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Abstract 

 

Micromirror is a Micro-Electro-Mechanical Systems (MEMS) device used to steer light by tilting or 

displacing a reflective surface. It is applied in numerous scanning applications and display technologies 

such as Light Detection And Ranging (LiDAR) and retinal scanning display. To achieve rotational or 

translational motion in a compliant direction with applied voltage, microactuators are implemented to a 

mirror. Among four commonly known principles of MEMS actuation, which are electrostatic, thermal, 

electromagnetic, and piezoelectric actuations, the proposed micromirror device operates based on thermal 

actuation, more specifically, using an Al/SiO2 bimorph structure. In this thesis, five different designs are 

proposed including some configurations capable of producing three degree-of-freedoms; tip, tilt, and 

piston motion. The proposed device also benefits from using Silicon On Insulator (SOI) wafer as a 

substrate as the buried oxide layer is used as an etch stop for Deep Reactive Ion Etch (DRIE) process, and 

the device layer enhances the flatness of the mirror surface. 

In the final design, mirrors with a diameter of 500 µm consisting of silicon, aluminum, and silicon oxide 

with actuators made of aluminum and silicon oxide layers are developed, fabricated, and tested. The 

selection of the dimensions and materials are justified through simulations in response to voltage in 

various scenarios. Device dimensions are varied to investigate the effect of each parameter as well. In 

addition, the designs are simulated with other potential materials for the bimorph structure. The 

fabrication process is optimized to circumvent the curvature of the mirror caused by residual stress. For 

the final fabrication process, the device Si layer is first patterned and etched for the mirror structure. 

Then, Al is used as a hard mask for both frontside and backside while the frontside aluminum is also a 

part of the device. The silicon oxide layer on the frontside, and the handle layer on the backside are 

etched using Bosch process. In this research, some of the challenges are confronted and resolved during 

the fabrication, and these include: Al layer deposit and etch, the DRIE process, and residual stress after 

the release. 

Finally, Scanning Electron Microscope (SEM) images of the fabricated devices are taken, and the tilt 

motion of the mirrors in response to actuation voltages is verified under an optical microscope. The tilt 

angle of the micromirrors are further investigated with a surface profiler. In conclusion, the SOI-based 

thermally actuated micromirror device is successfully developed with simple fabrication process while 

producing noticeable tilt motion with a very low actuation voltage. 
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Chapter 1. Introduction 

 

1.1. Motivation 

In the past few decades, Micro-Electro-Mechanical Systems (MEMS) technology has matured 

significantly and, nowadays, is used in numerous everyday applications such as accelerometer and 

pressure sensors. Many inventions and advancements in microfabrication also have enabled more 

affordable and complex MEMS devices. As “electro-mechanical” implies, a lot of times, MEMS are used 

as electromechanical transducers, devices to convert a mechanical signal into an electrical one or an 

electrical signal into a mechanical one. The former corresponds to a sensor while the latter is an actuator.  

Among various MEMS devices, micromirrors or MEMS mirrors have been researched and developed 

with great attention since the invention of scanning micromirror in 1980 by Petersen [1]. Micromirrors are 

MEMS devices used to steer light by tilting or displacing a reflective surface based on actuation 

mechanisms. The tilt and tip motions can manipulate the light by redirecting the light while the 

displacement of the mirror in a piston motion can modulate the phase of the light. There is a variety of 

existing successful applications of micromirrors, and future applications. Micromirrors are useful in a lot 

of scanning applications such as quality confocal microscopes, Light Detection And Ranging (LiDAR), 

additive fabrication technologies, machining applications, and non-invasive surgical procedures. In 

addition, a variety of display technologies, including laser scanning displays, retinal scanning displays, 

and stereoscopic displays, benefit with the implementation of micromirrors [2]. 

In general, a micromirror is integrated with MEMS actuators to achieve tilt or piston motion in a 

compliant direction with voltages applied. MEMS actuators can be classified into four categories by 

actuation principles: electrostatic, electrothermal, electromagnetic, and piezoelectric actuators. Although 

electromagnetic and piezoelectric actuators can provide great performance, one of the challenges with 

implementing electromagnetic and piezoelectric actuation is fabrication process. Micromirrors with 

electromagnetic actuators can often be bulky or require an external magnet, which make it more difficult 

to integrate on other components in microscale. Piezoelectric materials can be more expensive than 

standard thin-film materials. It is challenging to scale down and integrate with microdevices as well. 

Using electrostatic actuation is another method, and for electrostatic actuation, parallel plates and comb 

drives are commonly used configurations. Comb drive structures often require complicated flexure 
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bearings to guide their intended motions, and it is also challenging to produce vertical movement, which 

is typically required for a micromirror to achieve three Degree Of Freedom (DOF)s; tip, tilt, and piston. 

Parallel plates often suffer from pull-in effect and stiction issues during fabrication. In contrast, thermal 

actuators are relatively simple, and can be processed with standard materials. In particular, bimorph 

thermal actuators, composed of two different layers, can easily produce vertical actuation using the 

difference in thermal expansion of two materials. Plenty of micromirrors based on thermal actuation with 

great performance has been developed, however, a lot of them still have complex process steps resulting 

more cost and difficulty in manufacturing. One of the goals for this work is to simplify the fabrication 

steps while providing comparable performance. 

Another significance of the micromirror device in this project is that the substrate of the device is a 

Silicon On Insulator (SOI). The popularity in SOI devices is increasing due to the advantage of having an 

oxide layer as an isolating layer. The proposed process steps also take advantage of the oxide layer as an 

etch stop during dry etch. Although the cost of SOI wafers is still noticeably higher than bulk silicon 

wafers, it is expected to decrease with time as SOI technology advances. 

Considering the above challenges and potentials, this thesis proposes an SOI-based micromirror capable 

of producing tip, tilt, and piston motion actuated by thermal Al/SiO2 bimorph structures. Five different 

designs of the micromirror are introduced with simulations. The micromirror devices are then fabricated 

with the proposed designs. The fabrication process is highlighted with some challenges such as residual 

stress and aluminum etch method, and how these issues are resolved. Finally, the angular displacement of 

the fabricated samples is characterized, and these experimental results are compared with the simulated 

results. 

 

1.2. Objective 

The primary goal of this research is to develop a micromirror device capable of three DOFs using thermal 

bimorph actuators. Among many aspects to achieve the objective of this project, the objective can be 

broken down to three main areas. 
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Objective 1: 

Development of designs and simulations of an SOI-based micromirror device that can produce tip, tilt, 

and piston motion 

Objective 2: 

Microfabrication of a proposed micromirror device with commonly used thin-film techniques 

Objective 3: 

Characterization of the performance of a micromirror device to compare with simulations and other 

existing devices 

 

1.3. Outline 

Chapter 2: 

Chapter 2 introduces useful background knowledge to understand micromirror. Four common actuation 

principles are highlighted and compared. Examples and applications of existing micromirrors are 

explored. Also, the advantages of using an SOI wafer over bulk-Si wafer are discussed. 

Chapter 3: 

This chapter proposes the five different designs of micromirror based on thermal bimorphs. They are 

compared with simulation results. In addition, the modification of these designs is detailed and reasoned. 

Furthermore, more simulation results are presented with dimension and material sweeps. 

Chapter 4: 

Following the designs from the previous chapter, the microfabrication process is described including 

issues in the process and the solutions to them. Moreover, the experimental setup and validation with the 

final devices are included in this chapter. 
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Chapter 5: 

Lastly, a summary of the design, simulation, fabrication, and results are discussed. Then, conclusions and 

recommendations drawn from this study are suggested. 
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Chapter 2. Literature Review 

 

This chapter introduces a literature review of the related topics to micromirrors. To understand 

micromirrors, the actuation mechanism must be realized. Section 2.1 covers four different mechanisms 

used for MEMS actuators including electrostatic, thermal, magnetic, and piezoelectric actuators. 

Next, Section 2.2 classifies micromirrors and highlights examples and applications of them.  

Section 2.3 introduces advantages of using SOI wafers over Si wafers. In addition, the integration of SOI 

technology with MEMS device is explained. 

 

2.1. Microactuator 

A microactuator or MEMS actuator is a device that converts an electrical signal into a motion. There are 

numerous successful applications of MEMS actuators. One of the most commercially well-known 

applications is ink-jet nozzle first invented in 1979 by Hewlett-Packard. Since then, attention to MEMS 

actuators have been growing. During the 1990s, MEMS technology has attracted great attention, and a lot 

of useful methods of micromachining have been developed. Nowadays, there are many applications of 

MEMS actuators such as micropumps, microvalves, microshutter, micromirror, microgripper, fiber-optic 

switch, variable capacitors in various fields like optics, communication, medical, scanning probe 

microscope [5]. Over the last few decades, a significant number of actuators have been developed using 

various methods. MEMS actuators can be classified into four categories by actuation mechanisms: 

electrostatic, thermal, magnetic, and piezoelectric actuations. Each category can further be grouped into 

subcategories as shown in Table 2.1 [6]. 
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Table 2.1. Families and classes of microactuators [6] 

Electrostatic Thermal Magnetic Piezoelectric 

Comb drive 

Scratch drive 

Parallel plate 

Inchworm 

Distributed 

Repulsive force 

Curved electrode 

S-shaped 

Electrostatic relay 

Bimorph 

Solid expansion 

Topology optimized 

Shape memory alloy 

Fluid expansion 

State change 

Electromagnetic 

Magnetostrictive 

External field 

Magnetic relay 

 

 

Bimorph 

Expansion 

Suitable actuation principle needs to be carefully considered as each has different advantages and 

disadvantages. The four mechanisms are shown in Table 2.2 to compare their performances [7]. 

 Table 2.2. Comparison of different actuation principles [7] 

 Electrostatic Thermal Magnetic Piezoelectric 

Force Low High High High 

Displacement Low High High Moderately High 

Actuation Voltage High Low Low Moderately Low 

Power Consumption Low High High Low 

Response Time Fast Moderately fast Moderately fast Fast 

Fabrication 

Complexity 
Simple Simple Complex Complex 

Challenge 
- Pull-in effect 

- Stiction 
- Overheating 

- Fabrication 

challenge 

- Fabrication 

challenge 

 

2.1.1. Electrostatic Actuator 

Electrostatic microactuators are based on an attractive force between oppositely charged conductors. This 

requires closely spaced gaps between the conductors. The simplest electrostatic actuator is two plates that 

are oppositely charged while one plate is fixed and the other is movable. As Figure 2.1 pictures the 

schematic of two parallel plates electrostatic actuator, the bottom plate is fixed while the top plate is 

moveable [8]. 
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Figure 2.1. Schematic of two parallel plate electrostatic actuation 

The relation between the applied voltage and the deflection of the moveable bean can be expressed by 

balancing the capacitive force and the mechanical spring force of the two plates. First, the energy stored, 

𝑊 of a capacitor is equated: 

 𝑊 =
1

2
𝐶𝑉2 

(2.1) 

 

where the capacitance, 𝐶, between two plates at a given voltage, 𝑉. The capacitance as a function of 𝑧 

displacement of the plates in Figure 2.1 (a) can be found: 

 𝐶 = 휀
𝐴

𝑔0 − 𝑧
 (2.2) 

where 휀, 𝐴, 𝑔0 are permittivity of dielectric material, cross-sectional area, and the initial gap between two 

plates. Finally, the electrostatic force is obtained by taking the derivative of the stored energy with respect 

to 𝑧 , which results as following [8]: 

 𝐹𝑧,𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 = −
𝑑𝑊𝑒

𝑑𝑧
=

1

2
𝑉2

𝑑𝐶

𝑑𝑧
=

1

2
휀

𝐴

(𝑔0 − 𝑧)2
𝑉2 (2.3) 

Then, the force is balanced with the mechanical force with the spring constant of the movable structure, 

𝑘: 

 𝐹𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑎𝑙 + 𝐹𝑒𝑙𝑒𝑐𝑡𝑜𝑠𝑡𝑎𝑡𝑖𝑐 = 0 (2.4) 

 

 

−𝑘𝑧 +
1

2
휀

𝐴

(𝑔0 − 𝑧)2
𝑉2 = 0 

(2.5) 
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The spring constant depends on the geometric constraints and the material properties of the moveable 

plate. As Equation (2.3) shows, the attractive force increases with the applied voltage, which will reduce 

the gap, (𝑔0 − 𝑧), between the plates. When the gap is decreased with the actuation voltage, the reduced 

gap increases the attractive force. This implies that the system undergoes positive feedback and will be 

unstable at some point. This effect is called pull-in effect, and the calculation shows that when the gap 

between the two plates reaches one-third of the original gap, the pull-in occurs. Pull-in effect is typically 

not desired because the system becomes unstable. Therefore, the displacement of electrostatic actuator is 

often limited by a third of the gap, which is one of the disadvantages of electrostatic actuators. Another 

common issue is called stiction during microfabrication process. Often, sacrificial layer is released by wet 

etch, and this can cause the suspended structure to collapse due to the capillary force from the rinse liquid 

as shown in Figure 2.2. Stiction can be resolved by dry etching instead of wet etching, or by critical point 

drying after wet etch [9].  

