
A Machine Learning Approach for
RDP-based Lateral Movement

Detection

by

Zhenyu Bai

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2019

c© Zhenyu Bai 2019

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Detecting cyber threats has been an on-going research endeavor. In this era, advanced
persistent threats (APTs) can incur significant costs for organizations and businesses. The
ultimate goal of cybersecurity is to thwart attackers from achieving their malicious intent,
whether it is credential stealing, infrastructure takeover, or program sabotage. Every
cyberattack goes through several stages before its termination. Lateral movement (LM)
is one of those stages that is of particular importance. Remote Desktop Protocol (RDP)
is a method used in LM to successfully authenticate to an unauthorized host that leaves
footprints on both host and network logs. In this thesis, we propose to detect evidence
of LM using an anomaly-based approach that leverages Windows RDP event logs. We
explore different feature sets extracted from these logs and evaluate various supervised and
unsupervised machine learning (ML) techniques for classifying RDP sessions with high
precision and recall. We also compare the performance of our proposed approach to a
state-of-the-art approach and demonstrate that our ML model outperforms in classifying
RDP sessions in Windows event logs. In addition, we demonstrate that our model is robust
against certain types of adversarial attacks.

iii

Acknowledgements

First of all, I would like to thank my supervisor Prof. Raouf Boutaba. He guided
me throughout the entire graduate study. I am highly grateful to him for giving me the
opportunity to pursue research and work on a variety of topics. It was an honor for me to
be his student.

Secondly, I would like to express my sincere gratitude to Prof. Noura Liman, Dr.
Mohammad Ali Salahuddin and Haibo Bian for their continuous support in the development
of this project. I would also thank Abbas Abou Daya for his contribution in the early stage
of this project.

Last but not the least, many special thanks to Shihabur Rahman Chowdhury and
Anthony for working with me during my early graduate study.

iv

Dedication

This is dedicated to my parents for their unconditional love and support. I also want to
thank all who helped and supported me during my graduate study.

v

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Motivation . 1

1.2 Challenges and Research Opportunities . 2

1.3 Contribution . 3

1.4 Thesis Organization . 4

2 Background 5

2.1 Intrusion kill-chain and Lateral Movement 5

2.2 Host-based Anomaly Detection . 6

2.3 Related Works . 8

2.3.1 Advanced Persistent Threats . 8

2.3.2 Network-Based APT Detection . 8

2.3.3 Host-Based APT Detection . 9

2.3.4 Hybrid APT Detection . 11

2.3.5 Adversarial Machine Learning . 11

vi

3 Dataset 13

3.1 Comprehensive Events Dataset . 13

3.2 Unified Events Dataset . 14

4 Methodology 16

4.1 Combining Datasets . 16

4.2 Feature Engineering . 19

4.3 ML Techniques . 21

4.3.1 Supervised Learning Algorithms . 21

4.3.2 Unsupervised Learning Algorithms 21

4.3.3 Metrics . 22

5 Evaluation 24

5.1 Environment Setup . 24

5.1.1 Hardware . 24

5.1.2 Software . 24

5.2 Experiment . 25

5.2.1 Two-Stage Classification . 26

5.2.2 Voting . 28

5.2.3 Comparative Analysis . 31

5.2.4 Robustness to Adversarial Attempts 33

6 Conclusion and Future Works 38

6.1 Conclusion . 38

6.2 Recommendations . 38

6.3 Future Works . 39

References 40

APPENDICES 47

A Features Used by Kaiafas’s Work 48

vii

List of Tables

3.1 Windows event ID reference [64] . 13

3.2 A sample event extracted from the Unified dataset 15

5.1 RDP session detection with all baseline features 25

5.2 Robustness of standalone RF in the face of unknown malicious src hosts . 26

5.3 RDP session classification (user, src and dst features removed) 26

5.4 Two-stage classification with (user, src, and dst features removed) 27

5.5 Majority voting for RDP session detection using näıve approach i.e., all five
classifiers and baseline features . 29

5.6 Majority voting for RDP session classification using selective classifiers (user,
src, and dst features removed) . 29

5.7 Weighted voting for RDP session classification using LB, RF and GNB
classifiers (user, src, and dst features removed) 30

5.8 RDP session classification using stand-alone LB vs. [32] 33

5.9 Taxonomy of attacks against ML systems [6, 28] 34

5.10 Examples of potentials attacks against our ML model 34

5.11 Example of polymorphic form of an attack 35

viii

List of Figures

2.1 Intrusion kill-chain . 6

2.2 An illustration of LM . 7

4.1 RDP events distribution . 18

4.2 RDP events per day . 20

5.1 Recall, precision and training time vs. # of clusters for K-means with LB . 28

5.2 Recall, precision and training time vs. # of estimators for stand-alone LB
(our model) . 30

5.3 Recall during each iteration . 31

5.4 Precision-Recall curve of our model . 32

5.5 Detection accuracy for polymorphic forms of known attack 36

5.6 Detection accuracy for polymorphic forms of unknown attack 37

ix

Chapter 1

Introduction

1.1 Motivation

Advanced persistent threat (APT) is one of the most prominent cyber attacks that has
the potential to cause significant damage to various organizations and businesses. It is a
stealthy attack in which attackers gain unauthorized access to a network for a long period of
time. Stuxnet [33], an infamous attack on critical infrastructure, devastated Iran’s nuclear
program. According to Kaspersky Lab [36], a backdoor program, called Carbanak, caused
a billion dollar in cumulative losses for a financial institution. Furthermore, more than
80 million social security numbers were siphoned from Anthem, a big health insurance
company, which was only detected after nine months [44]. In this attack, Mivast malware [19]
masqueraded as a VPN software, serving as a backdoor for the attacker.

Most secured systems maintain a strong boundary between the internet and the intranet,
thus attackers choose targets that have access to hosts behind the network security functions
(e.g., firewalls, intrusion prevention systems, etc.). It is difficult for attackers to launch
attacks against protected assets that reside in the intranet. Thus, an attacker usually
leverages social engineering techniques (e.g., phishing, pretexting, baiting, etc.) to trick
network insiders into executing malicious code or surrendering credentials. This allows
the attacker to gain access to the victim’s computer and gradually explore for valuable
information by exploiting vulnerabilities of other intranet entities. This is commonly known
as Lateral Movement (LM).

There exists numerous works [23,32,48,50] that propose systems and models for detecting
different stages of an APT. However, only a few of them specifically focus on attacks that

1

leverage the Remote Desktop Protocol (RDP) [1] during the LM phase. In addition, these
works are usually evaluated on generated datasets with hypothetical assumptions.

1.2 Challenges and Research Opportunities

During the LM phase, attackers tend to use legitimate system tools, which make the
detection of APT a challenging endeavor. APT detection has primarily been achieved via
two approaches, signature-based [26], [68] and anomaly-based [14,57] methods. Signature-
based methods rely on known databases of attack signatures. They are vulnerable to
zero-day attacks and are susceptible to lag in database updates. On the other hand,
anomaly-based approaches establish a baseline of the normal behavior for the system, and
flag any divergence or statistical deviations from the norm. Thus, anomaly-based methods
are more robust to polymorphic form of attacks.

Machine Learning (ML) techniques have been widely used for anomaly-based APT
detection [9], since ML is an ideal tool to automatically establish the normal behavior of a
system [3]. There are some studies that utilize a single ML model, while others combine
different learning techniques to form an ensemble or a hybrid model for anomaly detection.
For instance, Kaiafas et al. [32] build an ensemble classifier that leverages voting mechanism,
whereas Kim et al. [43] employ both SVM and DT to build a two-stage classification model.
All of these techniques demonstrate great advances in anomaly detection system.

Anomaly-based APT detection methods generally rely either on network flow data [68],
[18,48,58], or host system logs [63], [51] to uncover evidence of APT. Network-based anomaly
detection has been well explored but has several shortcomings. Firstly, there is limited
information that can be extracted from network data. For privacy concerns, it is illegal to
inspect network payload without user consent [9], making it non-trivial to extract meaningful
information beyond packet statistics and the basic five tuple (i.e., source IP, destination IP,
source port, destination port, and protocol). In addition, 72% of the recent network traffic
is encrypted using protocols, such as TLS [61]. This makes inspection of packet’s payload
challenging without significantly degrading system performance. Furthermore, attackers
launching APT tend to be cautious and often leverage custom protocols, making it harder
to detect abnormal behaviour within network data.

On the other hand, host-based anomaly detection can overcome the aforementioned
limitations. At the end host, data is decrypted, allowing for extraction of information,
including payload entropy, packet drop rate, and login failures, which can improve detection
performance. Furthermore, operating systems have built-in logging functionalities, which

2

provide abundant information. By enabling or disabling different logging levels and policies,
only useful information can be logged. There are multiple stages in APT (cf., Chapter 2)
and certain stages will leave footprints allowing for the detection of intrusion in its early
stage. For example, an intruder can gain access to the target host within the intranet, but
this action would generate suspicious logs on the end host.

Since the ML algorithms were designed without taking security into consideration [8],
both network-based and host-based anomaly detection systems suffer from attacks of adver-
saries. Therefore, any ML-based system must be designed with defense strategies against
adversarial attacks. There are numerous works that attempt to tackle the aforementioned
issues (cf., Chapter 2). For example, Marco et al. [5] present a taxonomy, identifying and
analyzing attacks against ML-based systems. In addition, a variety of defense techniques
are proposed in their work to protect systems from different types of adversarial attacks.
Biggio et al. [8] develop systematic approaches to defend against these different types of
adversarial attacks.

