
Parameter and Structure Learning

Techniques for Sum Product Networks

by

Abdullah Rashwan

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Computer Science

Waterloo, Ontario, Canada, 2019

c© Abdullah Rashwan 2019

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the Examining

Committee is by majority vote.

Supervisor(s): Pascal Poupart

Professor, Dept. of Computer Science, University of Waterloo

Internal Member: Jesse Hoey

Professor, Dept. of Computer Science, University of Waterloo

Yaoliang Yu

Professor, Dept. of Computer Science, University of Waterloo

Internal-External Member: Matthias Schonlau

Professor, Dept. of Statistics & Actuarial Science, University of Waterloo

External Examiner: Pedro Domingos

Professor, Dept. of Computer Science & Engineering, University of Washington

ii

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including

any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

Probabilistic graphical models (PGMs) provide a general and flexible framework for rea-

soning about complex dependencies in noisy domains with many variables. Among the various

types of PGMs, sum-product networks (SPNs) have recently generated some interest because

exact inference can always be done in linear time with respect to the size of the network. This

is particularly attractive since it means that learning an SPN from data always yields a tractable

model for inference. Learning the parameters and the structure for SPNs is being explored by

various researchers, having algorithms that scale are essential in the era of big data. In this thesis,

I present tractable parameter and structure learning techniques for SPNs. First, I propose a new

Bayesian moment matching (BMM) algorithm to learn the parameters for SPNs generatively.

BMM operates naturally in an online fashion and that can be easily distributed. I demonstrate

the effectiveness and scalability of BMM in comparison to other online algorithms in the litera-

ture.

Second, I present a discriminative learning algorithm for SPNs based on the Extended Baum-

Welch (EBW) algorithm [6]. The experiments show that this algorithm performs better than both

generative Expectation-Maximization, and discriminative gradient descent on a wide variety of

applications. I also demonstrate the robustness of the algorithm in the case of missing features

by comparing its performance to Support Vector Machines and Neural Networks.

Finally, I present the first online structure learning algorithm for recurrent SPNs. Recurrent

SPNs were proposed by Mazen et. al [31] to model sequential data. They also proposed a

structure learning algorithm which is slow, and it only operates in batch mode. I present the

first online algorithm to learn the structure of recurrent SPNs. I also show how the parameters

iv

can be learned simultaneously using a modified version of hard-EM algorithm. I compare the

performance of the algorithm against different models on sequential data problems.

v

Acknowledgements

I would like to thank all who made this thesis possible. My deepest appreciation goes to my

supervisor, Prof. Pascal Poupart, for his endless support throughout my PhD. I am very grateful

for being one of his students. I would also like to thank my committee members Prof. Jesse

Hoey, Prof. Yaoliang Yu, Prof. Matthias Schonlau, and Prof. Pedro Domingos for their time.

I would like to thank all my friends that I made during my PhD, they made the journey much

more enjoyable. Special thanks to Mazen Melibari, Agastya Kalra, Priyank Jaini, Han Zhao, and

Nabiha Asghar.

I would also like to show my appreciation to my parents for their support, and encouragement

during the difficult times. And finally, I would like to thank my wife and kids who were there for

me during my ups and downs, I couldn’t have completed the journey without you.

vi

Dedication

To my parents for their endless love ..

To my wife for her love and support ..

To my two kids, Yahia and Omar, for the joy they bring to my life ..

vii

Table of Contents

List of Tables xii

List of Figures xiv

1 Introduction 1

1.1 Sum Product Networks . 2

1.2 Parameter Learning for Sum Product Networks 3

1.3 Structure Learning for Sum Product Learning 4

1.4 Contributions . 5

1.5 Thesis Structure . 7

1.5.1 Chapter 2 . 7

1.5.2 Chapter 3 . 7

1.5.3 Chapter 4 . 8

1.5.4 Chapter 5 . 8

viii

1.5.5 Chapter 6 . 8

2 Background 9

2.1 Probabilistic Graphical Models . 10

2.1.1 Bayesian Networks . 11

2.1.2 Inference in Bayesian Networks . 13

2.2 Network Polynomials . 15

2.3 Sum Product Networks . 15

2.3.1 Example for a Sum Product Network 17

2.4 Parameter Learning for SPNs . 20

2.5 Structure Learning for SPNs . 20

2.5.1 Top Down Structure Learning Algorithms 21

2.5.2 Bottom Up Structure Learning Algorithms 22

2.6 Recurrent Sum Product Networks . 23

2.7 Sum Product Networks Applications . 26

3 Online Parameter Learning for SPNs Using Bayesian Moment Matching 28

3.1 Online and Distributed Bayesian Moment Matching 30

3.2 Bayesian Moment Matching for Discrete SPNs 31

3.2.1 Exact Bayesian Learning . 31

ix

3.2.2 Moment Matching . 33

3.3 Bayesian Moment Matching for Continuous SPNs 37

3.3.1 Moment Matching for Normal-Wishart Distribution 38

3.3.2 Online Bayesian Moment Matching for Continuous SPNs 39

3.4 Experimental Results . 40

3.4.1 Discrete SPNs . 40

3.4.2 Continuous SPNs with Gaussian Leaves 43

3.5 Conclusion . 47

4 Discriminative Training of Sum-Product Networks by Extended Baum-Welch 48

4.1 Extended Baum-Welch Algorithm . 50

4.2 Discriminative Sum-Product Networks . 52

4.2.1 Discriminative Learning for SPNs Using Gradient Descent 55

4.2.2 Discriminative Learning for SPNs using Extended Baum-Welch 56

4.3 Experiments . 59

4.3.1 EBW versus Other Parameter Learning Algorithms 60

4.3.2 EBW for Problems with Missing Features 61

4.3.3 Visualizing the Parameters Learned by EBW 64

4.4 Conclusion . 65

x

5 Online Parameter and Structure Learning for Recurrent SPNs 66

5.1 Proposed Algorithm . 68

5.1.1 Parameter update . 69

5.1.2 Structure update . 72

5.2 Experiments . 74

5.3 Conclusion . 77

6 Conclusion 78

6.1 Future Work . 79

6.1.1 Online Parameter Learning for SPNs Using Bayesian Moment Matching 80

6.1.2 Discriminative Training of SPNs by Extended Baum-Welch 80

6.1.3 Online Parameter and Structure Learning for Recurrent SPNs 80

References 82

xi

List of Tables

3.1 Log-likelihood scores on 20 data sets. The best results among oBMM, SGD,

oEM, and oEM are highlighted in bold font. ↑ (↓) indicates that the method has

significantly better (worse) log-likelihoods than oBMM under Wilcoxon signed

rank test with p value < 0.05. 42

3.2 Log-lielihood scores on 4 large datasets. The best results are highlighted in bold

font, and dashes ”-” are used to indicate that an algorithm didn’t finish or couldn’t

load the dataset into memory. 42

3.3 Running time in minutes on 4 large datasets. The best running time is highlighted

in bold font, and dashes ”-” are used to indicate that an algorithm didn’t finish or

couldn’t load the dataset into memory. 43

3.4 Log-likelihood scores on real-world data sets. The best results are highlighted in

bold font. 47

4.1 The accuracies of EBW, generative EM, and discriminative GD on the test data

of eight different datasets. 60

xii

4.2 The test accuracies of EBW-trained SPNs, SVMs and NNs on seven datasets. . . 63

5.1 Average log-likelihood and standard error based on 10-fold cross validation. (#i,length,#oVars)

indicates the number of data instances, average length of the sequences and number of

observed variables per time step. 77

xiii

List of Figures

1.1 An example of a valid SPN over three binary variables; X1, X2, and X3. This

model is equivalent to naive Bayes classifier of the target variable (X1), and two

observable variables (X2, and X3). 2

2.1 Two examples of Bayesian networks, (a) Example by Koller and Friedman [25]

(b) A naive Bayes classifier where X1 is the class label, and X2, and X3 are the

two conditionally independent observable variables. 12

2.2 An example of a valid SPN over three binary variables; X1, X2, and X3. This

model is equivalent to naive Bayes classifier of the target variable (X1), and two

observable variables (X2, and X3). 18

2.3 (a) An example of a generic template network. Interface nodes are drawn in red,

while leaf distributions are drawn in blue. Leaf distributions can be either binary

or Gaussian. (b) An RSPN unrolled over 3 time steps. Three template networks

are stacked and capped by the top network. 25

4.1 Discriminative SPN architecture. 52

xiv

4.2 Accuracies on training data versus number of epochs for EBW and discriminative

GD algorithms. The time per epoch is the same for both algorithms. 62

4.3 The above samples show the effect of training SPNs discriminatively. The sam-

pled images for digit ’8’ in the discriminative training case illustrate that the SPN

for digit ’8’ was tuned to focus on the parts that discriminate the digit ’8’ from

the digit ’3’. 64

5.1 Depiction of how correlations between variables are introduced. Left: original

product node with three children. Right: create a mixture to model the correla-

tion (Alg. 4). 74

5.2 Top: Generic template network with interface nodes drawn in red and leaf distri-

butions drawn in blue. Bottom: A recurrent SPN unrolled over 3 time steps. . . . 76

xv

Chapter 1

Introduction

Probabilistic graphical models provide a general and flexible framework for reasoning about

complex dependencies in noisy domains with many variables. Among the various types of

probabilistic graphical models, sum-product networks (SPNs) have recently generated interest

because exact inference can always be done in linear time with respect to the size of the net-

work. This is particularly attractive since it means that learning an SPN from data always yields

a tractable model for inference. However, learning the parameters and the structure of an SPN

can be intractable. In this thesis, I present tractable algorithms to learn the parameters for SPNs

both generatively and discriminatively. I also present an online algorithm to learn the structure

of regular and recurrent SPNs.

1

Figure 1.1: An example of a valid SPN over three binary variables; X1, X2, and X3. This model
is equivalent to naive Bayes classifier of the target variable (X1), and two observable variables
(X2, and X3).

1.1 Sum Product Networks

Sum-Product networks (SPNs) were first proposed by [45] as a new type of probabilistic graph-

ical models. An SPN, as shown in Fig. 1.1, consists of an acyclic directed graph of sums and

products that computes a non-linear function of its inputs. The edges linking each sum node to

its children are labeled with non-negative weights. SPNs can be viewed as deep neural networks

where non-linearity is achieved by products instead of sigmoid, softmax, hyperbolic tangent or

rectified linear operations. They also have clear semantics in the sense that they encode a joint

distribution over a set of leaf random variables in the form of a hierarchical mixture model. To

better understand this distribution, SPNs can be converted into equivalent traditional probabilis-

tic graphical models such as Bayesian networks (BNs) and Markov networks (MNs) by treating

sum nodes as hidden variables [57]. An important advantage of SPNs over BNs and MNs is that

2

inference can be done without any approximation in linear time with respect to the size of the

network. Hence, SPNs are gaining in popularity as a tractable class of probabilistic graphical

models. SPNs have been used in image completion tasks [45], activity recognition [3, 2], scene

understanding [14], speech modeling [41] and language modeling [9].

1.2 Parameter Learning for Sum Product Networks

The weights of an SPN are its parameters. They can be estimated by maximizing the likelihood

of a dataset (generative training) [45] or the conditional likelihood of some output features given

some input features (discriminative training) by Stochastic Gradient Descent (SGD) [15]. Since

SPNs are generative probabilistic models where the sum nodes can be interpreted as hidden vari-

ables that induce a mixture, the parameters can also be estimated by Expectation Maximization

(EM) [45, 37]. [58] provides a unifying framework that explains how likelihood maximization

in SPNs corresponds to a signomial optimization problem where SGD is a first order procedure,

sequential monomial approximations are also possible and EM corresponds to a concave-convex

procedure that converges faster than the other techniques. Since SPNs are deep architectures,

SGD and EM suffer from vanishing updates and therefore ”hard” variants have been proposed to

remedy to this problem [45, 15]. By replacing all sum nodes by max nodes in an SPN, we obtain

a max-product network where the gradient is constant (hard SGD) and latent variables become

deterministic (hard EM).

3

1.3 Structure Learning for Sum Product Learning

Not all SPNs encode valid distributions. Some conditions on the architecture are sufficient to

ensure that SPNs encode valid distributions. In the next chapter two sufficient conditions, de-

composability and completeness, will be explained. Since it is difficult to specify network struc-

tures for SPNs that satisfy the decomposability and completeness properties, several automated

structure learning techniques have been proposed [13, 16, 38, 26, 50, 1, 54, 46, 31]. The first two

structure learning techniques [13, 16] are top down approaches that alternate between instance

clustering to construct sum nodes and variable partitioning to construct product nodes. We can

also combine instance clustering and variable partitioning in one step with a rank-one submatrix

extraction by performing a singular value decomposition [1]. Alternatively, we can learn the

structure of SPNs in a bottom-up fashion by incrementally clustering correlated variables [38].

These algorithms all learn SPNs with a tree structure and univariate leaves. It is possible to learn

SPNs with multivariate leaves by using a hybrid technique that learns an SPN in a top down fash-

ion, but stops early and constructs multivariate leaves by fitting a tractable probabilistic graphical

model over the variables in each leaf [50, 54]. It is also possible to merge similar subtrees into

directed acyclic graphs in a post-processing step to reduce the size of the resulting SPN [46].

Furthermore, [31] proposed dynamic SPNs (a.k.a. recurrent SPNs) for variable length data and

described a search-and-score structure learning technique that does a local search over the space

of network structures.

So far, all these structure learning algorithms are batch techniques that assume that the full

dataset is available and can be scanned multiple times. [26] describes an online structure learning

4

technique that gradually grows a network structure based on mini-batches. The algorithm is a

variant of LearnSPN [16] where the clustering step is modified to use online clustering. As

a result, sum nodes can be extended with more children when the algorithm encounters a mini-

batch that is better clustered with additional clusters. Product nodes are never modified after their

creation. This technique requires large mini-batches to detect the emergence of new clusters and

it assumes fixed length data (i.e., it does not generate structures for recurrent SPNs).

1.4 Contributions

• Online Parameter Learning for Discrete Sum Product Networks Using Bayesian Moment

Matching [48]: I explored online algorithms that can process a dataset in one sweep and

can continuously refine the parameters of an SPN with a fixed structure based on streaming

data. I also present an online learning algorithm for SPNs with discrete leaf distributions

using Bayesian moment matching. I show empirically that the algorithm outperforms other

online algorithms on a wide range of real world datasets. I also show how to distribute the

training over multiple machines.

• Online Parameter Learning for Continuous Sum Product Networks Using Bayesian Mo-

ment Matching [20]: I extend the Bayesian moment matching algorithm to learn the pa-

rameters for SPNs with Gaussian leaves. I also compare the results to other online al-

gorithms. This part was done in collaboration with Priyank Jaini [20], he developed the

Bayesian moment matching algorithm for mixture of Gaussians, my part was to extend his

algorithm in the context of SPNs with continuous leaf distributions.

5

• Discriminative Training for Sum Product Networks using Extended Baum-Welch [47]:

Discriminative parameter learning techniques haven’t been investigated thoroughly for

SPNs. In this thesis, I present a discriminative parameter learning technique for SPNs

using Extended Baum-Welch. The Extended Baum-Welch algorithm was introduced to

learn the parameters of Hidden Markov Models (HMMs) discriminatively. I derived the

algorithm for the SPN case, and showed how to learn the parameters discriminatively for

SPNs with discrete and Gaussian leaf distributions. I show how Extended Baum-Welch

outperforms both generative-EM, and gradient descent on different datasets.

• Online Structure Learning for Recurrent Sum Product Networks [23]: Learning the net-

work structure for RSPNs was done using a Search-and-Score algorithm that has a slow

convergence rate, and it can only operate in batch mode. I present the first online algorithm

to learn the structure of recurrent SPNs. I also show how the parameters can be learned

simultaneously using a modified version of the hard-EM algorithm. This work was done

in collaboration with Wei Shou Hsu and Agastya Kalra [23], they developed the algorithm

for regular SPNs, and my part was to develop the algorithm for recurrent SPNs.