 

Figure 2.2. Stiction during release process 

Comb-drive is another actuator design using the principle of electrostatic force. Comb-drives take an 

advantage of interdigitated structures to maximize the overlapping area of capacitance. Unlike two 

parallel plates, where the force is out-of-plane, it is easier to generate in-plane longitudinal force. 

Similarly, to Equation (2.2), the capacitance of each finger can be equated and used to find out the force 

of comb drive as following: 
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𝐶𝑓𝑖𝑛𝑔𝑒𝑟 =

휀(𝐿0 − 𝑦)𝑡

𝑥0
 

 

(2.6) 

 

 
𝐹𝑦 =

1

2
𝑉2

𝑑𝐶

𝑑𝑦
= −

𝑛휀𝑡

2𝑥0
𝑉2 

 

(2.7) 

The dimensions of the structure for Equation (2.6) and (2.7) are shown in Figure 2.3(a), and 𝑡 denotes the 

thickness of the comb drive. 𝐶𝑓𝑖𝑛𝑔𝑒𝑟 represents the capacitance between two fingers, which needs to be 

multiplied by the number of fingers, n. 𝐹𝑦 is the total electrostatic force, not the force of a pair of comb 

fingers [10]. Note that the force is independent of the separation distance between the two comb bodies. 

In addition, the force can be increased with a greater number of fingers. It is also possible to produce 

lateral or vertical force using comb drive. Thus, comb drive, in general, can exhibit a larger range of 

motion than two parallel plates, and it has more feasibility of producing more degrees of freedom [11]. 

However, comb drive generally requires more complex geometry with flexures to direct the actuator as 

intended as Figure 2.3 (b) shows an example of typical comb drive actuator. 

 

(a) 

 

(b) 

Figure 2.3. (a) Schematic and parameters of comb drive (b) SEM image of a comb drive actuator 

As a result, two commonly used configurations, parallel plates and comb drive structures, are introduced. 

As mentioned in Table 2.1, advantages of electrostatic actuators are low power operation, fast response, 

and simple fabrication. In contrast, the required actuation voltage is typically high. Pull-in effect needs to 

be addressed in some cases. Additionally, when removing the sacrificial layer for releasing, dry etch 

process or critical point drying is required to avoid stiction. 
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2.1.2. Thermal Actuator 

Thermal microactuators incorporate thermal effects in MEMS elements. Although thermal effect in 

MEMS can cause unintended stress, deformation, or overheating, it can be used to lead to mechanical 

output. Several actuation methods exist such as bimorph actuation, hot arm actuation, thermopneumatic 

actuation, and shape memory alloy actuation. Bimorph or bimetallic actuators take advantage of different 

coefficient of thermal expansion (CTE) of different materials, usually involving metals. The simplest 

structure can be a bilayer cantilever made of two thin layers of different materials with one fixed end 

while the other end is movable as described in Figure 2.4 [12]. 

 

Figure 2.4. Deflection of thermal bimorph actuator [12] 

The actuator is heated by resistive heating with applied voltage. Due to the difference in thermal 

expansion coefficient of two layers, one of them expands more than the other. This expansion leads to 

compressive stress on the top layer and cause the cantilever to bend. In Figure 2.4, the top layer expands 

more due to higher CTE and causes the beam to bend downward. Although it is possible to obtain an 

analytical solution of the deflection and the radius of curvature [12], the solution is quite tedious and long. 

In addition, the temperature difference between two layers needs to be known, which is not uniform 

throughout the layers. Typically, finite element analysis (FEM) software is employed to simulate more 

complex structures.  



11 

 

While bimorph actuation is generally easier to produce vertical displacement, two-hot-arm actuator is 

another simple design, more suitable for lateral actuation. Two-hot-arm actuation makes use of geometry 

by varying widths of two beams. A simple hot arm actuator has two arms with different cross-sectional 

areas while keeping the lengths the same. In fact, since varying thickness of a layer is more challenging, 

different widths can be used consisting thin arm and wide arm as presented in Figure 2.5. Unlike bimorph 

actuator, a single metal layer that is suspended can be used. 

 

Figure 2.5. A typical two-hot-arm thermal actuator (a) Undeflected position, (b) Deflected position [13] 

When current flow through beams, different cross-sectional areas result the difference in electrical 

resistance because electrical resistance is governed by the following equation:  

 R =
ρl

A
 (2.8) 

where R, ρ, l, and A notate electrical resistance, material resistivity, length, and cross-sectional area, 

respectively. When voltage is applied between the two contact pads, both arms will expand due to 

resistive heating. As hot arm is thinner, it produces more resistive heating for higher resistance as the 

name “hot arm” implies. The hot arm will expand more than the cold arm, which leads the actuator to 

bend towards the cold arm. 

Another widely known thermal actuator design is chevron structure, which is again based on thermal 

expansion. The structure consists of a shuttle, which connects beams that are angled and anchored to the 

substrate. When current flow through the beams, the beams heat and expand, then actuate the shuttle 

towards the intended direction. Figure 2.6 presents the simulation of typical chevron thermal actuator 

made of aluminum with applied voltage of 0.1V. The simulation software used is COMSOL 

Multiphysics. 
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Figure 2.6. Simulation of typical chevron actuator 

In conclusion, numerous configurations of thermal actuators such as two-hot-arm, chevron, bimorph 

structures are available with simple fabrication. Thermal actuation can generate high force and 

displacement with relatively low applied while the fabrication process is typically not complex. On the 

other hand, the response time is slower than electrostatic or piezoelectric actuators, and the power 

consumption is high. In addition, thermal effect should be considered to avoid melting of the device due 

to overheating. 

 

2.1.3. Electromagnetic Actuator 

The principle of magnetic actuation is based on the electromagnetic force, more specifically, Lorentz 

force, created by the interaction between magnetic fields. Lorentz force can be generated in several 

different ways, and typical variation of components are the following: [7] 

• Interaction between permanent magnets and an external field 

• Interaction between permanent magnets and current carrying conductor 

• Interaction between current carrying conductor and an external field 
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Figure 2.7(a) and (b) both describe the interaction between permanent magnets and current carrying coils 

[14]. In Figure 2.7(a), current carrying conductor is movable and magnets are fixed, while in Figure 

2.7(b), it is vice versa. I, B, and FL denote current, magnetic field, and Lorentz force, respectively.  

Variable reluctance (VR) force principle is another method of electromagnetic actuation and is based on 

the force generated to minimize the magnetic reluctance. The interaction between surfaces with different 

permeability produces reluctance force. For instance, as pictured in Figure 2.7(c), the movable part 

actuates because the normal force, FN, is much greater than the tangential force, FT. 

 

Figure 2.7. Principles of electromagnetic actuation: (a) Lorentz force on current carrying conductor with 

permanent magnets. (b) Lorentz force on moving magnet with current carrying conductor. (c) Variable 

reluctance force [14] 

To understand the forces of the above configurations, The electromagnetic force density of these actuators 

can be obtained from the Korteweg-Helmholtz force density equation: [14] 

 𝑓𝑚 = 𝑗 × �⃗⃗� −
1

2
∙ �⃗⃗⃗�2∇𝜇 (2.9) 

where 𝑓𝑚 is the electromagnetic force per unit volume, 𝑗 the volume current density, �⃗⃗� the magnetic flux 

density, �⃗⃗⃗� the magnetic field intensity, and 𝜇 the magnetic permeability. The first term of the equation is 

responsible for the Lorentz force. In contrast, the second term corresponds to the variable reluctance 

force. 

Often, conductive coils are used as a current carrying conductor, which interact with permanent magnets. 

Common designs of electromagnetic actuators with current carrying coils are presented in Figure 2.8 

where I andΦ represents electric current and magnetic flux, respectively [14]. 
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Figure 2.8. Commonly used designs of electromagnetic actuators with current conducting coils [14] 

Microfabrication of electromagnetic actuator designs is quite challenging unlike the designs previously 

introduced for electrostatic and thermal actuators. As seen in Figure 2.8, the designs involving coils are 

generally bulky and complex. Another challenge is the integration of magnetic materials because high 

quality magnets of suitable size are often not readily available [15].  

There are still several methods to integrate permanently magnetic materials in MEMS such as 

micromachining of bulk magnets, electro-deposition, plasma spraying, pulsed laser deposition (PLD), and 

sputtering. Metal-alloy-magnets are popularly used to fabricate magnetic material in MEMS as they are 

inexpensive and relatively simple to integrate. Commonly used metal-alloy-magnets by electro-deposition 

include Co-Ni-X, FePt, CoPt, CoPt, where X is usually a nonmagnetic element like P and W. In addition, 

SmCo and NdFeB are other magnetic materials which can be sputtered or deposited by PLD [16]. Even 

though the above processes and materials are available for magnetic MEMS devices, appropriate process 

and material must be carefully considered as they have limitations and compatibility issues. Although 

magnetic actuators can exhibit comparatively large displacement with a low actuation voltage, there is 

still a challenge in the process integration of magnetic materials. 

 

2.1.4. Piezoelectric Actuator 

Piezoelectric materials generate an electric charge from applied mechanical stress. Piezoelectric effect is 

reversible meaning piezoelectric materials can be applied to an actuator as well as a sensor. With the 

potential difference, electrically induced displacement or strain can be generated proportionally [13]. 

Although piezoelectric materials can transform electric charges to mechanical stress, piezoelectric 

structure by itself will only exhibit small motion. Once the piezoelectric material is prevented from 

expanding itself, a stress is generated with the voltage, which results noticeable motion. This indicates 
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that piezoelectric material can be effectively used as a bimorph structure similarly to a thermal bimorph 

introduced in Section 2.1.2. Figure 2.9. displays schematic of two types of bimorph piezoelectric [17]. 

 

Figure 2.9. Schematic of bimorph piezoelectric actuators with one piezoelectric layer with  

(a) a passive mechanical layer, (b) another piezoelectric layer [17] 

For passive bimorph, piezoelectric material is sandwiched between the two electrode layers, which are 

deposited on top of the non-piezoelectric substrate. On the other hand, active bimorph is composed of two 

piezoelectric material layers with oppositely induced polarization. The electrodes are mechanically 

insignificant as they are thin and flexible. For the case of Figure 2.9(a), assuming that the passive layer is 

much thicker than the piezoelectric layer, the equation for the tip deflection can be obtained using 

Stoney’s equation. Similarly, for the active bimorph in Figure 2.9(b), with the assumption that both 

piezoelectric layers are the same materials with the same thickness, the tip deflection can be equated [17]. 

