore the constant phase, we will get the following relation.

E ′(x, y) =
2π

λf
F [E(x, y)](kx =

2π

λf
x, ky =

2π

λf
y) (2.14)

This result can be generalized to arbitrary profiles without any modification. That is
due to the fact that any electric field profiles can be decomposed into a sum over a series
of plane waves, and Fourier transformation is a linear transformation. For convenience, we
will refer the incoming, outgoing focal plane as Fourier plane and image plane respectively
throughout the paper. If we deploy a hologram at the Fourier plane and use it to modulate
the amplitude and the phase of the electric field at the Fourier plane, we will be able to
engineer any desired electric field profile at the image plane.

2.3 Digital Micro-Mirror Device

The re-programmable hologram can be implemented with adaptive optics. There are var-
ious types of commercially available adaptive optical devices, including liquid-crystal spa-
tial light modulators (LC-SLM)[6], deformable mirrors, and digital micro-mirror devices
(DMD)[26]. A significant advantage of using adaptive optics is that they are reconfigurable.
We can reprogram the adaptive optics to switch between different holograms to generate
various beam profiles.

The adaptive optics we chose is a digital micro-mirror device, DLP9500UV[21] from
Texas Instrument. It is controlled by an FPGA-based controller from Visitech. The DMD
is a 2D array of micro-mirrors lying on top of a CMOS chip. Each micro-mirror can be
individually programmed and tilted to plus and minus twelve degrees along the diagonal
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direction as shown in figure 2.4 We can use the DMD to locally turn on or off the reflected
light in one direction. Namely, we can do local binary amplitude modulation. Since the
micro-mirrors on the DMD are tilted in the diagonal direction, we rotated the whole DMD
by 45 degrees for easier optical alignment as the experimental setup shown in figure 2.3.
The frame rate of the DMD is more than 10kHz, which is about a hundred times faster
than the frame rate of an LC-SLM. That means we can change the quantum operations
more frequently since each engineered beam profiles corresponds to a quantum operation
we would like to apply on the ions.

DMD

Figure 2.3: The picture of the DMD setup we used in the experiment. The DMD is rotated
by 45 degrees due to the fact that the micro-mirror is flipping in the diagonal direction.
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Figure 2.4: Micro-mirror landed positions and light paths. The figure is taken and edited
from the DLP9500UV datasheet[21].
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2.4 Off-Axis Amplitude Hologram

With a DMD, we can have binary local amplitude controls by flipping the micro-mirrors.
However, to engineer an arbitrary beam profile at the image plane, we will need some
controls on not only the amplitude of the beam profile but also its optical phase.

To understand how we engineer the beam profile with a device that can only do am-
plitude modulation, let’s first relieve the constraint that the amplitude control from the
DMD is binary and assume that the device has a continuous (grey scale) amplitude control.
Consider we want to engineer a target beam profile f(x) which has a Fourier conjugate
F (k).

F (k) = F [f(x)] (2.15)

For simplicity, we use the vector notation, x = (x, y) and k = (kx, ky).

The idea of using just the amplitude modulation to achieve both amplitude and phase
control is through engineering a carrier grating. If we use the diffracted beam from the
grating, we will be able to modify the phase of the light by changing the spatial phase
of the grating profiles. With this idea in mind, we can implement the amplitude grating
function G(k) with the following form.

G(k) =
|F (k)|

2
(cos(x0 · k + Φ(k)) + 1) (2.16)

where
Φ(k) = Arg(F (k)))

, and x0 defines the periodicity of the grating. Note that we add a one to the cos function
as the bias to ensure the grating function G(k) is always positive because the DMD doesn’t
have the ability to invert the sign of the field (negative value of the grating in equation
2.16). To verify the grating function we just constructed, we can simply apply the inverse
Fourier transform.

g(x) = F−1[G(k)] (2.17)

=
1

4
f(x− x0) +

1

4
f ∗(−x + x0) +

1

2
F−1[|F (k)|] (2.18)

The transformation of the function is consist of three terms, and we refer to the three terms
as first, negative first, and zeroth grating order of the beam respectively. We can notice
that the first order diffraction beam has the desired beam profile yet with a shifted origin
at x0. Because of the shifted-origin nature of the grating-based holograms, holograms of
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this type are usually referred to as off-axis holograms. It is worth mentioning that the
negative first order is the complex conjugate of the target beam profile. By flipping the
sign of Φ(k), we can use the negative first order rather than the first order diffraction
beam. Substitute the relation between k and x (equation 2.8 and 2.9), and we will have:

Ĝ(x) =
|F̂ (x)|

2
(cos(2π

x0 · x
λf

+ Φ̂(x)) + 1)

Here we addˆon top of the function to indicate the substitution.

The grating function we’ve derived so far requires uniform illumination on the hologram,
and the optical aberrations are not taken into account. However, in most of the situation,
the light doesn’t illuminate the hologram uniformly and suffers from the imperfection of
the optics. To address this problem, first, let’s denote the beam profile illuminatedshinnhe
DMD at the Fourier plane to be Ein(x) with aberration phase profile Φin = Arg(Ein).
Although the aberrations from DMD itself and the focusing lens are not part of the Φin,
we can combine all these aberrations into Φin and thus assume the DMD and the focusing
lens will not introduce any optical aberrations. In the later section, we will show how to
measure the combined aberrations phase profile for aberration compensation. With some
modification, we will able to get the grating function that can adapt to Ein.

Ĝ(x) = η

∣∣∣∣∣ F̂ (x)

Ein(x)

∣∣∣∣∣ 1

2
(cos(2π

x0 · x
λf

+ Φ̂(x)− Φin(x)) + 1) (2.19)

with normalization constant

η = max(

∣∣∣∣∣Ein(x)

F̂ (x)

∣∣∣∣∣) (2.20)

to make the value of Ĝ between 0 to 1. The beam profile at image plane now becomes:

Eimg(x) =
2π

λf
F−1[(Ein(x)Ĝ(x))|x=λf

2π
k]

=
2π

λf
η

(
1

4
f(x− x0) +

1

4
F−1[|F (k)|ei(−Φ(k)+2Φin(x=λf

2π
k))](−x + x0)

+
1

2
F−1[|F (k)|eiΦin(x=λf

2π
k)]

) (2.21)

As we can see in the equation, the first order beam is the aberration-free target beam
profile, but the negative first order diffraction suffers two times more aberration.
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2.5 Binarization

Now we have the method to generate greyscale amplitude holograms that can produce the
desired beam profiles. The next step is to binarize the greyscale holograms so that they
can be displayed on the DMD. Unfortunately, binarization is a highly nonlinear process,
and there is no way to do so without introducing additional error. What we can do is try
to find a binary grating function Gb(x) to approximate the grey scale grating G(x). As
an example, we show the binarized gratings with different phases and amplitudes in figure
2.5.

