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Abstract

The prevalence of various (and increasingly large) datasets presents the challenging problem
of discovering common entities dispersed across disparate datasets. Solutions to the private
record linkage problem (PRL) aim to enable such explorations of datasets in a secure
manner. A two-party PRL protocol allows two parties to determine for which entities they
each possess a record (either an exact matching record or a fuzzy matching record) in their
respective datasets — without revealing to one another information about any entities for
which they do not both possess records. Although several solutions have been proposed to
solve the PRL problem, no current solution offers a fully cryptographic security guarantee
while maintaining both high accuracy of output and subquadratic runtime efficiency. To
this end, we propose the first known efficient PRL protocol that runs in subquadratic time,
provides high accuracy, and guarantees cryptographic security in the semi-honest security
model.
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Chapter 1

Introduction

With greater computation prowesses come greater abundances of data with which come
the natural responsibilities of protecting such data stores. However, such protections need
not be entirely suffocating: it is fully feasible to protect privacy of data while still allowing
the data to be utilized in meaningful ways. Yet, it is common to see organizations keeping
their data in silos instead of collaborating with one another in ways that could stand to
benefit all parties involved, including the individuals whose data the organizations possess.
Consider the case of two hospitals [47, 49, 51]. Consider now the potential advantages of
allowing the two hospitals to aggregate their data on patients that frequent both hospitals.
Such a collaboration could result in not only richer datasets that reveal quicker treatment
options, but could also prevent the misallocation of resources from having the two hospitals
duplicating each other’s findings. Understandably, privacy laws often prevent hospitals
from sharing such data with others, even if doing so could be highly advantageous for
all those that are involved. The field of secure multiparty computation [2, 10, 61] aims
to address this misallocation of resources. Specifically, within this field is the problem of
private record linkage [57] (PRL): the problem of finding all records in one database that
also belong in another database, without revealing any information about any other record
in the two databases. In the example of our two hospitals, rather than having each hospital
duplicate the other’s work, the two hospitals could run a private record linkage protocol
to aggregate data for the patients that they have in common. Now, the two hospitals
could continue their efforts in helping the patients that they were already helping, without
learning anything about patients that they were not already helping.

There are different solutions to the private record linkage problem [18, 21, 26, 29, 50, 53,
54, 59], but there is currently no solution that is accepted as satisfactorily solving the PRL
problem in its entirety. Each solution comes with a tradeoff in its accuracy, computational
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complexity, or security. There is a trivial solution, the All Pairwise Comparison approach,
which guarantees perfect accuracy and complete security but it runs in quadratic time.
A quadratic runtime complexity can easily become unscalable when dealing with datasets
containing billions of records. Further, there are datasets where matching records are rare,
for example, the North American Association of Central Cancer Registries maintains a
standard for ensuring cancer registries contain fewer than 0.1% duplicated records [27].
Intuitively speaking, given the rarity of matches, a protocol that runs in quadratic time is
somewhat excessive, and so, a good solution to the private record linkage problem must run
in subquadratic time. Current solutions that run in subquadratic time tend to either lack
security or provide inaccurate results [57]. A specific case of private record linkage is the
case of private set intersection (PSI) [26], where the intersection of two sets is determined
without learning any information about elements not in the intersection. The difference
between private record linkage and private set intersection is that the former allows for
approximate matches or so called fuzzy matches, whereas private set intersection only
returns elements that match exactly across the two sets. There exist efficient, secure, and
accurate solutions for the private set intersection problem, but in private record linkage,
the introduction of fuzzy matches adds an extra complication to the private set intersection
problem which ends up requiring additional comparisons between records.

He et al. recently proposed a protocol with a subquadratic runtime and high accuracy
[26]. In terms of security, the authors note that they are not aware of any subquadratic
protocol with high accuracy that also guarantees cryptographic security — and so, the
authors consider the use of differential privacy to propose the DPRL security model for the
record linkage problem, instead of exploring the possibility of a cryptographically secure
solution. While differential privacy limits the leakage of information, this leakage is still
significantly large when compared to the protections offered by cryptographic security.
Furthermore, while the protocol proposed by He et al. runs in subquadratic time, it is
nevertheless limited by the cost of expensive cryptographic computations, resulting in a
runtime of around 80 hours for a pair of datasets with each having only 5, 000 records.

To this end, we propose a new protocol, SFour, which aims to address the shortfalls in
existing protocols. Our contributions are summarized as follows:

• we create a PRL protocol which 1) runs in O(n log(n)) time, 2) provides guaranteed
cryptographic security in the semi-honest security model, and 3) has high recall and
perfect precision;

• we evaluate our protocol’s runtime on real and synthetic data to show that we out-
perform the differentially private Laplace Protocol [26] by 1-2 orders of magnitude;
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• we develop a new efficient private permutation technique that can greatly improve
upon other schemes that use a similar approach as us, such as the Sort-Compare-
Shuffle protocol [28] for private set intersection.

The rest of this paper is divided so that we provide the necessary background knowledge
in Chapter 2, some related work in Chapter 3, the details of our protocol in Chapter 4,
a display of our experimental results in Chapter 5, and lastly, we conclude our paper in
Chapter 6.
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Chapter 2

Background

In this chapter we provide a brief understanding of secure multiparty computation (SMC),
we explain the use of circuits in performing secure computations while touching upon
SPDZ [15] and TinyTables [16] (the SMC protocols that we utilize in our protocol), and
we explain the threat model in which our protocol operates. We conclude this chapter
with the formalization of the problem that our protocol solves, the private record linkage
(PRL) problem.

2.1 Secure multiparty computation

Secure multiparty computation (SMC) is an area in cryptography that attempts to al-
low different parties to jointly evaluate a function using their respective inputs, without
requiring any party to reveal its inputs, except any that might be inferred from the out-
put. A common approach to performing secure multiparty computations is through secure
evaluation of circuits, a process we explain next.

2.1.1 Securely evaluating circuits with secret shares

A circuit is a structure composed of gates. A gate is a structure that accepts some number
of inputs, and after performing some gate specific computations on the inputs (such as
computing the sum of the inputs), returns the result of the computation as an output
(such as the sum of the inputs). The output of one gate can be fed as an input to a second
gate, which in turn may feed its output to a third gate, such compositions can continue
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to grow until the desired functionality is obtained. The resulting composition of gates is
termed a circuit.

Circuits can be jointly computed securely through the use of secret sharing schemes,
i.e., two parties can provide private inputs to a circuit to jointly compute the circuit,
without directly revealing to one another their respective private inputs. A protocol that
uses secret shares to evaluate a circuit between two parties requires each party to split each
of its inputs into two parts, or shares. A party secret sharing one of its inputs keeps exactly
one of the two shares secret and sends to the other party the other share. To evaluate their
circuit, rather than computing directly on the private inputs, the parties evaluate their
circuit by computing on the secret shares instead. Secret sharing allows a sort of proxy to
allow the two parties to perform computations on private inputs without revealing to one
another the private inputs. After the computations are performed on the secret shares,
the secret shares can be used to reconstruct the results of the computations on the actual
inputs. As an example, party P1 may have a number, n, with a value that P1 may wish to
keep private. To secret share n with party P2, party P1 could draw a random number, r
and send to party P2 the value of n′ = n+ r. Here, r and n′ are secret shares of n and the
value of n can be reconstructed by a simple subtraction, n = n′ − r. Using secret shares,
any function that can be represented by a circuit can be evaluated securely. There are
several kinds of protocols that use secret sharing to securely evaluate circuits. We refer the
reader to Beimel’s survey [7] for a comprehensive discussion of secret sharing protocols.
For the purposes of our work, we emphasize the distinction between a boolean circuit and
an arithmetic circuit, and describe the protocols that we use to securely evaluate each of
these types of circuits.

2.1.2 Secure evaluation of boolean circuits

A boolean circuit is a set of logic gates that each take inputs that are 0s or 1s and give
an output of a 0 or a 1, the output being the result of a logical operation (AND, OR,
XOR, etc.). While a boolean circuit can compute arithmetic operations, such as addition
and multiplication, boolean circuits are not as efficient as arithmetic circuits at computing
arithmetic operations.