For the tip deflection of passive layer, 𝛿𝑝𝑎𝑠𝑠𝑖𝑣𝑒 , 

 𝛿𝑝𝑎𝑠𝑠𝑖𝑣𝑒 =
1 − 𝑣𝑠

𝐸𝑠

3𝐿0
2

𝑡𝑠
2 𝜎𝑝𝑖𝑒𝑧𝑜𝑡𝑝𝑖𝑒𝑧𝑜  (2.10) 

And for the tip deflection of active layer, 𝛿𝑎𝑐𝑡𝑖𝑣𝑒, 

 𝛿𝑎𝑐𝑡𝑖𝑣𝑒 =
3𝑑31𝐿0

2

8𝑡2
𝑉 (2.11) 

Where 𝑣𝑠, 𝐸𝑠, 𝑡𝑠 refer to the Poisson ratio, Young’s modulus, and thickness of the substrate, 𝐿0 the beam 

length, 𝜎𝑝𝑖𝑒𝑧𝑜, 𝑡𝑝𝑖𝑒𝑧𝑜 the stress and thickness of piezoelectric layer, 𝑑31 piezoelectric material constant in 
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the unit of pC/N, 𝑡 piezoelectric thickness, which is assumed to be the same for both layers, and finally 𝑉 

applied field. The stress in piezoelectric layer in Equation (2.8) can be obtained by [18]:   

 𝜎𝑝𝑖𝑒𝑧𝑜 = 𝐸𝑠(𝑒𝑠𝑟𝑎𝑖𝑛 − 𝑑31𝐸𝑓𝑖𝑒𝑙𝑑 − 𝛼𝑇∆𝑇) (2.12) 

Where 𝑒𝑠𝑡𝑟𝑎𝑖𝑛 represents the axial strain, 𝐸𝑓𝑖𝑒𝑙𝑑 the electric field, 𝛼𝑇, ∆𝑇 the thermal expansion 

coefficient and temperature variation from nominal. In Equation (2.12), the second term corresponds to 

the piezoelectric coupling relating z electric field to x strain. The third term is responsible for the thermal 

stress from thermal expansion variation. As seen in equations, several piezoelectric properties determine 

the deflection of the actuators. Table 2.3 lists commonly used piezoelectric materials such as zinc oxide, 

lead zirconate titanate (PZT), and polyvinylidene fluoride (PVDF), and their piezoelectric properties. 

 Table 2.3. Piezoelectric and other properties of commonly used piezoelectric materials [17] 

Material d31 [pC/N] d33 [pC/N] Relative Permittivity (εT
33/ε0) [-] 

ZnO -4.7 12 8.2 

Sol-Gel PZT -88.7 220 1300 

PVDF -23 -35 4 

PZT-5 -171 80 to 593 1700 

Like electromagnetic actuators, microfabrication of piezoelectric material is one of the challenges for 

piezoelectric actuators. Common deposition methods of piezoelectric material are sputtering and sol-gel 

deposition [17]. It is also possible to bulk micromachine piezoelectric materials, which are commercially 

available. It is still difficult to scale down and integrate with microdevices. Even though piezoelectric 

actuators exhibit great performance of high force, fast switching with low power consumption, these 

challenges in fabrication remain. 

2.2. Micromirrors 

Micromirror is a MEMS device that are used to steer light, which can be applied to scanning or projecting 

beams. Numerous micromirrors have been successfully developed for various applications such as optics, 

telecommunications, astronomy, biology, and additive fabrication [2]. Micromirrors began to attract great 

attention in the late 1980s. The first micromirror using torsional motion with electrostatic force has been 

invented by K. E. Petersen in 1980 [1]. Since then, micromirrors have significantly advanced with 

creative designs and microfabrication technologies. Now days, one of the most known examples of 
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micromirror devices is perhaps Digital Micromirror Devices (DMD) created by Texas Instruments in 

1987. DMD is a key technology for an application of Digital Light Projectors (DLP). DMD has an array 

of mirrors, which can be on and off states when electrostatic force tilts the mirror while each mirror is 

used as each pixel. Furthermore, DMD can be processed over CMOS architecture and the processing of 

the DMD structure shares many similar processes in integrated circuit (IC) fabrication [19]. 

 

2.2.1. Classifications 

Typically, the surface of micromirror is designed to elastically displace in compliant directions. Degree of 

freedom refers to the number of compliant directions of tip, tilt and piston motion. Tip and tilt motions 

are rotational while piston motion is translational. A paper by Song, Y. et al. notates these motions as tip, 

tilt, and piston as presented in Figure 2.10 [2]. Micromirrors are generally designed to achieve some 

combination of these motions. With this classification, micromirrors can be categorized into 5 different 

groups: tip-tilt-piston, tip-tilt, tip-piston, tip only, and piston only. 

 

Figure 2.10. Schematic of tip, tilt, and piston motion of micromirror [2] 

MEMS actuation can also be classified to three different operation modes: digital, analog, and resonant. A 

digital actuation utilizes a discrete set of signals, typically on and off states. DMD is a good example of 

micromirror array based on a digital actuation approach. On the other hand, analog actuation uses 

continuous and variable input to actuate mirrors. Lastly, a resonant actuation approach takes advantage of 

a harmonic driving signal, often at a natural frequency or a resonant frequency, to produce a large range 

of motion. Although the motion of the mirror can be largely amplified at a resonant frequency, the mirrors 

are usually limited to move with sinusoidal motions only. Micromirrors with this approach can also be 

used with an analog approach. The principle of actuation as discussed in Section 2.1 is obviously another 

classification. In conclusion, with large number of micromirrors developed, a micromirror can be grouped 

in different categories such as degree of freedom, actuation approach, and actuation principle. 
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2.2.2. Examples and Applications of Micromirrors 

Four examples of micromirrors with different actuation mechanisms will be introduced. For micromirror 

applications, electrostatic actuation principle is the most widely used method for its advantages previously 

mentioned. Still, each mechanism is numerous micromirror devices developed using all these four 

approaches. 

The first example is the resonant electrostatic micromirror for the application of reflective scanning 

picoproejctors, by Silva, G. et al. from STMicroelectronics shown in Figure 2.11 [20].  

 

Figure 2.11. (a) SEM Images of the resonant electrostatic micromirror. (b) SEM image of comb drive 

of the micromirror. (c) Cross-sectional view of actuator configuration [20] 

In this resonant electrostatic micromirror, comb drive structure is used at a resonant frequency to 

accomplish single-axis rotational motion and tip motion. The comb drive operates vertically as the two 

sides of fingers are offset to produce rotational motion as described in Figure 2.11 (c) [20]. This kind of 

structure with offset comb fingers is accomplished by wafer bonding. The author reports that the device 

can produce the optical scanning angle of 48° at the resonant frequency of 25 kHz with square wave of 

190 V. The resonant mirror can also operate statically to provide the optical scanning angle of 36° with 

200 VDC. 
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Another example is a thermally actuated micromirror by Jia, K. et al. from University of Florida [21]. 

This paper presents tip-tilt-piston micromirror using folded dual S-shaped (FDS) bimorph with aluminum 

and silicon oxide. The reported optical scanning angle is 25° in both the x- and y-axes with applied 

voltage of VDC. The schematic and the Scanning Electron Microscope (SEM) image of the devices are 

presented in Figure 2.12. 

 

Figure 2.12. (a) Cross-sectional side view of bimorph actuator. (b) Top view of micromirror design. (c) 

SEM image of micromirror device [21] 

Due to residual stress of thin film layers, the mirror is elevated after the fabrication. The device is also 

capable of piston actuation of 300 µm with 8 VDC. Although in this paper, the mirror is demonstrated with 

a digital approach, the device can also operate at a resonant frequency as the author provides resonant 

characterization. The author suggests that the device is especially suitable for optical phase array 

applications. 

It is quite challenging to create a simple design of electromagnetically actuated device in micro scale due 

to the requirement of magnetic field. Often, the device becomes bulky, therefore, it may be suitable to 

implement magnetic actuation for a large mirror. Among a few different magnetic actuation methods of 

introduced in Section 2.1.3, micromirror designed by Aoyagi I. et al. employs electromagnetic interaction 
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between permanent magnets and current-carrying coils similarly to the configuration in Figure 2.7(b). In 

this paper, the application of scanning micromirror is a laser range finder. [22] Figure 2.13 presents the 

top view of the layout of the micromirror and the image of the device. 

 

Figure 2.13. (a) Layout of micromirror device with electromagnetic actuators. (b) Image of fabricated 

micromirror device [22] 

The interaction of magnetic field from the four permanent magnets and the alternating electric current on 

the four coils exhibit the Lorentz force. Figure 2.13(a) shows two frames, inner and outer, on the mirror to 

provide tip-tilt motion. Figure 2.13(b) suggests that the device is relatively bulky. In this paper, the 

permanent magnets are mounted after microfabrication. The reported optical scanning angle about X axis 

is 20° with applied current of 242 mAP-P at 30 Hz (non-resonant mode) to the “frame-drive Emag” as 

labelled in Figure 2.13(a). Similarly, for scanning angle about Y axis, the optical scanning angle is 48° 

with 18 mAP-P at 1122 Hz (resonant mode). 

Last example is the micromirror device developed using piezoelectric layers to tilt the mirror by Baran, U. 

et al. [23]. Piezoelectric materials, PZT, are layered between two electrodes. The main components of the 

design are the inner frame, outer frame, and the mirror. The inner frame is connected to the outer frame 

via torsional flexures while the outer frame is anchored to the substrate. This cascaded two-frame 

structure can contribute to provide larger tilt angle while minimizing mirror deformation. The image of 

PZT based micromirror is shown in Figure 2.14. 
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Figure 2.14. Image of micromirror device with piezoelectric actuators [23] 

In this paper, the PZT layer has been deposited by sol-gel technique. The final device provides an optical 

scan angle of 38.5° with sinusoidal actuation voltage of 24 V at the resonance frequency of 40 kHz [23]. 

As seen from the examples of micromirrors in the previous section, micromirrors are mainly applied to 

scanning applications. The scanning or steering beam by micromirrors can be applied to a variety of 

technologies such as picoprojectors, optical phase arrays, laser range finders, LiDar technologies. In 

addition, it can also be used in multi-laser scanning to cure liquid photopolymer in 3D, steering laser 

beams for machining applications, noninvasive surgical applications, retinal scanning, and so on [2]. 

 

2.3. SOI MEMS Technology 

SOI structure consists of silicon thin film on an insulating layer on top of silicon substrate. One of the 

most common materials used as an insulating layer is silicon dioxide, which is also called the buried 

oxide (BOX) in SOI. Recently, SOI technology has been regarded as a promising competitor of bulk-Si 

technology in microdevices as the use of SOI substrate can overcome some limitations of standard bulk 

silicon technology. The advantages of integrating SOI technology to CMOS transistor over bulk Si 

technology is widely known. Commonly known limitations and challenges of bulk Si technology include 

high leakage current, parasitic capacitance, and interference between individual devices or circuits on the 

same integrated substrate. The insulating layer in SOI substrate, however, inhibits these undesired effects. 