6

1.5 Thesis Structure

The rest of the thesis is structured as follows:

1.5.1 Chapter 2

Background materials are presented in Chapter 2. First, I talk about probabilistic graphical mod-

els (PGMs), and Bayesian networks as a common type of PGMs. I explain how inference is done

in Bayesian networks using the variable elimination algorithm. After, I introduce sum product

networks (SPNs), and how marginal and conditional inference can be done in linear time with

respect to the size of the network. I review the research that has been done to learn the parameters

and the structure for SPNs. I also talk about the recurrent version of SPNs that is used to model

sequence of data. I end the chapter with different SPN applications.

1.5.2 Chapter 3

In Chapter 3, I present an online algorithm for learning the parameters of an SPN generatively.

I start with explaining the Bayesian learning framework for SPNs, and show how the posterior

can often be intractable. I then show how the exploding posterior can be approximated using

moment matching. I show how to derive the algorithm for SPNs with discrete and Gaussian leaf

distributions. At the end of the chapter, I present a set of experiments to show the performance

of the online algorithm compared to other online algorithms. I also show how the training can be

distributed over multiple machines.

7

1.5.3 Chapter 4

After presenting an algorithm to learn the parameters for SPNs generatively in Chapter 3, I

present how the parameters of SPNs can be learned discriminatively using Extended Baum-

Welch. I first present the Baum-Welch and Extended Baum-Welch algorithms. Then, I show

how to derive the Extended Baum-Welch algorithm in the case of SPNs. Finally, I present a set

of experiments to compare Extended Baum-Welch for SPNs to generative EM and discriminative

gradient descent. I also show the effect of using discriminative training on the learned parameters

of the SPNs.

1.5.4 Chapter 5

This chapter presents an online parameter and structure learning algorithm for recurrent SPNs. I

first present the online parameter algorithm, and then the online structure learning algorithm for

regular SPNs. I show how to extend the algorithm to learn the structure for recurrent SPNs. Then,

the experiments section shows that the proposed algorithm outperforms the existing structure

learning algorithm for recurrent SPNs.

1.5.5 Chapter 6

I conclude the thesis in Chapter 6 with a discussion of possible future directions.

8

Chapter 2

Background

This chapter introduces probabilistic graphical models (PGMs), and Bayesian networks (BNs)

in particular. It explains how the joint distribution can be encoded in a graph, and how we can

use the graph to answer any marginal or conditional queries. Section 2.2 introduces network

polynomials, and how we can use them to encode a joint distribution. Section 2.3 introduces

sum product networks (SPNs), which utilize network polynomials to build computational graphs

that encode valid distributions. Sections 2.4 and 2.5 provide a literature review about the pa-

rameter and structure learning for SPNs. Section 2.6 introduces recurrent sum product networks

(RSPNs), and I end the chapter with examples of the recent applications of SPNs in fields like

speech recognition, language modeling, and scene understanding.

9

2.1 Probabilistic Graphical Models

Probabilistic graphical models (PGMs) provide a general and flexible framework for reasoning

about complex dependencies in noisy domains with many variables. PGMs utilize probability

theory, graph theory, and machine learning to provide such flexible and elegant representation.

Modeling a joint distribution of N binary random variables using probability table would

require 2N parameters. Such a representation is inefficient and unscalable. For instance, model-

ing 30 binary random variables would require 230 parameters. Learning the parameters for such

model would be very challenging due to the exponential increase in the model size with respect

to the number of variables. PGMs solve this problem by defining the interactions between ran-

dom variables using graphs. As a result, the joint distribution can be model without paying the

exponential cost.

A probabilistic graphical model G over a set of random variables (X = {X1, X2, ..., XN}) is

defined using a graph G = 〈V,E〉, where each node v ∈ V represents a random variable, and

each edge e ∈ E represents a probabilistic relationship between two nodes. Each node i in the

graph is parameterized by a factor fi. The graph is parametrized by the set of all factors in the

graph; F = {f1, f2, ..., fN}. The joint distribution is proportional to the product of all factors in

the graph P (X) ∝
∏
∀n
fn.

Probabilistic graphical models are classified into directed and undirected graphical models

depending on the type of edges in the graph. Directed graphical models, also called Bayesian

Networks (BNs), have directed edges that capture the causal relationship between the variables.

Undirected graphical models, or Markov Random Fields (MRFs) [7], have undirected edges that

10

capture the correlation between the nodes in the graph.

For the purpose of this thesis, I will talk about Bayesian networks and dynamic Bayesian

networks for the rest of this section since they will be mentioned very frequently throughout the

thesis.

2.1.1 Bayesian Networks

Bayesian networks are the type of probabilistic graphical models where the links or edges are

directed. The graph in that case is a directed acyclic graph (DAG). A directed edge in the graph

represents a probabilistic dependency between two nodes. The node where the edge is coming

from is called the parent node, while the node at the other end of the edge is called child node.

The factors in that case are called conditional probability tables (CPTs). Each CPT is the con-

ditional probability of the variable Xn given its parents, fn = P (Xn|parents(Xn)). The joint

distribution of the set of variables X is the product of all CPTs in the graph:

P (X) = P (X0, ..., XN) =
∏
n

P (Xn|parents(Xn) (2.1)

Fig. 2.1 shows two examples of simple Bayesian networks. The first example captures the

effect of season on the slippery condition of the grass through a series of random variables.

The season has a direct effect on the weather condition being rainy or not. It also affects the

usage of sprinklers. A rainy weather or the usage of a sprinkler can make the grass wet which

results in a slippery condition. The causal relationships shown in the first example is not the

only way to represent the effect of the weather on the slippery condition of the grass, we can

11

Season

Rain Sprinkler

WetGrass

Slippery

(a)

X1

X2 X3

(b)

Figure 2.1: Two examples of Bayesian networks, (a) Example by Koller and Friedman [25] (b)
A naive Bayes classifier where X1 is the class label, and X2, and X3 are the two conditionally
independent observable variables.

add or remove edges to the graph to better capture the relationships between any two nodes in

the graph. By adding edges, we pay the price of increasing the parameters of the conditional

probability tables. The second graph represents a naive Bayes classifier of the class variable X1,

and the two conditionally independent observable variables, X2, and X3.

12

2.1.2 Inference in Bayesian Networks

Inference in Bayesian Networks is the task of answering probabilistic queries. The query can

be either a marginal probability of some variable (for example. P (X = x)), or a conditional

probability, P (X|E), where E is called the evidence. Exact inference for Bayesian networks,

and PGMs in general, is #P-hard [10]. Approximate inference can be used to do inference in

polynomial time, but without any guarantee for the accuracy.

Exact inference for Bayesian networks can be done with the variable elimination algorithm.

As the name suggests, variable elimination answers a query by marginalizing (eliminating) one

variable at a time.

Let’s consider the simple example in Fig. 2.1 (b). The Bayesian network has three binary

variables X1, X2, and X3. Assume we want to get the marginal probability of P(X2 = 1).

As stated in the previous section, we can exploit the graph structure to get the joint probability

P (X1, X2, X3) which is the multiplication of all factors in the graph.

P (X1, X2 = 1, X3) =
∏
n

P (Xn|parents(Xn)

= P (X1)P (X2 = 1|X1)P (X3|X1)

(2.2)

Now, we only need to marginalize X1, and X3 which can be done by summing out both

variables as follows,

P (X2 = 1) =
∑
X1,X3

P (X1)P (X2 = 1|X1)P (X3|X1) (2.3)

13

Marginalizing X1, and X3 according to the above equation is equivalent to enumerating all

possible values of the joint probability for which X2 = 1 and then summing out the result. This

is computationally expensive since there are exponentially many entries. Variable elimination

eliminates one variable at a time by reformulating the above equation as follows,

P (X2 = 1) =
∑
X1,X3

P (X1)P (X2 = 1|X1)P (X3|X1)

=
∑
X1

∑
X3

P (X1)P (X2 = 1|X1)P (X3|X1)

(2.4)

Now, we can compute P (X2 = 1) more efficiently using dynamic programming technique

by pushing the sums inside the product to sum only the relevant terms.

P (X2 = 1) =
∑
X1

P (X1)P (X2 = 1|X1)
∑
X3

P (X3|X1) (2.5)

Each summation results in an intermediate factor. The more variables involved in the sum-

mation, the bigger the size of the factor. Hence, the order by which we compute the marginal

probability is important, and it has a great impact on the efficiency of the variable elimination

algorithm. Ideally, we want to minimize the size of all intermediate factors, finding such optimal

order is NP-hard.

Finally, answering conditional probability queries can be done by evaluating two marginal

queries since,

P (X = x|E = e) =
P (X = x,E = e)

P (E = e)
(2.6)

14

2.2 Network Polynomials

As we saw in variable elimination, answering a marginal query can be done through a series

of sum and product operations. Hence, Darwiche [12] showed that polynomial functions can

be used to encode joint distributions. A network polynomial that encodes a joint distribution is

(
∑
φ(x)

∏
(x)), where

∏
(x) is a product of indicators and φ(x) is a probability. For instance,

a Bernoulli distribution over variable X parameterized by p can be encoded by the network

polynomial P (X) = px + (1 − p)x̄. Many probabilistic queries can be answered by evaluating

the network polynomial or its derivative with respect to the network indicators [12].

2.3 Sum Product Networks

A sum-product network (SPN) [45], as shown in Fig. 2.2, is a rooted acyclic directed graph

whose internal nodes are sums and products, and leaves are tractable distributions over some

random variables. The edges linking each sum node to its children are labeled with non-negative

weights. For SPNs that encode discrete distributions, the leaf nodes can be the variable in-

dicators. SPNs are equivalent to arithmetic circuits [12], which also consist of rooted acyclic

directed graphs of sums and products, with the only difference that edges do not have weights,

while leaves store numerical values. This is only a syntactic difference since edge weights in

SPNs can always be transformed into leaves with corresponding numerical values in ACs (and

vice-versa) [50].

The value of an SPN is the value computed by its root in a bottom up pass. More specifically,

15

Vnode(x) denotes the value computed by a node based on evidence x.

Vnode(x) =


pnode(x) node is a leaf∑

c∈children(node) wcVc(x) node is a sum∏
c∈children(node) Vc(x) node is a product

(2.7)

Here, pnode(x) denotes the probability density or mass of the evidence x in the distribution at a

leaf node, depending on whether x is continuous or discrete. When the evidence is empty or does

not instantiate any of the variables in the distribution at a leaf node then pnode(x) = 1, which is

equivalent to marginalizing out all the variables for which we do not have any evidence.

Under suitable conditions, an SPN (or AC) encodes a joint distribution over a set of variables.

Let scope(node) be the set of variables in the leaves of the sub-SPN rooted at a node.

Definition 1 (Completeness/smoothness [11, 45]). A sum node is complete/smooth when the

scopes of its children are the same (i.e., ∀c, c′ ∈ children(sum), scope(c) = scope(c′)).

Definition 2 (Decomposability [11, 45]). A product node is decomposable when the scopes of

its children are disjoint (i.e., ∀c, c′ ∈ children(sum) and c 6= c′, scope(c) ∧ scope(c′) = ∅).

When all sum nodes are complete/smooth and all product nodes are decomposable, an SPN is

called valid, which ensures that the value computed by the SPN for some evidence is proportional

to the probability of that evidence (i.e., Pr(x) ∝ Vroot(x)). This means we can answer marginal

queries by evaluating the network twice as follows:

Pr(x1) =
Vroot(x1)

Vroot(1)
(2.8)

16

Vroot(1) computes the normalization constant, and it is done by setting all indicators or leaf

distributions in the network to ones. Conditional queries Pr(x1|x2) can be done by two network

evaluations Vroot(x1,x2) and Vroot(x2):

Pr(x1|x2) =
Vroot(x1,x2)

Vroot(x2)
(2.9)

Since each SPN evaluation consists of a bottom up pass that is linear in the size of the network,

the complexity of inference in SPNs is linear in the size of the SPN (same holds for ACs). In

contrast, inference may be exponential in the size of the network for BNs and MNs.

We can interpret SPNs as hierarchical mixture models since each sum node can be thought as

taking a mixture of the distributions encoded by its children, where the probability of each child

component is proportional to the weight labeling the edge of that child. Completeness/smoothness

ensures that each child is a distribution over the same set of variables. Similarly, we can think

of each product node as factoring a distribution into a product of marginal distributions. Decom-

posability ensures that the marginal distributions are independent.

2.3.1 Example for a Sum Product Network

Fig. 2.2 shows an example of a valid SPN over three binary variables X1, X2, and X3. The

network is a directed acyclic graph. The variable indicators (i.e. x1, x̄1, x2, x̄2, x3, x̄3) are

the leaf nodes of the network. All internal nodes are either sum or product nodes. A weight is

assigned to each edge coming out of a sum node.

The model shown in Fig. 2.2 is equivalent to a naive Bayes classifier where the target variable

17

Figure 2.2: An example of a valid SPN over three binary variables; X1, X2, and X3. This model
is equivalent to naive Bayes classifier of the target variable (X1), and two observable variables
(X2, and X3).

is X1, and the observable variables are X2, and X3. This network is called normalized SPN

since the weights for each sum node are normalized (i.e. they sum up to 1). In that case, the

normalization constant of Eq. 2.8 is equal 1, we can do inference using one pass through the

network.

Let’s try to compute P (X1 = 1, X2 = 0). First, we need to marginalize X3 which can easily

be done by setting both indicators to 1 (i.e. x̄3 = 1, and x3 = 1). The rest of indicators are set

according to the evidence, that is x1 = 1, x̄1 = 0, x2 = 0, and x̄2 = 1. Finally, we compute the

value at the root by propagating the values of leaves upwards following the computations defined

18

by the graph.

P (X1 = 1, X2 = 0) = Vroot(X1 = 1, X2 = 0)

= 0.95× (1× (0.9)× 1) + 0.05× 0

= 0.855 (2.10)

Since this network is equivalent to a naive Bayes classifier, we can use it to estimate the

posterior P (X1 = 1|X2 = 0, X3 = 1). Following Eq. 2.9 to compute the posterior, we need to

evaluate the network twice to compute Vroot(X1, X2, X3), and Vroot(X2, X3).

P (X1 = 1, X2 = 0, X3 = 1) = Vroot(X1 = 1, X2 = 0, X3 = 1)

= 0.95× (1× (0.9)× 1)× 0.5 + 0

= 0.4275 (2.11)

To compute Vroot(X2 = 0, X3 = 1), X1 is marginalized by setting its indicators to 1.

P (X2 = 0, X3 = 1) = Vroot(X2 = 0, X3 = 1)

= 0.95× (0.9× 0.5)× 0.5 + 0.05× (0.8× 0.3)

= 0.4395 (2.12)

Finally, the posterior is computed by dividing Vroot(X1, X2, X3) by Vroot(X2, X3), we get

P (X1 = 1|X2 = 0, X3 = 1) = 0.973.

19

2.4 Parameter Learning for SPNs

The weights of an SPN are its parameters. They can be estimated by maximizing the likelihood

of a dataset (generative training) [45] or the conditional likelihood of some output features given

some input features (discriminative training) by Stochastic Gradient Descent (SGD) [15]. Since

SPNs are generative probabilistic models where the sum nodes can be interpreted as hidden vari-

ables that induce a mixture, the parameters can also be estimated by Expectation Maximization

(EM) [45, 37]. [58] provides a unifying framework that explains how likelihood maximization

in SPNs corresponds to a signomial optimization problem where SGD is a first order procedure,

sequential monomial approximations are also possible and EM corresponds to a concave-convex

procedure that converges faster than the other techniques. Since SPNs are deep architectures,

SGD and EM suffer from vanishing updates and therefore ”hard” variants have been proposed to

remedy to this problem [45, 15]. By replacing all sum nodes by max nodes in an SPN, we obtain

a max-product network where the gradient is constant (hard SGD) and latent variables become

deterministic (hard EM). It is also possible to train SPNs in an online fashion based on streaming

data [26, 48, 56, 20].