Remote Desktop Protocol (RDP) is designed by Microsoft to provide remote display
and input capabilities, while Remote Desktop Service (RDS) is a native service on Microsoft
Windows platform that implements RDP. This service is frequently used by legitimate
network administrators. However, it is also a primary tool used by attackers during LM [66],
since discriminating between legitimate and malicious use of this tool is challenging. We
surveyed nine distinct APT incidents [16,17,25,34–38,54] and five of them (over 50%) used
RDP during the attack. Therefore, in this thesis, we detect anomalous RDP sessions based
on evidence from host logs with a focus on optimizing recall.

1.3 Contribution

The primary contributions of this work are as follows:

• We highlight the limitations of two publicly available Windows event log datasets from
Los Alamos National Laboratory (LANL) [40, 64]. To overcome their limitations, we
combine these two datasets while preserving their realistic properties.

• We propose an anomaly-based approach for detecting malicious RDP sessions. We
explore different feature sets and evaluate various supervised ML techniques for classifying
RDP sessions in Windows event logs. In addition, we evaluate a model that combines
unsupervised and supervised ML techniques to improve the performance of RDP session
classification.

3

• We compare the performance of our proposed approach to a state-of-the-art method [32],
and demonstrate that our ML model outperforms in the classification of RDP sessions in
Windows event logs. In addition, we show that our model is robust against certain types
of adversarial attacks.

1.4 Thesis Organization

The thesis is organized as follows:

• Chapter 2 provides background knowledge that is necessary to understand this thesis. In
addition, it presents the current state of existing anomaly-based detection approaches.

• Chapter 3 describes the characteristics and properties of the two datasets we employed
in this thesis.

• Chapter 4 presents the approach of crafting our own synthetic dataset based on existing
dataset. Furthermore, the features extracted from this dataset are elaborated. In addition,
ML techniques and their performance evaluation metrics are discussed in this chapter.

• Chapter 5 delineates the evaluation results of different approaches in detecting anomalous
RDP sessions and benchmarks the robustness of the proposed model.

• Chapter 6 reviews our main contributions and provides a brief summary of this thesis.
In addition, this chapter instigates future research directions.

4

Chapter 2

Background

2.1 Intrusion kill-chain and Lateral Movement

Conventional APT detection approaches assumes successful intrusions and focus on individ-
ual events. However, in recent sophisticated APT, a single adversary campaign consists
of multiple small, less detectable attacks. Detecting these attacks can be challenging, as
a single campaign may develop over time with multiple steps, each designed to thwart a
defense and take place in a different timeline.

All attacks occurring in cyberspace have patterns that can be described as a chain
of events—the intrusion kill-chain [29], depicted in Fig. 2.1. At a high-level, an APT
starts with reconnaissance, observing and identifying a target in the network. This is
followed by creating a weaponized payload. Weaponization of payloads typically take the
form of malicious emails and attachments, which are delivered to the subject of interest.
Exploitation starts after delivery, where the malevolent code gets triggered. While malicious
code execution can be stand-alone, some malwares exploit applications on the subject’s
machine. This can range from OS-based bugs (e.g., in RDP and PsExec) to application-
based faults (e.g., in live processes, such as Google Chrome and Microsoft Office). The
attacker then proceeds with the installation of a security back-door on the system or
activation of system built-in functionality (e.g., RDP), which permits external persistent
connections. After the establishment of a persistent connection, the attacker can start
executing different actions while moving laterally in the environment. These actions leave
system logs on end hosts, that we leverage in our host-based APT detection.

In addition to Command & Control, the kill-chain identifies LM as a crucial attack
behavior. LM includes credential stealing and infiltrating other hosts controlled by attackers,

5

Reconnaissance Weaponization Delivery

Exploitation

Installation
Command
& Control

Action

Figure 2.1: Intrusion kill-chain

to move laterally within the network and gain higher privileges to fulfill adversarial objectives.
Fig. 2.2 illustrates an example of LM. In this figure, a host (i.e., Host 1) that resides in an
enterprise network is compromised by an attacker via social engineering, such as (spear)
phishing [66]. Suppose there was a previous RDP connection from Host 1 to Host 2, and
the credential used for accessing Host 2 is cached on Host 1. In this case, the attacker
can perform credential stealing on Host 1 to gain access to another internal host (i.e., LM
to Host 2) that has physical access to the databases. Note that these databases are not
directly connected to the Internet. The attacker can then make connection attempts to the
internal databases using the stolen credentials of another internal host. It is less likely that
adversaries could launch a successful intrusion without LM, as crucial assets are typically
not directly reachable from the outside of a network [67]. Thus, detecting APT using LM
can also contribute to early attack detection [29, 42]. In this thesis, we focus on host-based
RDP evidence for LM detection.

2.2 Host-based Anomaly Detection

Host-based anomaly detection enables quick microscopic per-host analysis, and is well-suited
for known and observable malware activities. It is typically accomplished by examining
system traces, such as event logs and system calls. Existing works [14, 51] show that

6

Attacker

Firewall

Switch

Host 3Host 1 Host 2

Database 1 Database 2

1

2

3
4

5

Figure 2.2: An illustration of LM

host-based anomaly detection has a higher potential in comparison to its signature-based
counterpart. However, as it requires extensive monitoring of system activities, it tends to
consume host resources (e.g., CPU cycles, memory, virtual machines). Consequently, this
can negatively impact user experience on the host. We use event logs collected by the native
Windows event monitoring system, to minimize this overhead incurred during logging.

While Windows event logs can be used for detecting anomalous RDP sessions, they are
also useful in detecting malicious tools executed on end hosts. Berlin et al. [7] implement
a virus detection system that complements the host anti-virus software by applying ML
techniques on Windows event logs. Therefore, similar techniques can be useful to detect
the execution of malicious tools used during LM. However, it is a challenge to achieve low
error rates in host-based anomaly detection [14]. Nevertheless, host-based analysis for LM
detection is advantageous over the network-based alternative with respect to granularity
and scalability [45].

7

2.3 Related Works

While this thesis focuses on a host-based approach for LM detection, we discuss comprehen-
sive related works that help develop our approach. This section starts with the analysis of
APT campaigns, which is followed by a discussion on related works by categories, namely
host-based, network-based and hybrid approaches. We conclude with a few related works
on adversarial machine learning.

2.3.1 Advanced Persistent Threats

Tankard [60] discusses the characteristics of APT attacks and identifies the fundamental
difference between APT and conventional cyber threats. The author also analyzes a few
APT attack cases with a focus on the various techniques employed during these attacks.
There are also a few strategies proposed for helping organizations to defend against these
APTs. For a host-based approach, the author suggests the adoption of Security Incident
and Event Management (SIEM) to analyze host logs and identify anomalies. Whereas,
network intrusion and detection systems are recommended for real time traffic monitoring
in the network-based approach.

Ussath et al. [66] analyze techniques and methods employed in 22 different APT campigns,
and help reveal different relevant characteristics of these campaigns. According to the
authors, different tools and techniques are leveraged in different phases of APT attacks.
During the LM stage, the majority of the campaigns use standard operating system tools
to collect information and gain remote access. Among these tools, RDP is one of the most
popular technique for obtaining persistent access. Surprisingly, none of the surveyed APT
campaigns use zero-day attacks during the LM phase.

2.3.2 Network-Based APT Detection

Marchetti et al. [48] propose a framework that detects hosts that are involved in APT
activities, specifically in data exfiltrations. The proposed framework starts with collecting
network flows followed by feature extraction and normalization. Eventually, each internal
host is assigned a suspicious score that is computed from extracted features. The prototype
of this framework is deployed and evaluated in a real network that consists of around 10,000
hosts. The proposed system is scalable as it can process 140 million flows within 2 minutes.
In addition, the experiment results indicate its ability to detect both burst and low-and-slow
exfiltrations.

8

Ghafir et al. [23] develop a system, called MLAPT, that detects APT based on network
evidence. Unlike most systems that focus on one particular stage of an APT attack, MLAPT
is able to detect various stages of an APT attack and predict the likelihood of an APT attack.
MLAPT system can be categorized into three phases (i.e., threat detection, alert correlation
and attack prediction). Multiple modules that detect common techniques used in APT
attacks are deployed to generate alerts and feed them to the correlation framework (FCI).
The FCI framework then filters and clusters received alerts. In addition, the correlation
between different clusters is evaluated. The final phase is a ML model that predicts the
probability of a complete APT attack. The evaluation results demonstrate that MLAPT
system achieves 81.8% true positive rate (TPR) and 4.5% false positive rate (FPR).

2.3.3 Host-Based APT Detection

Kaiafas et al. [32] successfully employ an ensemble of classifiers for detecting malicious events
in the Los Alamos National Laboratory (LANL) dataset [40]. However, the authors are
oblivious to the biased nature of the LANL dataset. Based on our analysis (cf., Chapter 3),
all red team events in the dataset originate from four unique hosts. This implies that the
ML classifiers will be biased to the source host feature (employed in [32]) in training and
inference. We highlight this limitation in Chapter 5.

Siadati et al. [56] propose APT-Hunter that visualizes the logons connection between
computers. By filtering out logon events specified by the security analysts, the unusual
logon events can be further analyzed. However, such a system requires constant monitoring
and filtering by the experts. It also achieves less than 50% recall on the LANL dataset. The
authors also implement a system [57] that extracts logon patterns for anomaly detection.
They propose a novel pattern mining algorithm that is scalable for large datasets. Their
system consists of two components, an exact matching classifier and a pattern matching
classifier. While the exact matching classifier is prone to logon history poisoning, the
pattern matching classifier complements it by matching a logon to all possible combination
of attributes that describe it. A real dataset provided by a global financial institution is
employed for evaluation. However, due to the lack of malicious activities, the authors inject
attack traces according to penetration test campaigns. Their system yields 82% recall
and 99.7% precision in detecting malicious logons. While the authors propose host-based
anomaly detection that leverages pattern matching, the focus of our work is to harness ML
techniques for anomaly detection.