A comparator [37] is a composition of boolean operations that takes two bits and returns
a result indicating whether one bit is smaller than the other. Comparators are fundamental
in performing sorting operations, and since comparators make use of logical operations,
sorting is generally much faster when using boolean circuits than when using arithmetic
circuits. As later described in Chapter 4 our protocol requires use of a sorting circuit and
indeed, we use a boolean circuit to perform this sorting.
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The SMC protocol that we use to securely compute boolean circuits is TinyTables [16],
which is a two party linear secret sharing based SMC protocol for computing boolean
circuits. Linear secret shares for boolean circuits are bits that are closed under addition
modulo 2, and which allow the reconstruction of a secret value through the summation
of the secret shared bits. These sort of secret shares allow participants to compute linear
boolean functions (XOR and NOT) locally. Jointly computing an AND gate with linear
secret shared values from two parties requires communication between the two parties. This
is not specific to TinyTables and is simply a limitation when using linear secret sharing
schemes. To aid with the computation of AND gates, the execution of the TinyTables
protocol is split into two stages: an offline stage and an online stage. During the offline
stage the two parties communicate correlated randomness with one another to generate
preprocessed data that they later use during the online stage to compute AND gates. This
preprocessed data is stored in lookup tables which in turn inspire the protocol’s name,
TinyTables.

2.1.3 Secure evaluation of arithmetic circuits

An arithmetic circuit is a generalization of a boolean circuit over a field with more than
two elements, i.e., an arithmetic circuit is a set of gates that each can take inputs that
are elements of the underlying field, with the limitation that arithmetic circuits can only
compute arithmetic operations (addition and multiplication). While arithmetic circuits
can simulate the computation of boolean operations, boolean circuits are more efficient
than arithmetic circuits at computing boolean operations.

The SMC protocol that we use to securely compute arithmetic circuits is SPDZ [15],
a linear secret sharing based SMC protocol for computing arithmetic circuits with two
or more participants. The arithmetic shares used in SPDZ are additive so that protocol
participants are able to use these shares to perform linear arithmetic computations (such
as addition and multiplication with a constant) locally. Similar to computing AND gates in
boolean circuits, when using an arithmetic circuit, multiplications of secret shared values
from multiple parties require communication between the different parties. To aid in
computing multiplications, the execution of the SPDZ protocol is split into two stages, an
offline stage and an online stage, just as is done in TinyTables. This preprocessing step in
SPDZ produces what are known as Beaver Triples [6] to allow relatively easy computation
of multiplications during the online stage.
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2.1.4 Implementation

Our implementation of the SFour protocol uses FRESCO [1], a framework for efficient
secure computation. FRESCO is written in Java and provides APIs to use TinyTables
and SPDZ to compute boolean circuits and arithmetic circuits, respectively. One major
drawback we experience while using FRESCO is the current inability to natively convert
boolean circuit shares to arithmetic circuit shares (and vice versa). However, we are able
to implement some custom share conversion functionality that is sufficient for our use case.

Different protocols have different ways to compute preprocessed data, such as lookup
tables in TinyTables and Beaver Triples in SPDZ. However, since this preprocessed data
can be precomputed far in advance of the online stage (in fact, the offline stage can occur
before either party has any data on which to compute), analysis of a protocol’s runtime
performance is often focused on the protocol’s online stage [3, 9, 14, 35, 56], sometimes
with no regard to the offline stage. Consequently, in our analysis of our protocol’s runtime
in Chapter 5, we omit a thorough discussion of our protocol’s offline runtime.

2.2 Threat model

This work considers only the semi-honest security model, where an adversarial party at-
tempts to gain as much information about another party’s inputs as possible, while using
a transcript of the entire protocol, but without deviating from the protocol’s instructions.
A two-party protocol is secure in the semi-honest model when neither party is able to gain
any information from the execution of the protocol, other than the information gained
from the protocol’s output and the size of the other party’s input. More formally, a two-
party protocol Π computing f(x, y) is secure in the semi-honest security model when each
party’s view V IEWΠ(x, y), where the party’s input is x and the other party’s input is y,
is computationally indistinguishable from the view generated by the party while using a
polynomial-time simulator to simulate messages received from the other party (after sup-
plying to the simulator the party’s own input x and its output from computing f(x, y))
[43].

The semi-honest security model is contrasted to the malicious security model, the latter
allowing adversaries to arbitrarily deviate from the specified protocol while attempting to
nonconsensually gain information from the protocol’s execution [43]. There are cases where
a protocol that is secure in the semi-honest model is sufficient to meet the needs of protocol
participants, such as when meeting legal requirements related to the sharing of private data
[22], or when making use of other software attestation methods that can detect deviations
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from a specified protocol [46]. While our work currently does not address the malicious
security model, an efficient protocol in the semi-honest model is an important prerequisite
towards constructing efficient protocols that are secure in the malicious security model.
Furthermore, Goldreich et al. [24] show that any protocol that is secure in the semi-honest
security model can be made secure in the malicious security model, albeit inefficiently,
through the use of what are known as zero-knowledge protocols. When we describe our
protocol in Chapter 4, we prove that the SFour protocol is secure in the semi-honest model.
We delegate the (efficient) adaptation of our protocol within a malicious security model to
future work.

2.3 The private record linkage problem

Consider two semi-honest parties P1 and P2, which own database D1 and database D2,
respectively, wanting to discover all entities for which they each have a corresponding
record. Before proceeding however, we require that both parties first deduplicate their
records, i.e., ensure that no two records from any one databaseDi match one another. Now,
let D1 and D2 each come from some domain D and let each database consist of records
from some domain R. Suppose further that the parties agree in advance on a collection of
required columns that each database must contain. Having columns in common helps the
parties determine whether a record in one database matches a record in the other database.
To designate any two records as matching records, the two parties additionally agree on
a matching function m : R × R → {0, 1} which when given two records outputs a 1 if
the given records are a match for each other, or a 0 otherwise. Within our setting, the
matching function is a commutative function, i.e., m(r, s) = m(s, r),∀(r, s) ∈ R2. Having
agreed on a matching function, the parties now need a protocol to solve the private record
linkage problem.

Formally, the semi-honest parties P1 and P2 need a protocol Π : D×D → D2, such that
Π(D1, D2) = (O1, O2), where Oi = {r|r ∈ Di ∧ (∃s ∈ D3−i|m(r, s) = 1)}. Apart from this
output, the only other information the parties are allowed to learn is the size of the other
party’s database. The aim of this work is to describe a PRL protocol Π that 1) runs in
subquadratic time, 2) offers guaranteed cryptographic security in the semi-honest security
model, and, 3) achieves high accuracy.

Although the problem can be generalized to any number of parties, this work focuses
only on the case of two parties. Furthermore, the problem is trivially solved when all
databases utilize consistent universally unique identifiers, i.e., when an entity has the same
identifier across all databases in which that entity possesses a record. This of course
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is difficult to accomplish and we assume that such an identifier scheme typically does
not exist in practice. In case such a scheme were to exist, a solution would then be to
run a private set intersection protocol (a protocol that computes the intersection of two
sets without revealing items not in both sets) to find exact matches from amongst the
unique identifiers. This approach would fail if there were errors while entering the unique
identifiers. Given a PRL protocol’s ability to find approximate matches, PRL protocols
have a robustness that allows them to use multiple fields in a manner that enables them
to succeed even while in the presence of erroneous unique identifiers.

2.3.1 The example of the Taxi datasets

To allow for a fair comparison with the Laplace Protocol [26], we implement our protocol
to specifically perform record linkage across datasets from the Taxi and Limousine Com-
mission [55], these being the datasets that He et al. used to evaluate the Laplace Protocol.
As such, our protocol requires that all participants ensure that their databases have the
following required columns: a column for the time (at which a taxi picks up a passenger),
a column for the longitude (from which a passenger is picked up), and a column for the
latitude (from which a passenger is picked up).

9



Chapter 3

Related Work

Several avenues of research have been pursued in finding solutions to the PRL problem
[18, 21, 26, 29, 50, 53, 54, 59], each with varying tradeoffs. The trivial solution to PRL is
the All Pairwise Comparison (APC) approach which uses secure computations to compare
every single record in one dataset with every single record in the other dataset [26]. While
this approach has guaranteed security and perfect accuracy, it also has a quadratic runtime
complexity which is untenable at scale. Indeed, He et al. recently used a moderately
powerful consumer machine 1 to estimate that it would take three weeks to perform APC
across two databases, with each database having only 5,000 records [26]. With APC as
a benchmark, other solutions often sacrifice security or accuracy for better asymptotic
runtimes. Some approaches attempt to run in linear time by performing exact matches on
records or by using protocols for private set intersection, however these approaches suffer
from low accuracy [26]. The SCS protocol proposed by Huang et al. [28] is not a PRL
protocol but rather is a private set intersection protocol, however, our work in some sense
generalizes this approach and adapts it to the PRL problem. Further, our work offers
contributions that may significantly improve the SCS protocol’s runtime performance.