2.5 Structure Learning for SPNs

Since it is difficult to specify network structures for SPNs that satisfy the decomposability and

completeness properties, several automated structure learning techniques have been proposed.

The structure learning algorithms can be classified into two categories depending on the way

they construct the network by either starting from the root and learning the structure in a top

20

down fashion, or starting from the leaves and building the structure in a bottom up fashion.

2.5.1 Top Down Structure Learning Algorithms

This is the common framework for learning the structure of SPNs, the learning algorithm starts

from the root, and at each step, the algorithm recursively expands the leaves into product or sum

nodes.

The first attempt to learn the structure of SPNs was done by Dennis et al. [13] in 2012. The

idea was to use clustering of data instances to introduce sum nodes to the SPN, and clustering

of variables to introduce product nodes to the network. When clustering data instances into n

clusters, we can introduce n children nodes under a sum node. The weights of an edge between

the sum node i and a child j is the number of instances in the cluster of the child j. Clustering

of variables is used to split the variables into subsets. Variables in each subset have strong

interactions with one another. The entire SPN is constructed by recursively expanding the SPN

using instance and variable clustering until the leaf nodes are univariate leaf distributions.

The problem with the algorithm in [13] is the variable clustering based on the distance. Two

variables might be highly correlated, but they get assigned to two different clusters because one

is the negation of the other. Gens et al. [16] identified such problem, and they proposed a refined

algorithm named LearnSPN that mitigates such problem. The algorithm decomposes the scope

of a product node by measuring the pairwise mutual information between all variables in the

scope. A threshold is used to identify whether two variables belong to the same scope subset.

Similar to [13], the algorithm recursively expands the SPN until the leaf nodes are univariate

21

distributions.

Rooshenas et al. [50] improved LearnSPN by early stopping. Before reaching univariate

scopes, arithmetic circuits are learned to create leaves that model the multivariate leaf distribu-

tions [30]. The algorithm used to learn the leaf arithmetic circuits can be restricted to produce

valid SPNs. The entire algorithm is called ID-SPN.

Vergari et al. [54] further improved LearnSPNs by learning multivariate leaf distributions,

and also improved the instance clustering using bagging. In LearnSPN, once an instance is

clustered, that instance would only affect the future distributions that result from its cluster. To

relax such limitation, Vergari et al. [54] proposed to bootstrap k samples with replacement to

produce multiple copies of the available instances, then performing clustering on each copy. For

each cluster, a new node is added as a child to the sum node being processed. As a result, an

instance can be part of multiple clusters which makes the algorithm less sensitive to clustering

errors.

Adel et al. [1] combine instance clustering and variable partitioning in one step with a rank-

one submatrix extraction by performing a singular value decomposition. They also showed how

to learn the structure both generatively and discriminatively. Computing SVD is a limitation to

scaling this algorithm to large number of instances and/or variables.

2.5.2 Bottom Up Structure Learning Algorithms

Pehraz et al. [38] introduced the first bottom-up algorithm for learning the structure of SPNs,

the algorithm is called greedy part-wise structure learning. They learn sub-SPNs over small

22

subsets of the variable scope. Then, product nodes are added to merge two independent disjoint

distributions guided by independence tests. Sum nodes are added to introduce a mixture of

distributions of sub-SPNs that share the same variable scopes. The algorithm recursively adds

product, and sum nodes until the scope at the root includes all the variables.

2.6 Recurrent Sum Product Networks

Recurrent Sum-Product Networks (RSPNs) were introduced by Melibari et al. [32] to model

sequential data. RSPNs are a generalization of regular SPNs for modeling temporal sequence

of data. RSPNs consist of a template network that can be repeated as many times as needed

to model a variable length data sequence. The template network is a recursive function of the

input data at time t, and the previous output of the template network at time t− 1. The repeated

network encodes a valid distribution over a data sequence if the template SPN satisfies certain

conditions [32] to ensure that the unrolled network is a valid SPN.

Let X be a data sequence generated by n variables over T time steps:

< x1, ..., xn >
1, < x1, ..., xn >

2, ... < x1, ..., xn >
T (2.13)

The template network can be formally defined as follows:

Definition 3 (Template Network [32]). A template network over n binary variables at time t,

< x1, ..., xn >
t, is a directed acyclic graph with k roots, and k + 2n leaf nodes. The 2n leaf

nodes are the binary variable indicators. The k nodes at the inputs and outputs are the interface

23

nodes between consecutive time steps. The network nodes are either sum or product nodes. Each

edge (i, j) emanating from a sum node i has a non-negative weight wij

The template network, as shown in Figure 2.3(a), is a directed acyclic graph with k output

interface nodes. The inner nodes are sums or products like regular SPNs. At the leaves, we have

leaf distributions over the observable variables at time step t, and latent leaf distributions over

the input interface nodes. The output interface nodes at time step t are the input interface nodes

at time step t+ 1.

To repeat a template network over a sequence of data, we have to deal with two cases. First,

at time t = 0, we don’t have input interface nodes from the previous time step, hence we need to

alter the template network to deal with such case. Second, since inference for SPNs is computed

by evaluating the network at the root, we need to add a top network after the last time step that

can combine the last k interface nodes into a single rooted graph. [32] defined two additional

networks named bottom and top networks that deal with these two cases.

Definition 4 (Bottom Network [32]). A bottom network for the first time step of n binary vari-

ables is a directed acyclic graph with k roots and 2n leaf nodes. The 2n leaf nodes are the

indicator variables. The k roots are interface nodes to the template network for the next time

step. The interface and interior nodes are either sum or product nodes. Each edge (i, j) emanat-

ing from a sum node i has a non- negative weight wij as in regular SPNs.

Although the bottom network can have a different structure than template network, we can

obtain the bottom network directly from the template network by marginalizing the interface

nodes. Marginalizing the interface nodes can be obtained by setting all interface nodes to 1’s.

24

(a)

(b)

Figure 2.3: (a) An example of a generic template network. Interface nodes are drawn in red,
while leaf distributions are drawn in blue. Leaf distributions can be either binary or Gaussian.
(b) An RSPN unrolled over 3 time steps. Three template networks are stacked and capped by the
top network.

Definition 5 (Top Network [32]). A top network is a rooted directed acyclic graph composed of

sum and product nodes with k leaves. The leaves of this network are interface nodes of the last

time step. Each edge (i, j) emanating from a sum node i has a non-negative weight wij as in

regular SPNs.

Once the structure and the weights of the three networks are defined, unrolling the network

can be done as shown in Figure 2.3(b), (1) The bottom network is used at the first time step. (2)

The template networks are stacked on top of the bottom network as many time steps as needed.

(3) The top network is stacked on top of the last template network.

To ensure that the unrolled network encodes a valid distribution, the unrolled network needs

to be consistent and complete. Since verifying these conditions each time the network is unrolled

is impractical, [32] define an invariant property for the template network that ensures that the

25

unrolled network is consistent and complete without the need for unrolling the network.

The invariant conditions [32] restrict the relations among the input and output interface

nodes. The scope of each pair of nodes among the input interface nodes needs to be either the

same or disjoint, the same relation also needs to hold between the corresponding output interface

nodes. The interior nodes in the template network must satisfy the completeness and consistency

conditions.

2.7 Sum Product Networks Applications

SPNs do very well in applications where a subset of the leaf variables are unobserved (missing

features). SPNs also do well for the task of structure prediction since Most Probable Explanation

(MPE) inference can be done naturally by a forwardpass followed by a backward pass on the

network. In the first SPN paper, Poon et al. [45] showed the superiority of SPNs to other types

of deep networks (ex. deep belief networks) on the task of image completion. In the task, the

network was given part of a human face as an input, and then it was asked to infer the rest of the

face. SPNs outperformed several other models by wide margins according to the mean squared

error metric.

Amer et al. [3] used SPNs for activity recognition (ex. loading of a car). Some primitive

actions (e.g. walking, or jumping) were extracted from the videos along with their locations.

SPNs are used to model the presence of such actions in an activity. A separate SPN is trained per

activity. For testing, primitive actions are extracted from the video, then the activity for which

the SPN yields the highest MPE is selected.

26

SPNs have been used for speech recognition. Pehraz et al. [41] used SPNs for speech recog-

nition of telephone signals. The work was motivated by the success of SPNs in the task of image

completion. Similarly, high frequency signals are being lost by the telephone band-pass filters,

hence SPNs can be used to recover those high frequency parts. An HMM was used to model

the temporal information, and they used SPNs to model the emission distributions. At inference

time, the high frequency parts are reconstructed using the most probable explanation inference.

The reconstructed signal results in a better speech quality due to the added high frequency com-

ponent.

Ratajczak et al. [49] applied SPNs in speech recognition by combining SPNs with conditional

random fields (CRFs). The new model outperformed state-of-the-art models in the task of optical

character recognition, and speech recognition.

SPNs were also used for language modeling. Cheng et al. [9] used SPNs to model relations

between words. A special SPN architecture was used to predict the next word using the N

previous words. The parameters of the SPN were trained discriminatively. In their experiments,

they show that the SPN-based language model outperformed other language models in terms of

the perplexity scores.

27

Chapter 3

Online Parameter Learning for SPNs

Using Bayesian Moment Matching

Sum-product networks (SPNs) have recently emerged as an attractive representation due to their

dual interpretation as a special type of deep neural network with clear semantics and a tractable

probabilistic graphical model. A variety of algorithms have been proposed to learn the struc-

ture [50, 16] and the parameters [45] of SPNs from data. Since existing algorithms operate in

a batch way, they do not scale to large datasets. In this chapter, we explore online algorithms

that can process a dataset in one sweep and can continuously refine the parameters of an SPN

with a fixed structure based on streaming data. It is relatively easy to extend existing algorithms

like gradient descent (GD), exponentiated gradient and expectation maximization (EM) to the

online setting by restricting the algorithms to a single iteration (i.e., single pass through the data)

in which incremental updates to the parameters are performed after processing each data point.

28

Since those algorithms maximize the likelihood of the data, they are subject to overfitting and

local optima (the optimization problem is non-convex). Furthermore, restricting the algorithms

to a single iteration means that some information is lost. We propose a new Bayesian learning

algorithm that does not frame the problem as optimization. Bayesian learning is robust to over-

fitting and naturally operates in an online, asynchronous and distributed fashion since Bayess

theorem allows us to incrementally update the posterior after each data point and the updates can

be computed in any order and distributed on different machines. The main issue with Bayesian

learning is that the posterior is often intractable, which is the case for parameter learning in

SPNs. To that effect, we propose to approximate the posterior after each update with a tractable

distribution that matches some moments of the exact, but intractable posterior. We call this algo-

rithm online Bayesian Moment Matching (oBMM). The approximation introduced by moment

matching yields a loss of information, however we show that oBMM performs better than online

expectation maximization (oEM), online Exponentiated Gradient (oEG), and Stochastic gradient

descent (SGD) on a suite of binary benchmark datasets and some large language modeling prob-

lems. We also demonstrate the scalability of oBMM by distributing the computation on many

machines.

Most of the algorithms for SPNs assume that the variables of interest are categorical. How-

ever, many real-world applications are best modeled by continuous variables. Hence, there is a

need for SPN algorithms that work with continuous data. Several papers mention that it is possi-

ble to generalize SPNs to continuous variables by considering leaf distributions over continuous

variables [45, 15, 16, 57], but only a recent paper by [40] proposes an EM algorithm for contin-

uous SPNs and reports experiments with continuous data. So, we show how to extend oBMM to

29

SPNs with continuous variables. More specifically, we consider SPNs with Gaussian leaf distri-

butions and show how to derive an online Bayesian moment matching algorithm to learn from

streaming data. We compare the resulting generative models to stacked restricted Boltzmann

machines and generative moment matching networks on real-world datasets.

3.1 Online and Distributed Bayesian Moment Matching

We propose to use Bayesian learning to obtain a new online algorithm. As pointed out by [8]

Bayesian learning naturally lends itself to online learning and distributed computation. In the

case of an SPN, the weights are the parameters to be learned. Bayesian learning starts by express-

ing a prior Pr(w) over the weights. Learning corresponds to computing the posterior distribution

Pr(w|data) based on the data observed according to Bayes’ theorem:

Pr(w|data) ∝ Pr(w) Pr(data|w) (3.1)

Since the data consists of a set of instances x1:N = {x1, ...,xN} that is assumed to be sampled

identically and independently from some underlying distribution, we can rewrite Bayes’ theorem

in a recursive way that facilitates incremental online learning:

Pr(w|x1:n+1) ∝ Pr(w|x1:n) Pr(xn+1|w) (3.2)

The computation of the posterior in Bayes’ theorem can also be distributed over several ma-

chines that each process a subset of the data. For example, suppose that we have K machines

30

and a dataset of KN instances, then each machine (indexed by k) can compute a posterior

Pr(w|x(k−1)N+1:kN) over N instances. Those posteriors can be combined to obtain the posterior

of the entire dataset as follows:

Pr(w|x1:KN) = Pr(w)
K∏
k=1

Pr(w|x(k−1)N+1:kN)

Pr(w)
(3.3)

Hence, exact Bayesian learning can be performed naturally in an online and distributed fashion.

Unfortunately, the computation of the posterior is often intractable. This is the case for param-

eter learning in SPNs. Thus, we propose to approximate the posterior obtained after each data

instance with a tractable distribution by matching a set of moments. We first describe how to

estimate the parameters of an SPN with a fixed structure by exact Bayesian learning. Then we

discuss the exponential complexity of this approach and how to circumvent this intractability by

Bayesian moment matching.

3.2 Bayesian Moment Matching for Discrete SPNs

3.2.1 Exact Bayesian Learning

The parameters of an SPN consist of the weights associated with the edges emanating from

each sum node. The first step is to define a prior over the weights. While the weights can be

any non-negative number, any SPN can be transformed into an equivalent normal SPN with

normalized weights (i.e., wij ≥ 0 and
∑

j wij = 1 ∀i ∈ sumNodes) that correspond to local

distributions [42, 57]. Without loss of generality, we will restrict ourselves to normal SPNs since

31

the likelihood of a data instance Pr(x) is obtained by a single network evaluation Vroot(e(x))

(i.e., the normalization constant Vroot(1) is always 1) and this allows us to use a Dirichlet for

the prior over each local distribution associated with the weights of each sum node. We start

with a prior that consists of a product of Dirichlets with respect to the weights wi· = {wij|j ∈

children(i)} of each sum node i:

Pr(w) =
∏

i∈sumNodes
Dir(wi·|αi·) (3.4)

The posterior is obtained by multiplying the prior by the likelihood Vroot(x) of each data instance:

Pr(w|x1:n+1) ∝ Pr(w|x1:n)Vroot(x
n+1) (3.5)

Since a network evaluation consists of an alternation of sums and products, we can rewrite

Vroot(x) as a polynomial with respect to the weights. Furthermore, this polynomial can always

be re-written as a sum of monomials that each consists of a product of weights:

Vroot(x) =
∑
c

monomialxc (w) =
∑
c

∏
ij∈monomialxc

wij (3.6)

Intuitively, if we distribute the sums over the products in the network evaluation, we obtain a large

sum of small products of weights where each product of weights is a monomial. The number

of monomials is exponential in the number of sum nodes. Note that products of Dirichlets are

conjugate priors with respect to monomial likelihood functions. This means that multiplying a

monomial by a product of Dirichlets gives a distribution that is again a product of Dirichlets.