Milajerdi et al. [50] develop a system, called Holmes, that leverages correlation between
suspicious flows during an APT attack. It aims to map suspicious events found in the host

9

logs to stages of an APT attack. To achieve this goal, Holmes first constructs a high-level
scenario graph (HSG) by mapping low level audit logs to behavioral patterns defined as
Tactics, Techniques, and Procedures (TTPs). These TTPs are patterns from commonly
used techniques in APT attacks. Then, it maps a set of TTPs to a particular stage in an
APT attack. The proposed system is evaluated on a dataset generated from engagements
of red teams and blue teams. This dataset contains 9 different APT scenarios and Holmes
is able to achieve 100% recall and precision by selecting the optimal threshold for malicious
scores. The main limitation of this work is the patterns used for generating TTPs, since
it requires constant updates in order to detect new threats. Notably our system does not
depend on any database to perform classification.

Ussath et al. [65] implement a user behavior simulation system to generate user activity
logs for Windows platform. They leverage feed-forward neural networks and recurrent
neural networks to identify malicious log events. However, the dataset generated by their
simulation system is based on hypothetical assumptions. For example, the authors assume
that all logon events pertaining to the start of user activities happen between 7:00 and
10:59 o’clock, which is unrealistic. In addition, some of their ML features, such as longitude
and latitude of the user, are impractical for most real-world scenarios. For example, not all
devices are equipped with GPS capabilities and IP-based geo-location may not be accurate
due to VPN, to name a few.

Lopez and Sartipi [46] propose different feature extraction techniques and provide a list
of features that can be employed for detecting Information System misuse. The authors
demonstrate the usefulness of their proposed features using a simple logistic regression
model, evaluated on the LANL dataset. Their receiver operating characteristic (ROC)
produces a 82% area under the ROC curve, which outperforms random draw. Although, the
authors propose possible features for addressing anomaly detection, they do not evaluate
the performance of various ML techniques on the proposed features.

Creech et al. [14] designed a host-based intrusion detection system that leverages system
call patterns. They use a new type of neural network i.e., extreme learning machine, with
novel features derived from semantic analysis to achieve a high detection rate. They employ
two datasets (i.e., KDD98 and ADFA-LD) for evaluation and their system yields 100%
detection rate and 0.6% false alarm rate. While the approach in [14] relies on the analysis
of system calls, our work focuses on log analysis. In addition, their solution is customized
for Linux-based systems, making it infeasible to directly leverage on the Windows platform
due to the inherent differences in operating system architectures [15].

10

2.3.4 Hybrid APT Detection

Zeng et al. [70] build a botnet detection system that leverages both network and host
information to make decisions. Their system consists of three major components (i.e.,
host analyzer, network analyzer and correlation engine). The host analyzer is deployed on
each host that monitors system-wide behaviors and uses SVM to generate a suspicion-level.
While the network analyzer ingests flows from routers and applies a hierarchical clustering
algorithm to group similarly-behaving hosts. The correlation engine collects information
from the host analyzer if and only if a group of hosts are deemed to be suspicious by the
network analyzer. Finally, the correlation engine assigns a detection score to each host
and makes the final decision. Their system is evaluated on a semi-synthetic dataset, which
consists of data collected from a campus network and a simulated environment. Their
results indicate near zero false negative rate and acceptable FPR. Our approach is inspired
from this work and several other works to develop two-staged classification of RDP sessions.

2.3.5 Adversarial Machine Learning

Biggio et al. [8] analyze pattern recognition systems under adversarial settings. The authors
point out that the existing pattern recognition systems are designed without taking security
into consideration. Once the underlying assumption of data stationarity is broken, malicious
attackers are capable of easily compromising the classifier. Authors review numerous
existing works that leverage ML, and highlight vulnerability with examples and experiments.
To cope with the security vulnerability in the clustering and classification systems, the
authors propose both proactive and reactive defense approach. The proactive approaches
can be categorized into security by design and security by obscurity, whereas, the reactive
approach focuses on learning from the past. While both approaches can mitigate the risk
of attacks, the authors suggest that their combination ensure a more secure system. This
work helps us outline the different types of adversarial attacks that may compromise our
proposed model.

Apruzzese et al. [2] study a network-based intrusion detection system [59] that uses ML
techniques. The analyzed system uses network flow-based features with a random forest
classifier for detecting botnet. The CTU [22] dataset is used for evaluating the detection
system. According to the experiments performed by the authors, botnet can easily evade
the detection of such a classifier by slightly modifying its original commutation patterns
(e.g., flow duration, source bytes, destination bytes and total packets, etc.). The authors
further demonstrate the effect of perturbing different combination of features. For instance,
the detection rate of botnet drops from 99.85% to 19.22% after adding just 1 second to

11

flow duration. While these results indicate that such a classifier is fragile to adversarial
attacks, authors do not provide any solution that can mitigate this critical problem. While
this study analyzes the weakness of a network-based intrusion detection system, this thesis
develops a similar benchmark approach to prove that our system is robust against this type
of adversarial attack.

12

Chapter 3

Dataset

The dataset plays a crucial role in the success of ML. However, Windows event log datasets
that represent real user behavior are fairly limited. Most publicly available datasets, such
as [22, 55], facilitate network-based intrusion detection. In contrast, host event logs contain
sensitive information limiting their distribution by organizations [65]. To overcome this
limitation, researchers (e.g., [65]) often simulate user and attacker behavior to generate
synthetic datasets. However, datasets generated using this approach are purely based on
hypothetical assumptions, and may not depict real-world user behavior. Therefore, to
preserve the realism of user behavior, we leverage and combine two real datasets from
LANL, namely comprehensive [40] and unified [64] datasets. In the combined dataset (cf.,
Chapter 4), the Windows event IDs of interest to this thesis are 4624, 4625 and 4634, which
pertain to RDP authentication. Table 3.1 provides a description of these events.

Table 3.1: Windows event ID reference [64]

Event ID Description

4624 An account was successfully logged on.
4625 An account failed to log on.
4634 An account was logged off.

3.1 Comprehensive Events Dataset

The comprehensive dataset [40] spans 58 days, and consist of activities generated from
12,425 users and 17,684 computers. The dataset is divided into five different logs, namely

13

authentication, process, flow, DNS and red team logs. The red team log contains a subset
of events from the authentication log, which are generated from red team activities (e.g.,
compromise events). Hence, the red team log provides the ground truth for ML. In this
thesis, we leverage the authentication and red team logs for detecting malicious RDP sessions.
However, based on the dataset description and our observations, there are limitations in
the authentication log:

• The number of red team events is very small, accounting for less than 0.0001% of the
total events, and only appear in certain time intervals.

• There are no logoff events, making it impossible to deduce certain crucial features, such
as the logon session duration.

• The timestamp is obfuscated in UNIX time epoch. As a result, it is difficult to categorize
events into days, which could be a discriminating feature to identify abnormal usage.

• A large number of RDP logon events have the same source and destination host, which
is beyond reason.

3.2 Unified Events Dataset

The unified dataset [64] is collected within LANL over a 90 day interval. Table 3.2
highlights a sample event from this dataset. Unlike the previous dataset, this dataset
provides comprehensive and detailed Windows event logs, including the missing logoff
events. Although the timestamps in this dataset are also obfuscated, events are already
divided into days. However, the primary limitation of this dataset is the lack of red team
activities, i.e., this dataset only contains benign user activities. Furthermore, the source
host is missing in some 4624 LogonType 10 events and all 4625 LogonType 10 events. The
4624 event records all successful logons and event 4625 records logon failures with reason,
while type 10 in both events indicate that RDP is used for remote login. Both of these
events are crucial for tracking (malicious) RDP sessions [31].

14

Table 3.2: A sample event extracted from the Unified dataset

Field Value Description

UserName User451666 User name used for authentication

EventID 4624 Microsoft defined Windows event ID

LogHost Comp313779 The destination host that authentication targeted

LogonID 0x9c279eb A semi-unique ID for current logon session

DomainName Domain001 Domain name of user name

Source Comp288750 The source host that authentication originated from

LogonType RemoteInteractive Descrition of logon type below

ProcessName winlogon.exe Process that processed the authentication event

Time 732 The obfuscated epoch time of the event in seconds

LogonType 10 Type of authentication event (e.g., remote or local)

ProcessID 0xaa4 A semi-unique ID identifies process

15

Chapter 4

Methodology

4.1 Combining Datasets

Both datasets have limitations according to their authors [41] and our observations. Hence
we decided to inject red team events from the comprehensive dataset [40] into the unified
dataset [64]. Since these two datasets were collected within the same organization, we do
not lose the properties and patterns of attack events. However, these two datasets are
obfuscated with different hash functions and cannot be simply merged. Also, recall that
the red team events originate from only four unique hosts. Indeed we could have mapped
these four source hosts into a larger group of hosts in our new dataset to avoid any bias in
the ML classifier. However, we did not choose this approach to preserve the authenticity of
the attacks.

Instead, we proceed as follows. Let R be the collection of red team logon events from
the comprehensive dataset and B the collection of benign RDP logon events extracted from
the unified dataset. For each event ei ∈ R, we map the source host Srci to a randomly
selected unique source host Srcj from an event ej ∈ B. We further map the user name and
destination host tuple {Usri, Dsti} of ei, to a randomly selected unique tuple {Usrk, Dstk}
from an event ek ∈ B. After mapping, we insert, in chronological order, the modified
red team events e′i into the set B, labeled as malicious. There are no changes needed for
timestamp, since the unified dataset already spans the red team events time interval (i.e.,
the normal events span 90 days and red team events span first 30 days). The detailed
injection algorithm is depicted in Algorithm 1. The distribution of benign and red team
events in the first 30 days is illustrated in Figure 4.1.