The most trivial method to do so is to simply set up a threshold, for example, 0.5,
and the value of the binarized hologram is determined by comparing the value of the
unbinarized hologram with the threshold. If G(x) is greater than the threshold, Gb(x) will
be set to 1 which means the micro-mirror flips to the “on” position that will reflect the
beam to the lens.

Gb(x) =

{
1 if G(x) ≥ 0.5

0 if G(x) < 0.5
(2.22)

However, this method gives out a significant amount of localized artifacts. Shown in figure
2.6 is one of the simulation examples we made with this simple threshold method. We can
observe artifacts are lying around the target beam profile.

Increase Amplitude

Change Phase

Phase and Amplitude Control

Yellow: ON
Purple: OFF

Figure 2.5: Binarized gratings with different phases and amplitudes.
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Figure 2.6: Simulation of creating TEM11 Gaussian beam profile from a fundamental
mode Gaussian beam. (a) The ideal grating profile (continuous amplitude modulation).
(b) The beam profile at the image plane created with ideal grating hologram. The profile
is an ideal TEM11 Gaussian beam profile. (c) The binarized amplitude grating profile.
The binarization is performed with the formula in equation 2.22. (d) The beam profile at
the image plane created with the simple threshold method (equation 2.22). One can see
artifacts caused the binarization process appear in the image. Simulation condition: λ =
369 nm, f = 30mm, grating periodicity = 2 pixel

To mitigate the influence of binarization errors, people have proposed several methods[12,
7, 9, 26]. Shown in figure 2.7 are the simulation results with a hologram calculated with the
probabilistic algorithm from [26] and the hologram from 2.19 binarized by an error diffusion
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algorithm [8]. We can clearly observe that the artifacts are significantly suppressed.
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Figure 2.7: Simulation of creating TEM11 Gaussian beam profile from a fundamental
mode Gaussian beam with improved binarization methods. (a) The binarized amplitude
grating profile created by applying the error diffusion method[8] on the ideal grating. (b)
The beam profile at the image plane created with the error diffusion algorithm. (c) The
binarized amplitude grating profile created with the probabilistic algorithm from [26] (d)
The beam profile at the image plane created with the probabilistic algorithm. Simulation
condition: λ = 369 nm, f = 30mm, error diffusion algorithm: Jarvis [8], grating periodicity
= 2 pixel

Before going into the details about the binarization and benchmarking the algorithms,
we will first discuss what kind of profiles we are interested in. There are multiple ways of
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engineering a target beam profile that produces the same quantum gate operation. The
beam profile can be arbitrary as long as it has the desired values at the positions ions
locate. In other words, we only care about the beam profile close to the region that ions
locate. However, in general, we want its optical Fourier transformed profile to have a good
overlapping with the input beam profile on the DMD, so more power of the beam can be
used in addressing. More specifically, we want to maximize the normalization constant η.
Since our input beam profile on the DMD is close to the fundamental Gaussian mode, we
made our addressing beam profile a series of Gaussian beams addressed on each ion.

Etarget(x) = Σiaie
|x−xi|2/w2

(2.23)

Each addressing Gaussian beam satisfies the mode matching condition.

w ≈ fλ

πw0

(2.24)

where w0 is the radius of the incoming beam at which the field amplitudes fall to 1/e of
their axial values.

To benchmark the performance of the system, we create a beam profile that has equal
strength of the light on all ions except one ion in the system. In the small figure at the
bottom left of figure 2.8 shows the benchmark pattern we used. As an example, we discuss
the accuracy of a six ions system. Hence, we intend to show light with equal intensities at
ion i = {1, 2, 3, 4, 6}, while keep ion i = 5 in dark. Therefore, we can define a benchmark
metric for the system as:

Ebenchmark(x) = Σi={1,2,3,4,6}ae
|x−xi|2/w2

(2.25)

We can benchmark the accuracy from the mismatch between peaks. Also, the light leaking
to the position of the fifth ion indicates the crosstalk of the system. In figure 2.8, we
showed the simulation results with the two algorithms, the probabilistic algorithm and the
error-diffusion-based algorithm, along with the unbinarized (ideal) version for comparison.
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Figure 2.8: Binarization algorithm comparison: The first row shows the grating profile at
the Fourier plane, and the second row shows the simulated normalized field amplitude at
the image plane. Simulation condition:λ = 399nm, f = 728 mm, grating periodicity = 2
pixel

To examine the peak mismatch and the crosstalk, we plot the simulation results of the
two algorithms in both linear scale and logarithmic scale in figure 2.9 and figure 2.10. The
maximum peak mismatch of both of the algorithms is around 5%. As for the crosstalk,
the error diffusion method has less crosstalk. It has two to three times less cross talk
than that of the probabilistic algorithm. Both of the algorithms may be good enough for
creating arbitrary potential in some many-body quantum simulation experiment. However,
comparing to the current state-of-the-art experiment [4] which has about 1% (-20dBc)
crosstalk in the amplitude, we would like to find a better algorithm.
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Figure 2.9: Simulation results of beam profile at the image plane with a hologram generated
by the probabilistic algorithm[27] (a) Normalized field amplitude. (b) Normalized field
Amplitude in the logarithmic scale. (c) Normalized field amplitude of the cross-section
along the ion chain direction. (d) Normalized field amplitude of the cross-section along
the ion chain direction in the logarithmic scale. (Simulation condition: λ = 399nm, f =
728 mm, grating periodicity = 2 pixel) There is a maximum 5% peak mismatch shown in
figure c and approximately -10 dBc cross-talk in figure d.
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Figure 2.10: Simulation results of beam profile at the image plane with a hologram gener-
ated by the error diffusion algorithm (a) Normalized field amplitude. (b) Normalized field
Amplitude in the logarithmic scale. (c) Normalized field amplitude of the cross-section
along the ion chain direction. (d) Normalized field amplitude of the cross-section along
the ion chain direction in the logarithmic scale. (Simulation condition: λ = 399nm, f =
728 mm, grating periodicity = 2 pixel) There is a maximum 5% peak mismatch shown in
figure c and approximately -15 dBc cross-talk in figure d. The cross-talk reduces by about
5 dB comparing to the results in figure 2.9
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2.6 Iterative Fourier Transform Algorithm