Some other PRL approaches, such as those that use Bloom filters to try to speed
up their computations [18, 21, 50], offer no formal security guarantee and some of these
indeed get broken soon after publishment [11, 12, 13, 39]. Wen and Dong propose the
concept of garbled Bloom filters, Bloom filters that make use of secret shares to offer some
cryptographic protection, and using these structures develop a new PRL protocol [59].
However, the authors make no claims of cryptographic security, and indeed, their protocol
leaks significant information through the presence of false positive matches (a party may

1 A 3.1 GHz Intel Core i7 machine with 16 GB RAM.
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send a record that the party believes has a matching record belonging to the other party,
but if the match is a false positive, the party may reveal a non-matching record to the
other party). There are protocols that work efficiently through the use of locality sensitive
hashing (LSH) [19, 31, 32], however, He et al. show that use of an LSH can leak information.

Some authors attempt to prove the security of their protocols by (unsuccessfully) at-
tacking their protocols themselves [13, 58]. We stress that cryptographic security offers a
much more satisfying guarantee of security. Perhaps most worrying is that studies inves-
tigating the practicality of using private record linkage on real world data tend to suggest
that these protocols with no formal security guarantees may be ready for use in hospitals
and other national databases [47, 49, 51]. There are other PRL protocols that rely on the
use of a trusted third party [20, 25, 30, 31, 45], however, given the difficulty of finding a
trusted third party, these protocols are not practical in the real world.

Authors of previous works [26, 29] note that they know of no subquadratic PRL pro-
tocol with high accuracy and cryptographic security. Inan et al. settle for producing one
of the first subquadratic protocols that leaks only differentially private noise [29]. More
recently, He et al. [26] however, show that this earlier work by Inan et al. overlooks some
information leakage and that the protocol is insecure. He et al. go on to produce a cor-
rected subquadratic PRL protocol with high accuracy that leaks only differentially private
noise. These authors state that no cryptographically secure PRL protocol that runs in
subquadratic time and with high accuracy has yet been formalized. It is our intention to
change this view with the work we present in this paper. For further details and compar-
isons of other PRL protocols, we refer the reader to the PRL taxonomy [57].

11



Chapter 4

SFour Protocol

Our protocol is conceptually split into four phases, however we add a "zero-th step" to
aid in our exposition. Briefly, we aim to score records in such a way that if two records
are similar to one another, then each of these two records has a score similar to the other
record’s score. Once both parties have scored their records, they can perform a secure
computation to sort the union of their scored records and then compare only those records
that are close to each other, as determined by their scores. The parties run a sliding window
over the sorted records and compare the records in a window with only other records in the
same window. This reduces the total number of secure comparisons needed in the protocol,
as parameterized by the window size.

The order in which the comparison results are revealed could leak positional information
about the records (Section 4.4.1), and so each party performs a private permutation on the
results before the results are revealed. In order to optimize the permutation, both parties
generate identifiers, with each identifier carrying with it a semantic meaning known only
to the party that generated the identifier. At the end of the protocol, each party possesses
a collection of identifiers that it generated. These identifiers convey to each party which
records possess a matching record in the other party’s dataset. Figure 4.1 summarizes our
overall protocol.

In this chapter we describe the steps of our protocol in further detail.

4.0 Step 0: Setting parameters and identifiers

Before beginning with the protocol, both parties agree on the following:

12



Figure 4.1: Overview of the SFour protocol. The locked box indicates use of secure mul-
tiparty computations. The small bars at the bottom of the figure indicate identifiers. We
colour the identifiers with two different colours to reflect the different parties that gener-
ated the identifiers. At the end of Step 4, each party receives a set of identifiers that that
party generated. Each party recognizes the semantic meanings of only the identifiers that
it generated.
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• the total number of records in the protocol;

• the scoring function to score their records (Section 4.1);

• the matching function to determine matches (Section 4.3.2).

4.0.1 Identifier tags (part one)

In order to optimize the final step of the protocol, both parties privately generate pseudo-
identifiers for the records. This optimization technique is a new way to efficiently perform
private permutations and is one of our contributions in this work. Given the subtle nuances
involved in the optimization, we split the discussion of these identifiers into three parts,
the first of which is here, the second is in Section 4.2.1, and the third is in Section 4.4. For
now, it suffices to understand that each party generates and appends to each of its own
records a private metadata tag in the form

(ownerBit || matchID || mismatchID || otherID), where

• ownerBit is a bit indicating which of the two parties owns the record (so, Party 1
could set a 1, Party 2 a 0);

• matchID is a random integer which is presented to the owner of this record if it is
determined that this record has a matching record in the other party’s database;

• mismatchID is a random integer which is presented to the owner of this record if it
is determined that this record does not have a matching record in the other party’s
database;

• otherID is a random integer which is presented to the party that does not own this
record and offers no indication on as to whether this record has a matching record
in either database.

At the end of the protocol each party receives one of the three identifiers tagged to
a record for each record involved in the protocol (explained further in Section 4.4). To
ensure correctness, however, there are some caveats to how the identifiers are generated.
If IDi1 , IDi2 , IDi3 are the sets of matchID, mismatchID, otherID identifiers that are gen-
erated by party Pi, respectively, Di is the set of records belonging to party Pi, and there
are n records in total across both parties’ datasets, then:
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1. |IDi1| = |IDi2| = |Di|, i.e., there is a unique matchID identifier and a unique
mismatchID identifier for each record in a party’s own database;

2. |IDi3| = n−|Di|, i.e., Pi has as many unique otherID identifiers as there are records
in the other party’s database;

3. IDi1 , IDi2 , IDi3 are pairwise disjoint, i.e., a party has no collisions between any two
of the identifiers that it generates.

There are no restrictions on identifiers generated by one party colliding with identifiers
generated by the other party, and so, generating identifiers that adhere to the above re-
strictions is not difficult. Party Pi can simply take a random permutation of the integers
from 1 to 3n, and select the first |Di| integers as matchID identifiers, the next |Di| integers
as mismatchID identifiers, and the next n− |Di| integers as otherID identifiers.

The reader will note that the number of otherID identifiers generated by a party is not
necessarily the same as the number of either of the other two kinds of identifiers generated
by the same party. The number of otherID identifiers generated by a party aligns with
the number of records held by the other party because our protocol requires the parties to
exchange their otherID identifiers with one another. However, all identifiers must remain
private, including the otherID identifiers. This private exchange is accomplished through
secret sharing. It is these exchanged otherID identifiers that are used in the tags that
are appended to the records. While we could add an extra step to our overall protocol to
specifically facilitate this exchange in otherID identifiers, the work involved in generating
and exchanging the identifiers is relatively small. Rather, we add this private exchange of
otherID identifiers in Algorithm 1 (Section 4.2), which we use when constructing our first
SMC circuit.

The exact usage of the different kinds of identifiers is better explained with a little
additional context, therefore, we leave the discussion of the precise purposes served by
each kind of identifier for Section 4.4.

4.1 Step 1: Scoring

We wish to compute a score for each record so that when two records are similar to one
another they each have a score that is similar to the other record’s score. This is the
essence of a locality preserving hash function (LPH) [62], a hash function H that satisfies

d(x, y) < d(y, z)⇒ d(H(x), H(y)) < d(H(y), H(z)),
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for some inputs x, y, and z, and some metric d.

After both parties have agreed on a scoring function, each participant is able to locally
score its records. By keeping these scores private, there is no risk of information leakage
from the first step of our protocol.

For medical databases containing patient data, an example of a simple scoring function
is a function that returns a person’s date of birth in Unix time. When two hospitals agree
on this scoring function, they can proceed to sort records for people according to date of
birth and then run secure comparisons only on records of patients born around the same
time as one another. Of course, a simple scoring function such as this can fail if hospitals
don’t have reliable date of birth data, or even if one hospital has more precise data than
the other hospital (for example, a person’s hospital of birth may have the time in seconds
that that person was born). Based on our experiments on the Taxi dataset [55] however,
we are able to achieve significantly high accuracy results by using a scoring function that
simply returns a timestamp.

4.1.1 Space filling curves

While finding a perfect scoring function, i.e., a locality preserving hash function that also
satisfies the converse of the previous conditional statement, is orthogonal to our research,
we ran empirical experiments to find a satisfactory scoring function.