32

However, since our likelihood function is a polynomial that consists of a sum of monomials, the

posterior becomes a mixture of products of Dirichlets:

Pr(w|x) =
∏

i∈sumNodes
Dir(wi·|αi·)

∑
c

monomialxc (w) (3.7)

=
∑
c

kc
∏

i∈sumNodes
Dir(wi·|αi· + δx,c

i·) (3.8)

where δx,c
ij =

 1 ij ∈ monomialxc

0 ij 6∈ monomialxc
(3.9)

The nice thing about the above derivation is that the posterior has a closed form (mixture of

products of Dirichlets), however it is computationally intractable. The number of mixture com-

ponents is exponential in the number of sum nodes after the first data instance (in the worst case).

If we repeatedly update the posterior after each data instance according to Eq. 3.2, the number of

mixture components will grow exponentially with the amount of data and doubly exponentially

with the number of sum nodes.

3.2.2 Moment Matching

Moment matching is a popular frequentist technique to estimate the parameters of a distribution

based on the empirical moments of a dataset. For instance, it has been used to estimate the

parameters of mixture models, latent Dirichlet allocation and hidden Markov models while en-

suring consistency [4]. Moment matching can also be used in a Bayesian setting to approximate

an intractable posterior distribution. More precisely, by computing a subset of the moments of an

33

intractable distribution, another distribution from a tractable family that matches those moments

can be selected as a good approximation. Expectation propagation [33] is a good example of

such an approach. We describe how to use Bayesian Moment Matching to approximate mix-

tures of products of Dirichlets obtained after processing each data instance by a single product

of Dirichlets.

A Dirichlet Dir(wi·|αi·) ∝
∏

j(wij)
αij−1 is defined by its hyper-parameters α. However

it could also be defined by a set of moments. Consider the following first and second order

moments which are expectations of wij and w2
ij:

1. MDir(wij) =
∫
wij
wijDir(wi·|αi·)dwij

2. MDir(w
2
ij) =

∫
wij
w2
ijDir(wi·|αi·)dwij

We can express the hyperparameters αij in terms of the above moments as follows:

αij = MDir(wij)
MDir(wij)−MDir(w

2
ij)

MDir(w2
ij)− (MDir(wij))2

∀ij (3.10)

When approximating a distribution P by a Dirichlet, we can compute the moments MP (wij)

and MP (w2
ij) of P and then use Eq. 3.10 to set the hyperparameters of the Dirichlet so that

it has the same first and second order moments. More generally, since we are interested in

approximating a joint distribution P (w) by a product of Dirichlets, we can compute the moments

MP (wi·)(wij) andMP (wi·)(w
2
ij) of each marginal P (wi·) in order to set the hyperparameters αi· of

each Dirichlet in the product of Dirichlets. Hence, instead of explicitly computing the intractable

posterior after each data instance, we compute the first and second order moments of the posterior

34

which are sufficient to approximate the posterior by Bayesian moment matching with a product

of Dirichlets. It turns out that we can exploit the structure of SPNs to compute efficiently the first

and second order moments of the posterior. Algorithm 1 describes how to compute a moment

of the posterior in one bottom-up pass. Since the number of moments is linear in the size of the

network and computing each moment is also linear, the overall time to approximate the posterior

by a product of Dirichlets is quadratic in the size of the network.

Algorithm 1 Compute marginal moment for wkij (k is an exponent indicating the order of the
moment) in the posterior obtained after observing x

1: if isLeaf(node) then
2: return Vnode(x)
3: else if isProduct(node) then
4: return

∏
child computeMoment(child)

5: else if isSum(node) and node == i then
6: return

∑
childMDir(w

k
ijwi,child)×

7: computeMoment(child)
8: else
9: return

∑
childwnode,child computeMoment(child)

In practice, many structure learning algorithms produce SPNs that are trees (i.e., each node

has a single parent) [13, 16, 38, 50, 39, 1]. When an SPN is a tree, it is possible to compute all the

moments simultaneously in time that is linear in the size of the network. The key is to compute

two coefficients coef 0
i , coef

1
i at each node i in a top-down pass of the network. Algorithm 2

shows how those coefficients are computed. Once we have the coefficients, we can compute

each moment as follows:

Mposterior(w
k
ij) =

∫
wi·

wkijDir(wi·|αi·)(coef 0
i + coef 1

i

∑
j′

wij′Vj′(x))dwi·

35

Algorithm 2 computeCoefficients(node) based on x and prior
∏

iDir(wi·|αi·)
1: if isRoot(node) then
2: coef 0

node ← 0
3: coef 1

node ← 1
4: else if isProduct(parent(node)) then
5: coef 0

node ← coef 0
parent

6: coef 1
node ← coef 1

parent

∏
sibling vsibling(e(x))

7: else if isSum(parent(node)) then

8:
coef 0

node ← coef 0
parent

+ coef 1
parent

∑
sibling

αparent,sibling∑
j αparent,j

vsibling(e(x))

9: coef 1
node ← coef 1

parent
αparent,node∑

j αparent,j

10: if isNotLeaf(node) then
11: computeCoefficients(child) ∀child

At a high level, Alg. 2 maintains a posterior distribution over all the sum nodes in the subtree

of a given node. This is achieved by a bottom-up pass of the network to compute all the vi(x)

at each node followed by a top-down recursive pass to compute the required moments at all the

sum nodes. In Alg. 2, vi(x) is defined as:

vi(x) =

∫
w

∏
j

Dir(wj|αj)Vi(x) dw (3.11)

where the integration is over all the model parameters w that appear in the sub-tree rooted at

node i, and upper case Vi(x) is the value computed at node i when the input instance is x. Note

that by utilizing the same network structure, all the vi(x) can be computed in a single bottom-up

pass.

36

3.3 Bayesian Moment Matching for Continuous SPNs

For continuous SPNs, the leaf nodes are multivariate Gaussian distributions. The Normal-

Wishart distribution is a multivariate distribution with four parameters. It is the conjugate prior

of a multivariate Gaussian distribution with unknown mean and covariance matrix. This makes

a Normal-Wishart distribution a natural choice for the parameters at the leaf nodes. The mixture

weights for sum nodes can still be modeled using dirichlet distributions as shown in the previous

section.

As we showed in the previous section, the likelihood at any node under the condition of inde-

pendent sum nodes can be written as a function of two coefficients; coef 0
node and coef 1

node, hence

at the leaf nodes, the likelihood is, Pnode(x|µ,Λ) = (coef 0
node + coef 1

nodeNd
(
x;µ, (κΛ)−1

)
.

In Bayesian learning, we start from a family of distributions for the prior, in our case the prior

is P0(µ,Λ) = NW(µ,Λ|α, κ,W, ν). The set of sufficient moments for the posterior in this case

would be given by S(P (µ,Λ|x)) = {µ,µµT ,Λ,Λ2
kl} where Λkl is the (k, l)th element of the

matrix Λ. Notice that, since Λ is a symmetric matrix, we only need to consider the moments of

the elements on and above the diagonal of Λ.

To compute the posterior after observing x1, we get:

P0(µ,Λ) ∝ NW(µ,Λ|α, κ,W, ν)
(
coef 1

nodeNd
(
x1;µ, (κΛ)−1

)
+ coef 0

node

)
= coef 1

node cNW(µ,Λ|µ∗0, κ∗,W∗, ν∗) + coef 0
node NW(µ,Λ|µ0, κ,W, ν) (3.12)

37

Where,

µ∗0 =
κµ0 + x1

κ+ 1

κ∗ = κ+ 1

W∗ = W +
κ

κ+ 1
(x1 − µ0)T (x1 − µ0)

ν∗ = ν + 1

c =
(κ
κ∗
) d

2
|Λ|ν

|Λ∗|ν∗
1
2
νΓ(1

2
ν∗)

Γ(1
2
(ν∗ − d)) (3.13)

The posterior is a mixture of Normal-Wishart with exactly two components. Such distribu-

tion can be approximated using a single Normal-Wishart by matching the sufficient moments as

shown in the following subsection.

3.3.1 Moment Matching for Normal-Wishart Distribution

Let µ be a d-dimensional vector and Λ be a symmetric positive definite d × d matrix of ran-

dom variables respectively. Then, a Normal-Wishart distribution over (µ,Λ) given parameters

(µ0, κ,W, ν) is such that µ ∼ Nd
(
µ;µ0, (κΛ)−1

)
where κ > 0 is real, µ0 ∈ Rd and Λ has

a Wishart distribution given as Λ ∼ W(Λ; W, ν) where W ∈ Rd×d is a positive definite ma-

trix and ν > d − 1 is real. The marginal distribution of µ is a multivariate t-distribution i.e

µ ∼ tν−d+1

(
µ;µ0,

W
κ(ν−d+1)

)
.

In the case of the Normal-Wishart distribution and to do Bayesian moment matching, we

would require at least four different moments to estimate the four parameters that characterize it.

A set of sufficient moments in this case is S = {µ,µµT ,Λ,Λ2
ij}where Λ2

ij is the (i, j)th element

38

of the matrix Λ. The expressions for sufficient moments are given by

E[µ] = µ0

E[(µ− µ0)(µ− µ0)T] =
κ+ 1

κ(ν − d− 1)
W−1

E[Λ] = νW

V ar(Λij) = ν(W 2
ij +WiiWjj) (3.14)

3.3.2 Online Bayesian Moment Matching for Continuous SPNs

Similar to the discrete case, Algorithm 2 shows how coef 0
i , coef

1
i are computed at each node i

in a top-down pass of the network; assuming that a bottom-up pass was done to compute the

likelihood at each node in the network. Once we have the coefficients, we can compute each

moment as follows. For leaf nodes that model multivariate Gaussian distributions, the set of

sufficient moments is Si = {µi,µiµ
T
i ,Λi,Λ

2
ikl
} ∀i ∈ leafNodes and we get:

MP (Θ|x)(s) =

∫
s

sNW i(µi,Λi|αi, κi,Wi, νi)
(
coef 0

i + coef 1
i N (x|µi,Λ−1

i)
)
ds ∀s ∈ Si

For the rest of the nodes:

MP (Θ|x)(w
k
ij) =

∫
wi·

wkijDir(wi·|αi·)
(
coef 0

i + coef 1
i

∑
j′

wij′Vj′(x)
)
dwi· ∀i ∈ sumNodes

After computing the moments, any mixture can be approximated by a simple distribution by

matching sufficient number of moments.

39

3.4 Experimental Results

3.4.1 Discrete SPNs

We evaluated oBMM on 2 sets of datasets; 20 small datasets and 4 large datasets. The 20 datasets

span diverse sets of domains, and the number of variables range from 16 to 1556 binary variables.

These datasets were used before for comparisons in [16, 50]. The 4 large datasets are bag of

words datasets and they are publicly available online from the UCI machine learning repository.

Each dataset contains a collection of documents and the corresponding word counts. The number

of variables (dictionary size) ranges from 6906 to 102660 variables. The variables are binarized

by ignoring the word count and only used 0 or 1 for the absence or presence of a word in a

document.

In order to evaluate the performance of oBMM, we evaluated it and compared it to three

online algorithms: stochastic gradient descent (SGD), online exponentiated gradient (oEG) and

online expectation maximization (oEM). We measure both the quality of the three algorithms

in terms of average log-likelihood scores on the held-out test data sets and their scalability in

terms of running time. To test the statistical significance of the results, we apply the Wilcoxon

signed rank test [55] to compute the p-value and report statistical significance with p-value less

than 0.05. The log-likelihood scores for the structural learning algorithm from LearnSPN [16]

are reported as a reference for the comparison of the three online parameter learning algorithms.

The online algorithms are not expected to beat a structural learning algorithm, but we will show

that online algorithms can outperform LearnSPN for the large datasets in terms of running time

and accuracy.

40

Since we don’t do structural learning, a fixed structure is used to perform the experiments.

We used a simple structure generator which can take 2 hyperparameters (number of variables,

and the depth of the SPN) and generate the SPN accordingly. The generator keeps track of the

scope at each node and it starts from a sum node as the root node that has all variables in the

scope. Recursively, for each sum node, a number of children product nodes are generated with

the same scope as the sum node, and for each product node, a number of children sum nodes are

generated while randomly factoring the scope among the children. When the level at a product

node is 2 or less, a number of children sum nodes are generated such that each child has only a

single variable in its scope. Finally, a sum node that contains a single variable in its scope, two

leaf nodes are generated corresponding to the indicators of the variables. For the small datasets,

SPNs of depth 6 are used, while for the large datasets SPNs of depth 4 are used.

Online Bayesian Moment matching (oBMM) doesn’t have any hyper-parameters to tune,

except for the prior which we set randomly by selecting hyperparameters αij uniformly at random

in [0, 1]. For the online Distributed Bayesian Moment Matching (oDMM), the training set is

partitioned into 10 smaller sets, and each set is sent to a different machine to be processed. Once

the machines finish, the output sum-product networks are collected and combined into a single

sum-product network. For SGD and oEG, we use backtracking line search to shrink the step size

if the log-likelihood scores on the training set decreases. The initial step size is set to 1.0 for all

data sets. oEM does not require a learning rate nor weight shrinking. To avoid possible numeric

underflow we use a smoothing constant equal to 0.01 in all the experiments.

Table 4.1 shows the average log-likelihoods on the test sets for various algorithms. oBMM

outperforms the rest of the online algorithms in 19 out of the 20 datasets. The results show

41

Table 3.1: Log-likelihood scores on 20 data sets. The best results among oBMM, SGD, oEM,
and oEM are highlighted in bold font. ↑ (↓) indicates that the method has significantly better
(worse) log-likelihoods than oBMM under Wilcoxon signed rank test with p value < 0.05.

Dataset Var# LearnSPN oBMM SGD oEM oEG
NLTCS 16 -6.11 -6.07 ↓-8.76 ↓-6.31 ↓-6.85
MSNBC 17 -6.11 -6.03 ↓-6.81 ↓-6.64 ↓-6.74
KDD 64 -2.18 -2.14 ↓-44.53 ↓-2.20 ↓-2.34
PLANTS 69 -12.98 -15.14 ↓-21.50 ↓-17.68 ↓-33.47
AUDIO 100 -40.50 -40.7 ↓-49.35 ↓-42.55 ↓-46.31
JESTER 100 -53.48 -53.86 ↓-63.89 ↓-54.26 ↓-59.48
NETFLIX 100 -57.33 -57.99 ↓-64.27 ↓-59.35 ↓-64.48
ACCIDENTS 111 -30.04 -42.66 ↓-53.69 -43.54 ↓-45.59
RETAIL 135 -11.04 -11.42 ↓-97.11 ↓-11.42 ↓-14.94
PUMSB-STAR 163 -24.78 -45.27 ↓-128.48 ↓-46.54 ↓-51.84
DNA 180 -82.52 -99.61 ↓-100.70 ↓-100.10 ↓-105.25
KOSAREK 190 -10.99 -11.22 ↓-34.64 ↓-11.87 ↓-17.71
MSWEB 294 -10.25 -11.33 ↓-59.63 ↓-11.36 ↓-20.69
BOOK 500 -35.89 -35.55 ↓-249.28 ↓-36.13 ↓-42.95
MOVIE 500 -52.49 -59.50 ↓-227.05 ↓-64.76 ↓-84.82
WEBKB 839 -158.20 -165.57 ↓-338.01 ↓-169.64 ↓-179.34
REUTERS 889 -85.07 -108.01 ↓-407.96 -108.10 ↓-108.42
NEWSGROUP 910 -155.93 -158.01 ↓-312.12 ↓-160.41 ↓-167.89
BBC 1058 -250.69 -275.43 ↓-462.96 -274.82 ↓-276.97
AD 1556 -19.73 -63.81 ↓-638.43 ↓-63.83 ↓-64.11

Table 3.2: Log-lielihood scores on 4 large datasets. The best results are highlighted in bold font,
and dashes ”-” are used to indicate that an algorithm didn’t finish or couldn’t load the dataset into
memory.
Dataset Var# LearnSPN oBMM oDMM SGD oEM oEG
KOS 6906 -444.55 -422.19 -437.30 -3492.9 -538.21 -657.13
NIPS 12419 - -1691.87 -1709.04 -7411.20 -1756.06 -3134.59
ENRON 28102 - -518.842 -522.45 -13961.40 -554.97 -14193.90
NYTIMES 102660 - -1503.65 -1559.39 -43153.60 -1189.39 -6318.71

42

Table 3.3: Running time in minutes on 4 large datasets. The best running time is highlighted in
bold font, and dashes ”-” are used to indicate that an algorithm didn’t finish or couldn’t load the
dataset into memory.