While looking for a better binarization algorithm, one thing we have to keep in mind is
the binarization error results from the limited degrees of freedom. Unlike the greyscale
hologram which has continuous amplitude control, the DMD has only two states, on and
off. Although this means we are not able to get rid of the binarization error completely,
we can try to minimize its influence by optimizing the hologram such that within a signal
window containing the target beam profile (where the ions locate) the error is minimized.
The algorithm we designed to optimize the hologram is an iterative Fourier transform
algorithm (IFTA). It is a modification of the binarization algorithm from [24].

Start: unbinarized hologram

Binarization: Project the 
hologram to real space and 
perform binarization.

Correction: Correct the 
beam profile within the 
signal window.

Fo
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r 
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n
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n
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i = N?

Yes

No

Figure 2.11: The flowchart of our iterative Fourier transform algorithm.
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The flow chart of our IFTA is shown in figure 2.11. In the beginning, we start with a
greyscale hologram G(k) and binarized it with a binarization operator U .

G
(1)
b = U [G(k)] (2.26)

Since we just applied the binarization to the hologram, we will encounter the binarization
error when we go from the Fourier plane to the image plane. The next step is to apply
a correction operator X which corrects the beam profile within a signal window D. The
signal window contains the region we are interested in, for example, the ions.

g(i)
c (x) = X[g(i)(x)] =

{
g(x) if x ∈ D
g(i)(x) otherwise

(2.27)

where g(x) is the inverse Fourier transformation of the ideal grating profile. (The target
beam profile.)

g(x) = F−1[G(k)] (2.28)

Now the hologram at the Fourier plane is no longer binarized because we just modified
the profile at the image plane. Therefore, we will need to apply binarization again. By
repeating this cycle, we will be able to reduce the error within the signal window. The
binarization error will be “repelled” to the outside of the signal window. One may want to
correct the first-order beam only if the edge of the signal window is near or cropping the
profile. It is because the negative first-order scattering beam suffer from optical aberrations,
and the aberrations can cause the light to “leak” to the outside of the window. Correct
first-order beam only may lead to a slower convergence speed but with lower error for the
final result.

Note that g(i)(x) isn’t not always a real function. Therefore, we will need to project it
into real space first while performing binarization. We have tried both taking the absolute
value and the real part of g(i)(x), and we did not find any significant difference in the
convergence speed. As a result, we use the method of taking the real part because it is less
computationally expensive.

To avoid stagnation and lead to a faster convergence, Wyrowski (1989) [24] suggested
using an adaptive binarization threshold. At first, we only binarize the value close to 0
and 1, and we change the binarization threshold throughout the iteration.

G
(i)
b = Ut[G

(i)(x)] =


0 if Re[G(i)(x)] < t

1 if Re[G(i)(x)] > t

Re[G(i)(x)] otherwise

(2.29)
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where t is the threshold. In our algorithm, we sweep the threshold linearly through out
the iterations.

t =
i

2N
(2.30)

Shown in figure 2.12 is the simulation result using the IFTA with the same target
profile used in figure 2.9 and 2.10. We can see that the peak mismatch and crosstalk are
significantly reduced. Both of them are less than 1% now. Also, we can see in figure 2.12
(b) the background error becomes less, and we have more artifacts in the area away from
the ion positions.

27



signal window

Figure 2.12: Simulation results of beam profile at the image plane with a hologram gener-
ated by the iterative Fourier transform algorithm (IFTA) (a) Normalized field amplitude.
(b) Normalized field Amplitude in the logarithmic scale. (c) Normalized field amplitude
of the cross-section along the ion chain direction. (d) Normalized field amplitude of the
cross-section along the ion chain direction in the logarithmic scale.(Simulation condition: λ
= 399nm, f = 728 mm, N = 1500) There is a less than 1% peak mismatch shown in figure
c and approximately -25 dBc cross-talk in figure d. The cross-talk reduces by about 10
dB comparing to the results in figure 2.10 It also outperforms the current state-of-the-art
trapped ion quantum computer experiment[4].
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2.7 Chapter Summary

In this chapter, we have introduced a novel algorithm to improve on holographic beam
shaping. The holographic neam shaping uses a re-programmable hologram to engineer
the beam profile addressed on the ion chain. This method, compared with the existing
methods, has the following advantages.

1. With the holographic beam shaping scheme, we have control over not only the ampli-
tude but also the phase of the beam. It is particularly useful if we want to engineer
optical-phase-dependent gates.

2. The holographic beam shaping scheme is immune to the imperfection of the optics.
The optical aberration inside the system can be compensated by applying a correction
phase profile on the hologram.

3. Our setup is a re-programmable setup making it be able to adapt to the unequal
spacing between ions in a long-chain configuration.

The device we used as the re-programmable hologram is a digital micro-mirror de-
vice (DMD), a device consists of micro-mirrors that can be used as optical switches to
give binarized amplitude control (on/off) on the beam profile. To use the DMD as the
re-programmable hologram, we need to add the binarization process to the hologram cal-
culation. However, the binarization process makes unwanted artifacts occur at the image
plane. We developed a new algorithm that uses iterative Fourier transformation to opti-
mize the beam profile within a region of interest in the image plane. Also, the simulation
results show less 1% inaccuracy in amplitude. The simulation shows that our algorithm
has about an order of magnitude improvement on accuracy. It also outperforms the current
state-of-the-art trapped ion quantum computer experiment[4].
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Chapter 3

Calibration and Use Cases

3.1 Aberration Phase Profile Measurement

One advantage of using holographic beam shaping is the ability to compensate the aber-
ration, making the addressing system immune to optical imperfection. As we have shown
in the 2.19, the aberration of the first-order diffraction beam can be cancelled by apply-
ing a compensating phase mask while calculating the grating function. To measure the
aberration phase profile, one may think of using a Shack-Hartmann wavefront sensor[13].
Although it offers a straightforward method, there are some difficulties we need to deal
with. First, the size of micro-lens from a commercially available wavefront sensor is typi-
cally larger than 150µm.