The insulation layer also allows applications in radiation and high temperature environment. Furthermore, 
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the device density can be higher due to the improved isolation between devices, which allows continuous 

miniaturization of devices. Lastly, the low parasitic capacitance and leakage current enables better 

performance at high frequency while keeping low power consumption than bulk Si devices. Numerous 

applications of field-effect transistors have shown SOI CMOS devices are 20% to 30% faster than bulk 

devices while consuming only one-third to half the power [24-26]. Figure 2.15 compares CMOS devices 

using bulk-Si and SOI technologies. 

 

Figure 2.15. Cross section of CMOS devices using bulk Si (left) and SOI (right) technologies 

SOI substrates are not only growing in IC industry, but also in MEMS industry. The market size of SOI 

substrates in MEMS devices has been expanding consistently and rapidly since 2000s. Figure 2.16 

compares the market sizes of Si substrates and SOI substrates. 

 

Figure 2.16. Trend of substrate market for MEMS devices [27] 
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SOI substrate market in MEMS technology as well as in other areas is expected to continue to expand for 

several reasons. One of the primary reasons is more design freedom. For example, high aspect ratio etch 

by Deep Reactive Ion Etch (DRIE) can be achieved with a BOX layer as an etch stop. The invention of 

DRIE process and the widespread availability of SOI wafers have enabled integration of SOI technology 

to MEMS devices [28]. Other reasons cited by other contributors for using SOI substrates for MEMS 

devices include the need for the smallest possible package, tight control and precision of the structure 

allowing well-defined and thin structures, high temperature and pressure tolerance with longer lifetime 

[29]. It is also possible to include additional functionalities such as pre-etched cavities, trench isolation, 

and/or Through Silicon Vias (TSV) on SOI substrates to simplify MEMS design and manufacturing [27]. 

Although one of the drawbacks of SOI technology compared to bulk Si technology is the expensive initial 

costs of SOI wafers, which is 3 to 4 times as costly as bulk silicon wafers, this initial cost is 

counterbalanced with the higher packing density and the reduction of process steps. Also, the cost of SOI 

wafers is expected to largely decreases as the volume of production increases over time.  

In conclusion, SOI technology is emerging as a great alternative of bulk silicon technology in numerous 

microdevice applications. The oxide layer of SOI devices inhibits several unwanted effects in bulk silicon 

technology. There are countless advantages of using SOI substrates over bulk Si substrates in MEMS 

applications and the cost of SOI wafers is expected to reduce continuously. Therefore, SOI technology is 

a promising, cost-effective solution for the state-of-the-art MEMS devices. 
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Chapter 3. Design and Simulation of Micromirror Device 

 

This chapter discusses the design and simulation of a thermally actuated micromirror device. Section 3.1 

highlights the design of the device in detail including the material selection, design consideration, and 

parameters. Section 3.2 introduces the simulation results of the device using the software COMSOL. A 

micromirror device is mainly composed of two important structures: the mirror and the actuators. 

Fabrication and design of mirror are relatively straightforward as its primary requirement is to reflect to 

steer beam. The main challenge is to implement actuators to provide rotational and/or translational motion 

to the mirror. Among numerous actuation principles suggested in Section 2.1, the micromirror device 

presented in this thesis employs thermal bimorph actuation to accomplish tip-tilt-piston motion. Thermal 

bimorph, as previously mentioned, can produce large out of plane displacement using the temperature 

difference between the thermal coefficient constants of bilayers. The bimorph-based micromirror device 

is simulated with the aid of COMSOL to verify the design before fabrication. 

 

3.1. Material Selection 

Since thermal bimorph actuates using the thermal expansion of two different materials, the difference of 

the thermal expansion coefficient of the material is one of the most critical factors determining the 

performance of the actuator. The device is based on SOI wafer, and the bimorph makes use of silicon 

oxide layer as a bottom layer. Metal is a good candidate for a top layer as it provides enough current flow 

through the bimorph. Because the oxide layer has lower CTE than the metal layer, it is beneficial to have 

a high CTE for the metal material. Another consideration is melting temperature as the device will fail to 

operate and get damaged once the structure starts to melt. Considering the CTE and melting point, Table 

3.1 lists the thermal properties of silicon oxide and possible metal material choices for the top layer [30-

32]. In addition, Figure 3.1 compares the reflectance of various metals with respective the wavelengths. 
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 Table 3.1. Thermal properties of silicon 

oxide and metals [30-32] 

 
Figure 3.1. Reflectance spectra of the metals for mirror [33] 

Material CTE [10-6] Melting Point [°C] 

SiO2 0.56 1700 

Al 23.6 660 

Cr 5.94 1860 

Ag 19.8 961 

Au 14.2 1063 

Cu 17.6 1084 

 

Most metal elements shown in Table 3.1 have sufficiently high coefficient of thermal expansion 

compared to silicon oxide. Although aluminum has the highest CTE, because it has a lower melting point, 

it will start to melt at lower temperature. Another consideration is fabrication feasibility. One of the most 

essential microfabrication processes in this work is Deep Reactive Ion Etch (DRIE) to dry etch silicon, 

which will be discussed in detail in Chapter 4. During the DRIE process, only certain metals are 

authorized to be exposed in the equipment due to the risk of chamber contamination. Among the metal 

elements in Table 3.1, only aluminum and chromium are allowed. Later, the actuation performance is 

simulated with COMSOL software for comparison. Even though chromium may be a suitable candidate 

for the top layer of the bimorph, for the material of the mirror, the reflectivity is critical. Figure 3.1 above 

suggests that aluminum is also an excellent material for the mirror [33]. Unfortunately, although not 

shown, the reflectivity of chromium is below 0.7 [34]. 

In conclusion, for the micromirror device, silicon oxide is chosen for the bottom layer of the bimorph 

actuator for its low CTE and its availability from the initial substrate. For the top metal layer, only few 

metal elements are available due to the risk of contamination during the DRIE process. Commonly used 

metal elements in DRIE are aluminum and chromium. Aluminum is a great candidate for the mirror 

material for its high reflectivity, high CTE, and process compatibility. 
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3.2. Initial Design and Simulation 

Five different designs, labelled as A, B, C, D, and E, of the micromirror devices are considered and 

compared. The difference between the designs are number of anchors and beams, and the shape of the 

beam. In addition, the beams are curved for more deflection and higher fill factor. There is only one 

additional layer required on top of the SOI substrate. Figure 3.2 shows the top view of the micromirror 

designs, where yellow is the metal layer and blue is the silicon substrate from the handle layer. For the 

devices shown in Figure 3.2, only two masks are used one for the frontside and the other for the backside. 

The pattern of the silicon oxide layer is identical to the metal layer implying that the oxide layer is 

covered below the metal layer. From the backside etch, enough areas around the mirror are removed for 

the space when the mirror operates. The square contact pads are anchored to the substrate while all the 

other structures are suspended from the release of the handle layer. The dimensions of each design are 

listed in Table 3.2 with the corresponding parameters shown in Figure 3.3. Most dimensional parameters 

are the same among designs for comparison. Al and SiO2 thickness are critical dimension for actuation 

performance, and for the initial design, their values are 1 µm and 2 µm, respectively. 

 
Figure 3.2. Top view of micromirror design layout 

 Table 3.2. Dimensions of micromirror designs 

Design Parameter 
Dimension 

[µm] 

Design A 

D 500 

W 20 

L 30 

g 20 

Design B 

D 500 

W 20 

L 300 

g 20 

Design C 

D 500 

W 20 

L 30 

g 20 

Design D 

D 500 

W 20 

L 50 

g1 (= g2) 20 

Design E 

D 500 

W1 (= W2) 20 

L 330 

g1 (= g2) 20 
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Figure 3.3 Schematic of micromirror design with dimensions parameters 

The total dimension of each design including the contact pads can be found with the mask layout design 

in Appendix A. Using the COMSOL software, each design is simulated with the voltage applied to only 

one pair of contact pads. Because the simulation does not take into account the melting of the materials, 

one must ensure that the maximum temperature is lower than the melting point of the materials. The 

melting points of Al and Cr are 930 K and 2100 K, respectively. Hence, to prevent the operational failure 

due to melting, the maximum temperature must be marginally lower than 930 K. Using COMSOL, the 

designs with Al and SiO2 bilayers are modelled. The simulated maximum temperature as a function of 

applied voltage of each design is plotted in Figure 3.4. 
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Figure 3.4. Maximum temperature as a function of applied voltage for Al/SiO2 bilayer devices 

Simulation results suggest that approximately 9 volts applied to Design C will heat some part of device up 

to 900 K and eventually lead to melting and failure of the device. Similarly, the maximum applicable 

voltages can be estimated for other designs from Figure 3.4. After the microfabrication process, the Al 

and SiO2 bilayer is deformed due to thermal residual stress resulting the mirror to be deformed. Therefore, 

the stress must be considered for the simulation. Figure 3.5 shows the simulation of designs with residual 

stress assuming no voltage applied. 

 

Figure 3.5. Vertical displacement of initial designs with residual stress 
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As seen in Figure 3.5, the mirror surfaces are curved from the thermal residual stress, which is not desired 

for mirrors. The device is vertically deflected up to 45 µm depending on designs. The value of the 

residual stress used for the simulation is chosen to be approximately 200 MPa and is also assumed to be 

isotropic and uniform. These values, however, will be different from the actual devices and can only be 

obtained experimentally. The residual stress significantly depends on process conditions and vary within a 

wafer as well. The issues with thermal residual stress will be revisited in Chapter 4. To evaluate the tilt 

degree of the mirror of each design, the models are similarly simulated, but with voltages as shown in 

Figure 3.6. 

 

Figure 3.6 Vertical displacement of initial designs with residual stress and voltage applied 

In Figure 3.6, 7.5 volts are applied between two contact pads as indicated, and the mirror tilts accordingly. 

Although higher voltage can be applied, it is kept as 7.5 VDC for comparison and to avoid melting with 

some margins. Nevertheless, these devices are not applicable for micromirrors because the surfaces of the 

mirrors are not flat. This deformation makes the reflection of the beam unpredictable. Therefore, the 

simulation results of the initial designs suggest that the mirrors will not remain flat. The designs need to 

be modified so that the mirrors are still flat while the beams provide enough actuation for the tilt. 
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3.3. Modified Design and Simulation 

To address the issue of the curved surface of the mirror, a silicon layer is added to the mirror. The Si 

device layer from SOI substrate is used as the additional layer. The silicon layer should be thick enough 

to prevent the curvature of the mirror from the stress. The modified designs include 20 µm of silicon layer 

between the oxide and the metal layer for the mirror structure. In Figure 3.7, these are again simulated 

with residual stress and without voltage applied similarly to Figure 3.5. 

 

Figure 3.7. Vertical displacement of modified designs with residual stress 

All dimensions and material properties remain identical as the initial designs other than the additional Si 

layer. The simulation results show the uniform displacement of the mirror, which convinces that the 

additional Si layer will keep the mirror surface flat. These designs are likewise simulated with the residual 

stress while 7.5 volts of voltage are applied as described in Figure 3.8. 
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Figure 3.8. Vertical displacement of modified designs with residual stress and voltage applied 

The results suggest that the micromirrors can tilt while the mirror remains flat. With the same voltage 

applied, among the five designs, Design E provides the maximum total vertical displacement, 

approximately 80 µm. To quantify the actuation with respect to the voltages, the total vertical 

displacement is obtained by summing the maximum upward and downward displacement. Then, the total 

vertical displacement is plotted as a function of applied voltage in Figure 3.9. The voltage is varied up to 

the point where the aluminum starts to melt.  