16

Algorithm 1 Inject malicious RDP authentication events into benign events

Input: Benign RDP authentication events Benign, red team RDP events Malicious

Output: A synthetic dataset that combines benign and red team RDP events

/* Initialize some variables */

1: µ← Benign.sessions.duration.mean() . Mean of session duration of Benign

2: σ2 ← Benign.sessions.duration.variance() . Variance of session duration of Benign

3: RedHosts←Malicious.sourceHosts . Set of source hosts in Benign

4: BenignHosts← Benign.sourceHosts . Set of source hosts in Malicious

/* An authentication tuple is a combination of user name and destination host in an

authentication event */

5: RedTuples←Malicious.authTuples . Set of authentication tuples in Benign

6: BenignTuples← Benign.authTuples . Set of authentication tuples in Malicious

/* Create a dictionary that maintains a one-to-one mapping from a original source host

in Malicious to a newly selected host in Benign */

7: Source← dict{}
8: for each host ∈ RedHosts do

9: Source[host]← BenignHosts.randomPop()

10: End

/* Create a dictionary that maintains a one-to-one mapping from a tuple (user name,

destination host) in Malicious to a newly selected tuple in Benign */

11: AuthTuple← dict{}
12: for each tuple ∈ RedTuples do

13: AuthTuple[tuple]← BenignTuples.randomPop()

14: End

/* Rewrite the fields in red team events and insert the modified event into Benign */

15: for each event ∈Malicious do

16: newSrc← Source[event.SourceHost]

17: newUser ← AuthTuple[event.AuthTuple].UserName

18: newDst← AuthTuple[event.AuthTuple].DestinationHost

19: session← GaussianRandom(µ, σ2)

20: modified← newEvent(event.timeStamp, newSrc, newUser, newDst, session)

21: Benign.append(modified)

22: End

23: return Benign

17

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

Day

E
ve

n
t

co
u
n
t

Benign Events
Red team Events

Figure 4.1: RDP events distribution

We extract a total of 222,692 events with IDs 4624, 4625 and 4634, and authentication
type 10. We discard all 4625 events and those 4624 events with missing source host. After
cleaning the dataset of invalid data entries and extracting relevant features (cf., Chapter 5),
we end up with 56,837 events. The significant reduction in datapoints comes from combining
logon events (ID 4624) with their corresponding logoff event (ID 4634) into an RDP session
event with a well-defined session length. Benign logon events from the unified dataset with
no corresponding logoff events are omitted as well. It is important to note that the injected
red team authentication events only contain logon events (ID 4624) but no logoff events
(ID 4634). Hence, this hampers the computation of malicious RDP session’s duration. To
this end, we generate a session duration for each red team event from a normal distribution
N (µ, σ2), where µ and σ are the mean and standard deviation, respectively, computed from
all benign RDP session’s duration. Though a random distribution may be more reasonable,
as attacks can last for any duration, we assume that attacks have similar behavior (session

18

duration) to benign users.

4.2 Feature Engineering

We extract the following baseline features from the combined dataset derived in the previous
section:

• User (Usr): The user name used for RDP authentication.

• Source (Src): The source host where the RDP authentication originated.

• Destination (Dst): The destination host for the RDP authentication.

• Session duration: The duration of the RDP session in seconds.

• User time difference: For user Usri, the time difference of two sequential RDP authenti-
cation events ej and ek that contain user Usri.

• Source time difference: For source host Srci, the time difference of two sequential RDP
authentication events ej and ek that contain host Srci.

• Destination time difference: For destination host Dsti, the time difference of two sequen-
tial RDP authentication events ej and ek that contain host Dsti.

• Mean of session duration for user : The average duration of all RDP sessions that contain
user Usri.

• Mean of session duration for source: The average duration of all RDP sessions that
contain source host Srci.

• Mean of session duration for destination: The average duration of all RDP sessions that
contain destination host Dsti.

• Weekday : The weekday extracted from timestamp.

• Seconds in a day : The seconds elapsed within a day.

19

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

Day

E
ve

n
t

co
u
n
t

Weekday
Weekend

Figure 4.2: RDP events per day

Not all the attributes from the original dataset (cf., Table 3.2) are employed to extract the
above features. Features such as event ID, process name, process ID, logon type description
and domain name have identical values across all events. Therefore, we remove them from
our feature list. The logon ID is used to compute session duration only.

Furthermore, we do not employ the timestamp as is, but instead we extract from the
timestamp the weekday and the time (in seconds) in the day, which are more meaningful.
Since timestamps are obfuscated, it is not straightforward to obtain weekday information
directly by converting it from UNIX time epoch to date. Therefore, we leverage the count
of RDP events per day to identify a pattern, as depicted in Fig. 4.2. That is, we identify
the two consecutive days with least number of events in a 7 day interval as Saturday and
Sunday.

20

4.3 ML Techniques

We employ various ML techniques to evaluate our approach for detecting malicious RDP
sessions. While the supervised ML algorithms exploit the relationship between the input
data and its corresponding label, the unsupervised ML algorithms tend to learn the inherent
structure of the input data without explicit labels.

4.3.1 Supervised Learning Algorithms

Based on previous studies [9,32,43,46,62,65], we select a variety of ML techniques that have
proven effectiveness in anomaly detection. We leverage Logistic Regression (LR), a classic
regression model that is known to capture the relationship between variables. Similarly, we
employ Gaussian-NB (GNB), a probabilistic classifier based on Bayes’ theorem, without
specifying any prior distribution. We also evaluate the Decision Tree (DT) classifier with
a maximum depth of three and criterion entropy. The DT algorithm constructs a tree
structure where each internal node splits data points based on pre-defined criterion. The
DT used in our work is an optimized version of Classification and Regression Trees (CART)
algorithm [10]. Furthermore, we evaluate Random Forest (RF) [27], LogitBoost (LB) [21]
and LightGBM [39], which are ensemble methods built on top of DT. RF tends to solve
the over-fitting problem in DT, whereas LB combines a set of weak learners to construct
a strong learner. LightGBM is similar to LB, and is a recent DT-based gradient boost
algorithm. In comparison to other Gradient Boosting Decision Tree (GBDT), the efficiency
and scalability of LightGBM is better by one order of magnitude [39]. We also evaluate
Feed-forward Neural Network (FNN), a simple neural network without cycles between each
layer.

4.3.2 Unsupervised Learning Algorithms

K-means [47] is one of the most popular clustering algorithms that first assigns data points
to clusters based on existing centriods and then selects new centriods based on cluster
assignment. It repeats these two steps until the assignments no longer update. Since the
vanilla version of K-means does not scale with a large amount of data, we leverage Mini
Batch K-means for reducing computation time. Agglomerative Clustering (AC) is another
clustering approach that uses bottom-up hierarchical clustering. In agglomerative clustering,
each observation starts as a singleton cluster, and the algorithm progressively merges pairs
of clusters until they reduce to the desired number of clusters. The euclidean distance is

21

used as the distance metric in our model. Balanced Iterative Reducing and Clustering using
Hierarchies (Birch) [71] is another hierarchical clustering approach. The Birch algorithm
is able to incrementally produce clusters by ingesting new data points, which is useful
for online learning. However, Birch does not scale well with higher dimension of feature
space. In our experiment, we set its branching factor to 50 and threshold to 1000. We
also employ Density-based Spatial Clustering of Applications with Noise (DBSCAN) [20],
another commonly used clustering algorithm. The DBSCAN algorithm not only groups
close data points into clusters but also mark points in low density area as outliers. Thus, it
can potentially identify anomaly in our dataset. In our experiment, we set epsilon (EPS) to
3,000 and minimum samples to 10.

4.3.3 Metrics

We define malicious RDP sessions as positive subjects and use the following performance
metrics to evaluate the different ML techniques:

Accuracy =
True Positive + True Negative

Total number of subjects
× 100

Precision =
True Positive

True Positive + False Positive
× 100

Recall =
True Positive

True Positive + False Negative
× 100

F1 score = 2× Recall × Precision

Recall + Precision

AP score =
∑
n

(Recalln-Recalln− 1)× Precisionn

The accuracy indicates the percentage of sessions that are correctly classified. Whereas,
precision is the percentage of sessions that have been identified as malicious are indeed
malicious. A higher precision implies a higher confidence in the true nature of the sessions
flagged as malicious (i.e., lower false positives). On the other hand, recall is the percentage
of malicious sessions that have been correctly identified. A higher recall implies a higher

22

confidence that malicious sessions are not missed (i.e., lower false negatives). We also
present the F1 score, a harmonic mean of precision and recall. This metric provides the
aggregate performance of a classifier. Though accuracy also depicts the overall performance,
F1 score is more reliable when the dataset is imbalanced. In our case, the dataset used
contains less than 3% of anomalous RDP sessions. Hence, a classifier could achieve superior
accuracy (e.g., more than 97% accuracy) by simply marking every RDP session as normal.
To illustrate the performance of the classifiers at different classification thresholds, we
leverage the Precision-Recall (PR) curve. We also use the Average Precision (AP) score,
which is the weighted average of precision at each decision threshold, and estimates the
area under the PR curve. Although a Receiver Operating Characteristic (ROC) curve can
illustrate the aggregate performance of a classifier, it suffers with imbalanced dataset as
well. Hence, we do not include it in our metrics.