In contrast, the micro-mirror on the DMD is only 10.8 µm. It limits the resolution of
the measurement. Second, there are more beams with diffraction orders, and they may
not spatially be separated until it reaches the image plane. Nevertheless, the beam profile
at the image plane is small, making it not ideal for a Shack-Hartmann wavefront sensor.
Also, ions are inside a vacuum chamber, making it hard to place an external sensor.

In [27], it has been demonstrated that the aberration phase profile can be measured by
opening two small patches of gratings on the DMD and measuring the interference pattern
of the beams reflecting from the two patches. The setup is illustrated in figure 3.1. The
two patches are separated by a distance d. Since the patches we opened are small, the
beam profile at image plane after the optical Fourier transformation can be approximated
as a plane wave. We denoted them as E1(x) and E2(x) with optical phases φ1 and φ2
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respectively.

E1(x) = A1e
i(k1·x+φ1) (3.1)

E2(x) = A2e
i(k2·x+φ2) (3.2)

The total intensity contributes from both beams shows an interference pattern. The spatial
phase of the interference fringes corresponds to the phase difference of the two patches.

Itot(x) = |E1(x) + E2(x)|2 (3.3)

= |A1|2 + |A1|2 + 2A1A2 cos ((k1 − k2) · x + φ1 − φ2) (3.4)

.

Figure 3.1: Illustration of the setup for aberration phase profile characterization.

To retrieve the spatial phase from the interference fringes, Zupancic (2013)[27] uses a
pinhole along with a photodiode to measure the intensity at the first order origin and scan
the fringes by varying the phase of the grating patch. In our experiment, we use a camera
to image the interference fringes instead. One of the camera images of the fringes is shown
in figure 3.2.
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Figure 3.2: A camera image of the interference pattern. camera model: BFLY-PGE-
05S2M-CS, Fourier lens focal length = 500 mm

To retrieve the spatial phase of the fringe, we first sum the image over the axis which
is perpendicular to the separation direction of two patches(perpendicular to k1 − k2) and
get the 1D profile f(x) after summation. The spatial phase of the interference fringes
ψ = φ1− φ2 can be extracted by taking the correlation1 of f(x) and a test signal eiκ(x−x0).

C = corr(eiκ(x−x0), f(x)) (3.5)

in which κ is the spatial frequency of the interference fringe. The spatial frequency depends
on the separation of the two patches. Similar to the equation 2.8 and 2.9, we have:

κ = |k1 − k2| =
2π

λf
∆ (3.6)

where ∆ is the separation of two patches. To reconstruct the 2D phase profile, we need
the phase difference profile in two directions. By making the two patches separated along
x and y axis, we have the phase difference profile Ψx(x, y) and Ψy(x, y).

Ψx(x, y) = Φ(x+ ∆, y)− Φ(x, y) (3.7)

Ψy(x, y) = Φ(x, y + ∆)− Φ(x, y) (3.8)

1https://docs.scipy.org/doc/numpy/reference/generated/numpy.correlate.html

32



We then fit the phase profile Φ(x, y) with a series of Zernike polynomials. The result is
shown in figure 3.3. We can see before aberration compensation the aberration is about
across the aperture is five waves. To examine the aberration compensation, we perform the
experiment again. However, we subtract the aberration phase while making the grating
patch this time. As we can see in figure 3.4, the wavefront uniformity has been greatly
improved. The aberration across the aperture is less than 0.1 waves, which is a 50 times
improvement.

Aberration Phase
(Fourier Plane)

Camera Image
(Image Plane)

(b) (a)

Figure 3.3: Phase map of the aberration phase before aberration compensation. (a) The
aberration phase profile at the Fourier image. The aberration is about five waves across the
aperture. The profile is obtained by fitting a series of Zernike polynomials up to fourth-
order (The constant phase term is excluded.). (b) Camera image of Gaussian TEM11

mode created with holograph beam shaping without aberration compensation. The non-
uninformed illumination results from incomplete power calibration. The wavelength we
used in the experiment is 399 nm, and the radius of the aperture is 6 mm.
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Aberration Phase
(Fourier Plane)

(a)

Camera Image
(Image Plane)

(b)

Figure 3.4: Phase map of the aberration phase after aberration compensation. (a) The
aberration phase profile at the Fourier image. The aberration is less than 0.1 waves across
the aperture. It is a 50 times improvement than the aberration before aberration com-
pensation shown in figure 3.3. (b) Camera image of Gaussian TEM11 mode created with
holograph beam shaping with aberration compensation. The non-uninformed illumina-
tion results from incomplete power calibration. The profile is obtained by fitting a series
of Zernike polynomials up to fourth-order (The constant phase term is excluded.). The
wavelength we used in the experiment is 399 nm, and the aperture radius is 6 mm.

3.2 Aberration Calibration with An Ion

In section 3.1, we have discussed how to measure the aberration phase profile with a camera
placed in the image plane and demonstrated that it could be compensated. However,
when we use it as an addressing apparatus for ions, the final image plan is inside the
vacuum chamber, which may make it unreachable with conventional sensors. Hence, we
proposed the idea of using a trapped ion as the sensor. To do so, we need the ability to
measure the intensity of the light at the ion position and a way to scan the interference
fringes. For an off-resonance beam, the power measurement can be done by measuring
the differential AC Stark shift between two-qubit states with standard techniques such as
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Ramsey spectroscopy. As for the resonance beam, we can measure the power from the
fluorescence of the ion. To scan the interference fringes, we can use either of the two
methods:

1. Changing the DC voltages on the electrodes to move the ion across the trap.

2. Deploy a piezo-controlled mirror on the Fourier plane. The tilt of the mirror corre-
sponds to the transnational displacement on the image plane.