Dataset Var# LearnSPN oBMM oDMM SGD oEM oEG
KOS 6906 1439.11 89.40 8.66 162.98 59.49 155.34
NIPS 12419 - 139.50 9.43 180.25 64.62 178.35
ENRON 28102 - 2018.05 580.63 876.18 694.17 883.12
NYTIMES 102660 - 12091.7 1643.60 5626.33 5540.40 6895.00

that oBMM has significantly better log-likelihood on most of the datasets. Surprisingly, oBMM

matches the performance of LearnSPN in 11 datasets despite the fact that the structure used

for oBMM is generated randomly. The advantage of online algorithms over batch algorithms

including LearnSPN appears when the dataset size increases to the limit since it becomes hard to

fit it in memory. Tables 4.2 and 3.3 show the likelihood scores and the running times of different

methods on large datasets. Dashes are used to indicate that the algorithm didn’t finish in a week

or the training data could not fit in memory. We were able to run LearnSPN only on the KOS

dataset since the rest of the datasets didn’t finish in a week or they were too big to fit in memory.

Both oBMM and oDMM outperform LearnSPN, which runs 16 times slower than oBMM and

166 times slower than oDMM. oBMM and oDMM also outperform SGD by a large margin on

the large data sets. In terms of the running time, oDMM is significantly faster than the rest of the

algorithms since we are distributing the training data over multiple machines.

3.4.2 Continuous SPNs with Gaussian Leaves

We performed experiments on 7 real-world datasets from the UCI machine learning reposi-

tory [29] and the function approximation repository [18] that span diverse domains with 3 to 48

43

attributes. We compare the performance of online algorithms for Sum-Product Networks with

continuous variables as well as other generative deep networks like Stacked Restricted Boltzman

Machines (SRBMs) and Generative Moment Matching Networks (GenMMNs). We evaluated

the performance of SPNs using both online EM (oEM) and online Bayesian Moment Matching

(oBMM). Stochastic gradient descent and exponentiated gradient descent could also be used,

but since their convergence rate was shown to be much slower than that of oEM [48, 58], we

do not report results for them. Since there are no structure learning algorithms for continuous

SPNs, we used a random structure and a structure equivalent to a Gaussian Mixture Model for

the experiments using both oEM and oBMM. In both cases, the leaves are multivariate Gaussian

distributions. Before discussing the results, we provide additional details regarding the training

and likelihood computation for oEM, SRBM and GenMMN.

Online EM. [40] describe how to estimate the leaf parameters in a batch mode by EM. To

adapt their algorithm to the online setting, we follow the framework introduced by [34] where

increments of the sufficient statistics are accumulated in a streaming fashion. More specifically,

we sample one data instance at a time to compute the corresponding local sufficient statistics

from that instance. Then we accumulate the local sufficient statistics as increments to the globally

maintained sufficient statistics. The update formula is obtained by renormalization according to

the global sufficient statistics. This online variant of EM is also known as incremental EM [28].

There are no hyperparameters to be tuned in the online EM (oEM) algorithm for SPNs. In

the experiments, we randomly initialize the weights of SPNs and apply oEM to estimate the

parameters. For each data set, oEM processes each data instance exactly once.

SRBM. We trained stacked restricted Boltzmann machine (SRBM) with 3 hidden layers

44

of binary nodes where the first and second hidden layers have the same number of nodes as

the dimensionality of the data and the third hidden layer has four times as many nodes as the

dimensionality of the data. This yielded a number of parameters that is close to the number of

parameters of the random SPNs for a fair comparison. This 1 : 1 : 4 structure is taken from

[19]. Computing the exact likelihood of SRBMs is intractable. Hence, we used Gibbs sampling

to approximate the log-likelihood. We averaged 1000 runs of 500 iterations of Gibbs sampling

where in each iteration the value of each hidden node is re-sampled given the values of the

adjacent nodes. At the end of each run, the log-likelihood of each data instance is computed

given the last values sampled for the hidden nodes in the layer above the leaf nodes.

Gen MMN. We trained fully-connected networks with multiple layers. The number of layers

and hidden units per layer depends on the training dataset and was selected to match the number

of parameters in random SPNs for a fair comparison. Inputs to the networks are vectors of

elements drawn independently and uniformly at random in [−1, 1]. The activation function for

the hidden layers is ReLU and for the output layer is sigmoid. We used the Gaussian kernel in

MMD and followed the algorithm described in [27] for training. To compute the average log-

likelihood reported in Table 4.1, we generate 10, 000 samples using the trained model and fit

a kernel density estimator to these samples. The average log-likelihood of the test set is then

evaluated using this estimated density. The kernel for our density estimator is Gaussian and its

parameter is set to maximize the log-likelihood of the validation set. This technique was used

since there is no explicit probability density function for this model. However, as shown in [53]

this method only provides an approximate estimate of the log-likelihood and therefore the log-

likelihood reported for GenMMNs in Table 4.1 may not be directly comparable to the likelihood

45

of other models.

Table 4.1 reports the average log-likelihoods (with standard error) of each model on the 7 real-

world datasets using 10-fold cross-validation. No results are reported for random SPNs trained by

oBMM and oEM when the number of attributes is too small (less than 5) to consider a structure

that is more complex than GMMs. No results are reported for GMM SPNs trained by oBMM

and oEM when the number of attributes is large (48) in comparison to the amount of data since

the number of parameters to be trained in the covariance matrix of each Gaussian component

is square in the number of attributes. We can think of GMMs as a baseline structure for SPNs

when the dimensionality of the data is low and random SPNs as more data efficient models for

high-dimensional datasets. Note also that since the data is continuous, the log-likelihood can be

positive when a model yields a good fit as observed for the Flow Size dataset. The best results for

each dataset are highlighted in bold. oBMM consistently outperforms oEM on each dataset. In

comparison to other deep models, the results are mixed and simply suggest that continuous SPNs

trained by oBMMs are competitive with SRBMs and GenMMNs. Note that it is remarkable that

SPNs with a random or basic GMM structure can compete with other deep models in the absence

of any structure learning. Note also that SPNs constitute a tractable probabilistic model in which

inference can be done exactly in linear time. This is not the case for SBRMs and GenMMNs

where inference must be approximated.

46

Table 3.4: Log-likelihood scores on real-world data sets. The best results are highlighted in bold
font.

Dataset Flow Size Quake Banknote Abalone Kinematics CA Sensorless Drive
of vars 3 4 4 8 8 22 48

oBMM (random)
- - - -1.82 -11.19 -2.47 1.58

± 0.19 ± 0.03 ± 0.56 ± 1.28

oEM (random)
- - - -11.36 -11.35 -31.34 -3.40

± 0.19 ± 0.03 ± 1.07 ± 6.063

oBMM (GMM)
4.80 -3.84 -4.81 -1.21 -11.24 -1.78 -
± 0.67 ± 0.16 ± 0.13 ± 0.36 ± 0.04 ± 0.59

oEM (GMM)
-0.49 -5.50 -4.81 -3.53 -11.35 -21.39 -
± 3.29 ± 0.41 ± 0.13 ± 1.68 ± 0.03 ± 1.58

SRBM
-0.79 -2.38 -2.76 -2.28 -5.55 -4.95 -26.91
± 0.004 ± 0.01 ± 0.001 ± 0.001 ± 0.02 ± 0.003 ± 0.03

GenMMN
0.40 -3.83 -1.70 -3.29 -11.36 -5.41 -29.41
± 0.007 ± 0.21 ± 0.03 ± 0.10 ± 0.02 ± 0.14 ± 1.185

3.5 Conclusion

SPNs gained popularity for being able to provide exact marginal and conditional inference in

linear time, however learning the parameters in a tractable way is still challenging. In this chapter,

I explored online algorithms for learning the parameters of an SPN tractably. I also proposed

online Bayesian Moment Matching as an online framework for parameter learning, and I showed

how to distribute the algorithm over many machines. I showed how oBMM outperforms the rest

of the algorithms. I also showed that distributing the algorithm over multiple machines is very

effective when running time is the bottleneck.

For SPNs with Gaussian leaves, I presented the first online algorithm for parameter learning. I

also reported on the first comparison between continuous SPNs and other generative deep models

such as SRBMs and GenMMNs.

47

Chapter 4

Discriminative Training of Sum-Product

Networks by Extended Baum-Welch

Various generative learning algorithms have been designed to estimate the parameters of SPNs,

including Gradient Descent and hard EM [45], soft EM [37], Bayesian moment matching [48],

collapsed variational Bayes [56], sequential monomial approximations and the concave-convex

procedure [58]. Discriminative training of SPNs by gradient descent was introduced by [15].

Although gradient descent is tractable, convergence can be quite slow since it uses first order

approximations. [1] introduced a novel discriminative algorithm for SPNs that learns the struc-

ture of the SPN while extracting features that are maximally correlated with the labels. The

algorithm has been shown to perform well compared to generative structure learning algorithms.

However, it is a batch algorithm that recursively performs singular value decompositions that are

very expensive.

48

In this chapter, we present a novel algorithm to train SPNs discriminatively based on the Ex-

tended Baum-Welch technique. While Expectation Maximization and Baum-Welch are equiv-

alent in generative training, they cannot be used directly in discriminative training and their

extensions for maximizing conditional likelihoods are not the same. Extended Baum-Welch (for

discriminative training) [17] is simpler both conceptually and computationally than conditional

EM (for discriminative training) [21, 22, 51] and therefore has become the most popular ap-

proach to train HMMs discriminatively. Extended Baum-Welch provides a general approach to

optimize rational functions such as conditional likelihoods. It also offers faster convergence than

gradient descent while guaranteeing monotonic improvement at each iteration [35]. In order to

apply Extended Baum-Welch to discriminative SPNs, we will formulate the conditional distribu-

tion as a rational function. We will develop the algorithm for SPNs with both multinomial and

univariate Gaussian distributions at the leaves.

The chapter is structured as follows, we first review Baum-Welch and Extended Baum-Welch

algorithms. Section 4.2 introduces discriminative SPNs and explains how to compute the con-

ditional likelihood for a classification task. Then, update formulas for discriminative gradient

descent and Extended Baum-Welch are derived for SPNs with discrete and continuous variables.

Section 4.3 presents three sets of experiments that we carried out to evaluate the performance of

our algorithm.

49

4.1 Extended Baum-Welch Algorithm

The Baum-Welch algorithm was introduced in 1970 to estimate the parameters for HMMs [6].

The algorithm was based on the Baum-Eagon inequality [5], which monotonically maximizes

polynomials that satisfy certain conditions. The algorithm was then extended to maximizing

rational functions (i.e., ratio of two polynomial functions) [17], which made it very useful in dis-

criminative training settings. Extended Baum-Welch (EBW) was used to discriminatively train

HMMs, GMMs, as well as discrete distributions [44, 24, 36] In this Section, we will review

the original Baum-Welch algorithm, then we will explain how it was extended to work for ra-

tional polynomials. Finally, we will show how to use EBW to train SPNs discriminatively in

Section 4.2.

Theorem 1. [5] Let S(θ) be a homogeneous degree d polynomial with non-negative coefficients.

Let θ̄ = {θ̄ij} be any point in the domain D :
∑

j θij = 1, ∀i. Let θ̂ = T (θ̄) = T ({θ̄ij}) be a

transformation function such that

θ̂ij =
θ̄ij

∂S
∂θij

(θ̄)∑
j θ̄ij

∂S
∂θij

(θ̄)
, (4.1)

where
∑

j θ̄ij
∂S
∂θij

(θ̄) 6= 0, ∂S
∂θij

(θ̄) is the value of ∂S
∂θij

at θ̄. Then, S(θ̂) > S(θ̄) unless T (θ̄) = θ̄.

Theorem 1 is applied iteratively to optimize a polynomial S(θ). The transformation T (θ̄)

is called a growth transform since it increases S(θ) monotonically. In discrete HMMs and

other discrete mixture models, the likelihood function is a polynomial in the parameters θ and

therefore Eq. 4.1 can be used to iteratively improve the parameters in a way that the likelihood

50

monotonically improves. Interestingly, we obtain the same update formula as for Expectation-

Maximization.

The growth transform can be extended to rational functions, Rd(θ) = Num(θ)
Den(θ)

, where both the

numerator, Num(θ), and the denominator, Den(θ), are polynomials.

Theorem 2. [17] Let Rd(θ) = Num(θ)
Den(θ)

be a rational function. Let θ̄ = {θ̄ij} be any point in the

domain D :
∑

j θij = 1, ∀i. Let’s construct polynomials Q(θ) and S(θ) as follows

Q(θ) = Num(θ)−Rd(θ̄)Den(θ)

S(θ) = Q(θ) + C(θ)

(4.2)

where C(θ) = c

[∑
i,j θij + 1

]d
, c is chosen such that it cancels all negative coefficients in Q(θ),

and d is the degree of Q(θ). Based on the above construction, Theorem 1 can be applied to S(θ)

such that Rd(θ̂) > Rd(θ̄), unless T (θ̄) = θ̄.

In discriminative learning, the conditional likelihood can typically be expressed as a rational

function R(θ) (i.e., the data likelihood divided by the marginal of the inputs). In the next section,

we will show how to construct a polynomial S(θ) from the rational function corresponding to

the conditional likelihood of SPNs and then apply the growth function to improve the conditional

likelihood monotonically.

51

Figure 4.1: Discriminative SPN architecture.

4.2 Discriminative Sum-Product Networks

Let the training set be X = {x1, ...,xN} and the corresponding labels Y = {y1, ..., yN}, where

xi ∈ {0, 1}M , yi ∈ {0, ..., K}, N is the number of training examples, M is the feature size, and

K is the number of class labels. In this section, we first provide some preliminary derivations

for discriminative SPNs, then extend the discriminative gradient descent technique proposed by

[15] to continuous SPNs with Gaussian leaves, and finally we describe our new discriminative

learning technique based on Extended Baum-Welch.

In discriminative training, we maximize the conditional probability distribution P (y|x). To

do that, we use the discriminative SPN architecture shown in Figure 4.1 where there is a sub-

SPN, SPNy, for each class y , and sub-SPNs can share part of the network. Each sub-SPN

models the likelihood of an observation given the class label, F y
root(x) = p(x|y). Evaluating the

whole network gives us the probability of an observation, p(x) =
∑

y p(y)F y
root(x). According

to Bayes rule, the conditional probability can be computed as follows:

52

P (y|x) =
p(y)p(x|y)

p(x)

=
p(y)F y

root(x)

Froot(x)

(4.3)

The label associated with the sub-SPN that maximizes the conditional probability distribution

is selected.

argmaxy=1,...,Y p(y)F y
root(x) (4.4)

In the training phase, the posterior P (Y|X) is maximized. The posterior is computed in

terms of the prior and the likelihoods as follows

P (Y|X) =
N∏
n=1

P (yn|xn)

=
N∏
n=1

P (yn)F yn
root(xn)

Froot(xn)

(4.5)

Similarly log(P (Y|X)) is computed as follows.

log(P (Y|X)) =
N∑
n=1

log(p(yn)F yn
root(xn))− log

(
Froot(xn)

)
(4.6)

The above equations show that discriminative training aims at maximizing the likelihood of

the correct class, similar to generative training, while minimizing the likelihoods of the remaining

classes. Estimating P (y) can be done easily and robustly by normalizing the class frequencies

in the training data. Estimating the parameters of P (x|y), which are the weights of F y
root(x), is

53

harder and usually doesn’t have a closed form solution. Iterative methods are used in this case.