A space filling curve (SFC) is a mapping that can transform a multidimensional vector
into a one dimensional vector [60]. Using SFCs to project a high dimensional vector into
a single dimension has proven to be beneficial in load balancing tasks [42], performing
cryptographic transformations [36], processing spatial data [4], and carrying out multidi-
mensional similarity searches [40]. Incidentally, we used a space filling curve specifically
for these last two use cases. The SFC we used is called the Hilbert curve, and for our work
it suffices to know that the Hilbert curve can 1) take an arbitrary n-dimensional vector
and project it as an integer in Z2np , where p is a parameter that determines the size of the
curve’s range, and 2) that after applying the Hilbert curve, points that are close to each
other in such an n-dimensional space are projected closely to one another in Z2np (however,
the converse is not always true).

Recalling that the Taxi datasets (Section 2.3.1) in our example problem require columns
for a Unix timestamp, a longitudinal coordinate, and a latitudinal coordinate, one scoring
function that we used in our experiments was a function that returned the integer pro-
duced by mapping the 3-dimensional (timestamp, longitude, latitude) tuple under a three
dimensional Hilbert curve.
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4.2 Step 2: Sorting

Having scored their records, both parties can blindly sort the union of their scored records
by using an SMC circuit. This sorting brings similar records, i.e., records that are likely
to match one another, close together. We optimize the secure sorting by offloading some
of the computational effort into a quicker offline preprocessing stage.

4.2.1 Identifier tags (part two)

Before we sort the records however, we recall the pseudo-identifiers mentioned in Sec-
tion 4.0.1 and the discussion of how there is a private exchange of some identifiers. Specif-
ically, only the otherID identifiers are exchanged between the two parties, as each party
generates otherID identifiers for the other party, which is in contrast to the matchID iden-
tifiers and mismatchID identifiers, which each party generates for its own records. After
the records have been securely sorted, the parties do not know which record belongs to
which party and so the parties are unable to append their identifier tags to their own
records. Therefore, the exchange of identifiers takes place before the joint and secure sort-
ing occurs in Step 2, so that the parties can form their identifier tags in advance of sorting
and be able to append the tags to their own records. Performing the oblivious exchange
of otherID identifiers is as simple as each party creating secret shares for the otherID
identifiers and sending them to the other party. Once the parties receive the shares of
the otherID identifiers, they can each concatenate the shares to their individual partial
record tags (containing only the ownerBit, matchID identifiers, and mismatchID identi-
fiers) to complete their individual record tags. As we will see in Section 4.4.3, it does not
matter to which of its records a party appends which otherID identifier. In Algorithm 1,
partiallyTag refers to a party’s process of locally generating and then concatenating the
ownerBit, and the matchID and mismatchID identifiers to its own individual records. Af-
ter the records are partially tagged, the parties secret share their records and proceed.
Similar to the partial tagging process, completelyTag refers to the process of a party gen-
erating and exchanging shares of otherID identifiers, and then concatenating the shares
of otherID identifiers received from the other party to shares of its own records, and thus
completing the record tags.

4.2.2 Local sorting (preprocessing)

Our oblivious sorting protocol requires a preprocessing step: the parties must first locally
sort their own records, using the scores generated in Section 4.1. This simple preprocessing
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significantly improves our protocol’s performance, as we explain next.

4.2.3 Secure merge sorting

Our protocol uses a merge network, a circuit that can merge two sorted lists of input,
to securely sort the union of both parties’ records. Batcher’s Odd-Even merge network
is currently one of the fastest known merge networks, running with a time complexity
of O(n log(n)) [5]. The Odd-Even merge makes use of a lot of comparison operations,
and since boolean circuits are significantly faster than arithmetic circuits at performing
comparisons, we use a boolean circuit to perform the merge. FRESCO’s implementation
of the TinyTables protocol allows us to construct the boolean circuit for the Odd-Even
merge. With this circuit the two parties can securely merge their sorted records, and
effectively sort the union of their records. Of course, the parties do not possess the sorted
records themselves, but actually possess TinyTables secret shares of the sorted records.

Algorithm 1 summarizes the computations involved in this subsection (FRESCO’s API
differs from what is illustrated). Here, ODDEVENMERGE is the invocation of a secure
multiparty computation protocol, with the inputs as two lists of secret shares of the records
belonging to the two parties. Code that is not in a secure computation is executed locally
by each party. Note that throughout the overall SFour protocol, both parties possess and
run the same code; the presence of if-else statements allows the parties to play their
respective roles as required.

4.3 Step 3: Sliding window

Having blindly merge sorted their records, so that similar records are close together, the
two parties are ready to finally compare their records to search for matches. We split this
section into subsections to first give an overview of how records are selected for comparison,
we then provide two further subsections that explain our use of an arithmetic circuit and
then a boolean circuit to optimize the comparison of records. We include one last subsection
in this step of our protocol to explain how the results of the comparisons are stored.

4.3.1 Sliding window

To decide which records should be compared with one another, the parties run a sliding
window over their sorted records. A window is just a pair of indices, a left index and a right
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Algorithm 1: Step2(partyId, records)
records ← partiallyTag(records)
if partyId == 1 then

p1RecordShares ← fresco.createAndSend(records)
p2RecordShares ← fresco.receive()

else
p1RecordShares ← fresco.receive()
p2RecordShares ← fresco.createAndSend(records)

end

p1RecordShares ← completelyTag(p1RecordShares)
p2RecordShares ← completelyTag(p2RecordShares)

sortedRecordShares ← ODDEVENMERGE(p1RecordShares, p2RecordShares)

return sortedRecordShares

index, which indicate the range of records currently inside it. A sliding window increments
the indices of its bounds so that the window slides across all records, while ensuring that
the window size remains constant (except for near the end, where the window may reduce
in size as the number of records remaining decreases). Our protocol uses a sliding window
to determine which records should be compared with one another: all records within the
bounds of the window are compared with one another. The sliding window allows the
parties to narrow the search space for the records that they compare while seeking matches.
This step in its entirety is the most computationally expensive step in the protocol. We can
optimize this step by carefully switching between boolean and arithmetic circuits to try to
utilize each circuit for the types of operations each type of circuit works best. Incidentally,
we switch the boolean shares of the sorted records from Step 2 into arithmetic shares, since
it turns out that we will benefit from using an arithmetic circuit soon (Section 4.3.4).

An overview of Step 3 is provided in Algorithm 2. Here, ISMATCH is an invocation
of an SMC protocol with two inputs, each a secret share of a record being checked for a
match with the other record.

Assuming that the window size is w and that the total number of records is n, the
total number of comparisons is O(nw). This is because each record is compared with at
most w − 1 records to its right. Since the window is used to prune the total number of
comparisons performed, using larger windows results in larger numbers of comparisons. As
such, we can expect the accuracy of the protocol to increase as the window size increases,
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Algorithm 2: Step3(sortedRecordsShares)
/* Convert the boolean shares to arithmetic shares. */
for idx← 1 to sortedRecordsShares.size() do

boolShare ← sortedRecordsShares[idx]
spdzShare ← BOOL2SPDZ(boolShare)
sortedRecordsShares[idx] ← spdzShare

end

/* Run the sliding window over the record shares. */
windowSize ← d1 + log(sortedRecordsShares.size())e
results ← [FALSE] * sortedRecordsShares.size()
windowLeftIdx ← 0
windowRightIdx ← windowSize
while windowLeftIdx < sortedRecordsShares.size() - 1 do

leftRecord ← sortedRecordsShares[windowLeftIdx]
rightRecordIdx ← windowLeftIdx +1
while rightRecordIdx < windowRightIdx + 1 AND rightRecordIdx <
sortedRecordsShares.size() do

rightRecord ← sortedRecordsShares[rightRecordIdx]
matchResult ← ISMATCH(leftRecord, rightRecord)
results[leftIdx] ← FRESCO.OR(results[leftIdx], matchResult)
results[rightIdx] ← FRESCO.OR(results[rightIdx], matchResult)
rightRecordIdx++

end
windowLeftIdx++
windowRightIdx++

end
return results
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this of course comes at the cost of slower runtimes. As long as the window size is sub-linear
in the number of records, our protocol has an overall subquadratic runtime. Given that
the merge sort in Step 2 runs in O(n log(n)), there is no gain in our asymptotic runtime
complexity by using a window with size O(log(n)). Consequently, we use a window with
size O(log(n)). Our experiments in Chapter 5 show that our protocol’s accuracy with
such a window size is comparable with the results obtained from the Laplace Protocol
experiments [26]. Note that setting the window size to n essentially results in the All
Pairwise Comparison protocol, the trivial solution that offers 100% accuracy at the cost of
a quadratic runtime.