3.3 Maximizing Diffraction Efficiency

The mirror array on the DMD itself forms a grating that that can diffract the light into
not just one of the two directions. The interference pattern from the micro-mirror array
grating comes with an envelope which is defined by the diffraction pattern from a single
micro-mirror. Note that the grating we are talking here is not the grating profile we
have discussed in the equation 2.19, the grating here comes from the periodic structure of
the micro-mirror array. As figure 3.5 shows, each diffracted beam from the micro-mirror
grating contains beams of the three diffraction orders from the hologram grating.

35



Figure 3.5: Illustration of multiple diffraction beams from the micro-mirror array grating.
(a) Each diffraction beam from the micro-mirror array grating has three diffraction order
beams from the hologram grating. (b) The law of reflection of micro-mirrors.

To maximize the diffraction efficiency of the DMD, we want the envelope to overlap
with the diffraction beam we are interested in, so we can channel more power to the target
beam profile. The center of the diffraction envelope satisfies the law of reflection of a single
mirror.

β = −α− 2θ (3.9)

where α and β are the incident angle respectively, and θ is the tilt angle of the micro-mirror
which is 12 degrees in our DMD. As for the micro-mirror grating, it follows the grating
equation.

sinα + sin β =

√
2nλ

d
(3.10)

Here, n states the diffraction order of the mirror-mirror grating, and d is the edge length of
a micro-mirror. The

√
2 factor comes from the fact that the micro-mirror is flipped along
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the diagonal axis. (Figure 2.4). Combine equation 3.9 and equation 3.10, we get:

sinα + sin (−α− 2θ) =

√
2nλ

d
(3.11)

We solve the equation numerically, and the results are shown in figure 3.6 where the
zero-crossing points are. There are multiple solutions depends on the diffraction order we
choose. In our experiment, we use the -8th diffraction order because the reflection angle β
is close to 0 degree and it has less distortion from tilt.

Figure 3.6: Solutions for equation 3.11 with different diffraction order. The solutions
indicates the condition of maximized diffraction efficiency. The solutions are at the zero
crossing points. The solutions exist between zeroth order to negative eighth order. For
each order, there will be two solutions. Condition: d = 10.8 um, λ = 369nm

3.4 Use case: Linear Gradient Intensity

An application of individual addressing is arbitrary single-qubit phase gates. We can use
off-resonance beams to induce different amounts of phase shift to different qubits with the
AC Stark shift effect.

37



To understand the AC Stark shift, first, we consider a two-level system as figure 3.7
shows. The energy separation between ground state |g〉 and excited state |e〉 is ωe. (letting
~ = 1) The two states are off-resonantly coupled with a laser with frequency ω and Rabi
frequency Ω. The laser is detuned ∆ from the transition. We can write the Hamiltonian
of the system as the following equation.

H =
ωe
2
|e〉 〈e| − ωg

2
|g〉 〈g|+ Ω

2
(|e〉 〈g|)(eiωt + e−iωt) + h.c. (3.12)

We can bring the Hamiltonian to the laser rotating frame.

Hrot = eiH0t(H −H0)e−iH0t (3.13)

= −∆

2
|e〉 〈e|+ ∆

2
|g〉 〈g|+ Ω

2
(|e〉 〈g|)(ei2ωt + 1) + h.c. (3.14)

where
H0 =

ω

2
|e〉 〈e| − ω

2
|g〉 〈g| (3.15)

. We can ignore the fast rotating term ei2ωt in equation 3.14 with the rotating wave
approximation (RWA).

Hrot ≈ −
∆

2
|e〉 〈e|+ ∆

2
|g〉 〈g|+ Ω

2
(|e〉 〈g|) + h.c. (3.16)

As we can see now, the Hamiltonian is time independent. By diagonalizing the Hamilto-
nian, we can obtain the eigen states and their energy. With the assumption that ∆� Ω,
we have the new eigen energies become:

Erot = ±
√

∆2

4
+

Ω2

4
(3.17)

≈ ±
(

1

2
∆ +

Ω2

4∆

)
(3.18)

Comparing with equation 3.16, we can find that 1
2
∆ + Ω2

4∆
corresponds to the energy of the

shifted ground state, and the other one corresponds to the energy of the shifted excited
state. We can find the energy shift is proportional to the square of Ω.

δEg = +
Ω2

4∆
(3.19)

δEe = −Ω2

4∆
(3.20)
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For a multi-level system, the total AC Stark shift are the sum over the contributions from
all the excited states.

δEg =
∑
i

Ω2
i

4∆i

=
g2

0

4

∑
i

B2
i

∆i

(3.21)

where B is the branching ration and g2
0 = Γ2 Ilaser

2Isat
. Γ is the nature linewidth of the

transition. Ilaser is the intensity of the laser, and Isat is the saturation intensity.

Figure 3.7: AC Stark shift in a two-level system.

As figure 3.8 shows, for 171Yb+, most of the contributions are from 2P1/2 and 2P3/2

excited states. We can calculate the AC Stark Shift of the two-qubit states. (The branching
ratio calculations are in appendix A.) For the beam with arbitrary polarization, the energy
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shifts of the two-qubit states are:

δE0 =
g2

0

12

(
1

∆
− 2

ωF −∆

)
(3.22)

δE1 =
g2

0

12

(
1

∆ + ωHF
− 2

ωF −∆− ωHF

)
(3.23)

Figure 3.8: AC Stark shift of 171Yb+.

We can find difference energy shifts from the two-qubit states contributes to a non-zero
differential AC Stark shift.

δωqubit = δE0 − δE1 (3.24)

which is proportional to the intensity of the laser.

ωqubit ∝ g2
0 ∝ Ilaser (3.25)
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Therefore, we can have addressing patterns that have different intensity on different ions.
With the same amount of the operation time, the phase shift is proportional the local
intensities.

As an example, figure 3.9 shows a linear intensity gradient intensity profile we created
with the holographic beam shaping. This particular example can be used in our theory
proposal[15] in which global Mølmer-Sørensen gates and arbitrary single-qubit phase gates
are used to simulate 2D lattices in a hybrid digital-analog way.