 

Figure 3.9. Total vertical displacement of each micromirror design as a function of applied voltage 
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The plot in Figure 3.9 shows that the Design B and E yield the largest deflection providing approximately 

300 µm of total vertical displacement. The resistive heating of these designs is also not as significant as 

the other designs allowing the maximum voltage to be up to 15 VDC. In addition, depending on where the 

voltage is applied, the rotation axis can be changed. For instance, for Design D in Figure 3.10, there are 

four pairs of contact pads. And two pairs; top left and bottom right results in one rotation axis while the 

other two pairs; top right and bottom left produces the other rotation axis shown in Figure 3.10. 

 

Figure 3.10. Tilt motion about two different rotation axes depending on where the voltage is applied 

In Figure 3.10, voltage is applied to each pair of contact pads. It is also possible to apply voltages on 

multiple pairs of contact pads for Design D and E, and these variations allow more degrees of freedom. 

Tip-tilt motion with perpendicular axes can be achieved for Design D and A as they have even number of 

actuation points and symmetric structure. On the other hand, for the other designs, there are 3 axes of tilt 

which are 60° to each other. It is also important to realize, for Design D and E, when the voltages are 

applied to all the contact pads, piston motion can be achieved. Figure 3.11 presents the simulation of the 

piston motion from 0 V to the maximum voltages before the metal melts, which are 10 VDC and 15 VDC 

for Design D and E, respectively. 
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Figure 3.11. Piston motion of Design D and E without and with voltages applied to all the pads 

Before applying any voltage, the mirrors for both designs are elevated due to residual stress. As the 

applied voltages increase, the beams heat up and bend the mirror downwards. The vertical displacement 

as a function of the voltage are plotted in Figure 3.12. 

 

Figure 3.12 Piston motion displacement of mirror as a function of applied voltages for Design D and E 
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The plot in Figure 3.12 shows that the initial out-of-plane displacements of Design D and E are, 

respectively, 3 µm and 11 µm. As the voltages are applied to all the contact pads, the beams actuate to 

move the mirror downwards. For Design D, the maximum applicable voltage is 10 V, which results 8 µm 

downward displacement. The maximum voltage for Design E is 15 V with the maximum downward 

displacement of 28 µm. Therefore, the maximum total vertical displacements of the mirrors for Design D 

and E are approximately 11 µm and 39 µm, respectively. It is reasonable that Design E has much larger 

displacement than Design D as the latter has more beams attached, which mechanically constraints the 

motion of the mirror. 

 

3.4. Dimension Sweep Simulation 

The tip-tilt-piston motion of the different designs are simulated and compared. It is also beneficial to 

understand how each dimensional parameter affects the performance of the device. The dimensions 

mentioned in Figure 3.3 include the size of the mirror, the width and length of beams, thickness of each 

layer, and the gap between mirror and beam or between beams. Through the variation of different 

dimensions, the simulation results will be beneficial for the optimization of the next iteration of devices. 

The thickness of each layer in the bimorph structure affects the deflection as well. The values of thickness 

of silicon dioxide and aluminum layers are varied and plotted in Figure 3.13. 

 
(a) 
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(b) 

Figure 3.13. Maximum total vertical displacement as a function of (a) SiO2 thickness, (b) Al thickness 

The plots in Figure 3.13 suggest that the total vertical deflection or out-of-plane displacement will be 

smaller as one of the layers become thicker while the thickness of the other layer remains constant. 

However, less than 1 µm of thickness will decrease the deflection. Based on the simulation results, the 

bimorph with 1 µm of Al and 1 µm of SiO2 would provide the largest deflection of the mirror. 

Nevertheless, as mentioned previously, fabricating such thin bimorph is quite challenging. For now, 1 µm 

of Al and 2 µm of SiO2 are structured for the bimorph for robustness. In contrast, the thickness of the Si 

layer does not affect the deflection noticeably as Figure 3.14 suggests. 

 

Figure 3.14 Maximum total vertical displacement as a function of Si thickness 
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The primary role of the silicon layer in the device is to flatten the mirror. As long as it is not so thin that 

the mirror will deform from the residual stress, the thickness of the silicon is not very critical for motion 

of mirrors.  

The size of micromirror can be important depending on the applications and the size of the beam for 

reflection. The original radius of the mirror is 250 µm. Like the previous plots, the radius of the mirror is 

varied in a way that the length of the curved beams will elongate as the mirror enlarges, while the gap 

between the mirror and the curved beam remain constant. Figure 3.15 relates the vertical deflection and 

the size of the mirror for each design. 

 

Figure 3.15. Maximum total vertical displacement as a function of mirror radius 

For some designs, when the mirror becomes too small, some structures will overlap with each other 

making the design invalid. Also, the maximum temperature of the device is above the melting point for 

some cases. These data points are not plotted as they are not realistic. Figure 3.15 suggests the larger 

deflection can be achieved with larger mirrors at a gradual slope. However, for micromirrors, tilt angle is 

generally used as performance metrics rather than the vertical displacement. The tilt angle not only 

depends on the vertical displacement, but also the size of the mirror. Therefore, larger mirrors will not 

necessarily produce larger tilt. The dimensions of the beams are another important parameter that affect 

the actuation. Figure 3.16 depicts the vertical displacement as functions of (a) the width of the beam and 

(b) the length of the connecting beam. 
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(a) 

 
(b) 

Figure 3.16. Maximum total vertical displacement as a function of (a) beam width, (b) beam length 

Again, considering the melting points and the structural constraints, only valid data points are plotted. 

The increase in the beam width increases the vertical displacement noticeably up to 20 µm approximately, 

then decreases it after. The beam length is defined as the length of the beam between an anchor and a 

curved beam, which depends on each design. Design A, D, and E show that the increase in the length of 

the connecting beam gradually decrease the vertical displacement. In contrast, for design B and C, the 

increase in beam length increases the displacement up to 200 µm, and then gradually decrease after. 

Considering 500 µm of beam is quite long, the variation of the connecting beam length does not affect the 

displacement as much as other previous parameters.  

Next, the gap between the mirror and the curved beam is varied. When this gap enlarges, the beam that 

connects the mirror with the curved beam automatically elongates as well. For design D and E, which 
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have two curved beams, another gap, g2, is present between the two curved beams. The total vertical 

displacement is plotted as a function of (a) the gap between the mirror and the beam, and (b) outer gap 

between the two beams for design D and E in Figure 3.17. 

 
(a) 

 
(b) 

Figure 3.17. Maximum total vertical displacement as a function of (a) gap between mirror and curved 

beam, (b) gap between two curved beams 

The trend in Figure 3.17 shows that the increase in gap gradually reduces the vertical displacement. 

Hence, the gaps do not significantly affect the vertical deflection of the mirror result in comparison to 

other dimensions. 

In conclusion, the dimensions such as thickness, width, and the radius of mirror make appreciable 

difference in vertical displacement when the values are varied. In contrast, other dimensional parameters 

do not result as much difference in deflection. These simulation results will help for the design of the next 

iteration. 
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3.5. Material Sweep Simulation 

The bimorph actuator includes aluminum as the top layer and silicon dioxide as the bottom layer. As 

mentioned previously, the reason for the two materials is due to the high difference in coefficient of 

thermal expansion. Aluminum is also appropriate as a mirror material for its high reflectance. It is still 

beneficial to study how other materials perform instead of Al and SiO2. While the bottom layer is still 

SiO2, the top layer material is swept with other metals such as silver, gold, chromium, and copper, and the 

total deflections with 7.5 VDC using these metals and aluminum are shown for each design in Figure 3.18. 

 

Figure 3.18. Comparison of material options for top layer of bimorph with 7.5 VDC applied 

As expected, the trend of the displacement follows the trend of the thermal expansion coefficient while 

the same voltage is applied. Even though other metals do not deflect as much as aluminum, it should be 

noted that the melting point of the ones with low CTE is high, which implies that the maximum 

applicable voltage is higher. Considering the melting points of each metal, the maximum total vertical 

displacement can be found. Note that the applied voltage is 7.5 V for all the cases. However, the 

maximum applicable voltages are different for each metal as the melting point of each material varies. For 

instance, the melting point of aluminum is 933 K while chromium melts at 2133 K. This implies that the 

applicable voltage for chromium is significantly higher. In fact, silicon will melt first as the melting point 

of silicon is approximately 1687 K. Although required voltage will be higher for the device with 

chromium layer than the one with aluminum, it may result larger displacement as it can stand higher 

temperature. To compare the displacement, with the maximum applicable voltage, of different materials, 
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DC voltage is varied with an increment of 1 V for the simulation. Table 3.3 compares the displacement of 

the five designs using different metals for the top layer considering the melting points of the materials. 

Table 3.3. Comparison of maximum total displacement of different metals for top layer with maximum 

applicable voltage 

Metal 
Design A Design B Design C Design D Design E 

V [V] d [µm] V [V] d [µm] V [V] d [µm] V [V] d [µm] V [V] d [µm] 

Al 10 93.847 14 253.1 9 58.7 10 70.6 15 298 

Ag 13 107.61 18 309.5 12 68.2 13 84.7 19 363 

Au 13 89.309 19 273.1 12 57.2 13 68.9 19 284 

Cr 14 47.663 21 134.4 12 28.2 14 33.8 22 147 

Cu 14 115.07 19 314.2 13 74.1 14 89.9 20 365 

While the same voltage is applied for all the scenarios for Figure 3.18, the total vertical displacements 

shown in Table 3.3 represent the maximum displacement. For instance, for Design A with aluminum as a 

top layer, with 10 V applied to the electrodes, the maximum temperature of the structure is 878 K, which 

is below the melting point of aluminum, 933 K. When 11 V is applied to the same structure, the 

temperature is above 933 K, which implies the failure of the device. For the case of chromium, melting 

point of silicon is considered instead since the melting point of chromium is higher than the one of 

silicon. For Design A with chromium, the maximum temperature is 1632 K with 14 V while the melting 

point of silicon is 1687 K. The actuation using aluminum does not show the largest displacement anymore 

despite high thermal expansion coefficient because the melting point of aluminum is lower than other 

metals. While other metals can produce larger motion, the required voltage is also higher.  

In addition, silicon dioxide can be replaced with other materials while the aluminum is the top layer. In 

most cases, SiO2 is acceptable and available for the bottom layer of the bimorph in the micromirror 

devices as it is a commonly used material in microfabrication and also is already available in the SOI 

substrate. However, for comparison purpose and some special cases, the devices are simulated with other 

possible materials, Si3N4 and Al2O3, which is described in Figure 3.20. 
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Figure 3.20 Comparison of material options for bottom layer of bimorph 

While the coefficient of thermal expansion of SiO2 is 0.56e-6, the ones of Si3N4 and Al2O3 are 3.3e-6 and 

8.2e-6, respectively [35,36]. As suggested in Figure 3.20, larger displacement is achieved for bottom layer 

material with lower CTE as the difference in thermal expansion will be greater. 

The simulation results with material sweeps have shown how various materials for the bimorph influence 

the deflection of the mirror. The material sweep for the top layer suggests that other metals can potentially 

provide actuation performance comparable to Al. Nevertheless, most of them require higher actuation 

voltage as their CTEs are not high as Al. Also, some of alternative metals have challenges in fabrication 

as they are prohibited in a DRIE chamber. For the bottom layer, SiO2 is the most suitable material as it is 

readily available in SOI wafers and has low CTE. As a result, for the thermal bimorph in micromirror 

devices, Al and SiO2 are excellent choices for top and bottom layers, respectively. Other materials may be 

more advantageous for future applications. 

 

3.6. Summary 

The final design of the device includes Al/SiO2 bimorphs for actuation while the mirror has an additional 

Si layer between the Al and SiO2 layers, this additional Si layer is added from the initial design to prevent 

the mirror to curve. There are five different designs with various number of beams and configurations. 