23

Chapter 5

Evaluation

5.1 Environment Setup

5.1.1 Hardware

The data analysis, visualization and pre-processing are performed on a cluster of four nodes,
each featuring an Intel(R) Xeon(R) E3-1230 v3 3.30GHz CPU and 16GB RAM. Nodes
are interconnected with 10Gbps Ethernet. Model training and validation for supervised
learning approaches are performed on an Amazon AWS EC2 t3.medium instance. Due
to the hardware resource limitation of AWS instance, the unsupervised learning phase is
conducted on a machine that has 2 x Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz CPU
and 196GB RAM.

5.1.2 Software

A Logstash instance is deployed to ingest the dataset into an ElasticSearch [24] cluster,
and Kibana is used for data visualization. For data pre-processing, a variety of Python
packages, including Numpy [52], Scipy [30] and Pandas [49] are employed. The ML models
are developed in Python with Scikit-learn [53] and Keras [13] libraries.

24

5.2 Experiment

To validate our ML models, we first employ k-fold cross validation (k = 10) with all baseline
features, as depicted in Table 5.1. The FNN with three layers, 100, 50 and 1 neuron in each
layer, respectively, and multiple activation functions (i.e., sigmoid and ReLu), classifies
all RDP sessions as benign. We tweaked the FNN by adjusting the number of layers, the
number of neurons in each layer and the activation function, but to no avail. This can be
attributed to the imbalanced nature of the dataset, as the malicious events only account
for a small fraction of the total events (cf., Chapter 3). Therefore, even though the FNN
classifier has an outstanding accuracy of 98.68%, it results in zero precision and recall
with all malicious RDP sessions misclassified as benign. Although sampling techniques
can be used to balance the dataset, they will cause other problems. In particular, the
under-sampling algorithms are known to inherently lose critical information, while the
over-sampling algorithms suffer from over-fitting [4]. Hence, we do not explore sampling
techniques in this thesis. Due to FNN’s poor performance, we exclude it from the remaining
evaluations. In contrast, the DT algorithms have both high precision and recall, with
LB using DT regressor outperforming all other classifiers. This is primarily because LB
classifiers are designed for boosting the performance of existing classifiers [21]. Another
boosting algorithm, LightGBM, achieves a slightly poorer performance than LB in precision
and recall. Even though the probabilistic GNB classifier under performs the DT family of
classifiers, it outperforms LR and FNN.

Table 5.1: RDP session detection with all baseline features

Classifier Accuracy Precision Recall F1

Logistic Regression 98.50% 10.93% 1.74% 0.030
Decision Tree 99.90% 99.04% 93.58% 0.962

Feed-forward NN 98.68% 0% 0% 0
Gaussian-NB 99.60% 87.31% 82.11% 0.846

Random Forest 99.95% 99.73% 96.13% 0.979
LogitBoost 99.99% 99.87% 99.73% 0.998
LightGBM 99.99% 99.73% 99.33% 0.995

Recall that all the attacks in the employed dataset originate from four unique source
hosts. Therefore, a classifier that uses the source host feature may tend to predict all events
with these source hosts as malicious, leading to a bias in classification. To highlight this
impact, we perform a robustness test with a RF classifier that leverages a subset of the
original features i.e., user name, source host, destination host, duration and timestamp. In

25

this test, we demonstrate that even the simplest classifier with biased features can achieve
excellent cross-validation results. However, such a classifier is a misfit in detecting unknown
attacks.

We split the dataset into training and testing sets, where the testing set contains
malicious events that originate from source hosts that are not present in the training set.
This allows as to run a robustness test. As shown in Table 5.2, this results in over-fitting,
with RF unable to correctly classify any malicious RDP session from unknown source hosts.

Table 5.2: Robustness of standalone RF in the face of unknown malicious src hosts

Method Accuracy Precision Recall F1

Cross-validation 99.50% 86.17% 74.10% 0.797
Robustness test 99.96% 0% 0% 0

Therefore, we remove from our feature set those features that cause such a bias, namely
username, source host and destination host. Table 5.3 depicts the result after the removal
of these features. In comparison to Table 5.1, no significant difference is evident in terms of
precision, recall or F1 score in classifying RDP sessions. The LightGBM classifier achieves
perfect precision in this test case even though the overall performance decreased slightly.
Although these results are promising, and most malicious RDP sessions are detected with
low false positives, we attempt to further improve the performance of our ML models.

Table 5.3: RDP session classification (user, src and dst features removed)

Classifier Accuracy Precision Recall F1

Logistic Regression 98.50% 11.34% 1.87% 0.321
Decision Tree 99.90% 99.04% 93.58% 0.962

Feed-forward NN 98.68% 0% 0% 0
Gaussian-NB 99.60% 87.31% 82.11% 0.846

Random Forest 99.94% 99.59% 96.13% 0.978
LogitBoost 99.99% 99.87% 99.47% 0.997
LightGBM 99.99% 100% 98.8% 0.994

5.2.1 Two-Stage Classification

There are a few works that employ multiple stage training for improving the performance of
classification. For example, Kim et al. [43] propose a hierarchical approach that decomposes

26

Table 5.4: Two-stage classification with (user, src, and dst features removed)

Classifiers Accuracy Precision Recall F1 Training Time (s)

K-means+LB 99.99% 99.87% 99.47% 0.997 10.21
AC+LB 99.99% 99.87% 99.47% 0.997 40.63

Birch+LB 99.99% 99.74% 99.33% 0.995 24.64
DBSCAN+LB 99.99% 99.87% 99.47% 0.997 10.77

LB 99.99% 99.87% 99.47% 0.998 9.26

normal training data into smaller subsets using DT and leverage one-class support vector
machine (SVM) for each subset. Chitrakar et al. [12] propose a similar approach, where
the training data is split into different clusters using k-medoids, followed by näıve bayes
for further attack classification. Therefore, we set out to boost the performance of our
stand-alone classifiers using two-stage classification. We first employ unsupervised learning
algorithm to group RDP sessions into clusters and treat the cluster information (which
cluster a datapoint belongs to) as a new input feature. After that, the RDP sessions are
fed through supervised learning for further classification. The rationale for this approach is
that benign RDP sessions may form clusters according to a particular user’s behavior. It
would be helpful for classification algorithm to make a decision with additional clustering
information that leverages user behavior.

In this experiment, we select LB for the classification stage since it has the best
aggregate performance. The group of clustering algorithms employed in conjunction with
LB is discussed in Chapter 4. The number of cluster is set to 100 for all clustering algorithms
except DBSCAN (that does not accept number of clusters as input parameter) and the
result is depicted in Table 5.4. Evidently, no improvements can be observed over the
stand-alone LB classifier with an increase in training time. In order to further investigate
the potential of unsupervised learning algorithms, the subsequent experiment focuses on
a single algorithm with different number of clusters. The Birch and AC algorithms are
removed from the candidate algorithms as they require too much time for computing clusters.
The DBSCAN is not under consideration as well, since it is not straightforward to control
the number of clusters. Specially, the number of clusters are calculated automatically based
on other hyper-parameters, such as eps. Therefore, the only candidate left is K-means
and the corresponding results are illustrated in Fig. 5.1. The training time in the figure
includes both clustering and classification stages. Notably, the performance of two-stage
classification surpasses the stand-alone LB in terms of recall when the number of clusters
equals to 1000. However, this improvement is marginal. Furthermore, the training time of
K-means grows exponentially with the data size [69], making it infeasible in practice.

27

200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
98

98.2

98.4

98.6

98.8

99

99.2

99.4

99.6

99.8

100

Number of clusters

P
re

ci
si

on
/

R
ec

al
l

(%
)

9

9.5

10

10.5

11

11.5

12

T
ra

in
in

g
ti

m
e

(s
)

Precision
Recall

Training time

Figure 5.1: Recall, precision and training time vs. # of clusters for K-means with LB

5.2.2 Voting

The authors in [32] improve the performance of their stand-alone classifiers by consolidating
them using ensemble ML. We employ a similar approach with Majority Voting (MV)
algorithm, starting with a näıve attempt that leverages all ML models in the ensemble. This
results in a lower precision, recall and F1 score, as shown in Table 5.5. Since weak classifiers
can influence the voting process, this suggests a careful selection of the classifiers to include
in the ensemble prior to applying MV. Therefore, due to the lackluster performance of
LR and FNN (cf., Table 5.3), we remove them from the ensemble. In addition, we also
eliminate classifiers from the same category with relatively poorer performance (i.e., DT is
removed since RF has better performance, and LightGBM is removed since LogitBoost has
better performance). The performance of the combined classifiers is shown in Table 5.6. In
comparison to the previous ensemble depicted in Table 5.5, the classification of RDP sessions
improve, but still under performs stand-alone LB in the best case. The best performing

28

ensemble has minor improvements with respect to precision, but results in a much lower
recall than the stand-alone LB classifier.

Table 5.5: Majority voting for RDP session detection using näıve approach i.e., all five
classifiers and baseline features

Classifier Accuracy Precision Recall F1

GNB, RF, LB, LR, DT, LGB 99.91% 99.86% 93.19% 0.964

Table 5.6: Majority voting for RDP session classification using selective classifiers (user,
src, and dst features removed)

Classifier Accuracy Precision Recall F1

GNB, RF, LB 99.95% 99.87% 96.26% 0.980
GNB, RF, DT 99.91% 99.58% 93.32% 0.964
GNB, LB, DT 99.91% 99.73% 93.32% 0.964
RF, LB, DT 99.95% 99.73% 96.13% 0.979

Evidently, MV is unable to boost the performance of the stand-alone classifiers. There-
fore, we explore other ensemble approaches, namely weighted voting (WV) and its special-
case conservative approach (CA). We select the best performing ensemble of classifiers from
Table 5.6. The first three columns in Table 5.7 are the weights assigned to each classifier,
namely LB, RF and GNB. The threshold is the ratio of votes required for a RDP session to
be classified as malicious. For example, the second row in the table assigns LB a weight
that is equal to the sum of the weights of the remaining two classifiers. Intuitively, this has
the potential to identify more true positives (i.e., malicious RDP sessions) that are missed
by LB. However, this combination is unable to spot any extra malicious sessions, as shown
in Table 5.7. In this case, the malicious sessions identified by RF and GNB have already
been recognized by LB.