~5 Airy disc radius

in
te

n
si

ty
 (

a
rb

. 
u
n
it

s)

Camera Image

Figure 3.9: A linear gradient intensity pattern created by holographic beam shaping. λ
= 399 nm. It can be used to create site-dependent phase shifts that can be used in the
quantum simulation experiment from Rajabi et al. (2019)[15]

3.5 Chapter Summary

In this chapter, we discussed some important considerations for implementing the holo-
graphic beam shaping scheme that has been proposed in chapter 2.
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1. Maximizing Efficiency: The micro-mirror array itself acts as a grating that creates
multiple diffracted beams. Each diffraction order contains the negative first, zeroth,
and first diffraction order from the hologram grating. The diffracted angles of the
beams follow the grating equation. On top of the diffraction patterns from the
grating, there is an envelope which corresponds to the diffraction pattern of a single
micro-mirror. The center of the envelope where it also has the maximum value follows
the law of reflection. To channel as much as energy possible to the beam with the
desired diffraction order, one needs to find a proper input angle such that the center
of the envelope aligns with the beam. The angle can be found by solving the grating
equation and the law of reflection at the same time.

2. Aberration Compensation: In the previous chapter, we have shown the optical aber-
ration can be compensated by applying a correction phase profile while calculating
holograms. To find the correction phase profile, we need to characterize the optical
aberration in the system. We showed that the aberration phase could be measured
by opening two patches on the DMD. The beams from the two patches overlap at
the image forming interference fringes. The spatial phase of the interference fringes
corresponds to the phase difference between the two patches. By shifting the patches
across the DMD, we can reconstruct the aberration phase profile. We also discussed
the plan to use a single ion as a detector to measure the interference fringes at the
final image plane when we integrate the system to an ion trap in the future.

Along with the experimental considerations, we also show a use case of holographic beam
shaping. In this use case, we engineer a linear gradient intensity profile that can be
converted to phase shifts on the ions through the AC Stark shift. It can be used in
our recent theoretical proposal[15] which simulates the dynamics of 2D lattices in a linear
chain of ions.
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Chapter 4

Holographic Addressing with
Multiple Frequency Channels

As we discussed in section 1.2, it is required to have the individual addressing ability of
beams with different frequencies to have full control over the spin-spin interaction graph.
As the schematic in figure 4.1 show, an AOM combining with a cylindrical convex lens is
used to split the light onto different zones of the DMD. These zones correspond to different
RF input frequencies. They act as different frequency channels. Each channel has its
hologram for controlling the amplitudes and phases of the beams addressed on individual
ions.
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Figure 4.1: Illustration of generating multiple beams with an AOM for different frequency
channels.

There are two types of AOM, Raman-Nath type and Bragg type. The AOM we used is
a Bragg type modulator. The diffraction angle satisfies the Bragg condition as the figure
shows. For the first-order diffraction beam, the Bragg angle is

θB = sin−1 λ

2Λ
(4.1)

where λ is the wavelength of the incoming beam and Λ is the wavelength of the acoustic
wave in the crystal of the AOM. With the Bragg angle θB, the wavevector kν that added
to the diffracted beam is

kν = 2k0 sin θB =
k0λ

Λ
= 2π

1

Λ
(4.2)

in which k0 is the wavevector of the incident beam. The wavelength of the acoustic wave
depends on the speed of sound in the crystal v and the modulation frequency ν.

kν = 2π
ν

v
(4.3)
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The wavevector kν is along the propagation direction of the acoustic wave which is almost
perpendicular to the propagation direction of the beam. The frequency of the diffracted
beam also depends on the modulation RF frequency. For the first-order diffraction beam,
the modulation frequency is added to the frequency of the beam. As a result, by applying
multiple-tone RF to the AOM, we can split a beam into several beams, and each of them
has a different frequency detuning.

∆kν = 2π
∆ν

v
(4.4)

To determine what the minimum frequency splitting is required for avoiding the crosstalk
between the adjacent frequency channels, we will need to know the beam waist of the
diffracted beam. Consider an incident Gaussian beam with wait radius w0, its Fourier
transform shows.

F [e
− x2

w2
0 ] ∝ e

− k2

(2/w0)
2 = e

− k2

k2w (4.5)

It reveals that the waist radius of the Gaussian beam in Fourier space kw is inverse pro-
portional to the beam waist.

kw =
2

w0

(4.6)

Assume the minimum separation to be γ times of the waist radius.

∆kν = γkw (4.7)

We can find the required frequency difference.

∆ν = γ
v

πw0

(4.8)

For a given γ, it only depends on the dimension of the incident beam and the material
property of the crystal. The materials commonly used as the crystal in the AOM are
tellurium dioxide, fused silica, germanium, and quartz. However, not all of them have good
transmission efficiency in the UV spectrum. As a result, we use an AOM from Intraaction
Inc. which use fused silica. The speed of sound in fused silica is about 5968 m/s [23]. In
our experiment, we choose to have at least a 2MHz separation between frequency channels.

4.1 Frequency Channels Preparation

In the previous section, we described the method of generating multiple beams with dif-
ferent frequencies illuminating different zones of the DMD. One thing we have to be aware
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of is that it implies the Fourier plane is divided, and each beam only takes a part of the
Fourier plane in order not to overlap with other beams. As a consequence, this limits the
ability to generate diffraction-limited profiles at the image plane. The size of the profile
each beam can generate is roughly inverse proportionally to the size of the occupied area
in the Fourier plane. To get around with this problem, we introduce cylindrical lenses into
the system. We shape the beams to make them have elliptical shapes on the DMD. The
beams are separated along the short axis and expand across the Fourier plane along the
long axis. The long axis of the beam on the DMD corresponds to the axial direction of
the ion chain, and the shot axis corresponds to the radial direction. Although generating
diffraction-limited spots with multiple frequencies is still unavailable with this setup due
to the fundamental limitation of the segmented Fourier plane, we can achieve diffraction-
limited addressing along the axial direction by increasing the beam waist at the Fourier
plane along this direction.

Figure 4.2 is the schematic of the optics we built to prepare these elliptical beams. (The
picture of the setup is shown in figure 4.2) We first expand the beam in the horizontal
direction before the AOM with a telescope which is made of cylindrical lenses. The AOM
splits the light into multiple beams. The neighbouring beams have a 2 MHz difference in
frequency.