4.3.2 Matching function

Algorithm 2 makes use of a function called ISMATCH, which is a function agreed upon by
the two parties which returns a boolean indicating whether two given records match one
another. The matching function that we use for the Taxi dataset problem is the same as
the one that was used in the Laplace Protocol’s evaluation [26]:

m(r, s) = ‖r.time− s.time‖ ≤ t ∧
(r.lon− s.lon)2 + (r.lat− s.lat)2 ≤ d2,

where t = 1 hour and d = 0.001.

To optimize the computation of ISMATCH, we note that we can break the matching
function into two separate circuits. The following subsections describe this optimization.

4.3.3 Computing distances with SPDZ

The matching function performs a fair number of arithmetic operations (addition, sub-
traction, and squaring). Since arithmetic operations are computed faster in an arithmetic
circuit than they are in a boolean circuit, we use SPDZ to compute the "arithmetic" parts
of the matching function. This explains why the first thing we do in Algorithm 1 is ensure
that our shares are SPDZ shares (using BOOL2SPDZ). The outputs of this arithmetic cir-
cuit are secret shares that represent the numerical values that are yet to be compared to
the specified threshold values (t = 1 hour and d = 0.001). We use these arithmetic results,
or "distances", in the next circuit.
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4.3.4 Comparing the distances with TinyTables

Once the arithmetic computations are complete, the matching function performs two in-
equality checks and computes an AND gate. Since comparisons and logical operations are
much more efficiently computed in boolean circuits than they are in arithmetic circuits, we
use TinyTables to compute the "boolean" part of the matching function. First we must
of course convert the previously computed SPDZ shares into TinyTables shares. Once we
obtain the boolean shares, we use a boolean circuit to compare the arithmetic results from
earlier with the desired threshold values. The output of this boolean circuit is a secret
share of a bit that indicates whether the two records currently being compared with one
another are a match for each other. Next, we explain how the result of this comparison is
stored.

4.3.5 Writing the results

The (secret shared) output of the ISMATCH function is stored in a results array. This is a
bit array with as many bits as there are records across both parties, where the ith index in
the array indicates whether the ith record in the sorted list of records possesses a matching
record. Since we require a data independent protocol, we are unable to exclusively write
results only when the results are TRUE. In fact, since we are invoking a secure computation
to compute ISMATCH, we do not know the result of any comparison until after the overall
protocol is completed. Consequently, we write the result of each comparison to the results
array. Once the result of a comparison is obtained, the results array is updated with
a call to FRESCO.OR, which is the invocation of an SMC to compute the logical OR of
the secret share of the current value in the results array and the secret share of the
newly computed matchResult. By using a logical OR operation, we are able to ensure
that a TRUE result is not overwritten. Note that since comparisons are commutative, i.e.,
ISMATCH(r, s) always equals ISMATCH(s, r), we are able to write the result of a comparison
for both records simultaneously. This is important as it saves us from duplicating calls to
the matching function to check for a match between two records that have been previously
compared, in other words, we need only perform comparisons while moving the sliding
window in one direction.

Once all comparisons have been completed and all results have been written to the
results array, both parties will possess secret shares of a bit array that indicates which
records have matches. This array will have as many bits as there are records, i.e., if the
parties have a total of n records across both their datasets, the results array will have n
bits.
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4.4 Step 4: Shuffling identifiers

We now reach the final step of our protocol. The order of the bits in the results array
computed in the previous step corresponds to the sorted ordering of the records from
Step 2 (if the first bit in the results array is a 1 then the bit indicates that the first record
in the list of sorted records possesses a match). However, this bit array itself is insufficient
in revealing to the parties which records have matches, since the parties themselves do not
know the sorted ordering of the records, and as we describe next, the parties cannot know
this ordering without leaking information about the databases. The identifier tags from
Section 4.0.1 are used in solving this problem efficiently.

4.4.1 Positional leakage

Great care needs to be taken in ensuring that when the results are revealed to the parties
that the sorting does not leak positional information about the records (if a party learns
that all its records are at the beginning of the sorted records, the party will learn that each
one of the other party’s records have scores that are not lower than its own records’ scores,
this can be a great source of leakage and could allow a party to infer an unacceptable
degree of information about the other party’s data). The most straightforward solution
to hiding leakage from the sorted ordering is to simply shuffle the results before revealing
them to the parties. The problem however lies in performing an efficient and oblivious
(so that it cannot be reversed) permutation. Huang et al. experience a similar problem
in their protocol [28] and end up developing an SMC permutation network to obliviously
perform a permutation in O(n log(n)) time. However, through our use of identifiers, we are
able to achieve the effect of an irreversible permutation by simply performing a non-private
permutation. In other words, we are able to perform an oblivious permutation for almost
free within our problem setting. We provide an explanation in the upcoming subsections.

4.4.2 Writing identifiers

It is simple to iterate over the sorted records from Step 2 and replace the bits in the results
array from the previous section with an identifier for the corresponding record. Doing
so would allow the parties to know which records have matches. If we were to look at
the results array and write a record’s matchID identifier to an output array, whenever
the results array indicated a match for that record, we would have an array that could
eventually reveal which records have matches. Similarly, if we were to write mismatchID
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identifiers for records, we would know which records do not have matches. However, if
we are not careful of how we select identifiers, we may unintentionally leak positional
information about how the records were sorted in Step 2. To avoid this from happening,
we need a data independent protocol that writes an identifier to an array, regardless of
whether or not there is a match. This is why we need both matchID identifiers and
mismatchID identifiers. Ideal Functionality 1 describes how we write identifiers, with both
parties executing the code as a secure multiparty computation over boolean shares (using
TinyTables).

Understanding the logic behind how we write these identifiers lies in understanding the
output of this final SMC. When we complete this computation, we return to party Pi an
array of identifiers. Note however that the identifiers that are returned to party Pi are not
identifiers that Pi generated. Recall from Section 4.0.1 that parties generate and append
matchID and mismatchID identifiers to their own records and that the otherID identifiers
that are appended to a party’s records are actually generated by the other party. Reviewing
Ideal Functionality 1 carefully, the reader will note that the identifiers in output_p1 are
all identifiers that were generated by P2 (and vice versa, for the identifiers in output_p2).
Since the identifiers that the parties receive in the outputs were not generated by them-
selves, the parties are unable to gain any information from the identifiers. Therefore, it
is safe to complete our secure computation and open the secret shares of these individual
output arrays to the respective parties (i.e., open output_p1 to P1 and output_p2 to P2).

4.4.3 Free shuffling

We have not yet shuffled the sorted ordering of the records. However, when we open the
output arrays to the respective parties, we leak no information since the parties are unable
to gain any information from the identifiers that were generated by the other party. If the
parties were able to exchange their output arrays, they would be able to derive meaning
from the identifiers and be able to recognize any matchID identifiers in the output arrays.
The parties know which of their individual records are associated with which matchID
identifiers and so they would be able to determine which of their records have a matching
record in the other party’s dataset. Of course, the two parties cannot yet exchange their
output arrays, since the arrays are in a sorted order — so we simply require that the
parties perform a "free" (non-private) shuffle on the output arrays before they exchange
their output arrays with one another. After the output arrays are exchanged, the parties
will each possess an array of matchID, mismatchID, and otherID identifiers, and having
generated these identifiers themselves, the parties will be capable of recognizing to which
class of identifiers each identifier belongs. The matchID identifiers will indicate to Pi which
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Ideal Functionality 1: writeIDs(resultBits, partyId, sortedRecordShares)
output_p1 ← []
output_p2 ← []
for idx← 1 to resultBits.size() do

resultBit ← resultBits[idx]
recordTag ← sortedRecordShares[idx].recordTag
ownerBit ← recordTag.ownerBit
matchID ← recordTag.matchID
mismatchID ← recordTag.mismatchID
otherID ← recordTag.otherID
if partyId == 1 then

if ownerBit == 1 then
/* This record belongs to party P1. */
/* Recall that otherID was generated by the other party, P2 here. */
output_p1.append(otherID)

else
/* This record belongs to party P2. */
/* Recall that the remaining two identifiers were generated by the same

party that owns the record, P2 here. */
if resultBit == 1 then

output_p1.append(matchID)
else

output_p1.append(mismatchID)
end

end
else

if ownerBit == 0 then
output_p2.append(otherID)

else
if resultBit == 1 then

output_p2.append(matchID)
else

output_p2.append(mismatchID)
end

end
end

end
if partyId == 1 then

/* This array contains only identifiers that were generated by party P2. */
return output_p1

else
return output_p2

end
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of its records have a match in the other party’s database. Party Pi can ignore the other
identifiers as they offer no additional information. The mismatchID identifiers will indicate
to Pi which of its records do not have a match and the otherID identifiers will correspond
to a record that belongs to the other party. Reviewing Ideal Functionality 1, we note that
the otherID identifier is assigned regardless of whether the record has a match. Since the
identifiers were shuffled before they were exchanged, the parties are unable to learn any
positional information that may have been gained from the sorted ordering obtained in
Step 2.