In the last row of the table, a RDP session is classified as malicious if any classifier in
the ensemble tags it as malicious, which corresponds to CA. Though this results in a slight
increase in recall, it comes at the cost of a large drop of precision in classifying RDP sessions
and yields a lower F1 score. Therefore, we choose the stand-alone LB classifier as Our Model
for comparison to the state-of-the-art. This LB classifier uses DT as the base estimator,
where the number of estimators can significantly impact performance. The training time
increases linearly with the number of estimators, as shown in Fig. 5.2, while precision and

29

0 50 100 150 200 250 300 350 400
95

96

97

98

99

100

Number of estimators

P
re

ci
si

on
/

R
ec

al
l

(%
)

0

10

20

30

40

T
ra

in
in

g
ti

m
e

(s
)

Precision
Recall

Training time

Figure 5.2: Recall, precision and training time vs. # of estimators for stand-alone LB (our
model)

recall are the highest with around 100 estimators. In the remaining experiments, we will
use stand-alone LB with 100 estimators.

Table 5.7: Weighted voting for RDP session classification using LB, RF and GNB classifiers
(user, src, and dst features removed)

LB RF GNB Threshold Accuracy Precision Recall F1

0.25 0.25 0.25 0.5 99.95% 99.87% 96.26% 0.980
0.5 0.25 0.25 0.5 99.99% 99.87% 99.47% 0.997
0.25 0.25 0.25 0.25 99.83% 89.03% 99.60% 0.940

30

5.2.3 Comparative Analysis

We compare our stand-alone LB classifier with Kaiafas et al. [32]. The LB classifier is
preferred over the LightGBM because we do not want to miss any attack. Although
LightGBM achieves perfect precision in our previous experiment (cf., Table 5.3), its recall
is lower than LB. As mentioned in Chapter 1, our goal in this thesis is to optimize the
recall. In other words, we tolerate a higher number of false positives in exchange for a lower
number of false negatives.

1 2 3 4 5 6 7 8 9 10
80

85

90

95

100

Iteration

R
ec

al
l

(%
)

Our Model
Kaiafas et al. [32]

Figure 5.3: Recall during each iteration

In order to compare, we implement Kaiafas’s [32] approach and evaluate the correspond-
ing model on our dataset. A list of the features used in their work is available in Appendix A.
During feature extraction, we omit their geometric distribution feature, since all the failure
events are filtered out due to missing source host in the dataset. As shown in Table 5.8,
with all available features, the recall of Kaiafas’s model is slightly lower than our model
(first two rows without *). Though their precision is better, the F1 score indicates an overall
performance drop in comparison to our model. After the removal of user name, source host
and destination host features from both models, Kaiafas’s model has a significant drop in

31

recall from 98.67% to 90.66% (last two rows with *). In addition, the standard deviation
of recall is high for [32]. For some iterations of cross validation, it can only achieve 85%
recall, as shown in Fig. 5.3. On the other hand, our model illustrates stability in recall over
multiple iterations. Furthermore, the training time of Kaiafas’s model is about 80% higher
than our model. This can be primarily attributed to the larger number of features and
construction of extra classifiers. Therefore, our model outperforms the state-of-the-art in
RDP session classification in terms of both performance and training time.

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

AP = 0.95

Recall (%)

P
re

ci
si

on
(%

)

Our Model
Perfect Classifier

Figure 5.4: Precision-Recall curve of our model

Finally, to further evaluate the models against zero-day threats, we perform a robustness
test. We split the dataset into training (75%) and testing (25%). While the training
set contain attacks originating from three different sources, the testing set contains an
additional attacking source that does not appear in the training set. In Fig. 5.4, we
present the PR curve, which illustrates the trade-off between precision and recall at different
thresholds. As evident, our model’s PR curve is very close to a perfect classifier and yields
an AP score of 0.95. This asserts the robustness of our model to detect threats from new
(unseen) attack sources. However, it is unfeasible to plot a PR curve for a MV classifier,

32

Table 5.8: RDP session classification using stand-alone LB vs. [32]

Classifier Accuracy Precision Recall F1 Training Time (s)

Our Model 99.99% 99.87% 99.73% 0.998 11.28
Kaiafas et al. 99.98% 100.00% 98.67% 0.993 20.48
*Our Model 99.98% 99.87% 99.47% 0.992 10.53

*Kaiafas et al. 99.88% 100.00% 90.66% 0.951 18.19
* = Model validation without user, src and dst features

such as Kaiafas’s model. A MV classifier depends on decisions made by several classifiers
and a single chosen threshold across classifiers in not appropriate. Therefore, we compare
the overall performance of the two classifiers using the F1 score. While our model obtains
the highest F1 score of 0.914, Kaiafas’s model scores as low as 0.675.

5.2.4 Robustness to Adversarial Attempts

ML algorithms were originally designed without considering attackers that may intentionally
fabricate the input data to manipulate the outcome of a classifier [6, 28]. These algorithms
assume a benign environment, where both training and testing datasets are stationary,
and follow the same statistical distribution. According to [5], these adversarial attacks
can be categorized into different taxonomies along three axes (i.e., attack influence, attack
specificity and security violation). A brief summary of these axes are presented in Table 5.9.
In addition, we list the examples of potential adversarial attacks against our classification
model in Table 5.10 based on the previous summary in Table 5.9. This table helps us focus
our study on a plausible adversarial scenario.

In this thesis, we focus on exploratory attacks with the assumption that attackers do
not have access to our classifier and training dataset. Since our model heavily depends
on the benign user behavior, once the adversaries obtain access to the training dataset,
they can easily mimic a benign user’s logon pattern by learning their authentication and
communication patterns. Due to this limitation, our model will perform poorly under such
circumstances. In addition, we do not consider causative attacks in this thesis. Since we
assume that the attackers have no direct access to our training dataset (or the classifier itself),
the only way they can mislead our classifier is to generate massive RDP sessions within
a protected network. As a result, our classifier will become biased during the re-training
phase. However, this hypothetical scenario is unrealistic, since system administrators will
be alerted by our model of such a large invasion. They can investigate the root cause and

33

patch any vulnerability.

Table 5.9: Taxonomy of attacks against ML systems [6, 28]

Attack
Influence

Exploratory Attacker can only manipulate the testing data
Causative Attacker can manipulate both training and testing data

Attack
Specificity

Targeted Attacker focuses on a subset of samples
Indiscriminate Attacker focuses on any sample

Security
Violation

Confidentiality Attacker obtains confidential information
Integrity Attacker gains access to a restricted service or resource

Availability System denies legitimate access for benign users

Table 5.10: Examples of potentials attacks against our ML model

Exploratory
Targeted Integrity

Attacker obfuscates RDP access pattern
to simulate a particular benign user

Indiscriminate Integrity
Attacker obfuscates RDP access pattern
to simulate any arbitrary benign user

Causative

Targeted
Integrity

Mis-train classifier to grant attacker RDP
access to a single protected host

Availability
Mis-train classifier to block benign RDP
access of a particular benign user

Indiscriminate
Integrity

Mis-train classifier to grant attacker RDP
access to any protected host

Availability
Mis-train classifier to block benign RDP
access of all benign users

In order to study the impact of adversarial attacks against our model, we conduct a series
of experiments. Under previous assumptions, we create new RDP sessions with polymorphic
form of attacks by manipulating the features of a malicious RDP session. Not all of the
features are modified in this process. In general, we do not perturb statistical features
(i.e., mean of session duration for user, mean of session duration for source and mean of
session duration for destination), since they represent the existing user behavior pattern.
We replace the original timestamp from selected malicious RDP sessions with a randomly
generated timestamp. For the remaining features, we perturb them by percentages. An
example of an adversarial sample is shown in Table 5.11.

The testing dataset in subsequent experiments only contain malicious RDP sessions.
Thus, the precision is always 100%, while the accuracy is always equal to recall. Therefore,

34

Table 5.11: Example of polymorphic form of an attack

Data Weekday Seconds in
a day

Session du-
ration

User time
diff

Source
time diff

Destination
time diff

Original 2 12340 100 1000 1000 1000
Mutation 6 (ran-

dom)
45670
(random)

125
(+25%)

1250
(+25%)

1250
(+25%)

1250
(+25%)

we use accuracy as the evaluation metric in the these experiments. In the first experiment,
we train our model on the entire dataset from Chapter 4 and created 300 new malicious
RDP sessions for testing, by employing the aforementioned perturbations. Specifically,
we randomly select 300 malicious data points from the training set and mutate them.
The classification result of newly crafted RDP sessions is illustrated in Fig. 5.5. The
positive change implies that the original feature values are increased by certain percentages,
while, the negative change means that the original feature values are decreased by certain
percentages. In Fig. 5.5, the steady lines indicate that our model is robust to polymorphic
forms of known attacks. To further investigate the robustness of our model, the second
experiment excludes randomly selected 300 malicious RDP sessions from the original training
dataset. We apply the same perturbation approach on these malicious RDP sessions and
classify them. The results of the second experiment is presented in Fig. 5.6. The overall
performance drops by 2% in comparison to the first experiment. However, this is expected,
since the classifier is handling polymorphic forms of unknown attacks. The plots from
Fig. 5.6 have a similar trend to the plots in the previous figure. Both experiments indicate
that our model is robust enough to exploratory types of adversarial attacks. This can be
attributed to the success of capturing user’s behavior within the features and the choice of
ML classifier.