We will use F y
j (x) to refer to the value of the sub-SPN associated with class y at node

j. Throughout the derivations, we assume that the SPN is always normalized to ensure that

P (x|y) = F y
root(x). This can be done by normalizing the weights after each iteration.

Finally, we will need to compute the partial derivative of the log likelihood with respect to

an arbitrary parameter θy in the SPN, where superscript y indicates that θy is a parameter in the

sub-SPN F y
root. The derivative of the log likelihood can be obtained as follows:

∂log(P (Y|X))

∂θy
=

N∑
n=1

p(yn)
∂F yn

root

∂θy
(xn)

p(yn)F yn
root(xn)

−
∂Froot

∂θy
(xn)

Froot(xn)

=
N∑
n=1

1

F yn
root(xn)

∂F yn
root

∂θy
(xn)− 1

Froot(xn)

∂Froot
∂θy

(xn) (4.7)

Since we know that ∂F
yn
root

∂θy
= 0 when y 6= yn, we can rewrite ∂F yn

root

∂θy
as follows:

∂F yn
root

∂θy
= 1[y∈SPNyn]

∂F y
root

∂θy
(4.8)

Also, since Froot(xn) =
∑

y p(y)F y
root(xn), we can rewrite ∂Froot

∂θy
(xn) as follows:

∂Froot
∂θy

(xn) = p(y)
∂F y

root

∂θy
(xn) (4.9)

Finally, based on Eq. 4.8 and 4.9 we can rewrite Eq. 4.7 as follows:

54

∂log(P (Y|X))

∂θy
=

N∑
n=1

∂F y
root

∂θy
(xn)

[
1[y=yn]

F yn
root(xn)

− p(y)

Froot(xn)

]

=
N∑
n=1

∂F y
root

∂θy
(xn)γn

(4.10)

where γn ≥ 0. Throughout the rest of this section, we will use the above equation whenever we

need the gradient of the log of the conditional likelihood.

4.2.1 Discriminative Learning for SPNs Using Gradient Descent

[15] showed how to train edge weights for SPNs discriminatively by taking the gradient of the

conditional log likelihood log(P (Y|X)). We briefly state how to compute discriminative gradi-

ents in continuous SPNs with Gaussian leaves.

Using Eq. 4.10 and knowing that ∂F y
root

∂wy
ij

(x) = F y
j (xn)

∂F y
root

∂F y
i

(xn), the following formula can

be used to update each edge weight wyij by taking a small step η in the direction of the gradient.

wyij ← wyij + η
∂log(P (Y|X))

∂wyij

= wyij + η
∑
n

F y
j (xn)

∂F y
root

∂F y
i

(xn)γyn

(4.11)

Similarly, for leaf univariate Gaussian distributions, µyij and (σ2)yij can be updated by taking

a small step η in the direction of the gradient.

µyij ← µyij + η
∑
n

N y
ij(xnj)

xnj − µyij
(σ2)yij

∂F y
root

∂F y
i

(xn)γyn (4.12)

55

(σ2)yij ← (σ2)yij + η
∑
n

N y
ij(xnj)

2(σ2)yij

[
(xnj − µyij)2

(σ2)yij
− 1

]
∂F y

root

∂F y
i

(xn)γyn (4.13)

4.2.2 Discriminative Learning for SPNs using Extended Baum-Welch

We first derive the Baum-Welch algorithm to maximize the log likelihood for SPNs in a gener-

ative way. Theorem 1 can be applied to SPNs assuming that the network is normalized. In that

case, the polynomial S(θ) is the likelihood of the data, which corresponds to a product of net-

work polynomials, i.e., P (X|Y) =
∏

n Froot(xn). The parameters θ = {wij} of the polynomial

satisfy the condition
∑

j wij = 1 since the sum of the weights for each sum node is one. To

apply Theorem 1, we need to deal with the sum of the log-likelihoods, log(P (X|Y)), instead of

the likelihood of the data, P (X|Y), since log(P (X|Y)) is easier to differentiate. We have

∂log(P (X|Y))

∂wij
=

1

P (X|Y)

∂P (X|Y)

∂wij
(4.14)

Hence, we can rewrite Eq. 4.1 as follows.

ŵij =
wijP (X|Y)∂log(P (X|Y))

∂wij∑
j wijP (X|Y)∂log(P (X|Y))

∂wij

=
wij

∂log(P (X|Y))
∂wij∑

j wij
∂log(P (X|Y))

∂wij

(4.15)

The above formula is the same update formula obtained by Expectation-Maximization and

the Convex-Concave Procedure (CCCP) [58].

56

In discriminative training for SPNs, applying Expectation-Maximization or CCCP doesn’t

lead to a closed form update formula [15]. [21, 22] derived a conditional version of EM that

turned out to be complicated and computationally demanding. [51] derived a simpler and faster

update formula, but it requires second order derivatives, which is not tractable in large models

with many parameters such as SPNs. In contrast, EBW can be applied to maximize the condi-

tional likelihood with a closed form formula. Before applying Theorem 2 to SPNs, we will do

the same as we did above to work with ∂logRd(θ)
∂θij

. We start by taking the derivative of S(θ) in Eq.

4.2 with respect to the parameters θij

∂S(θ)

∂θij
=
∂Num(θ)

∂θij
−Rd(θ̄)

∂Den(θ)

∂θij
+
∂C(θ)

∂θij
(4.16)

where ∂C(θ)
∂θij

= cd

[∑
i,j θij + 1

]d−1

is also a constant.

Since,
∂log(Rd(θ))

∂θij
=

1

Num(θ)

∂Num(θ)

∂θij
− 1

Den(θ)

∂Den(θ)

∂θij

=
1

Num(θ)

[
∂Num(θ)

∂θij
−Rd(θ)

∂Den(θ)

∂θij

] (4.17)

Then we obtain the following equation.

∂S(θ̄)

∂θij
= Num(θ̄)

[
∂logRd

∂θij
(θ̄) +

1

Num(θ̄)

∂C(θ̄)

∂θij

]
= Num(θ̄)

[
∂logRd

∂θij
(θ̄) +D

] (4.18)

Substituting Eq. 4.18 in Equation 4.1, we get the following update formula

57

θ̂ij =

θ̄ij

[
∂logRd

∂θij
(θ̄) +D

]
∑

j

[
θ̄ij

∂logRd

∂θij
(θ̄)

]
+D

(4.19)

where D = 1
Num(θ̄)

∂C(θ̄)
∂θij

. D controls how different θ̂ij is from θ̄ij . Small values for D allow

θ̂ij to change freely, while large values restrict the magnitude of changes. In practice,D is chosen

such that D < 1
Num(θ̄)

∂C(θ̄)
∂θij

for faster convergence.

To apply EBW to SPNs, we have to define the rational function Rd, which in this case is the

posterior P (Y|X). The parameters θ of the posterior are the weights wyij , the mean µyij , and the

variance (σ2)yij .

For sum nodes, the weights will be updated as follows.

ŵyij =

wyij

[∑
n

F y
j (xn)

∂F y
root

∂F y
i

(xn)γyn

]
+Dwyij[∑

j∈Children(i)

∑
n

F y
j (xn)

∂F y
root

∂F y
i

(xn)γyn

]
+D

(4.20)

[36] proposed a discrete approximation for univariate Gaussian distributions that allows us to

update µyij and (σ2)yij in the Gaussian leaves of SPNs as follows.

µ̂yij =

[∑
n

(
N y
ij(xn)

∂F y
root

∂F y
i

(xn)γyn

)
xnj

]
+Dµyij[∑

n

N y
ij(xn)

∂F y
root

∂F y
i

(xn)γyn

]
+D

(4.21)

58

ˆ(σ2)
y

ij =

[∑
n

(
N y
ij(xn)

∂F y
root

∂F y
i

(xn)γyn
)
x2
nj

]
+D

[
(σ2)yij + (µyij)

2

]
[∑

n

N y
ij(xn)

∂F y
root

∂F y
i

(xn)γyn

]
+D

− (µ̂yij)
2 (4.22)

Constant D plays an important role in the discriminative training part. D tries to preserve

the previous parameters. The larger D is, the stronger will be the influence of the previous

parameters on the current ones. Choosing constant D is not trivial since small values can prevent

convergence, while large values induce slow convergence. A rule of thumb is to start from a

small value and to increase it after each epoch.

4.3 Experiments

To evaluate Discriminative SPNs using EBW, we carried out three sets of experiments. In the

first experiment, we compared EBW to generative EM (discriminative EM requires second order

derivatives [51], which is not tractable for SPNs of 1 thousand to 1 million parameters) and

discriminative gradient descent. The second experiment aims to illustrate the advantage of SPNs

over Support Vector Machines (SVMs) and Neural Networks in the case of missing features. In a

third experiment, we trained an SPN on MNIST images using generative EM and discriminative

EBW. We sample images from the resulting SPNs, and we show the effect of using discriminative

training on the model parameters.

For all experiments, we generated dense SPNs by using a variant of the algorithm proposed

in [45]. We recursively construct the SPN structure in a top down fashion as follows. We treat the

59

Table 4.1: The accuracies of EBW, generative EM, and discriminative GD on the test data of
eight different datasets.
Dataset Var# Dataset Size Classes# Var Type EBW genEM discGD
Banknote 4 1371 2 Binary 86.13% 83.94% 86.13%
Voice 20 3167 2 Cont 97.15% 96.20% 96.20%
Credit Card 29 284806 2 Cont 99.92% 99.38% 99.92%
Breast Cancer 30 865 2 Cont 96.42% 92.85% 91.07%
Sensorless Drive 48 85508 11 Cont 99.44% 99.36% 55.41%
Fault Detection 70 14354 41 Cont 60.45% 58.67% 58.12%
Activity Recognition 561 10299 6 Cont 90.53% 88.66% 76.45%
MNIST 784 70000 10 Binary 95.07% 93.35% 62.89%

variables of each problem as a 1D array (or 2D array in the case of MNIST) based on the order of

the features in the data. For each sum node, we construct children product nodes corresponding

to all splits of the scope in two sub-arrays of variables (all vertical and horizontal splits in two

2D arrays in the case of MNIST). We stop when the scope has a single variable, in which case,

a univariate leaf distribution is generated. To control the size of the network, we randomly skip

some partitions.

4.3.1 EBW versus Other Parameter Learning Algorithms

In this experiment, we used eight different datasets1 that span a wide spectrum of domains. The

number of classes ranges from 2 to 41, and the number of variables ranges from 4 to 784. For

the datasets that don’t have training and testing splits, we use 10% of the data for testing and the

rest for training. While we applied the algorithm on datasets where the variables are binary and

continuous, our implementation can also handle categorical variables.
1The datasets are publicly available at archive.ics.uci.edu/ml/ and kaggle.com except fault detection, which is a

private dataset collected by Huawei.

60

EBW has one hyper-parameter D. Initializing D to 0.1 and increasing it after each epoch by

0.1 produces the best results. Generative EM doesn’t have any hyper-parameters. For gradient

descent, we found that initializing the learning rate to 1 and decreasing it after each epoch by

multiplying by 0.9 produces the best results. During the experiments, we limited the number of

epochs to 20.

Table 4.1 shows that EBW always outperforms genEM. We also observed that discGD con-

verges quickly to good solutions for small and shallow SPNs, but not deep SPNs, which suggests

that it suffers from the gradient vanishing problem.

We explored the convergence speeds for EBW and discGD on the training data. We ran

every algorithm for 20 epochs. Figure 4.2 shows the convergence speed and performance for

both algorithms. Both algorithms take the same time per epoch. The figure shows that EBW

converges faster to a better solution than discGD. Furthermore, discGD struggles to achieve

good results consistently as we can see in the Activity Recognition plot where it didn’t converge

to a solution in 20 epochs while EBW was able to converge after a few epochs.

4.3.2 EBW for Problems with Missing Features

Missing features is a problem that commonly happens in wearable devices where sensors can

fail frequently. SPNs can naturally handle missing features by summing out the corresponding

unobserved variables when doing inference. We show the robustness of SPNs trained using

EBW in the absence of some features. We compare the performance of SPNs to SVMs and

Neural Networks.

61

0 10 20

0.7

0.8

0.9

A
cc

ur
ac

y

Banknote

EBW
discGD

0 10 20

0.7

0.8

0.9

Voice

EBW
discGD

0 10 20
0.99

0.99

1

1

Credit Card

EBW
discGD

0 10 20

0.85

0.9

0.95

1

epochs

A
cc

ur
ac

y

Breast Cancer

EBW
discGD

0 10 20
20
40
60
80

100

epochs

Sensorless Drive

EBW
discGD

0 10 20

0.6

0.8

1

epochs

Activity Recognition

EBW
discGD

Figure 4.2: Accuracies on training data versus number of epochs for EBW and discriminative
GD algorithms. The time per epoch is the same for both algorithms.

62

Table 4.2: The test accuracies of EBW-trained SPNs, SVMs and NNs on seven datasets.
Algorithm EBW NN SVM
Dataset 0% 50% 0% 50% 0% 50%
Banknote 86.13% 64.90% 86.13% 62.04% 86.13% 54.74%
Voice 97.15% 88.60% 97.46% 88.60% 96.20% 77.53%
Credit Card 99.92% 99.80% 99.87% 99.80% 99.96% 99.73%
Breast Cancer 96.24% 89.28% 94.60% 83.92% 94.64% 87.50%
Sensorless Drive 99.44% 52.03% 96.03% 47.90% 75.50% 12.40%
Fault Detection 60.45% 48.40% 50.01% 46.80% 57.04% 47.09%
Activity Recognition 90.53% 88.59% 93.82% 81.57% 96.23% 61.14%

We randomly set 50% of the features for each instance to be missing, SPNs can handle such

missing features by summing/integrating out the leaf distributions. Since SVMs and NNs need

values for all features, we set the missing features to their average.2 For SVMs, a polynomial

kernel was used and the penalty constant was tuned for best performance. For NNs, we limited

the number of parameters to be equal to the number of parameters in SPNs. We used neural

networks with two hidden layers and rectified linear units (ReLU) in each layer. We set the

width of each layer such that the number of parameters for the NNs is the same as the SPNs. We

used TensorFlow to build and train NNs. We set the number of epochs to 20. Table 4.2 shows

that EBW-trained SPNs are consistently more robust to missing features than both SVMs and

NNs.
2It is possible to deal with missing features in kernel methods in a principled way by modifying the loss function

to take into account the uncertainty induced by the missing features, however modeling assumptions are needed and
the optimization problem is changed [43]. Alternatively, one can also deal with missing features by casting kernel
methods as estimation problems in exponential families, but this yields non-convex optimization problems [52]

63

(a) Sampled images for digits ’3’ and ’8’ from generatively trained SPNs

(b) Sampled images for digits ’3’ and ’8’ from discriminatively trained SPNs

Figure 4.3: The above samples show the effect of training SPNs discriminatively. The sampled
images for digit ’8’ in the discriminative training case illustrate that the SPN for digit ’8’ was
tuned to focus on the parts that discriminate the digit ’8’ from the digit ’3’.