4.5 Analysis

In this section we analyze the theoretical runtime complexity of our protocol. We then
show that our protocol offers cryptographically guaranteed security.

4.5.1 Runtime complexity

Let us assume that the total number of records across both parties’ datasets is n. Then,
analyzing the steps of our protocol sequentially, we see that:

• Step 0 of the protocol runs in linear time, in the number of records, given that we
generate 3n identifiers.

• Step 1 of the protocol runs in linear time, in the number of records, given that we
compute a score in constant time for each one of the records within a party’s dataset.

• Step 2 of the protocol runs in O(n log(n)) time, in the number of records, given that
that is the runtime complexity of our merge network.

• Step 3 of the protocol runs in O(nw) time, where w is the size of the sliding window.
If we set w = log(n), we see that Step 3 has the same asymptotic complexity as
Step 2, i.e., Step 3 runs in O(n log(n)) time, in the number of records.

• Step 4 involves writing an identifier for each record, which is linear in the number of
records, and the free shuffle performed at the end of the protocol also runs in linear
time, meaning that Step 4 runs linearly in time.

Each step of our protocol is run once, and so overall, our protocol has O(n log(n)) runtime
complexity, when we set the window size to O(log(n)).
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4.5.2 Security

We give a proof by constructing a simulator for either, since our protocol is symmetric,
party’s view of the protocol. (Almost) each step of our protocol entails either secret
sharing an input or sharing the results of a secure two-party computation using binary or
arithmetic secret shares. Secret shared inputs are reconstructed in the secure two-party
computation circuits. Goldreich provides a composition theorem [23] which states that
when given a protocol Π, that invokes provably secure subprotocols Πi, it suffices to use
oracles Oi, replacing the subprotocols Πi, in the proof of security of the overall protocol Π
(in the semi-honest model). Hence, we can substitute each invocation of a secure two-party
computation in our protocol with a call to an oracle. The outputs of the oracle can be
simulated using independent, uniformly chosen random numbers, since the outputs of the
subprotocols are secret shares.

In Step 0 (setting parameters and identifiers), each party locally generates and stores
matchID identifiers and mismatchID identifiers for its own records. Later, each party
generates and stores otherID identifiers for the other party’s records. These otherID
identifiers are exchanged and received as secret shares, a process which we can simulate with
uniform random numbers. Step 1 (scoring) of our protocol is done locally. Step 2 (sorting)
and Step 3 (sliding window) are simulated as above. In Step 4 (shuffling identifiers), we
start similarly by securely computing Ideal Functionality 1 to write record identifiers to
output arrays for each party. From the output of this step each party receives an identifier,
for each record in the protocol, which has been chosen uniformly at random and without
replacement by the other party (in Step 0). Hence, these identifiers can be simulated easily.
Each party locally permutes its set of identifiers and sends the shuffled identifiers to the
other party. The identifiers received by each party are the following: 1) all the otherID
identifiers that this party generated for each record belonging to the other party’s records,
2) a matchID identifier for each record that belongs to this party that also has a matching
record belonging to the other party, and 3) a mismatchID identifier for each record that
belongs to this party but that does not have a matching record belonging to the other
party. This set of identifiers can be simulated from the output of the protocol given to
the simulator and the stored identifiers from Step 0. Due to the permutation, the order in
which identifiers are received is random.

This completes the simulator of either party’s view in our protocol. We conclude that
our protocol is cryptographically secure in the semi-honest model.
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Chapter 5

Experimental Results

We performed experiments to empirically evaluate the SFour protocol’s performance and
accuracy. As such, this chapter is split into two parts, one dedicated to discussing the re-
sults from our performance experiments, the other for discussing the results of our accuracy
experiments. Summarily, our results showed that our protocol:

• runs approximately 1-2 orders of magnitude faster than the differentially private
Laplace Protocol proposed by He et al. [26], and

• achieves perfect precision (no false positive matches) and high recall.

5.1 Performance

As mentioned in Section 2.3.1, we used public datasets published by the Taxi and Limou-
sine Commission (TLC) [55] to test our protocol’s performance. A single iteration of
our experiment used two databases, sizes of which we varied throughout our experiments.
The TLC itself does not have data on matching records, and so we synthesized duplicated
records in the same manner as did He et al. in their evaluation of the Laplace Protocol. We
synthesized duplicates by adding uniformly random values drawn from the range [−θ2, θ2],
with θ = 0.001, to the latitude and longitude values from uniformly random records se-
lected from one database. A synthesized record was added only to the database that did
not contain the original record, so a database did not contain duplicates of its own records.
These duplicated records formed the ground truth of the matches to be targeted by the
protocol.
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For our performance experiments, we ran the secure FRESCO implementation of our
protocol. Our implementation used an optimization that required each participant to have
a database size of a power of two. The benefit derived from the optimization is negligible
when dealing with sufficiently large datasets, and so we exclude the results obtained without
use of the optimization.

5.1.1 Online phase

We ran our protocol with both parties on the same machine. Using the taskset tool we
limited each party to its own single Intel Xeon E7-8860 v4 CPU @ 2.20GHz thread. Using
ulimit, we were able to limit each party to using at most 108 GiB of RAM. We ran 30 trials
for each database size (sufficiently many trials to obtain narrow 95% confidence intervals
for our runtimes). With a window size of O(log(n)) we were unable to obtain performance
results for databases with more than 4096 records (i.e., when there were at most 8192
records between two parties). Since the accuracy experiments detailed in the next section
varied the window sizes used in the protocol, we additionally ran performance experiments
with a larger window size. With a window size of O(log2(n)) we were unable to obtain
performance results for databases with more than 512 records (i.e., a total of 1024 records
between two parties). However, we used a regression curve to extrapolate runtimes for
larger datasets. Table 5.1 shows the online runtimes from our experiments, with Figure 5.1
offering a graphical representation.
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Number of records
(per party)

Online runtime
(95% confidence interval)

Window size = log(n) Window size = log2(n)

1 00m 0.8s ±0.0s 00m 0.8s ±0.0s
2 00m 1.5s ±0.0s 00m 1.6s ±0.0s
4 00m 2.8s ±0.0s 00m 3.4s ±0.0s
8 00m 5.4s ±0.1s 00m 8.7s ±0.1s
16 00m 11s ±0.2s 00m 24s ±0.2s
32 00m 22s ±0.2s 01m 12s ±0.6s
64 00m 45s ±0.4s 03m 27s ±1.7s
128 01m 36s ±0.7s 09m 32s ±4.2s
256 03m 32s ±1.6s 25m 54s ±13s
512 07m 26s ±2.5s 65m 44s ±45s
1024 16m 11s ±7.1s †158m 23s
2048 34m 39s ±15s †384m 54s
4096 77m 07s ±36s †918m 36s

Table 5.1: SFour online runtime. † Data representing estimated runtimes are marked.

The authors of the Laplace Protocol [26] estimate that, with two parties, each having
5, 000 records, it would take around 80 hours to complete their protocol, not including
the offline encryption time required in their protocol. The results of our experiments
suggest that we outperform the Laplace Protocol by over an order of magnitude, where
our protocol’s online phase finishes execution with two parties, each having 4, 096 records,
in under 80 minutes.
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Figure 5.1: SFour online runtime.

5.1.2 Offline phase

As mentioned earlier, the preprocessing steps can be done independently of the data and
far in advance of the online phase. In our experiments we reused preprocessed data, which
(albeit insecure in practice) allowed us to run our experiments quicker, and so we do not
offer a focused analysis of our offline runtimes. As a rough estimate however, we found that
the offline stage would take around four times as long as the online stage, for any given input
size. Along with the results from the previous subsection, we see that even after including
our protocol’s offline runtime, our protocol outperforms the online runtimes exhibited by
the Laplace Protocol by around an order of magnitude. Further, the preprocessing stage
in FRESCO still relies on the relatively slow MASCOT protocol [33], with work on a faster
protocol, Overdrive [34], currently in progress.