35

0 5 10 15 20 25 30 35 40
90

92

94

96

98

100

Changes in features (%)

A
cc

u
ra

cy
(%

)

Positive Change
Negative Change

Figure 5.5: Detection accuracy for polymorphic forms of known attack

36

0 5 10 15 20 25 30 35 40
90

92

94

96

98

100

Changes in features (%)

A
cc

u
ra

cy
(%

)

Positive Change
Negative Change

Figure 5.6: Detection accuracy for polymorphic forms of unknown attack

37

Chapter 6

Conclusion and Future Works

6.1 Conclusion

The APT is one of the most sophisticated and evolving cyber attacks and it has gained a lot
of attention in the past decade. APT not only persistently collects data from a compromised
target, but also leverages the existing victim to progressively spread throughout the network
by exploiting various system vulnerabilities. In this thesis, we study existing systems and
approaches for anomaly detection via host events. Since RDP is one of the major tools
employed during lateral movement stage, we leverage Windows event logs for anomaly-
based detection of malicious RDP sessions. With the identified shortcomings of two public
datasets, we synthesize a combined dataset that remains faithful to the attack models.
Using the combined dataset, we extract relevant features, and explore both supervised
and unsupervised learning algorithms to detect anomalous RDP sessions. After evaluating
various clustering and classification algorithms, we chose stand-alone LB as the best model
with respect to accuracy, recall and precision in classifying RDP sessions. LB shows
promising results and outperforms a state-of-the-art model [32] in recall and training time
for detecting malicious Windows RDP sessions. In addition, we demonstrate that our
approach is robust to adversarial attacks.

6.2 Recommendations

The dataset has always been a significant factor that influences the results of a ML study.
However, it is difficult to find an ideal dataset in some cases. We would make a few

38

recommendations regarding data collection. The first approach is to search for datasets that
are publicly available on the internet. The second approach is to set up the infrastructure
and capture data if no available dataset can be found. In the case which human interaction
is required, it is possible to recruit voluntary participants by providing some rewards. In the
worst case scenario, the user’s behavior can be simulated to generate the synthetic dataset.

6.3 Future Works

There are a few extensions of this work that can be explored as future research directions:

Online Learning Due to the large amount of log data generated daily in organiza-
tions, their storage not only increases operating costs but also wastes hardware resources.
Furthermore, training ML models from scratch can be computationally intensive, time
consuming, and prohibitive. Therefore, it is crucial to retrain ML models as new data
becomes available, thus accommodating ML models boundary changes after deployment.

Hybrid System A hybrid anomaly detection system that leverages data from different
sources may be beneficial. There are few works [11,70] that attempt to build a system/model
that correlates network flows and host logs. A combination of host-based and network-based
APT detection system can build an advanced detection system that attackers cannot easily
evade. It is feasible to combine our approach with another network-based anomaly detection
system to further boost detection rate.

Other Session-based Protocol The model presented in this thesis for RDP can work
with other session-based protocols. For example, we can evaluate our model on SSH sessions
with datasets in the future.

More Use Cases of Event Logs The Windows event log contains a variety of event
types, which can be leveraged to identify different stages of an APT attack. However, our
current work is only limited to one specific tool used in the LM stage. It is possible to leverage
system events other than authentication to classify between benign and unauthorized use
of system administration tools. In addition, the execution of malicious tools or malware
can be identified by analyzing event logs as well.

39

References

[1] Remote desktop protocol. https://docs.microsoft.com/en-us/windows/desktop/
termserv/remote-desktop-protocol. Accessed: 2019-02-22.

[2] Giovanni Apruzzese and Michele Colajanni. Evading botnet detectors based on
flows and random forest with adversarial samples. In 2018 IEEE 17th International
Symposium on Network Computing and Applications (NCA), pages 1–8. IEEE, 2018.

[3] Sara Ayoubi, Noura Limam, Mohammad A Salahuddin, Nashid Shahriar, Raouf
Boutaba, Felipe Estrada-Solano, and Oscar M Caicedo. Machine learning for cognitive
network management. IEEE Communications Magazine, 56(1):158–165, 2018.

[4] Pierre Baldi. Autoencoders, unsupervised learning and deep architectures. In Proceed-
ings of the International Conference on Unsupervised and Transfer Learning Workshop,
pages 37–50, 2011.

[5] Marco Barreno, Blaine Nelson, Anthony D Joseph, and J Doug Tygar. The security of
machine learning. Machine Learning, 81(2):121–148, 2010.

[6] Marco Barreno, Blaine Nelson, Russell Sears, Anthony D Joseph, and J Doug Tygar.
Can machine learning be secure? In Proceedings of the 2006 ACM Symposium on
Information, computer and communications security, pages 16–25. ACM, 2006.

[7] Konstantin Berlin, David Slater, and Joshua Saxe. Malicious behavior detection using
windows audit logs. In Proceedings of the ACM Workshop on Artificial Intelligence
and Security (AISec), 2015.

[8] Battista Biggio, Giorgio Fumera, and Fabio Roli. Pattern recognition systems under
attack: Design issues and research challenges. International Journal of Pattern
Recognition and Artificial Intelligence, 28(07):1460002, 2014.

40

https://docs.microsoft.com/en-us/windows/desktop/termserv/remote-desktop-protocol
https://docs.microsoft.com/en-us/windows/desktop/termserv/remote-desktop-protocol

[9] Raouf Boutaba, Mohammad A Salahuddin, Noura Limam, Sara Ayoubi, Nashid
Shahriar, Felipe Estrada-Solano, and Oscar M Caicedo. A comprehensive survey on
machine learning for networking: evolution, applications and research opportunities.
Journal of Internet Services and Applications, 9(1), 2018.

[10] Leo Breiman, Jerome H Friedman, Richard A Olshen, and Charles J Stone. Classifica-
tion and regression trees. The Wadsworth statistics/probability series. Wadsworth &
Brooks/Cole Advanced Books & Software, Monterey, CA, 1984.

[11] M. Chen, Y. Yao, J. Liu, B. Jiang, L. Su, and Z. Lu. A novel approach for identifying
lateral movement attacks based on network embedding. In Proceedings of IEEE
International Conf. on Parallel Distributed Processing with Applications, Ubiquitous
Computing Communications, Big Data Cloud Computing, Social Computing Networking,
Sustainable Computing Communications, pages 708–715, 2018.

[12] Roshan Chitrakar and Chuanhe Huang. Anomaly based intrusion detection using
hybrid learning approach of combining k-medoids clustering and naive bayes classifica-
tion. In Proceedings of IEEE International Conference on Wireless Communications,
Networking and Mobile Computing, pages 1–5, 2012.

[13] François Chollet et al. Keras. https://keras.io, 2015.

[14] G. Creech and J. Hu. A semantic approach to host-based intrusion detection sys-
tems using contiguousand discontiguous system call patterns. IEEE Transactions on
Computers, 63(4), April 2014.

[15] Gideon Creech. Developing a high-accuracy cross platform Host-Based Intrusion
Detection System capable of reliably detecting zero-day attacks. PhD thesis, University
of New South Wales, Canberra, Australia, 2014.

[16] Crowdstrike. Deep in thought: Chinese targeting of national security think tanks, 2014.
Accessed: 2019-08-08.

[17] Cylance. Operation cleaver, 2014. Accessed: 2019-08-08.

[18] Abbas Abou Daya, Mohammad A. Salahuddin, Noura Limam, and Raouf Boutaba. A
graph-based machine learning approach for bot detection, Feb 2019.

[19] Jon DiMaggio. The black vine cyberespionage group, Aug 2015. Accessed: 2019-02-28.

41

https://keras.io

[20] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based
algorithm for discovering clusters in large spatial databases with noise. In Kdd,
volume 96, pages 226–231, 1996.

[21] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic regression:
a statistical view of boosting. Annals of Statistics, 28:2000, 1998.

[22] S. Garćıa, M. Grill, J. Stiborek, and A. Zunino. An empirical comparison of botnet
detection methods. Comput. Secur., 45, 2014.

[23] Ibrahim Ghafir, Mohammad Hammoudeh, Vaclav Prenosil, Liangxiu Han, Robert
Hegarty, Khaled Rabie, and Francisco J Aparicio-Navarro. Detection of advanced
persistent threat using machine-learning correlation analysis. Future Generation
Computer Systems, 89:349–359, 2018.

[24] Clinton Gormley and Zachary Tong. Elasticsearch: The Definitive Guide. O’Reilly
Media, Inc., 1st edition, 2015.

[25] Fox-IT Group-IB. Anunak:apt against financial institutions, 2014. Accessed: 2019-08-
08.

[26] Thoufique Haq, Jinjian Zhai, and Vinay K Pidathala. Advanced persistent threat (apt)
detection center, April 18 2017. US Patent 9,628,507.

[27] Tin Kam Ho. Random decision forests. In Proceedings of 3rd international conference
on document analysis and recognition, volume 1, pages 278–282. IEEE, 1995.

[28] Ling Huang, Anthony D Joseph, Blaine Nelson, Benjamin IP Rubinstein, and JD Tygar.
Adversarial machine learning. In Proceedings of the 4th ACM workshop on Security
and artificial intelligence, pages 43–58. ACM, 2011.