4.3.3 Visualizing the Parameters Learned by EBW

This experiment aims at visualizing the parameters learned by both EBW and generative EM by

sampling different images from the learned SPNs. We chose two classes, ’3’ and ’8’, with visual

similarities from the MNIST dataset. We trained an SPN using generative EM and a second SPN

using discriminative EBW. We sampled images from the resulting SPNs to analyze the effect of

discriminative EBW on the learned parameters.

As shown in Figure 4.3, the sampled images from the generatively trained SPN resemble the

appearance of digit ’3’ and digit ’8’. On the other hand, the sampled images from the discrimina-

tively trained SPN show the parts of the digits ’3’ and ’8’ that are discriminative. We know that

the left part of digit ’8’ differentiates it from digit ’3’, which is what was learned by the SPN.

64

4.4 Conclusion

I proposed a framework to train SPNs discriminatively using Extended Baum-Welch. I did so by

formulating the conditional likelihood as a rational function and applied Extended Baum-Welch

to maximize that function. I derived the update formulas for cases where the leaf nodes are

either multinomial or univariate normal distributions. The experiments show that EBW outper-

forms generative EM and discriminative gradient descent in a wide variety of applications. I also

demonstrated the advantage of SPNs for classification tasks when some features are missing. We

also illustrated the effect of learning the parameters of SPNs using EBW.

65

Chapter 5

Online Parameter and Structure Learning

for Recurrent SPNs

In the previous two chapters, I discussed how to train the parameters of an SPN generatively,

and discriminatively. In this chapter, I propose a new technique to learn the network structure of

recurrent SPNs.

Recurrent Sum-Product Networks (RSPNs) were introduced by Melibari et al. [32] to model

sequential data. RSPNs consist of a template network that can be unrolled as many times as

needed to model a variable length data sequence. The unrolled network encodes a valid distribu-

tion over a data sequence if the template SPN satisfies certain conditions [32] to ensure that the

unrolled network is a valid SPN.

Structure learning for RSPNs is important to model the conditional dependencies among the

variables. Several automated structure learning techniques have been proposed for regular SPNs

66

[13, 16, 38, 26, 50, 1, 54, 46, 31]. These algorithms learn the structure for a fixed length input, but

they fail to generalize to variable length data. Melibari et al. [32] proposed a structure learning

algorithm called Search-and-Score. The algorithm starts from an initial template network, and

gradually increases the size of the network through a series of search and score iterations. At each

iteration, the algorithm modifies the network slightly (search step), and the new modification is

accepted if it improves the log likelihood score on a development set (score step). In the search

step, the algorithm samples a product node uniformly from the template network, and the scope

of the product node is randomly partitioned into a set of disjoint scopes. The sub-SPN rooted

at the product node is replaced by a product of naive Bayes models of the partitioned scope.

Finally, the parameter of the new SPN is learned. In the score step, the log likelihood score is

computed on a development dataset. If the log likelihood score improves, the new structure is

accepted. Search-and-score based structure learning was demonstrated to perform well compared

to HMMs and other models on a number of datasets. But, it is slow and doesn’t scale well. It

also locally optimizes the structure at each search and score iteration.

The algorithm proposed by Melibari et al. [32] doesn’t scale well since it performs a slight

modification to the network at each iteration. When the size of the network gets bigger, the

effect of these modifications diminish, which results in very slow convergence. The scoring step

is also computationally expensive since we need to evaluate the network after each structure

update. To that effect, I propose a new online parameter and structure learning technique for

recurrent SPNs. The approach starts with a network structure that assumes that all features are

independent. This network structure is then updated as a stream of data points is processed.

Whenever a non-negligible correlation is detected between some features, the network structure

67

is updated to capture this correlation.

5.1 Proposed Algorithm

In recurrent SPNs, there are four types of nodes: sum nodes, product nodes, interface and leaf

nodes. Sum nodes and product nodes produce, respectively, the sums and products of the values

of their children. Interface nodes are the latent inputs and outputs of each time step, they are

either sum or product nodes. Each leaf node represents a probability distribution over a subset of

the variables, and given an input, it produces the value of the probability density function at that

input.

To simplify the exposition, we assume that the leaf nodes have Gaussian distributions. A

leaf node may have more than one variable in its scope, in which case it follows a multivariate

Gaussian distribution. For interface nodes, we consider the case where all interface nodes have

the same scope, this makes it easier to grow the network without violating any of the complete-

ness/consistency constraints. This assumption helps as well with interpreting the interface nodes

as the predicates of a single multinomial latent variable, L.

Suppose we want to model a probability distribution over a d-dimensional input space, and

k-dimensional latent space. The algorithm starts with a fully factorized joint probability distri-

bution over all d variables plus the latent variable L, p(x, L) = p(x1, x2, . . . , xd, L)

= p1(x1)p2(x2) · · · pd(xd)p(L). This distribution is represented by a product node with d + 1

children. Initially, we assume that the variables are independent, and the algorithm will update

this probability distribution as new data points are processed. Fig. 5.2 shows an example of an

68

initial structure for three input variables, and two interface nodes.

Given a mini-batch of data sequences, the algorithm passes the points through the network

from the root to the leaf nodes and updates each node along the way. This update includes

two parts: i) updating the parameters of the SPN, and ii) updating the structure of the template

network.

5.1.1 Parameter update

There are two types of parameters in the model: weights on the branches under a sum node, and

parameters for the Gaussian distribution in a leaf node. The parameters are updated in an online

fashion by keeping track of running sufficient statistics.

Algorithm 3 describes the pseudocode of this procedure. Every node in the network has a

count, nc, initialized to 1. When a data point is received, the template network is unrolled (Fig.

5.2.b) as many times as needed and the likelihood of this data sequence is computed at each node.

Then the parameters of the network are updated in a recursive top-down fashion by starting at

the root node. When a sum node is traversed, its count is increased by 1 and the count of the

child with the highest likelihood is increased by 1. This effectively increases the weight of the

child with the highest likelihood while decreasing the weights of the remaining children. As a

result, the overall likelihood at the sum node will increase. The weight ws,c of a branch between

a sum node s and one of its children c is estimated as ws,c = nc

ns
where ns is the count of the

sum node and nc is the count of the child node. We recursively update the subtree of the child

with the highest likelihood. In the case of ties, we simply choose one of the children with highest

69

likelihood at random to be updated. Since the template network is copied as many times as the

length of the input sequence, the same sum node could be traversed multiple times. At each time,

the parameters of the count of the sum node, and the child that is traversed are incremented.

Since there are no parameters associated with a product node, the only way to increase its

likelihood is to increase the likelihood at each of its children. We increment the count at each

child of a product node and recursively update the subtrees rooted at each child. For Gaussian

leaf nodes, we keep track of the empirical mean vector µ and covariance matrix Σ for the vari-

ables in their scope. When a leaf node with a current count of n receives a batch of m data

points x(1), x(2), . . . , x(m), the empirical mean µ and covariance Σ are updated according to the

following equations:

µ′i =
1

n+m

(
nµi +

m∑
k=1

x
(k)
i

)
(5.1)

Σ′i,j =
1

n+m

[
nΣi,j +

m∑
k=1

(
x

(k)
i − µi

)(
x

(k)
j − µj

)]

− (µ′i − µi)(µ′j − µj) (5.2)

where i and j index the variables in the leaf node’s scope.

This parameter update technique is related to hard SGD and hard EM used in [45, 15, 26].

Hard SGD and hard EM also keep track of a count for the child of each sum node and increment

those counts each time a data point reaches this child. However, to decide when a child is reached

by a data point, they replace all descendant sum nodes by max nodes and evaluate the resulting

max-product network. In contrast, we retain the descendant sum nodes and evaluate the original

70

sum-product network as it is. This evaluates more faithfully the probability that a data point is

generated by a child.

Algorithm 3 does a single pass through the data. The complexity of updating the parameters

after each data point is linear in the size of the network (i.e., # of edges) since it takes one

bottom up pass to compute the likelihood of the data point at each node and one top-down pass

to update the sufficient statistics and the weights. The update of the sufficient statistics can be

seen as locally maximizing the likelihood of the data. The empirical mean and covariance of

the Gaussian leaves locally increase the likelihood of the data that reach that leaf. Similarly, the

count ratios used to set the weights under a sum node locally increase the likelihood of the data

that reach each child. We prove this result below.

Algorithm 3 parameterUpdate(root(UnrolledRSPN),data)
Require: RSPN and m data points
Ensure: RSPN with updated parameters
nroot ← nroot +m
if isProduct(root) then

for each child of root do
parameterUpdate(child, data)

else if isSum(root) then
for each child of root do
subset← {x ∈ data | likelihood(child, x) ≥ likelihood(child′, x) ∀child′ of root}
parameterUpdate(child, subset)
wroot,child ← nchild

nroot

else if isLeaf(root) then
update mean µ(root) based on Eq. 5.1
update covariance matrix Σ(root) based on Eq. 5.2

71

5.1.2 Structure update

The simple online parameter learning technique described above can be easily extended to enable

online structure learning. Alg. 5 describes the pseudocode of the resulting procedure called

oSLRAU (online Structure Learning with Running Average Update). Similar to leaf nodes, each

product node also keeps track of the empirical mean vector and empirical covariance matrix of

the variables in its scope. These are updated in the same way as the leaf nodes.

In RSPNs, the scope of the same product node at each copy of the template network is

different when taking into account copies at previous time steps. In such case, keeping track

of the empirical means and covariances is difficult and intractable. To solve this problem, the

scope of product nodes can be computed with respect to the template network input and the latent

multinomial variable L. This ensures that the variables in each copy of the template network are

equivalent and therefore we can maintain a shared covariance matrix at each product node of the

template network.

The latent multinomial distribution P (L) for interface nodes, can be approximated with a

k-dimensional normal distribution. Each interface node is treated as a separate variable when

estimating the mean and the covariance. To learn the parameters, we construct the sample vector

L = l1, l2, ..., lk by setting the indicator associated with the traversed interface node to 1 while

setting the rest of indicators to 0’s. This vector is used to update the means and covariances for

any product node that has variable L in its scope.

Initially, when a product node is created, all variables in the scope are assumed independent

(see Alg. 4). As new data sequences arrive at a product node, the covariance matrix is updated,

72

and if the absolute value of the Pearson correlation coefficient between two variables are above

a certain threshold, the algorithm updates the structure so that the two variables become corre-

lated in the model. We ignore inter correlations between interface node variables since we can’t

partition the scope of the latent variable L into disjoint scopes. We correlate the latent variable

L with another variable if the absolute value between this variable and any of the interface node

variables is above certain threshold.

We correlate two variables in the model by combining the child nodes whose scopes contain

the two variables. The algorithm creates a mixture of two components over the variables (Alg.

4). As shown in Figure 5.1. On the left, a product node with scope x1, . . . , x5 originally has

three children. The product node keeps track of the empirical mean and covariance for these five

variables. Suppose it receives a mini-batch of data and updates the statistics. As a result of this

update, x1 and x3 now have a correlation above the threshold. To correlate x1 and x3, a mixture

is created as shown in the right part of Figure 5.1. The mixture has two components. The first

component contains the original children of the product node that contain x1 and x3. The second

component is a new product node, which is again initialized to have a fully factorized distribution

over its scope (see Alg. 4). The mini-batch of data points are then passed down the new mixture

to update its parameters. Although the children are drawn like leaf nodes in the diagrams, they

can in fact be entire subtrees. Since the process does not involve the parameters in a child, it

works the same way if some of the children are trees instead of single nodes.

Note that this structure learning technique does a single pass through the data and therefore

is entirely online. The time and space complexity of updating the structure after each data point

is linear in the size of the network (i.e., # of edges) and quadratic in the number of features plus

73

Figure 5.1: Depiction of how correlations between variables are introduced. Left: original prod-
uct node with three children. Right: create a mixture to model the correlation (Alg. 4).

number of interface nodes (since product nodes store a covariance matrix that is quadratic in

the size of their scope). The algorithm also ensures that the decomposability and completeness

properties are preserved after each update.

Algorithm 4 createFactoredModel(scope)

Require: scope (set of variables)
Ensure: fully factored SPN

1: factoredModel ← create product node
2: for each i ∈ scope do
3: add Ni(µ=0, σ=Σ

(root)
i,i) as child of factoredModel

4: Σ(factoredModel) ← 0
5: nfactoredModel ← 0
6: return factoredModel

5.2 Experiments

Table 5.1 reports the average log likelihood based on 10-fold cross validation with 5 sequence

datasets. The number of sequences, the average length of the sequences and the number of

observed variables is reported under the name of each dataset. We compare oSLRAU to the pre-

vious search-and-score (S&S) technique [31] for recurrent SPNs (RSPNs) with Gaussian leaves

74

Algorithm 5 oSLRAU(root(unrolledRSPN), data)

Require: RSPN and m data sequences
Ensure: RSPN with updated parameters

1: nroot ← nroot +m
2: if isProduct(root) then
3: update covariance matrix Σ(root) based on Eq. 5.2
4: highestCorrelation← 0
5: for each c, c′ ∈ children(root) where c 6= c′ do

6: correlationc,c′ ← maxi∈scope(c),j∈scope(c′)
|Σ(root)

ij |√
Σ

(root)
ii Σ

(root)
jj

7: if correlationc,c′ > highestCorrelation then
8: highestCorrelation← correlationc,c′
9: child1 ← c

10: child2 ← c′

11: if highest ≥ threshold then
12: createMixture(root, child1, child2)
13: for each child of root do
14: oSLRAU(child, data)
15: else if isSum(root) then
16: for each child of root do
17: subset← {x ∈ data | likelihood(child, x) ≥ likelihood(child′, x) ∀child′ of root}
18: oSLRAU(child, subset)
19: wroot,child ← nchild+1

nroot+#children

20: else if isLeaf(root) then
21: update mean µ(root) based on Eq. 5.1
22: update covariance matrix Σ(root) based on Eq. 5.2

75

Figure 5.2: Top: Generic template network with interface nodes drawn in red and leaf distribu-
tions drawn in blue. Bottom: A recurrent SPN unrolled over 3 time steps.

as well as HMMs with mixture of Gaussians emission distributions and recurrent neural networks

(RNNs) with LSTM units and output units that compute the mean of Gaussians. The number of

interface nodes in RSPNs, hidden states in HMMs and LSTM units in RNNs was bounded to 15.

Parameter and structure learning was performed for the RSPNs while only parameter learning

76

was performed for the HMMs and RNNs. The RNNs were trained by minimizing squared loss,

which is mathematically equivalent to maximizing the data likelihood when we interpret each

output as the mean of a univariate Gaussian. The variance of each Gaussian was optimized by

a grid search in [0.01,0.1] in increments of 0.01 and in [0.1,2] in increments of 0.1. We did this

solely for the purpose of reporting the log likelihood of the test data with RNNs, which would

not be possible otherwise. oSLRAU outperformed the other techniques on 4 of the 5 datasets. It

learned better structures than S&S in less time. oSLRAU took less than 11 minutes per dataset

while S&S took 1 day per dataset.

Table 5.1: Average log-likelihood and standard error based on 10-fold cross validation. (#i,length,#oVars)
indicates the number of data instances, average length of the sequences and number of observed variables
per time step.

Dataset hillValley eegEye libras JapanVowels ozLevel
(#i,length,#oVars) (600,100,1) (14970,14,1) (350,90,1) (270,16,12) (2170,24,2)
HMM 286 ± 6.9 22.9 ± 1.8 -116.5 ± 2.2 -275 ± 13 -34.6 ± 0.3
RNN 205 ± 23 15.2 ± 3.9 -92.9 ± 12.9 -257 ± 35 -15.3 ± 0.8
RSPN+S&S 296 ± 16.1 25.9 ± 2.1 -93.5 ± 7.2 -241 ± 12 -34.4 ± 0.4
RSPN+oSLRAU 299.5 ± 18 36.9 ± 1.4 -83.5 ± 5.4 -231 ± 12 -30.1 ± 0.4

5.3 Conclusion

This chapter describes a new online structure learning technique for recurrent SPNs. oSLRAU

can learn the structure of SPNs in domains for which it is unclear what might be a good structure,

including sequence datasets of varying length. This algorithm can also scale to large datasets

efficiently.