After the AOM, the beam will pass through a cylindrical lens which serves the same
purpose as the lens in figure 4.1. The center of the AOM is placed at the focal plane of the
cylindrical lens, making the angular separation of beams converted to the transnational
separation. The only difference is we have a cylindrical telescope and a telescope to shape
the beams to the proper size before them land the DMD. As figure 4.2 (a) shows, the
beams are elliptical on the DMD. The long axis is along the vertical direction. It is also
noteworthy that we put the AOM at another image plane relative to the DMD, so the beam
of different frequencies will be combined at the camera position (image plane) without the
need to add extra phase gradient on the hologram.

In summary, we segmented the Fourier plane into several areas and illuminated each
area with a beam with different frequency. They are acting as different frequency chan-
nels. Each of the channels has its hologram for amplitude modulation and phase control.
Although the Fourier plane is segmented, we still have the beam to span across the Fourier
plane along the ion chain direction. It enables us to have diffraction-limited addressing in
this direction.
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Figure 4.2: Schematic of the optical setup for the multi-frequency addressing scheme. The
cylindrical optics which shapes the beams in horizontal directions uses the red colour in
the schematic.
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Camera (intermediate image plane)

Fourier lens

cylindrical lens
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Figure 4.3: Picture of the optical setup for the multi-frequency addressing scheme. The
purple arrows indicates the beam path. The schematic of the setup is shown in figure 4.2

4.2 Experiment Results

Shown in figure 4.4 is the intensity profile of a frequency channel on the DMD. Note
that the DMD is rotated at 45 degrees, so the long axis of the beam is along the vertical
direction. The 1/e2 width of the beam in the horizontal direction (short axis) is around
100 µm to 200 µm. The intensity profile is by turning on patches of mirrors and measure
the intensity of the light from the reflection.
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Figure 4.4: Intensity profile of the beam of a frequency channel on the DMD. The size of
a micro-mirror pixel is 10.8 µm x 10.8 µm.

To measure the aberration phase, we use the techniques described in section 3.1. The
difference is that we fixed one of the patches at the center of the aperture, and scan
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the other patch along the long axis direction. The results are fitted with a third-order
polynomial and are shown in figure 4.5.

Figure 4.5: Aberration phase profile of the beam along the long axis of a frequency channel
on the DMD. The profile is fitted to a third-order polynomial.

To demonstrate we can use the scheme for ion addressing, we create a profile that can
be used to address all ions except the third one for a four-ion system. Figure 4.6 shows the
intensity profile at the image plan taken by a camera. The binarization method we use is
IFTA with the signal window spanning from about 350 to 700 camera pixel in the vertical
direction and 450 to 550 camera pixel in the horizontal direction. Note that the ion chain
direction corresponds to the vertical direction. Note that the long axis of a cylindrical
beam at the Fourier plane will become short axis in the image plane.

The crosstalk is around -30 dB in intensity which corresponds to about -15 dB in field
amplitude. Comparing to our simulation results which show having crosstalk around -20
dB, we think the experiment can be improved by further optimizing the aberration phase
profile measurements with a full 2D scan.
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signal window

Figure 4.6: The camera image of an addressing profile shaped from one frequency channel.
The green box shows the boundary of the signal window, and the blue dots indicate the
position of addressing targets. The experimental result shows it has less than -30db dBc
crosstalk in intensity of light. Binarization method: IFTA, camera pixel size: 1.85 µm x
1.85 µm

4.3 Chapter Summary

To have full control over spin-spin interaction between ions, we need to have frequency
control over the laser beams. We proposed and demonstrated a scheme that adding fre-
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quency control to the holographic beam shaping scheme. The frequency is implemented
with an AOM. The AOM splits the light onto multiple zones on the DMD, and the light on
each zone has a different frequency which depends on the RF frequency fed to the AOM.
Each zone acts as a frequency channel, and a hologram is displayed on it for modulating
the beam of the frequency channel.

In this chapter, we discussed the criteria to separate the beams between adjacent chan-
nels for illuminating different zones of the DMD. We found it depends on the size of the
input beam for the AOM and the material used as the crystal in the AOM. We built
an optics setup for preparing frequency channels. Several pieces of cylindrical optics are
used in setup, making the beams illuminated on the DMD has an elliptical shape. It
makes the beams still span across the Fourier plane to achieve diffraction-limited address-
ing while segmenting the Fourier plane for frequency control. Finally, we demonstrated
making aberration-corrected addressing beams created from a single frequency channel.
The experimental results show a -30dB crosstalk in intensity.
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Chapter 5

Summary and Outlook

In summary, we have developed a binarization algorithm that is optimized for creating
addressing profiles in the trapped ion system. The algorithm shows an order of magnitude
improvement in increasing the accuracy. We also experimentally demonstrated aberration
compensation and holographic beam shaping experimentally in the ultra-violet wavelength
suitable for 171Yb+. The UV wavelength is more sensitive to the environment perturbation
than the visible or IR due to its short wavelength. We experimentally demonstrate that
the wavefront flatness could be corrected to less than 0.15 waves across a Fourier plane
aperture of 6mm diameter.

Also, we developed a scheme for adding frequency control to the holographic beam
shaping addressing system. By using an AOM to separate the light and illuminating dif-
ferent zones on the DMD, we can simultaneously address ions with beams having different
frequencies. It can be handy for engineering Ising spin-spin interaction with the Mølmer-
Sørensen scheme[10].

For future integrating the holographic beam shaping techniques to the ion trap we
have, we plan to use a single ion as a sensor for calibrating the aberration from optics
including the microscope objective since the final image plane locates insides the Vacuum
chamber that is not reachable with a conventional device. More discussions on the plan
are in section 3.2.

Another challenge for integrating the holographic beam shaping system to an ion trap
is the use of picosecond pulsed laser. It is commonly to pulsed laser for the operation of
two-photon Raman transition in order to cover the hyperfine splitting in electronic states
of nonzero nuclear spin ions [4]. The use of picosecond pulsed laser simplifies the need for
preparing another mode-locked laser. However, the broadened frequency due to the finite
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pulse width can cause the broadening of the beam profile at the image plane. It is because
the scaling between wavevectors at the Fourier plane and distances at the image plane is
wavelength-dependent. The problem can be mitigated by reducing the micro-mirror array
diffraction order of the beam shown in figure 3.5. The detailed analysis can be found in
appendix B.