The simulation results convince that 2D rotational motion can be achieved for all the designs and the 

Design D and E can also produce translational motion. According to the simulation, Design E shows the 
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largest vertical displacement of approximately 300 µm for tilt motion with 15 VDC while producing 38 µm 

displacement in piston motion with 15 VDC applied to all three pairs of pads. In addition, the dimension 

parameters are varied during the simulation to study the effect of some dimensions. The results suggest 

the parameters like the thickness of Al or SiO2, width of beams, and the radius of mirror make noticeable 

difference in actuation while others do not influence as much. The original dimensions still produce 

notable motion for the mirror. In addition, simulation including the material sweep convinces that 

aluminum and silicon dioxide are the most appropriate choice for the performance of the micromirror in 

terms of vertical displacement and required voltage although other materials may replace them depending 

on applications. As a result, the five designs are proposed and compared with some variations in 

dimensions and materials. The simulated results promise excellent performance of the micromirrors. 
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Chapter 4. Microfabrication and Results 

 

Microfabrication is an important aspect of this research as a delicate process is required to produce a 

micromirror. Although most microfabrication tools and materials used in this study are commonly used, 

there are still some challenges encountered during the fabrication. One of the most important tools in the 

process is DRIE (Deep Reactive Ion Etch) equipment, which is used multiple times in this fabrication. 

The deposition and etch of aluminum layer are also essential steps, and lift-off technique is selected to 

process aluminum layer. In addition, thermal residual stress, which is briefly mentioned as a common 

issue in thin-film process, is addressed by having an additional silicon layer. The goal of the first half of 

this chapter is to describe the fabrication process, the issues faced during the process, and the solutions to 

them. 

After multiple runs of microfabrication processes, the process is finalized and executed. In the second half 

of this chapter, the characterization methods and the results are highlighted. The fabricated micromirrors 

are characterized visually with SEM (Scanning Electron Microscope), and experimentally quantified with 

data acquired from an optical profiler. Additionally, the temperature of the device is measured in response 

to applied voltage. Finally, these results are compared with the simulation results from Chapter 3. 

 

4.1. Fabrication Process 

An SOI wafer, composed of silicon device layer, silicon oxide layer, and silicon handle layer, is processed 

to create the micromirror devices. The thickness of silicon device layer determines the thickness of the 

additional layer below the mirror, and the oxide layer will be the bottom layer of the Al/SiO2 bimorph 

structure. The thickness of the handle layer is not critical for the performance of the micromirror device, 

but thinner substrate layer is desired as the backside etch will require less cycles with thinner substrate. 

For this study, the thickness values of the device, oxide, and handle layers are 20 µm, 2 µm, and 400 µm, 

respectively. 

For the initial devices described in Section 3.2, either oxide coated Si or SOI wafers can be used. SOI 

wafers are cleaned with RCA clean process and the device layer is completely etched to oxide layer using 

DRIE. The fabrication process, starting with silicon oxide coated silicon wafer, is described in Figure 4.1. 
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Figure 4.1. Microfabrication steps of the 

initial micromirror device:  

 

(a) 2 µm SiO2 on Si wafer 

(b) 1 µm and 0.5 µm Al deposition on 

frontside and backside, respectively 

(c) Backside lithography and photoresist 

spin coat on frontside 

(d) Al etch and photoresist strip 

(e) Frontside lithography and photoresist 

spin coat on backside 

(f) Al etch and photoresist strip 

(g) Backside Si-DRIE up to oxide etch stop 

(f) Frontside oxide etch with RIE to release 

 

After (a) RCA cleaning and dehydration at 120°C for 5 minutes on a hot plate, (b) 1 µm and 0.5 µm of 

aluminum is deposited on the frontside and then the backside of the wafer by sputtering. Then, (c) 

AZ3330 positive photoresist (Integrated Micro Materials) is spin-coated at 2000 rpm on the frontside and 

prebaked at 90°C for 1 minute. The prebaked sample is patterned and exposed with 375nm and developed 

by AZ 300MIF developer (Integrated Micro Materials). The wafer is post-baked at 110°C for 2 minutes. 

The backside of the wafer is then spin coated at 2000 rpm and baked at 110°C for 2 minutes again to 

prevent Al etch during wet etch. Next, (d) the Al layer on the frontside is patterned via phosphoric, acetic, 

and nitric acids (PAN) etch, and the photoresist on both sides is stripped with acetone and isopropyl 

alcohol (IPA). Like step (c), (e) after spin coating and prebaking, the backside is aligned to the frontside 

pattern, exposed, and developed with the photoresist. And the frontside is covered by spin coating for 

protection. The wet etch using the PAN solution is preceded for the backside. Once both sides are 

patterned with Al, the wafer is diced into an individual die, and (g) the backside Si is etched with DRIE 

until it reaches the oxide layer. Finally, (h) the oxide is etched from the frontside with RIE to release the 

device. The process requires two masks; one for the frontside and the other for the backside. The layout of 

the masks used for the initial design is shown in Figure 4.2 (a). However, due to residual stress from 

fabrication, which causes the mirror to be curved, the initial design needs to be modified. The modified 

design discussed in Section 3.3 requires three masks including the same two masks from the initial layout 

and an additional mask for the mirror as described in Figure 4.2 (b). 
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Figure 4.2. (a) Mask layout: Frontside (blue) and Backside (red). (b) Mask layout with an additional 

mask (green) for mirror structure 

As discussed previously, the device needs to include an additional layer to avoid the mirror to be curved, 

and Figure 4.2 (b) corresponds to the additional mask for the Si layer. With the additional mask, the 

microfabrication steps for the modified designs are described in Figure 4.3.  

 

Figure 4.3. Microfabrication steps of the 

modified micromirror device:  

 

(a) SOI wafer 

(b) Si patterned for mirror structure via Si-

DRIE 

(c) Al deposition on both sides (1 µm 

frontside and 0.5 µm backside) 

(d) Backside Mask lithography and 

photoresist spin coat on frontside 

(e) Al etch and photoresist strip 

(f) Frontside Mask lithography and 

photoresist spin coat on backside 

(g) Al etch and photoresist strip 

(h) Backside Si-DRIE up to oxide etch stop 

(i) Frontside SiO2 etch with DRIE to 

release 
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The fabrication process in Figure 4.3 includes some variations from the steps in Figure 4.1. Starting with 

an SOI wafer, (b) the additional mask is patterned to the device layer via photolithography and DRIE. The 

next steps (c)-(i) in Figure 4.3 are almost identical to the steps (b)-(h). For the steps (f)-(g) in Figure 4.1, 

the aluminum layer is patterned on the frontside and etched with the PAN (Phosphoric acid, Acetic acid, 

and Nitric acid) etchant. However, these steps are later replaced with lift-off process due to issues with 

wet etch, which will be addressed in the next section. 

The thickness ratio of Al and SiO2 is important for the actuation, and according to the simulation, the 

thickness of 1 µm for both layers provide large deflection. Nevertheless, 1 µm of Al and 1 µm of SiO2 are 

not sufficiently thick for the stability of the structure. A bimorph with the total thickness of 2 µm will be 

very fragile. To produce more robust structure, 2 µm is used for the oxide layer while the metal layer is 

still 1 µm thick. The thickness of aluminum is also limited to approximately 1 µm due to the fabrication 

capability of the sputtering method. Therefore, 2 µm of silicon oxide and 1 µm of Al are used for the 

microfabrication process. For the backside Al, on the other hand, since aluminum layer is only used as a 

hard mask, 0.5 µm of Al is deposited.  

 

4.1.1. Aluminum Deposition and Etch 

There are several variations to deposit and etch aluminum layers. For Al thin film deposition, sputtering 

and E-beam evaporation are the most commonly used Physical Vapour Deposition (PVD) methods in 

microfabrication. For this device, sputtering process is used due to its capability to deposit thick Al. It is 

quite challenging to deposit 1 µm of aluminum with E-beam evaporation. The issue is that the Al pellets 

in the crucible will run out before the deposition completes and the beam will start to melt the crucible. 

To etch aluminum layer after patterning, possible options are wet etch or dry etch. Photoresist patterned 

for the layer needs to be stripped after the etch process. Wet etch is inexpensive, simple and selective, 

however, suffers from undercutting due to its isotropic etch profile. To wet etch aluminum, the PAN 

solution, composed of phosphoric acid, acetic acid, and nitric acid, are typically used. Due to isotropic 

etch, the PAN solution etches aluminum laterally and results in undercutting. In addition, wet etching is 

relatively non-uniform through the wafer, due to the temperature variation in the etch solution. Moreover, 

the formation of bubbles from the etch reaction may worsen the non-uniformity and undercutting for 

some areas. In contrast, dry etch provides anisotropic profile with no or unnoticeable undercutting. Metal-
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RIE (Reactive Ion Etch) and Ion milling processes are possible tools to dry etch aluminum. Metal-RIE is 

preferred for much higher etch rate compared to ion milling process because longer etch duration will 

harden the photoresist more. Nevertheless, even for metal-RIE, the use of plasma heat and cross-link the 

photoresist making the photoresist difficult to remove after. Stripper solution can be used to remove the 

photoresist, and ultrasonic treatment can also help the removal. O2 descum process as well can assist for 

stripping. However, as 1 µm of aluminum is quite thick and requires relatively long etch duration, which 

causes more heating and hardens the photoresist, stripping photoresist becomes a problematic issue. As 

shown in Figure 4.4, even after all the stripping methods mentioned previously, some residues of 

photoresist remain bonded on the surface. 

 

Figure 4.4. SEM image showing residues of photoresist after metal RIE etching 1 µm of Al layer 

To overcome the challenges of both wet and dry etch, lift-off process is a suitable alternative. In lift off 

process, photoresist is spin-coated and inversely-patterned prior to the metal deposition. Next, metal is 

deposited on the patterned photoresist. Finally, using stripper, the photoresist is easily removed with 

metal. The pattern must be inversed since where the photoresist remains will be stripped. Figure 4.5 

describes the fabrication steps with the lift-off process. Figure 4.5 (d)-(f) correspond to the lift-off step. 
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Figure 4.5. Microfabrication steps of 

the modified micromirror device with 

lift-off process: 

 

(a) SOI wafer 

(b) Si patterned for mirror structure 

and etched via Si-DRIE 

(c) Al (0.5 µm) deposition, pattern, 

and etch on backside 

(d) Photoresist spin coat and 

photolithograph with inversely pattern 

on frontside 

(e) Al deposition 

(f) Photoresist stripping for lift off 

(g) Backside Si-DRIE up to oxide etch 

stop 

(h) Frontside SiO2 etch with DRIE to 

release 

After (b) the device layer is patterned, 0.5 µm of aluminum is sputtered, patterned with photoresist, and 

wet-etched using the PAN solution similarly to the previous steps. Then, (d) photoresist, spin-coated at 

2000 rpm, is patterned, but this time, negative photoresist, AZ nLOF 2035, is used to inverse the pattern. 

Next, 1 µm of aluminum is sputtered, and (f) the lift-off is preceded by the stripper solution. After, the 

wafer is diced, and the silicon and oxide layers are etched in the similar manner as the previous process. 

For the deposition during lift-off process, E-beam evaporation is typically used rather than sputtering 

because E-beam evaporation is more directional. If the deposition is not directional, the sidewall of 

photoresist will be covered with the metal, which prevents the stripper to attack the photoresist. 

Nonetheless, it is still feasible to execute lift-off process with sputtering if the photoresist is thick enough. 

Hence, for the frontside aluminum layer, lift-off process is implemented to resolve issues in dry and wet 

etch. 
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4.1.2. Deep Reactive Ion Etch 

Deep Reactive Ion Etch (DRIE) is one of the most essential equipment used in the process for the devices. 