31



5.2 Accuracy

For our accuracy experiments, we simulated the functionality of our protocol without the
use of secure multiparty computations. This allowed us to test our protocol’s ability to
detect matches without needing to construct large SMC circuits for databases with millions
of records. By construction, our protocol guarantees perfect precision, i.e., our protocol
does not incorrectly determine that some record from one database has a matching record
in another database, since a record is determined to have a matching record if and only if
the matching function determines that the record has a matching record. The definition of
the matching function is exactly the criteria used by the protocol participants in classifying
any pair of records as matching records.

We performed various experiments to test our protocol’s recall rate, i.e., the proportion
of correct matches found with respect to the total number of matches in the ground truth.
In these experiments we do not explicitly define any matching functions. Since the ground
truth exists, there must be some matching function that outputs booleans corresponding
to the ground truth, and so we need not define any matching functions for our recall
experiments. We use only the ground truth to calculate our protocol’s recall rate.

In addition to testing the accuracy of our protocol with the Taxi datasets from our
performance experiments, our accuracy analysis makes use of other large and publicly
available datasets. While our protocol exhibits high recall rates with these datasets, it
does not generally achieve perfect recall. In order to improve the protocol’s accuracy, our
experiments investigated the impact of performing the following:

• increasing the size of the sliding window used in the protocol, and

• running subsequent iterations of the protocol after removing matches found during
earlier iterations.

We split the discussion of our accuracy experiments to focus individually on each of the
differing datasets.

5.2.1 Taxi and Limousine Commission

Structure of the Taxi dataset

We reused the Taxi dataset as described in Section 2.3.1 and in the discussion of our
performance experiments. Briefly, a record in the Taxi dataset contained a timestamp, a
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longitude coordinate and a latitude coordinate. Using the Taxi dataset, we synthesized
duplicate records by perturbing the longitude and latitude values. The Taxi datasets
combined contained six million original records with an additional 1% of synthetically
generated duplicate records.

Scoring function

We used a simple scoring function that returned only the timestamp of a record.

Results

Figure 5.2 shows that our protocol located all records that had a matching record, even
as the database sizes scaled to the order of millions. This result is in line with the results
obtained by the Laplace Protocol [26].

One caveat to these results lies in noticing that the duplicate synthesis process perturbs
only the longitude coordinate and latitude coordinate values in a record. Given that our
scoring function used only a record’s unperturbed timestamp, our protocol essentially re-
duced to a private set intersection protocol in this case. While this allows us to perform a
fair comparison with the results from the Laplace Protocol experiments, we observed that
extending the scoring function to account for longitude and latitude coordinates resulted
in approximately a 25% drop in recall. To allow for a better assessment of our record
linkage protocol, rather than arbitrarily perturbing timestamps in the synthetically gener-
ated duplicate records, we rely on other datasets with naturally occurring matches. These
datasets are described in the forthcoming sections.
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Figure 5.2: Our protocol correctly located 100% of all matches in the Taxi datasets.

5.2.2 OpenStreetMap/Yelp

Structure of the OpenStreetMap dataset

OpenStreetMap (OSM) is a project to aggregate crowdsourced geographic data [44]. A user
contributing to OSM is able to use a personal GPS device to enter geographic information
for places of interest. We used the publicly available OpenStreetMap API to build a dataset
of restaurants. A record in our OSM dataset contained the following:

• the restaurant’s phone number (used as a primary key),

• the restaurant’s name,

• the restaurant’s longitude coordinate, and,

• the restaurant’s latitude coordinate.
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The dataset that we obtained in the end contained 98,100 records. While OSM has many
more restaurants in its records, our dataset included only records for which OSM had a
value for each of the fields that we included in our dataset.

Structure of the Yelp dataset

Yelp is a business that hosts crowdsourced reviews about other businesses. While reviews
form a large part of Yelp’s crowdsourced data, this crowdsourced data also includes infor-
mation such as the phone numbers and geographic locations of businesses. Using Yelp’s
open database [17] for research purposes and Yelp’s publicly available API we formed a
dataset of restaurants where each record contained the following:

• the restaurant’s phone number (used as a primary key),

• the restaurant’s name,

• the restaurant’s longitude coordinate, and,

• the restaurant’s latitude coordinate.

While Yelp possesses entries for millions of businesses, the database it makes available for
research purposes contains only a relatively small subset of its overall data. We augmented
this dataset with the use of Yelp’s API to include records for the restaurants found in the
OSM dataset (using phone numbers as the primary key in both datasets). The dataset
that we obtained in the end contained 239,727 records.

Ground truth

We assumed that using phone numbers as primary keys in the OSM and Yelp datasets
would allow us to obtain a fairly reliable ground truth of the restaurants that had cor-
responding records in both datasets. Of course, record linkage assumes that errors are
made during data entry. As such, it is very likely that our ground truth contained matches
that are unlikely to be true matches. An analysis of our ground truth, using the distances
between the locations of restaurants as recorded in the two datasets, suggested that less
than 2.5% of the ground truth contained errors. We considered this acceptable and used
the ground truth, regardless of the few incorrect matches contained in the truth. There
were 48,669 records in one dataset that had a corresponding record in the other dataset
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according to our established ground truth. Of these duplicate records, only 17 were ex-
act duplicates (around 0.03%). Across the 337,827 records from both the OSM and Yelp
datasets, we have around 29% duplication of records.

Scoring function

Our scoring function used a Hilbert curve to project a tuple in the form (longitude coor-
dinate, latitude coordinate) into an integer.

Results

Figure 5.3 shows the result of our accuracy experiments with the OSM/Yelp datasets.
We see that our protocol using a sliding window with a size of O(log(n)) found just over
97% of the matching records with a single iteration of the protocol. Here we see that our
protocol displays high accuracies, even when only around 0.03% of the duplicates are exact
matches. A combination of increasing the window size and running repeated iterations of
the protocol enabled the protocol to find all matches.
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Figure 5.3: Change in recall rate with subsequent iterations of the protocol and with
different window sizes.

5.2.3 British National Bibliography/Toronto Public Library

Structure of the British National Bibliography dataset

The British National Bibliography (BNB) contains a catalogue of metadata of books that
have been published or distributed in the United Kingdom since the year 1950 [8]. We
downloaded the catalogue from the BNB and using this data created a dataset of biblio-
graphical information where each record in our dataset contained the following:

• the item’s ISBN (used as a primary key),
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• the item’s title, and

• an author associated with the item.

The BNB has millions of entries, but a non-significant number of entries currently do not
have associated ISBN data. Our dataset included only items that had all three of the
above fields. The dataset that we obtained in the end contained 2,849,463 records.

Structure of the Toronto Public Library dataset

The Toronto Public Library (TPL) publishes a catalogue of its collection of books and
media [41]. As with the British National Bibliography data, we downloaded the TPL
catalogue and created a dataset of bibliographical information from the TPL catalogue.
Each record in our TPL dataset contained the following:

• the item’s ISBN (used as a primary key),

• the item’s title, and

• an author associated with the item.

We included only those records that had a value for each of these three fields. The dataset
that we obtained in the end contained 1,203,633 records.

Ground truth

Similar to how we used phone numbers to build our ground truth of matches with the
OSM and Yelp datasets, we assumed here that using ISBNs would be a reliable way to
form the ground truth of matches for items contained in the BNB and the TPL catalogues.
To determine the quality of matches contained in the ground truth, we used a Levenshtein
distance based metric [52] to determine the similarity between the two records in a matching
pair. Only around 52% of the matching pairs were exact matches. Approximately an
additional 37% of the records with matches had a similarity of at least 90% with the other
record in the match pair (based on title and author name). Of the 4,053,096 records across
both datasets, there were 353,434 records in one dataset that also existed in the other
dataset (a duplication of around 17%).
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Scoring function

The scoring function that we used for these bibliographical datasets differed greatly from
the datasets that we have discussed thus far. The Taxi, OSM, and Yelp datasets each
had numerical fields (the longitude and latitude coordinates) which allowed for a natural
method to feed a record to a Hilbert curve and obtain an integer as the score from the
output of the Hilbert projection, H,

score = H((latitude, longitude)).