77

Chapter 6

Conclusion

Sum-product networks (SPNs) generated some interest because exact marginal and conditional

inference can always be done in linear time with respect to the size of the network. This is par-

ticularly attractive since it means that learning an SPN from data always yields a tractable model

for inference. In this thesis, I proposed tractable parameter and structure learning techniques for

SPNs. Having tractable learning algorithms for SPNs would add an additional attractive property

to SPNs, and make them more practical to use in various applications.

First, I proposed online Bayesian Moment Matching as an online framework for generative

parameter learning, and I showed how to distribute the algorithm over many machines. I showed

how oBMM outperforms existing algorithms in online settings, I also showed that distributing

the algorithm over multiple machines is very effective when running time is the bottleneck. I

also showed how to apply the algorithm on SPNs with Gaussian leaves. I reported on the first

comparison between continuous SPNs and other generative deep models such as SRBMs and

78

GenMMNs.

Second, I focused on discriminative parameter learning for SPNs, I proposed a framework

to train SPNs discriminatively using Extended Baum-Welch. I did so by formulating the con-

ditional likelihood as a rational function and applied Extended Baum-Welch to maximize that

function. I derived the update formulas for cases where the leaf nodes are either multinomial

or univariate normal distributions. The experiments show that EBW outperforms generative EM

and discriminative gradient descent in a wide variety of applications. I also demonstrated the

advantage of SPNs for classification tasks when some features are missing. We also illustrated

the effect of learning the parameters of SPNs using EBW.

In the final piece, I tackled the problem of structure learning for recurrent SPNs. Recurrent

SPNs is a recent model introduced by [31] to model sequential data. Learning the structure

for recurrent SPNs was done using random search and score which is very inefficient and time

consuming. I proposed a new online structure learning technique for recurrent SPNs. oSLRAU

can learn the structure of SPNs in domains for which it is unclear what might be a good structure,

including sequence datasets of varying length. This algorithm can also scale to large datasets

efficiently.

6.1 Future Work

In the subsection below, I will talk about possible future directions to extend the work for each

technique I presented in this thesis.

79

6.1.1 Online Parameter Learning for SPNs Using Bayesian Moment Match-

ing

Discrete or Gaussian leaves might not be the best choice for modeling some random events, this

work can be extended to cover more types of leaf distributions. I would also like to investigate

the consistency of Bayesian moment matching.

6.1.2 Discriminative Training of SPNs by Extended Baum-Welch

This work can be extended by applying this framework to recurrent SPNs. Extended Baum-

Welch was first introduced to learn the parameters for Hidden Markov Models discriminatively,

extending this algorithm to cover recurrent SPNs would help improving the performance of re-

current SPNs on sequential classification tasks like speech recognition. I would also like to

investigate extending this framework to different types of leaf distributions such as exponential

family distributions.

6.1.3 Online Parameter and Structure Learning for Recurrent SPNs

The work can be extended by learning the structure of SPNs in an online and discriminative

fashion. Discriminative learning is essential to attain good accuracy in classification. Another

direction for extending this work is investigating the combination of our structure learning tech-

nique with other parameter learning methods. Currently, I simply learn the parameters by keeping

running statistics for the weights, mean vectors, and covariance matrices. It might be possible to

80

improve the performance by using more sophisticated parameter learning algorithms.

It would also be interesting to investigate other ways to form mixture components. The

current algorithm creates new mixture components when variables are found to be correlated

according to the Pearson coefficient. But there are situations when clusters cannot be detected

using this method.

I would also like to extend the structure learning algorithm to discrete variables. Finally,

we would like to look into ways to automatically control the complexity of the networks. For

example, it would be useful to add a regularization mechanism to avoid possible overfitting.

81

References

[1] Tameem Adel, David Balduzzi, and Ali Ghodsi. Learning the structure of sum-product

networks via an svd-based algorithm. In UAI, 2015.

[2] Mohamed Amer and Sinisa Todorovic. Sum product networks for activity recognition.

2015.

[3] Mohamed R Amer and Sinisa Todorovic. Sum-product networks for modeling activities

with stochastic structure. In Computer Vision and Pattern Recognition, 2012.

[4] Animashree Anandkumar, Daniel Hsu, and Sham M. Kakade. A method of moments for

mixture models and hidden Markov models. Journal of Machine Learning Research -

Proceedings Track, 23:33.1–33.34, 2012.

[5] Leonard E Baum, John Alonzo Eagon, et al. An inequality with applications to statistical

estimation for probabilistic functions of Markov processes and to a model for ecology. Bull.

Amer. Math. Soc, 73(3):360–363, 1967.

82

[6] Leonard E Baum, Ted Petrie, George Soules, and Norman Weiss. A maximization tech-

nique occurring in the statistical analysis of probabilistic functions of Markov chains. The

annals of mathematical statistics, 41(1):164–171, 1970.

[7] Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

[8] Tamara Broderick, Nicholas Boyd, Andre Wibisono, Ashia C Wilson, and Michael I Jordan.

Streaming variational bayes. In NIPS, pages 1727–1735, 2013.

[9] Wei-Chen Cheng, Stanley Kok, Hoai V Pham, Hai Leong Chieu, and Kian Ming A Chai.

Language modeling with sum-product networks. INTERSPEECH, 2014.

[10] Gregory F. Cooper. The computational complexity of probabilistic inference using bayesian

belief networks. Information Theory, IEEE Transactions on, 42(3):393–405, 1990.

[11] Adnan Darwiche. A logical approach to factoring belief networks. KR, 2:409–420, 2002.

[12] Adnan Darwiche. A differential approach to inference in Bayesian networks. JACM,

50(3):280–305, 2003.

[13] Aaron Dennis and Dan Ventura. Learning the architecture of sum-product networks using

clustering on variables. In NIPS, 2012.

[14] Abram L Friesen and Pedro Domingos. Submodular sum-product networks for scene un-

derstanding. 2017.

[15] Robert Gens and Pedro Domingos. Discriminative learning of sum-product networks. In

NIPS, pages 3248–3256, 2012.

83

[16] Robert Gens and Pedro Domingos. Learning the structure of sum-product networks. In

ICML, pages 873–880, 2013.

[17] Ponani S Gopalakrishnan, Dimitri Kanevsky, Arthur Nádas, and David Nahamoo. An in-

equality for rational functions with applications to some statistical estimation problems.

IEEE Transactions on Information Theory, 37(1):107–113, 1991.

[18] H. Altay Guvenir and I. Uysal. Bilkent university function approximation repository. 2000.

[19] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with

neural networks. Science, 313(5786):504–507, 2006.

[20] Priyank Jaini, Abdullah Rashwan, Han Zhao, Yue Liu, Ershad Banijamali, Zhitang Chen,

and Pascal Poupart. Online algorithms for sum-product networks with continuous variables.

In International Conference on Probabilistic Graphical Models (PGM), 2016.

[21] Tony Jebara and Alex Pentland. Maximum conditional likelihood via bound maximization

and the CEM algorithm. In Proceedings of the 11th International Conference on Neural

Information Processing Systems, pages 494–500. MIT Press, 1998.

[22] Tony Jebara and Alex Pentland. On reversing Jensen’s inequality. In NIPS, pages 231–237,

2000.

[23] Agastya Kalra, Abdullah Rashwan, Wei-Shou Hsu, Pascal Poupart, Prashant Doshi, and

Georgios Trimponias. Online structure learning for feed-forward and recurrent sum-product

networks. In Advances in Neural Information Processing Systems, pages 6944–6954, 2018.

84

[24] Aldebaro Klautau, Nikola Jevtic, and Alon Orlitsky. Discriminative Gaussian mixture mod-

els: A comparison with kernel classifiers. In ICML, pages 353–360, 2003.

[25] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and tech-

niques. The MIT Press, 2009.

[26] Sang-Woo Lee, Min-Oh Heo, and Byoung-Tak Zhang. Online incremental structure learn-

ing of sum–product networks. In NIPS, pages 220–227, 2013.

[27] Yujia Li, Kevin Swersky, and Rich Zemel. Generative moment matching networks. In

ICML, pages 1718–1727, 2015.

[28] Percy Liang and Dan Klein. Online EM for unsupervised models. In HLT-NAACL, pages

611–619, 2009.

[29] M. Lichman. UCI machine learning repository, 2013.

[30] Daniel Lowd and Amirmohammad Rooshenas. Learning Markov networks with arithmetic

circuits. In AISTATS, pages 406–414, 2013.

[31] Mazen Melibari, Pascal Poupart, Prashant Doshi, and George Trimponias. Dynamic sum-

product networks for tractable inference on sequence data. In JMLR Conference and Work-

shop Proceedings - International Conference on Probabilistic Graphical Models (PGM),

2016.

[32] Mazen Melibari, Pascal Poupart, Prashant Doshi, and George Trimponias. Dynamic sum

product networks for tractable inference on sequence data. pages 345–355, 2016.

85

[33] Thomas Minka and John Lafferty. Expectation-propagation for the generative aspect model.

In UAI, pages 352–359, 2002.

[34] Radford M Neal and Geoffrey E Hinton. A view of the EM algorithm that justifies in-

cremental, sparse, and other variants. In Learning in graphical models, pages 355–368.

Springer, 1998.

[35] Yves Normandin. Hidden Markov models, maximum mutual information estimation, and

the speech recognition problem. PhD thesis, McGill University, Montreal, 1991.

[36] Yves Normandin and Salvatore D Morgera. An improved MMIE training algorithm

for speaker-independent, small vocabulary, continuous speech recognition. In Acoustics,

Speech, and Signal Processing, 1991. ICASSP-91., 1991 International Conference on,

pages 537–540. IEEE, 1991.

[37] Robert Peharz. Foundations of Sum-Product Networks for Probabilistic Modeling. PhD

thesis, Medical University of Graz, 2015.

[38] Robert Peharz, Bernhard C Geiger, and Franz Pernkopf. Greedy part-wise learning of sum-

product networks. In Machine Learning and Knowledge Discovery in Databases, pages

612–627. Springer, 2013.

[39] Robert Peharz, Robert Gens, and Pedro Domingos. Learning selective sum-product net-

works. ICML Workshop on Learning Tractable Probabilistic Models, 2014.

86

[40] Robert Peharz, Robert Gens, Franz Pernkopf, and Pedro Domingos. On the latent vari-

able interpretation in sum-product networks. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 2016.

[41] Robert Peharz, Georg Kapeller, Pejman Mowlaee, and Franz Pernkopf. Modeling speech

with sum-product networks: Application to bandwidth extension. In ICASSP, pages 3699–

3703, 2014.

[42] Robert Peharz, Sebastian Tschiatschek, Franz Pernkopf, and Pedro Domingos. On theoret-

ical properties of sum-product networks. In AISTATS, pages 744–752, 2015.

[43] Kristiaan Pelckmans, Jos De Brabanter, Johan AK Suykens, and Bart De Moor. Handling

missing values in support vector machine classifiers. Neural Networks, 18(5-6):684–692,

2005.

[44] Franz Pernkopf and Michael Wohlmayr. Large Margin Learning of Bayesian Classifiers

Based on Gaussian Mixture Models, pages 50–66. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2010.

[45] Hoifung Poon and Pedro Domingos. Sum-product networks: A new deep architecture. In

UAI, pages 2551–2558, 2011.

[46] Tahrima Rahman and Vibhav Gogate. Merging strategies for sum-product networks: From

trees to graphs. In Proceedings of the Thirty-Second Conference on Uncertainty in Artificial

Intelligence, UAI, 2016.

87

[47] Abdullah Rashwan, Pascal Poupart, and Chen Zhitang. Discriminative training of sum-

product networks by extended baum-welch. In International Conference on Probabilistic

Graphical Models, pages 356–367, 2018.

[48] Abdullah Rashwan, Han Zhao, and Pascal Poupart. Online and Distributed Bayesian Mo-

ment Matching for Sum-Product Networks. In AISTATS, 2016.

[49] Martin Ratajczak, Sebastian Tschiatschek, and Franz Pernkopf. Sum-product networks for

sequence labeling. arXiv preprint arXiv:1807.02324, 2018.

[50] Amirmohammad Rooshenas and Daniel Lowd. Learning sum-product networks with direct

and indirect variable interactions. In ICML, pages 710–718, 2014.

[51] Jarkko Salojärvi, Kai Puolamäki, and Samuel Kaski. Expectation maximization algorithms

for conditional likelihoods. In Proceedings of the 22nd international conference on Ma-

chine learning, pages 752–759. ACM, 2005.

[52] Alexander J Smola, SVN Vishwanathan, and Thomas Hofmann. Kernel methods for miss-

ing variables. In AISTATS, 2005.

[53] Lucas Theis, Aäron Oord, and Matthias Bethge. A note on the evaluation of generative

models. arXiv:1511.01844, 2015.

[54] Antonio Vergari, Nicola Di Mauro, and Floriana Esposito. Simplifying, regularizing and

strengthening sum-product network structure learning. In ECML-PKDD, pages 343–358.

2015.

88

[55] Frank Wilcoxon. Some rapid approximate statistical procedures. Annals of the New York

Academy of Sciences, pages 808–814, 1950.

[56] Han Zhao, Tameem Adel, Geoff Gordon, and Brandon Amos. Collapsed variational infer-

ence for sum-product networks. In ICML, 2016.

[57] Han Zhao, Mazen Melibari, and Pascal Poupart. On the relationship between sum-product

networks and Bayesian networks. In ICML, 2015.

[58] Han Zhao and Pascal Poupart. A unified approach for learning the parameters of sum-

product networks. arXiv:1601.00318, 2016.

89

	List of Tables
	List of Figures
	Introduction
	Sum Product Networks
	Parameter Learning for Sum Product Networks
	Structure Learning for Sum Product Learning
	Contributions
	Thesis Structure
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6

	Background
	Probabilistic Graphical Models
	Bayesian Networks
	Inference in Bayesian Networks

	Network Polynomials
	Sum Product Networks
	Example for a Sum Product Network

	Parameter Learning for SPNs
	Structure Learning for SPNs
	Top Down Structure Learning Algorithms
	Bottom Up Structure Learning Algorithms

	Recurrent Sum Product Networks
	Sum Product Networks Applications

	Online Parameter Learning for SPNs Using Bayesian Moment Matching
	Online and Distributed Bayesian Moment Matching
	Bayesian Moment Matching for Discrete SPNs
	Exact Bayesian Learning
	Moment Matching

	Bayesian Moment Matching for Continuous SPNs
	Moment Matching for Normal-Wishart Distribution
	Online Bayesian Moment Matching for Continuous SPNs

	Experimental Results
	Discrete SPNs
	Continuous SPNs with Gaussian Leaves

	Conclusion

	Discriminative Training of Sum-Product Networks by Extended Baum-Welch
	Extended Baum-Welch Algorithm
	Discriminative Sum-Product Networks
	Discriminative Learning for SPNs Using Gradient Descent
	Discriminative Learning for SPNs using Extended Baum-Welch

	Experiments
	EBW versus Other Parameter Learning Algorithms
	EBW for Problems with Missing Features
	Visualizing the Parameters Learned by EBW

	Conclusion

	Online Parameter and Structure Learning for Recurrent SPNs
	Proposed Algorithm
	Parameter update
	Structure update

	Experiments
	Conclusion

	Conclusion
	Future Work
	Online Parameter Learning for SPNs Using Bayesian Moment Matching
	Discriminative Training of SPNs by Extended Baum-Welch
	Online Parameter and Structure Learning for Recurrent SPNs

	References