The DRIE process, unlike the conventional reactive ion etch (RIE), allows deep etch for the opening on 

the backside to release the structure by Bosch process. Bosch process involves cycles of two-steps to 

increase the anisotropy of the etch profile. Each cycle includes the etch step and the passivation step. The 

etch step removes the unmasked silicon while the passivation step deposits polymer to protect the 

sidewalls, which is displayed in Figure 4.6 (a).  

 

(a) 

 

(b) 

Figure 4.6. (a) Passivation and etch cycles of Bosch process [37]. (b) SEM image of scallop effect on 

sidewall from Bosch process. 

The passivation layer protects the side wall enabling further anisotropic etch. After many cycles, deep 

etch profile with a high aspect ratio can be achieved. One of the commonly mentioned issues in DRIE is 

scallop effect. After numerous cycles, the sidewall will not be completely straight, but will have some 

wavy curves as shown in Figure 4.6 (b). However, as the sidewall flatness does not influence the 

operation of the micromirror in this paper, the scallop effect is acceptable.  

For the final micromirror device, DRIE is run three times in total, for mirror structure, backside etch, and 

finally oxide etch. There is a reason why the backside Si is etched prior to the oxide even though the 

reverse order produces the same structure. Before the DRIE process, the wafer is diced into each die 

because the vibration from dicing will damage the released structured. However, the DRIE can generally 

only etch wafer size samples, and a carrier wafer must be used. When using a carrier wafer, each die is 

attached to the carrier wafer with an adhesive and is detached after the DRIE process. If the oxide is 

etched first, during the backside etch, the frontside will stick to the carrier wafer. Once the backside etch 
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is complete, the structure is fully released while the frontside of the sample is still stuck to the carrier 

wafer. Detaching the sample from the carrier wafer will break the released structure. Therefore, the 

backside must be etched prior to the oxide etch. 

In conclusion, the deep etch profile is accomplished by the Bosch process using the DRIE equipment. The 

etched Si on the backside provides the space for the mirror to displace. Despite the scallop effect on the 

sidewall from the Bosch process, it will not affect the micromirror operation. In addition, the wafers are 

diced before the DRIE process because once the structure is released, dicing process will damage the 

samples. Finally, the diced sample is individually bonded to a carrier wafer for the DRIE process, and the 

backside must be etched prior to the oxide etch to avoid the breakage of the released structure on the 

frontside. 

 

4.1.3. Residual Stress 

Residual stress is a common issue in thin film process due to extrinsic thermal stress induced from the 

difference in thermal expansion coefficient. For example, during Al sputtering, the substrate temperature 

is raised while Al is deposited on SiO2 layer. After the deposition, the substrate cools down to room 

temperature, which causes both layers to shrink. While both layers shrink, the material with higher 

coefficient of thermal expansion will shrink more than the one with lower CTE. Therefore, residual stress 

is induced, and when the device is finally released, the residual stress will elevate the free end of the 

suspended structure. In fact, bimorph thermal actuators take an advantage of this thermal effect. When the 

temperature is raised from room temperature, the aluminum will expand more than the oxide, and 

displace the beam downward.  

In Chapter 3, the simulations include the stress between layers. As mentioned, the value of the residual 

stress depends on a lot of factors from the process and the samples. To keep the mirror flat, the device 

layer from the SOI wafer is present between Al and SiO2. Without the additional structure, the curved 

mirror will not be able to function as a reliable mirror. Figure 4.7 compares the SEM images of the 

devices (a) with, and (b) without the Si layer and suggests that the mirror can remain flat with the thick Si 

layer.  
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(a) (b) 

Figure 4.7. SEM images (sideview) of micromirror device showing the effect of residual thermal stress  

(a) with, and (b) without silicon device layer 

As shown in Figure 4.7 (a), the device without an additional silicon layer shows curvature not only on the 

actuator beams, but also on the mirror itself. This is undesired as a micromirror as the reflective surface 

needs to remain flat during the operation. In contrast, the mirror that has silicon device layer sandwiched 

between Al and SiO2 remains flat despite the residual stress from fabrication while the bimorph beams are 

still curved. Therefore, the micromirror device takes an advantage of the Si device layer from the SOI 

substrate to prevent the curvature of the mirror from residual stress during fabrication. For the Si layer, 20 

µm is thick enough to avoid curving. Thinner or thicker layer may be used depending on the initial 

substrate and the process conditions. At this point, the SEM results suggest that 20 µm of Si layer is 

sufficient to flatten the mirror from the residual stress. This topic is revisited in the later chapter to ensure 

the flatness of the mirror with quantified measurement using an optical profiler. 

 

4.2. Characterization 

After the fabrication of the proposed design of micromirror devices, the devices are characterized. To 

ensure that fabrication is successfully completed, and the devices are released properly, SEM images of 

each design of the fabricated devices are shown in Figure 4.8. 
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Figure 4.8. SEM images (top view) of complete micromirror devices of  

Design (a) A, (b) B, (c) C, (d) D, and (e) E. 

After successful fabrication, the devices are visualized under an optical microscope to verify that the 

mirrors can tilt with voltage. For this validation, sinusoidal AC voltage is applied at 1 Hz, and the 

screenshots of the recorded video are displayed in Figure 4.9 and Figure 4.10 for Design D and E with 

applied voltage of 4 Vp-p and 5 Vp-p, respectively. 
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Figure 4.9. Optical microscopic images showing micromirror device at different time points with 

applied voltage of 4 Vac, sin at 1 Hz for Design D 
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Figure 4.10. Optical microscopic images showing micromirror device at different time points with 

applied voltage of 5 Vac, sin at 1 Hz for Design E 

Figure 4.9 and 4.10 verify the capability of the tilting motion of micromirrors. They also suggest that the 

applied voltage at 1 Hz results the actuation at 2 Hz. With the voltage at 1 Hz, after 1/8 seconds, the 

actuation is half of the full tilt, and after a quarter seconds, the tilt is at the maximum peak. After a half of 

period, the mirror is back to the initial state. Then, the same cycle will repeat as the voltage drops, and 

this is reasonable since the resistive heating occurs in the same manner when the voltage is negative. This 

may differ with higher frequency as the device takes time for the heated section to cool down. 

Nevertheless, the optical microscopy images confirm the operation of the micromirror devices. 
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Despite the validation of the actuation of the devices, it is also important to quantify the displacement or 

the tilt angle with respect to the applied voltage. To obtain quantitative measurement, an optical profiler is 

used to characterize the surface profile of the samples. The optical profiler can also compare the flatness 

of the mirror between the devices with and without the silicon layer. 

 

4.2.1. Experimental Set-up and Results 

To investigate the surface profile of the micromirror devices, a Bruker contour optical profiler, based on 

white light interferometry, is employed. Principle of white light interferometer is based on the 

measurement of the inference of the two beams in different phase, and the picture of the profiler are 

displayed in Figure 4.11 (a). 

 
 

Figure 4.11. (a) Schematic of white interferometer principle, (b) Image of Bruker optical profiler [38] 

As shown in Figure 4.11 (a), two beams are split into separate optical paths, which lead to a difference in 

the optical path length resulting a difference in phase. When those two beams are recombined, the 

constructive and destructive interference is produced generating a set of fringes with different spacing. 

This set of fringes are sensitive to change in height. Based on this white light interferometry principle, the 

optical profiler can characterize the vertical surface profile of samples. For the test of micromirrors, it is 
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suitable for the optical profiler to operate in a Vertical Scanning Interferometry (VSI) mode, which can 

handle abrupt steps and surface variations [38]. Using the VSI mode, the surface profile of the two 

samples; with and without the Si layer are obtained as pictured in Figure 4.12. 

 

 

Figure 4.12. Surface profile of micromirror device, Design D, (a) without, (b) with Si layer 
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The profile images displayed in Figure 4.12 include the two axes in the centre of the mirrors. The plot in 

Figure 4.13 graphs the X and Y profiles along those axes including both with and without Si layer for 

comparison. 

 
(a) 

(b) 

Figure 4.13. X and Y profiles, Design D, along the axes crossing at the centre of the mirror for without 

and with Si layer including (a) overall device, (b) mirror only 

 

Figure 4.13 (a) includes the contact pads, the bimorph beams, and the mirrors as indicated on the plot. As 

the thickness of the silicon layer is 20 µm, the mirror with Si is lifted. The X profile suggests that the 

mirror even with Si layer is tilted. This does not necessarily imply that the mirror is curved. In fact, the 

mirror is tilted from non-uniformity of stress on the beams. In Figure 4.12 (b), the beams on the left side 

is more lifted than the right side. This is expected to improve with better alignment and uniformity during 

fabrication. To compare the flatness of the mirrors more closely disregarding the tilt, the data points for 

the mirror section is replotted with a two-point linear fit. As suggested in Figure 4.13 (b), the differences 

between the lowest and the highest points for without and with Si are approximately 1.5 µm and 3.5 µm, 

respectively. This concludes that the addition of silicon layer inhibits the curvature of the mirror caused 
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by residual stress from fabrication. It should also be noted that the mirror with 3 beams would curve more 

than the one with 4 beams as there is less constraints to the mirror. More results of optical profiler to 

study the effect of silicon layer can be found in Appendix. 

After the investigation of the effect of the presence of the silicon layer, the surface profile of the 

micromirrors with the silicon layer is studied in a similar manner with the response to the voltage. One of 

the challenges in this study is delivering the voltage to samples while the samples are under the optical 

profiler because the profiler does not have a probe station as shown in Figure 4.11 (b). To properly apply 

actuation voltage on each device, the contact pads are wire bonded to an adapter, which can be mounted 

on a breadboard as described in Figure 4.14. Gold is used as the wire-bonding material to connect 

between the aluminum contact pads on the chip to the adapter. 

 
Figure 4.14. Image of chip wire-bonded to adapter mounted on breadboard for applying voltage 

After wire-bonding, the wires are connected to the holes, on the breadboard, that correspond to the 

contact pads of the sample. Finally, DC voltage is applied to the wires to measure the actuation of the 

micromirrors with the optical profiler. The polarity does not matter for the bimorph actuation because the 

resistive heating does not depend on the polarity of the voltage as mentioned previously. To obtain the 

displacement of the mirror, the device without voltage is first scanned. Then, while the device remains in 

the same position, the DC voltage is applied. It is important to obtain the measurement at the off state to 

be used as reference. In Figure 4.15, the surface profiles of the micromirror device, Design D, are 

presented. 
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Figure 4.15. Surface profile of micromirror devices, Design D, (a) at off state, (b) with 0.5 VDC 

Figure 4.15 (a) without any applied voltage, the profile shows that the mirror is already slightly tilted due 

to non-uniformity from the beams. Then, 0.5 VDC is applied on the pair of the electrodes on the left side of 
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the sample, which results in the downward displacement of the corresponding beam through resistive 

heating. To closely investigate the profile, like the graphs in Figure 4.13, the X and Y profiles are plotted 

along the axes crossing at the centre of the mirror as shown in Figure 4.16. 

 
Figure 4.16. X and Y profiles, Design D, along the axes crossing at the centre of the mirror with 

response to applied voltage 

As depicted in Figure 4.16, the mirror is tilted even without any voltage showing that the top right part of 

the mirror is lifted while the left bottom is lowered. With the voltage applied, it suggests that the top left, 

P1, is raised while the bottom right, P2, area is dropped. The vertical positions at P1 and P2 with 0.5 VDC 

are 37 µm and 15 µm, and the ones without voltage, used as reference, are 21 µm and 19 µm, 

respectively. Therefore, the vertical displacement at the two points are 16 µm, and -4 µm resulting the 

total vertical displacement of 20 µm. These values can be converted to the equilibrium angle using a 

simple trigonometry and the diameter of the mirror as illustrated in Figure 4.17 and Equation (4.1). 