With fields containing string values, we needed to be able to encode strings in an
appropriate manner, without losing the benefits of the distance preserving properties of
the Hilbert curve. We accomplished this by using two kinds of Hilbert curves. The first
kind was a field level Hilbert curve to score a string in a single field from a single record.
This field level curve accepted a numerical encoding of a string and returned an integer
representing the score for the string. We numerically encoded a string by mapping each
character in the string to its ASCII value (“a” was 97, “b” was 98, etc.) and returning an
array of integers for that string. This numerical encoding allowed us to project a single
string into a field level Hilbert curve. The intuition behind this process is that two strings
that are similar to one another will have similar numerical encodings as one another. If the
strings have similar numerical encodings, the field level Hilbert curve will likely generate
similar scores for the numerical encodings. Ultimately, if two strings are similar to one
another, they should each have similar scores as one another. Thus, we obtain a method
to score a single string. Using this method, each string in a record can be scored i.e.,
each string can be converted to a numeric representation with some distance preserving
properties inherited from the Hilbert curve.

Once the strings in a record have been scored, the record can be fed to a record level
Hilbert curve to obtain a score for that record, as was possible with the OSM/Yelp datasets,
which already contained numerical fields (longitude and latitude coordinates). Figure 5.4
displays an example of scoring a record with two string fields.
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Figure 5.4: Example scoring function used for string values in a record. Here RLH and
FLH refer to record level and field level Hilbert curves, respectively. ASCII(x) returns the
numerical value associated with the ASCII character x.

We arbitrarily used ASCII values while encoding strings as numerical data. It is not
known whether a more methodic encoding scheme may yield better results. For strings
containing non-ASCII characters, we attempted first to normalize the characters to a close
ASCII representation (“ümlaut” became “umlaut”). If no close ASCII representation was
determined, we arbitrarily weighed a non-ASCII character as having a score of zero. Given
that the records in our datasets were mostly in English, this did not greatly affect our
results.

In our experiments, we used three fields to score the records from the BNB/TPL
datasets. The tuples fed to the Hilbert curves were in the form (item title, author’s first
name, author’s last name).

40



Results

Figure 5.5 shows the result of our accuracy experiments with the BNB/TPL datasets.
We see that our protocol using a sliding window with a size of O(log(n)) found just over
85% of the matching records with a single iteration of the protocol. This accuracy result
is weaker than the results from our earlier experiments, however, it is recognized that
record linkage with datasets containing strings tends to be a more challenging problem
than performing record linkage with numerical fields [38]. This difference in difficulty is
reflected in the relatively more complex scoring function used here when compared with
the scoring functions used for the Taxi and the OSM/Yelp datasets. A combination of
increasing the window size and running repeated iterations of the protocol increased the
protocol’s accuracy to just under 90%.

Figure 5.5: Change in recall rate with subsequent iterations of the protocol and with
different window sizes.
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5.2.4 North Carolina Voter Register

Structure of the North Carolina Voter Register datasets

The state of North Carolina currently hosts a state wide public register of voter details
known as the North Carolina Voter Register (NCVR) [48]. Amongst other information,
the NCVR contains the following voter details:

• NCID (an identifier used as a primary key),

• first name,

• middle name,

• last name,

• age,

• residential address,

• phone number,

• race,

• gender,

• place of birth, and

• political party affiliation.

Our linkage experiments were performed across snapshots of the NCVR dataset from dif-
ferent time periods, specifically, we used the November 2014 (NCVR-2014) and November
2017 (NCVR-2017) snapshots. These snapshots offered an opportunity to perform record
linkage on entities that may have changed over time. Some NCID values were repeated
within a single snapshot. We removed records where such repeated usage of NCID values
occurred to attempt to deduplicate each individual snapshot before performing the record
linkage. In the end, we had 10,212,202 records in the NCVR-2014 snapshot and 10,795,312
records in the NCVR-2017 snapshot, for a total of 21,007,514 records in total across both
datasets.
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Ground truth

We assumed that the NCID values would form a reliable way to generate the ground truth
for the matches between the two NCVR datasets. While there were some duplicated uses
of some NCIDs, it appeared that the duplicated NCIDs referred to the same entities that
had been included within the same snapshot multiple times. Regardless, these repeated
entities were removed from our datasets. Ultimately, of the 21,007,514 records across both
datasets, there were 9,792,601 records in one dataset that had a matching record in the
other dataset (a 93% duplication rate). Of these duplicated records, approximately 35%
of the records were exact matches (after removing age related fields from the records,
otherwise none of the records would possess an exact match, given the temporal nature of
the datasets).

Scoring function

The scoring function that we used for the NCVR datasets is similar to the one that we
used for the bibliographical information in the BNB/TPL datasets mentioned earlier in
Section 5.2.3. The difference lies only in the fields used while scoring the NCVR dataset.
Here, instead of feeding (title, first name, last name) tuples to field level Hilbert curves, as
was the case with the BNB/TPL datasets, we instead form (first name, middle name, last
name, race, gender, place of birth) tuples for the Hilbert curves used to score the records
from the NCVR datasets.

Results

Figure 5.6 shows the result of our accuracy experiments with the NCVR datasets. We see
that our protocol using a sliding window with a size of O(log(n)) found just under 98% of
the matching records with a single iteration of the protocol. A combination of increasing
the window size and running repeated iterations of the protocol marginally increased the
protocol’s accuracy.
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Figure 5.6: Change in recall rate with subsequent iterations of the protocol and with
different window sizes.

5.3 Accuracy-Performance tradeoff

Our protocol experiences an accuracy-performance tradeoff. We can increase the protocol’s
accuracy — at the cost of decreasing the protocol’s performance. Accuracy can be increased
by either increasing the window size or by running additional iterations of the protocol.
However, our experiments suggest that performing either of these options in moderation
only results in a marginal improvement in accuracy. Running a second iteration of the
protocol at worse doubles the overall linkage time when the datasets do not have a large
number of matching records. When there is a large number of duplicates however (per-
haps such as the 93% duplication in the NCVR datasets), the first iteration may remove
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a significant number of records and allow the process to finish significantly faster during a
second iteration. Increasing the window size, on the other hand, could result in a signifi-
cantly larger runtime than running the protocol a second time, for comparable increases in
accuracy (see Figure 5.1). Nonetheless, the protocol is parameterized by the window size,
and for cases with a critical need for high accuracy, it may be worth incurring the cost in
performance for better accuracy. Our experiments show that combining both approaches
by first running the experiment with a relatively small window size and then increasing the
window size with subsequent iterations of the protocol may provide an acceptable com-
promise. Recall that setting the window size to the total number of records across both
datasets reduces our protocol to the All Pairwise Comparison protocol and guarantees a
100% accuracy. Table 5.2 summarizes the results of our accuracy experiments.
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Datasets

Total number
of records
across both
datasets

Duplication (%)

Accuracy (%)
Window size

O log(n) O log2(n) O logi(n)

Iteration Iteration i = Iteration
1 2 3 1 2 3 2 3

Taxi 6,060,000 1 100.0
OSM/Yelp 337,827 29 97.0 99.3 99.5 99.4 99.9 99.9 99.8 100.0
BNB/TPL 4,053,096 17 85.4 85.8 85.9 88.3 88.4 88.4 88.4 89.7
NCVR 21,007,514 93 97.9 98.1 98.1 98.1 98.3 98.3 98.3 98.6

Table 5.2: Summary of our accuracy experiments. Increasing the window size or running subsequent
iterations only marginally increases the accuracy. A hybrid approach, in which the window size is increased
during each subsequent iteration, may offer a good compromise for applications requiring critical levels of
accuracy.
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Chapter 6

Conclusion

In this thesis we have introduced the first known efficient private record linkage (PRL) pro-
tocol that runs in subquadratic time, provides high accuracy, and guarantees cryptographic
security in the semi-honest security model. In optimizing our protocol, we have developed
a new efficient technique to perform (for almost free) an oblivious permutation on inputs
provided by multiple parties. Through a secure implementation of our protocol, we have
shown that our protocol’s runtime outperforms that of the differentially private Laplace
Protocol by 1-2 orders of magnitude. Lastly, using large and publicly available real world
datasets with naturally occurring matching records, we have run accuracy experiments to
confirm that our protocol maintains high levels of accuracy in its output.

It is our hope that the results of this work further encourage endeavours to develop
cryptographically secure PRL protocols that do not significantly compromise on efficiency
or accuracy.
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