In the future, we plan to install the setup on our ion trap apparatus, and use it to en-
gineer various types of spin-spin interactions between qubit spin states for future quantum
simulation experiments, for example, simulating different types of 2D lattices[15].
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Appendix A

Branching Ration of D1 and D2 Line
in 171Yb+

To calculate AC Stark shift (section 3.4), we need to incorporate branching of D1 and D2
Line in 171Yb+. To calculate the branching ratios for the sub-level Rabi frequencies Ω, we
will need to calculate all the components of dipole matrix elements. With Wigner-Eckart
theorem, we can separate the angular dependiencies of the dipole matrix element. The

first term
〈
F
∣∣∣∣∣∣~d∣∣∣∣∣∣F〉 is reduced dipole matrix element, and the second term CGFe,me

Fg ,mg ;1,q is

the Clebsch-Gordan coefficant.

〈Fe|dq|Fg〉 =
〈
Fe

∣∣∣∣∣∣~d∣∣∣∣∣∣Fg〉 〈Fe,me〉Fg,mg; 1, q =
〈
Fe

∣∣∣∣∣∣~d∣∣∣∣∣∣Fg〉CGFe,me
Fg ,mg ,1,q

(A.1)

However, the quantum number F raises from the coupling of the net orbital angular
momentum J and the nuclear spin I. The dipole operator ~d refers to the position of the
electron which couples to J only. As a result, we need to futher processed the reduced
dipole matrix element.〈

Fe

∣∣∣∣∣∣~d∣∣∣∣∣∣Fg〉 = (−1)Fe+I+Jg+1
√

(2Fg + 1) (2Je + 1)

{
Jg Je 1
Fe Fg I

}〈
Je

∣∣∣∣∣∣~d∣∣∣∣∣∣Jg〉 (A.2)

where the curly bracket {...} is the Wigner 6-j symbol.[20] For Ytterbium 171, the
nuclear spin quantum number is 1

2
. With the definition of the Rabi frequency, we know the
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Rabi frequency (proportional to the dipole matrix element) with polarization q will be:

Ω(q) = (−1)Fe+
1
2

+Jg+1
√

(2Fg + 1) (2Je + 1)CGFe,me
Fg ,mg ,1,q

{
Jg Je 1
Fe Fg

1
2

}
g0 (A.3)

= BJe,Fe,me
Fg ,mg ;1,qg0 (A.4)

where g0 = Γ2 Ilaser
2Isat

and BJe,Fe,me
Fg ,mg”;1,q is the branching ratio. Γ is the nature linewidth. Ilaser

is the intensity of the laser, and Isat is the saturation intensity.

For D1 line transitions (2P1/2 excited states), the non-zero branching ratios are:

B
1/2,1,−1
0,0;1,−1 = −

√
3

3
(A.5)

B
1/2,1,−1
1,0;1,−1 =

√
3

3
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√
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3
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√
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For D2 line transitions (2P3/2 excited states), the non-zero branching ratios are:

B
3/2,1,−1
0,0;1,−1 =

√
6

3
(A.17)
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3/2,2,−2
1,−1;1,−1 = 1 (A.18)
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Appendix B

Holographic Beam Shaping with
Pulsed Laser

In a trapped-ion quantum simulator, it is common to do individual addressing with pulsed
lasers. The main reason to use a pulsed laser is that we can use two comb teeth in the
frequency domain to couple the two-qubit states. It saves the requirement of having two
mode-lock lasers while performing Raman transition. Also, the pulsed laser can be used
to generate differential fourth-order AC Stark shift.[11] Unlike the second-order AC Stark
shifts shown in equation 3.22 and 3.23 that shift in the same direction, the fourth-order
AC Stark shifts of the two-qubit states are shifted in the opposite direction. It may give
us a larger phase shift with a sufficient amount of power.

However, there are extra things to consider while using holographic beam shaping on
the pulsed laser. We know the position of the beam is wavelength dependent, and the
short pulse width makes the frequency comb tooth spans over the frequency domain. To
estimate the broadening of the beam profile from the effect, we first consider the separation
between zeroth and n-th micro-mirror grating order is:

|x(n)
0 | = n

√
2
λf

D
(B.1)

where d is the edge length of the micro-mirror. The
√

2 term comes from the fact that the
mirror is flipping along the diagonal direction. The details of diffraction from micro-mirror
grating is in section 3.3. The broadening results from the short pulse width gives us:

δx = n
√

2
f

d
δλ (B.2)
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On the other hand, the diameter of the profile at the image plane Di is roughly inverse
proportional to the diameter at the Fourier plane Df .

Di =
λf

Df

(B.3)

The relation between wavelength λ and laser frequency ν is:

δλ =
λ

ν
δν (B.4)

The frequency span δν is basically one over the pulsed width. With equation B.2, B.3,
and B, we can get the ratio between δx and Di.

r =
δx

Di

= n
√

2
Df

d

δν

ν
(B.5)

This ratio indicates the broadening relative to the size of the profile at the image plane.
Below is the parameter of the laser used in our lab. Ideally we want to make it smaller
than one. (The smaller the better) With n = 8 and the parameter of the pulsed laser in
our lab,

ν = 844THz (B.6)

δν = 1/(15ps) = 67GHz (B.7)

Df = 500d (B.8)

, we have r ≈ 0.4. The number isn’t much less than one. We might want to use a smaller
n if we want to use the pulsed laser.

63


	Introduction to trapped ion quantum simulation
	Trapped ion qubit preparation
	Interaction in trapped ions system
	Thesis Outline

	Holographic Beam Shaping for Quantum Simulation
	Individual Addressing
	Fourier Holography
	Digital Micro-Mirror Device
	Off-Axis Amplitude Hologram
	Binarization
	Iterative Fourier Transform Algorithm
	Chapter Summary

	Calibration and Use Cases
	Aberration Phase Profile Measurement
	Aberration Calibration with An Ion
	Maximizing Diffraction Efficiency
	Use case: Linear Gradient Intensity
	Chapter Summary

	Holographic Addressing with Multiple Frequency Channels
	Frequency Channels Preparation
	Experiment Results
	Chapter Summary

	Summary and Outlook
	References
	APPENDICES
	Branching Ration of D1 and D2 Line in 171Yb+
	Holographic Beam Shaping with Pulsed Laser