 
Figure 4.17. Schematic of micromirror showing the definitions of angular and linear displacements 

during on and off states 

 

θeq = sin−1 (
𝑑𝑢𝑝 + 𝑑𝑑𝑜𝑤𝑛

𝐷𝑚𝑖𝑟𝑟𝑜𝑟
) = sin−1 (

𝑑𝑡𝑜𝑡𝑎𝑙

𝐷𝑚𝑖𝑟𝑟𝑜𝑟
) 

 

 

(4.1) 
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As a result, the change of the tilt angle is 2.29° in response to 0.5 VDC. It is also found that the initial tilt 

angle at off state using the above values is 0.23° and the tile angle with 0.5 VDC is 2.52° as visualized in 

Figure 4.18.  In addition, the axis of the maximum tilt angle of 0.69° for the off-state is shown in Figure 

4.18 (a). 

 

 
Figure 4.18. Tilt angle and axes of micromirror devices, Design D, (a) at off state, (b) with 0.5 VDC 
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Finally, the mechanical angular displacement is obtained. However, in literature, there are several 

different terms to describe the angular displacement for micromirrors. It is important to signify the 

definition of the range of motion for both rotational and translational motion especially when comparing 

devices as data can be misleading if the measurement method is not clear. The range of motion in degrees 

can be represented in several different methods listed in Table 4.1 [2]. 

Table 4.1. Definitions of range of motion for rotational and translational motion 

 Equilibrium Range Full Range Resonant amplitudes Optical range 

Definition 
One extreme to 

equilibrium position 

One extreme to the 

other extreme 

Amplitude at a 

natural frequency 

Range over 

reflection of light 

Rotational 𝜃𝑒𝑞 
𝜃𝑓𝑢𝑙𝑙 = 2𝜃𝑒𝑞, if 

𝜃𝑒𝑞,𝑢𝑝 = 𝜃𝑒𝑞,𝑑𝑜𝑤𝑛 
𝜃𝑟𝑒𝑠 =

𝜃𝑓𝑢𝑙𝑙𝑄𝜃

2
 𝜃𝑜𝑝𝑡𝑖𝑐𝑎𝑙 = 2𝜃𝑓𝑢𝑙𝑙 

Translational 𝑑𝑒𝑞 𝑑𝑓𝑢𝑙𝑙 𝑑𝑟𝑒𝑠 =
𝑑𝑓𝑢𝑙𝑙𝑄𝑑

2
 𝑑𝑓𝑢𝑙𝑙 

Table 4.1 suggests that the translational equilibrium range of motion is the range in piston DOF from the 

maximum distance that the mirror can move translationally to the equilibrium position without any load. 

Similarly, rotational equilibrium range of motion is the rotational range of motion from the maximum 

angle to the equilibrium position. Translational and rotational full range of motion are similarly 

determined except that it is from one extreme to the other extreme. If the devices can actuate to the same 

extent on both directions, full range of motion is twice of the equilibrium range of motion. These metrics 

are for analog or digital MEMS mirrors, which will be different in devices based on resonant approach. 

Resonant operation is not covered in this thesis but would be beneficial to explore in the future.  

For Design D, it is possible to produce the rotational motion in two opposite directions due to the 

symmetric structure. This implies that the full range of rotational motion for Design D is approximately 

twice of the equilibrium range of rotational motion. Piston motion is possible for Design D and E, and the 

equilibrium range of translational motion is equal to the full range of translational motion as the mirror 

displaces downward with higher voltage. Another consideration is the axes of rotation, for Design A and 

D, including four sides where mirror can be directed, the axes of rotation are perpendicular to each other. 

On the other hand, the rotation axes of Design B, C, and E are 60° to each other, not perpendicular. 

The rotation displacement of Design D, previously found with optical profiler, is 2.29°, which is the 

equilibrium range of rotational motion. Assuming the same displacement can be achieved by applying the 

same voltage on the opposite side of the mirror, the full range of rotational motion is 4.59°, and the 

optical range is 9.17° with 0.5 VDC. The range of motion can surely increase with higher voltage. 
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However, during the experiment, the device has failed to operate when the voltage is raised to 1 VDC. This 

could be due to disconnection from wire bonding or breakage of the beams due to stress and heat. 

Nevertheless, this does not agree with the previous validation with sinusoidal AC voltage, in which the 

device has shown actuation with 4 Vac at 1 Hz and breaks down with 5 Vac. To produce the same resistive 

heating effect for DC and AC voltage, the RMS value of a sinusoidal AC voltage need to equal the DC 

voltage [39], and 4 V of sinusoidal peak-to-peak AC voltage is equivalent to 1.41 DC voltage. In addition, 

the variation of dimensions among the samples also affect the heating of the bimorph, and the maximum 

applicable voltage. Therefore, more measurements would be helpful to study the consistency of the 

sample. 

 

4.2.2. Experimental Validation 

Considering that the maximum applicable voltage from the COMSOL simulation, shown in Figure 3.9, is 

10 VDC for Design D, the applicable voltage from the experiment is significantly lower. This is due to a 

couple of assumptions during the simulation, which could only be assessed experimentally. First 

assumption is that the heat transfer coefficient (htc) is 400 W/(m2K) and 20000 W/(m2K) for upper 

surface and other surfaces, respectively, using the values from literature [40]. The applicable voltage and 

the actuation are highly dependent on the heat transfer coefficient as the temperature significantly is 

influenced by this coefficient. It is also greatly challenging to estimate the values because heat transfer 

coefficient varies with numerous factors such as mechanical structure, surroundings, and the temperature 

of the sample itself. Secondly, the simulation is conducted with stress to account the residual stress from 

fabrication. Because the thermal properties of all the materials in the device are known, the direction of 

stress and bending can be predicted, but it is still difficult to determine the numerical value of it. The 

residual stress of the film is assumed to be 200 MPa uniformly and isotopically. This stress is 

approximated using the initial design by varying the stress and matching the displacement from 

fabrication and simulation. However, residual stress is influenced by number of factors such as process 

conditions and uniformity of a wafer, which cannot be easily predicted. There is always a variation of 

samples when the samples have processed together due to countless factors in microfabrication.  

Despite the noticeable mismatch between the simulation and experimental results, the simulation can be 

corrected with iterative adjustments so that the new simulation can produce more accurate results for the 

next iterations. Additionally, the experimental results, in fact, demonstrate remarkably better outcome in 
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terms of required voltage. Experimentally for Design D, the total vertical displacement with 0.5 VDC 

applied is 20 µm, which can achieve 9.17° in terms of the optical range of rotational motion. According to 

simulation, to accomplish the same vertical displacement, the required voltage is approximately 5 VDC. 

 

4.3. Summary 

The microfabrication process and the mask layouts required for the proposed designs are highlighted. In 

the final process, some steps are modified and replaced due to fabrication issues. One of them involves 

patterning the aluminum layer on the frontside, which faces issues with removal of photoresist for dry 

etch or isotropic profile for wet etch. This is resolved by implementing the lift-off process. Secondly, the 

DRIE process is emphasized and the importance of it is justified. Lastly, residual stress from thermal 

expansion, which is a common problem in thin film fabrication, is explained. This problem is addressed 

by an additional thick silicon layer from an SOI wafer, which keeps the mirror flat. In conclusion, the 

final microfabrication process resolves the mentioned problems and assures the fabrication feasibility of 

the proposed micromirror device. The completed micromirror devices are visualized through the SEM 

images convincing that the flatness of the mirror can be enhanced by the additional silicon layer. In 

addition, the tilt motion of the mirrors with applied voltage is verified under the optical microscope and 

quantified with the optical profiler. The presented data for Design D suggest that the total vertical 

displacement of 20 µm can be accomplished with the actuation voltage of 0.5 VDC which is equivalent to 

9.17° in terms of optical range of rotational motion. Despite the disagreement with the simulation due to a 

couple of assumptions, the required voltage experimentally acquired is significantly lower than the 

simulated voltage, 5 VDC. 
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Chapter 5. Conclusion 

 

5.1. Summary of Research 

This thesis can be summarized into the following three main topics: 

1. Designs of SOI-based micromirrors, that are thermally actuated with Al/SiO2 bimorph structures, 

are proposed with advantages of simpler fabrication method. Based on simulation, the 

micromirrors show capability of producing three DOF including tip, tilt, and piston motion. 

Simulation results with various alternative materials for the bilayer suggest that aluminum and 

silicon dioxide are the most suitable choice for providing larger displacement, high reflectivity, 

and fabrication compatibility. Dimensional sweep has been simulated as well showing the trade 

offs of dimensional parameters of the device. 

2. The proposed designs are successfully fabricated, and the fabrication process is introduced. Some 

of the essential processes such as Bosch process and lift-off method are highlighted. The issue of 

residual stress from thermal mismatch during fabrication are addressed by taking advantage of 

device silicon layer from an SOI wafer. 

3. The fabricated micromirror devices are first validated with optical microscope from a top view 

while voltages are applied. The SEM images of them show the off state micromirrors. Finally, the 

micromirror devices are characterized with the optical profiler using white light interferometry 

mode. There are still disadvantages and limitations of the devices. One of the disadvantages is the 

challenge in fabrication as the Al and SiO2 are very thin, which may require robustness and also 

cause non-uniformity in dimensions after the release. In addition, compared to the other thermally 

actuated micromirror introduced, the tilt angle is not as large. Despite these limitations, the 

fabrication process has been greatly simplified with only 3 masks reducing the cost of the device, 

and the actuation voltage is much lower than the previous micromirrors. The results from the 

optical profiler show that the achievable optical range is 9.17° with 0.5 VDC. These numbers 

convince that the micromirror device in this work is a promising approach. 
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5.2. Future Work 

The future work of this research includes the following: 

1. Further characterization and validation of other designs using a surface profiler.  

2. Dynamic analysis and testing of micromirror have not been completed. It would be beneficial to 

understand the device performance at various frequencies including the resonant frequency.  

3. Simulation of the design with adjusted constants for more accurate prediction of actuation. 
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Appendices 

 

Appendix A – Mask Layout of each Design 

 
(a) Design A 

 

 
(b) Design B 
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(c) Design C 

 

 
(d) Design D 
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(e) Design E 

Figure A.1. Mask layout of each design with the total length and width including the contact pads 
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Appendix B – Surface Profile without and with Si layer 

 

The purpose of Appendix B is to provide the surface profiles of other designs, comparing the devices 

without and with Si layer, as the experiment results section mainly highlights on Design D. 

 
(a) 

 
(b) 

Figure B.1. Surface profile of Design A (a) without, (b) with Si layer 
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(a) 

 
(b) 

Figure B.2. Surface profile of Design B (a) without, (b) with Si layer 
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(a) 

 
(b) 

Figure B.3. Surface profile of Design C (a) without, (b) with Si layer 
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(a) 

 
(b) 

Figure B.4. Surface profile of Design D (a) without, (b) with Si layer 
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(a) 

 
(b) 

Figure B.5. Surface profile of Design E (a) without, (b) with Si layer 

As the above Figures show, the mirror is much more curved without the Si layer suggesting that the thick 

silicon layer will enhance the flatness of the mirror surface. Some designs with three actuators, as 

opposed to four, show that the mirror is tilted after release although the surface is flat. This is due to the 

asymmetry of structure as mentioned in Chapter 4. For instance, Design E in Figure B.5, two beams are 

lowered due to residual stress while the other beam (the bottom one) is lifted upward resulting significant 

tilt of the mirror even at off state. 