[29] Eric M Hutchins, Michael J Cloppert, and Rohan M Amin. Intelligence-driven computer
network defense informed by analysis of adversary campaigns and intrusion kill chains.
Leading Issues in Information Warfare & Security Research, 1, 2011.

[30] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific tools
for Python, 2001–. Accessed Mar 2019.

[31] JPCERT Coordination Center. Detecting lateral movement through tracking event
logs, Dec 2017. Accessed: 2019-02-26.

42

[32] G. Kaiafas, G. Varisteas, S. Lagraa, R. State, C. D. Nguyen, T. Ries, and M. Ourdane.
Detecting malicious authentication events trustfully. In Proceedings of NOMS, April
2018.

[33] Stamatis Karnouskos. Stuxnet worm impact on industrial cyber-physical system
security. In Proceedings of IECON Annual Conference of the IEEE Industrial Electronics
Society, 2011.

[34] Kaspersky Lab. The icefog apt: A tale of cloak and three daggers, 2013. Accessed:
2019-08-08.

[35] Kaspersky Lab. The regin platform nation-state ownage of gsm networks, 2014.
Accessed: 2019-08-08.

[36] Kaspersky Lab. Carbanak apt: The great bank robbery, 2015. Accessed: 2019-03-03.

[37] Kaspersky Lab. The duqu 2.0, 2015. Accessed: 2019-08-08.

[38] Kaspersky Lab. The msnmm campaigns, 2015. Accessed: 2019-08-08.

[39] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei
Ye, and Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. In
Advances in Neural Information Processing Systems, pages 3146–3154, 2017.

[40] Alexander D. Kent. Comprehensive, Multi-Source Cyber-Security Events. Los Alamos
National Laboratory, 2015.

[41] Alexander D. Kent. Proceedings of Cybersecurity Data Sources for Dynamic Network
Research. In Dynamic Networks in Cybersecurity, June 2015.

[42] S. Khattak, N. R. Ramay, K. R. Khan, A. A. Syed, and S. A. Khayam. A taxonomy
of botnet behavior, detection, and defense. IEEE Communications Surveys Tutorials,
16(2), Second 2014.

[43] Gisung Kim, Seungmin Lee, and Sehun Kim. A novel hybrid intrusion detection
method integrating anomaly detection with misuse detection. Expert Systems with
Applications, 41(4):1690–1700, 2014.

[44] Brian Krebs. Anthem breach may have started in
april 2014. https://krebsonsecurity.com/2015/02/

anthem-breach-may-have-started-in-april-2014/, 2015. Accessed: 2019-
02-22.

43

https://krebsonsecurity.com/2015/02/anthem-breach-may-have-started-in-april-2014/
https://krebsonsecurity.com/2015/02/anthem-breach-may-have-started-in-april-2014/

[45] Hung-Jen Liao, Chun-Hung Richard Lin, Ying-Chih Lin, and Kuang-Yuan Tung.
Intrusion detection system: A comprehensive review. Journal of Network and Computer
Applications, 36(1):16 – 24, 2013.

[46] Eduardo Lopez and Kamran Sartipi. Feature engineering in big data for detection of
information systems misuse. In Proceedings of the Annual Intl. Conf. on Computer
Science and Software Engineering, 2018.

[47] James MacQueen et al. Some methods for classification and analysis of multivariate
observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics
and probability, volume 1, pages 281–297. Oakland, CA, USA, 1967.

[48] Mirco Marchetti, Fabio Pierazzi, Michele Colajanni, and Alessandro Guido. Analysis
of high volumes of network traffic for advanced persistent threat detection. Computer
Networks, 109:127 – 141, 2016. Traffic and Performance in the Big Data Era.

[49] Wes McKinney. Data structures for statistical computing in python. In Proceedings of
the Python in Science Conference, 2010.

[50] S. Momeni Milajerdi, R. Gjomemo, B. Eshete, R. Sekar, and V. Venkatakrishnan.
Holmes: Real-time apt detection through correlation of suspicious information flows.
In 2019 2019 IEEE Symposium on Security and Privacy (SP), pages 447–462, Los
Alamitos, CA, USA, may 2019. IEEE Computer Society.

[51] Daesung Moon, Sung Bum Pan, and Ikkyun Kim. Host-based intrusion detection
system for secure human-centric computing. The Journal of Supercomputing, 72(7),
2016.

[52] Travis E. Oliphant. Guide to NumPy. CreateSpace Independent Publishing Platform,
USA, 2nd edition, 2015.

[53] Pedregosa et al. Scikit-learn: Machine learning in python. J. Mach. Learn. Res., 12,
November 2011.

[54] Dell EMC RSA. Rsa incident response: Emerging threat profile shell crew, 2014.
Accessed: 2019-08-08.

[55] Elaheh Biglar Beigi Samani, Hossein Hadian Jazi, Natalia Stakhanova, and Ali A.
Ghorbani. Towards effective feature selection in machine learning-based botnet detec-
tion approaches. IEEE Conference on Communications and Network Security, pages
247–255, 2014.

44

[56] H. Siadati, B. Saket, and N. Memon. Detecting malicious logins in enterprise networks
using visualization. In 2016 IEEE Symposium on Visualization for Cyber Security
(VizSec), pages 1–8, Oct 2016.

[57] Hossein Siadati and Nasir Memon. Detecting structurally anomalous logins within
enterprise networks. In Proceedings of the ACM Conference on Computer and Com-
munications Security, pages 1273–1284, 2017.

[58] Sana Siddiqui, Muhammad Salman Khan, Ken Ferens, and Witold Kinsner. Detecting
advanced persistent threats using fractal dimension based machine learning classifi-
cation. In Proceedings of the ACM international workshop on security and privacy
analytics, 2016.

[59] Matija Stevanovic and Jens Myrup Pedersen. An analysis of network traffic classification
for botnet detection. In 2015 International Conference on Cyber Situational Awareness,
Data Analytics and Assessment (CyberSA), pages 1–8. IEEE, 2015.

[60] Colin Tankard. Advanced persistent threats and how to monitor and deter them.
Network Security, 2011(8):16 – 19, 2011.

[61] FortiGuard SE Team. As the holiday season draws near, mobile malware attacks are
prevalent, Nov 2018.

[62] Chih-Fong Tsai, Yu-Feng Hsu, Chia-Ying Lin, and Wei-Yang Lin. Intrusion detection
by machine learning: A review. Expert Systems with Applications, 36(10), 2009.

[63] Yu Tsuda, Junji Nakazato, Yaichiro Takagi, Daisuke Inoue, Koji Nakao, and Kenjiro
Terada. A lightweight host-based intrusion detection based on process generation
patterns. In Proceedings of Asia Joint Conference on Information Security (AsiaJCIS),
2018.

[64] Melissa J. M. Turcotte, Alexander D. Kent, and Curtis Hash. Unified Host and Network
Data Set, chapter Chapter 1. World Scientific, Nov 2018.

[65] M. Ussath, D. Jaeger, F. Cheng, and C. Meinel. Identifying suspicious user behavior
with neural networks. In Proceeding of IEEE Intl. Conf. on Cyber Security and Cloud
Computing, June 2017.

[66] Martin Ussath, David Jaeger, Feng Cheng, and Christoph Meinel. Advanced persistent
threats: Behind the scenes. In Proceedings of Annual Conference on Information
Science and Systems (CISS), 2016.

45

[67] John R Vacca. Network and system security. Elsevier, 2013.

[68] Andrew Vance. Flow based analysis of advanced persistent threats detecting targeted
attacks in cloud computing. In Proceedings of Intl. Scientific-Practical Conf. Problems
of Infocommunications Sc. and Tech., 2014.

[69] Andrea Vattani. K-means requires exponentially many iterations even in the plane.
Discrete & Computational Geometry, 45(4):596–616, 2011.

[70] Y. Zeng, X. Hu, and K. G. Shin. Detection of botnets using combined host- and
network-level information. In 2010 IEEE/IFIP International Conference on Dependable
Systems Networks (DSN), pages 291–300, June 2010.

[71] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: an efficient data clustering
method for very large databases. In ACM Sigmod Record, volume 25, pages 103–114.
ACM, 1996.

46

APPENDICES

47

Appendix A

Features Used by Kaiafas’s Work

features explanation

Median
Median of time difference of events between systems and from
user to system

95th percentile
95th percentile of time difference of events between systems
and from user to system

Standard Deviation
Standard deviation of time difference of events between systems
and from user to system

Frequency The amount of past similar events

First Occurrence A flag denoting an event without any prior similar event

Geometric Distribution
Distribution of malicious events within a sequence of similar
events

Popular User User of the most occurrences within a sequence of similar events

Diversity Number of different users within a sequence of similar events

48

	List of Tables
	List of Figures
	Introduction
	Motivation
	Challenges and Research Opportunities
	Contribution
	Thesis Organization

	Background
	Intrusion kill-chain and Lateral Movement
	Host-based Anomaly Detection
	Related Works
	Advanced Persistent Threats
	Network-Based APT Detection
	Host-Based APT Detection
	Hybrid APT Detection
	Adversarial Machine Learning

	Dataset
	Comprehensive Events Dataset
	Unified Events Dataset

	Methodology
	Combining Datasets
	Feature Engineering
	ML Techniques
	Supervised Learning Algorithms
	Unsupervised Learning Algorithms
	Metrics

	Evaluation
	Environment Setup
	Hardware
	Software

	Experiment
	Two-Stage Classification
	Voting
	Comparative Analysis
	Robustness to Adversarial Attempts

	Conclusion and Future Works
	Conclusion
	Recommendations
	Future Works

	References
	APPENDICES
	Features Used by Kaiafas's Work

